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Dynamical Zeta
Functions and Transfer

Operators
David Ruelle

C
ertain generating functions—encoding
properties of objects like prime num-
bers, periodic orbits, …—have received
the name of zeta functions. They are
useful in studying the statistical prop-

erties of the objects in question. Zeta functions 
have generally been associated with problems of
arithmetic or algebra and tend to have common 
features: meromorphy, Euler product formula,
functional equation, location of poles and zeros
(Dirichlet series expansion, Riemann hypothesis),
and relation with certain operators (typically 
operators acting on cohomology groups). The 
dynamical zeta functions to be discussed here are
set up to count periodic orbits but to count them
with fairly general weights. As a consequence the
subject will have a more function-theoretic flavor
than the study of arithmetic or algebraic zeta func-
tions. Apart from that, our zeta functions will have
properties similar to those of the more traditional
ones. The main difference will be that the relevant
operators (called transfer operators) will act on 
(infinite-dimensional) cochain groups instead of
(finite-dimensional) cohomology groups. Intuitively,
the weights that we have introduced prevent 
passage from cochains to cohomology groups.
Technically this will force us to consider determi-
nants in infinite dimension. The study of dynam-
ical zeta functions uses original tools (transfer 
operators, kneading determinants), which we shall
discuss below.

The simplest invariant measures for a dynamical
system are those carried by periodic orbits. Count-
ing periodic orbits is thus a natural task from the
point of view of ergodic theory. And dynamical zeta
functions are an effective tool to do the counting.
The tool turns out to be so effective in fact as to make

one suspect that there is more to the story than what
we currently understand.

Some Traditional Examples of Zeta
Functions
The grandmother of all zeta functions is the 
Riemann zeta function defined by

ζR(s) =
∞∑
n=1

n−s

for Re s > 1. Actually, this function was first 
considered by Euler, who noted that

ζR(s) =
∏

p prime

(1− p−s )−1

(this is the Euler product formula). Riemann showed
that ζR(s) extends meromorphically to C with a 
single pole at s = 1 and that there is a functional
equation relating ζR(s) and ζR(1− s). Because ζR
is a generating function for the primes, it can be
used to prove the prime number theorem: that the
number of primes up to x is ∼ x/ logx . A theorem
from harmonic analysis called the Wiener-Ikehara
Tauberian theorem yields the prime number 
theorem from the fact that ζR(s) has a simple pole
at s = 1 and no other pole or zero for Re s ≥ 1.

After the Riemann zeta function, innumerable
functions with related properties have been intro-
duced. In particular, given an algebraic variety over
a finite field Fq, we may define a “Weil zeta func-
tion” by

ζW (z) = exp
∞∑
m=1

zm

m
|Fixfm|.

Here one has extended the algebraic variety to the
algebraic closure of Fq, obtaining a space M , and
f : M →M is the Frobenius map (acting by z �→ zq
on coordinates); |Fix fm| is the number of fixed
points of the m-th iterate of f. The function ζW (z)
satisfies the Weil conjectures (Weil, Dwork, Grothen-
dieck, Deligne); in particular it is rational. Note
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that the variable z in ζW (z) has to be thought of
as the exponential of −s in ζR(s) .

The Weil zeta function counts periodic points
(or periodic orbits) for the dynamical system (M, f ),
where f is the Frobenius map. It is natural to con-
sider a more general space M and map f : M →M
and (assuming that |Fix fm| is finite for each m)
to define

ζ(z) = exp
∞∑
m=1

zm

m
|Fixfm|.

We have here again an “Euler product formula”,
namely, the following identity between formal
power series:

(1) ζ(z) =
∏
P

(1− z|P |)−1

where the product is over periodic orbits P and |P |
is the period of P. For example, one can take for f
a diffeomorphism of a compact manifold M (Artin-
Mazur). In the special case when f is hyperbolic
(technically, f is an Axiom A diffeomorphism re-
stricted to a basic set), one finds that this zeta
function is rational (Smale, Guckenheimer, Manning,
Bowen, Fried).

As an example of (1), consider the map
x �→ 1− µx2 of the interval [−1,1] to itself. For the
Feigenbaum value µ = 1.401155 . . ., this map has
one periodic orbit of period 2n for each integer
n ≥ 0. Therefore

ζ(z) =
∞∏
n=0

(1− z2n )−1 =
∞∏
n=0

(1 + z2n )n+1

where we have used (1) and
(1− z)−1 =

∏∞
n=0(1 + z2n ) . Note that this ζ satis-

fies the functional equation ζ(z2) = (1− z)ζ(z).

A natural way to count periodic orbits for a map
f is to weight them with the topological index
L(x, f ). Specifically, assume that f is a diffeomor-
phism of the compact manifold M , x ∈ Fixf, and
1− Txf is invertible (where Txf is the tangent map
to f at x). Then

L(x, f ) = sgn det(1− Txf )
and we have the Lefschetz trace formula

dimM∑
k=0

(−1)ktr f∗k =
∑

x∈Fixf
L(x, f )

where f∗k is the action of f on the k-th homology
group of M with real coefficients. Suppose now that
1− Txfm is invertible for all fixed points x of fm
for all m > 0, and define the Lefschetz zeta func-
tion

ζL(z) = exp
∞∑
m=1

zm

m

∑
x∈Fixfm

L(x, fm).

Then the trace formula yields

ζL(z) =
dimM∏
k=0

det(1− zf∗k)(−1)k+1

(therefore ζL(z) is rational). In many interesting
cases L(x, fm) = 1 for all periodic points x , so that
ζL(z) = ζ(z).

Suppose now that instead of a discrete time dy-
namical system generated by f : M →M , we have
a continuous time dynamical system, i.e., a semi-
flow or flow (f t ) on M . Then the Euler formula (1)
with z replaced by e−s suggests defining a zeta
function

(2) ζ(s) =
∏
�

(1− e−s�(�))−1

where the product is over (prime) periodic orbits
� and �(�) is the period of �.

A much-studied example of a flow is the geodesic
flow on a Riemann manifold N. We recall the defini-
tion. If a point x(t) moves at unit speed along a geo-
desic of N and u(t) = d

dt x(t) ∈ Tx(t)N , we have
‖u(t)‖ = 1. Writing u(t) = f tu(0) defines a diffeo-
morphism f t of the unit tangent bundle M of N, and
(f t )t∈R is called the geodesic flow. Note that it is a flow
on the unit tangent bundle M rather than on N . 
Observe also that the period of a periodic orbit for
the geodesic flow is the length of a closed geodesic
on N.

Closely related to (2) is the definition of the Sel-
berg zeta function ζS . This zeta function appears
in questions of arithmetic and is defined in terms
of a Fuchsian group Γ ⊂ SL(2,R) operating on the
complex upper half-plane H (and a matrix repre-
sentation of Γ which we shall ignore here). If Γ is
torsion-free and Γ\H is compact, then Γ\H is a
compact surface with curvature −1 (because H
with the Poincaré metric is the Lobatchevsky plane

The idea of using the zeta function to study the
asymptotic distribution of primes is due to

Georg Friedrich Bernhard Riemann (1826-1866),
perhaps the greatest mathematician of all times.
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with curvature −1, the geodesics of H are half-
circles centered on the real axis). Let (f t ) be the 
geodesic flow on Γ\H so that the periods �(�) in
(2) are the lengths of the closed geodesics. Then
the Selberg zeta function is

ζS (s) =
∞∏
k=0

ζ(s + k)−1 =
∏
�

∞∏
k=0

(1− [exp�(�)]−s−k).

It can be shown that ζS is an entire analytic func-
tion satisfying a functional equation and a form of
the Riemann hypothesis. In fact the zeros of ζS are
related to the eigenvalues of the Laplace-Beltrami
operator ∆ on Γ\H . We thus have a connection be-
tween classical mechanics (the geodesic flow) and
quantum mechanics (with the Hamiltonian ∆). This
connection has been much studied in relation with
“quantum chaos”.

To conclude our list of examples let us mention
the currently popular Ihara-Selberg zeta function
associated with a finite unoriented graph G . This
function ζI is of the form (1) where periodic orbits
are replaced by cycles (circuits on G without 
immediate backtracking). It is known that 1/ζI is
a polynomial and that ζI satisfies the Riemann 
hypothesis precisely when G is Ramanujan 
(Ramanujan graphs were named by Lubotzky,
Phillips, and Sarnak; examples are not easy to con-
struct).

Dynamical Zeta Functions
Let us now equip the dynamical system (M, f ),
where f need not be invertible but Fixfm is finite
for all m > 0, with a weight g : M → C (real posi-
tive weights will be of special interest). A zeta func-
tion associated with the weighted dynamical sys-
tem (M, f , g) is defined by

(3) ζ(z) = exp
∞∑
m=1

zm

m

∑
x∈Fixfm

m−1∏
k=0

g(f kx)

as a formal power series. This is the prototype of
what we want to call a dynamical zeta function. We
have here again an Euler product formula

ζ(z) =
∏
P

(
1− z|P |

|P |−1∏
k=0

g(f kxP )
)−1

where xP ∈ P is chosen arbitrarily. So, introducing
a weight does not spoil the basic combinatorial
properties of the zeta function.

What about analyticity? Can we get more ana-
lyticity than is immediately obvious and then make
use of it to obtain statistical properties of the
(weighted) periodic orbits we are counting here? To
be specific, suppose that g = expA , where A is a
real function, and write

P (A) = lim sup
m→∞

1
m

log
∑

x∈Fixfm
exp

m−1∑
k=0

A(f kx).

Then the radius of convergence of ζ(z) is
exp(−P (A)). Can we prove more: that ζ(z) has an
isolated pole at exp(−P (A))? This could, for in-
stance, be used to prove analyticity of A �→ P (A).
We shall now give an example of this situation.

Let t be an r × r matrix with elements tij = 0 or 1.
Define

Ω = {(ξk)k∈Z : tξkξk+1 = 1 for all k}

and let d((ξk), (ηk)) = exp[−min{|k| : ξk �= ηk}] .
Then Ω is a compact metric space with respect to
the metric d. The map τ : (ξk) �→ (ξk+1) is called a
shift and is a homeomorphism of Ω. If we assume
that r ≥ 2 and that for some power tN of t all the
matrix elements tNij are positive, the dynamical 

system (Ω, τ) is called a mixing subshift of finite
type. Let Cα(Ω) be the Banach space of real 
α-Hölder continuous functions on Ω. Since the 
α-Hölder norm is given by

‖A‖α = max{sup
ξ
|A(ξ)|, sup

ξ �=η

|A(ξ)−A(η)|
d(ξ,η)α

},

we see that A ∈ Cα(Ω) says that the dependence
of A((ξk)k∈Z) on ξk is exponentially small for large
k (bounded by ‖A‖αe−α|k|).
1. Proposition. The limit

(4) P (A) = lim
m→∞

1
m

log
∑

ξ∈Fixτm
exp

m−1∑
k=0

A(τkξ)

exists, and there is R > exp(−P (A)) such that the
dynamical zeta function ζ(z) associated with the
weighted dynamical system (Ω, τ, expA) is mero-
morphic for |z| <R ,  with a single pole at
exp(−P (A)) and no other pole or zero.

[Note that if A = 0, the zeta function counts 
periodic orbits with weight 1 and can be computed
exactly (Bowen-Lanford) because |Fixτm| = tr tm ,
as one readily checks. Here one finds 

ζ(z) = exp
∞∑
m=1

zm

m
tr tm

= exp(−tr log(1− zt)) = 1/det(1− zt).]

A compact surface on which a metric with curvature -1 can be
put: several geodesics have been drawn.
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‖Txfnv‖ ≤ ‖v‖θn when v ∈ Vsx , n ≥ 0

‖Txf−nv‖ ≤ ‖v‖θn when v ∈ Vux , n ≥ 0.

If the entire manifold M is hyperbolic, f is called
an Anosov diffeomorphism. Of particular interest
are the hyperbolic sets with local product structure.
We shall not define this concept, introduced by
Smale, but mention as an example the closure K
of the set of periodic points for an Anosov diffeo-
morphism. (It is conjectured that for an Anosov dif-
feomorphism, the closure of the set of periodic
points is in fact always M itself.)

Arnold’s cat map is an example of an Anosov 
diffeomorphism on R2/Z2 . It is defined by
(x, y) �→ (x + y, x + 2y) (mod 1) . Hyperbolicity is
seen by checking that the eigenvalues of 

(
1 1
1 2

)
have modulus �= 1.

If K is hyperbolic with local product structure,
then f restricted to K is essentially a subshift of fi-
nite type. This follows from the existence of Markov
partitions first proved (after an example of Adler
and Weiss) by Sinai for Anosov diffeomorphisms,
then by Bowen in the general case. More precisely,
there is a subshift of finite type (Ω, τ) and a Hölder
continuous map π of Ω onto K such that

a. f ◦π = π ◦ τ ,
b. π−1 is uniquely defined on a residual set

(countable intersection of dense open subsets of
K)

c. maxx∈K |π−1x| is finite.
Counting periodic points for τ is not quite the
same thing as counting periodic points for f, but
almost (Manning and Bowen have shown how to do
an exact counting, using finitely many subshifts of
finite type). It simplifies matters to assume that f
is topologically mixing on K: if O1,O2 are non-
empty open subsets of K, then O1 ∩ f−nO2 �=∅ for
sufficiently large n. In brief, from Proposition 1 one
obtains the following.

2. Proposition. Let K be hyperbolic with local prod-
uct structure such that f |K is topologically mixing.
If A : K → R is Hölder continuous, then

P (A) = lim
m→∞

1
m

log
∑

x∈Fixfm
exp

m−1∑
k=0

A(f kx)

exists and there is R > exp(−P (A)) such that the dy-
namical zeta function ζ(z) associated with the
weighted dynamical system (K, f |K, expA) is mero-
morphic for |z| <R ,  with a single pole at
exp(−P (A)) and no other pole or zero.

Let me return to the letter that Bill Parry sent
me at the end of 1982. His interest was in hyper-
bolic flows (in particular Anosov flows), which have
a theory very similar to hyperbolic (and Anosov)
diffeomorphisms. We shall not give detailed defi-
nitions but note an important example: the geodesic
flow on a compact manifold of variable negative

The function A→ P (A), called pressure, arises in
a theory called thermodynamic formalism which 
is based on ideas and methods of statistical me-
chanics. Having obtained the above nontrivial but
apparently useless result, I put it as Exercise 7(c)
on page 101 in my book Thermodynamic Formal-
ism [3]. A few years later (December 29, 1982) Bill
Parry of Warwick wrote to me about very interest-
ing results on Axiom A flows he had obtained 
with his student Mark Pollicott. These results used
Exercise 7(c), which unfortunately he had been 
unable to do. Could I help? By the time I had
(painfully) managed to reconstruct the solution of
the exercise I received another letter: 13 Jan 83 /
Dear David, / We’ve finally managed to do your 
exercise! So ignore my last letter. / Sincerely / Bill
Parry.

Before we look into the work of Parry and
Pollicott, let me remark on a relation between the
zeta function (2) for a flow and the dynamical zeta
function (3). Let M be a compact manifold,
f : M →M a diffeomorphism, and T : M → R a
smooth positive function. A manifold ̃M is obtained
by identifying in {(x, τ) : x ∈M, 0 ≤ τ ≤ T (x)} the
points (x, T (x)) and (fx,0). Furthermore, there is 
a smooth flow (f̃ t ) on M̃ such that f̃ t (x, τ) =
(x, t + τ) if 0 ≤ τ + t ≤ T (x) . This flow (f̃ t ) is 
called the suspension of f corresponding to the
ceiling function T. It is now easy to check that 
the zeta function ζ̃ defined by (2) for the flow (f̃ t )
satisfies

ζ̃(s) = exp
∞∑
m=1

1
m

∑
x∈Fixfm

m−1∏
k=0

e−sT (f kx)

and is thus equal to the dynamical zeta function
(3) for z = 1 and g = e−sT. In particular, ζ̃(s) will be
analytic in s when ζ(z) defined by (3) is analytic at
z = 1.

By the way, it is natural to introduce a general-
ization of (2) associated with a function B : M → C ,
viz.

ζ(s) =
∏
�

(
1− exp

[
− s

∫ �(�)

0
dt B(f tx(�))

])−1
,

where x(�) is an arbitrarily chosen point in �. In
the case of a suspension this is again related to (3).

Hyperbolic Dynamics and Thermodynamic
Formalism
Let K be a compact invariant set for the Cr diffeo-
morphism f : M →M . One says that K is hyperbolic
if the tangent bundle restricted to K has a contin-
uous splitting

TKM = Vs ⊕ Vu

invariant under Tf and such that, for a suitable Rie-
mann metric and 0 < θ < 1,
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curvature is an Anosov flow. Bowen has shown that
if (f t ) is a smooth flow restricted to a hyperbolic
set K with local product structure, then counting
periodic orbits for (f t ) is basically the same thing
as counting periodic orbits with weights for a sub-
shift of finite type. (This is because (f t ) has a
Markov partition; i.e., it is basically a suspension
of a subshift of finite type with a suitable ceiling
function.) Assuming that (f t ) is topologically mix-
ing, one can then show that ζ(s) defined by (2) has
a meromorphic extension to an open set contain-
ing {s : Re s ≥ h} , without zero and with a single
pole at s = h. (The number h > 0 is known as “topo-
logical entropy of (f t ) restricted to K”, with a gen-
eral definition that need not concern us here.) The
analyticity of ζ(s) is thus very similar to the ana-
lyticity of the Riemann zeta function as used to
prove the prime number theorem. The same
method (Wiener-Ikehara Tauberian theorem) al-
lowed Parry and Pollicott to prove that the num-
ber of periodic orbits � with period �(�) ≤ x is
∼ ehx/hx. This extended an earlier result of Mar-
gulis by a new and very elegant method. Later Lal-
ley, Katsuda and Sunada, Parry, Pollicott, and Sharp
followed the same line of thought and studied the
distribution of periods for periodic orbits satisfy-
ing various conditions, with error terms, etc. When
(f t ) is the geodesic flow on a manifold of variable
negative curvature, one thus obtains detailed in-
formation about the lengths of geodesics on the
manifold. The special case of surfaces of constant
curvature −1 is of arithmetic interest (as we said
when we
introduced Selberg’s zeta function). So the study
of dynamical zeta functions extends to manifolds
of variable negative curvature some results of

arithmetic interest known in the case of constant
negative curvature.

The Method of Transfer Operators
The proof of Proposition 1 uses transfer operators.
Given a set Λ (which need not be a manifold) and
maps F : Λ→ Λ, g : Λ→ C , a transfer operator L
acting on functions Φ : Λ→ C is defined by

(5) (LΦ)(x) =
∑

y∈F−1{x}
g(y)Φ(y) .

[As an example, if F has Jacobian determinant J and
g = 1/|J|, the direct image by F of the measure
Φ(x)dx is (LΦ)(x)dx.] The situation to keep in mind
is when F is finite-to-one, expanding, and the func-
tions g and Φ have some kind of smoothness so
that L preserves (or improves) smoothness.

Consider now a one-sided subshift of finite type
(Λ, F ); i.e., with the notation used earlier, Λ =
{(ξk)k≥0 : tξkξk+1 = 1 for all k} and F (ξk) = (ξk+1) .
We define a metric on Λ by analogy with that on
Ω and take g = expA where A is β -Hölder contin-
uous. Then

(LΦ)(ξ1, ξ2, . . . ) =
∑
eA(ξ0,ξ1,ξ2,... )Φ(ξ0, ξ1, ξ2, . . . ),

where the sum is over the ξ0 such that tξ0ξ1 = 1 .
Similarly

(6) (LmΦ)(ξ) =
∑

η:Fmη=ξ

[
exp

m−1∑
k=0

A(Fkη)
]
Φ(η) .

Now, expressions like (6) or like

(7)
∑

η:Fmη=η
exp

m−1∑
k=0

A(Fkη)

(where the sum is over periodic points) are known
in statistical mechanics as partition functions, and
one can prove under various conditions that the log-
arithm of the partition function divided by m tends
to a limit P (A) when m →∞. Here one finds that
when L acts on the Banach space of β -Hölder func-
tions,

lim
m→∞‖L

m‖1/m = eP (A),

where P (A) is defined as in (4) with τ replaced by
F . Therefore expP (A) is the spectral radius of L.
By a formula due to Nussbaum we can estimate the
essential spectral radius of L to be

≤ lim sup
m→∞

‖Lm − Em‖1/m

when the Em have finite rank. Pollicott noticed that
by taking Em = LmPm and PmΦ a piecewise con-
stant approximation of Φ, one gets that the es-
sential spectral radius of L is ≤ exp(−β + P (A)). So
the part of the spectrum which is > exp(−β + P (A))
consists of isolated eigenvalues of finite
multiplicity. In fact, because L is positivity pre-
serving and F is mixing, expP (A) is a simple

h

×

×

×

×

×

The function ζ(s) defined by (2) for the
geodesic flow on a compact manifold of
variable negative curvature has a pole at h > 0 .
Other zeros and poles are in {z : Rez < h} .
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eigenvalue, and there is no other eigenvalue with
the absolute value expP (A). (This is a Perron-Frobe-
nius type result. Because of this, transfer operators
are sometimes called Perron-Frobenius operators.)

Notice that (7) is something like a trace of Lm,
and because of this one can show that each eigen-
value λ of L contributes a factor 1/(1− λz) to ζ(z)
defined by (3). It is not obvious that the part of the
spectrum ≤ exp(−β + P (A)) will contribute a factor
analytic for |z| < exp(β− P (A)) , but this can be
proved by a trick due to Haydn (and techniques of
the thermodynamic formalism). We have just out-
lined a modern proof of (an improved version of)
Proposition 1, up to a detail: our function A de-
pends on the one-sided sequence

ξ = (ξ0, ξ1, ξ2, . . . )

instead of on

ξ̂ = (. . . , ξ−1, ξ0, ξ1, . . . ).

This is, however, not a problem, because it can 
be proved (Livš ic) that an α-Hölder function A(ξ̂)
may be rewritten as Â(ξ) + B(ξ̂)− B(τξ̂) where Â is
β -Hölder with β = α/2, so that A and Â give the
same dynamical zeta function.

We have just seen how to derive analyticity prop-
erties of the zeta function associated with the
weighted dynamical system (Λ, F, expA) from
study of the transfer operator L defined by (6). The
same technique applies to other cases; its success
depends on the choice of a Banach space B of
“smooth” functions for which the essential spec-
tral radius of L is strictly smaller than its spectral
radius (i.e., L is quasicompact).

An important example, that of piecewise mo-
notone maps of the interval, was treated by Baladi
and Keller. Let a = a0 < a1 < . . . < aN = b . We take
Λ to be the compact set [a, b] in R and assume that
F : Λ→ Λ is such that F|(ai−1, ai) is continuous
and strictly monotone for i = 1, . . . ,N . Also assume
that Fmx, Fmy ∈ (ai(n)−1, ai(n)) for all m ≥ 0 im-
plies x = y , and that g : Λ→ C is ≥ 0, of bounded
variation with regular discontinuities. Writing

R = lim
m→∞(sup

x
|Lm1(x)|)1/m,

R̂ = lim
m→∞

(
sup
x

m−1∏
k=0

g(Fkx)
)1/m

,

one obtains that ζ(z) is analytic for |z| < R−1,
meromorphic for |z| < R̂−1, and the eigenvalues λ
with λ > R of L acting on the functions of bounded
variation correspond to poles λ−1 of ζ(z), with the
same multiplicity. Usually, R > R̂ and (since we 
assumed g ≥ 0) R−1 is a pole of ζ(z).

Traces and Determinants
A trace on an algebra S over C is a linear operator
Tr : S → C such that TrM1M2 = Tr M2M1 . In

particular we shall be interested in traces on alge-
bras generated by transfer operators (or contain-
ing them). Remember that the transfer operator L
associated with the weighted dynamical system
(M, f , g) satisfies

(8) (LΦ)(x) =
∑

y : fy=x
g(y)Φ(y).

If L1 , L2 are transfer operators associated with
maps f1, f2 : M →M and weights g1, g2 : M → C, we
have

(9) (L2L1Φ)(x) =
∑

y : f2f1y=x
g2(f1y)g1(y)Φ(y)

so that L2L1 is again a transfer operator. An ex-
ample of a trace is the counting trace defined on
transfer operators by

TrcL =
∑

x∈Fix f
g(x).

[It is readily seen from (9) that TrcL1L2 = TrcL2L1.
In specific cases one would want to check that the
sum in TrcL converges and that TrcM depends
only on M as an operator, not on its specific rep-
resentation as sum of transfer operators of the
form (8).]

When we have a trace Tr we can define a deter-
minant Det(1− zM) as a formal power series

Det(1− zM) = exp
(
−

∞∑
m=1

zm

m
TrMm

)
(where 1 denotes the identity operator). If S is the
algebra of N ×N matrices and Tr, Det are the usual
trace and determinant, the above is an identity
that one can check by putting M in normal Jordan
form. Note also that the counting determinant
Detc (1− zL) constructed with the counting trace
is related to the dynamical zeta function (3) by

ζ(z) = 1/Detc (1− zL).

Suppose now that M is a smooth manifold and
that the algebra S is generated by transfer opera-
tors of the form (8) with smooth f : M →M and
g : M → C . We can then define a sharp trace Tr=

such that
Tr=L =

∑
x∈Fix f

L=(x, f )g(x),

where L=(x, f ) = sgn det(1− (Txf )−1). [We assume
here that Txf and 1− Txf are invertible, but 
we shall see later that the definition of Tr= ex-
tends to more general situations where Fix f
need not be finite. Note also that if f is a diffeo-
morphism, L=(x, f ) = L(x, f−1) .] A sharp determi-
nant Det=(1− zL) is defined correspondingly, 
and a sharp zeta function ζ=(z) = 1/Det=(1− zL) .

Let me interrupt the discussion of traces to 
address an obvious problem. Following geometric
intuition, we have introduced dynamical zeta 
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Tr>kM(k) as the limit of 
∫
dx trkM(x, x).] It is read-

ily seen that

Tr=M =
n∑
k=0

(−1)kTr>kM(k)

so that

Det=(1− zM) =
n∏
k=0

Det>k(1− zM(k))(−1)k+1
.

3. Proposition.* Let M be a compact Riemann man-
ifold. We assume that Gω : M → C and
ψω : Xω →M (where Xω is a δ-neighborhood of
supp Gω ) are Cr, r ≥ 1, depending measurably on
ω, and that∫

dω‖Gω‖r <∞, sup
ω
‖ψω‖r <∞.

Also assume that there is θ ∈ (0,1) such that

dist(ψωx,ψωy) ≤ θ dist(x, y)

for all x , y , ω. Then the part of the spectrum of M
in {λ : |λ| > θreP} consists of isolated eigenvalues
of finite multiplicities. Furthermore, Det>0(1− zM)
converges in {z : |z|θreP < 1} , and its zeros there
are precisely the inverses of the eigenvalues of M
with the same multiplicity.

There are results similar to the above proposi-
tion for M(k) and Det>k(1− zM(k)). It follows in 

particular that 1/Det=(1− zM) is meromorphic

for |z| < θ−r e−P . Note that for contracting ψ we
have L(x,ψ) = 1; hence Det= = Detc , and we obtain
results for the dynamical zeta functions ζ(z)
associated with smooth expanding maps (first 
studied by Tangerman). Proposition 3 also applies
to a rational map F if it is hyperbolic, i.e., uni-
formly expanding in a neighborhood of the Julia
set J (the closure of the set of repelling periodic
orbits).

Proposition 3 is a nonstandard extension of the
theory of Fredholm determinants. In its simplest
form, Fredholm’s theory applies to complex con-
tinuous kernels K(x, y), where x and y vary over a
bounded interval [a, b]. The formula

Kφ(x) =
∫ b
a
K(x, y)φ(y)dy

defines a compact operator on the Banach space
B of complex continuous functions on [a, b] with
the sup norm. The operators K as above form an
algebra, with a trace

*This result is proved in [4]. The condition supω ‖ψω‖r
<∞ is missing in [4], but some form of this condition is 
used in Remark 3.3 of that paper. Note that we may take 
fractional r = s +α , meaning that the s-th derivative is 
α -Hölder.

functions and transfer operators associated with
a weighted dynamical system (M, f , g). But the use
of traces makes it natural to introduce linear 
combinations of transfer operators, so we lose the
geometric connection with a single dynamical sys-
tem. What is a natural formalism in the more gen-
eral situation? Note that if there is a partition of
unity (χω) such that f restricted to suppχω has an
inverse ψω, we may rewrite (8) as∑

ω
Gω(x)Φ(ψωx),

where Gω = (χωg) ◦ψω. We are thus led to define
a generalized transfer operatorM (associated with
a family of weights Gω : M → C and a family of
maps ψω : suppGω →M) by

(MΦ)(x) =
∫
dωGω(x)Φ(ψωx),

where dω denotes a measure (which may be taken
to be a probability measure). Linear combinations
of generalized transfer operators are again gener-
alized transfer operators: they form an algebra
(under suitable conditions on the choice of the Gω
and ψω). It is possible to consider M as a transfer
operator associated with a (nonunique) random
dynamical system. There is no longer a pressure
associated with the generalized transfer operator
M, but writing

(|M|Φ)(x) =
∫
dω |Gω(x)|Φ(ψωx),

we shall denote by eP the spectral radius of |M|
acting on bounded functions.

Let us return to the smooth situation (the Gω
and ψω are Cr) and note that the sharp trace is now

Tr=M =
∫
dω

∑
x∈Fixψω

L(x,ψω)Gω(x).

It is convenient at this point to introduce operators
M(k) acting on k-forms α such that

M(k)α =
∫
dωGω.ψ∗ωα,

where ψ∗ωα is the pullback of α by ψω . [If
∧k(Txψ) : ∧k(TxM) → ∧k(TψxM) is the extension 
of Txψ to the exterior algebra of TxM and if
(∧k(Txψ))∗ : ∧k(T∗ψxM) → ∧k(T∗x M) denotes its
transpose, we write (ψ∗α)(x) = (∧k(Txψ))∗α(ψx) .]
In particular M(0) reduces to M. Following Atiyah
and Singer, we define now a flat trace tr>k such that

Tr>kM(k) =
∫
dω

∑
x∈Fixψω

Gω(x)trk(∧k(Txψω))
|det(1− Txψω)| ,

where trk and det are the finite-dimensional trace
and determinant. [Writing M(k) as the limit of a reg-
ularized operator with kernel M(x, y) , we obtain
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(10) ζMT (z).∆(z) = 1,

where ∆ is the determinant of a certain
(N − 1)× (N − 1) matrix called the kneading matrix.
The elements of the kneading matrix are power se-
ries in z with coefficients 0,±1 determined in
terms of the signs of the fmai − aj . In particular,
ζMT (z) is meromorphic in the unit disc. Can one
extend the combinatorial identity (10) to dynami-
cal zeta functions with weights? Baladi and I ob-
tained an extension where ∆ is replaced by a func-
tional determinant.

We consider generalized transfer operators M
acting on the Banach space B of functions of
bounded variation on R, so that

(MΦ)(x) =
∑
ω
Gω(x)Φ(ψωx).

Here the Gω : R → C are of bounded variation, com-
pactly supported, and (for simplicity) continuous;
ψω is a homeomorphism of an interval of R con-
taining supp Gω to an interval of R, and we assume∑
ω VarGω <∞ . Write εω = +1 (εω = −1) if ψω is

increasing (decreasing). The operators M form an

algebra A with an involution M→ M̂ where

(M̂Φ)(x) =
∑
ω
εωGω(ψ−1

ω x)Φ(ψ−1
ω x)

and, using the sup norm ‖ · ‖0, we write

R = lim
m→∞(‖Mm‖0)1/m, R̂ = lim

m→∞(‖M̂m‖0)1/m.

It turns out that, for the spectrum of M acting on
B ,

TrFK =
∫ b
a
K(x, x)dx,

and one can define a Fredholm determinant by

DetF (1− zK) = exp


− ∞∑

m=1

zm

m
TrFKm




or some equivalent formula. This determinant is an
entire function of z which has a zero at λ−1 pre-
cisely when λ is an eigenvalue of K (the order of
the zero and of the eigenvalue are the same). Fred-
holm’s theory has been put on a more conceptual
basis by Grothendieck, using kernels in the topo-
logical tensor product B∗⊗̂B of a Banach space B
and its dual B∗. Grothendieck’s extension of Fred-
holm’s theory applies in particular to holomor-
phy-improving operators (these send a function
holomorphic in D to a function holomorphic in D′,
where D is relatively compact in D′). The Fred-
holm-Grothendieck determinant DetF (1− zK) is
an entire function of z , but note that in Proposi-
tion 3, Det>0(1− zM) has in general a finite radius
of convergence and that M is not a compact op-
erator.

Proposition 3 applies to expanding maps. What
about hyperbolic maps (say Anosov) on a compact
manifold M? For such maps there is an invariant
family of submanifolds of M called stable mani-
folds, which are uniformly contracted by the map.
These manifolds are smooth, but the stable man-
ifold through x does not depend smoothly on x ,
only Hölder continuously. For this reason one 
cannot readily extend to the smooth situation 
what was done (see Proposition 2 above) in the
Hölder setting. [The case of Cω Anosov maps in two 
dimensions has been elegantly treated by Rugh. The
general case has been discussed by Kitaev, but his
paper is difficult. Work by Fried on the subject 
remains unpublished. There is also recent work 
of Blank and of Keller and Liverani on transfer 
operators in two dimensions.] When the stable
manifolds form a smooth family, an extension of
Proposition 3 to the hyperbolic situation works
well. This happens in particular for the geodesic
flow on a manifold of constant negative curvature,
where everything is Cω: the zeta functions are quo-
tients of Grothendieck-type determinants, and thus
meromorphic in C (Ruelle). This agrees with what
is known about Selberg zeta functions and extends
to other situations (Mayer, Patterson).

Kneading Determinants
Milnor and Thurston have studied continuous piece-
wise monotone maps of the interval [a0, aN ] to it-
self that are strictly monotone on subintervals
[ai−1, ai] , where a0 < a1 < . . . < aN . A (slightly
modified) zeta function ζMT which counts periodic
orbits with a weight 1 satisfies

a3

x2

x1

a0 x1 a1 x2 a2 a3

A continuous piecewise monotone map of the
interval [a0, a3] to itself, with three subintervals
where the function is strictly monotone. {x1, x2}

is a periodic orbit of order 2.
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R̂ ≤ spectral radius of M≤max(R, R̂)

essential spectral radius of M≤ R̂.
The interesting case is when R �= R̂. In particular,
if R̂ < R and all Gω are ≥ 0, then R is an eigenvalue
of M.

The sharp trace Tr= defined earlier can be ex-
tended to A by writing

Tr=M =
∑
ω

∫
1
2

sgn(ψω(x)− x)dGω(x),

where sgn ξ = ξ/|ξ| if ξ �= 0 and sgn 0 = 0. We can
then define the zeta functions

ζ(z) =
1

Det=(1− zM)
, ζ̂(z) =

1

Det=(1− zM̂)
,

and interestingly we have the functional equation
ζ(z)ζ̂(z) = 1 (from Tr=M + Tr=M̂ = 0).

A bounded nonatomic measure on R is given by

µ(dx) =
∑
ω
|dGω(x)| +

∑
ω
|dGω(ψ−1

ω x)|.

We define now a kneading operatorD on L2(µ) by

(Dφ)(y) =
∑
ω

∫
φ(x)d(zGω(x))

× {[(1− zM)−1 1
2

sgn(· − y)](ψωx)}

and similarly an operator D̂. The kernel of D is
given by

Dxy =
∞∑
k=1

zk
∑

ω1,··· ,ωk

dgω1 (x)
µ(dx)

· gω2 (ψω1x) . . . gωk (ψωk+1 . . .ψω1x)

× 1
2

sgn(ψωk . . .ψω1x− y).

It turns out that D is Hilbert-Schmidt, and one can
define a functional determinant

Det(1 +D) =

exp
(∫

µ(dx)Dxx +
∞∑
m=2

(−1)m−1

m
TrDm

)
.

What corresponds to the Milnor-Thurston deter-
minant is here Det(1 + D̂); i.e., one can prove the
identity

ζ(z) = Det(1 + D̂)−1
.

From this one can deduce that the determinant
Det=(1− zM) = Det(1 + D̂) is holomorphic for
|z| < R̂−1 and that its zeros there are the λ−1 where
R̂ < |λ| < R and λ is an eigenvalue of M (of the
same multiplicity).

Extensions of the theory of kneading determi-
nants to dimension greater than 1 have been stud-
ied (Baladi, Kitaev, Ruelle, Semmes, Baillif) and are

currently an active area of research, but only par-
tial results have been obtained so far.

Some Loose Ends
Counting periodic orbits with weights is a natural
idea. And we have seen that it relates to very 
different areas of mathematics: thermodynamic
formalism, hyperbolic dynamics, Selberg zeta 
functions, Grothendieck-Fredholm determinants,
kneading determinants, etc. The “hyperbolic” part
of the theory of dynamical zeta functions is ex-
cellently presented in the monograph of Parry and
Pollicott [2], which gives more details on the rela-
tion with the thermodynamic formalism than could
be given here. For further developments we refer
to Baladi’s monograph [1], which discusses in par-
ticular the relation between spectral properties of
transfer operators and the decay of correlations.
A discussion of the decay of correlations would
have taken us too far afield, but this is an impor-
tant topic which has progressed in recent years,
thanks to the work of Dolgopyat on hyperbolic
flows and the very general ergodic results of Young
[5]. Using the extensive bibliography of [1], the in-
terested reader can get access to many other ques-
tions: for instance, the surprising results of Mayer
on the continued fraction transformation and the
modular surface, and the very explicit formulas 
obtained by Levin, Sodin, and Yuditskii in the 
study of Julia sets.

Dynamical zeta functions and the related con-
cepts discussed in this article form a rather open
field of investigation. Some astonishing develop-
ments have occurred in the past. And new techni-
cal or structural ideas might again drastically
change our view of the subject in the future.
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