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Abstract

We analyze the cost used by a naive exhaustive search algorithm for finding a maxi-
mum independent set in random graphs under the usual Gn;p-model where each possible
edge appears independently with the same probability p. The expected cost turns out to be
of the less common asymptotic order nc log n, which we explore from several different per-
spectives. Also we collect many instances where such an order appears, from algorithmics
to analysis, from probability to algebra. The limiting distribution of the cost required by
the algorithm under a purely idealized random model is proved to be normal. The approach
we develop is of some generality and is amenable for other graph algorithms.

1 Introduction
An independent set or stable set of a graph G is a subset of vertices in G no two of which
are adjacent. The Maximum Independent Set (MIS) Problem consists in finding an independent
set with the largest cardinality; it is among the first known NP-hard problems and has become
a fundamental, representative, prototype instance of combinatorial optimization and computa-
tional complexity; see [27]. A large number of algorithms (exact or approximate, deterministic

�Part of the work of this author was done while visiting ISM (Institute of Statistical Mathematics), Tokyo; he
thanks ISM for its hospitality and support.
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or randomized), as well as many applications, have been studied in the literature; see [6, 25, 67]
and the references therein for more information.

The fact that there exist several problems that are essentially equivalent (including maxi-
mum clique and minimum node cover) adds particularly further dimensions to the algorithmic
aspects and structural richness of the problem. Also worthy of special mention is the following
interesting polynomial formulation (see [1, 31])

˛.G/ D max
.x1;:::;xn/2Œ0;1�n

0@ X
16i6n

xi �

X
.i;j/2E

xixj

1A ;
where ˛.G/ denotes the cardinality of an MIS of G (or the stability number) and E is the set
of edges of G. Such an expression is easily coded, albeit with an exponential complexity. The
algorithmic, theoretical and practical connections of many other formulations similar to this
one have also been widely discussed; see [1].

One simple means to find an MIS of a graph G is the following exhaustive (or branching or
enumerative) algorithm. Start with any node, say v in G. Then either v is in an MIS or it is not.
This leads to the recursive decomposition

˛.G/ D max
�
˛ .G n fvg/„ ƒ‚ …
v 62MIS.G/

; 1C ˛
�
G nN �.v/

�„ ƒ‚ …
v2MIS.G/

�
; (1)

where MIS.G/ denotes an MIS of G and N �.v/ denotes the union of v and all its neighbors.
Such a simple procedure leads to many refined algorithms in the literature, including alternative
formulations such as backtracking (see [66]) or branch and bound (see [25]).

Tarjan and Trojanowski [62] proposed an improved exhaustive algorithm with worst-case
time complexity O.2n=3/. Their paper was followed and refined by many since then; see [6, 67]
and [25] for more information and references. In particular, Chvátal [12] generalized Tarjan
and Trojanowski’s algorithm and showed inter alia that for almost all graphs with n nodes, a
special class of algorithms (which he called order-driven) has time bound O.nc0 log nC2/, where
c0 WD 2= log 2. He also characterized exponential algorithms and conjectured that a similar
bound of the form O.nc log n/ holds for a wider class of recursive algorithms for some c > 0.
Pittel [53] then refined Chvátal’s bounds by showing that, under the usual Gn;p-model (namely,
each pair of nodes has the same probability p 2 .0; 1/ of being connected by an edge, and
one independent of the others), the cost of Chvátal’s algorithms (called f-driven, more general
than order-driven) is bounded between n.

1
4
�"/ log� n and n.

1
2
C"/ log� n with high probability, for

any " > 0, where q WD 1 � p and � WD 1=q.
The infrequent scale nc log n D ec.log n/2 is central to our study here and can be seen through

several different angles that will be examined in the following paragraphs. The simplest algo-
rithmic connection to MIS problem is via the following argument. It is well-known that for any
random graph G (under the Gn;p-model), the value of ˛.G/ is highly concentrated for fixed
p 2 .0; 1/, namely, there exists a sequence mn such that ˛.G/ D mn or ˛.G/ D mn C 1 with
high probability; see [5]. Asymptotically (� WD 1=q),

mn D 2 log� n � 2 log� log� nCO.1/:
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For more information on this and related estimates, see [5] and the references therein. Thus a
simple randomized (approximate) MIS-finding algorithm consists in examining all possible�

n

mn

�
C

�
n

mn C 1

�
D O

�
n2 log� n

�
subsets and determining if at least one of them is independent; otherwise (which happens with
very small probability; see [5]), we resort to exhaustive algorithms such as that discussed in
this paper.

From a different algorithmic viewpoint, Jerrum [39] studied the following Metropolis al-
gorithm for maximum clique. Sequentially increase the clique, say K by (i) choose a vertex v
uniformly at random; (ii) if v 62 K and v is connected to every vertex of K, then add v to K;
(iii) if v 2 K, then v is subtracted from K with probability ƒ�1. He proved that for all ƒ > 1,
there exists an initial state from which the expected time for the Metropolis process to reach
a clique of size at least .1 C "/ log�.pn/ exceeds n�.log pn/. See [13] for an account of more
recent developments on the complexity of the MIS problem.

We aim in this paper at a more precise analysis of the cost used by the simple recursive,
exhaustive algorithm implied by (1). The exact details of the algorithm matter less and the
overall cost is dominated by the total number of recursive calls, denoted by Xn, which is a
random variable under the same Gn;p-model. Then the mean value �n WD E.Xn/ satisfies

�n D �n�1„ƒ‚…
v 62MIS.G/

C

X
06k<n

�n;k�k„ ƒ‚ …
v2MIS.G/

; (2)

for n > 2, with the initial conditions �0 D 0 and �1 D 1, where

�n;k WD P.v has n � 1 � k neighbors/ D
�

n � 1

k

�
pn�1�kqk :

How fast does �n grow as a function of n? (i) If p is close to 1, then the graph is very
dense and thus the sum in (2) is small (many nodes being removed), so we expect a polynomial
time bound by simple iteration; (ii) If p is sufficiently small, then the second term is large, and
we expect an exponential time bound; (iii) What happens for p in between? In this case the
asymptotics of �n turns out to be nontrivial and we will show that

log�n D

�
log n

log� n

�2

2 log �
C

�
1
2
C

1
log �

�
log n � log log nC P0

�
log�

n
log� n

�
C o.1/; (3)

where P0.t/ is a bounded, periodic function of period 1. We will give a precise expression for
P0. Note that

�n

n
1
2

log� n
�
.log n/

1
2

log� log n�1�
log log�

log�

nlog� log n� 1
2
� 1

log��
log log�

log�

� n�K
! 0; (4)

for any K > 0, where the symbol an � bn means that an and bn are asymptotically of the same
order. Thus �n D o

�
n

1
2

log� n�K
�

. On the other hand, the asymptotic pattern (3) is to some
extent generic, as we will see below.
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An intuitive way to see why we have the asymptotic form (3) for log�n is to look at the
simpler functional equation

�.x/ D �.x � 1/C �.qx/; (5)

since the binomial distribution is highly concentrated around its mean value pn, and we expect
that �n � �.n/ (under suitable initial conditions). This functional equation and the like (such
as �n D �n�1 C �bqnc) has a rich literature. Most of them are connected to special integer
partitions; important pointers are provided in Encyclopedia of Integer Sequences; see for ex-
ample A000123, A002577, A005704, A005705, and A005706. In particular, it is connected to
partitions of integers into powers of � D 1=q > 2 when � is a positive integer; see [15, 26, 47].
It is known that (under suitable initial conditions)

log �.x/ D

�
log x

log� x

�2

2 log �
C

�
1
2
C

1
log �

�
log x � log log x C P1

�
log�

x
log� x

�
C o.1/; (6)

for large x, where P1.t/ is a bounded 1-periodic function; see [15, 20]. Thus

j log�n � log �.n/j D
ˇ̌̌
P0

�
log�

x
log� x

�
� P1

�
log�

x
log� x

�ˇ̌̌
C o.1/:

We see that approximating the binomial distribution in (2) by its mean value

E.�n�1�Binom.n�1Ip// � �n�1�E.Binom.n�1Ip// � �bqnc

gives a very precise estimate, where Binom.n � 1Ip/ denotes a binomial distribution with
parameters n � 1 and p.

An even simpler way to see the dominant order xc log x is to approximate (5) by the delay
differential equation (since �.x/ � �.x � 1/ � �0.x/ for large x)

!0.x/ D !.qx/; (7)

which is a special case of the so-called “pantograph equations”

!0.x/ D a!.qx/C b!.x/;

originally arising from the study of current collection systems for electric locomotives; see
[37, 43, 50]. Since the usual polynomial or exponential functions fail to satisfy (7), we try
instead a solution of the form !.x/ D xc log x; then c should be chosen to satisfy the equation

x1�2c log �
D 2cec.log �/2 log x:

So we should take c D 1=.2 log �/ C O.x�1 log x/. This gives the dominant term .log x/2

2 log � for
log!.x/. More precise asymptotic solutions are thoroughly discussed in [16, 43]. In particular,
all solutions of the equation !0.x/ D a!.qx/ with a > 0 satisfies

log!.x/ D

�
log x

log� x

�2

2 log �
C

�
1
2
C

1
log � C

log a

log �

�
log x �

�
1C log a

log �

�
log log x

C P2

�
log�

x
log� x

�
C o.1/;
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for large x, where P2.t/ is a bounded 1-periodic function. We see once again the generality of
the asymptotic pattern (3).

On the other hand, the function

$.x/ WD exp

 �
log.x=

p
q/
�2

2 log.1=q/

!
satisfies the q-difference equation

$.x/ D x$.qx/;

and is a fundamental factor in the asymptotic theory of q-difference equations; see the two
survey papers [3, 18] and the references therein. This equation will also play an important role
in our analysis.

From yet another angle, one easily checks that the series

M.x/ WD
X
j>0

q.
j
2/

j !
xj

satisfies the equation (7). The largest term occurs, by simple calculus, at

j � log� x � log� log� x C 1
2
C o.1/;

and, by the analytic approach we use in this paper, we can deduce that the logarithm of the series
is, up to an error of O.1/, of the same asymptotic order as log �.x/; see (6) and Section 6. The
function M.x/ arises sporadically in many different contexts and plays an important rôle in the
corresponding asymptotic estimates; see below for a list of some representative references.

A closely related sum arises in the average-case analysis of a simple backtracking algorithm
(see [66]), which corresponds to the expected number of independent sets in a random graph
(or, equivalently, the expected number of cliques by interchanging q and p)

Jn WD

X
16j6n

�
n

j

�
qj.j�1/=2; (8)

see [48, 66]. Wilf [66] showed that Jn D O.nlog n/when p D 1=2. While such a crude bound is
easily obtained, the more precise asymptotics of Jn is more involved. First, it is straightforward
to check that Jn � M.n/ for large n. Second, the approach we develop in this paper can be
used to show that Jn has an asymptotic expansion similar to (3). Indeed, it is readily checked
that Jn C 1 satisfies the same recurrence relation as �n with different initial conditions. So the
asymptotics of Jn follows the same pattern (3) as that of �n; see Section 6 for more details.

Thus examining all independent sets one after another in the backtracking style of Wilf
[66] and identifying the one with the maximum cardinality also leads to an expected nc log n-
complexity.

The diverse aspects we discussed of algorithms or equations leading to the scale nc log n are
summarized in Figure 1. The bridge connecting the algorithms and the analysis is the binomial
recurrence (2) as explained above.

This paper is organized as follows. We derive in the next section an asymptotic expansion
for �n using a purely analytic approach. The interest of deriving such a precise asymptotic
approximation is at least fourfold.
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MIS-finding
algorithms

& nc log n

.xc log x/

Exhaustive algorithms

an � an�1 DP
06k<n

�n;k ak

Randomized
algorithms�

n
bc log nc

�

Backtracking

algorithmsP
16k6n

�
n
k

�
q.

k
2/

Mahler’s partitions

an � an�1

D abqnc

Pantograph equations

f 0.x/ D

af .qx/C bf .x/

q-difference

equations

f .x/ D xf .qx/

Figure 1: The connection between MIS-finding algorithms and the scale nc log n (discrete) or
xc log x (continuous). The circles on the right-hand side are more algorithmic in nature, while
those on the left-hand side more analytic in nature.

Asymptotics: It goes much beyond the crude description nc log n and provides a more
precise description; see particularly (4) and its implication mentioned there. Indeed, few
papers in the literature address such an aspect; see [15, 16, 20, 43, 52, 56].

Numerics: All scales involved in problems of similar nature here are expressed either in
log or in log log, making them more subtle to be identified by numerical simulations. The
inherent periodic functions and the slow convergence further add to the complications.

Methodology: Our approach, different from previous ones that rely on explicit generating
functions in product forms, is based on the underlying functional equation and is of some
generality; it is akin to some extent to Mahler’s analysis in [47].

Generality: The asymptotic pattern (3) is of some generality, an aspect already examined
in details in several papers; see for example [16, 20, 43]. See also the last section for a
list of diverse contexts where the order nc log n appears.

Alternative approaches leading to different asymptotic expansions are discussed in Sec-
tion 3.

The next curiosity after the expected value is the variance. But due to strong dependence
of the subproblems, the variance is quite challenging at this stage. We consider instead an
idealized independent version of Xn (the total cost of the exhaustive algorithm implied by (1)),
namely

Yn
d
D Yn�1 C Y �n�1�Binom.n�1Ip/ .n > 2/; (9)
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with Y1 WD 1 and Y0 WD 0, where “ d
D” stands for equality in distribution, Y �n is an identi-

cal copy of Yn and the two terms on the right-hand side are independent. The original ran-
dom variable Xn satisfies the same distributional recurrence but with the two terms (Xn�1 and
X �

n�1�Binom.n�1Ip/
) on the right-hand side dependent. We expect that Yn would provide an

insight of the possible stochastic behavior of Xn although we were unable to evaluate their dif-
ference. We show, by a method of moments, that Yn is asymptotically normally distributed in
addition to deriving an asymptotic estimate for the variance. Monte Carlo simulations for n up
to a few hundreds show that the limiting distribution of Xn seems likely to be normal, although
the ratio between its variance and that of Yn grows like a concave function. But the sample size
n is not large enough to provide more convincing conclusions from simulations.

Once the asymptotic normality of Yn is clarified, a natural question then is the limit law of
the random variables (by changing the underlying binomial to uniform distribution)

Zn
d
D Zn�1 CZUniform.0;n�1/ .n > 2/; (10)

with Z0 D 0 and Z1 D 1. In this case, we prove that the mean is asymptotic to cn�1=4e2
p

n and
the limit law is no more normal. We conclude this paper with a few remarks and a list of many
instances where nc log n arises, further clarifications and connections being given elsewhere.

Notations. Throughout this paper, 0 < p < 1, q D 1 � p, and � D 1=q.

2 Expected cost
We derive asymptotic approximations to �n in this section by an analytic approach, which is
briefly sketched in Figure 2.1.

2.1 Preliminaries and main result
Recall that Xn denotes the cost used by the exhaustive search algorithm (implied by (1)) for
finding an MIS in a random graph, and it satisfies the recurrence

Xn
d
D Xn�1 CX �n�1�Binom.n�1Ip/; (11)

with X0 D 0 and X1 D 1, where X �n
d
D Xn, and the two terms on the right-hand side are

dependent.
From (11), we see that the expected value �n of Xn satisfies the recurrence (2). Our analytic

approach then proceeds along the line depicted in Figure 2.1. While the approach appears
standard (see [24, 38, 61]), the major difference is that instead of Mellin transform, we need
Laplace transform since the quantity in question is not polynomially bounded. Also the diverse
functional equations are crucial in our analysis, notably for the purpose of justifying the de-
Poissonization, which differs from previous ones; see [38, 61].

Generating functions (GFs). Let f .z/ WD
P

n>0 �nzn=n! denote the exponential GFs of �n.
Then f satisfies, by (2), the equation

f 0.z/ D 1C f .z/C epzf .qz/;

7



Recurrence relation

�n D �n�1 C

X
k
�n;k�k

Poisson generating function

Qf 0.z/ D Qf .qz/ C e�z

Poisson-Charlier expansion

�n �
Qf .n/ �

n

2
Qf 00.n/

Modified Laplace transform

Qf �.s/ D s Qf �.qs/ C
s

1C s

de-Poissonization

�n D
n!

2� i

I
z�n�1ez Qf .z/ dz

Inverse transform

Qf .x/ D
1

2� i

Z
exs

s
Qf �.s/ ds

Figure 2: Our analytic approach to the asymptotics of �n. Here �n;k WD
�

n�1

k

�
qkpn�1�k .

with f .0/ D 0, or, equivalently, denoting by Qf .z/ WD e�zf .z/ the Poisson GF of �n,

Qf 0.z/ D Qf .qz/C e�z; (12)

with Qf .0/ D 0.

Closed-form expressions. Let Qf .z/ D
P

n>0 Q�nzn=n!. From the q-differential equation
(12), we derive the recurrence

Q�nC1 D qn
Q�n C .�1/n .n > 1/:

By iteration, we then obtain the closed-form expression

Q�n D

X
06j<n

.�1/jq.n�1�j/.nCj/=2 .n > 1/:

Since f .z/ D ez Qf .z/, we then have

�n D

X
16k6n

�
n

k

� X
06j<k

.�1/jq.k�1�j/.kCj/=2 .n > 1/: (13)

This expression is, although exact, less useful for large n; also its asymptotic behavior remains
opaque. See also (41) for another closed-form expression for �n.

Asymptotic approximations. Our aim in this section is to derive the following asymptotic
approximation.

Theorem 2.1. The expected cost �n of the exhaustive search on a random graph satisfies

�n D

G
�

log�
n

log� n

�
p

2�
�
n1= log �C1=2

log� n
exp

0B@
�

log n
log� n

�2

2 log �

1CA�1CO

�
.log log n/2

log n

��
; (14)
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as n!1, where G.u/ is defined by (fug being the fractional part of u)

G.u/ D q.fug
2�fug/=2

X
j2Z

qj.jC1/=2

1C qj�fug
q�jfug;

(see (18)) and is a bounded, 1-periodic function of u.

Note that (14) implies (3) with

P0.u/ D �
1
2

log 2� � log � C log G.u/:

Our approach leads indeed to an asymptotic expansion, but we content ourselves with the state-
ment of (14); see (28), (33) and (40).

The function f (and thus Qf ) is an entire function. It follows immediately that we have the
identity (see [35])

�n D

X
j>0

Qf .j/.n/

j !
�j .n/;

(referred to as the Poisson-Charlier expansion in [35]) where the �j .n/’s are polynomials of n

of degree bn=2c; see (34). See also [38] for different representations. However, the hard part is
often to justify the asymptotic nature of the expansion, namely,

�n D

X
06j<J

Qf .j/.n/

j !
�j .n/CO

�
nbJ =2c Qf .J /.n/

�
;

for J D 2; 3; : : : . In particular, the first-order asymptotic equivalent “�n �
Qf .n/” is often

called the Poisson heuristic. Thus the asymptotics of �n is reduced to that of Qf .x/ once we
justify the asymptotic nature of the expansion. Of special mention is that, unlike almost all
papers in the literature, we need only the asymptotic behavior of Qf .x/ for real values of x, all
analysis involving complex parameters being carefully handled by the corresponding functional
equation.

We will derive an asymptotic expansion for Qf .x/ for large real x by Laplace transform
techniques and suitable manipulation of the saddle-point method, and then bridge the asymp-
totics of �n and Qf .n/ by a variant of the saddle-point method (or de-Poissonization procedure;
see [38]); see Figure 2.1 for a sketch of our proof.

2.2 Asymptotics of Qf .x/

We derive an asymptotic expansion for Qf .x/ in this subsection.

Modified Laplace transform. For technical convenience, consider the modified Laplace
transform

Qf ?.s/ WD
1

s

Z 1
0

e�x=s Qf .x/ dx:

Note that this use of the Laplace transform differs from the usual one by a factor 1=s and
by a change of variables s 7! 1=s. Also the use of the exponential GF coupling with this

9



Laplace transform is equivalent to considering the ordinary GF of �n; see Section 3.2 for more
information.

Then the functional-differential equation (12) translates into the following functional equa-
tion for Qf ?

Qf ?.s/ D s Qf ?.qs/C
s

1C s
; (15)

for <.s/ > 0.
Iterating the equation (15) indefinitely, we get

Qf ?.s/ D
X
j>0

qj.jC1/=2

1C qjs
sjC1: (16)

We will approximate Qf ?.s/ for large s by means of the function

F.s/ D
X

�1<j<1

qj.jC1/=2

1C qjs
sjC1;

because adding terms of the form s�j , j > 0, does not alter the asymptotic order of both
functions.

Lemma 2.2. For x > 1, we have

F.x/ D x1=2 exp
�
.log x/2

2 log �

�
G .log� x/ ; (17)

where

G.u/ WD q.fug
2Cfug/=2F

�
q�fug

�
(18)

is a continuous, positive, periodic function with period 1.

Proof. One can easily check that F.s/ satisfies a functional equation similar to that of Jacobi’s
theta functions

F.s/ D sF.qs/ .s 2 C/: (19)

Iterating N times this functional equation, we obtain

F.s/ D qN.N�1/=2sN F
�
qN s

�
.s 2 C/: (20)

Assume x > 1. Take
N D blog� xc D log� x C �;

where � D �flog� xg. Then we have

F.x/ D exp
�

N.N � 1/

2
log q CN log x

�
F
�
eN log qClog x

�
D exp

�
.log x/2

2 log �
C

log x

2
C
�.� � 1/

2
log q

�
F
�
e� log q

�
D q.�

2��/=2x1=2 exp
�
.log x/2

2 log �

�
F
�
e� log q

�
;

which, together with the functional equation F.1=q/ D F.1/=q (or G.uC 1/ D G.u/), proves
the lemma.
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Asymptotic expansion of Qf .x/: saddle-point method By the inversion formula, we have

Qf .x/ D
1

2� i

Z rCi1

r�i1

exs

s
Qf ?
�

1

s

�
ds; (21)

where r > 0 is a small number whose value will be specified later. We now derive a few
estimates for Qf ?.s/.

Lemma 2.3. (i) If r > 0 and jt j > 1, then

Qf ?
�

1

r C i t

�
D O

�
1

jt j

�
I (22)

(ii) if 0 < r 6 1 and jt j 6 1, then

Qf ?
�

1

r C i t

�
D F

�
1

r C i t

�
CO.1/I (23)

(iii) if r > 0 and cmr 6 jt j 6 1, where cm WD
p

q�2m � 1, m > 1, then

Qf ?
�

1

r C i t

�
D O

�
rmq.

m
2/F

�
1

r

��
: (24)

Proof. First, (22) follows from (16). For the estimate (23), we observe thatˇ̌̌̌
1

1C sqj

ˇ̌̌̌
6 minfq�j

jsj�1; 1g .<.s/ > 0/:

Then
Qf ?.s/ D F.s/CO

�
jsj�1

�
;

for <.s/ > 0 and jsj > c > 0. Also for r > 0

<

�
1

r C i t

�
D

r

r2 C t2
> 0I

and, for jt j 6 1 and 0 < r 6 1
1

jr C i t j
>

1
p

2
:

From these two estimates, we then deduce (23).
On the other hand if <.s/ > 0, then

j Qf ?.s/j 6
X
j>0

qj.jC1/=2
jsjjC1 6 #.jsj/;

where
#.x/ WD

X
�1<j<1

qj.j�1/=2xj :

It is easily checked that #.x/ satisfies the same functional equation (19) as F.x/, namely,

#.x/ D x#.qx/:

11



Thus, by the same arguments used for F.x/, we have, for x > 1,

#.x/ D x1=2 exp
�
.log x/2

2 log �

�
g.log� x/;

where g.x/ is a continuous, bounded, periodic function. Comparing this expression with (17)
for F.x/, we conclude that #.x/ D O.F.x// for x > 1.

Let cm WD
p

q�2m � 1, m > 1. Then, for 0 < r < 1,

max
cmr6jt j61

ˇ̌̌̌
Qf ?
�

1

r C i t

�ˇ̌̌̌
6 max

cmr6jt j61

ˇ̌̌̌
#

�
1

p
r2 C t2

�ˇ̌̌̌
D #.qm=r/

D rmqm.m�1/=2#.1=r/

D O
�
rmq.

m
2/F.1=r/

�
:

This proves (24) and the lemma.

By splitting the integral in (21) into three ranges jt j 6 cmr , cmr < jt j 6 1, and jt j > 1, and
then applying the estimates (22) and (24), we deduce that

Qf .x/e�xr
D Ir .x/CO

�
rm�1q.

m
2/F.1=r/C 1

�
; (25)

where

Ir .x/ WD
1

2�

Z cmr

�cmr

eixt

r C i t
F

�
1

r C i t

�
dt:

It remains to evaluate more precisely the integral Ir .x/ by the saddle-point method.
We now take

N D blog�.1=r/c D log�.1=r/C �;

where � D �flog�.1=r/g. Applying the functional equation (20) with s D 1=.r C i t/, we get

Ir .x/ D
1

2�

Z cmr

�cmr

eixtqN.N�1/=2

.r C i t/NC1
F

�
rq�

r C i t

�
dt:

By the relation
F.1=r/ D qN.N�1/=2r�N F.q�/;

we then have

Ir .x/ D
F.1=r/

2�r

Z cmr

�cmr

eixt

�
r

r C i t

�NC1
F.rq�=.r C i t//

F.q�/
dt

D
F.1=r/exr

2�

Z cm

�cm

eirxt

�
1

1C i t

�NC1
F.q�=.1C i t//

F.q�/
dt

D
F.1=r/exr

2�

Z cm

�cm

e�xrt2=2H.t/ dt;

where

H.t/ WD exr.it�log.1Cit/Ct2=2/ F.q�=.1C i t//

.1C i t/1C�F.q�/
:

12



We now choose r D r.x/ > 0 to be the approximate saddle-point such that

1

r
log

1

r
D x log �: (26)

Note that r can be expressed in terms of the Lambert-W function (principal solution of the
equation W .x/eW .x/ D x) as

r D
W .x log �/

x log �
I

thus log.1=r/ D W .x log �/. Asymptotically,

W .x/ D log x � log log x C
log log x

log x
C
.log log x/2 � 2 log log x

2.log x/2
CO

�
.log log x/3

.log x/3

�
;

(27)

as x !1; see [14].
Since m > 1 is arbitrary and r � x�1 log x, the relation (25) is an asymptotic approxima-

tion, albeit less explicit.
To derive a more explicit expansion, we first observe that

exrF.1=r/ D r�1= log ��1=2e.log.1=r//2=.2 log �/G.log�.1=r//;

by (17) and (26). Then what remains is standard (see [24]): evaluating the integral in (25) by
Laplace’s method (a change of variable t 7! t=

p
xr followed by an asymptotic expansion of

H.t=
p

xr/ for large xr and then an integration term by term), and we obtain the following
expansion.

Proposition 2.4. With r given by (26), Qf .x/ satisfies

Qf .x/ �
e.log.1=r//2=.2 log �/G.log�.1=r//

r1= log �C1=2
p

2� log�.1=r/

0@1C
X
j>1

�j .log�.1=r//.log�.1=r//�j

1A ; (28)

as x ! 1, where G is given in (18) and the �j .u/’s are bounded, 1-periodic functions of u

involving the derivatives of F
�
q�fug

�
.

In particular,

�1.u/ D �

 
1

12
�
fug.1 � fug/

2
C
.1 � fug/q�fugF 0

�
q�fug

�
F
�
q�fug

� C
q�2fugF 00

�
q�fug

�
2F

�
q�fug

� !
:

By using (27), the leading term in (28) can be expressed completely in terms of log x as
follows.

Corollary 2.5. As x !1, Qf .x/ satisfies

Qf .x/ D
G
�

log�
x

log� x

�
p

2�
�
x1= log �C1=2

log� x
exp

0B@
�

log x
log� x

�2

2 log �

1CA�1CO

�
.log log x/2

log x

��
: (29)

13



This is nothing but (2.1) with n there replaced by x.
As another consequence, we see, by (12) and (29), that

Qf 0.x/

Qf .x/
�

Qf .qx/

Qf .x/
�

log� x

x
:

More generally, we have the following asymptotic relations for Qf .j/.x/ and Qf .qjx/.

Corollary 2.6. For j > 1

Qf .j/.x/

Qf .x/
�

�
log� x

x

�j

(30)

Qf .qjx/

Qf .x/
� q�j.j�1/=2

�
log� x

x

�j

: (31)

Note that (30) also follows easily from the integral representation

Qf .j/.x/ D
1

2� i

Z rCi1

r�i1

exs

sj�1
Qf ?
�

1

s

�
ds;

and exactly the same arguments used above.

2.3 Asymptotics of �n

We first derive a simple lemma for the ratio f .x C y/=f .x/ when y is not too large by using
(30).

Lemma 2.7. Assume x > 1. If jyj D o.x= log x/, then

Qf .x C y/

Qf .x/
D 1CO

�
jyj log x

x

�
: (32)

Proof. By (30), we have

log
Qf .x C y/

Qf .x/
D y

Z 1

0

Qf 0.x C yt/

Qf .x C yt/
dt

D yO

 Z 1

0

log jx C yt j

jx C yt j
dt

!

D O

�
jyj log jxj
jxj

�
;

from which (32) follows.

Theorem 2.8. The expected cost used by the exhaustive search algorithm satisfies the asymp-
totic expansion

�n �
Qf .n/C

X
j>2

Qf .j/.n/

j !
�j .n/; (33)

14



where �j .n/ is a (Charlier) polynomial in n of degree bj=2c defined by

�j .n/ WD
X

06`6j

�
j

`

�
.�1/`

n!n`

.n � k C `/!
.j D 0; 1; : : : /: (34)

In particular, �0.n/ D 1, �1.n/ D 0, �2.n/ D �n, �3.n/ D 2n, and �4.n/ D 3n2 � 6n.
Thus, by (28) and (30),

�n D
Qf .n/

�
1CO

�
n�1.log n/2

��
;

which proves Theorem 2.1.

Proof. For simplicity, we prove only the following estimate

�n D
Qf .n/ �

n

2
Qf 00.n/CO

�
n�2.log n/4 Qf .n/

�
: (35)

The same method of proof easily extends to the proof of (33).
We start with the Taylor expansion of Qf .z/ at z D n to the fourth order

Qf .z/ D Qf .n/C Qf 0.n/.z � n/C
Qf 00.n/

2!
.z � n/2 C

Qf 000.n/

3!
.z � n/3 C .z � n/4R.z/; (36)

where

R.z/ D
1

3!

Z 1

0

Qf .4/
�
nC .z � n/t

�
.1 � t/3 dt:

By applying successively the equation (12), we get

Qf .4/.z/ D �e�z
C q3e�qz

� q5e�q2z
C q6e�q3z

C q6 Qf .q4z/:

It follows thatˇ̌̌
R
�
nei�

�ˇ̌̌
6
Z 1

0

ˇ̌
Qf .4/
�
nC n.ei�

� 1/t
�ˇ̌

dt

D O

 
e�n cos �

C e�q3n cos �
C

Z 1

0

ˇ̌
Qf
�
q4nC q4n.ei�

� 1/t
�ˇ̌

dt

!
;

for j� j 6 � . Replacing first Qf .z/ inside the integral by e�zf .z/, using the inequality jf .z/j 6
f .jzj/ and then substituting back f .q4n/ by eq4n Qf .q4n/, we then have

ˇ̌̌
R
�
nei�

�ˇ̌̌
D O

 
e�q3n cos �

C f .q4n/

Z 1

0

ˇ̌
e�q4n�q4n.ei��1/t

ˇ̌
dt

!

D O

 
e�q3n cos �

C Qf .q4n/

Z 1

0

eq4n.1�cos �/t dt

!
D O

�
e�q3n cos �

C Qf .q4n/eq4n.1�cos �/
�
; (37)
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uniformly for j� j 6 � . By Cauchy’s integral formula and (36), we have

�n D
n!

2� i

I
jzjDn

z�n�1ez Qf .z/ dz

D
n!

2� i

I
jzjDn

z�n�1ez

 
Qf .n/C

Qf 0.n/

1!
.z � n/C

Qf 00.n/

2!
.z � n/2 C

Qf 000.n/

3!
.z � n/3

!
dz

CRn

D Qf .n/ �
n

2
Qf 00.n/C

n

3
Qf 000.n/CRn;

where
Rn WD

n!

2� i

I
jzjDn

z�n�1ez.z � n/4R.z/ dz:

By the estimate (37) for R.z/, we have

Rn D O

�
n!n4�n

Z �

��

�4en cos �
jR.nei�/j d�

�
D O

�
n!n4�n

Z �

��

�4en cos �
�
e�q3n cos �

C Qf .q4n/eq4n.1�cos �/
�

d�
�

D O

�
n!n4�n

Z �

��

�4en.1�q3/ cos � d� C n! Qf .q4n/n4�nen

Z �

��

�4e�.1�q4/n.1�cos �/ d�
�

D O
�
n!n�nC3=2e.1�q3/n

C n!enn�nC3=2 Qf .q4n/
�

D O
�
n2e�q3n

C n2 Qf .q4n/
�

D O
�
n�2.log n/4 Qf .n/

�
;

by (31). Note that again by (30)

n Qf 000.n/ D O
�
n�2.log n/3 Qf .n/

�
;

so this error bound is absorbed in O. Qf .n/n�2.log n/4/. This proves (35).

3 Alternative expansions and approaches
We discuss in this section other possible approaches to the asymptotic expansions we derived
above.

3.1 An alternative expansion for Qf .x/

We begin with an alternative asymptotic expansion for Qf .x/, starting from the integral repre-
sentation (21), which, as showed above, can be approximated by

Qf .x/ D
1

2� i

Z rCi1

r�i1

exs

s
F

�
1

s

�
ds CO.1/
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For simplicity, we will write this as

Qf .x/ '
1

2� i

Z rCi1

r�i1

exs

s
F

�
1

s

�
ds:

Now we use the same N D blog�.1=r/c D log�.1=r/ � � and

F

�
1

s

�
D qN.N�1/=2s�N F

�
qN

s

�
;

so that

Qf .x/ '
q.

N
2 /

2� i

Z rCi1

r�i1

exs

sNC1
F

�
qN

s

�
ds: (38)

Now instead of expanding F.qN =.r C i t// at t D 0, we expand F.qN =s/ at s D r , giving

F

�
qN

s

�
D F

�
qN

r
�

qN

r

�
1 �

r

s

��
D

X
m>0

.�1/mQm

m!
Fm

�
1 �

r

s

�m

;

where Q WD qN =r D q�flog�.1=r/g and Fj denotes F .j/.Q/. Substituting this expansion into
the integral representation (38) and then integrating term-by-term, we obtain

Qf .x/q�.
N
2 / '

X
m>0

.�1/mQm

m!
Fm �

1

2� i

Z rCi1

r�i1

exs

sNC1

�
1 �

r

s

�m

ds

D
xN

N !

X
m>0

.�1/mQm

m!
FmTm.N /; (39)

where, by the integral representation for Gamma function (see [24]),

Tm.N / WD
1

2� i

Z rCi1

r�i1

exs

sNC1

�
1 �

r

s

�m

ds

D

X
06j6m

�
m

j

�
.�r/j

N !xj

.N C j /!
:

For computational purposes, it is preferable to use the recurrence

Tm.N / D Tm�1.N / �
rx

N C 1
Tm�1.N C 1/:

The value of r is arbitrary up to now. If we take r D N=x, then

Tm.N / WD
X

06j6m

�
m

j

�
.�1/j

N !N j

.N C j /!
:

Note that jTm.N /j � N �dm=2e. In particular,

T0.N / D 1; T1.N / D
1

N C 1
; T3.N / D �

N � 2

.N C 1/.N C 2/
; � � � :
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Since qN =r remains bounded, we can regroup the terms and get an asymptotic expansion in
terms of increasing powers of N �1, the first few terms being given as follows

Qf .x/

q.
N
2 /xN =N !

' F0 �
Q.2F1 C F2Q/

2N
C

Q.3F4Q3 C 28F3Q2 C 60F2QC 24F1/

24N 2

�
Q.F6Q5 C 22F5Q4 C 152F4Q3 C 384F3Q2 C 312F2QC 48F1/

48N 3

C � � � :

On the other hand, if we choose r D .N C 1/=x, then T1.N / D 0 and

T0.N / D 1; T2.N / D �
1

N C 2
; T3.N / D �

4

.N C 2/.N C 3/
; � � � ;

so that

Qf .x/

q.
N
2 /xN =N !

' F0 �
F2Q2

2.N C 2/
C

Q3.3F4QC 16F3/

24.N C 2/2

�
Q3.F6Q3 C 16F5Q2 C 60F4QC 32F3/

48.N C 2/3
C � � � :

While jTm.N /j � N �dm=2e for m > 2 as in the case of r D N=x, this is a better expansion
because the first term incorporates more information.

The more transparent expansion (39) is a priori a formal one whose asymptotic nature
can be easily justified by the same local analysis as above, details being omitted here. We
summarize the analysis in the following theorem.

Theorem 3.1. The Poisson generating function of �n satisfies the asymptotic expansion

Qf .x/ � q.
N
2 /

xN

N !

X
m>0

.�1/mQm

m!
F .m/.Q/Tm.N /; (40)

where N D blog�.1=r/c D log�.1=r/� �, r WD N=x, Q WD q� log�.1=r/ and Tm.N / is defined
by

Tm.N / WD
X

06j6m

�
m

j

�
.�1/j

N !.N C 1/j

.N C j /!
:

Straightforward calculations give (when r D N=x)

log
�

q.
N
2 /

xN

N !

�
D

�
log x

log� x

�2

2 log �
C

�
1

log �
C

1

2

�
log x � log log x

�
1

2
log 2� �

�2 C �

2
CO

�
.log log x/2

log x

�
;

consistent with what we proved in (29) via directly applying the saddle-point method. For
similar types of approximation, see [32, 47].
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3.2 Exponential GFs vs ordinary GFs
The different forms of the GFs of the sequence �n have several interesting features which we
now briefly explore.

Instead of Qf ?.s/, we start with considering the usual Laplace transform of Qf .z/

L .s/ D

Z 1
0

e�xs Qf .x/ dx;

which, by (16), satisfies

L .s/ D
X
j>0

q.
jC1

2 /

sjC1.s C qj /
:

By inverting this series, we obtain

Qf .z/ D
X
j>0

q.
jC1

2 /

j !
zjC1

Z 1

0

e�qjuz.1 � u/j du:

From this exact expression, we deduce not only the exact expression (13) but also the following
one (by multiplying both sides by ez and then expanding)

�n D n
X

06j<n

�
n � 1

j

�
q.
jC1

2 /
X

06`<n�j

�
n � 1 � j

`

�
qj`.1 � qj /n�1�j�`

j C `C 1
; (41)

where all terms are now positive; compare (13). But this expression and (13) are less useful for
numerical purposes for large n.

On the other hand, the consideration of our Qf ?.s/ bridges essentially EGF and OGF of �n.
Indeed,

Qf ?.s/ D
1

s

Z 1
0

e�x�x=s
X
n>0

�n

n!
xn dx

D
1

1C s

X
n>0

�n

�
s

1C s

�n

;

which is essentially the Euler transform of the OGF; see [23].
Our proofs given above rely strongly on the use of EGF, but the use of OGF works equally

well for some of them. We consider the general recurrence (48). Then the OGF A.z/ WDP
n>1 anzn satisfies

A.z/ D zA.z/C
z

1 � pz
A

�
qz

1 � pz

�
C B.z/;

where B.z/ WD
P

n>1 bnzn. Thus NA.z/ WD .1 � z/A.z/ satisfies

NA.z/ D B.z/C
z

1 � z
NA

�
qz

1 � pz

�
;
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which after iteration gives

NA.z/ D
X
j>0

qj.j�1/=2
� z

1 � z

�j

B

�
qjz

1 � .1 � qj /z

�
:

Thus

A.z/ D
X
j>0

qj.j�1/=2zj

.1 � z/jC1
B

�
qjz

1 � .1 � qj /z

�
: (42)

Closed-form expressions can be derived from this; we omit the details here.

4 Variance of Yn

We derive in this section the asymptotics of the variance Yn (see (9)), which can be regarded as
a very rough independent approximation to Xn. We use an elementary approach (no complex
analysis being needed) here based on the recurrences of the central moments and suitable tools
of “asymptotic transfer” for the underlying recurrence. The approach is, up to the development
of asymptotic tools, by now standard; see [34, 36]. The same analysis provided here is also
applicable to higher central moments, which will be analyzed in the next section.

4.1 Recurrence
For the variance of Yn, we start with the recurrence (9), which translates into the recurrence
satisfied by the moment GF Mn.y/ WD E

�
eYny

�
Mn.y/ DMn�1.y/

X
06j<n

�n;jMj .y/ .n > 2/;

with M0.y/ D 1 and M1.y/ D ey , where �n;j WD
�

n�1

j

�
qjpn�1�j . This implies, with

NMn.y/ WD e��nyMn.y/ D E
�
e.Yn��n/y

�
, that

NMn.y/ D NMn�1.y/
X

06j<n

�n;j
NMj .y/e

�n;jy .n > 2/; (43)

with NMn.y/ D 1 for n < 2, where

�n;j WD �j C �n�1 � �n:

Let Mn;m WD E.Yn � �n/
m D NM

.m/
n .0/, m > 0. Then from (43), we deduce that

Mn;m DMn�1;m C

X
06j<n

�n;jMj ;m C Tn;m; (44)
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where, for m > 1,

Tn;m D

X
kC`ChDm
06k;`<m
06h6m

�
m

k; `; h

�
Mn�1;k

X
06j<n

�n;jMj ;`�
h
n;j

D

X
06`<m

�
m

`

� X
06j<n

�n;jMj ;`�
m�`
n;j

C

X
26k6m�2

�
m

k

�
Mn�1;k

X
06`6m�k

�
m � k

`

� X
06j<n

�n;jMj ;`�
m�k�`
n;j : (45)

Note that since Mn;1 D 0 and
P

06j<n �n;j�n;j D 0, terms with k D 1 and k D m�1 vanish.
In particular, the variance �2

n DMn;2 satisfies

�2
n D �

2
n�1 C

X
06j<n

�n;j�
2
j C Tn;2;

where
Tn;2 D

X
06j<n

�n;j�
2
n;j :

4.2 Asymptotics of Tn;2

To proceed further, we first consider the asymptotics of�n;j for j D qnCO.n2=3/. By Taylor
expansion and (12), we have

Qf .n/ � Qf .n � 1/ D Qf 0.n/ �
Qf 00.n/

2
C

Qf 000.n/

3!
CO

 Z 1

0

.1 � t/4 Qf .4/.n � t/ dt

!

D Qf 0.n/ �
Qf 00.n/

2
C

Qf 000.n/

3!
CO

�
Qf
�
q4n

��
;

and
Qf 00.n/ � Qf 00.n � 1/ D Qf 000.n/CO

�
Qf
�
q4n

��
:

These and (35) yield

�n � �n�1 D
Qf 0.n/ �

Qf 00.n/

2
CO

�
n2 Qf

�
q4n

��
D Qf .qn/CO

�
n2 Qf

�
q4n

��
;

since Qf
�
q2n

�
D O

�
n2.log n/�2 Qf

�
q4n

��
. Then, for j D qnC x

p
pqn, jxj 6 n1=6,

�n;j D �j � .�n � �n�1/

D Qf .qnC x
p

pqn/ � Qf .qn/CO
�
n2 Qf

�
q4n

��
D Qf 0.qn/x

p
pqnCO

�
n2.1C x2/ Qf

�
q4n

��
: (46)
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Thus, by (30) and (31),

Tn;2 D

X
jxj6n1=6

�n;j

ˇ̌̌
Qf 0.qn/x

p
pqnCO

�
n2 Qf .q4n/

�ˇ̌̌2
CO

0@�2
n

X
jxj>n1=6

�n;j

1A
D pqn Qf 0.qn/2

X
jxj6n1=6

�n;j jxj
2
CO

�
n9=2 Qf 2

�
q4n

��
D pqn Qf 0.qn/2 CO

�
n9=2 Qf 2

�
q4n

��
� q�1pn�3.log� n/4 Qf .n/2: (47)

The next step then is to “transfer” this estimate to the asymptotics of the variance.

4.3 Asymptotic transfer
We now develop an asymptotic transfer result, which will be used to compute the asymptotics
of higher central moments of Yn (in particular the variance).

More generally, we consider a sequence fangn>0 satisfying the recurrence relation

an D an�1 C

X
06j<n

�n;jaj C bn .n > 1/; (48)

where a0 is finite (whose value is immaterial) and fbngn>1 is a given sequence.

Lemma 4.1. If bn � nˇ.log n/� Qf .n/˛, where ˛ > 0, ˇ; � 2 R. ThenX
j6n

bj �
n

˛ log� n
bn:

Proof. Define '.t/ WD tˇ.log t/� Qf .t/˛. By assumption, bn � '.n/. Since Qf 0.t/= Qf .t/ �
t�1 log� t (by (30)), we see that ' 0.t/ > 0 for t sufficiently large, say t > t0 > 0. Thus '.t/ is
monotonically increasing for t > t0. ThenX

j6n

bj �

X
26j6n

'.j / D

Z n

2

'.t/ dt CO.'.n//

By the asymptotic relation (30), we haveZ n

1

'.t/ dt D

Z n

1

tˇ.log t/� Qf .t/˛ dt

� .log �/
Z n

1

tˇC1.log t/��1 Qf .t/˛�1 Qf 0.t/ dt

�
log �
˛

Z n

1

tˇC1.log t/��1 d Qf .t/˛

D
n'.n/

˛ log� n
CO

�Z n

1

'.t/

t
dt

�
;
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by an integration by parts. The integral on the right-hand side is easily estimated as follows.Z n

1

'.t/

t
dt D O

�
'.qn/

Z qn

1

t�1 dt C '.n/

Z n

qn

t�1 dt

�
D O.'.n//:

This proves the lemma.

Proposition 4.2. If bn � nˇ.log n/� Qf .n/˛, where ˛ > 1, ˇ; � 2 R, then

an D
�
1CO

�
n1�˛.log n/˛�1

�� X
06j6n

bj �
n

˛ log� n
bn: (49)

Proof. We start with obtaining upper and lower bounds for an. Since bn > 0 for sufficiently
large n, say n > n0. We may, without loss of generality, assume that bn > 0 for n > n0

(for, otherwise, we consider b0n WD bnCmaxj6n0
jbj j and then show the difference between the

corresponding a0n and an is of order Qf .n/). Then an > 0 and, by (48), we have the lower bound

an > an�1 C bn >
X

06j6n

bj :

Now consider the sequence

Cn WD
anP

06j6n bj

> 1 .n > 1/;

and the increasing sequence
C �n WD max

16j6n
fCjg > 1:

Then we have the upper bound
ak 6 C �n

X
06j6k

bj ;

for all k 6 n.
In view of the recurrence relation (48), we have

an 6 C �n�1

X
06j<n

bj C C �n�1

X
06j<n

�n;j

X
06`6j

b` C bn

6 C �n�1

X
06j6n

bj C C �n�1

X
06j<n

�n;j

X
06`6j

b`:

By Lemma 4.1 and Corollary 2.6, we see that there exist an absolute constant K > 0 such thatX
06j<n

�n;j

X
06`6j

b` 6 Kn�˛.log n/˛
X

06j6n

bj D O
�
n1�˛.log n/˛�1bn

�
: (50)

It follows that
an 6 C �n�1 .1CKn�˛.log n/˛/

X
06j6n

bj :
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By our definition of Cn, we then have

Cn 6 C �n�1 .1CKn�˛.log n/˛/ ;

and
C �n D maxfC �n�1;Cng 6 C �n�1 .1CKn�˛.log n/˛/ :

Consequently,
C �n 6 C �2

Y
26j6n

.1CKj�˛.log j /˛/ :

Since the finite product on the right-hand side is convergent, we conclude that the sequence C �n
is bounded, or more precisely,

C �n 6 C �2

Y
j>2

.1CKj�˛.log j /˛/ :

Thus we obtain the upper bound
an 6 C

X
06j6n

bj ;

where C > 0 is an absolute constant depending only on p; ˛; ˇ and � .
With this bound and defining Qan WD

P
06j<n �n;jaj , we can rewrite the recurrence relation

(48) as

an D an�1 C Qan C bn

D

X
06j6n

bj C

X
06k6n

Qak : (51)

Now by the estimate (50), we see that

X
06j6n

Qaj D O

0@1C
X

26j6n

j 1�˛.log j /˛�1bj

1A
D O

0@1C '.qn/
X

26j6qn

j 1�˛.log j /˛�1
C n1�˛.log n/˛�1

X
qn<j6n

bj

1A ;
where '.t/ WD tˇ.log t/� Qf .t/˛. Observe that

'.qn/ � n�˛.log n/˛bn � n�˛�1.log n/˛C1
X

06j6n

bj :

Thus X
06j6n

Qaj D O

0@n1�˛.log n/˛�1
X

06j6n

bj

1A :
The proof of the Proposition is complete by substituting this estimate into (51).

24



Denote by Œzn�A.z/ for the coefficient of zn in the Taylor expansion of A.z/. Then, in terms
of ordinary GFs, the asymptotic transfer (49) can be stated alternatively as

Œzn�A.z/ � Œzn�
B.z/

1 � z
;

(when bn satisfies the assumption of Proposition 4.2), which means that the contribution from
terms in the sum in (42) with j > 1 is asymptotically negligible. Roughly, since

bn;j WD Œz
n�B

�
qjz

1 � .1 � qj /z

�
D n�1

X
16`6n

�
n

`

�
qj`.1 � qj /n�``b`;

we see that bn;j D O.qjbbqjnc/. We can then give an alternative proof of (49) by using (42).
By (47) and a direct application of Proposition 4.2, we obtain an asymptotic approximation

to the variance.

Theorem 4.3. The variance of Yn satisfies

�2
n � C�n�2.log� n/3 Qf .n/2; (52)

where C� WD p=.2q/.

Thus we have
V.Yn/

.E.Yn//2
� C�n�2.log n/3:

Monte Carlo simulations (with n a few hundred) suggest that the ratio V.Xn/=V.Yn/ grows
concavely, so that one would expect an order of the form nˇ.log n/� for some 0 < ˇ < 1. But
due to the complexity of the problem, we could not run simulations of larger samples to draw
more convincing conclusions. Asymptotics of V.Xn/ remains open.

5 Asymptotic normality
We prove in this section that Yn is asymptotically normally distributed by the method of mo-
ments. Our approach is to start from the recurrence (44) for the central moments and the
asymptotic estimate (52) and then to apply inductively the asymptotic transfer result (Proposi-
tion 4.2), similar to that used in our previous papers [34, 36].

Theorem 5.1. The distribution of Yn is asymptotically normal, namely,

Yn � �n

�n

d
! N .0; 1/;

where
d
! denotes convergence in distribution.

We will indeed prove convergence of all moments.
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Proof. By standard moment convergence theorem, it suffices to show that

Mn;m D E.Yn � �n/
m

8<:�
.m/!

.m=2/!2m=2
�m

n ; if m is even;

D o.�m
n /; if m is odd;

(53)

for m > 0.
The cases when m 6 2 having been proved above, we assume m > 3. By induction

hypothesis, we have

Mn;k D O
�
�k

n

�
D O

�
n�k.log n/3k=2 Qf k.n/

�
;

for k < m. Then, by (46),X
06j<n

�n;jMj ;`�
h
n;j D O

�
Mbqnc;`n

h=2 Qf .q2n/h
�

D O
�
n�`.log n/3`=2 Qf .qn/`nh=2 Qf .q2n/h

�
D O

�
n�2`�3h=2.log n/5`=2C2h Qf .n/`Ch

�
:

It follows (see (45)) that, for 0 6 ` < m,X
06j<n

�n;jMj ;`�
m�`
n;j D O

�
n�`=2�3m=2.log n/`=2C2m Qf .n/m

�
I

and, for 2 6 k 6 m � 2 and 0 6 ` 6 m � k,

Mn�1;k

X
06j<n

�n;jMj ;`�
m�k�`
n;j D O

�
n�`=2Ck=2�3m=2.log n/`=2�k=2C2m Qf .n/m

�
:

Thus the main contribution to the asymptotics of Tn;m will come from the terms in the second
group of sums in (45) with k D m � 2 and ` D 0. More precisely

Tn;m D

�
m

2

�
Mn�1;m�2Tn;2 CO

�
n�3=2�m.log n/3.mC1/=2 Qf .n/m

�
:

Note that Tn;2 � 2n.log� n/�1�2
n ; see (47).

Thus if m is even, then, by (47) and induction hypothesis,

Tn;m �
2m!�

.m � 2/=2
�
!2m=2

n�1.log� n/�m
n

�
2m!�

.m � 2/=2
�
!2m=2

C m=2
� n�m�1.log� n/.3m=2C1/ Qf .n/m:

Applying the asymptotic transfer result (Proposition 4.2) with ˛ D m, we obtain

Mn;m �
m!

.m=2/!2m=2
C m=2
� n�m.log n/3m=2 Qf .n/m

�
m!

.m=2/!2m=2
�m

n :

In a similar manner, we can prove that if m is odd, then

Mn;m D o.�m
n /:

This concludes the proof of (53) and the asymptotic normality of Yn.
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6 The random variables Zn

We briefly consider the random variables defined recursively in (10). The major interest is
in understanding the robustness of the asymptotic normality when changing the underlying
probability distribution from binomial to uniform.

Theorem 6.1. The mean value of Zn satisfies

E.Zn/ D C n�1=4e2
p

n

�
1C

9

16
p

n
C

11

1536n
CO

�
n�3=2

��
; (54)

where

C WD
1

2

r
e

�

Z 1

0

�
1 �

1

v

�
e�v dv � 0:06906 46192 : : :

The limit law of the normalized random variables Zn=E.Zn/ is not normal

Zn

E.Zn/

d
! Z;

where the distribution of Z is uniquely characterized by its moment sequence and the GF
�.y/ WD

P
m>1 E.Zm/ym=.m �m!/ satisfies the nonlinear differential equation

y2� 00 C y� 0 � � D y�� 0; (55)

with �.0/ D � 0.0/ D 1.

Proof. (Sketch) The proof the theorem is simpler and we sketch only the major steps.

Mean value. First, �n WD E.Zn/ satisfies the recurrence

�n D �n�1 C
1

n

X
06j<n

�j .n > 2/;

with �0 D 0, and �1 D 1. The GF f .z/ of E.Zn/ satisfies the differential equation

f 0 D
2 � z

.1 � z/2
f C

1

1 � z
;

with the initial condition f .0/ D 0. Surprisingly, this same equation (and the same sequence
f�nn!gn, which is A005189 in Encyclopedia of Integer sequences) occurs in the study of two-
sided generalized Fibonacci sequences; see [21, 22]. The first-order differential equation is
easily solved and we obtain the closed-form expression

f .z/ D
z

1 � z
C

e1=.1�z/

1 � z

Z 1=.1�z/

0

�
1 �

1

v

�
e�v dt:

From this, the asymptotic approximation (54) results from a direct application of the saddle-
point method (see Flajolet and Sedgewick’s book [24, Ch. VIII]); see also [22].
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Asymptotic transfer. For higher moments and the limit law, we are led to consider the fol-
lowing recurrence.

an D an�1 C
1

n

X
06j<n

aj C bn .n > 2/; (56)

with a0 and a1 given. For simplicity, we assume a0 D b0 D 0.

Proposition 6.2. Assume an satisfies (56). If bn � cnˇ�˛n , where ˛ > 1 and ˇ 2 R, then

an �
c

˛ � ˛�1
nˇC1=2�˛n : (57)

The proof is similar to that for Proposition 4.2 and is omitted.

Recurrence and induction. By Proposition 6.2 and the following recurrence relation for the
moment GF Q.y/ WD E.eZny/

Qn.y/ D
Qn�1.y/

n

X
06j<n

Qj .y/ .n > 2/;

with Q0.y/ D 1 and Q1.y/ D ey , we deduce, by induction using (57), that

E.Zm
n / � �m�

m
n .m > 1/;

where

�m D
1

m �m�1

X
16j<m

�
m

j

�
�j

j
�m�j .m > 2/; (58)

with �0 D �1 D 1. It follows that the function �.y/ WD
P

m>1 �mym=.m � m!/ satisfies the
differential equation (55).

Unique determination of the distribution. First, by a simple induction we can show, by
(58), that �m 6 cm!Km for a sufficiently large K > 0. This is enough for justifying the unique
determination. Instead of giving the details, it is more interesting to note that the nonlinear
differential equation (55) represents another typical case for which the asymptotic behavior
of its coefficients (E.Zm/ for large m) necessitates the use of the psi-series method recently
developed in [10]. We can show, by the approach used there, that

E.Zm/ D m �m!��m

�
2C

2

3m2
CO

�
m�3

��
;

where � > 0 is an effectively computable constant. Note that there is no term of the form m�1

in the expansion, a typical situation when psi-series method applies; see [10].
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Concluding remarks
The approach we used in this paper is of some generality and is amenable to other quantities.
We conclude this paper with a few examples and a list of some concrete applications where the
scale nc log n also appears.

First, the expected number of independent sets in a random graph (under the Gn;p model),
as given in (8), satisfies the recurrence ( NJn WD Jn C 1)

NJn D
NJn�1 C

X
06k<n

�
n � 1

k

�
qkpn�1�k NJk .n > 1/;

with NJ0 D 1. Thus the Poisson GF Qf .z/ WD e�z
P

n>0
NJnzn=n! satisfies the equation

Qf 0.z/ D Qf .qz/;

with Qf .0/ D 1. The modified Laplace transform then satisfies the functional equation

Qf ?.s/ D 1C s Qf ?.qs/;

which, by iteration, leads to the closed-form expression

Qf ?.s/ D
X
j>0

qj.j�1/=2sj :

Thus all analysis as in Section 2 applies with F and G there replaced by

F.s/ WD
X
j2Z

qj.j�1/=2sj ; G.u/ WD q.fug
2Cfug/=2F

�
q�fug

�
:

We obtain for example

Jn D

G
�

log�
n

log� n

�
p

2�
�
n1= log �C1=2

log� n
exp

0B@
�

log n
log� n

�2

2 log �

1CA�1CO

�
.log log n/2

log n

��
:

The same approach also applies to the pantograph equation

ˆ0.z/ D aˆ.qz/C‰.z/ .a > 0/;

with ˆ.0/ and ‰.z/ given, for ‰.z/ satisfying properties that can be easily imposed.
Other extensions will be discussed elsewhere. We conclude with some other algorithmic,

combinatorial and analytic contexts where nc log n appears.

– Algorithmics: isomorphism testing (see [4, 29, 33, 49, 58]), autocorrelations of strings
(see [30, 57]), information theory (see [2]), random digital search trees (see [19]), popu-
lation recovery (see [65]), and asymptotics of recurrences (see [44, 51]);

– Combinatorics: partitions into powers (see [15, 47]; see also [26] for a brief historical ac-
count and more references), palindromic compositions (see [40]), combinatorial number
theory (see [7, 46]), and universal tree of minimum complexity (see [11, 28]);
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– Probability: log-normal distribution (see [41]), renewal theory (see [63, 64]), and total
positivity (see [42]);

– Algebra: commutative ring theory (see [8]), and semigroups (see [45, 55, 59]);

– Analysis: pantograph equations (see [37, 43]), eigenfunctions of operators (see [60]),
geometric partial differential equations (see [17]), and q-difference equations (see [3, 9,
18, 54, 68, 69]).

This list is not aimed to be complete but to show to some extent the generality of the seemingly
uncommon scale nc log n; also it suggests the possibly nontrivial connections between instances
in various areas, whose clarification in turn may lead to further development of more useful
tools such as those in this paper.
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[10] CHERN, H.-H., FERNÁNDEZ-CAMACHO, M.-I., HWANG, H.-K., AND MARTÍNEZ, C.
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