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Abstract

In this article we obtain some results on the sequence c(n), where
c(n) is the sum of the prime factors in the prime factorization of n.
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1 Introduction

In this note we obtain some results on the sequence c(n), where c(n) is the
sum of the prime factors in the prime factorization of n ≥ 2. For example if
n = 12 then c(n) = c(12) = c(2.2.3) = 2 + 2 + 3 = 7 and if n is prime then
c(n) = n.

The first few terms of the integer sequence c(n) are

2, 3, 4, 5, 5, 7, 6, 6, 7, 11, 7, 13, 9, 8, 8, 17, 8, 19, 9, 10, 13, 23, 9, 10, 15, 9, 11, 29,

10, 31, 10, 14, 19, 12, 10, 37 . . .

Therefore c(2) = 2, c(3) = 3, c(4) = 4, c(5) = 5, c(6) = 5, . . .

We see that the sequence c(n) is very irregular. On the other hand, we see
that there are numbers repeated.
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2 Main Results

First, we establish two general lemmas.

Lemma 2.1 If ai (i = 1, . . . , n) are positive integers such that ai ≥ 2
(i = 1, . . . , n) then we have the following inequality

a1 + a2 + · · · + an ≤ a1a2 · · ·an (n ≥ 1). (1)

Proof. We apply mathematical induction. If n = 1 we obtain a1 ≤ a1. Con-
sequently the lemma is true for n = 1. If n = 2 we can suppose that a1 ≥ a2.
Therefore

a1.a2 ≥ a1.2 = a1 + a1 ≥ a1 + a2.

That is
a1.a2 ≥ a1 + a2. (2)

Consequently the lemma is true for n = 2.
Suppose that the lemma is true for n ≥ 2, that is (inductive hypothesis)

a1 + a2 + · · ·+ an ≤ a1a2 · · ·an. (3)

We shall prove that the lemma is also true for n + 1.
Equation (2) and equation (3) give

a1 · · ·anan+1 = (a1 · · ·an) an+1 ≥ (a1 · · ·an) + an+1 ≥ a1 + · · ·+ an + an+1.

The lemma is proved.

Lemma 2.2 If ai (i = 1, . . . , n) are positive integers such that ai ≥ 2
(i = 1, . . . , n) then we have the following inequality

a1 + a2 + · · · + an ≥ 3

log 3
log (a1a2 · · ·an) . (4)

Proof. If we study the function f(x) = x
log x

then we obtain the following
inequality

k

log k
≥ 3

log 3
,

where k is a positive integer such that k ≥ 2. Consequently we have (n ≥ 1)

ai

log ai

≥ 3

log 3
(i = 1, . . . , n).

That is

ai ≥ 3

log 3
log ai (i = 1, . . . , n).
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Therefore

a1+a2 + · · ·+an ≥ 3

log 3
(log a1 + log a2 + · · ·+ log an) =

3

log 3
log (a1a2 · · ·an)

The lemma is proved.

We have the following theorems.

Theorem 2.3 We have the following inequalities

c(n) ≤ n (n ≥ 2), (5)

c(n) ≥ 3

log 3
log n (n ≥ 2). (6)

Proof. If we consider the prime factorization of n and apply (1) and (4) then
we obtain (5) and (6) respectively. The theorem is proved.

Remark 2.4 Note that in theorem 2.3 n is the least upper bound since if n
is prime then c(n) = n. Besides, 3

log 3
log n is the greatest lower bound since if

n = 3k then c(3k) = 3
log 3

log 3k = 3k.

Corollary 2.5 The following limit holds.

lim
n→∞ c(n) = ∞.

Proof. It is an immediate consequence of equation (6).

Let n be a positive integer greater than 1. ϑ(n) denotes the number of
partitions of n into positive prime numbers.

Lemma 2.6 If n = 2, 3, 4 then ϑ(n) = 1. If n ≥ 5 then ϑ(n) ≥ 2.

Proof. If n ≥ 6 is even we have n = 2 + · · ·+ 2 = 2 + · · ·+ 2 + 3 + 3. If n ≥ 9
is odd we have n = 2 + · · ·+ 2 + 3 = 2 + · · ·+ 2 + 3 + 3 + 3. If n = 5 we have
5 = 5 and 5 = 2 + 3. If n = 7 we have 7 = 7 , 7 = 2 + 5 and 7 = 2 + 2 + 3.
The lemma is proved.

Theorem 2.7 The equation c(i) = n where n ≥ 2 has ϑ(n) solutions.
Consequently if n = 2, 3, 4 then the equation has one solution. On the other
hand if n ≥ 5 the equation has at least two solutions.

Proof. It is an immediate consequence of the definition of c(n) and of lemma
2.6. The theorem is proved.
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Theorem 2.8 The sequence c(n) is not decreasing. The sequence c(n) is
not increasing.

Proof. Clearly the sequence c(n) is not decreasing (see corollary 2.5). On the
other hand, the sequence c(n) is not increasing since if p ≥ 7 is prime we have

p < 2
p−1
2 and c(p) = p > c

(
2

p−1
2

)
= p − 1. The theorem is proved.

Theorem 2.9 We have the following asymptotic formula

n∑
i=2

c(i) ∼ π2

12

n2

log n
. (7)

Proof. Let S1(n) be the sum of the prime factors in the prime factorization of
n!. In a previous article [1] we prove the asymptotic formula S1(n) ∼ π2

12
n2

log n

On the other hand, clearly S1(n) =
∑n

i=2 c(i). The theorem is proved.

Theorem 2.10 Let us consider the set {c(2), c(3), . . . , c(n)}. Let n0 be the
number of numbers in this set such that c(i) ≥ i

log1−ε i
where 0 < ε < 1 is fixed.

We have limn→∞ n0

n
= 0.

Proof. Note that there exists a positive integer q > 2 such that the function
f(x) = x

log1−ε x
is strictly increasing on the interval [q,∞].

Let us consider the set {c(q), c(q + 1), . . . , c(n)}. Let m0 be the num-
ber of numbers in this set such that c(i) ≥ i

log1−ε i
. Suppose that the limit

limn→∞ m0

n
= 0 is not fulfilled. Therefore there exists α > 0 such that for

infinite values of n we have m0

n
≥ α.

Note that (L’Hospital’s rule)

lim
x→∞

∫ x
q

t
log1−ε t

dt

x2

2 log1−ε x

= 1.

That is ∫ x

q

t

log1−ε t
dt = h1(x)

x2

2 log1−ε x
,

where h1(x) → 1.
Therefore we have

n∑
i=q

c(i) ≥ ∑
c(i)≥ i

log1−ε i
, i≥q

c(i) ≥
q+m0−1∑

i=q

i

log1−ε i
≥

∫ q+m0−1

q

x

log1−ε x
dx

≥
∫ q−1+αn

q

x

log1−ε x
dx = h1 (q − 1 + αn)

(q − 1 + αn)2

2 log1−ε (q − 1 + αn)

= h2(n)
α2

2

n2

log1−ε n
≥ C

n2

log n
logε n,
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where h2(n) → 1 and 0 < C < α2

2
. That is

n∑
i=q

c(i) ≥ C
n2

log n
logε n. (8)

Now, equation (8) and equation (7) are an evident contradiction. Therefore
limn→∞ m0

n
= 0 and consequently limn→∞ n0

n
= 0. The theorem is proved.

Corollary 2.11 Let us consider the set {c(2), c(3), . . . , c(n)}. Let n1 be the
number of numbers in this set such that c(i) < i

log1−ε i
where 0 < ε < 1 is fixed.

We have limn→∞ n1

n
= 1.

Theorem 2.12 There exists n0 such that if n ≥ n0 we have the following
inequality

1

2
log n <

n∑
i=2

1

c(i)
< 2

n

log n
. (9)

Proof. Theorem 2.3 gives
n∑

i=2

1

i
≤

n∑
i=2

1

c(i)
≤

n∑
i=2

1

log i
. (10)

Now, we have
n∑

i=2

1

i
=

∫ n

2

1

x
dx + O(1) = h(n) log n >

1

2
log n, (11)

where h(n) → 1.
On the other hand, we have

n∑
i=2

1

log i
=

∫ n

2

1

log x
dx + O(1) = g(n)

n

log n
< 2

n

log n
, (12)

where g(n) → 1. Since (L’Hospital rule)

lim
x→∞

∫ x
2

1
log t

dt
x

log x

= lim
x→∞

1
log x

log x−1
log2 x

= 1.

Finally, (10), (11) and (12) give (9). The theorem is proved.

Corollary 2.13 The series
∑∞

n=2
1

c(n)
is divergent and

∑n
i=2

1
c(i)

= o(n).
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