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Preface

I first learned Serre’s definition of intersection multiplicity from Mel Hochster,
back when I was an undergraduate. I was immediately intrigued by this surprising
connection between homological algebra and geometry. As it has always been for
me when learning mathematics, I wanted to know how I could have guessed this
definition for myself—what are the underlying principles that tell us to go looking
in homological algebra for a definition of multiplicity. This question has been in the
back of my mind for most of my mathematical life. It took me a long time to accept
that the answers to such questions are not often readily available; one has to instead
make do with vague hints and partial explanations. I still believe, though, that the
answers exist somewhere—and that it is the ultimate job of mathematicians to
uncover them. So perhaps it is better said this way: those questions often don’t
have simple answers yet .

During my first year of graduate school I tried to puzzle out for myself the secrets
behind Serre’s definition. Thanks to the Gillet-Soulé paper [GS] I was led to K-
theory, and similar hints of topology seemed to be operating in work of Roberts [R].
Coincidentally, MIT had a very active community of graduate students in topology,
and I soon joined their ranks. Although there were other factors, it is not far from
the truth to say that I became a topologist in order to understand Serre’s definition.

In Winter quarter of 2012 I taught a course on this material at the University
of Oregon. The graduate students taking the course converted my lectures into
LaTeX, and then afterwards I both heavily revised and added to the resulting
document. The present notes are the end result of this process. I am very grateful
to the attending graduate students for the work they put into typesetting the
lectures. These students were: Jeremiah Bartz, Christin Bibby, Safia Chettih,
Emilio Gardella, Christopher Hardy, Liz Henning, Justin Hilburn, Zhanwen Huang,
Tyler Kloefkorn, Joseph Loubert, Sylvia Naples, Min Ro, Patrick Schultz, Michael
Sun, and Deb Vicinsky.
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Introduction

1. Algebraic intersection multiplicities

Let Z be the parabola y = x2 in R2, and let W be the tangent line at the
vertex: the line y = 0. Then Z and W have an isolated point of intersection at
(0, 0). Since high school you have known how to associate a multiplicity with this
intersection: it is multiplicity 2, essentially because the polynomial x2 has a double
root at x = 0. This multiplicity also has a geometric interpretation, coming from
intersection theory. If you perturb the intersection a bit, say by moving either Z
or W by some small amount, then you get two points of intersection that are near
(0, 0)—and these points both converge to (0, 0) as the perturbation gets smaller
and smaller.

You might object, rightly so, that I am lying to you. If we perturb y = 0 to y = ε,
with ε > 0, then indeed we get two points of intersection: (

√
ε, ε) and (−

√
ε, ε). And

these do indeed converge to (0, 0) as ε→ 0. But if we perturb the line in the other
direction, by taking ε to be negative, then we get no points of intersection at all!
To fix this, it is important to work over the complex numbers rather than the reals:
the connection between geometry and algebra works out best (and simplest) in this
case. If we work over C, then it is indeed true that almost all small perturbations
of our equations yield two solutions close to (0, 0).

Our goal will be to vastly generalize the above phenomenom. Let f1, . . . , fk ∈
C[x1, . . . , xn], and let Z be the algebraic variety defined by the vanishing of the
fj ’s. We write

Z = V (f1, . . . , fk) = {x ∈ Cn | f1(x) = f2(x) = · · · = fk(x) = 0}.
Likewise, let g1, . . . , gl ∈ C[x1, . . . , xn] and let W = V (g1, . . . , gl). Assume that P
is an isolated point of the intersection Z∩W . Our goal is to determine an algebraic
formula, in terms of the fi’s and gj ’s, for an intersection multiplicity i(Z,W ;P ).
This multiplicity should have the basic topological property that it coincides with
the number of actual intersection points under almost all small deformations of Z
and W .

Here are some basic properties, by no means comprehensive, that we would want
such a formula to satisfy:
(1) i(Z,W ;P ) should depend only on local information about Z and W near P .
(2) i(Z,W ;P ) ≥ 0 always.
(3) If dimZ+dimW < n then i(Z,W ;P ) = 0 (because in this case there is enough

room in the ambient space to perturb Z and W so that they don’t intersect at
all).

(4) If dimZ + dimW = n then i(Z,W ;P ) > 0.
(5) If dimZ + dimW = n and Z and W meet transversely at P (meaning that

TPZ ⊕ TPW = Cn), then i(Z,W ;P ) = 1.
Note that because of property (1) we can extend the notion of intersection mul-

tiplicity to varieties in CPn, simply by looking locally inside an affine chart for
projective space that contains the point P . From now on we will do this without
comment. The two statements below are not exactly ‘basic properties’ along the
lines of (1)–(5) above, but they are basic results that any theory of intersection
multiplicities should yield as consequences.
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(6) Suppose that X ↪→ CPn is the vanishing set of a homogeneous polynomial,
that is X = V (f). Let L be a projective line in CPn that meets X in
finitely-many points. Then∑

P∈X∩L
i(X,L;P ) = deg(f).

(7) (Bezout’s Theorem) Suppose that X,Y ↪→ CP 2 are the vanishing sets of
homogeneous polynomials f and g, and that X∩Y consists of finitely-many
points. Then ∑

P∈X∩Y
i(X,Y ;P ) = (deg f)(deg g).

Note that (6), for the particular case n = 2, is a special case of (7).
If you play around with some simple examples, an idea for defining intersection

multiplicities comes up naturally. It is

i(Z,W ;P ) = dimC

[
C[x1, . . . , xn]/(f1, . . . , fk, g1, . . . , gl)

]
P
.(1.1)

Here the subscript P indicates localization of the given ring at the maximal ideal
(x1−p1, . . . , xn−pn) where P = (p1, . . . , pn). The localization is necessary because
Z∩W might have points other than P in it, and our definition needs to only depend
on what is happening near P .

The best way to get a feeling for the above definition is via some easy examples:

Example 1.2. Let f = y−x2 and g = y. This is our example of the parabola and
the tangent line at its vertex. The point P = (0, 0) is the only intersection point,
and our definition tells us to look at the ring

C[x, y]/(y − x2, y) ∼= C[x]/(x2).

As a vector space over C this is two-dimensional, with basis 1 and x. So our
definition gives i(Z,W ;P ) = 2 as desired. [Note that technically we should localize
at the ideal (x, y), which corresponds to localization at (x) in C[x]/(x2); however,
this ring is already local and so the localization has no effect].

Example 1.3. Let f = y2 − x3 − 3x and g = y − 3
2x −

1
2 . Then Z = V (f) is an

elliptic curve, and one can check that W = V (g) is the tangent line at the point
P = (1, 2). Let us recall how this works: the gradient vector to the curve is

∇f = [−3x2 − 3, 2y]

and this is normal to the curve at (x, y). A tangent vector is then [2y, 3x3 + 3]
(since this is orthogonal to ∇f), which means the slope of the curve at (x, y) is
(3x3 + 3)/2y. At the point (1, 2) we then get slope 3

2 , and V (g) is the line passing
through (1, 2) with this slope.

The line V (g) intersects the curve at one other point, which we find by simulta-
neously solving y2 = x3 + 3x and y = 3

2x+ 1
2 . This yields the cubic

0 = x3 + 3x− ( 3
2x+ 1

2 )2.

Since we know that x = 1 is a root, we can factor this out and then solve the
resulting quadratic. One finds that the cubic factors as

0 = (x− 1)2 · (x− 1
4 ).

The second point of intersection is found to be Q = (1
4 ,

7
8 ).
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Note the appearance of (x− 1) with multiplicity two in the above factorization.
The fact that we had a tangent line at x = 1 guaranteed that the multiplicity
would be strictly larger than one. Likewise, the fact that (x − 1

4 ) has multiplicity
one tells us that V (g) intersects the curve transversally. These facts suggest that
i(Z,W ;P ) = 2 and i(Z,W ;Q) = 1. Let us consider these in terms of point-counting
under small deformations. We can perturb either Z or W , but it is perhaps easiest
to perturb the line W : we can write g′ = y − Ax − B and then consider what
happens for all (A,B) near ( 3

2 ,
1
2 ). We will need to find the intersection of Z and

W ′ = V (g′), which as before leads to a cubic. To save us from the unpleasantness
of having to solve the cubic, let us again arrange for there to be a known solution
which we can factor out. It is possible to have this solution be either (1, 2) or (1

4 ,
7
8 ).

The calculations turn out to be a little easier for the latter, despite the annoying
fractions. So we assume 7

8 = A
4 + B, or g′ = y − A(x − 1

4 ) − 7
8 . Since we want to

look at A near 3
2 , it is convenient to write A = 3

2 + ε where ε is near zero.
Finding common solutions of f = 0 and g′ = 0 yields a cubic with (x− 1

4 ) as a
factor, and dividing this out we obtain the quadratic

0 = x2 − x(2 + 3ε+ ε2) + (1− ε+ ε2

4 ).

The discriminant of this quadratic is D = ε(ε3 +6ε2 +4ε+16), so the quadratic has
a double root when ε = 0 (as expected) but simple roots for values of ε near but
not equal to zero. So for these values of ε we get two points of intersection of V (f)
and V (g′) near P , and it is easy to see that they converge to P as ε approaches
zero.

Let us now see what our provisional definition from (1.1) gives. The quotient
ring in our definition is

C[x, y]/
(
y2 − x3 − 3x, y − 3

2x−
1
2

) ∼= C[x]/
(
( 3
2x+ 1

2 )2 − x3 − 3x
)

∼= C[x]/
(
(x− 1)2(x− 1

4 )
)
.

Here we are killing a cubic in C[x], and so we get a three-dimensional vector space
with basis 1, x, x2. Note that this is, in some sense, seeing all of the information at
P and Q together—this demonstrates the importance of localization. Localization
at P corresponds to localizing at (x − 1), which turns (x − 1

4 ) into a unit. So our
localized ring is

C[x](x−1)/((x− 1)2) ∼= C[t](t)/(t2)
(where we set t = x − 1), and this has dimension 2 over C. So i(Z,W ;P ) = 2, as
desired.

If we localize at (x− 1
4 ) then the (x− 1)2 factor becomes a unit, and our local-

ized ring becomes C[x](x− 1
4 )/(x − 1

4 ) ∼= C[t](t)/(t), which is just a copy of C. So
i(Z,W ;Q) = 1.

Note that both Example 1.2 and Example 1.3 involve a key step where the
variable y is eliminated, thus bringing the problem down to the multiplicity of a
root in a one-variable polynomial. One cannot always do such an elimination—in
fact it happens only rarely. So these examples are very special, although they still
serve to give some sense of how things are working.

It turns out that our provisional definition from (1.1) is enough to prove Bezout’s
Theorem for curves in CP 2. But in some sense one is getting lucky here, and it
works only because the dimensions of the varieties are so small. When one starts
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to look at higher-dimensional varieties it doesn’t take long to find examples where
the definition clearly gives the wrong answers:

Example 1.4. Let C4 have coordinates u, v, w, y, and let X,Y ⊆ C4 be given by

X = V (u3 − v2, u2y − vw, uw − vy, w2 − uy2), Y = V (u, y).

Note that X is somewhat complicated, but Y is just a plane. If a point (u, v, w, y)
is on X ∩ Y then u = y = 0 and therefore the equations for X say that

v2 = 0, vw = 0, and w2 = 0

as well. So X ∩Y consists of the unique point (0, 0, 0, 0). Our provisional definition
of intersection multiplicities would have us look at the ring

C[u, v, w, y]/(u, y, u3 − v2, u2y − vw, uw − vy, w2 − uy2) ∼= C[v, w]/(v2, vw,w2)

which is three-dimensional over C. If this were the correct answer, then perturbing
the plane Y should generically give three points of intersection. However, this is
not the case. If we perturb Y to V (x − ε, y − δ) then the intersection with X is
given by the equations

u = ε, y = δ, ε3 = v2, ε2δ = vw, εw = vδ, w2 = εδ2.

As long as ε 6= 0 we have two solutions for v, and then the fourth equation deter-
mines w completely. So we only have two points on the intersection, after small
perturbations. This is, in fact, the correct answer: i(Z,W ;P ) = 2, and our provi-
sional definition is a failure.

Serre discovered the correct formula for the interesection multiplicity [S]. His
formula is as follows. If we set R = C[x1, . . . , xn] then

i(Z,W ;P ) =
∞∑
j=0

(−1)j dimC

[
TorRj

(
R/(f1, . . . , fk), R/(g1, . . . , gl)

)]
P
.(1.5)

There are several things to say here. First, although the sum is written to infinity
it turns out that the Tor modules vanish for all j > n (we will prove this later). So
it is, in fact, a finite sum. Secondly, the condition that P be an isolated point of
intersection forces the C-dimension of all the Tor’s to be finite. So the formula does
make sense. As to why this gives the “correct” numbers, it will take us a while to
explain this. But note that the j = 0 term is the dimension of

Tor0(R/(f1, . . . , fk), R/(g1, . . . , gl)) ∼= R/(f1, . . . , fk)⊗R R/(g1, . . . , gl)
∼= R/(f1, . . . , fk, g1, . . . , gl).

So our provisional definition from (1.1) is just the j = 0 term. One should think
of the higher terms as “corrections” to this initial term; in a certain sense these
corrections get smaller as j increases (this is not obvious).

An algebraist who looks at (1.5) will immediately notice some possible gener-
alizations. The R/(f) and R/(g) terms can be replaced by any finitely-generated
module M and N , as long as the Torj(M,N) modules are finite-dimensional over
C. For this it turns out to be enough that M ⊗R N be finite-dimensional over
C. Also, we can replace C[x1, . . . , xn] with any ring having the property that all
finitely-generated modules have finite projective dimension—necessary so that the
alternating sum of (1.5) is finite. Such rings are called regular. Also, instead of
localizing the Tor-modules we can just localize the ring R at the very beginning.
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And finally, in this generality we need to replace dimC with a similar invariant: the
notion of length (meaning the length of a composition series for our module). This
leads to the following setup.

Let R be a regular, local ring (all rings are assumed to be commutative and
Noetherian unless otherwise noted). Let M and N be finitely-generated modules
over R such that M ⊗R N has finite length. This implies that all the Torj(M,N)
modules also have finite length. Define

e(M,N) =
∞∑
j=0

(−1)j`
(
Torj(M,N)

)
(1.6)

and call this the intersection multiplicty of the modules M and N .
Based on geometric intuition, Serre made the following conjectures about the

above situation:
(1) dimM + dimN ≤ dimR always
(2) e(M,N) ≥ 0 always
(3) If dimM + dimN < dimR then e(M,N) = 0.
(4) If dimM + dimN = dimR then e(M,N) > 0.
Serre proved all of these in the case that R contains a field, the so-called “geometric
case” (some non-geometric examples for R include power series rings over the p-
adic integers Zp). Serre also proved (1) in general. Conjecture (3) was proven in
the mid 80s by Roberts and Gillet-Soule (independently), using some sophisticated
topological ideas that were imported into algebra. Conjecture (2) was proven by
Gabber in the mid 90s, using some high-tech algebraic geometry. Conjecture (4) is
still open.

1.7. Where we are headed. Our main goal in these notes is to describe a par-
ticular subset of the mathematics surrounding Serre’s definition of multiplicity. It
is possible to explore this subject purely in algebraic terms, and that is basically
what Serre did in his book [S]. In contrast, our main focus will be topological.
Although both commutative algebra and algebraic geometry play a large role in
our story, we will always adopt a perspective that concentrates on their relations
to topology—and in particular, to K-theory.

Here is a brief summary of some of the main points that we will encounter:
(1) There are certain generalized cohomology theories—called complex-oriented—

which have a close connection to geometry and intersection theory. Any such
cohomology can be used to detect intersection multiplicities.

(2) Topological K-theory is a complex-oriented cohomology theory. Elements of
the groups K∗(X) are specified by vector bundles on X, or more generally by
bounded chain complexes of vector bundles on X. Fundamental classes for
complex submanifolds of X are given by resolutions.

(3) When X is an algebraic variety there is another version of K-theory called
algebraic K-theory , which we might denote K∗

alg(X). The analogs of vector
bundles are locally free coherent sheaves, or just finitely-generated projective
modules when X is affine. Thus, in the affine case elements of K∗

alg(X) can be
specified by bounded chain complexes of finitely-generated projective modules.
This is the main connection between homological algebra and K-theory.
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(4) Serre’s definition of intersection multiplicities essentially comes from the inter-
section product in K-homology, which is the cup product in K-cohomology
translated to homology via Poincaré Duality.

We will spend a large chunk of these notes filling in the details behind (1)–(4).
But whereas we take our motivation from Serre’s definition of multiplicity, that is
not the only subject we cover in these notes. Once we have the K-theory apparatus
up and running, there are lots of neat things to do with it. We have attempted, for
the most part, to chose topics that accentuate the relationship between K-theory
and geometry in the same way that Serre’s definition of multiplicity does.
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Part 1. K-theory in algebra

In this first part of the notes we investigate the K-theory of modules over a
ring R. There are two main varieties: one can study the K-theory of all finitely-
generated modules, leading to the group G(R), or one can study the K-theory of
finitely-generated projective modules—leading to the group K(R). In the following
sections we get a taste for these groups and the relations between them.

For the duration of these notes, all rings are commutative with identity unless
otherwise stated. Some of the theory we develop works in greater generality, but
we will stay focused on the commutative case.

2. A first look at K-theory

Understanding Serre’s alternating-sum-of-Tor’s formula for intersection multi-
plicities will be a gradual process. In particular, there is quite a bit of nontrivial
commutative algebra that is needed for the story; we will need to develop this as
we go along. We will continue to sweep some of these details under the rug for the
moment, but let us at least get a couple of things out in the open. To begin with,
we will need the following important result:

Theorem 2.1 (Hilbert Syzygy Theorem). Let k be a field and let R be k[x1, . . . , xn]
(or any localization of this ring). Then every finitely-generated R-module has a free
resolution of length at most n.

We will prove this theorem in Section 17 below. We mention it here because it
implies that Torj(M,N) = 0 for j > n. Therefore the sum in Serre’s formula is
actually finite. More generally, a ring is called regular if every finitely-generated
module has a finite, projective resolution. It is a theorem that localizations of regu-
lar rings are again regular. Hilbert’s Syzygy Theorem simply says that polynomial
rings over a field are regular. We will find that regular rings are the ‘right’ context
in which to explore Serre’s formula.

We will also need the following simple observation. If P is a prime ideal in any
ring R, then

[TorR(M,N)]P = TorRp(MP , NP ).
To see this, let Q• → M → 0 be an R-free resolution of M . Since localization is
exact, (Q•)P is an RP -free resolution of MP . Hence

TorRP
j (MP , NP ) = Hj

(
(Q•)P ⊗RP

NP
)

= Hj

(
Q• ⊗R RP ⊗RP

N ⊗R RP
)

= Hj

(
Q• ⊗R N ⊗RP

)
= Hj

(
Q• ⊗R N

)
⊗RP

= TorRj (M,N)⊗R RP .
The importance of this observation is that it tells us that the Tor’s in Serre’s formula
may all be taken over the ring RP . So we might as well work over this ring from
beginning to end. Moreover, without loss of generality we might as well assume
that our point of intersection is the origin, which makes the corresponding maximal
ideal (x1, . . . , xn).

Let R = C[x1, . . . , xn](x1,...,xn), and let M and N be finitely-generated modules
over R. Assume that dimC(M ⊗R N) < ∞. It turns out that this implies that
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dimC Torj(M,N) <∞ for every j, so that we can define

e(M,N) =
∞∑
j=0

(−1)j dimC Torj(M,N).

The above definition generalizes the notion of intersection multiplicity from pairs
(R/I,R/J) to pairs of modules (M,N). The reason for making this generalization
might not be clear at first, but the following nice property provides some justifica-
tion:

Lemma 2.2. Suppose that 0→ M ′ → M → M ′′ → 0 is a short exact sequence of
R-modules. Then e(M,N) = e(M ′, N)+e(M ′′, N), assuming all three multiplicities
are defined (that is, under the assumption that dimC(M ⊗ N) < ∞ and similarly
with M replaced by M ′ and M ′′).

Proof. Consider the long exact sequence

· · · → Torj(M ′, N)→ Torj(M,N)→ Torj(M ′′, N)→ · · ·
This sequence terminates after a finite number of steps, by Hilbert’s Syzygy Theo-
rem. By exactness, the alternating sum of the dimensions is zero. This is precisely
the desired formula. �

Lemma 2.2 is referred to as the additivity of intersection multiplicities. Of course
the additivity holds equally well in the second variable, by the same argument.

While exploring ideas in this general area, Grothendieck hit upon the idea of in-
venting a group that captures all the additive invariants of modules. Any invariant
such as e(−, N) would then factor through this group. Here is the definition:

Definition 2.3. Let R be any ring. Let F(R) be the free abelian group with one gen-
erator [M ] for every isomorphism class of finitely-generated R-module M . Let G(R)
be the quotient of F(R) by the subgroup generated by all elements [M ]− [M ′]− [M ′′]
for every short exact sequence 0 → M ′ → M → M ′′ → 0 of finitely-generated R-
modules. The group G(R) is called the Grothendieck group of finitely-generated
R-modules.

Remark 2.4. It is important in the definition of G(R) that one use only finitely-
generated R-modules, otherwise the group would be trivial. To see this, if M is any
module then let M∞ = M ⊕M ⊕M · · · . Note that there is a short exact sequence

0→M ↪→M∞ →M∞ → 0

where M is included as the first summand. If we had defined G(R) without the
finite-generation condition, we would have [M∞] = [M ] + [M∞] and therefore
[M ] = 0. Since this holds for every module M , the group G(R) would be zero.
This is called the “Eilenberg Swindle”.

The following lemma records some useful ways of obtaining relations in G(R):

Lemma 2.5. Let R be any ring.
(a) If 0 → Cn → Cn−1 → · · · → C1 → C0 → 0 is an exact sequence of finitely-

generated R-modules, then
∑

(−1)i[Ci] = 0 in G(R).
(b) If M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ Mn+1 = 0 is a filtration of M by

finitely-generated modules, then [M ] =
∑
i[Mi/Mi+1] in G(R).
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(c) Assume that R is Noetherian, and let 0→ Cn → Cn−1 → · · · → C1 → C0 → 0
be any chain complex of R-modules. Then

∑
i(−1)i[Ci] =

∑
i(−1)i[Hi(C)] in

G(R).

Proof. We prove (a) and (c) at the same time. If C• is a chain complex, note that
one has the short exact sequences 0 → Zi → Ci → Bi−1 → 0 where Zi and Bi
are the cycles and boundaries in each dimension. One also has 0 → Bi ↪→ Zi →
Hi(C) → 0. Assuming everything in sight is finitely-generated, one gets a series
of relations in G(R) that immediately yield

∑
(−1)i[Ci] =

∑
(−1)i[Hi(C)]. So if

R is Noetherian we are done, because everything indeed is finitely-generated; this
proves (c). In the general case where R is not necessarily Noetherian, we know that
each Bi is finitely-generated because it is the image of Ci+1. But if C• is exact
then Bi = Zi and so the Zi’s are also finitely-generated. We have the relations
[Ci] = [Zi]+[Bi−1] = [Zi]+[Zi−1], and from this it is evident that

∑
(−1)i[Ci] = 0.

This proves (a).
The proof of (b) is similarly easy; one considers the evident exact sequences

0→Mi+1 →Mi →Mi/Mi+1 → 0 and the resulting relations in G(R). �

Here are a series of examples:
(1) Suppose R = F , a field. Clearly G(F ) is generated by [F ], since every finitely-

generated F -module has the form Fn. If we observe the existence of the group
homomorphism dim: G(F ) → Z, which is clearly surjective because it sends
[F ] to 1, then it follows that G(F ) ∼= Z.

(2) More generally, suppose that R is a domain. The rank of an R-module M is
defined to be the dimension of M ⊗RQF (R) over QF (R), where QF (R) is the
quotient field. The rank clearly gives a homomorphism G(R) → Z, which is
surjective because [R] 7→ 1. So G(R) has Z as a direct summand.

(3) Next consider R = Z. Then G(Z) is generated by the classes [Z] and [Z/n]
for n > 1, by the classification of finitely-generated abelian groups. The short
exact sequence 0 → Z n−→ Z −→ Z/n → 0 shows that [Z/n] = 0 for all n,
hence G(Z) is cyclic. Using (b), it follows that G(Z) = Z. This computation
works just as well for any PID.

(4) So far we have only seen cases where G(R) ∼= Z. For a case where this is not
true, try R = F × F where F is a field. You should find that G(R) ∼= Z2 here.

(5) Let G be a finite group, and let R = C[G] be the group algebra. So R-modules
are just representations of G on complex vector spaces. The basic theory of such
finite-dimensional representations says that each is a direct sum of irreducibles,
in an essentially unique way. Moreover, each short exact sequence is split. A
little thought shows that this is saying that G(R) is a free abelian group with
basis consisting of the isomorphism classes of irreducible representations.

(6) So far all the examples we have computed have G(R) equal to a free abelian
group. This is not always the case, although I don’t know an example where
it is really easy to see this. For a not-so-simple example, let R be the ring of
integers in a number field. It turns out that G(R) ∼= Z ⊕ Cl(R), where Cl(R)
is the ideal class group of R. This class group contains some sophisticated
number-theoretic information about R. It is known to always be torsion, and
it is usually nontrivial. We will work out a simple example when we have more
tools under out belt: see Example 4.2.
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(7) As another simple example, we look at R = F [t]/(t2) where F is a field. For any
module M over R we have the filtration M ⊇ tM , and so [M ] = [M/tM ]+[tM ].
But both M/tM and tM are killed by t, hence are direct sums of copies of F
(where t acts as zero). This shows that G(R) is generated by [F ]. We also have
the function dimF (−) : G(R) → Z. Since this function sends [F ] to 1, it must
be an isomorphism.

(8) The final example we consider here is a variation of the previous one. Let us
look at R = Z/p2. The R-modules are simply abelian groups killed by p2.
Given any such module A one can consider the sequence 0 → pA ↪→ A →
A/pA → 0, and observe that the first and third terms are Z/p-vector spaces.
So [Z/p] generates G(R). We claim that G(R) ∼= Z, and as in the previous
example the easiest way to see this is to write down an additive invariant of
R-modules taking its values in Z. All finitely-generated R-modules have a finite
composition series, and so we can take the Jordan-Hölder length; this is the
same as `(A) = dimZ/pA/pA + dimZ/p pA. With some trouble one can check
that this is indeed an additive invariant (or refer to the Jordan-Hölder theorem),
and of course `(Z/p) = 1. This completes the calculation.

Exercise 2.6. Prove that G(R) ∼= Z for R = F [t]/(tn) or R = Z/pn.

The above examples help establish some basic intuition. In general, though, it
is very hard to compute G(R).

We can adapt our definition of intersection multiplicity of two modules to define
a product on G(R), at least when R is regular. For finitely-generated modules M
and N , define

[M ]� [N ] =
∑
j

(−1)j [Torj(M,N)].

The long exact sequence for Tor shows that this definition is additive in the two
variables, and hence passes to a pairing G(R)⊗G(R)→ G(R). It is not at all clear
that this is associative, although we will prove this shortly.

The above product on G(R) is certainly not the first thing one would think of.
It is more natural to try to define a product by having [M ] · [N ] = [M⊗RN ], but of
course this is not additive in the two variables because of the failure of the tensor
product to be exact. The higher Tor’s are correcting for this. However, we can
make this naive definition work if we restrict to a certain class of modules. To that
end, let us introduce the following definition:

Definition 2.7. Let R be any ring. Let FK(R) be the free abelian group with
one generator [P ] for every isomorphism class of finitely-generated, projective R-
module M . Let K(R) be the quotient of FK(R) by the subgroup generated by all
elements [P ]− [P ′]− [P ′′] for every short exact sequence 0→ P ′ → P → P ′′ → 0 of
finitely-generated projectives. The group K(R) is called the Grothendieck group
of finitely-generated projective modules.

Every short exact sequence of projectives is actually split, so we could also have
defined K(R) by imposing the relations [P ⊕Q] = [P ] + [Q] for every two finitely-
generated projectives P and Q. This makes it a little easier to understand when
two modules represent the same class in K(R):
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Proposition 2.8. Let P and Q be finitely-generated projective R-modules. Then
[P ] = [Q] in K(R) if and only if there exists a finitely-generated projective module
W such that P ⊕W ∼= Q⊕W . In fact, the same remains true if we require W to
be free instead of projective.

Proof. The ‘if’ part of the proposition is trivial; we concentrate on the ‘only if’
part. Let Rel ⊆ F(R) be the subgroup generated by all elements [J ] − [J ′] − [J ′′]
for short exact sequences 0 → J ′ → J → J ′′ → 0. If [P ] − [Q] ∈ Rel then there
exists two collections of such sequences 0 → P ′i → Pi → P ′′i → 0, 1 ≤ i ≤ k1, and
0→ Q′i → Qi → Q′′i → 0, 1 ≤ i ≤ k2, such that

[P ]− [Q] =
k1∑
i=1

(
[Pi]− [P ′i ]− [P ′′i ]

)
+

k2∑
i=1

(
[Q′i] + [Q′′i ]− [Qi]

)
in F(R). Rearranging, this gives

[P ] +
k1∑
i=1

(
[P ′i ] + [P ′′i ]

)
+

k2∑
i=1

[Qi] = [Q] +
k1∑
i=1

[Pi] +
k2∑
i=1

(
[Q′i] + [Q′′i ]

)
.

The only way such sums of basis elements can give the same element of F(R) is if
the collection of summands on the two sides are the same up to permutation. But
in that case one can write

P ⊕
k1⊕
i=1

(
P ′i ⊕ P ′′i

)
⊕

k2⊕
i=1

Qi ∼= Q⊕
k1⊕
i=1

Pi ⊕
k2⊕
i=1

(
Q′i ⊕Q′′i

)
.

But note that Pi ∼= P ′i ⊕ P ′′i and similarly for Qi. So if we let W be the module⊕k1
i=1

(
P ′i ⊕ P ′′i )⊕

⊕k2
i=1Qi then we have P ⊕W ∼= Q⊕W .

For the last statement in the proposition, just observe that since W is projective
it is a direct summand of a free module. That is, there exists a module W ′ such that
W⊕W ′ is finitely-genereated and free. Certainly P⊕(W⊕W ′) ∼= Q⊕(W⊕W ′). �

Since projective modules are flat, the product [P ] · [Q] = [P ⊗RQ] is additive and
so extends to a product K(R)⊗K(R)→ K(R). Note that this product is obviously
associative, and so makes K(R) into a ring. This is true without any assumptions
on R whatsoever (except our standing assumption that R be commutative).

Remark 2.9. Given the motivation of having the tensor product give a ring struc-
ture, one might wonder why we used projective modules to define K(R) rather than
flat modules. We could have done so, but for finitely-generated modules over com-
mutative, Noetherian rings, being flat and projective are equivalent notions—see
[E, Corollary 6.6]. For various reasons it is more common to make the definition
using the projective hypothesis.

There is an evident map α : K(R) → G(R) which sends [P ] to [P ] (note that
these two symbols, while they look the same, denote elements of different groups).
This brings us to our first important theorem:

Theorem 2.10. If R is regular, then α : K(R)→ G(R) is an isomorphism.

Proof. Surjectivity is easy to see: if M is a finitely-generated module, choose a
finite, projective resolution P• → M → 0. Then

∑
j(−1)j [Pj ] = [M ] in G(R), and

this clearly proves that [M ] is in the image of α.
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Proving injectivity is slightly harder, and it will be most convenient just to
define an inverse for α. The above paragraph gives us the definition: for a finitely-
generated R-module M , define

β([M ]) =
∑
j

(−1)j [Pj ]

where P• →M → 0 is some finite, projective resolution. We need to show that this
is independent of the choice of P , and that it is additive: these facts will show that
β defines a map G(R) → K(R). It is then obvious that this is a two-sided inverse
to α.

Suppose Q• → M → 0 is another finite, projective resolution of M . Use the
Comparison Theorem of homological algebra to produce a map of chain complexes

· · · // P1
//

f1
��

P0
//

f0
��

M //

id

��

0

· · · // Q1
// Q0

// M // 0

Let T• be the mapping cone of f : P• → Q•. Recall this means that Tj = Qj⊕Pj−1,
with the differential defined by

dT (a, b) =
(
dQ(a) + (−1)|b|f(b), dP (b)

)
.

There is a short exact sequence of chain complexes

0→ Q ↪→ T → ΣP → 0

where ΣP denotes a copy of P in which everything has been shifted up a dimension
(so that (ΣP )n = Pn−1). The long exact sequence on homology groups shows
readily that T is exact, hence we have

∑
j(−1)j [Tj ] = 0 in K(R). Since [Tj ] =

[Qj ] + [Pj−1] in K(R) this gives that
∑
j(−1)j [Pj ] =

∑
j(−1)j [Qj ]. Hence our

definition of β does not depend on the choice of resolution.
A similar argument can be used to show additivity. Suppose that 0 → M ′ →

M → M ′′ → 0 is a short exact sequence, and let P• → M ′ and Q• → M be finite,
projective resolutions. Lift the map M ′ → M to a map of complexes f : P• → Q•,
and let T• be the mapping cone of f . The long exact sequence for homology readily
shows that T is a projective resolution of M ′′. So

β(M ′′) =
∑

(−1)j [Tj ] =
∑

(−1)j [Qj ]−
∑

(−1)j [Pj ] = β(M)− β(M ′)

and this proves additivity. This completes our proof. �

Using the isomorphism K(R) → G(R) (when R is regular), we can transplant
the ring structure on K(R) to the group G(R). We claim that this gives the product
� defined via Tor’s. In the following result, β : G(R) → K(R) is the inverse to α
defined in the proof of Theorem 2.10.

Proposition 2.11. Assume that R is regular. Then for any two finitely-generated
modules M and N , we have

α
[
β([M ])⊗ β([N ])

]
=
∑

(−1)j [Torj(M,N)] = [M ]� [N ].
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Proof. Let P• → M and Q• → N be finite, projective resolutions. Fix j, and
consider the complex P• ⊗Qj . This is a resolution of M ⊗Qj , since Qj is flat. So∑
i(−1)i[Pi ⊗Qj ] = [M ⊗Qj ] in G(R). Using this for each j, we have that

α
[
β([M ])⊗ β([N ])

]
=
∑
i,j

(−1)i+j [Pi ⊗Qj ]

=
∑
j

(−1)j [M ⊗Qj ]

=
∑
j

(−1)j [Hj(M ⊗Q)] using Lemma 2.5(c)

=
∑
j

(−1)j [Torj(M,N)].

�

Corollary 2.12. When R is regular, the product � on G(R) is associative.

Proof. This follows immediately from the fact that the tensor product gives an
associative multiplication on K(R). �

Let us review the above situation. For any ring R, we have the groupK(R) which
also comes to us with an easily-defined ring structure ⊗. We also have the group
G(R)—but this does not have any evident ring structure. When R is regular, there
is an isomorphism K(R)→ G(R) which allows one to transplant the ring structure
from K(R) onto G(R): and this leads us directly to our alternating-sum-of-Tors.

This situation is very reminiscent of something you have seen in a basic algebraic
topology course. When X is a (compact, oriented) manifold, there were early
attempts to put a ring structure on H∗(X) coming from the intersection product.
This is technically very difficult. In modern times one avoids these technicalities
by instead introducing the cohomology groups H∗(X), and here it is easy to define
a ring structure: the cup product. When X is a compact, oriented manifold one
has the Poincaré Duality isomorphism H∗(X)→ H∗(X) given by capping with the
fundamental class, and this lets one transplant the cup product onto H∗(X). This
is the modern approach to intersection theory.

The parallels here are intriguing: K(R) is somehow like H∗(X), and G(R) is
somehow like H∗(X). The regularity condition is like being a manifold. We will
spend the rest of this course exploring these parallels. [The reader might wonder
what happened to the assumptions of compactness and orientability. Neither of
these is really needed for Poincaré Duality, as long as one does things correctly.
For the version of Poincaré Duality for noncompact manifolds one needs to replace
ordinary homology with Borel-Moore homology—this is similar to singular homol-
ogy, but chains are permitted to have infinitely many terms if they stretch out to
infinity. For non-orientable manifolds one needs to use twisted coefficients.]

2.13. Some very basic algebraic geometry. To further develop the analogies
between (K(R), G(R)) and (H∗(X),H∗(X)) we need more of a geometric under-
standing of the former groups. This starts to require some familiarity with the
language of algebraic geometry.

At its most basic level, algebraic geometry attempts to study the geometry of
affine n-space Cn by seeing how it is reflected in the algebra of the ring of polynomial
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functions R = C[x1, . . . , xn]. Hilbert’s Nullstellensatz says that points of Cn are
in bijective correspondence with maximal ideals in R: the bijection sends q =
(q1, . . . , qn) to mq = (x1−q1, . . . , xn−qn). With a little work one can generalize this
bijection. If S ⊆ Cn is any subset, define I(S) = {f ∈ R | f(x) = 0 for all x ∈ S}.
This is an ideal in R, in fact a radical ideal (meaning that if fn ∈ I(S) then
f ∈ I(S)). In the other direction, if I ⊆ R is any ideal then define V (I) = {x ∈
Cn | f(x) = 0 for all f ∈ I}. Notice that V (mq) = {q} and I({q}) = mq.

An algebraic set in Cn is any subset of the form V (I) for some ideal I ⊆ R.
The algebraic sets form the closed sets for a topology on Cn, called the Zariski
topology. One form of the Nullstellensatz says that V and I give a bijection
between algebraic sets and radical ideals in R. Under this bijection the prime
ideals correspond to irreducible algebraic sets—ones that cannot be written as
X ∪ Y where both X and Y are proper closed subsets. Algebraic sets are also
called algebraic subvarieties.

The above discussion is summarized in the following table:

Geometry Algebra
Cn or AnC C[x1, . . . , xn] = R

Points (q1, . . . , qn) Maximal ideals (x1 − q1, . . . , xn − qn)
Algebraic sets Radical ideals

Irreducible algebraic sets Prime ideals

The ring R is best thought of as the set of maps of varieties An → A1, with
pointwise addition and multiplication. If we restrict to some irreducible subvariety
X = V (P ) ⊆ An instead, then the ring of functions X → A1 is R/P . This ring of
functions is commonly called the coordinate ring of X. Much of the dictionary
between An and R discussed above adapts verbatim to give a dictionary between
X and its coordinate ring:

Geometry Algebra
X = V (P ) C[x1, . . . , xn]/P = R/P
Points in X Maximal ideals in R/P

Algebraic subsets V (I) ⊆ X Radical ideals in R/P
Irreducible algebraic sets V (Q) ⊆ X Prime ideals in R/P .

Note that ideals in R/P correspond bijectively to ideals in R containing P , and
likewise for prime (respectively, radical) ideals.

We need one last observation. Passing from An to An+1 corresponds algebraically
to passing from R to R[t]. If X = V (P ) ⊆ An is an irreducible algebraic set, then
X × A1 ⊆ An+1 is V (P [t]) where P [t] ⊆ R[t]. That is, the coordinate ring of X is
R/P and the coordinate ring of X × A1 is R[t]/P [t] = (R/P )[t]. We supplement
our earlier tables with the following line:

Geometry Algebra
X  X × A1 S  S[t]

We have defined G(−) and K(−) as functors taking rings as their inputs, but we
could also think of them as taking varieties (or schemes) as their inputs. We will
write G(R) and G(SpecR) interchangeably, and similarly for theK-groups. It turns
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out that the geometric perspective and notation is very useful—many properties of
these functors take on a familiar “homological” form when written geometrically.
But for the moment we will mostly keep with the algebraic notation, writing G(R)
more often than G(SpecR).

2.14. Further properties of G(R). We return to the study of the groups G(R)
and K(R), for the moment concentrating on the former.

Theorem 2.15. If R is Noetherian, the Grothendieck group G(R) is generated by
the set of elements [R/P ] where P⊆R is prime.

Before proving this result let us comment on the significance. When X is a
topological space, the groups H∗(X) have a geometric presentation in terms of
“cycles” and “homologies”. The cycles are, of course, generators for the group.
The definition of G(R) doesn’t look anything like this, but Theorem 2.15 says that
the group is indeed generated by classes that have the feeling of “algebraic cycles”
on the variety SpecR. One thinks of G(R) as having a generator [R/P ] for every
irreducible subvariety of R, and then there are some relations amongst these that
we don’t yet understand. It is worth pointing out that in H∗(X) the cycles are
strictly separated by dimension—the dimensions i cycles are confined to the single
group Hi(X)—whereas in G(R) the cycles of different dimensions are all inhabiting
the same group. This is one of the main differences between K-theory and singular
homology/cohomology.

To prove Theorem 2.15 we first need a lemma from commutative algebra:

Lemma 2.16. Let R be a Noetherian ring. For any finitely-generated R-module
M , there exists a prime ideal P⊆R and an embedding R/P ↪→ M . Equivalently,
there is some z∈M whose annihilator is prime.

Proof. Pick any nonzero x∈M and consider the family of ideals

Sx = {Ann(rx) | r∈R and rx6=0}.
Since R is Noetherian, Sx has a maximal element Ann(rx). We claim that Ann(rx)
is prime, in which case taking z = rx completes the proof. To justify the claim,
suppose that ab ∈ Ann(rx) and b /∈ Ann(rx). Then abrx = 0 but brx 6= 0. So
a∈Ann(brx). But Ann(brx)⊇Ann(rx), so the maximality of Ann(rx) in Sx implies
that Ann(brx) = Ann(rx). Hence a∈Ann(rx), and this completes the proof that
Ann(rx) is prime. �

Proof of Theorem 2.15. Let M be a finitely-generated R-module. We will use re-
peated applications of the lemma to construct a so-called prime filtration of M .
Pick an embedding R/P0 ↪→ M , and let M0 = R/P0. Next consider M/M0. If
M/M0 = 0, our filtration is complete. If M/M0 6=0, then there exists a prime P1

and an embedding R/P1 ↪→ M/M0. Let π : M → M/M0 denote the projection
and define M1 = π−1(R/P1). Then π : M1 → R/P1 also has kernel M0; that is,
M0⊆M1 and M1/M0

∼=R/P1. Next consider M/M1 and repeat. This process yields
a filtration of M

0 ⊆M0 ⊆M1 ⊆ · · · ⊆M
such that Mi+1/Mi

∼=R/Pi. The filtration must be finite since R is Noetherian.
Therefore [M ] =

∑
[Mi+1/Mi] =

∑
[R/Pi], and we have proven that the set

{[R/P ] |P is prime in R} generates G(R). �
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Remark 2.17. The prime filtrations constructed in the above proof are very useful,
and will appear again in our proofs. For future use we note that if an ideal I⊆R is
such that IM = 0, then I also kills any subquotient of M . Consequently, I will be
contained in any Pi for which R/Pi appears as a subquotient in a prime filtration
of M .

If M is an R-module, write M [t] for the R[t]-module M⊗RR[t]. The functor
M 7→M [t] is exact, because R[t] is flat over R (in fact, it is even free). So we have
an induced map α : G(R)→ G(R[t]) given by [M ] 7→ [M [t]].

Theorem 2.18 (Homotopy invariance). If R is Noetherian, α : G(R) → G(R[t])
is an isomorphism.

We comment on the name “homotopy invariance” for the above result. If X =
SpecR then SpecR[t] = X×A1, so the result says that G(−) gives the same values
on X and X ×A1. This is reminiscent of a functor on topological spaces giving the
same values on X and X × I.

Proof. We will first construct a left inverse β : G(R[t])→ G(R). A naive possibility
for the map β is J 7→ J/tJ = J⊗R[t]R[t]/(t), but this doesn’t preserve short exact
sequences in general. So we correct this using Tor, and instead define

β([J ]) = [TorR[t]
0 (J,R[t]/(t))]− [TorR[t]

1 (J,R[t]/(t))].

Before checking that this is well-defined, let us analyze the two Tor-groups. Recall
that we can calculate Tor by taking an R[t]-resolution of either variable. In this
case, it is easier to resolve R[t]/(t):

0→ R[t] t→ R[t]→ R[t]/(t)→ 0.

Tensoring with J yields 0 → J
t→ J → 0, so that TorR[t]

0 (J,R[t]/(t)) = J/tJ and
TorR[t]

1 (J,R[t]/(t)) = AnnJ(t). Notice also that TorR[t]
i (J,R[t]/(t)) = 0 for i > 1.

We have

β([J ]) = [J/tJ ]− [AnnJ(t)] =
∞∑
i=0

(−1)i[TorR[t]
i (J,R[t]/(t))].

The fact that β is a well-defined group homomorphism now follows by the usual
argument: a short exact sequence of modules induces a long exact sequence of Tor
groups, and the alternating sum of these is zero in G(R). It is immediate that βα =
Id: this follows from the fact that for any R-module M one has M [t]/tM [t] ∼= M
and AnnM [t](t) = 0. Consequently, α is injective.

The difficult part of the proof is showing that α is surjective. We will use the
fact, from Theorem 2.15, that G(R[t]) is generated by elements of the form [R[t]/Q]
for primes Q⊆R[t]. It suffices to show that each [R[t]/Q] is in the image of α. Let
us write S for R[t], and define

T = {Q∩R |Q ⊆ S is prime and [S/Q]/∈ im(α)}.
Our goal is to show that T must be empty.

If T 6=∅ then since S is Noetherian it has a maximal element P = Q∩R for some
prime Q⊆S. Using this P and this Q, we will construct an S-module W which
forces [S/Q] to lie in im(α), thus obtaining a contradiction.

First, some observations:
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(1) If I ⊆ R is any ideal then the expansion IS equals I[t], the set of polyno-
mials with coefficients in I. One has S/IS ∼= (R/I)[t].

(2) Any S-module M which is killed by P + u for some u ∈ R− P must lie in
im(α). This is because for each prime Qi appearing in a prime filtration of
M , we have Qi⊇AnnR(M)⊇P + u. In particular, none of these Qi can be
in T since P was chosen to be maximal. So [S/Qi]∈ im(α) for all these Qi,
and hence [M ]∈ im(α) as well.

(3) For any prime J⊆R we have [S/JS]∈ im(α), since S/JS = (R/J)[t] =
α([R/J ]).

(4) If f∈S − JS where J⊆R is prime, then [S/(JS + f)] = 0 in G(S) since
S/(JS + f) fits into the short exact sequence

0 −→ S/JS
f−→ S/JS −→ S/(JS + f) −→ 0.

Note that S/JS ∼= (R/J)[t], which is a domain—and this is why multipli-
cation by f is injective.

Consider the maps

S � S/PS ↪→ (R− P )−1(S/PS).

Observe that (R − P )−1(S/PS) = (RP /PRP )[t]. But RP /PRP is a field, so the
ring (R−P )−1(S/PS) is a PID. Therefore the image of Q in (R−P )−1(S/P [t]) is
generated by a single element. Let f ∈ Q be some lifting of this generator to S.

Consider the S-module W = Q/(PS+f). Since Q and f have the same image in
the ring (R−P )−1(S/PS), we have (R−P )−1W = 0. Now, W is finitely generated
(as an S-module), so there exists some u ∈ R−P such that uW = 0. Since PW = 0
by the definition of W , we have that W is killed by P+u. By observation (2) above,
[W ] ∈ im(α).

At the same time, W fits into the exact sequence 0 → W → S/(PS + f) →
S/Q → 0, and we know [S/(PS + f)] = 0 in G(S) by observation (4). But this
implies that [W ] and [S/Q] are additive inverses, and hence [S/Q] lies in im(α),
contradicting our choice of Q. �

Here is an interesting consequence of homotopy invariance:

Corollary 2.19. Let F be a field. Then K(F [x1, . . . , xn])∼=Z.

Proof. We have K(F [x1, . . . , xn])∼=G(F [x1 . . . , xn]) by Theorem 2.10, since the
ring F [x1, . . . , xn] is regular by Hilbert’s Syzyzy Theorem. We also have
G(F [x1, . . . , xn])∼=G(F ) by homotopy invariance, and G(F )∼=Z via the dimension
map. �

In the next section we will see what Corollary 2.19 says about projectives over
F [x1, . . . , xn]. See Proposition 3.1.

3. A closer look at projectives

Recall that a module is projective if and only if it is a direct summand of a
free module. So free modules are projective, and for almost all applications in
homological algebra one can get by with using only free modules. Consequently,
it is common not to know many examples of non-free projectives. We begin this
section by remedying this.
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Before considering our examples we need one small tool. Let R be a commutative
ring, P a projective over R, and m ⊆ R a maximal ideal. Define rankm(P ) =
dimR/mR(P/mP ). Note that rankm(−) is additive.
(1) Let R = Z/6. Since Z/2 ⊕ Z/3 ∼= Z/6, both Z/2 and Z/3 are projective

R-modules—and they are clearly not free.
(2) Let R = Z[

√
−5] and I = (2, 1 +

√
−5). For convenience let us write µ =

√
−5.

Let K be the kernel of the map R2 → I sending e1 to 2 and e2 to 1+µ. A little
work shows that K is spanned by (1 + µ,−2) and (−3, 1 − µ). If one defines
χ : R2 → K by

χ(e1) = (3,−1 + µ), χ(e2) = (1 + µ,−2),

it is readily verified that χ is a splitting for the sequence 0→ K → R2 → I → 0.
So K ⊕ I ∼= R2, and hence both K and I are projective.

Note that π2 : R2 → R restricts to a map K → I, which is clearly a sur-
jection. It is easy to check that this is actually an isomorphism. So for
every maximal ideal m ⊆ R we have rankm(K) = rankm(I), and of course
rankm(K) + rankm(I) = 2. So rankm(K) = rankm(I) = 1.

If I were free, the above rank calculation would show that I ∼= R. However,
the ideal I is not principal so this would be a contradiction. So I is a non-free
projective.

This example generalizes: if D is a Dedekind domain (such as the ring of
integers in an algebraic number field) then every ideal I ⊆ D is projective.
Non-principal ideals are never free.

(3) Let R = R[x, y, z]/(x2 + y2 + z2 − 1). If C(S2) denotes the ring of continuous
functions S2 → R, note that we may regard R as sitting inside of C(S2): it is
the subring of polynomial functions on the 2-sphere. The connections with the
topology of the 2-sphere will be important below.

Let π : R3 → R be the map π(f, g, h) = xf + yg + zh. That is, π is left-
multiplication by the matrix

[
x y z

]
. Let T be the kernel of π:

0→ T ↪→ R3 π−→ R→ 0.

The map π is split via χ : R → R3 sending 1 7→ (x, y, z). We conclude that
T ⊕R ∼= R3, so T is projective.

We claim that T is not free. Suppose, towards a contradiction, that T is
free. For any maximal ideal m ⊆ R we have

T/mT ⊕R/m ∼= (R/m)3

and therefore T/mT ∼= (R/m)2 by linear algebra. So T must be isomorphic
to the free module R2. Choose an isomorphism R2 → T , let e1 and e2 be
the standard basis for R2, and let the image of e1 under our isomorphism be
(f, g, h). So f, g, and h are polynomial functions on S2 and p1

p2

p3

 ·
 f(p)
g(p)
h(p)

 = 0

for all p = (p1, p2, p3) ∈ S2. So p 7→ (f(p), g(p), h(p)) is a tangent vector field
on S2. By the Hairy Ball Theorem we can find a point q = (q1, q2, q3) ∈ S2

such that f(q) = g(q) = h(q) = 0. Let m = (x − q1, y − q2, z − q3) ⊆ R and
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consider the commutative diagram

R2
∼= //

����

T // //

��

R3

����
(R/mR)2 ∼=

// T/mT // // (R/mR)3.

Note that R/mR ∼= R via F 7→ F (q). Start with e1 in the upper left corner
and compute its image in (R/mR)3 ∼= R3 under the two outer ways of tracking
around the diagram. Along the top route e1 maps to (f(q), g(q), h(q)) which
is just (0, 0, 0). On the other hand, along the bottom route e1 first maps to
(1, 0) ∈ R2 and then the bottom composite is an injection—so the image in R3

is nonzero. This is a contradiction, so we conclude that T is not free. (In fact,
we have proven more: we have proven that T does not contain R as a direct
summand).

Note that T is, in some sense, an algebraic analog of the tangent bundle of
S2. These parallels between projective modules and vector bundles are very
important, and we will see much more about them in Section 10.

(4) Let us do one more example where we use topology to produce an example of a
non-free projective. This example is based on the Möbius bundle over S1. Let

S = R[x, y]/(x2 + y2 − 1)

and let R ⊆ S be the span of the even degree monomials. One should regard S
as the ring of polynomial functions on the circle, and R is the ring of polynomial
functions f(x, y) satisfying f(x, y) = f(−x,−y). So R is trying to be the ring
of polynomial functions on RP 1 (which happens to be homeomorphic to S1).

Let P ⊆ S be the R-linear span of the homogeneous polynomials with odd
total degree. Observe that P is a finitely generated R-module and we have
π : R2 � P via π(e1) = x and π(e2) = y. Define χ : P → R2 via

h 7→ χ(h) =
[
xh
yh

]
.

One checks that π ◦ χ = id, so P is projective. We leave it as an exercise for
the reader to show that P is not free.

The topological examples (3) and (4), as well as many similar ones, can be found
in the lovely paper [Sw]. See also Section 10 below.

A projective module P is called stably free if there exists a free module F such
that P ⊕ F is free. The example in (3) gives a projective that is stably-free but
not free. It turns out that K(R) can be used to tell us whether such modules exist
or not. To see this, recall that if m ⊆ R is a maximal ideal then rankm(−) is an
additive function on finitely-generated, projective modules. So it induces a map
rankm(−) : K(R) → Z, which is evidently surjective because rankm(R) = 1. This
shows that K(R) always contains Z as a direct summand.

Define the reduced Grothendieck group of R to be

K̃(R) = K(R)/〈[R]〉.
Here is another way to define this group. Take the set of isomorphism classes
of finitely-generated projectives and impose the equivalence relation P ∼ P ⊕ R
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for every P . Such equivalences classes are called stable projectives. Define a
monoid structure on this set by [P ] + [Q] = [P ⊕ Q], and note that [0] = [R] is
the unit. If P is any projective then there exists a Q such that P ⊕Q is free, and
therefore [P ] + [Q] = 0 in this monoid; hence, we have a group. This is called the
Grothendieck group of stable projectives. One readily checks that this group
is isomorphic to K̃(R), with the equivalence class [P ] corresponding to the element
[P ] ∈ K̃(R) (we apologize for the multiple uses of the notation [P ] here).

Proposition 3.1. Let R be a commutative ring. The following are equivalent:
(1) K(R) ∼= Z
(2) K̃(R) = 0
(3) Every finitely-generated, projective R-module is stably-free.

Proof. Immediate. �

Example 3.2. Recall from Corollary 2.19 that if F is a field then
K(F [x1, . . . , xn]) = Z. Thus, every finitely-generated, projective F [x1, . . . , xn]-
module is stably-free.

In the 1950s, Serre conjectured that every finitely-generated projective over
F [x1, . . . , xn] is actually free. As we will see later (Remark 11.5 below), the motiva-
tion for this conjecture is inspired by topology and the connection between vector
bundles and projective modules. Quillen and Suslin independently proved Serre’s
conjecture in the 1970s.

Example 3.3. Let R = Z[
√
−5] and let I be the ideal (2, 1 +

√
−5). This ideal

is known not to be principal. We saw in example (2) from the beginning of this
section that I is a rank one projective that is not free. Could I be stably free? If it
were, then we would have I ⊕Rk ∼= Rk+1, for some k. Apply the exterior product
Λk+1(−) to deduce that

R ∼= Λk+1(Rk+1) ∼= Λk+1(I ⊕Rk) ∼= Λ1(I)⊗ Λk(Rk) ∼= I ⊗R ∼= I

(in the third isomorphism we have used the formula for the exterior product of
a direct sum, together with the general fact that Λj(P ) = 0 for j > rank(P )).
However, this is a contradiction; we would have I ∼= R only if I were principal.
Hence, I is not stably free and so [I] determines a nonzero class in K̃(R).

Again, this example generalizes to any Dedekind domain D. If I ⊆ D is a non-
principal ideal then I is a rank one projective that is not stably free. So a Dedekind
domain hasK(D) ∼= Z if and only ifD is a PID. As another consequence, we observe
that over any ring a rank one projective P cannot be stably free unless it is actually
free.

4. A brief tour of localization and dévissage

It would be nice if we could compute the K-groups of more rings. For example,
we haven’t even computed K(R) for a simple ring like R = Z[

√
−5]. But so far

we don’t have many techniques to tackle such a computation. An obvious thing to
try to do is to relate the K-groups of R to those of simpler rings made from R,
for example quotient rings R/I and localizations S−1R. We will start to explore
these ideas in the present section. For the moment it will be easier to do this for
G-theory, though, rather than K-theory. Note that R = Z[

√
−5] is a regular ring,
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and so K(R) ∼= G(R); hence, the focus on G-groups still gets us what we want in
this case.

Let R be a commutative ring and let f ∈ R. Consider the maps

G(R/f)
d1 // G(R)

d0 // G(f−1R)

where d1([M ]) = [M ] and d0([W ]) = f−1W . Clearly d0 ◦ d1 = 0. We claim that d0

is also surjective. To see this, let Z be an f−1R-module with generators z1, . . . , zn.
Let W = R〈z1, . . . , zn〉 ⊆ Z be the R-submodule generated by the zi’s. One checks
that f−1W ∼= Z, and so d0 is surjective.

Theorem 4.1. The sequence

G(R/f)
d1 // G(R)

d0 // G(f−1R) // 0

is exact.

We will delay the proof of this theorem for the moment, as it is somewhat
involved. Let us first look at an example.

Example 4.2. Let R = Z[
√
−5] and f = (2). Note that R is not a PID but f−1R

is. Thus G(f−1R) ∼= Z. Now we compute

R/f = Z/2[x]/(x2 + 5) = Z/2[x]/(x2 + 1) = Z/2[x]/((x+ 1)2) ∼= Z/2[t]/(t2).

We calculated in example (7) from Section 2 that G(Z/2[t]/(t2)) ∼= Z and is gener-
ated by the module Z/2 with t acting as zero. Translated into the present situa-
tion, we are saying G(R/f) ∼= Z with the group being generated by R/(2, x+ 1) =
R/(2, 1−

√
−5). Note that (2, 1−

√
−5) = (2, 1 +

√
−5).

We have computed that the exact sequence from Theorem 4.1 has the form

Z
d1 // G(R)

d0 // // Z // 0

where d1(1) = [R/(2, 1 +
√
−5)] and d0([R]) = 1. Let I = (2, 1 +

√
−5) and notice

that G(R) is generated by [R] and [R/I].

Now look at the short exact sequence 0→ K −→ R2 φ−→ I → 0 where φ(e1) = 2,
φ(1 +

√
−5), and K = ker(φ) = {(x, y) | 2x + (1 +

√
−5)y = 0}. In example (2)

from Section 3 we indicated that K ∼= I. So we have [I] + [I] = [R2] in G(R), or
2([R] − [I]) = 0. But [R] − [I] = [R/I], hence 2[R/I] = 0. It follows that G(R) is
either Z or Z ⊕ Z/2, depending on whether the class [R/I] = [R] − [I] is zero or
not.

Now use that R is regular, so that G(R) ∼= K(R). Recall that we saw in Exam-
ple 3.3 that K̃(R) 6= 0, or equivalently K(R) 6= Z. In fact we saw precisely that
[R]− [I] is not zero in K(R). We conclude that G(R) ∼= Z⊕ Z/2, with generators
[R] and [R/I] for each of the two summands.

Remark 4.3. Theorem 4.1 gives another parallel between G(−) and singular
homology. If X = SpecR then A = SpecR/f is a closed subscheme, and
Spec f−1R = X − A is the open complement. So the sequence in Theorem 4.1
can be written as

G(A)→ G(X)→ G(X −A)→ 0.
This is somewhat reminiscent of the long exact sequence in singular homology
· · · → H∗(A) → H∗(X) → H∗(X,A) → · · · but with some important differences.
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One obvious difference is that our sequence does not yet extend to the left to give a
long exact sequence, but that turns out to be just a lack of knowledge on our part:
we will eventually see that there are ‘higher G-groups’ completing the picture. The
other evident difference is the presence of G(X −A) as the ‘third term’ in the long
exact sequence, rather than a relative group G(X,A). There are lots of things to
say about this that are not worth going into at the moment, but perhaps the most
relevant is that H∗(−) is really the wrong analogy to be looking at. If we instead
consider Borel-Moore homology, then there are indeed long exact sequences that
look like · · · → HBM

∗ (A)→ HBM
∗ (X)→ HBM

∗ (X −A)→ · · ·

Remark 4.4. It is important in Theorem 4.1 that we are using G-theory rather
than K-theory. In K-theory we have maps K(R) → K(R/f) and K(R) →
K(f−1R), both given by tensoring, but in neither case do we have an evident
‘third group’ that might form an exact sequence. In essence this is because we need
relative K-groups; we will start to encounter these in the next section.

We will now work towards proving Theorem 4.1. The proof is somewhat involved,
and the result is actually not going to be used much in the rest of the notes. But
the proof is very interesting, as it demonstrates many general issues that arise in
the subject of K-theory. So it is worth spending time on this.

The proof comes in two parts. For the first part, let us introduce the multiplica-
tive system S = {1, f, f2, f3, . . . }. Write

G(M |S−1M = 0)

for the Grothendieck group of all finitely-generated R-modules M such that
S−1M = 0. The notation is slightly slack, but it is very convenient. There are
evident maps

G(M |S−1M = 0)→ G(R)→ G(S−1R)→ 0,
and we will prove that this is exact for any multiplicative system S. This is called
the localization sequence for G-theoery.

The second step is to notice that if M is an R/f -module then as an R-module
it has the property that S−1M = 0. So we have a map

G(R/f)→ G(M |S−1M = 0).(4.5)

If M is an arbitrary finitely-generated R-module, the condition S−1M = 0 just
says that M is killed by a power of f . So we would have a filtration

M ⊇ fM ⊇ f2M ⊇ · · · ⊇ fNM = 0

where the factors are all R/f -modules. This shows that the map in (4.5) is surjec-
tive, and in fact these ideas allow one to define an inverse. The fact that

G(R/f) ∼= G(M |S−1M = 0)

is an example of a general principle known as dévissage. When we come to prove
this in a bit we will develop the generalization and get a better understanding of
what is going on here.

So those are the two pieces for the proof of Theorem 4.1: a general localiza-
tion sequence where the third term is something we had not considered before—in
essence, a relative G-group—and a dévissage theorem identifying that third term
with something more familiar.
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4.6. The localization sequence. To begin with we will need a lemma giving
several facts about the localization functor γ : 〈〈R − Mod〉〉 → 〈〈S−1R − Mod〉〉.
These facts are easy to prove, and it seems like they should be encapsulated in
some kind of general statement about the functor γ—but I don’t know what this
might be.

Lemma 4.7. Let S ⊆ R be a multiplicative system. In all parts of this lemma, the
modules are always assumed to be finitely-generated.
(a) For any S−1R-module W , there exists an R-module A and an isomorphism

S−1A ∼= W .
(b) For any R-modules A1 and A2 and map of S−1R-modules f : S−1A1 → S−1A2,

there exists a map of R-modules g : A1 → A2 and a diagram of S−1R-modules

S−1A1

S−1g // S−1A2

∼=
��

S−1A1

f // S−1A2.

(c) For any short exact sequence of S−1R-modules

0→W1 →W2 →W3 → 0,

there exists a short exact sequence of R-modules

0→ A1 → A2 → A3 → 0

and isomorphisms

0 // S−1A1
//

∼=
��

S−1A2
//

∼=
��

S−1A3
//

∼=
��

0

0 // W1
// W2

// W3
// 0

Proof. Part (a) was proven near the beginning of Section 4. The proofs of the other
parts are reasonably easy exercises in algebra that we leave to the reader. �

Corollary 4.8. The following subgroups of G(R) are all equal:
(1)

〈
[A]− [B]

∣∣S−1A ∼= S−1B
〉

(2)
〈
[A]− [B]

∣∣ there exists a map f : A→ B such that S−1f is an isomorphism
〉

(3)
〈
[J ]
∣∣S−1J = 0

〉
.

Proof. Let S1, S2, and S3 be the subgroups listed in (1)–(3). Clearly S1 ⊇ S2 ⊇ S3.
The opposite subset S1 ⊆ S2 follows directly from Lemma 4.7(b). To prove S2 ⊆ S3,
let f : A→ B be a map of R-modules such that S−1f is an isomorphism. Consider
the short exact sequence

0→ ker f → A→ B → coker f → 0,

and note that our hypothesis implies that S−1(ker f) = 0 = S−1(coker f). But
[A]− [B] = [ker f ]− [coker f ] in G(R), so we have that [A]− [B] ∈ S3. �

Proposition 4.9. Let S ⊆ R be a multiplicative system. The sequence

G(M |S−1M = 0) a−→ G(R) b−→ G(S−1R)→ 0

is exact, where a and b are the evident maps.
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Proof. Part (a) of Lemma 4.7 gives surjectivity. The somewhat tricky thing is
to get the exactness in the middle. Let F(R) denote the free abelian group on
isomorphism classes of finitely-generated R-modules, and letRel(R) ⊆ F(R) denote
the subgroup generated by elements [M ′

i ] + [M ′′
i ] − [Mi] for short exact sequences

0→M ′
i →Mi →M ′′

i → 0. Note that [0] 6= 0 in F(R); we could have imposed this
as an extra condition, but it is slightly more convenient to not do so. Consider the
following diagram

0 // Rel(R) //

π|Rel

��

F(R)

π

��

// G(R)

b

��

// 0

0 // Rel(S−1R) // F(S−1R) // G(S−1R) // 0,

which we wish to regard as a short exact sequence of chain complexes (the columns
become chain complexes by adding zeros above and below). Lemma 4.7(a) gives
surjectivity of π, and Lemma 4.7(b) gives surjectitivity of π|Rel. The long exact
sequence in homology then becomes

0→ ker(π|Rel)→ ker(π)→ ker b→ 0.(4.10)

We next analyze the kernel of π.
Assume that x ∈ ker(π). One can write x in the form

x =
(
[M1] + [M2] + · · ·+ [Mk]

)
−
(
[J1] + · · ·+ [Jl]

)
for some modules M1, . . . ,Mk, J1, . . . , Jl. We then have

0 = π(x) =
(
[S−1M1] + [S−1M2] + · · ·+ [S−1Mk]

)
−
(
[S−1J1] + · · ·+ [S−1Jl]

)
in F(S−1R). How can this happen? It can only be that k = l and that for each
module S−1Mj there is some i for which S−1Mj

∼= S−1Ji. By pairing the terms
up two by two we find that

x ∈
〈
[A]− [B]

∣∣S−1A ∼= S−1B
〉
⊆ F(R).

So kerπ =
〈
[A]−[B]

∣∣S−1A ∼= S−1B
〉
. It then follows from (4.10) and Corollary 4.8

that
ker b = 〈[J ] |S−1J = 0〉 ⊆ G(R).

This is what we wanted to prove. �

Remark 4.11. The above proof represents the first time we have really had to get
our hands dirty with the relations defining G(R).

4.12. Dévissage. Now we move to the second stage of the proof of Theorem 4.1.
We can rephrase what needs to be shown as saying that the map

G(M |M is killed by f)→ G(M |M is killed by a power of f)

is an isomorphism. We have seen a baby version of this argument before, namely
back in Section 2 when we showed that

G(Z/p)→ G(Z/p2) and G(F )→ G(F [t]/(t2))

are both isomorphisms. These are both maps of the form

G(M |M is killed by f)→ G(M |M is killed by f2),
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for the rings R = Z and R = F [t], respectively. Iterating the same idea we used to
prove these—filter by powers of f—allows one to prove the required generalization.
But while we’re at it, let us generalize even further.

Let B be an exact category. I will not say exactly what the definition of such
a thing is, except that B is an additive category with a collection of sequences
M ′ → M → M ′′ called “exact”, and the collection must satisfy a reasonable list
of axioms. Any abelian category with its intrinsic notion of short exact sequence
is an example. The complete definition is in [Q]. We are not giving it here in part
because the reader can manufacture a suitable definition for himself: just figure out
what axioms one needs to make the following proof work.

Theorem 4.13 (Dévissage). Let B be an exact category, and let A ↪→ B be an
exact subcategory such that any object in B has a finite filtration whose factors are
in A. Then G(A)→ G(B) is an isomorphism.

Proof. The inclusion i : A → B induces a map α : G(A) → G(B), and we want to
define an inverse β : G(B)→ G(A). To do so, for M ∈ B choose a filtration

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = 0,

whose quotients Mi/Mi+1 are in A, and define

β([M ]) =
∑

[Mi/Mi+1].

We must check that β well defined, because it seems to depend on the choice
of filtration. There are two things that need to be said. The first and easier
thing is to check that our formula gives the same class in G(A) if we refine the
filtration, meaning that we replace one of the links Mi ⊇Mi+1 with a longer chain
Mi ⊇M1

i ⊇ · · · ⊇Mr
i = Mi+1. This is trivial.

The second thing is to recall something you probably learned in a basic algebra
class, namely the Jordan-Hölder Theorem. This says that given any two filtrations
of M we can refine each one so that the two refinements have the same quotients
up to reindexing. If you accept this, it shows that β([M ]) does not depend on the
choice of filtration. It is a simple exercise to prove that β is additive, which we
leave to the reader.

At this point we have the map β. It is immediate that βα = id and αβ = id. �

Remark 4.14. We will not prove the Jordan-Hölder Theorem, as this is something
that can be found in basic algebra textbooks, but let us at least recall the main
idea for why it is true. Suppose M ⊇ A ⊇ 0 and M ⊇ B ⊇ 0 are two filtrations for
M . Consider the refinement of the first given by

M ⊇ A+B ⊇ A ⊇ A ∩B ⊇ 0,

having quotients M/(A+ B), (A+ B)/A ∼= B/(A ∩ B), A/(A ∩ B) ∼= (A+ B)/A,
and A ∩ B, Interchanging the roles of A and B gives a similar filtration refining
M ⊇ B ⊇ 0, having the same set of filtration quotients.

Once one has the above basic idea, it is not hard to extend to longer filtrations.

Note that it is often true in mathematics that the hard work goes into showing
that something is well-defined, and afterwards the rest is easy. We saw this in the
case of the Dévissage Theorem, where all the hard work went into constructing the
map β.
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5. K-theory of complexes and relative K-theory

Recall that there is always a map K(R) → G(R) sending the K-class of a
projective to the G-class of the same projective. We proved in Theorem 2.10 that
when R is regular this map is an isomorphism, and we did this by constructing
the inverse: it sends a class [M ] to

∑
(−1)i[Pi], where P• → M is any bounded

resolution of M by finitely-generated projectives. If you go back and examine the
proof of that result, you might notice that the alternating sums are largely an
annoyance in the proof—all the key ideas are best expressed without them, and
they are only forced into the proof so that we get actual elements of K(R). If
you think about this enough, it might eventually occur to you to try to make a
definition of K(R) that uses chain complexes instead of modules, thus eliminating
the need for these alternating sums. We will show how to do this in the present
section.

The importance of using chain complexes extends much further that simply
changing language to simplify a proof. We will see that defining K-theory in terms
of complexes allows us to write down natural definitions for relative K-groups as
well.

Throughout this section let R be a fixed commutative ring. We begin by making
the following definition:

Definition 5.1.

Kcplx(R) =
Z〈 [P•]

∣∣P• is a bounded chain complex of f.g. projectives〉
〈 Relation 1, Relation 2 〉

where the relations are
(1) [P•] = [P ′•] if P• and P ′• are chain homotopy equivalent,

(2) [P•] = [P ′•] + [P ′′• ] if there is a short exact sequence 0→ P ′• → P• → P ′′• → 0.

The second relation is the one that by now we would expect in a K-group, but
the first relation is new to us. If one goes back and thinks about the proof of
Theorem 2.10, the need for this first relation quickly becomes clear: it guarantees,
for instance, that two projective resolutions of a module will represent the same
class in the K-group.

Regarding relation (1), let us introduce some common terminology:

Definition 5.2. A map of chain complexes C• → D• is a quasi-isomorphism
if the induced maps Hi(C•) → Hi(D•) are isomorphisms for all i ∈ Z. Two chain
complexes C• and D• are quasi-isomorphic, written C• ' D•, if there is a zig-zag
of quasi-isomorphisms

C•
∼−→ J1

•
∼←− J2

•
∼−→ · · · ∼−→ Jn•

∼←− D•.

The following lemma is basic homological algebra. We omit the proof, but it is
very similar to the proof that two projective resolutions of the same module are
chain homotopy equivalent.

Lemma 5.3. If P and Q are bounded below complexes of projectives, then every
quasi-isomorphism is a chain homotopy equivalence.
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This lemma lets us replace the words “chain homotopy equivalence” with “quasi-
isomorphism” in any statement about bounded, projective complexes. In particular,
we do this in relation (1) from the definition of Kcplx(R). The advantage of doing
this is simply that quasi-isomorphisms are somewhat easier to identify than chain
homotopy equivalences.

Here is our main result concerning the K-theory of complexes:

Proposition 5.4. K(R) ∼= Kcplx(R).

Before giving the proof we record two useful results:

Lemma 5.5. Let P and Q be bounded complexes of finitely-generated projec-
tives. Let ΣP denote the complex obtained by shifting every module up one degree:
(ΣP )n = Pn−1.
(a) [ΣP ] = −[P ] in Kcplx(R).
(b) Let f : P → Q and let Cf denote the mapping cone of f . Then [Cf ] = [Q]− [P ]

in Kcplx(R).

Proof. Recall that there is a short exact sequence of complexes

0→ Q ↪→ Cf → ΣP → 0,

which shows immediately that [Cf ] = [Q]+[ΣP ] inKcplx(R). Let T be the mapping
cone of the identity P → P . Note that T is exact, hence quasi-isomorphic to the
zero complex. So 0 = [T ] = [P ] + [ΣP ], from which we get [ΣP ] = −[P ]. It then
follows that [Cf ] = [Q] + [ΣP ] = [Q]− [P ]. �

Exercise 5.6. Prove that if relation (1) in the definition of Kcplx(R) is replaced
with
(1’) [P•] = 0 for every exact complex P•,
then the resulting quotient group is also equal to Kcplx(R).

We now have enough tools to prove the main result of this section:

Proof of Proposition 5.4. If P is a projective R-module, let P [n] denote the chain
complex that has P in degree n and in all other degrees is equal to 0. There is an
obvious map α : K(R)→ Kcplx(R) defined by

[P ] 7→
[
P [0]

]
.

It is somewhat less obvious, but one can define a map back β : Kcplx(R) → K(R)
by

β
(
[P•]

)
=
∑

(−1)i[Pi].

To see that this is well-defined we need to check that it respects the two defining
relations for Kcplx(R). Relation (2) is obvious, but for the other relation it is
convenient to use Exercise 5.6 to replace (1) with (1’). The fact that β respects
(1’) is immediate, being a consequence of Lemma 2.5(a) (or really, the analog of
this result for K(R)).

It is clear that β◦α = id, so α is injective and β is surjective. To finish the proof,
it is easiest to prove that α is surjective; we will do this in several steps. If P is a
finitely-generated projective then P [0] is obviously in the image of α, and we know
that P [n] = (−1)n[P [0]] by iterated application of Lemma 5.5(a). So P [n] ∈ imα
for all n ∈ Z; said differently, any complex of projectives of length 0 belongs to the
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image of α. We next extend this to all bounded complexes by an induction on the
length.

Let P• be a bounded complex of finitely-generated projectives, bounded between
degrees k and n + k, say. Then Pk[k] is a subcomplex of P•, and the quotient Q•

has length at most n− 1. We have [P•] = [Pk[k]] + [Q•], and both [Pk[k]] and [Q•]
belong to imα by induction. So [P•] ∈ imα, and we are done. �

We will use our identification of Kcplx(R) and K(R) implicitly from now on. For
example, if P is a bounded complex of projectives we will often write [P ] to denote
an element of K(R)—although of course we mean β([P ]).

Exercise 5.7. Assume that R is Noetherian, and let Gfpd(R) denote the
Grothendieck group of finitely-generated modules having finite projective dimen-
sion. Prove that Kcplx(R) ∼= Gfpd(R).

5.8. G-theory and chain complexes. One can, of course, prove an analog of
Proposition 5.4 in which the ‘projective’ hypothesis is left out everywhere. This
would show that G(R) is isomorphic to a Grothendieck group made from bounded
chain complexes of arbitrary finitely-generated modules. What is more interesting,
however, is a variant that again uses chain complexes of projectives. Precisely,
consider chain complexes P• such that
(1) Each Pi is a finitely-generated projective,
(2) P• is bounded-below, in the sense that Pi = 0 for all i� 0.
(3) P• has bounded homology, in the sense that Hi(P ) 6= 0 only for finitely many

values of i.
Start with the free abelian group on isomorphism classes of such complexes, and
define Gcplx(R) to be the quotient by the analogs of relations (1) and (2) in the
definition of Kcplx(R).

Note that one readily obtains maps α : Gcplx(R) → G(R) and β : G(R) →
Gcplx(R) by

α([P•]) =
∑
i

(−1)i[Hi(P )] and β([M ]) = [Q•]

where Q• →M any resolution by finitely-generated projectives.

Proposition 5.9. The maps α and β give inverse isomorphisms Gcplx(R) ∼= G(R).

Proof. It is immediate that αβ = id, so that α is surjective and β is injective. The
proof will be completed by showing that β is surjective. Let P• be a bounded-
below, homologically bounded chain complex of finitely-generated projectives. We
will prove by induction on the number of nonzero homology groups of P• that
[P•] ∈ imβ. The base is trivial, for if all the homology groups are zero then P• ' 0
and so [P•] = 0.

Without loss of generality assume that Pi = 0 for i < 0. Let n be the smallest
integer for which Hn(P ) 6= 0. If n > 0 then P1 → P0 is surjective, so there exists
a splitting. Using this splitting one sees that P is quasi-isomorphic to a chain
complex concentrated in degrees strictly larger than zero. Repeating this argument
if necessary, one concludes that P is actually quasi-isomorphic to a chain complex
(of f.g. projectives) concentrated in degrees n and higher. So we may assume that
P has this property, and then by shifting indices we may assume n = 0.

Let Q• → H0(P ) be a resolution by finitely-generated projectives. Standard
homological algebra gives us a map f : P• → Q• inducing an isomorphism on H0.
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Let T be the mapping cone of f . The long exact homology sequence shows that
T has one fewer non-vanishing homology group than P , and hence we may assume
by induction that [T ] ∈ imβ. But we know from Lemma 5.5 (really, its analog for
Gcplx(R)) that [T ] = [Q] − [P ]. Since [Q] ∈ imβ by the definition of β, it follows
that [P ] ∈ imβ as well. �

When we first learned the definitions of K(R) and G(R), the difference seemed
to be about projective versus arbitrary modules. When we look at these groups as
Kcplx(R) and Gcplx(R), however, the difference is about bounded versus bounded-
below chain complexes.

5.10. Relative K-theory. It may seem like we have introduced an unnecessary
level of complexity (no pun intended) by introducing Kcplx(R). After all, the proof
of Proposition 5.4 shows that for any bounded complex P the class [P ] is just
the alternating sum

∑
(−1)i[Pi[0]]. That is, in Kcplx(R) we may decompose any

complex into its constituent modules; one really only needs modules, not chain
complexes. But we will get some mileage out of these ideas by defining similar
K-groups but restricting to complexes subject to certain conditions. In these cases
we might not be able to ‘unravel’ the complexes anymore. We give a few examples:

[1]. Let S be a multiplicative system in R. Start with the free abelian group
on isomorphism classes of bounded complexes P• of finitely-generated projectives
having the property that S−1P• is exact. Define K(R,S) to be the quotient of this
free abelian group by the analogs of relations (1) and (2) defining Kcplx(R).

[2]. Let I ⊆ R be an ideal. Start with the free abelian group on isomorphism
classes of bounded complexes P• of finitely-generated projectives having the property
that each Hk(P ) is annihilated by I. Define K(R, I) to be the quotient of this free
abelian group by the analogs of relations (1) and (2) defining Kcplx(R).

[3]. Fix an n ≥ 0. Start with the free abelian group on isomorphism classes
of bounded complexes P• of finitely-generated projectives having the property that
each Hk(P ) has Krull dimension at most n. Define K(R,≤ n) to be the quotient
of this free abelian group by the usual relations (1) and (2).

Exercise 5.11. In analogy to [3], define a group K(R,≥ n). Prove that if n ≤
dimR then K(R,≥ n) ∼= K(R), and that if n > dimR then K(R,≥ n) = 0.

Here is a lemma that will be very useful later on:

Lemma 5.12. Let α : P → Q and β : Q → W be maps between finitely-generated
projectives, and assume both become isomorphisms after localization at S. Then

[P
βα−→W ] = [P α−→ Q] + [Q

β−→W ]

in K(R,S).

Proof. Use the following short exact sequence of maps:

0 // P

α

��

f // Q⊕ P

idQ⊕βα
��

g // Q

β

��

// 0

0 // Q
f ′ // Q⊕W g′ // W // 0,
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where f(x) = (α(x), x), f ′(y) = (y, β(y)), g(a, b) = a−α(b), and g′(c, d) = β(c)−d.
This gives that

[Q id−→ Q] + [P
βα−→W ] = [P α−→ Q] + [Q

β−→W ],

but of course the first term on the left is zero in K(R,S). �

Note that there is an evident map K(R,S) → K(R) that sends a class [P ] in
K(R,S) to the similarly-named (but different) class [P ] in K(R); in colloquial
terms, the map simply ‘forgets’ that a complex P is S-exact. The composite
K(R,S)→ K(R)→ K(S−1R) is clearly zero.

Proposition 5.13. For any multiplicative system in a commutative ring R the
sequence K(R,S)→ K(R)→ K(S−1R) is exact in the middle.

Proof. Suppose x ∈ K(R) is in the kernel of the map to K(S−1R). Every element
of K(R) may be written as x = [P ] − [Q] for some finitely-generated projectives
P and Q. Then [S−1P ] = [S−1Q] in K(S−1R), so by Proposition 2.8 there exists
an n such that S−1P ⊕ (S−1R)n ∼= S−1Q ⊕ (S−1R)n. Alternatively, write this as
S−1(P ⊕Rn) ∼= S−1(Q⊕Rn). By Lemma 4.7(b) there exists a map of R-modules
Q ⊕ Rn → P ⊕ Rn that becomes an isomorphism after S-localization. Regarding
this map as a chain complex concentrated in degrees 0 and 1, it gives an element
in K(R,S); the image of this element under K(R,S)→ K(R) is clearly x. �

The reader might have noticed that in the above proof we didn’t encounter
any kind of complicated chain complex when trying to construct our preimage in
K(R,S); in fact, we accomplished everything with chain complexes of length 1.
This is a general phenomenon, similar to the fact that elements of Kcplx(R) can all
be decomposed into modules. For the relative K-groups one can’t quite decompose
that far, but one can always get down to complexes of length 1. To state a theorem
along these lines, consider maps f : P → Q where P and Q are finitely-generated
R-projectives and S−1f is an isomorphism (it is convenient to regard such maps as
chain complexes concentrated in degrees 0 and 1). Let K(R,S)≤1 be the quotient
of the free abelian group on such maps by the following relations:
(1) [f ] = 0 if f is an isomorphism;
(2) [f ] = [f ′] + [f ′′] if there is a commutative diagram

0 // P ′

f ′

��

// P //

f

��

P ′′

f ′′

��

// 0

0 // Q′ // Q // Q′′ // 0

where the rows are exact.
Notice that there is an evident map K(R,S)≤1 → K(R,S).

Theorem 5.14. For any multiplicative system S in a commutative ring R, the
map K(R,S)≤1 → K(R,S) is an isomorphism.

The proof of this theorem is a bit difficult, and the techniques are too distant
from the topics at hand to merit spending time on them. We give the proof in an
appendix (???), for the interested reader.

Theorem 5.14 naturally suggests the following question: why use chain complexes
at all, for relative K-theory? That is to say, if one can access the same groups
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using only chain complexes of length one, why complicate things by making the
defintion using complexes of arbitrary length? The answer comes from algebraic
geometry. Let X be a scheme and let U be an open subset of X. Then the
‘correct’ way to define a relative K-theory group K(X,U) is to use bounded chain
complexes of locally free sheaves on X that are exact on U . When X = SpecR
and U = SpecS−1R then it happens that one can get the same groups using only
complexes of length one—as we saw above. But even for X = SpecR not every
open subset is of this form. A general subset will have the form U = (SpecS−1

1 R)∪
(SpecS−1

2 R) ∪ · · · ∪ (SpecS−1
d R), but to get the same relative K-group here one

must use complexes of length at most d. See [FH] and [D3] for the proof in this
case.

When R is a regular ring all localizations S−1R are also regular. So the groups
K(R) and K(S−1R) can be identified with G(R) and G(S−1R), by Theorem 2.10.
Comparing the localization sequence in K-theory to the one in G-theory from
Proposition 4.9 suggests an identification of the relative terms. Indeed, observe
that the usual Euler characteristic map χ(P•) =

∑
(−1)i[Hi(P )] gives a well-defined

map K(R,S)→ G(M |S−1M = 0). We have the following:

Theorem 5.15. If R is regular then χ : K(R,S) → G(M |S−1M = 0) is an iso-
morphism.

Proof. Define β : G(M |S−1M = 0) → K(R,S) by sending [M ] to [P•] for some
finite resolution of M by finitely-generated projectives (which exists because R is
regular). The exact same steps as in the proof of Theorem 2.10 shows that this is
well-defined and a two-sided inverse to χ. �

5.16. Relative K-theory and intersection multiplicities. We now wish to
tie several themes together, and use everything we have learned so far to give a
complete, K-theoretic perspective on Serre’s definition of intersection multiplicity.
This perspective is from the paper [GS].

Let R be a Noetherian ring, and let Z ⊆ SpecR be a Zariski closed set. Recall
that an R-module M is said to be supported on Z if MP = 0 for all primes P /∈ Z.
One usually defines SuppM , the support of M , to be {P ∈ SpecR |MP 6= 0}.
This is known to be a closed subset of SpecR, and to say that M is supported on Z
is just the requirement that SuppM ⊆ Z. Let G(R)Z be the Grothendieck group
of all finitely-generated R-modules that are supported on Z.

Similarly, if C• is a chain complex of R-modules then SuppC is defined to be
{P ∈ SpecR |H∗(CP ) 6= 0}. We say that C• is supported on Z if SuppC ⊆ Z, or
if CQ is exact for every Q /∈ Z. Note that C• is supported on Z if and only if all
the homology modules H∗(C) are supported on Z.

Similar to our definitions of Kcplx(R) and K(R,S), define K(R)Z to be the
Grothendieck-style group of bounded complexes P• of finitely-generated projective
R-modules having the property that SuppP• ⊆ Z. Note that if Z = SpecR −
SpecS−1R then K(R)Z is precisely the group K(R,S) previously defined.

The following statements should be easy exercises for the reader:
(1) The Euler characteristic χ(P•) =

∑
i(−1)i[Hi(P )] defines a group homomor-

phism K(R)Z → G(R)Z .
(2) If R is regular then the map χ : K(R)Z → G(R)Z is an isomorphism.
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(3) Tensor product of chain complexes gives pairings

⊗ : K(R)Z ⊗K(R)W → K(R)Z∩W
for all pairs of closed subsets Z,W ⊆ SpecR.

(4) If Z = V (I) then a module M is supported on Z if and only if M is killed by
a power of I.

(5) If M and N are R-modules then Supp(M ⊗N) = SuppM ∩ SuppN .
(6) Assume that R is regular, and transplant the tensor product of chain complexes

to a pairing
G(R)Z ⊗G(R)W → G(R)Z∩W .

This sends [M ]⊗ [N ] to
∑

(−1)i[Tori(M,N)]. (Note that this makes sense on
the level of supports: if Z = V (I) and W = V (J), M is killed by a power of I
and N is killed by a power of J , then M ⊗N is killed by a power of I + J).

(7) Let Z = {m} where m is a maximal ideal of R. Then the assignment M 7→
`(Mm) gives an isomorphism G(R)Z

∼=−→ Z.
(8) Let M and N be R-modules such that Supp(M ⊗ N) = {m} where m is a

maximal ideal of R (geometrically, SuppM and SuppN have an isolated point
of intersection). Then Serre’s intersection multiplicity e(M,N) is the image of
[M ]⊗ [N ] under the composite

G(R)Z ⊗G(R)W −→ G(R)Z∩W
`−→ Z,

where we have written Z = SuppM and W = SuppN (and the map labelled `
is in fact an isomorphism).

Remark 5.17. We will understand this better after seeing how intersection mul-
tiplicities fit into algebraic topology, but it is worth noting that the group K(R)Z
would be better written as K(X,X − Z), where X = SpecR. For comparison,
relative products in a cohomology theory would give pairings

K(X,X −Z)⊗K(X,X −W )→ K(X, (X −Z)∪ (X −W )) = K(X,X − (Z ∩W )),

which is what we saw above in the form K(R)Z ⊗K(R)W → K(R)Z∩W .

6. K-theory of exact complexes

We have seen the isomorphism of groups K(R) ∼= Kcplx(R). If P• is a bounded,
exact complex of projectives then it gives rise to a relation in K(R), and (equiva-
lently) represents the zero object in Kcplx(R). Given this, it might seem surprising
to learn that there is yet another model for K(R) in which exact complexes can rep-
resent nonzero elements—and even more, all nonzero elements can be represented
this way. The goal of the present section is to explain this model, as well as some
variations. This material is adapted from [Gr].

Note: The contents of this section are only needed once in the remainder of the
notes, for a certain perspective on Adams operations in Section 30. While the
material is intriguing, it can certainly be skipped if desired.

As in the last section, let R be a fixed commutative ring.

Definition 6.1.

Kexct(R) =
Z〈 [P•]

∣∣P• is a bounded, exact chain complex of f.g. projectives〉
〈 Relation 1, Relation 2 〉
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where the relations are
(1) [P•] = [P ′•] + [P ′′• ] if there is a short exact sequence 0→ P ′• → P• → P ′′• → 0,

(2) [ΣP•] = −[P•].

If P is a projective module let CP denote the mapping cone of the identity map
P → P . Specifically, CP is a chain complex concentrated in dimensions 0 and 1
where the only nonzero differential is the identity map on P . Observe that there is
a group homomorphism K(R)→ Kexct(R) that sends [P ] to [CP ].

Proposition 6.2. The map K(R) → Kexct(R) is an isomorphism. The inverse
is denoted χ′ : Kexct(R) → K(R) and called the derived (or secondary) Euler
characteristic. If P• is a bounded complex of finitely-generated projectives then

χ′(P•) =
∑
j

(−1)j+1j[Pj ] =
∑
j

(−1)j−1[im dj ]

where dj : Pj → Pj−1.

Technically speaking the second formula given for χ′ doesn’t make sense unless
we know that each im dj is a finitely-generated projective module. This is a simple
exercise, but let us record it in a lemma.

Lemma 6.3. Let P• be a bounded, exact complex of projectives. Then each im dj
is projective, and finitely-generated if Pj is.

Proof. Without loss of generality we can assume that P• has the form 0 → Pn →
· · · → P0 → 0. So d1 : P1 → P0 is surjective, hence im d1 = P0 and there is nothing
to prove here. Exactness gives us short exact sequences 0 → im dj+1 → Pj →
im dj → 0, for each j. We can assume by induction that im dj is projective, hence
the sequence is split-exact and therefore im dj+1 is also projective.

Since im dj is a quotient of Pj , it is finitely-generated if Pj is. �

The above proof of course gives more than was explicity stated: by choosing
splittings one level at a time one can see that P• decomposes as a direct sum
of exact complexes of length 1. This decomposition is non-canonical, however,
depending on the choices of splitting. For variety we will see a weaker, but more
canonical, version of this decomposition in the next proof.

Proof of Proposition 6.2. Let α denote the map K(R) → Kexct(R). It is easy to
see that α is surjective, because if 0 → Pn → · · · → P0 → 0 is an exact complex
then there is an evident short exact sequence

0→ Σn−1(CPn)→ P• → Q• → 0

where Q• is exact and has length at most n−1. Since [P•] = [Σn−1(CPn)]+ [Q•] =
(−1)n−1[CPn]+ [Q•], an immediate induction shows that Kexct(R) is generated by
the classes [CP ] as P ranges over all finitely-generated projectives.

Note that Pn ∼= im dn, and Qn−1 = coker(Pn → Pn−1) ∼= im dn−1. The induc-
tion mentioned in the preceding paragraph shows that [P•] =

∑
j(−1)j−1[C(im dj)].

From this it is clear that if an inverse to α exists it must send [P•] to∑
j(−1)j−1[im dj ]. It is only left to check that this formula does indeed define

a map Kexct(R)→ K(R).
Let P• be any bounded, exact complex of finitely-generated projectives, and

assume that the smallest degree containing a nonzero module is degree n. Write
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Ij = im dj . Since · · · → Pj+1 → Pj → Ij → 0 is exact, we have that [Ij ] =∑
k≥j(−1)k−j [Pk] in K(R). So in K(R) we have∑

j≥n

(−1)j−1[Ij ] =
∑
j≥n

∑
k≥j

(−1)j−1(−1)k−j [Pk] =
∑
k

(−1)k−1
∑

n≤j≤k

[Pk]

=
∑
k

(−1)k−1(k − n+ 1)[Pk]

=
∑
k

(−1)k−1k[Pk] + (n− 1)χ(P•)

=
∑
k

(−1)k−1k[Pk].

In the last equality we have used that χ(P•) = 0 since P• is exact.
Define χ′(P•) =

∑
k(−1)k−1k[Pk]. One easily checks that this satisfies relations

(1) and (2) in the definition of Kexct(R), and hence defines a map β : Kexct(R)→
K(R). It is trivial to check that β ◦ α = id. The above calculation (and preceding
remarks) verifies that α ◦ β = id. �

6.4. Derived Euler characteristics. Now that we have encountered the derived
Euler characteristic it seems worthwhile to take a moment and place it into a
broader context. Consider the definition

χt(P•) =
∑

tj [Pj ] ∈ K(R)[t, t−1].

This function is additive, and in fact it is clearly the universal additive invariant for
bounded complexes of finitely-generated projectives. The usual Euler characteristic
is χ(P•) = χt(P•)|t=−1. Of course we do not have χt(ΣP•) = −χt(P•), this only
becomes true after the substitution t = −1; what we have instead is the identity

χt(ΣP•) = t · χt(P•).(6.5)

If we differentiate χt with respect to t then we obtain χ′t(P•) =
∑
jtj−1[Pj ].

Clearly this is also an additive invariant of complexes. The invariant we called χ′

is just χ′t(P•)|t=−1. Differentiating (6.5) yields the formula

χ′t(ΣP•) = χt(P•) + t · χ′t(P•),(6.6)

and consequently χ′(ΣP•) = χ(P•) − χ′(P•). This is not the kind of behavior we
are used to, but notice that if we restrict to complexes P• with χ(P•) = 0 then we
get the nicer behavior χ′(ΣP•) = −χ(P•).

One can, of course, iterate this procedure. Let χ(n)
t (P•) denote the nth derivative

of χt(P•), and white χ(n)(P•) = χ
(n)
t (P•)|t=−1. Call this the nth derived Euler

characteristic. It is an additive function, and if one restricts to complexes such
that 0 = χ(P•) = χ′(P•) = · · · = χ(n−1)(P•) then it satifies χ(n)(ΣP•) = −χ(n)(P•).

6.7. Doubly-exact complexes. A bicomplex C•,• will be called bounded if the
modules Ci,j are nonzero for only finitely many values of (i, j). The bicomplex
will be called doubly-exact if every row and every column is exact. By abuse
of terminology an ordinary chain complex D• will be called doubly-exact if it is
isomorphic to the total complex of a bounded, doubly-exact bicomplex. Doubly
exact complexes all represent zero in Kexct(R):
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Proposition 6.8. If P• is a bounded, doubly-exact complex of finitely-generated
projectives then [P•] = 0 in Kexct(R).

Proof. Let M•,• be a doubly-exact bicomplex of finitely-generated projectives.
Without loss of generality let us assume that Mi,j is nonzero only for 0 ≤ i ≤ n
and 0 ≤ j ≤ k. Write Mi,∗ for the ordinary complex whose jth term is Mi,j , and
write M≥i,∗ for the sub-bicomplex of M•,• consisting of all Ma,j for a ≥ i. Observe
that there are short exact sequences

0→ ΣiMi,∗ ↪→ Tot(M≥i,∗)� Tot(M≥(i+1),∗)→ 0,

for all i. Induction shows that each Tot(M≥i,∗) is exact, and therefore in Kexct(R)
we have

[TotM•,•] =
∑
i

[ΣiMi,∗] =
∑
i

(−1)i[Mi,∗].

But M•,• may be regarded as an exact sequence of chain complexes

0→Mn,∗ →Mn−1,∗ → · · · →M1,∗ →M0,∗ → 0.

The image of each map in this sequence is a chain complex of finitely-generated
projectives (using Lemma 6.3), and each of these image complexes is exact by a
straightforward induction. So the above exact sequence breaks up into a collection
of short exact sequences of exact complexes of finitely-generated projectives, and
hence shows that

∑
i(−1)i[Mi,∗] is zero in Kexct(R). We have therefore shown that

[TotM•,•] = 0 in Kexct(R). �

The reader will notice the beginnings of a pattern here. Exact complexes P•
represent zero in Kcplx(R), but then we produced a new model for this same group
where the exact complexes were our generators. In this new group Kexct(R) the
doubly-exact complexes represent zero. It is natural, then, to wonder if there is yet
another model for this group where the doubly-exact complexes are the generators.
Indeed, this works out in what is now a completely straightforward manner, and
can be repeated ad infinitum.

Let us use the term multicomplex for the evident generalization of bicomplexes
to n dimensions. We will denote a multicomplex by M?, where the symbol ? stands
for an n-tuple of integers. Say that the multicomplex is n-exact if every linear
‘row’ (obtained by fixing n− 1 of the indices) is exact.

Definition 6.9.

Kn−exct(R) =
Z〈 [M?]

∣∣M? is a bounded, n-exact multicomplex of f.g. projectives〉
〈 Relation 1, Relation 2 〉

where the relations are
(1) [M?] = [M ′

?] + [M ′′
? ] if there is an exact sequence 0→M ′

? →M? →M ′′
? → 0,

(2) [ΣM?] = −[M?], where Σ stands for any of the n suspension operators on
n-multicomplexes.

Given an (n+ 1)-multicomplex M? there are
(
n+1

2

)
ways to totalize it to get an

n-multicomplex—one needs to choose two of the n+ 1 directions to combine. One
can follow the proof of Proposition 6.8 to show that if M? is (n+1)-exact then each
of these totalizations represents zero in Kn−exct(R).
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If M? is an n-multicomplex then let CM? denote the cone on the identity map
M? → M?. This is an (n + 1)-multicomplex, defined in the evident manner. This
cone construction induces a group homomorphism Kn−exct(R)→ K(n+1)−exct(R).

Proposition 6.10. The map Kn−exct(R) → K(n+1)−exct(R) is an isomorphism,
with inverse given by

χ′(M?) =
∑

(−1)j+1j[Mj,?]

where the symbols Mj,? represent the various slices of M? in any fixed direction.

Proof. Follow the proof of Proposition 6.2 almost verbatim, but where each Pi
represents an n-exact multicomplex rather than an R-module. �

We have the sequence of isomorphisms

K(R)→ Kexct(R)→ K2−exct(R)→ · · ·
The composite map K(R) → Kn−exct(R) sends [P ] to the n-dimensional cube
consisting of P ’s and identity maps. The composite Kn−exct(R)→ K(R) sends an
n-multicomplex M? to

M? 7→
∑

j1,...,jn

(−1)j1+···+jn+nj1 · · · jn[Mj1,...,jn ].

If one considers the formal Laurent polynomial

χt1,...,tn(M) =
∑

j1,...,jn

tj11 · · · tjnn [Mj1,...,jn ]

then this is the nth order partial derivative ∂t1 · · · ∂tnχt1,...,tn(M) evaluated at t1 =
t2 = · · · = tn = −1.

Remark 6.11. Grayson [Gr] suggests a perspective where exact complexes are
analogous to the formal infinitesimals from nonstandard analysis. Doubly-exact
complexes are analogues of products of infinitesimals, and so forth. ????

7. A taste of K1

Note: The material in this section will not be needed for most of what follows
in these notes. We include it for general interest, and because the material fits
naturally here. But this section can safely be skipped.

Given a ring R and a multiplicative system S ⊆ R, we have seen the exact
sequences

G(M |S−1M = 0)→ G(R)→ G(S−1R)→ 0
and

K(R,S)→ K(R)→ K(S−1R).
It is natural to wonder if these extend to long exact sequences, and the answer is
that they do: in the first case there is an extension to the left, and in the latter
two cases there is an extension in both directions. These extensions are not easy
to produce, however—they are the subject of ‘higher algebraic K-theory’, an area
that involves some very deep and difficult mathematics. Our aim here is not to
start a long journey into that subject, but rather to just give some indications of
the very beginnings.
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Remark 7.1. From now on the groups K(R) and G(R) will be written K0(R) and
G0(R).

7.2. The basic theory of K1(R). Let us adopt the perspective that K0(R) is, in
essence, constructed with the goal of generalizing the familiar notion of dimension
for vector spaces. The key property of dimension is additivity for short exact
sequences, so consequently one forms the universal group with that property. The
groupK1(R) is obtained similarly but with the goal of generalizing the determinant .

Determinants are invariants of self-maps—maps with the same domain and
target—and we need some language for dealing with such things. Given two self-
maps f : A→ A and g : B → B, we define a map from f to g to be a map u : A→ B
giving a commutative diagram

A
u //

f

��

B

g

��
A

u // B.

Likewise, an exact sequence of self-maps is a diagram

0 // A′
u0 //

f ′

��

A
u1 //

f

��

A′′ //

f ′′

��

0

0 // A′
u0 // A

u1 // A′′ // 0

(7.3)

in which the rows are short exact sequences of modules.

Definition 7.4. Form the free abelian group generated by isomorphism classes of
maps [P α−→ P ] where P is a finitely-generated projective and α is an isomorphism.
Let K1(R) be the quotient of this group by the following relations:

(a) [P α−→ P ] = [P ′ α′−→ P ′]+[P ′′ α′′−→ P ′′] whenever there is a short exact sequence
as in (7.3);

(b) [P
αβ−→ P ] = [P α−→ P ] + [P

β−→ P ] for all self-maps α, β : P → P .

Note that as a consequence of relation (b) one has that [P id−→ P ] = 0 for any
finitely-generated projective module P . Note also that if α : P → P and β : Q→ Q
are automorphsms then

[P ⊕Q α⊕β−→ P ⊕Q] = [P α−→ P ] + [Q
β−→ Q],(7.5)

as a consequence of relation (a).
The use of projective modules in the definition of K1(R) turns out to be unnec-

essarily complicated—one can get the same group by only using automorphisms of
free modules. Even more, the use of short exact sequences in relation (a) is un-
necessarily complicated; one can get the same group by only imposing the weaker
relation from (7.5). We will prove both of these claims in just a moment.

Observe that there is a map of groups GLn(R)→ K1(R) that sends a matrix A
to the class [Rn A−→ Rn] (left-multiplication-by-A). Relation (b) guarantees that
this is indeed a group homomorphism. If we let j : GLn(R) ↪→ GLn+1(R) be the
usual inclusion, obtained by adding an additional row and column and a 1 along
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the diagonal, then it is clear that [Rn+1 j(A)−→ Rn+1] = [Rn A−→ Rn]. This follows
from (7.5) and the fact that [R id−→ R] = 0. Let GL(R) denote the colimit

GL(R) = colim[GL1(R)→ GL2(R)→ GL3(R)→ · · · ],
and call this the infinite general linear group of R. We have obtained a map
GL(R)→ K1(R), and of course this will factor through the abelianization to give

GL(R)ab = GL(R)/[GL(R), GL(R)]→ K1(R).

Theorem 7.6. The map GL(R)ab → K1(R) is an isomorphism.

It will be convenient to prove this at the same time that we give other descriptions
for K1(R). In particular, we make the following definitions:

(1) Kfr
1 (R) is the group defined similarly to K1(R) but changing all occurrences

of ‘projective’ to ‘free’.
(2) Ksp

1 (R) is the group defined similarly to K1(R) but replacing relation (a) by
the direct sum relation of (7.5). The “sp” stands for “split”.

(3) Ksp,fr
1 (R) is the group defined by making both the changes indicated in (1)

and (2).
One obtains a large diagram as follows:

colimP Aut(P )ab // // Ksp
1 (R) // // K1(R)

GL(R)ab colimnGLn(R)ab // //

OO

Ksp,fr
1 (R) // //

OO

Kfr
1 (R).

OO
(7.7)

The maps labelled as surjections are obviously so. Let us explain the colimit over
projectives P . Let M denote the monoid of isomorphism classes of finitely-generated
projectives, with the operation of ⊕. The translation category T (M) of this monoid
has object set equal to M, and the maps from A to B are the elements C ∈ M

such that A + C = B. This is the indexing category for our colimit. Given an
isomorphism f : P → Q, there is an induced map of groups Aut(P ) → Aut(Q)
sending α to fαf−1. Changing f gives a different induced map, but it gives the
same induced map on Aut(P )ab → Aut(Q)ab; this is an easy exercise. It follows
that there is a functor T (M)→ Ab sending [P ] to Aut(P )ab and having the property
that the map [Q] from [P ] to [P ⊕ Q] yields the map Aut(P )ab → Aut(P ⊕ Q)ab
induced by direct sum with idQ. The upper left term in our diagram is the colimit
of this functor. The map from this colimit to Ksp

1 (R) is induced by the one sending
an element α ∈ Aut(P ) to the class [P α−→ P ].

Theorem 7.6 will follow as an immediate consequence of the following stronger
result:

Theorem 7.8. All of the maps in (7.7) are isomorphisms.

We are almost ready to prove this theorem, but we do need one key lemma. Let
E(R) ⊆ GL(R) be the subgroup generated by the elementary matrices—matrices
that have ones along the diagonal and a single nonzero, off-diagonal entry. Note that
right multiplication by such a matrix amounts to performing a column operation
where a multiple of one column is added to another; similarly, left multiplication
amounts to performing the analogous row operation. One very useful way to recog-
nize a matrix as belonging to E(R) is to observe that it can be obtained from the
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identity matrix by using these types of row and column operations. It is useful to
say that a column or row operation is allowable if the corresponding elementary
matrix belongs to E(R).

Lemma 7.9.
(a) For any X ∈Mn(R) the matrix

[
I X
0 I

]
and its transpose belong to E(R).

(b) If A ∈ GLn(R) then
[
A 0
0 A−1

]
∈ E(R).

(c) Let A be a matrix obtained from the identity by switching two colums and mul-
tiplying one of the switched columns by −1. Then A ∈ E(R), and similarly for
the transpose of A.

Proof. For part (a) just note that
[
I X
0 I

]
can be obtained from the identity matrix

by a sequence of allowable column operations of the type discussed above. For the
transpose, use row operations.

For (b) consider the following chain of matrices:[
I 0
0 I

]
∼
[
I A
0 I

]
∼
[

I A
A−2 −A−1 A−1

]
∼
[

A 0
A−2 −A−1 A−1

]
∼
[
A 0
0 A−1

]
.

Passage from each matrix to the next can be done by allowable row and column
operations; alternatively, each matrix can be obtained from its predecessor by left
or right multiplication by a matrix of the type considered in (a).

Finally, for (c) we argue directly in terms of column operations. If v and w are
two columns consider the following chain

v, w 7→ v, w − v 7→ w,w − v 7→ w,−v.
Each link involves adding a multiple of one column to another, and is therefore
allowable; therefore the composite operation is allowable. �

The following is the key lemma that we will need in our proof of Theorem 7.8:

Lemma 7.10 (Whitehead Lemma). E(R) = [GL(R), GL(R)]

Proof. For the ⊆ direction we consider three columns u, v, w, and the following
chain of operations (where r, s ∈ R):

u, v, w 7→ u, v + ru, w 7→ u, v + ru, w + sv + sru 7→ u, v, w + sv + sru

7→ u, v, w + sru.

It should be clear what column operation is being used in each step. Note that the
third and fourth operations are the inverses of the first and second, so the composite
it a commutator. This shows that any column operation of the type “add a multiple
of one column to another” is a commutator, and therefore E(R) ⊆ [GL(R), GL(R)].
(We have actually shown En(R) ⊆ [GLn(R), GLn(R)] for n ≥ 3).

For the other subset, let A,B ∈ GLn(R). Consider the following identity:[
ABA−1B−1 0

0 I

]
·
[
B 0
0 B−1

]
·
[
A 0
0 A−1

]
=
[
AB 0
0 B−1A−1

]
.

The first matrix is identified with the commutator of A and B inside GL(R), and all
of the other matrices are in E(R) by Lemma 7.9(b). So [A,B] ∈ E(R) as well. �
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Corollary 7.11. For any A ∈ GLn(R), B ∈ GLk(R), and X ∈ Mn×k(R),[
A X
0 B

]
=
[
A 0
0 B

]
in GL(R)ab. If n = k then this matrix also equals

[
AB 0
0 I

]
in

GL(R)ab.

Proof. For the first claim simply observe that[
A X
0 B

]
=
[
A 0
0 B

]
·
[
I A−1X
0 I

]
.

The second matrix in the product is in E(R) by Lemma 7.9(a), and hence in
[GL(R), GL(R)] by the Whitehead Lemma.

For the second claim notice that
[
A 0
0 B

]
·
[
B 0
0 B−1

]
=

[
AB 0
0 I

]
and use

Lemma 7.9(b) together with the Whitehead Lemma. �

We are now ready to prove that all the descriptions of K1(R) give the same
group:

Proof of Theorem 7.8. Let α : P → P be an automorphism of a finitely-generated
projective, and let Q be a free complement to P : that is, P ⊕Q ∼= Rn for some n.
Then

[P α−→ P ] = [P ⊕Q α⊕idQ−→ P ⊕Q]

in Ksp
1 (R), which shows that Ksp,fr

1 (R) → Ksp
1 (R) is surjective. The same proof

works for all of the vertical maps in diagram (7.7).
The fact that colimnGLn(R)ab → colimP Aut(P )ab is an isomorphism is very

easy: it is just because the subcategory of T (M) consisting of the free modules is
cofinal in T (M).

Define a map Kfr
1 (R)→ GL(R)ab by sending [Rn A−→ Rn] to the matrix A. To

see that this is well-defined we need to verify that it respects relations (a) and (b)
from Definition 7.4. Relation (b) is self-evident. For (a), suppose that

0 // F ′ //

α′

��

F //

α

��

F ′′ //

α′′

��

0

0 // F ′ // F // F ′′ // 0

is a short exact sequence of automorphisms between free modules. Then there
is a basis for F with respect to which the matrix for α has the form

[
α′ ∗
0 α′′

]
.

Corollary 7.11 verifies that this matrix equals
[
α′ 0
0 α′′

]
in GL(R)ab.

Now that we have the map Kfr
1 (R) → GL(R)ab, it is trivial to check that this

is a two-sided inverse for the map from (7.7). It follows that all the maps in the
bottom row of that diagram are isomorphisms.

The proof for the maps along the top row proceeds in a similar manner. Define a
mapK1(R)→ colimP Aut(P )ab by sending [P α−→ P ] to the element α ∈ Aut(P )ab.
One has to check that this respects relations (a) and (b) in the definition of K1(R),
and relation (b) is again trivial. Suppose that

0 // P ′ //

α′

��

P //

α

��

P ′′ //

α′′

��

0

0 // P ′ // P // P ′′ // 0
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is a short exact sequence of automorphisms between finitely-generated projectives.
Choose free complements Q′ for P ′, and Q′′ for P ′′. Consider the new short exact
sequence

0 // P ′ ⊕Q′ //

α′⊕idQ′

��

P ⊕Q′ ⊕Q′′ //

α⊕idQ′⊕idQ′′

��

P ′′ ⊕Q′′ //

α′′⊕idQ′′

��

0

0 // P ′ ⊕Q′ // P ⊕Q′ ⊕Q′′ // P ′′ ⊕Q′′ // 0.

All of the modules in this diagram are free (recall that P ∼= P ′ ⊕ P ′′), and so this
diagram gives a relation in Kfr

1 (R). Using the map Kfr
1 (R) → GL(R)ab already

constructed, we find that

α⊕ idQ′ ⊕ idQ′′ =
(
α′ ⊕ idQ′

)
+
(
α′′ ⊕ idQ′′

)
in GL(R)ab and hence also in colimP Aut(P )ab. But this says precisely that α =
α′ + α′′ as elements in colimP Aut(P )ab, and this is what we needed to check. We
have now constructed our map K1(R) → colimP Aut(P )ab, and it readily follows
that it is an inverse for the map in the other direction from (7.7). So all the maps
in the top horizontal row of (7.7) are isomorphisms.

We have shown that all horizontal maps in (7.7) are isomorphisms, and that the
left vertical map is an isomorphism. So all the maps are isomorphisms. �

Observe that det : GL(R)→ R∗ factors through the abelianization and therefore
yields an induced map det : K1(R)→ R∗. This map is split, since we can send any
r ∈ R∗ to the class of the automorphism R

r−→ R (this is a group homomorphism
using relation (2) of Definition 7.4). So we always have K1(R) ∼= R∗ ⊕ (???). The
mystery factor is often called SK1(R).

We will not calculate K1 for many rings, but let us at least do the easiest exam-
ples.

Proposition 7.12. If F is a field then K1(F ) = F ∗.

Proof. One must show that if A ∈ GL(F ) satisfies det(A) = 1 then A ∈
[GL(F ), GL(F )] = E(F ).

We first observe that if A is a diagonal matrix of determinant 1 then A lies in
E(F ). This can be proven by matrix manipulation, but the following argument is
a bit easier to write. We use that GL(F )/E(F ) ∼= K1(F ). Let d1, . . . , dn be the
diagonal entries of A. Working in K1(F ) we write

[Fn A−→ Fn] = [F d1−→ F ] + · · ·+ [F dn−→ F ] = [F d1···dn−→ F ] = [F 1−→ F ] = 0

where the first equality is by relation (a) in Definition 7.4 and the second equality
is by relation (b).

Now let A be an arbitrary n × n matrix of determinant 1. We will use two
types of column (and row) operations: adding a multiple of one column/row to
another, and switching two columns together with a sign change of one of them.
Both types of operation are allowable, the latter by Lemma 7.9(c). Using these
allowable column operations we can transform A into a lower diagonal matrix; then
by using allowable row operations one further transforms A into a diagonal matrix.
That is, there exist matrices E1, E2 ∈ E(F ) such that E1AE2 is diagonal. But by
the preceding paragraph we then have E1AE2 ∈ E(F ), and so A ∈ E(F ). �

Essentially the same proof as above also shows the following:
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Proposition 7.13. Let R be a Euclidean domain. Then det : K1(R) → R∗ is
an isomorphism. In particular, K1(Z) = {1,−1} ∼= Z/2 and when F is a field
K1(F [t]) ∼= F ∗.

Proof. We must again show that if A ∈ GLn(R) has det(A) = 1 then A ∈ E(R).
For any fixed row of A, the ideal generated by the elements in that row contains
det(A) and is therefore the unit ideal. Pick an element x of smallest degree in
this row and then use column operations (and the Euclidean division property) to
arrange all other elements in this row to be either zero or have degree smaller than
x. By repeating this process, eventually the row will contain a unit. Do a signed
transposition to switch this unit into position (1, 1), and then do row operations to
clear out all other terms in the first column. Repeat this process for the submatrix
obtained by deleting the first row and column, and so forth. Eventually the matrix
will be reduced to a diagonal matrix, necessarily of determinant 1. Such a diagonal
matrix lies in E(R), so this proves A also lies in E(R). �

7.14. Longer localization sequences.

Proposition 7.15. There is a unique map ∂ : K1(S−1R) → K0(R,S) having the
property that if α : Rn → Rn is such that S−1α is an isomorphism, then ∂ sends

[S−1Rn
S−1α−→ S−1Rn] to the class of the chain complex 0 → Rn

α−→ Rn → 0
(concentrated in degrees 0 and 1).

Proof. First, assume that β : (S−1R)n → (S−1R)n. Let A be the matrix for β with
respect to the standard basis, and let u ∈ S be an element such that uA has entries
in R (e.g., take u to be the product of all the denominators of the entries in A).
Then uA represents a map β′ : Rn → Rn, and we have the commutative diagram

(S−1R)n
β // (S−1R)n

uIn // (S−1R)n

Rn

OO

β′ // Rn

OO

where the vertical maps are localization. This diagram gives uIn ◦ β ∼= S−1β′, and
so [uIn] + [β] = [S−1β′] in K1(S−1R). Note that [uIn] = n[uI1], and uI1 is itself
the localization of the multiplication-by-u map on R; so we can write

[β] = [S−1β′]− n[S−1u].(7.16)

This shows that K1(R) is generated by classes [S−1α] for α : Rn → Rn, and we
have thereby proven the uniqueness part of the proposition.

For existence, we will define a map ∂ : Ksp,fr
1 (R) → K0(R,S) and then appeal

to Theorem 7.8. Given a map β : (S−1R)n → (S−1R)n, choose a u ∈ S such that
the standard matrix representing uβ has entries in R. Consider the assignment

β 7→ F (β, u) = [Rn
uβ−→ Rn]− n[R u−→ R] ∈ K0(R,S).

Note that this expression doesn’t come out of thin air: the expected homomorphism
∂, if it exists, must have this form by (7.16). It remains to show that the above
formula does indeed define a homomorphism.

We first show that F (β, u) does not depend on the choice of u. It suffices to
prove that F (β, tu) = F (β, u) for any t ∈ S; for if u′ is another choice for u then
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we would have F (β, u) = F (β, u′u) = F (β, u′). But now we just compute that

F (β, tu) = [Rn
tuβ−→ Rn]− n[R tu−→ R]

= [Rn t−→ Rn] + [Rn
uβ−→ Rn]− n

[
[R t−→ R] + [R u−→ R]

]
= [Rn

uβ−→ Rn]− n[R u−→ R]

(the second equality is by Lemma 5.12, applied twice).
Let us now write F (β) instead of F (β, u). The last thing that must be checked

is that F (β ⊕ β′) = F (β) + F (β′), but this is obvious. So we have established the
existence of ∂ : K1(R)→ K0(R,S) having the desired properties. �

Theorem 7.17 (Localization sequence for K-theory). Let R be a commutative ring
and S ⊆ R a multiplicative system. The following sequence is exact:

K1(R) −→ K1(S−1R) ∂−→ K0(R,S) −→ K0(R) −→ K0(S−1R).

Proof. We will not prove exactness at K1(S−1R), as this is a bit difficult and would
take us too far afield. Exactness at K0(R) was already proven in Proposition 5.13,
so it only remains to verify exactness at K0(R,S).

Let x ∈ K0(R,S). We know by Theorem 5.14 that x can be written in the
form x = [P1 → P0] − [Q1 → Q0] for finitely-generated projectives P0, P1, Q0, Q1

over R and maps α : P1 → P0, β : Q1 → Q0 that become isomorphisms after
S-localization. Consider the isomorphism S−1Q0 → S−1Q1 that is the inverse
to S−1β. By Lemma 4.7(b) there is a map γ : Q0 → Q1 whose localization is
isomorphic to this map. Notice that

x = [P1 → P0] + [Q0 → Q1]−
(
[Q0 → Q1] + [Q1 → Q0]

)
= [P1 ⊕Q0 → P0 ⊕Q1]− [Q0 ⊕Q1 → Q1 ⊕Q0].

So by replacing our original P ’s and Q’s we can assume that Q0 = Q1.
Let G be a projective such that Q0 ⊕G is free, and observe that

x = x− [G id−→ G] = [P1 → P0]− [Q0 ⊕G→ Q0 ⊕G].

So again, by replacing our chosen Q0 = Q1 we can actually assume that Q0 = Q1

is free. That is, x = [P1
α−→ P0]− [Rn

β−→ Rn].
Now assume that x maps to zero in K0(R). This just says that [P0] = [P1] in

K0(R), and so there exists a free module G such that P0 ⊕ G ∼= P1 ⊕ G. Since
x = x+ [G id−→ G] we see that we can write x as

x = [Rk α−→ Rk]− [Rn
β−→ Rn]

where α and β become isomorphisms after S-localization. It is now immediate that
x is in the image of ∂; to be completely specific,

x = ∂
(
[S−1Rk

S−1α−→ S−1Rk]− [S−1Rn
S−1β−→ S−1Rn]

)
.

�

Example 7.18. This example will be a “reality check”. We won’t learn anything
new, but we will see that the localization sequence is doing something sensible.
Let R be a discrete valuation ring (a regular local ring whose maximal ideal is
principal), and let F be the quotient field. Let π be a generator for the maximal
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ideal, and let S = {1, x, x2, . . .}. Note that S−1R = F . The localization sequence
takes on the form

K1(R)→ F ∗
∂−→ K0(R,S)→ Z

∼=−→ Z
where we are using K1(F ) ∼= F ∗, K0(R) ∼= Z (because R is a PID), and the map
K0(R)→ K0(F ) ∼= Z sends [R] to [F ] and is therefore an isomorphism.

Although we have not calculated K1(R), the commutative diagram

K1(R) //

det

��

K1(F )

det ∼=
��

R∗ // // F ∗

shows that the image of K1(R) in F ∗ is just R∗. Our localization sequence distills
into a single isomorphism

F ∗/R∗
∂−→ K0(R,S).

The group F ∗/R∗ is readily checked to be Z, where the isomorphism Z ∼= F ∗/R∗

sends n to [πn]. On the other hand, we also know by Theorem 5.15 that K0(R,S) ∼=
G(M |S−1M = 0). A finitely-generated module M satisfies S−1M = 0 if and only
if M is killed by a power of x, or equivalently if M has finite length over R. The
map ` : G(M |S−1M = 0)→ Z is easily checked to be an isomorphism.

Finally, let us analyze the map ∂. Given an element a ∈ F ∗, we write a =
r/πn for some r ∈ R∗ and n ≥ 0. The description of ∂ given in the proof of
Proposition 7.15 shows that

∂(a) = [R r−→ R]− [R πn

−→ R] = [R r−→ R]− n[R π−→ R].

The isomorphism K0(R,S) → G(M |S−1M = 0) sends a complex P• to the alter-
nating sum of its homology modules, so under this isomorphism we would write

∂(a) = [R/rR]− n[R/πR].

Note that `(R/πR) = 1. We can write r = uπk for some unit u ∈ R and n ≥ 0, in
which case R/rR ∼= R/πkR and so `(R/rR) = k. It follows that the composite

F ∗
∂−→ K0(R,S)

∼=−→ G(M |S−1M = 0)
∼=−→ Z

is just the usual π-adic valuation on F ∗.

The following example generalizes the previous one, but is a bit more interesting.

Example 7.19. Let D be a Dedekind domain—a regular ring of dimension one.
In such a ring all nonzero primes are maximal ideals. Let S = D − {0} and let
F = S−1D be the quotient field. Our localization sequence looks like

K1(D)→ F ∗ → K0(D,S)→ K0(D)→ Z.
Just as in the previous example, the image of K1(D) in F ∗ is just D∗. The map
K0(D) → Z is just the usual rank map, so its kernel is K̃0(D). So we get a short
exact sequence

0→ F ∗/D∗ ∂−→ K0(D,S)→ K̃0(D)→ 0.
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We know K0(D,S) ∼= G(M |S−1M = 0). The condition S−1M = 0 just says that
M is a torsion module. Consider the evident map

j :
⊕
P 6=0

G(D/P )→ G(M |S−1M = 0)

where the direct sum is over all nonzero prime ideals and where the map just forgets
that a module is defined over D/P and instead regards it as a D-module. This map
is clearly surjective: a torsion D-module M will have a prime filtration in which the
primes appearing are all maximal, and [M ] will be the sum of the corresponding
[D/P ]’s by the usual argument (see Theorem 2.15 and its proof).

Note that each D/P is a field, and so G(D/P ) ∼= Z. If M is a torsion D-module
then MP is a torsion DP -module. Since DP is a discrete valuation ring, this means
that MP has finite length. Define

χ : G(M |S−1M = 0)→
⊕
P 6=0

G0(R/P )

by sending [M ] to the tuple of integers `DP
(MP ), as P runs over all maximal ideals

of D (the only ones that give nonzero lengths are the ones containing AnnM , and
there are only finitely-many of these since they are precisely the minimal primes
of AnnM). It is easy to check that χ ◦ j = id; since j was already known to be
surjective this means they are inverse isomorphisms. So we can rewrite our short
exact sequence as

0→ F ∗/D∗ ∂−→
⊕
P 6=0

Z→ K̃0(D)→ 0.

It will be convenient to write eP for the basis element of the free abelian group in
the middle corresponding to the maximal ideal P . Note that these basis elements
correspond to the closed points of SpecD, and so we are looking at a group of
0-cycles.

It remains to analyze the map ∂. By Proposition 7.15, if r ∈ D − {0} then
∂(r) = [D r−→ D] ∈ K0(D,S). Under the isomorphisms described above this
corresponds to the tuple of integers `DP

(DP /rDP ). This is usually called the
divisor class of r, and written

div(r) =
∑

`DP
(DP /rDP )eP .

It should be thought of as listing all the zeros of the “function” r, together with
their orders of vanishing (see below for an example). For a general element x ∈ F ∗
we would just write x = r/s for r, s ∈ D − {0}, and then ∂(x) = div(r) − div(s);
this gives the zeros and poles of x, with multiplicities.

The quotient of
⊕

P 6=0 Z by the classes div(x) is called the divisor class group
of D; it is isomorphic to the ideal class group from algebraic number theory. Our
short exact sequence shows that K̃0(D) is also isomorphic to this group.

To demonstrate the geometric intuition behind div(r), consider the caseD = F [t]
where F is algebraically closed. If r = p(t) then the maximal ideals containing r
are the ones (t − ai) where ai is a root of p(t). If we write r =

∏
(t − aj)mj and

we localize at P = (t − ai), then r becomes a unit multiple of (t − ai)mi and the
number `DP

(DP /rDP ) is precisely mi. So

div(r) =
∑
i

mi · e(t−ai),
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as expected. Note that the divisor class group is not very interesting in this case:
clearly div is surjective, and so the group is zero. We already knew this for another
reason, because K̃0(D) = 0 whenever D is a PID.

Remark 7.20. The localization sequence of Theorem 7.17 can be extended further
to the left, by definining K-groups Kn(R) and Kn(R,S) for all n ≥ 1. This is the
subject of higher algebraic K-theory.
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Part 2. K-theory in topology

Finite-dimensional linear algebra is a subject that mathematicians understand
very well. There aren’t that many isomorphism types of objects (one for each
dimension), and we have a pretty good understanding of the maps between them.
Our next goal in these notes is to explore the idea of doing linear algebra locally
over a fixed base space X. To be slightly more precise, our objects of interest will
be maps of spaces E → X where the fibers carry the structure of vector spaces;
a map from E → X to E′ → X is a continuous map F : E → E′, commuting
with the maps down to X, such that F is a linear transformation on each fiber. It
turns out that much of linear algebra carries over easily to this enhanced setting.
But there are more isomorphism types of objects here, because the topology of X
allows for some twisting in the vector space structure of the fibers. The surprise
is that studying these ‘twisted vector spaces’ over a base space X quickly leads to
interesting homotopy invariants of X! Topological K-theory is a cohomology theory
for topological spaces that arises out of this study of fibrewise linear algebra.

8. Vector bundles

A (real) vector space is a set V together with operations +: V × V → V and
· : R×V → V satisfying a familiar (but long) list of properties. If X is a topological
space, a family of vector spaces over X will be a continuous map p : E → X
together with extra data making each fiber p−1(x) into a vector space, with the
operations varying in a continuous manner. The easiest way to say this is as follows:

Definition 8.1. A family of (real) vector spaces is a map p : E → X together
with operations +: E ×X E → E and · : R× E → E making the two diagrams

E ×X E

$$HH
HH

HH
HH

H
+ // E

��~~
~~

~~
~

R× E · //

##FFFFFFFF E

��~~
~~

~~
~

X X

commute, and such that the operations make each fiber p−1(x) into a real vector
space over X.

One could write down the above definition completely category-theoretically, in
terms of maps and commutative diagrams. Essentially one is defining a “vector
space object” in the category of spaces over X.

The space X is called the base of the family. If x ∈ X we will usually write
Ex for the fiber p−1(x) regarded with its vector space structure. The dimension of
Ex is called the rank of the family at x, and denoted rankx(E). The rank of E is
defined to be

rank(E) = sup{rankx(E) |x ∈ X},
where we include the possibility rank(E) =∞ (although we will never need this).

We leave it to the reader to define a map between families of vector spaces, an
isomorphism between families of vector spaces, a “subspace” of a family of vector
spaces, and so on. All of the definitions from linear algebra can easily be adapted.
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Example 8.2.
(a) The simplest example is E = X × Rn, with the projection map X × Rn → X.

This is called the trivial family of rank n, and it is often denoted simply by
n (with the space X understood).

(b) Let E = {(x, v) |x ∈ R2, v ∈ R.〈x〉}, and let p : E → R2 be projection onto the
first coordinate. Define (x, v) + (x, v′) = (x, v + v′) and r.(x, v) = (x, rv). This
makes E → R2 into a family of vector spaces. Note that the fiber p−1(x) is
one-dimensional for x 6= 0, but 0-dimensional when x = 0.

(c) Let X = R. Let e1, e2 be the standard basis for R2. Let E ⊆ X × R2 be the
union of {(x, re1) |x ∈ Q, r ∈ R} and {(x, re2) |x ∈ X\Q, r ∈ R}. Recall from
(a) that X × R2 → X is a family of vector spaces, and note that E becomes a
sub-family of vector spaces under the same operations.

The family of vector spaces from Example 8.2(c) perhaps makes it clear that this
notion is too wild to be of much use: there are too many ‘crazy’ families of vector
spaces like this one. One fixes this by adding a condition that forces the fibers to
vary continuously, in a certain sense. This is done as follows:

Definition 8.3. A vector bundle is a family of vector spaces p : E → X such
that for each x ∈ X there is a neighborhood x ∈ U ⊆ X, an n ∈ Z≥0, and an
isomorphism of families of vector spaces

p−1(U)

##FFFFFFFF

∼= // U × Rn

{{ww
ww

ww
ww

w

U

Usually one simply says that a vector bundle is a family of vector spaces that is
locally trivial. The isomorphism in the above diagram is called a “local trivializa-
tion”.

Remark 8.4. Note that the n appearing in Definition 8.3 depends on the point x.
It is called the rank of the vector bundle at x, and denoted rankx(E). It is easy to
prove that the rank is constant on the connected components of X. Vector bundles
of rank 1 are often called line bundles, and bundles of rank 2 are called plane
bundles.

Notation 8.5. If p : E → X is a family of vector spaces and A ↪→ X is a subspace,
then p−1(A) → A is also a family of vector spaces. We will usually write this
restriction as E|A. Note that if E is a vector bundle then so is E|A, by a simple
argument. The construction E|A is a special case of a pullback bundle, which we
will discuss in Section 8.9.

Of the families of vector spaces we considered in Example 8.2, only the trivial
family from (a) is a vector bundle. Before discussing more interesting examples, it
will be useful to have a mechanism for deciding when a family of vector spaces is
trivial. If p : E → X is a family of vector spaces, a section of p is a map s : X → E
such that ps = id. The set of sections is denoted Γ(E), and this becomes a vector
space using pointwise addition and multiplication in the fibers of E. A collection
of sections s1, . . . , sr is linearly independent if the vectors s1(x), s2(x), . . . , sr(x)
are linearly independent in Ex for every x ∈ X.
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Proposition 8.6. Let E → X be a family of vector spaces of constant rank n.
Then the family is trivial if and only if there is a linearly independent collection of
sections s1, s2, . . . , sn.

Proof. We mostly leave this to the reader. The map X × Rn → E given by
(x, t1, . . . , tn) 7→ t1s1(x) + · · ·+ tnsn(x) gives the desired trivialization. �

Example 8.7.
(a) Let φ : Rn → Rn be a vector space isomorphism. Let E′ = [0, 1]×Rn and let E

be the quotient of E′ by the relation (0, v) ∼ (1, φ(v)). Identifying S1 with the
quotient of [0, 1] by 0 ∼ 1, we obtain a map E → S1 that is clearly a family of
vector spaces. We claim this is a vector bundle. If x ∈ (0, 1) then it is evident
that E is locally trivial at x, so the only point of concern is x = 0 = 1 ∈ S1.
Let e1, . . . , en be the standard basis for Rn, and let si : [0, 1

4 ] → E′ be the
constant section whose value is ei. Likewise, let s′i : ( 3

4 , 1]→ E′ be the constant
section whose value is φ(ei). Projecting into E we obtain si(0) = s′i(1), and
so the sections si and s′i patch together to give a section Si : U → E, where
U = [0, 1

4 ) ∪ ( 3
4 , 1]. The sections S1, . . . , Sn are independent and therefore give

a local trivialization of E over U .
When n = 1 and φ(x) = −x the resulting bundle is the Möbius bundle M ,

depicted below:

We further discuss the case of general n and φ in Example 11.3 below.
(b) Let X = RPn, and let L ⊆ X × Rn+1 be the set

L = {(l, v) | l ∈ RPn, x ∈ l}.
Then L is a subfamily of the trivial family, and we claim that it is a line bundle
over X. To see this, for any l ∈ X we must produce a local trivialization. By
symmetry it suffices to do this when l = 〈e1〉. Let U ⊆ RPn be the set of lines
whose orthogonal projection to 〈e1〉 is nonzero. Such a line contains a unique
vector of the form e1 + u where e1 · u = 0. Define s : U → L by sending l to
(l, e1 + u) where e1 + u is the unique point on l described above. This section
is clearly nonzero everywhere, so it gives a trivialization of L|U . Thus, we have
proven that L is locally trivial and hence a vector bundle.

The bundle L is called the tautological line bundle over RPn. Do not
confuse this with the canonical line bundle over RPn that we will define shortly
(they are duals of each other). Note that when n = 1 the bundle L is isomorphic
to the Möbius bundle on S1.

(c) One may generalize the previous example as follows. Let V be a vector space
and fix an integer k > 0. Consider the Grassmannian Grk(V ) of k-planes in V .
Let

η = {(W,x) |W ∈ Grk(V ), x ∈W}.
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Projection to the first coordinate π : η → Grk(V ) makes η into a rank k vector
bundle, called the tautological bundle over Grk(V ). To see that it is indeed
a bundle, let W ∈ Grk(V ) be an arbitrary k-plane. By choosing an appropriate
basis for V we can just assume W = 〈e1, . . . , ek〉. Equip V with the standard
dot product with respect to the e-basis, and let U ⊆ Grk(V ) be the collection
of all k-planes whose orthogonal projection onto W is surjective (equivalently,
an isomorphism). One readily checks that this is an open set of W . For each
J ∈ U let s1(J), . . . , sk(J) be the unique vectors in J that orthogonally project
onto e1, . . . , ek. One checks that these are continuous sections of η|U , and of
course they are clearly independent and hence give a local trivialization.

(d) Let M be a smooth manifold, and let TM →M be its tangent bundle. So the
fiber over each x ∈ M is the tangent space at x. Let x ∈ M and let U be a
local coordinate patch about x. Let x1, . . . , xn be local coordinate in U , and
let ∂1, . . . , ∂n be the associated vector fields (giving the tangent vectors to the
coordinate curves in this system). Then ∂1, . . . , ∂n are independent sections of
TM , and hence give a local trivialization.

Definition 8.8. A map of vector bundles is just a map of the underlying families
of vector spaces.

Note that if f : E → F is a map of vector bundles over X then neither ker f nor
coker f will necessarily be a vector bundle. For an example, let X = [−1, 1] and
let E = 1. Define f : E → E by letting it be multiplication-by-t on the fiber over
t ∈ X.

8.9. Pullback of vector bundles. Suppose that p : E → X is a family of vector
spaces and f : Y → X is a map. One may form the pullback Y ×X E, more
commonly denoted f∗E in bundle theory:

f∗E Y ×X E //

��

E

��
Y // X.

A point in f∗E is a pair (y, e) such that f(y) = p(e), and one defines addition and
scalar multiplication on f∗E by (y, e) + (y, e′) = (y, e + e′) and r · (y, e) = (y, re).
This makes f∗ → Y into a family of vector spaces, called the pullback family.
If y ∈ Y then there is an evident map of vector spaces (f∗E)y → Ef(y) which one
readily checks is an isomorphism.

It is easy to see that if E is a vector bundle then so is f∗E; in this case f∗E is
called the pullback bundle.

Example 8.10.
(a) If f is an inclusion Y ↪→ X then f∗E is just the restriction E|Y that we have

discussed before.
(b) Pullback bundles can be slightly non-intuitive. Let M → S1 be the Möbius

bundle, and let f : S1 → S1 be the map z 7→ z2. We claim that f∗M ∼= 1. This
is easiest to see if one uses the following model for M :

M =
{(
eiθ, rei

θ
2
) ∣∣∣ θ ∈ [0, 2π], r ∈ R

}
.
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The bundle map is projection onto the first coordinate π : M → S1. Then
f∗M = {(eiθ, reiθ) | θ ∈ [0, 2π], r ∈ R}. This is clearly isomorphic to S1 × R,
via the map (eiθ, r) 7→ (eiθ, reiθ).

We can also demonstrate the isomorphism f∗M ∼= 1 by the following picture:

xxa b a

f

Here f is the evident map that wraps the circle around itself twice, so that f−1(x) =
{a, b}. We see that f∗M can be thought of as two copies of M that are cut open
and then sewn together as shown, thereby producing a cylinder.

Remark 8.11. Given composable maps Z
g−→ Y

f−→ X, there is an evident natu-
ral isomorphism (fg)∗E ∼= g∗(f∗E). For each topological space X and each integer
k ≥ 0, let Vectk(X) denote the set of isomorphism classes of vector bundles of
rank k on X. The pullback construction then makes Vectk(−) into a contravariant
functor from Top into Set.

8.12. Constructing vector bundles out of old ones. Let p : E → X and
p′ : E′ → X be two vector bundles, say of constant ranks k and l, respectively.
We may form a new bundle E ⊕E′, whose underlying topological space is just the
pullback E ×X E′. So a point in E ⊕ F is a pair (e, e′) where p(e) = p′(e′). The
rules for vector addition and scalar multiplication are the evident ones. Note that
the fiber of E ⊕ E′ over a point x is simply Ex ⊕ E′x.

More generally, any canonical construction one can apply to vector spaces may
be extended to apply to vector bundles. So one can talk about the bundles E⊗E′,
the dual bundle E∗, the hom-bundle Hom(E,E′), the exterior product bundle /\iE,
and so on. We will only carefully define E ⊗ E′, and leave the other definitions to
the reader.

Set-theoretically define

E ⊗ E′ = {(x, v) |x ∈ X, v ∈ Ex ⊗ E′x}.
This is clear enough, and it is clear how to define addition and scalar multiplication
in the fibers. The only thing that takes thought is how to define the topology
on E ⊗ E′, and to check that the operations are continuous. But it is enough to
define the topology locally , and to check continuity locally. If x ∈ X, let U be a
neighborhood of x over with both E and E′ are trivializable. Choose isomorphisms
φ : U × Rk → E|U and φ′ : U × Rl → E′|U . Then one gets a bijection of sets
U × (Rk⊗Rl)→ (E⊗E′)|U which is a linear isomorphism on each fiber: one sends
(u, v⊗w) to (u, φ(u, v)⊗φ′(u,w)) and then extends linearly. Finally, one uses this
bijection to transplant the topology from U × (Rk ⊗ Rl) to (E ⊗ E′)|U . We leave
the reader to fill in all the details here.
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Remark 8.13 (External sums and products). Let E → X and F → Y be two
vector bundles, but this time over possibly different base spaces. One may construct
an external direct sum E⊕̂F → X × Y whose fiber over (x, y) is Ex ⊕ Fy. The
underlying topological space of E⊕̂F is just E×F , and it has the evident operations.
Note that E⊕̂F can also be constructed as π∗1(E)⊕π∗2(F ), where π1 and π2 are the
projections from X × Y onto the two factors.

In the case X = Y we can construct the (internal) direct sum from the external
one: namely E⊕F = ∆∗(E⊕̂F ) where ∆: X → X×X is the diagonal map. Thus,
the internal and external direct sums determine each other.

One can tell a similar story about external tensor products, or external hom-
bundles.

8.14. Constructing vector bundles by patching. Let X be a space and let
A and B be subspaces such that A ∪ B = X. Recall that if fA : A → Y and
fB : B → Y are continuous maps that agree on A ∩ B then we may patch these
together to get a continuous map f : X → Y provided that either (i) A and B are
both closed, or (ii) A and B are both open. This is a basic fact about topological
spaces. The analogous facts for vector bundles are very similar in the case of an
open cover, but more subtle for closed covers.

Proposition 8.15. Let E → X be a family of vector spaces.
(a) If {Uα} is an open cover of X and each E|Uα

is a vector bundle, then E is a
vector bundle.

(b) Suppose {A,B} is a cover of X by closed subspaces, and that for every x ∈ A∩B
and every open neighborhood x ∈ U ⊆ X there exists a neighborhood x ∈ V ⊆ U
such that V ∩A∩B ↪→ V ∩B has a retraction. Then if E|A and E|B are both
vector bundles, so is E.

Proof. Part (a) is trivial, so we focus on (b). Let x ∈ X, with the goal of producing
a local trivialization around x. There are three cases: x ∈ X −A, x ∈ X −B, and
x ∈ A∩B. If x ∈ X −B then x ∈ A, and since E|A is a vector bundle there exists
an open subset U of X such that E|A is trivializable over U ∩A. If V = U ∩(X−B)
then V is an open neighborhood of x in X and V ⊆ U ∩A, so E is trivializable on
V . A similar argument works if x ∈ X −A.

Finally, we analyze the case x ∈ A ∩ B. The fact that E|A is a vector bundle
implies that there exists an open set x ∈ U ⊆ X such that E is trivializable over
U ∩ A. So there exist independent sections s1, . . . , sn defined on U ∩ A. By our
assumption there exists a neighborhood x ∈ U ′ ⊆ U such that U ′∩A∩B ↪→ U ′∩B
has a retraction. Pre-composing the maps si|U ′∩A∩B with this retraction, we obtain
maps s′1, . . . , s

′
n : U ′ ∩B → E that are everywhere linearly independent.

Now patch the section si|U ′∩A together with s′i|U ′∩B (these agree on the intersec-
tion by construction) to form a section ti : U ′ → E. These sections are everywhere
independent, and so give a local trivialization of E on U ′. �

Remark 8.16. A good example of Proposition 8.15(b) is the covering of a sphere
Sn by its upper and lower hemispheres.

Corollary 8.17 (Patching vector bundles). Let {A,B} be a cover of the space X.
Suppose given vector bundles EA → A and EB → B, together with a vector bundle
isomorphism φ : EA|A∩B → EB |A∩B. Then there exists a vector bundle E → X
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such that E|A is isomorphic to EA and E|B is isomorphic to EB provided that one
of the following conditions holds:

(i) A and B are both open, or
(ii) A and B is a closed cover satisfying the hypotheses in part (b) of Proposi-

tion 8.15.

Proof. Define E to be the pushout of the following diagram:

EA|A∩B

��

φ // EB |A∩B // // EB

��
EA // E.

The maps EA → X and EB → X yield a map E → X, and one readily checks
that this inherits the structure of a family of vector spaces. It is also evident that
E|A ∼= EA and E|B ∼= EB . It only remains to verify that E is a vector bundle, and
this is a direct application of Proposition 8.15. �

Corollary 8.17 admits a generalization to arbitrary open coverings. Suppose {Uα}
is an open cover of X, and assume given a collection of vector bundles Eα → Uα.
For each α and β further assume given an isomorphism

φβ,α : Eα|Uα∩Uβ

∼=−→ Eβ |Uα∩Uβ
.

Let E be the quotient of qαEα by the equivalence relation generated by saying
(α, vα) ∼ (β, φβ,α(vα)) for every α, β, and vα ∈ Eα|Uα∩Uβ

. Here we are writing
(α, vα) for the element vα in qγEγ that lies in the summand indexed by α.

It is easy to see that in this generality E is a family of vector spaces. It is not
necessarily the case, however, that E|Uα

∼= Eα. If this were true for all α then of
course E would be a vector bundle and we would be done. Here is the trouble,
though. Suppose α0, α1, . . . , αn are a sequence of indices such that α0 = αn =
α. If v ∈ Eα then we identify v with φα1,α0(v), which is in turn identified with
φα2,α1(φα1,α0(v)), and so forth—so that v ends up being identified with(

φαn,αn−1 ◦ φαn−1,αn−2 ◦ · · · ◦ φα1,α0

)
(v).(8.18)

Note that, like v, this expression is an element of Eα. So identifications are possibly
being made within individual summands of qαEα, rather than just between differ-
ent summands. The fibers of E|Uα are quotients of those in Eα, but they might not
be identical. To prohibit this from happening we impose some extra conditions: for
any indices α, β, γ we require that

(i) φα,α = id,
(ii) The two isomorphisms φγ,α and φγ,β ◦φβ,α agree on their common domain of

definition, which is Eα|Uα∩Uβ∩Uγ .
We leave it to the reader to check that these conditions force any expression as
in (8.18), with α0 = αn, to just be equal to v (in particular, note that they force
φα,β = φ−1

β,α). So the fibers of E coincide with the fibers of the Eα’s, we get
isomorphisms E|Uα

∼= Eα, and hence E is a vector bundle.
Condition (ii) above is usually called the cocycle condition. To see why, con-

sider the case where all of the Eα’s are trivial bundles of rank n. Then the data
in the φα,β maps is really just the data of a map gα,β : Uα ∩ Uβ → GLn(R). These
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gα,β maps are called transition functions. Condition (ii) is the requirement that
the transition functions assemble to give a Čech 1-cocycle with values in the group
GLn(R). Condition (i) is just a normalization condition, so that we are deal-
ing with ‘normalized’ Čech 1-cocycles. Elements of the Čech cohomology group
Ȟ1(U•;GLn(R)) can be seen to be in bijective correspondence with isomorphism
classes of vector bundles on X that are trivializable over the Uα’s; if we take the
direct limit over all open coverings then we obtain a bijection between isomor-
phism classes of vector bundles on X and elements of the Čech cohomology group
Ȟ1(X;GLn(R)). But we are getting ahead of ourselves here; see Section 11.6 for
more discussion.

8.19. Dual bundles. Let E → X be a vector bundle of rank n. Using the
method of Section 8.12 we can define the dual bundle E∗, which set-theoretically
is {(x, v) |x ∈ X, v ∈ E∗x}. One can examine this construction in terms of patching
trivial bundles. Choose an open cover {Uα} of X with respect to which E is triv-
ializable; a choice of trivialization over each Uα then yields a collection of gluing
maps φα,β . We think of E as being built from the trivial bundles Eα = Uα × Rn
via these gluing maps. Then the dual bundle E∗ is built from the trivial bundles
Uα × (Rn)∗ via the duals of the gluing maps: that is, (φE

∗
)β,α =

(
φEα,β

)∗.
We will see in a moment (Corollary 8.23) that for real vector bundles over para-

compact Hausdorff spaces one always has E ∼= E∗, although the isomorphism is
not canonical. This is not true for complex or quaternionic bundles, however.

Let L→ CPn be the tautological complex line bundle over CPn. Its (complex)
dual L∗ is called the canonical line bundle over CPn. Whereas from a topological
standpoint neither L nor L∗ holds a preferential position over the other, in algebraic
geometry there is an important difference between the two. The difference comes
from the fact that L∗ has certain “naturally defined” sections, whereas L does not.
For a point z = [z0 : · · · : zn] ∈ CPn, Lz is the complex line in Cn+1 spanned
by (z0, . . . , zn). Given only z ∈ CPn there is no evident way of writing down a
point on Lz, without making some kind of arbitrary choice; said differently, the
bundle L does not have any easily-described sections. In contrast, it is much easier
to write down a functional on Lz. For example, let φi be the unique functional
on Lz that sends the point (z0, . . . , zn) to zi. Notice that this description depends
only on z ∈ CPn, not the point (z0, . . . , zn) ∈ Cn+1 that represents it; that is, the
functional sending (λz0, . . . , λzn) to λzi is the same as φi. In this way we obtain
an entire Cn+1’s worth of sections for L∗, by taking linear combinations of the φi’s.

To be clear, it is important to realize that L has plenty of sections—it is just that
one cannot describe them by simple formulas. The slogan to remember is that the
bundle L∗ has algebraic sections, whereas L does not. In algebraic geometry the
bundle L∗ is usually denoted O(1), whereas L is denoted O(−1). More generally,
O(n) denotes (L∗)⊗n when n ≥ 0 (so that O(0) is the trivial line bundle), and
denotes L⊗(−n) when n < 0.

8.20. Inner products on bundles. It is nearly possible to develop everything
we need from bundle theory without using inner products, and in the rest of the
text we do try to minimize our use of them. But for some results the use of inner
products does provide significant simplifications of proofs, and so it is good to know
about them.
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Definition 8.21. Let E → X be a real vector bundle. An inner product on E
is a map of vector bundles E ⊗ E → 1 that induces a positive-definite, symmetric,
bilinear form on each fiber Ex. A vector bundle with an inner product is usually
called an orthogonal vector bundle.

There is a similar notion for Hermitian inner products on complex vector bun-
dles, but here we cannot phrase things in terms of the tensor product because of
conjugate-linearity in one variable. So perhaps the simplest thing is just to say that
if E → X is a complex bundle then a Hermitian inner product is a map E×XE → 1
(over X) which induces a Hermitian inner product on each fiber.

Proposition 8.22. Assume that X is paracompact and Hausdorff. Then any real
bundle on X admits an inner product, and any complex bundle on X admits a
Hermitian inner product.

Proof. The idea is to produce the necessary inner products locally, and then use a
partition of unity to average the results into a global inner product.

Let E → X be a real vector bundle, and let {Uα} be an open cover over which
the bundle is trivial. Choose bundle isomorphisms fα : E|Uα

∼= Uα × Rn, for each
α. Equip Rn with the standard Euclidean inner product, and let 〈−,−〉α be the
inner product on E|Uα obtained by transplanting the Euclidean product across the
isomorphisms fα.

Let {φα} be a partition of unity subordinate to the cover {Uα}. For x ∈ X and
v, w ∈ Ex define

〈v, w〉 =
∑
α

φα(x) · 〈v, w〉α.

It is clear that this is continuous in v and w, bilinear, symmetric, and positive-
definite—these follow from the corresponding properties of the forms 〈−,−〉α. So
this completes the construction.

The proof for Hermitian inner products on a complex bundle is basically identi-
cal. �

Corollary 8.23. Let E → X be a real vector bundle on a paracompact Hausdorff
space X. Then E is isomorphic to its dual E∗.

Proof. Start by equipping E with an inner product E ⊗ E → 1, and note that the
fiberwise forms are nondegenerate (since they are positive-definite). The adjoint of
the above bundle map is a map E → E∗, and nondegeneracy of the fiberwise forms
shows that this is a fiberwise isomorphism. �

Remark 8.24. Here is an illuminating exercise. Every complex vector space may
be equipped with a nondegenerate, symmetric bilinear form. Check that the proof
of Proposition 8.22 does not generalize to show that every complex vector bundle
may be equipped with a symmetric bilinear form that is nondegenerate on the
fibers—in particular, find the point where the proof breaks down. Note that if the
proof did generalize, one could show just as in Corollary 8.23 that every complex
bundle was isomorphic to its own dual. This is false, as we will see in Example 8.26
below. The complex version of Corollary 8.23 says that if E → X is a complex
bundle over a paracompact space then E is isomorphic to the conjugate of E∗ (the
bundle obtained from E∗ by changing the complex structure so that z ∈ C acts as
z̄).
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Consider a trivial bundle X × Rn → X and equip it with the standard inner
product. This bundle may be considered as trivial in two different ways: the vector
bundle structure is trivial, and the inner product structure is also trivial. It is not
clear a priori that the former property implies the latter, but in fact it does:

Proposition 8.25. Let X be a space. Every inner product on X×Rn is isomorphic
to the ‘constant’ inner product provided by the standard Eucliden metric.

Proof. Consider Rn with its standard basis e1, . . . , en. Inner products on Rn are in
bijective correspondence with symmetric, positive-definite matrices A ∈Mn×n(R),
by sending an inner product 〈−,−〉 to the matrix aij = 〈ei, ej〉. Let Msym,+ denote
the space of such matrices. To give an inner product on the trivial bundle X ×Rn
is therefore equivalent to giving a map X →Msym,+.

Given an isomorphism Rn → Rn we may transplant an inner product from the
target onto the domain; this gives rise to an action of GLn(R) on the space of inner
products. If P ∈ GLn(R) and A ∈ Msym,+ then the action is P.A = PAPT . The
fact that every inner product on Rn has an orthonormal basis shows that Msym,+

equals the orbit of the identity matrix In under this action. The stabilizer of the
identity is of course the orthogonal group On, and so we obtain the homeomorphism
GLn(R)/On ∼= Msym,+.

Now consider the fibration sequence On ↪→ GLn(R) → GLn(R)/On. The pro-
jection map sends a matrix P to PInP

T = PPT . The inclusion On ↪→ GLn(R)
is a homotopy equivalence by Gram-Schmidt, and so GLn(R)/On is weakly con-
tractible. Standard techniques show that this homogeneous space may be given the
structure of a CW-complex. The lifting diagram

GLn(R)

����
GLn(R)/On

id //

r
77

GLn(R)/On

therefore has a lift as indicated.
As we have discussed, our given inner product on X×Rn is represented by a map

X → GLn(R)/On. Compose with r to obtain X → GLn(R). This map specifies a
bundle isomorphism X×Rn → X×Rn; if we equip the domain with our given inner
product and the codomain with the standard inner product, this map preserves the
inner products and therefore proves the proposition. �

Suppose that E → X is a rank n real vector bundle with an inner prod-
uct. Choose a trivializing open cover {Uα}, and for each α fix an inner-product-
preserving trivialization fα : E|Uα → Uα × Rn where the codomain has the stan-
dard inner product (this is possible by Proposition 8.25). The transition functions
gα,β : Uα ∩ Uβ → GLn(R) therefore factor through On, as they must preserve the
inner product. This process is usually referred to as reduction of the structure
group.

We may use these ideas to give another proof of Corollary 8.23, one that is
perhaps more down-to-earth. Let E → X be a real vector bundle on a compact
space, and choose a trivializing cover {Uα} with respect to which there exist local
trivializations where the transition functions are maps gα,β : Uα ∩Uβ → On. So we
obtain E by gluing together the spaces Eα = Uα×Rn via the maps gα,β . But then
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we obtain E∗ by gluing together the spaces Uα × (Rn)∗ via the maps

hβ,α = g∗α,β .

Recall that in terms of matrices the dual is represented by the transpose. Since
each gα,β(x) is in On we can write hβ,α(x) = gα,β(x)−1, or

hα,β(x) = hβ,α(x)−1 = gα,β(x).

In other words, the transition functions for E and E∗ are exactly the same, and
that is why the bundles are isomorphic.

We close this section with the promised example of a complex bundle that is not
isomorphic to its dual:

Example 8.26. Let D+ and D− denote the upper and lower hemisphere of S2;
let S1 be the equator, which we identify with the unit complex numbers. Given a
map f : S1 → GLn(C) we may construct a complex bundle on S2 by taking two
trivial bundles nD+

and nD− and gluing them together using the map f : precisely,
for z ∈ S1 an element v ∈

(
nD+

)
z

is glued to f(z) · v ∈
(
nD−

)
z
. Here we are using

Corollary 8.17(b). Let E(f) denote the resulting bundle.
Observe that giving an isomorphism E(f) → E(g) is equivalent to giving two

maps A : D+ → GLn(R) and B : D− → GLn(C) such that g(z) ·A(z) = B(z) · f(z)
for all z ∈ S1. Let us rewrite this as A(z) = g(z)−1B(z)f(z). Now, the map
B|S1 : S1 → GLn(C) is null-homotopic because it extends over D−; so it is (un-
based) homotopic to the constant map at 1. Therefore the map z 7→ g(z)−1B(z)f(z)
is homotopic to g(z)−1f(z). But A|S1 is also (unbased) homotopic to the constant
map at 1, because it extends over D+. So we have proven that if E(f) ∼= E(g) then
z 7→ g(z)−1f(z) is unbased homotopic to a constant.

Next, observe that the dual of E(f) is E(f ′), where f ′(z) =
[
f(z)T

]−1. So if
E(f) is isomorphic to its dual then the map z 7→ f(z)T · f(z) is null-homotopic.

Consider the case f(z) = z. Since z 7→ z2 is not null-homotopic, we see that
E(f) is not isomorphic to its dual. The reader may wish to check that E(f) is the
tautological line bundle L→ CP 1.

9. Some results from fiberwise linear algebra

Recall that our basic goal is to learn to do linear algebra “over a base space”.
The fundamental objects in this setting are the vector bundles, and the maps are
the bundle maps. This section contains a miscellany of results that are frequently
useful. This material can be safely skipped the first time through and referred back
to as needed.

Lemma 9.1. Let X be any space, and let f : n� k be a surjective map of bundles.
Then f has a splitting.

Note that the result is not immediately obvious. Of course one can choose a
splitting in each fiber, but what guarantees that these can be chosen in a continuous
manner?

Proof. Let W = {A ∈ Mk×n | rankA = k}, which is the space of surjective maps
Rn → Rk (our matrices act on the left). Let Z be the space

Z = {(A,B) |A ∈Mk×n, B ∈Mn×k, AB = I},
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which is the space of surjective maps with a chosen splitting. We claim that the
projection map p1 : Z →W is a fiber bundle with fiber Rk(n−k), but defer the proof
for just a moment. The fact that the fiber is contractible then shows that p1 is
weak homotopy equivalence.

Consider the diagram
Z

∼p1
����

W W.

The Lie group GLn(R)×GLk(R) acts on W via change-of-basis in the domain and
range, and this action is transitive. So W is homeomorphic to a homogeneous space
(GLn(R)×GLk(R))/H for some subgroup H. From this it is not hard to see that
W can be given the structure of a CW-complex. The standard lifting theorems
now show that there is a lifting r : W → Z in the above diagram.

Our surjective bundle map f : n → k is determined by a map X → W . Com-
posing with W → Z, and then projecting to the second coordinate of Z, gives the
desired splitting for f .

It remains to prove the claim about p1 being a fiber bundle. Let A ∈ W . Since
rank(A) = k there is a k×k minor of A that is nonzero; without loss of generality let
us assume that it is minor made up of the first k columns of the matrix. Let U ⊆W
be the subspace consisting of all matrices where this same minor is nonzero, which
is an open neighborhood of A in W . Writing matrices in block form, U consists of
matrices [X|Y ] where where det(X) 6= 0. Then p−1

1 (U) consists of pairs

αX,Y,J,K =
([
X Y

]
,

[
J
K

])
having the property that det(X) 6= 0 and XJ + Y K = Ik. We obtain an iso-
morphism U × Mn−k,k(R) ∼= π−1(U) by sending ([X|Y ],K) to αX,Y,J,K with
J = X−1(Ik − Y K). �

Note the significance of the map W → Z that is produced in the above proof.
This assigns to every surjection Rn → Rk a splitting, and it does so in a continuous
manner. Of course there is no claim that there is a nice formula for how to do this,
and in fact there almost certainly is not—but the proof shows that there does exist
some way of doing so.

The following proposition is the generalization to arbitrary bundles:

Proposition 9.2. Let X be a paracompact space. Then any surjection of bundles
E � F has a splitting.

Proof. Briefly, we choose local splittings and then use a partition of unity to patch
them together.

Choose an open cover {Uα} such that both E and F are trivializable over each
Uα. Lemma 9.1 shows that there are splittings χα : FUα → EUα . Now choose a
partition of unity {φα} subordinate to our open cover. Set χ =

∑
α φαχα. This

sum makes sense because the partition of unity is locally finite, and one readily
checks that it is a splitting for f . �

The next result gives a useful tool for recognizing vector bundles. The proof
follows the same pattern of the previous two results.
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Proposition 9.3. Let X be any space, and let f : E → F be a map of vector
bundles over X. If f has constant rank then ker f , coker f , and im f are vector
bundles.

Proof. We first prove the result for ker f and coker f . Let x ∈ X, let n = rankx(E),
let k = rankx(F ), and let r = rank(f). It will suffice to produce a neighborhood U
of x together with n−r independent sections of ker f over U and k−r independent
sections of coker f over U . In particular, this makes it clear that we might as well
assume that E and F are both trivial bundles; in this case f is specified by a map
X →Wr where Wr = {A ∈Mk×n | rank(A) = r}.

Let Zr be the space
Zr = {(A, v1, . . . , vn−r) |A ∈Mk×n, rank(A) = r,

and v1, . . . , vn−r span the kernel of A}.
One can check that the projection Zr →Wr is a fiber bundle with fiber GLn−r(R),
but this is stronger than what we actually need. We only need that the map is
locally split: any point in Wr has a neighborhood over which there exists a section.
Given a map X →Wr, it will then follow that every point in x has a neighborhood
over which there exists a lifting into Zr, and this will give the n − r independent
local sections of ker f .

So let A be a point in Wr. Since rank(A) = r, some r× r minor of A is nonzero.
Without loss of generality we might as well assume it is the upper left r× r minor.
Since rank(A) = r, then for j > r the jth column of A is a linear combination of
the first r columns in a unique way; said differently, there is a unique vector of the
form

vj = ej − s1e1 − s2e2 − · · · − srer
that is in the kernel of A. Here the si’s are certain rational expressions in the
matrix entries of A that can be determined using Cramer’s Rule. These formulas
define sections on the neighborhood U of A consisting of all k× n matrices of rank
r whose upper left r × r minor is nonzero. This finishes the proof of our claim.

We have established that ker f is a vector bundle. The proof for coker f is entirely
similar. Finally, consider the projection F → coker f . This map has constant rank,
and so by what has already been established its kernel is a vector bundle. Notice
that this kernel is precisely imα. �

The result below is an easy variation on Proposition 9.2; it will be used often,
and so it is useful to have it stated explicitly.

Corollary 9.4. Let X be a paracompact space. Then any injection of bundles
E ↪→ F has a splitting.

Proof. Let Q be the quotient, which is a vector bundle by Proposition 9.3. By
Proposition 9.2 the map F � Q has a splitting, which then induces an isomorphism
F ∼= E ⊕ Q. The composition F

∼=−→ E ⊕ Q π1−→ E gives the required splitting of
E ↪→ F . �

The next result is of a somewhat different nature:

Proposition 9.5. Suppose that X is compact and Hausdorff. Then every bundle
is a subbundle of some trivial bundle.
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Proof. Let π : E → X be a vector bundle on X. Choose a finite cover U1, . . . , Us
over which E is trivializable, which exists because of compactness. For each i choose
a trivialization fi : E|Ui

∼=−→ Ui × Rn. Write Fi = π2fi.
Let {φi} be a partition of unity subordinate to the open cover. Define a map

β : E −→ X × Rn × Rn × · · · × Rn

(where there are s copies of Rn) by the formula

β(v) =
(
πv, φ1(πv)F1(v), . . . , φs(πv)Fs(v)

)
.

We have written πv instead of π(v) here, to avoid being overwhelmed by parenthe-
ses. Note that if v is not in E|Ui then Fi(v) is undefined, but in this case φi(πv)
equals 0 and so the formula still makes sense. It is routine to check that this formula
gives an embedding of bundles. �

Finally, we close this section with a few useful results related to ranks and
exactness:

Lemma 9.6. Let α : E → F be a map of vector bundles over X. Then for any
n ∈ Z≥0, the set Rn = {x ∈ X | rank(αx) ≥ n} is an open subset of X.

Proof. Let k = rank(E) and l = rank(F ). Let x ∈ Rn. We can choose a neighbor-
hood V of x over which both E and F are trivial. The map α is then specified by
a continuous function α : V → Hom(Rk,Rl) = Ml×k(R). Since rank(αx) ≥ n, some
n × n minor of α(x) is nonzero. If U ⊆ Ml×k(R) is the subspace of all matrices
for which the corresponding minor is nonzero, this is an open subset of Ml×k(R).
Then φ−1(U) is a neighborhood of x that is completely contained in Rn. �

Lemma 9.7. Let E α−→ F
β−→ G be an exact sequence of vector bundles. Then

imα (which equals kerβ) is a vector bundle.

Proof. Using Proposition 9.3 it suffices to prove that α has constant rank on each
connected component of X. Without loss of generality we can assume that X is
connected. Since the question is local on X, we can assume that E, F , and G are
all trivial bundles. Let n = rank(F ).

Pick an x ∈ X and let p = rank(αx). Then rank(βx) = n− p by exactness. Let
U = {z ∈ X | rank(αz) ≥ p} and V = {z ∈ X | rank(βz) ≥ n − p + 1}. Note that
exactness implies that U = X − V . But both U and V are open by Lemma 9.6,
which means they are also both closed. By connectedness, U is either empty or the
whole of X. Since x ∈ U , we must have U = X.

A similar argument proves that {z ∈ X | rank(αz) ≤ p} = X. So for every z ∈ X
we have p ≤ rank(αz) ≤ p; that is, the rank of α is constant on X. �

If E• is a chain complex of vector bundles on X and x ∈ X, write (Ex)• for the
chain complex of vector spaces formed by the fibers over x. Define the support
of E•, denoted SuppE•, to be the subspace {x ∈ X | (Ex)• is not exact} ⊆ X. We
will occasionally write SuppiE• for {x ∈ X |Hi((Ex)•) 6= 0}. Note that SuppE• =⋃
i SuppiE•.

Proposition 9.8. Let E• be a chain complex of vector bundles on X. Then for
any i ∈ Z, the subspace SuppiE• is closed in X. If E• is a bounded chain complex
then SuppE• is closed.



64 DANIEL DUGGER

Proof. We will prove that X − SuppiE• is open, so assume x belongs to this set.
Write the maps in the chain complex as

Ei+1
α−→ Ei

β−→ Ei−1.

Let n = rankx(Ei), a = rankx(α), and b = rankx(β). Since the complex is exact at
x in the ith spot we have a+ b = n. By Lemma 9.6 applied twice, there is an open
neighborhood U of x such that ranky(α) ≥ a and ranky(β) ≥ b for all y ∈ U . Then
we can write

a ≤ ranky(α) ≤ n− ranky(β) ≤ n− b
where the middle inequality follows from the fact that (Ey)• is a chain complex.
Since a = n− b all the inequalities are in fact equalities, and so we have exactness
at y for all y ∈ U . That is, U ⊆ X − SuppiE•.

The final statement follows from the fact that SuppE• is a finite union of the
SuppiE• spaces. �

10. Swan’s Theorem

In this section we explore our first connection between topology and algebra. We
will see that vector bundles are closely related to projective modules.

When X is a space let C(X) denote the ring of continuous functions from X to
R, where the addition and multiplication are pointwise. Recall that if E → X is a
family of vector spaces, then Γ(E) denotes the vector space of sections. In addition
to being a vector space, it is easy to see that this is actually a module over C(X):
if f ∈ C(X) and s ∈ Γ(E) then fs is the section x 7→ f(x)s(x). The assignment
E 7→ Γ(E) gives a functor from vector bundles to C(X)-modules.

It is easy to check that Γ is a left-exact functor: if 0 → E′ → E → E′′ → 0 is
an exact sequence of families of vector spaces then 0→ Γ(E′)→ Γ(E)→ Γ(E′′) is
exact.

If E → X is a vector bundle then of course the modules of the form Γ(E) are not
just arbitrary C(X)-modules; there is something special about them. It is easiest
to say what this is under some assumptions on X:

Proposition 10.1. If X is compact and Hausdorff, and E is a vector bundle over
X, then Γ(E) if a finitely-generated, projective module over C(X).

Proof. By Proposition 9.5 we can embed E into a trivial bundle N . This embedding
has constant rank, so by Proposition 9.3 the quotient Q is also a vector bundle. So
we have the exact sequence 0 → E � N � Q → 0 of vector bundles on X. Now
apply Γ(−), which yields the exact sequence

0→ Γ(E)→ Γ(N)→ Γ(Q)

of C(X)-modules. This much is for free. But by Proposition 9.2 the map N → Q
has a splitting, and this splitting shows that Γ(N)→ Γ(Q) is split-surjective. So

Γ(E)⊕ Γ(Q) ∼= Γ(N) = C(X)n.

That is, Γ(E) is a direct summand of a free module; hence it is projective. �

For the rest of this section we will assume that our base spaces are compact
and Hausdorff. Let 〈〈Vect(X)〉〉 denote the category of vector bundles over X,
and let 〈〈Mod−C(X)〉〉 denote the category of modules over the ring C(X). Let
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〈〈Proj−C(X)〉〉 denote the full subcategory of finitely-generated, projective mod-
ules. Then Γ is a functor 〈〈Vect(X)〉〉 → 〈〈Proj−C(X)〉〉. It is proven in [Sw] that
this is actually an equivalence:

Theorem 10.2 (Swan’s Theorem). Let X be a compact, Hausdorff space. Then

Γ: 〈〈Vect(X)〉〉 → 〈〈Proj−C(X)〉〉
is an equivalence of categories.

To prove this result we need to verify two things:
• Every finitely-generated projective over C(X) is isomorphic to Γ(E) for

some vector bundle E.
• For every two vector bundles E and F , the induced map

Γ: HomVect(X)(E,F )→ HomC(X)(ΓE,ΓF )

is a bijection.
That is to say, we need to prove that Γ is surjective on isomorphism classes, and is
fully faithful. Here is the first part:

Proposition 10.3. If X is paracompact Hausdorff and P is a finitely-generated
projective module over C(X), then P ∼= Γ(E) for some vector bundle E → X.

Proof. Choose a surjection p : C(X)n � P . Since P is projective, there is a splitting
χ. Then e = χp satisfies e2 = e, and P is isomorphic to im(e).

Since e : C(X)n → C(X)n we can represent e by an n×n matrix whose elememts
are in C(X). Denote the entries of this matrix as eij . Note that for any x ∈ X we
can evaluate all these functions at x to get an element e(x) ∈Mn×n(R).

Define a map of vector bundles α : Rn ×X → Rn ×X by the formula α(v, x) =
e(x) · v. Then the sequence

n
α−→ n

1−α−→ n

is an exact sequence of vector bundles. Let E = im(α), which by Lemma 9.7 is a
vector bundle on X; the proof of that lemma also shows that α has constant rank.
We claim that Γ(E) ∼= P . To see this, consider the following diagram of vector
bundles:

kerα // // n

"" ""DD
DD

DD
DD

α // n

imα.
<<

<<zzzzzzzz

The map n→ imα is split by Proposition 9.2, because X is paracompact. Applying
Γ to the above diagram gives

Γ(kerα) // // C(X)n

%% %%KKKKKKKKK
e // C(X)n

Γ(imα).
99

99sssssssss

The sequence 0 → Γ(kerα) → C(X)n → Γ(imα) → 0 is exact because it was
split-exact before applying Γ, and the identification Γ(kerα) = ker(Γα) shows that
Γ(kerα) is the kernel of e. It now follows that Γ(imα) is isomorphic to the image
of e, which is P . �
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Our final goal is to prove that Γ is fully faithful. To do this, it is useful to relate
the fibers Ex of our bundle to an algebraic construction based on the module Γ(E).
For each x ∈ X consider the evaluation map evx : C(X) → R, and let mx be the
kernel. The ideal mx ⊆ C(X) is maximal, since the quotient is a field.

Note that we have the evaluation map evx : Γ(E)→ Ex. This map clearly sends
the submodule mxΓ(E) to zero.

Lemma 10.4. Assume that X is paracompact Hausdorff. Then for any vector
bundle E → X and any x ∈ X, the map evx : Γ(E)/mxΓ(E)

∼=−→ Ex is an isomor-
phism.

Proof. We first record the following important fact, which we label (*): if s is
a section of E defined on some open neighborhood U of x, then there exists a
section s′ defined on all of X such that s and s′ agree on some (potentially smaller)
neighborhood of x. To see this, first choose an open neighborhood V of x such
that V ⊆ U (this exists because X is normal). By Urysohn’s Lemma there is a
continuous function f : X → R such that f |V = 1 and f |X−U = 0. The assignment
z 7→ f(z) · s(z) is readily checked to be a continuous section of E that agrees with
s on V .

To prove surjectivity of evx, let v ∈ Ex. Since E is locally trivial, one can find
a section s defined locally about x such that s(x) = v. By principle (*) there is a
section s′ defined on all of X that agrees with s near x; in particular, s′(x) = v.

For injectivity we must work a little harder. Suppose that s ∈ Γ(E) and s(x) = 0.
We must prove that s ∈ mxΓ(E). Choose independent sections e1, . . . , en defined
on U . Fact (*) says that by replacing U by a smaller neighborhood of x we can
assume that the sections are defined on all of X (but only independent on U).

Using that e1(y), . . . , en(y) is a basis for Ey when y ∈ U , we can write s(y) =
a1(y)e1(y) + · · · + an(y)en(y) for uniquely defined numbers a1(y), . . . , an(y) ∈ R.
The functions ai are continuous, since they may be expressed by determinantal
formulas via Cramer’s Rule. Regarding the ai’s as local sections of the trivial
bundle X × R, (*) shows we may assume the ai’s are defined on all of X (again,
we need to replace U with a smaller neighborhood here). Since s(x) = 0 note that
0 = a1(x) = a2(x) = · · · = an(x).

Let t = s− a1e1 − · · · − anen ∈ ΓE. Note that t vanishes throughout the neigh-
borhood U of x. Again using the Urysohn Lemma, choose a continuous function
b : X → R such that b(x) = 0 and b|X−U = 1. Observe that

s(y) = b(y)t(y) + a1(y)e1(y) + . . .+ an(y)en(y),

for every y ∈ X: for if y ∈ U then t(y) vanishes, and if y /∈ U then b(y) = 1.
So s = bt + a1e1 + · · · + anen, and the expression on the right is manifestly in
mxΓ(E). �

Proposition 10.5. Assume that X is paracompact Hausdorff. Then for any vector
bundles E and F over X, the map Γ: HomVect(X)(E,F ) → HomC(X)(ΓE,ΓF ) is
a bijection.

Proof. First of all, it is easy to check this when E and F are both trivial. A map
of vector bundles Rk ×X → Rl ×X is uniquely specified by a map X →Ml×k(R),
and likewise a map of C(X)-modules C(X)k → C(X)l is specified by an l × k
matrix with entries in C(X). One observes that continuous maps X → Ml×k(R)
bijectively correspond with l × k matrices with entries in C(X).
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For the general case, consider the following diagram:

HomVect(X)(E,F )
��

��

Γ // HomC(X)(ΓE,ΓF )

��∏
x∈X Hom(Ex, Fx)

∼= //
∏
x∈X Hom(ΓE/mxΓE,ΓF/mxΓF ).

The bottom horizontal map is an isomorphism by Lemma 10.4. The left vertical
arrow sends a bundle map α : E → F to the collection of its restrictions to each
fiber; surely this map is an injection. It follows at once that Γ is also an injection.

It remains to show that the top horizontal map is a surjection, so let β ∈
HomC(X)(ΓE,ΓF ). We can apply the right vertical arrow to β, and then find
a unique preimage in

∏
x Hom(Ex, Fx) using that the bottom map is an isomor-

phism. This gives us a map of sets α : E → F , by defining it on each of the fibers.
We need to prove that α is continuous. However, this is a local question: so it
suffices to do so in the case that E and F are trivial, and this case has already been
verified. So we have produced a bundle map α : E → F whose restriction to each
fiber agrees with the map β. It follows that α is sent to β by Γ. �

Note that we have now completed the proof of Swan’s Theorem, via Proposi-
tions 10.3 and 10.5.

10.6. Variants of Swan’s Theorem. ????

11. Homotopy invariance of vector bundles

For a fixed n, let Vectn(X) denote the set of isomorphism classes of vector
bundles on X. It turns out that when X is a finite complex this set is always
countable, and often finite. It actually gives a homotopy invariant of the space X.

Write i0 and i1 for the two inclusions X ↪→ X × I coming from the boundary
points of the interval. The key to homotopy invariance is the following result.

Proposition 11.1. Let X be paracompact, and let E → X × I be a vector bundle.
Then there is an isomorphism i∗0(E) ∼= i∗1(E).

Before proving this let us give the evident corollaries:

Corollary 11.2. Fix n ≥ 0.
(a) If f, g : X → Y are homotopic then f∗ and g∗ give the same map Vectn(Y )→

Vectn(X).
(b) If f : X → Y is a homotopy equivalence then f∗ : Vectn(Y ) → Vectn(X) is a

bijection, for all n ≥ 0.
(c) If X is contractible then all vector bundles on X are trivializable.

Proof. For (a), let H : X × I → Y be a homotopy and consider the diagram

Vectn(X) Vectn(X × I)
i∗0oo
i∗1

oo Vectn(Y ).H∗
oo

One of the compositions is f∗, the other is g∗, and Proposition 11.1 says that the
two compositions are the same.

Parts (b) and (c) are simple consequences of (a). �
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Example 11.3. To give an idea how we will apply these results, let us think
about vector bundles on S1. Divide S1 into an upper hemisphere D+ and a lower
hemisphere D−, intersecting in two points. Each of D+ and D− are contractible,
so any vector bundle will be trivializable when restricted to these subspaces.

Given two elements α, β ∈ GLn(R), let En(α, β) be the vector bundle on S1

obtained by taking nD+
and nD− and gluing them together via α and β at the

two points on the equator. The considerations of the previous paragraph tell us
that every vector bundle on S1 is of this form. The following picture depicts the
construction of En(α, β):

α β
−1 1

−1 1

Note that En(id, id) = n, and E1(id,−1) = M (the Möbius bundle). It is easy
to check the following:
(1) En(α, β) ∼= En(id, α−1β)
(2) En(id, β) ∼= En(id, β′) if and only if β and β′ are in the same path component

of GLn(R) (or equivalently, if det(β) and det(β′) have the same sign).
In (2) we have used the fact that π0(GLn(R)) = Z/2, with the isomorphism being
given by the sign of the determinant.

Let us explain the above facts. The isomorphism in (1) can be depicted as

α β
−1 1

−1 1
id α−1β

f

g

−1 1

−1 1

Here f and g are maps D+ → GLn(R) and D− → GLn(R) giving the isomorphisms
on each fiber; compatibility with the gluing requires that we have g(−1)α = f(−1)
and α−1βf(1) = g(1)β. This can be achieved by letting f(t) = In and g(t) = α−1,
for all t.

The proof of (2) is a little more subtle. To give an isomorphism E(id, β) ∼=
E(id, β′) we must again specify maps f and g as above, but this time satisfying
g(−1) = f(−1) and β′f(1) = g(1)β. If we paste D+ and D− together at −1
and identify the resulting interval with [0, 1], then we are just asking for a map
h : [0, 1]→ GLn(R) such that β′h(1) = h(0)β.

If β and β′ are in the same path component then choose a path h : I → GLn(R)
such that h(0) = β′ and h(1) = β. Since we then have β′h(1) = h(0)β, this yields
the desired isomorphism. Conversely, if we have a map h satisfying β′h(1) = h(0)β
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then we can rearrange this as β′ = h(0)βh(1)−1. The term on the right is path-
connected to h(0)βh(0)−1, using the homotopy t 7→ h(0)βh(t)−1. But h(0)βh(0)−1

has the same determinant as β, so these are also in the same path-component.
Hence, β′ and β are themselves path-connected and this proves (2).

To summarize, from (1) and (2) it follows that isomorphism types for rank n bun-
dles over S1 are in bijective correspondence with the path components of GLn(R).
We know that for n > 0 there are two such path components, which can be rep-
resented by the identity matrix and the diagonal matrix J whose diagonal entries
are −1, 1, 1, . . . , 1. The corresponding bundles En(id, β) are n and M ⊕ (n− 1).

Most of the basics of this discussion generalize readily from S1 to Sk. We discuss
this in Proposition 12.2.

The methods of the above example apply in much greater generality, and with
little change allow one to get control over vector bundles on any suspension. We
will return to this topic in the next section.

At this point let us now give the proof of Proposition 11.1. This proof is from
[Ha2].

Proof of Proposition 11.1. Pick an x ∈ X. Using the compactness of I and the
definition of vector bundle, we may find an open neighborhood U ⊆ X of x and
values 0 = a0 < a1 < ... < an−1 < an = 1 such that E is trivial over each
U × [ai, ai+1]. Patching these together gives a trivialization of the vector bundle
over U × I.

Now assume for a moment that X is compact. Then we can cover X by open sets
U1, . . . , Un such that E is trivial over each Ui × I. Fix trivializations of each E|Ui .
Choose a partition of unity φ1, . . . , φn subordinate to this cover, and set β0 = 0,
βi = φ1 + . . .+ φi. Define Xi to be the graph of βi in X × I. Observe that βn = 1
and thus Xn = X × {1}, X0 = X × {0}.

There are homeomorphisms X → Xi given by x 7→ (x, βi(x)). Via these we can
think of each Xi as a copy of X.

X0

X1

X3

X2

X4

There are maps fi : Xi → Xi−1 defined by “pushing down until you hit the next
graph”, and each of these is a homeomorphism. We may restrict E over each Xi,
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and a little effort yields diagrams

E|Xi

��

// E|Xi−1

��
Xi

fi // Xi−1.

Here, the top map uses the fact Xi and Xi−1 coincide except over the open set Ui,
and that E|Ui is trivial. Each map E|Xi → E|Xi−1 is an isomorphism on the fibers.

Via the identifications X ∼= Xi, each E|Xi is a vector bundle on X and we have
isomorphisms

i∗1(E) = E|Xn

∼=−→ E|Xn−1

∼=−→ E|Xn−2

∼=−→ · · ·
∼=−→ E|X1

∼=−→ E|X0 = i∗0(E).

This gives us what we wanted.
The paracompact case is similar, except now we only have a countable covering

rather than a finite one. One can still make sense of the countable composition
of the resulting isomorphisms, and essentially the same proof goes through. The
reader is referred to [Ha2] for complete details. �

Remark 11.4. The isomorphism i∗0(E) ∼= i∗1(E) is not canonical, as is clear from
the proof of the theorem.

Remark 11.5. We have seen that all bundles on contractible spaces are trivial,
and that there is a close connection between vector bundles and projective modules.
Recall that when k is a field then k[x1, . . . , xn] is the algebraic analog of affine space
An, and that projectives over this ring correspond to algebraic vector bundles. The
analogy with topology is what led Serre to conjecture that all finitely-generated
projectives over k[x1, . . . , xn] are free, as we discussed in Example 3.2.

We have proven that if E is a vector bundle on X × I then i∗0(E) ∼= i∗1(E).
It is natural to wonder if this result has a converse, but stating such a thing is
somewhat tricky. Here is one possibility: if F and F ′ are isomorphic vector bundles
on X, is there a vector bundle E on X × I such that i∗0(E) ∼= F and i∗1(E) ∼= F ′?
Unfortunately, this has a trivial answer: yes, just take E = π∗(F ) where π : X×I →
X is the projection. So this phrasing of the question was not very informative.

Here is another possibility: if F and F ′ are isomorphic vector bundles on X, is
there a vector bundle E on X × I such that i∗0(E) = F and i∗1(E) = F ′? Note the
presence of equalities here, as opposed to isomorphisms. This question does not
have an obvious answer, but it is also the kind of question that one really doesn’t
want to be asking: saying that two abstract gadgets are equal , rather than just
isomorphic, is going to force us down a path that requires us to keep track of too
much data.

So we find ourselves in somewhat of a muddle. Perhaps there is an interesting
question here, but we don’t quite know how to ask it. One approach is to restrict to
a class of bundles where “equality” is something we can better control. For example,
one can restrict to bundles on X that sit inside of X × R∞. Here, finally, we have
an interesting question: if F and F ′ are two such bundles, which are abstractly
isomorphic, is there a bundle E inside of (X × I)× R∞ that restricts to F and F ′

at times 0 and 1? The answer is yes, and we will next explain why.
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11.6. Classifying spaces. We may view a vector bundle as a family of vector
spaces indexed by the base space. In general, we may view a map X → Y as
a family of blah if each fiber is a blah. We naively hope that families of some
mathematical object over X are in bijection with maps from X to some space,
called the moduli space corresponding to that mathematical object. With this
naive idea, we would hope that families over ∗ are in bijective correspondence with
points of our moduli space. However, this does not work since the moduli space of
Rn’s is ∗.

If V ⊆ W then we get an induced inclusion of Grassmannians Grk(V ) ↪→
Grk(W ). Consider the standard chain of inclusions of Euclidean spaces Rk, and de-
fine the infinite Grassmannian Grn(R∞) to be the colimit of the induced sequence
of finite Grassmannians:

Grn(R∞) = colim
k→∞

[Grn(Rk)].

Define γn → Grn(R∞) by γn = {(V, x) |V ⊂ R∞,dim(V ) = n, x ∈ V }. This is
the tautological vector bundle on the infinite grassmanian.

To any map f : X → Grn(R∞) we associate the pullback bundle

f∗γn

��

// γn

��
X

f // Grn(R∞).

The assignment f 7→ f∗γn gives a map Hom(X,Grn(R∞)) → Vectn(X). Observe
that if f, g : X → Grn(R∞) are homotopic maps, then f∗γn ∼= g∗γn by Corol-
lary 11.2(a). In this way we have constructed a map φ : [X,Grn(R∞)]→ Vectn(X).
We will show that this is an isomorphism when X is compact and Hausdorff.

Lemma 11.7. Let jev, jodd : R∞ → R∞ be given by jev(x1, x2, ...) = (0, x1, 0, x2, ...)
and jodd(x1, x2, ...) = (x1, 0, x2, 0, ...). Then jev ' jodd ' id, via homotopies H
having the property that each Ht is a linear embedding.

Proof. We prove the claim for jev; the proof for jodd is analogous. Define a homo-
topyH : R∞×I → R∞ byH(x, t) = tjev(x)+(1−t)x. This is clearly a homotopy be-
tween jev and id. It remains to be shown that this is a homotopy through linear em-
beddings. Let t ∈ (0, 1) and suppose that H(x, t) = 0. We need to show that x = 0.
Our assumption yields 0 = ((1− t)x1, tx1 + (1− t)x2, (1− t)x3, tx2 + (1− t)x4, ...).
Therefore (1− t)xi = 0 for all odd i; but since t 6= 1, this means that xi = 0 for all
odd i. Likewise, observe that txn + (1− t)x2n = 0 for all n ∈ N. So xn = 0 implies
x2n = 0. Since we have xi = 0 for all odd i and every natural number n can be
written in the form n = 2ei, it follows that x = 0. �

Theorem 11.8. The map φ : [X,Grn(R∞)] → Vectn(X) is always injective, and
is bijective when X is compact and Hausdorff.

Proof. For injectivity, assume f, g : X → Grn(R∞) are such that f∗(γn) ∼= g∗(γn)
as vector bundles over X. We will show that f is homotopic to g. Let α : f∗(γn)→
g∗(γn) be an isomorphism. By Lemma 11.7, we may replace f by jev ◦ f and g by
jodd ◦ g. In doing so, we are effectively assuming that f(x) ⊆ R∞ev and g(x) ⊆ R∞odd,
for each x ∈ X. Now simply define H : X × I → Grn(R∞) by setting H(x, t) =
{tv+(1−t)α(v) | v ∈ f(x)}. It is easy to see that H(x, t) is a subspace of R∞. Since
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f(x) and g(x) are disjoint one readily argues that H(x, t) is n-dimensional, for all t.
So we really do have a homotopy, and clearly H0 = g and H1 = f . CONTINUITY
OF H? PICTURE HERE

For surjectivity, assume X is compact and Hausdorff and let E → X be a vector
bundle of rank n. Then by Proposition 9.5 there exists an embedding j : E → N,
for large enough N (this is where we use the assumption on X). Note that N =
X × RN ⊆ X × R∞. Now define f : X → Grn(R∞) by f(x) = j(Ex) ⊆ RN ⊆ R∞.
It is left to the reader to check that f is continuous and that f∗(γn) ∼= E. �

11.9. Stabilization of vector bundles. Here is a simple application of classifying
spaces that we will occasionally find useful. Fix a space X. If E → X is a vector
bundle of rank n, then of course E ⊕ 1 is a vector bundle of rank n+ 1. We get a
sequence of maps

Vect0(X) ⊕1−→ Vect1(X) ⊕1−→ Vect2(X) ⊕1−→ · · ·
Are these maps injective? Surjective? Are there more and more isomorphism
classes of vector bundles as one goes up in rank, or is it the case that all “large”
rank vector bundles actually come from smaller ones via addition of a trivial bundle?
A homotopical analysis of classifying spaces allow us give some partial answers here.
We handle both the case of real and complex bundles:

Proposition 11.10. Let X be a finite-dimensional CW-complex. For real vector
bundles, Vectn(X)→ Vectn+1(X) is a bijection for n ≥ dimX+1 and a surjection
for n = dimX. For complex bundles, VectC

n(X) → VectC
n+1(X) is a bijection for

n ≥ 1
2 dimX and a surjection for n ≥ 1

2 (dimX − 1).

Proof. The map Vectn(X) → Vectn+1(X) is represented by a map of spaces
f : Grn(R∞)→ Grn+1(R∞). A little thought shows this to be the map that sends
a subspace V ⊆ R∞ to R ⊕ V ⊆ R ⊕ R∞ and then uses a fixed isomorphism
R ⊕ R∞ ∼= R∞ to obtain a point in Grn+1(R∞). To establish the proposition we

must analyze when [X,Grn(R∞)]
f∗−→ [X,Grn+1(R∞)] is injective/surjective.

Now, the inclusion Grn(R∞) ↪→ Grn+1(R∞) is n-connected. This can be argued
in different ways, but one way is to examine the Schubert cell decompositions of
each space and observe that they are identical until one reaches dimension n + 1.
This connectivity result implies that [B,Grn(R∞)] → [B,Grn+1(R∞)] is bijective
for CW-complexes with dimB ≤ n − 1, and surjective for CW-complexes with
dimB = n. We simply apply this to B = X.

For the complex case, Grn(C∞) ↪→ Grn+1(C∞) is now (2n + 1)-connected. So
we get the analogous bijection for CW-complexes B of dimension at most 2n, and
the surjection when dimB = 2n+ 1. �

12. Vector bundles on spheres

In this section we explore the set of isomorphism classes Vectn(Sk) for various
values of k and n. There are two important points. First, for a fixed k these
sets stablize for n � 0. Secondly, Bott was able to compute these stable values
completely and found an 8-fold periodicity (with respect to k) in the case of real
vector bundles, and a 2-fold periodicity in the case of complex bundles. Bott’s
periodicity theorems are of paramount importance in modern algebraic topology.
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12.1. The clutching construction. LetX be a pointed space, and let C+ and C−
be the positive and negative cones in ΣX. Fix n ≥ 0. For a map f : X → GLn(R),
let En(f) be the vector bundle obtained by gluing n|C+ and n|C− via the map f
(we use Corollary 8.17(b) here). Precisely, if x ∈ X and v belongs to the fiber of
nC+

over x then we glue v to f(x) · v in the fiber of nC− over x. This procedure
for constructing vector bundles on ΣX is called clutching , and every bundle on ΣX
arises in this way. By changing basis in one of the trivial bundles one sees we can
always require f(∗) = In; that is, we can require f to be a based map.

Proposition 12.2.
(a) If f, f ′ : X → GLn(R) are homotopic relative to the basepoint, then En(f) ∼=

En(f ′).
(b) The induced map En : [X,GLn(R)]∗ → Vectn(ΣX) is a bijection.

Proof. Note that (b) follows immediately from (a), since our discussion above
showed that En is a surjection. To prove (a), let f, g : X → GLn(R) be based
maps with Ef ∼= Eg. A choice of isomorphism α amounts to giving maps
α+ : U+ → GLn(R) and α− : U− → GLn(R) such that

f · (α+|X) = (α−|X) · g.
Since α+|X can be extended to C+ there is a basepoint preserving homotopy

between α+|X and the map sending X to the basepoint of GLn(R). The basepoint
of GLn(R) is just the identity map so we have f · (α+|X) ' f . The same argument
shows that α−|X ' g and hence f ' g. �

Let us apply the above result when X is a sphere Sk−1. We obtain a bijection
Vectn(Sk) ' πk−1GLn(R). For k > 2 note that the right-hand-side is a group,
although there is no evident group structure on the left-hand-side. It will be con-
venient to replace GLn(R) with its subgroup On. Recall that On ↪→ GLn(R) is
a deformation retraction, as a consequence of the Gram-Schmidt process. When
k > 2 any based map Sk−1 → On must actually factor through the connected
component of the identity, which is SOn. So we have

Vectn(Sk) ∼= πk−1GLn(R) ∼= πk−1On ∼= πk−1SOn

(where the last isomorphism needs k > 2).

12.3. Vector bundles on S1. For k = 1 and n > 0 we have that Vectn(S1) ∼=
π0GLn(R) = Z/2, and we have previously seen in Example 11.3 that the two
isomorphism classes are represented by n and M ⊕ (n− 1) where M is the Möbius
bundle.

12.4. Vector bundles on S2. Here we have Vectn(S2) ∼= π1SOn. Recall that
SO2

∼= S1, and so we get Vect2(S2) ∼= Z. We claim that for n > 2 one has
π1SOn ∼= Z/2, so that we have the following:

Proposition 12.5. Vectn(S2) ∼= π1(SOn) ∼=


1 if n = 1,
Z if n = 2,
Z/2Z if n ≥ 3.

Proof. First of all SO1 = {1} and SO2
∼= S1, so this takes care of n ≤ 2. For n = 3

recall that SO3
∼= RP 3, so that π1(SO3) ∼= Z/2. To see the homeomorphism use

the model RP 3 ∼= D3/∼ where the equivalence relation has x ∼ −x for x ∈ ∂D3.
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Map D3 → SO3 by sending a vector v to the rotation of R3 with axis 〈v〉, through
|v| · π radians, in the direction given by a right-hand-rule with the thumb pointed
along v. Note that this makes sense even for v = 0, since the corresponding rotation
is through 0 radians. For x ∈ ∂D3 this map sends x and −x to the same rotation,
and so induces a map RP 3 → SO3. This is clearly a continuous bijection, and
therefore a homeomorphism since the spaces are compact and Hausdorff.

For n ≥ 4 one can use the long exact sequence associated to the fibration
SOn−1 ↪→ SOn � Sn−1 to deduce that π1(SOn) ∼= π1(SOn−1). �

Definition 12.6. Let O(n) ∈ Vect2(S2) be the vector bundle Efn where fn : S1 →
SO2 is a map of degree n. Note that O(0) ∼= 2.

The bundles O(n), n ∈ Z, give a complete list of the rank 2 bundles on S2. To
get to rank 3 we consider the operation of adding on a trivial line bundle, and note
that we have commutative diagrams

Vectn−1(S2)
⊕1 //

∼=
��

Vectn(S2)

∼=
��

π1(SOn−1)
i∗ // π1(SOn)

where the bottom map is induced by the inclusion i : SOn−1 ↪→ SOn. We saw
in the proof of Proposition 12.5 that the bottom horizontal map (and therefore
the top one as well) is an isomorphism for n ≥ 4. For n = 3 we need to analyze
π1(SO2)→ π1(SO3), but this is readily seen to be the projection Z→ Z/2 (use the
fibration sequence SO2 ↪→ SO3 → S2). This shows that O(j)⊕ 1 is trivial when j
is even, and is isomorphic to the nontrivial bundle O(1)⊕ 1 when j is odd.

Putting all of this information together, the following table shows all the vector
bundles on S2:

n 1 2 3 4 5 6
Vectn(S2) 1 O(n), n ∈ Z 3, O(1)⊕ 1 4, O(1)⊕ 2 5, O(1)⊕ 3 · · ·

The operation (−) ⊕ 1 moves us from one column of the table to the next, and is
completely clear except from column 2 to column 3; as we saw above, there it is
given by O(j)⊕ 1 ∼= 3 if j is even, and O(j)⊕ 1 ∼= O(1)⊕ 1 if j is odd.

To complete our study of these bundles there is one final question that we should
answer, namely what happens when one adds two rank 2 bundles (all other sums
can be figured out once one knows how to do these):

Theorem 12.7. O(j)⊕ O(k) ∼=

{
4 if j + k is even,
O(1)⊕ 2 if j + k is odd.

Proof. Let fj : S1 → SO2 and fk : S1 → SO2 be the clutching functions for O(j)
andO(k), respectively. The clutching function for the bundleO(j)⊕O(k) is the map
fj ⊕ fk : S1 → SO4, where ⊕ is the (pointwise) block diagonal sum SO2 × SO2 →
SO4, given by

(A,B) 7→
[
A O
0 B

]
.

We can factor fj ⊕ fk = (fj ⊕ f0) · (f0 ⊕ fk) where · is pointwise multiplication.
It is a standard fact in topology that the group structure on [S1, SO4]∗ given by
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pointwise multiplication agrees with the group structure given by concatenation
of loops (this is true with SO4 replaced by any topological group). Note that the
homotopy classes of f0⊕fk and fk⊕f0 are the same, since these clutching functions
give rise to isomorphic bundles. So we have

[fj ⊕ fk] = [fj ⊕ f0] + [fk ⊕ f0]
where this is a statement abouts sums of homotopy classes in π1(SO4).

But π1(SO4) = Z/2. The function fj ⊕ f0 is the nontrivial element of π1SO4

precisely when j is odd, and similarly for fk ⊕ f0. It follows that the sum of these
elements is trivial/non-trivial when j + k is even/odd. �

12.8. Vector bundles on S3. Now we have to calculate π2SOn. This is trivial
for n ≤ 2 (easy), and for n = 3 it also trivial: use SO3

∼= RP 3 and the fibration
sequence Z/2 ↪→ S3 � RP 3. Finally, the fibration sequences SOn−1 ↪→ SOn �
Sn−1 now show that π2SOn = 0 for all n. We have proven

Proposition 12.9. Vectn(S3) ∼= π2(SOn) ∼= 0. That is, every vector bundle on S3

is trivializable.

12.10. Vector bundles on S4. Once again, we are reduced to calculating π3SOn.
Eventually one expects to get stuck here, but so far we have been getting lucky
so let’s keep trying. The group is trivial for n ≤ 2, and for n = 3 it is Z using
SO3

∼= RP 3 and Z/2→ S3 → RP 3. Next look at the long exact homotopy sequence
for the fibration SO3 ↪→ SO4 → S3:

· · · → Z/2 = π4(S3)→ Z→ π3SOr → Z→ π2(SO3) = 0.

It follows that π3SO4
∼= Z2. Next do the same thing for SO4 ↪→ SO5 → S4:

Z = π4SO4 → π3SO4 → π3SO5 → 0.

Unfortunately we cannot go further without calculating the map π4S
4 → π3SO4,

which is Z→ Z2. So now we are indeed stuck, unless we can resolve this issue. Note,
however, that the fibrations SOn−1 ↪→ SOn → Sn−1 show that π3SO5 = π3SOn
for n ≥ 5, so once we’ve figured this one out we know everything. We will not
justify it here, but it turns out that the map Z ↪→ Z2 is an inclusion. So we get
that

Proposition 12.11. Vectn(S4) ' π3(SOn) ∼=


1 n ≤ 2
Z n = 3
Z2 n = 4
Z n > 5.

With some additional work one can write down a table of all bundles on S4,
much as we did for S2, and figure out how all the direct sums behave. We won’t
bother with this.

12.12. Vector bundles on Sk. Although we can not readily do the calculations
for k > 4, at this point one sees the general pattern. One must calculate πk−1SOn
for each n, and these groups vary for a while but eventually stabilize. In fact,
πiSOn ∼= πiSOn+1 for i + 1 < n. The calculation of these stable groups was an
important problem back in the 1950s, that was eventually solved by Bott.

Let us phrase things as follows. Consider the inclusions

O1 ↪→ O2 ↪→ O3 ↪→ · · ·
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that send a matrix A to
[
A 0
0 1

]
. The colimit of this sequence is denoted O and

called the stable orthogonal group. The homotopy groups of O are the stable
values that we encountered above. We computed the first few: π0O = Z/2, π1O =
Z/2, π2O = 0. And we stated, without proof, that π3O = Z. Bott’s calculation
showed the following:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
πiO Z/2 Z/2 0 Z 0 0 0 Z Z/2 Z/2 0 Z 0 0 Z

The pattern is 8-fold periodic: πi+8O ∼= πiO for all i ≥ 0. One is supposed to
remember the pattern of groups to the tune of “Twinkle, Twinkle, Little Star”:

zee - two - zee - two - ze - ro - zee ze - ro - ze - ro - ze - ro - zee.

We will eventually have to understand Bott’s computations at a deeper level; in
particular, we will need to get our hands on explicit generators. But for now we
will just accept that the values are as given above.

12.13. Complex vector bundles on spheres. One can repeat the above analysis
for complex vector bundles on a sphere. One finds that

VectC
n(Sk) ∼= πk−1(GLn(C)) ∼= πk−1(Un),

where Un ↪→ GLn(C) is the unitary group. Analogously to the real case, one has
fiber bundles Un−1 ↪→ Un � S2n−1. Using that U1

∼= S1 one can again compute
VectC

n(Sk) for small values of k. Here is what you get:

n 1 2 3 4 5 6 · · ·
Vectn(S1) 0 0 0 0 0 0 · · ·
Vectn(S2) Z Z Z Z Z Z · · ·
Vectn(S3) 0 0 0 0 0 0 · · ·
Vectn(S4) 0 Z Z Z Z Z · · ·
Vectn(S5) 0 Z/2 0 or Z/2 0 or Z/2 0 or Z/2 0 or Z/2 · · ·

The stable value in the last row turns out to be 0, although one cannot figure this
out without computing a connecting homomorphism in the long exact homotopy
sequence.

The fiber bundles Un−1 ↪→ Un � S2n−1 again imply that πiUn stabilizes as n
grows. In fact, πiUn ∼= πiUn+1 for n > i

2 . We can write the stable value as πiU
where U is the infinite unitary group defined as the colimit of

U1 ↪→ U2 ↪→ U3 ↪→ · · ·
Bott computed the homotopy groups of U to be 2-fold periodic, with

πiU =

{
Z if i is odd
0 if i is even.

Again, for now we will just accept this result; but eventually we will have to un-
derstand the computation in more detail, and in particular we will need to get our
hands on specific generators.
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13. Topological K-theory

For a compact and Hausdorff space X, let KO(X) denote the Grothendieck
group of real vector bundles over X. Swan’s Theorem gives that KO(X) ∼=
Kalg(C(X)), where the latter denotes the Grothendieck group of finitely-generated
projectives. We can repeat this definition for both complex and quaternionic bun-
dles, to define groups KU(X) and KSp(X), respectively. The group KU(X) is
most commonly just written K(X) for brevity. In this section we start to develop
the general theory of these groups, mostly concentrating on KO(X) because the
story is very analogous in the three cases.

Until we explicitly mention otherwise, all spaces in this section are assumed to
be compact and Hausdorff.

13.1. Initial observations on KO. Observe that KO(−) is a contravariant func-
tor: if f : X → Y then f∗ : KO(Y ) → KO(X) sends [E] to [f∗E]. In particular,
the squash map p : X → ∗ yields a split-inclusion p∗ : KO(∗)→ KO(X), where the
splitting is induced by any choice of basepoint in X. One has KO(∗) ∼= Z, so Z is a
direct summand of KO(X). To analyze the complement we can take two different
approaches:

Definition 13.2. For x ∈ X let K̃O (X,x) = ker[KO(X) i∗−→ KO(x)] where
i : {x} ↪→ X. Further, define KOst(X) = KO(X)/p∗KO(∗).

The group K̃O (X,x) is called the reduced KO-group of the pointed space X.
We call KOst(X) the Grothendieck group of stable vector bundles on X.
The reason for the latter terminology will be clear momentarily. These two groups
are isomorphic; algebraically, this is coming from the split-exact sequence

0→ KO(∗)→ KO(X)→ KOst → 0.

If i : {x} ↪→ X is the inclusion then i∗ is a splitting for the first map in the sequence.
One gets an isomorphism between KOst(X) and ker i∗ in the evident way, by
sending a class [E] to [E]− p∗i∗[E]. This isomorphism is used so frequently that it
is worth recording more visibly:

KOst(X) ∼= K̃O (X,x) via [E] 7→ [E]− [rankx(E)].(13.3)

Remark 13.4. Both KOst(X) and K̃O (X,x) appear often in algebraic topology,
and topologists are somewhat cavalier about mixing them up. We give here one
example where this can cause confusion.

Tensor product of bundles makes KO(X) into a ring, via the formula [E] · [F ] =
[E ⊗ F ] and extending linearly. Then K̃O (X,x) is an ideal of this ring. Therefore
KOst(X) may be given a product via the above isomorphism, but this product
is not [E] · [F ] = [E ⊗ F ]. Indeed, it is clear that this definition would not be
invariant under E 7→ E ⊕ 1. The product on KOst(X) is instead [E] · [F ] =
[E ⊗ F ]− (rankE)[F ]− (rankF )[E] + (rankE)(rankF ).

We offer the following alternative description of KOst(X). Let Vect(X) be the
set of isomorphism classes of vector bundles on X, and impose the equivalence
relation E ' E ⊕ 1 for every vector bundle E. The set of equivalence classes
is obviously a monoid under direct sum (this would be true even without taking
equivalence classes), but it is actually more than a monoid: it is a group. To see
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this, recall that if E is any vector bundle over X then there exists an embedding
E ↪→ N for sufficiently large N (Proposition 9.5). If Q is the quotient then we have
the exact sequence 0 → E → N → Q → 0, which is split by Proposition 9.2. So
E ⊕Q ∼= N . Yet N = 0 under our equivalence relation, and so E has an additive
inverse. It is easy to see that KOst(X) is precisely this set of equivalence classes.

Finally, here is a third description of KOst(X). Consider the chain of maps

Vect0(X) ⊕1−→ Vect1(X) ⊕1−→ Vect2(X) ⊕1−→ · · ·
The colimit is clearly the set of equivalence classes described in the preceding para-
graph, and therefore coincides with KOst(X).

Recall that Vectn(X) = [X,Grn(R∞)], and one easily sees that the ⊕1 map is
represented by the map of spaces

Grn(R∞) −→ Grn+1(R⊕ R∞) = Grn+1(R∞)

that sends a subspace U ⊆ R∞ to R ⊕ U ⊆ R ⊕ R∞. Let Gr∞(R∞) denote the
colimit of these maps

Gr1(R∞) ⊕1−→ Gr2(R∞) ⊕1−→ Gr3(R∞) ⊕1−→ · · ·
(we really want the homotopy colimit, if you know what that is, but in this case
the colimit has the same homotopy type and is good enough). You might recall
that Grn(R∞) is also called BOn, and likewise Gr∞(R∞) is also called BO.

Then (for compact Hausdorff spaces X) we have a bijection

colim
n

[X,Grn(R∞)] −→ [X,Gr∞(R∞)].

So we have learned that KOst(X) ' [X,BO].
If X has a basepoint then we can consider [X,BO]∗ instead of [X,BO]. There

is the evident map [X,BO]∗ → [X,BO]. Typically there would be no reason for
this to be a bijection, but BO is a path-connected H-space: and in this setting the
map is a bijection. So in fact we can write

KOst(X) ' [X,BO]∗.

NOTE: PROBLEM WITH X = S0.
Applying this in particular to X = Sk we have that for k ≥ 1

K̃O (Sk) ∼= KOst(Sk) ∼= [Sk, BO] ∼= [Sk, BO]∗ = πk(BO) = πk−1(O).

The calculations of Bott therefore give us the values of K̃O (Sk). For k = 0 observe
that KO(S0) = KO(∗ t ∗) ∼= Z⊕ Z, so we have K̃O (S0) ∼= Z. This lets us fill out
the table:

Table 13.4. Reduced KO-theory of spheres

k 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
K̃O (Sk) Z Z/2 Z/2 0 Z 0 0 0 Z Z/2 Z/2 0 · · ·

Now let X be an arbitrary CW-complex, not necessarily compact. We define

KO(X) = [X+,Z×BO]∗ = [X,Z×BO],

where X+ denotes X with a basepoint added. For a pointed space X we define
K̃O (X) = [X,Z×BO]∗.
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As we have seen it before, Bott Periodicity shows that the homotopy groups
of Z × BO are 8-fold periodic. This is a consequence of the following stronger
statement:

Theorem 13.5 (Bott Periodicity, Strong version). There is a weak equivalence of
spaces Z×BO ' Ω8(Z×BO).

Using Bott Periodicity we can then calculate that for every pointed space X one
has

K̃O (Σ8X) = [Σ8X,Z×BO]∗ = [X,Ω8(Z×BO)]∗ = [X,Z×BO]∗ = K̃O (X).

Remark 13.6. In the complex case, Bott Periodicity gives the weak equivalence
Z×BU ' Ω2(Z×BU). Consequently one obtains K̃(Σ2X) ∼= K̃(X) for all pointed
spaces X.

13.7. K-theory as a cohomology theory. WhenX is compact and Hausdorff we
have seen that KO(X) ∼= [X+,Z×BO]∗, where X+ is X with a disjoint basepoint
added. The point of this isomorphism is that it immediately gives us several tools
for computing KO(X) that we didn’t have before. These are tools that work for
homotopy classes of maps in reasonable generality, so let us discuss them in that
broader context.

Let X and Z be pointed spaces. Then [X,Z]∗ is just a pointed set, but if we
suspend the space in the domain then we get a bit more structure: [ΣX,Z]∗ is a
group, where ΣX is the reduced suspension of X. One way to see this is to collapse
the equatorial copy of X in ΣX, to get ΣX ∨ ΣX; write this collapse map as

∇ : ΣX → ΣX ∨ ΣX.

The operation on [ΣX,Z]∗ is defined by precomposing the wedge of two homotopy
classes with ∇. With some trouble one checks that ΣX is a cogroup object in the
homotopy category of pointed spaces, which yields that [ΣX,Z]∗ is a group.

Here is another way to think about this, which relates it to something we already
know. Let F (X,Z) be the set of functions from X to Z, equipped with the compact
open topology. We can write

[ΣX,Z]∗ = [S1, F (X,Z)]∗ = π1(F (X,Z))

where the basepoint of F (X,Z) is the map sending all of X to the basepoint of Z.
Now just use that π1(F (X,Z)) is a group.

When k ≥ 2 then we have [ΣkX,Z]∗ = πk(F (X,Z)) by a similar argument, and
so [ΣkX,Z]∗ is an abelian group. Alternatively, one proves that now ΣkX is a
cocommutative cogroup object in the homotopy category.

Similar results are obtained by putting conditions on Z rather than X. If Z is
a loop space, say Z ' ΩZ1, then [X,Z]∗ ∼= [X,ΩZ1]∗ ∼= [ΣX,Z1]∗, and this is a
group by the above arguments. Similarly, if Z is a k-fold loop space for k ≥ 2, say
Z ' ΩkZ1, then [X,Z]∗ ∼= [Σk, Z1]∗ and this is an abelian group.

Homotopy classes of maps into a fixed space Z always give rise to exact sequences:

Proposition 13.8. Let X,Y be pointed spaces, and let f : X → Y be a pointed
map. Consider the mapping cone Cf and the natural map p : Y → Cf . For any
pointed space Z, the sequence of pointed sets [X,Z]∗ ← [Y, Z]∗ ← [Cf,Z]∗ is exact
in the middle.
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Proof. Let h : Y → Z and suppose h ◦ f is homotopic to the constant map. Choose
a pointed homotopy H : X × I → Z so that H(X × {1}) = ∗. Then H induces a
map from CX → Z. Let g : Cf → Z be given by H on CX and h on Y . Then
clearly g ◦ p = h. �

Given f : X → Y we form the mapping cone Cf , which comes to us with an
inclusion j0 : Y ↪→ Cf . Next form the mapping cone on i, which comes with an
inclusion j1 : Cf ↪→ Cj0. Keep doing this forever to get the sequence of spaces
X → Y → Cf → Cj0 → Cj1 → · · · depicted below:

Note that Cj0 ' ΣX and Cj1 ' ΣY (this is clear from the pictures). Up to sign
the map Cj0 → Cj1 is just Σf , so that the sequence of spaces becomes periodic:

X → Y → Cf → ΣX → ΣY → Σ(Cf)→ Σ2X → . . .

This is called the Puppe sequence. Note that the composition of two subse-
quent maps is null-homotopic, and that every three successive terms form a cofiber
sequence.

Now let Z be a fixed space and apply [−, Z]∗ to the Puppe sequence. We obtain
the sequence of pointed sets

[X,Z]∗ ← [Y, Z]∗ ← [Cf,Z]∗ ← [ΣX,Z]∗ ← [ΣY, Z]∗ ← [Σ(Cf), Z]∗ ← . . .

By Proposition 13.8 this sequence is exact at every spot where this makes sense
(everywhere except at [X,Z]∗). At the left end this is just an exact sequence of
pointed sets, but as one moves to the right at some point it becomes an exact
sequence of groups (namely, at [ΣY, Z]∗). As one moves further to the right, it
becomes an exact sequence of abelian groups by the time one gets to [Σ2Y, Z]∗.

If Z ' ΩZ1 then we can extend the above sequence a little further to the left,
by noticing that the sequences for [−, Z1]∗ and [−, Z]∗ mesh together:

[X,Z1]∗ [Y, Z1]∗oo [Cf,Z1]∗oo [ΣX,Z1]∗oo [ΣY, Z1]∗oo [Σ(Cf), Z1]oo oo

[X,ΩZ1]∗ [Y,ΩZ1]∗oo [Cf,ΩZ1]oo oo

[X,Z]∗ [Y, Z]∗oo [Cf,Z]oo oo

Note that the leftmost cycle of the original sequence, which we had thought con-
sisted just of pointed sets, in fact consisted of groups! If in turn we have Z1 ' ΩZ2

then we can play this game again and extend the sequence one more cycle to the
left, and so forth. If we are really lucky then we can do this forever:



A GEOMETRIC INTRODUCTION TO K-THEORY 81

Definition 13.9. An infinite loop space is a space Z0 together with spaces
Z1, Z2, Z3, . . . and weak homotopy equivalences Zn ' ΩZn+1 for all n ≥ 0.

Note that if Z is an infinite loop space then we really do get a long exact
sequence—infinite in both directions—consisting entirely of abelian groups, hav-
ing the form

· · · ← [Cf,Zi+1]← [X,Zi]∗ ← [Y, Zi]∗ ← [Cf,Zi]∗ ← [X,Zi−1]← · · ·
where it is convenient to use the indexing convention Z−n = ΩnZ for n > 0.

This situation is very reminiscent of a long exact sequence in cohomology, so let
us adopt the following notation: write

EiZ(X) = [X+, Zi]∗ =

{
[X+, Zi]∗ i ≥ 0,
[Σ−i(X+), Z0]∗ i < 0.

For an inclusion of subspaces j : A ↪→ X write

EiZ(X,A) = [Cj, Zi]+ =

{
[Cj, Zi]∗ i ≥ 0,
[Σi(Cj), Z0]∗ i < 0.

It is not hard to check that this is a generalized cohomology theory. So we get a
generalized cohomology theory whenever we have an infinite loop space. (You may
know that it works the other way around, too: every generalized cohomology comes
from an infinite loop space. But we won’t need that fact here.)

For us the importance of all of this is that by Bott’s theorem we have

Z×BO ' Ω8(Z×BO) ' Ω16(Z×BO) ' . . . .
Thus, Z×BO is an infinite loop space and the above machinery applies. We obtain
a cohomology theory KO∗. Moreover, periodicity gives us that KOi+8(X,A) ∼=
KOi(X,A), for any i.

This all works in the complex case as well. There we have Z×BU ' Ω2(Z×BU),
so Z×BU is again an infinite loop space. We get a cohomology theory K∗ that is
2-fold periodic.

13.10. Afterward. The point of this section was to construct the cohomology
theories KO and K, having the properties that when X is compact and Hausdorff
the groups KO0(X) and K0(X) coincide with the Grothendieck groups of real and
complex vector bundles over X. We have now accomplished this! We will spend
the rest of these notes exploring what one can do with such cohomology theories,
i.e., what they are good for. We have already said that one thing they are good
for is calculation; we close this section with an example demonstrating the benefits
and limitations here.

Let us try to compute KO(RP 2). Recall the ubiquitous decomposition
KO(RP 2) = Z ⊕ K̃O (RP 2) = Z ⊕ KOst(RP 2). Next use the fact that RP 2

can be built by attaching a 2-cell to RP 1 = S1, where the attaching map wraps S1

around itself twice. That is, RP 2 is the mapping cone for S1 2−→ S1. The Puppe
sequence for this map looks like

S1 2−→ S1 −→ RP 2 −→ S2 2−→ S2 −→ · · ·
hence we have an exact sequence

← · · · ← K̃O (S1)← K̃O (S1)← K̃O (RP 2)← K̃O (S2)← K̃O (S2)← · · ·
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Note that this is just the long exact sequence for the pair (RP 2,RP 1) in K̃O -
cohomology, where we are using the identification K̃O (S2) = K̃O 0(S2) =
K̃O−1(S1).

We know K̃O (Sk) for all k ≥ 0, so the above sequence becomes

Z/2← Z/2← K̃O (RP 2)← Z/2← Z/2
where both maps Z/2 ← Z/2 are multiplication by 2, i.e. the 0 map. Hence we
have a short exact sequence

0← Z/2← K̃O (RP 2)← Z/2← 0,(13.11)

and so either K̃O (RP 2) = (Z/2)2 or K̃O (RP 2) = Z/4. It remains to decide which
one.

The short exact sequence in (13.11) is really

0←− K̃O (S1) i∗←− K̃O (RP 2)
p∗←− K̃O (S2)←− 0.

We have previously seen that the generator of K̃O 0(S1) = KOst(S1) corresponds
to the Mobius bundle [M ], and the generator of K̃O (S2) = KOst(S2) is [O(1)],
the rank 2 bundle whose clutching map is the isomomorphism S1 → SO(2). The
image of [O(1)] in K̃O 0(RP 2) is p∗O(1), where p : RP 2 → S2 is the projection.

We happen to know one bundle on RP 2, the tautological line bundle γ. When
we restrict γ to RP 1 we get M , and so [γ] is a preimage for [M ] under i∗. We need
to decide if 2[γ] = 0 in KOst(RP 2); if it is, then K̃O (RP 2) ∼= (Z/2)2 and if it is
not then K̃O (RP 2) ∼= Z/4. So the question becomes: is γ ⊕ γ stably trivial?

The answer turns out to be that γ ⊕ γ is not stably trivial; this is an elemen-
tary exercise using characteristic classes (Stiefel-Whitney classes), but we have not
discussed such techniques yet—see Section 23.8 below for complete details. For
now we will just accept this fact, and conclude that K̃O (RP 2) ∼= Z/4. Note that
this calculation demonstrates an important principle to keep in mind: often the
machinery of cohomology theories get you a long way, but not quite to the end,
and one has to do some geometry to complete the calculation.

There is a better way to think about this calculation, and we can’t resist pointing
it out even though it won’t make complete sense yet. But it ties in to intersection
theory, which is our overarching theme in these notes. In our discussion above we
used KOst(RP 2) as our model for K̃O (RP 2), but let us change perspective and
use the model that is the kernel of KO(RP 2) → KO(∗), for some chosen base-
point. Recall that [E] in KOst(RP 2) corresponds to [E] − rank(E) in K̃O (RP 2);
so the class we wrote as [γ] is [γ] − 1 in the shifted perspective, and we need to
decide if 2([γ]− 1) = 0 in KO(RP 2). The element 1− [γ] should be thought of as
corresponding to a chain complex of vector bundles

0→ γ → 1→ 0,

and thinking of it this way one finds that it plays the role of the K-theoretic
fundamental class of the submanifold RP 1 ↪→ RP 2. Then (1 − [γ])2 represents
the self-intersection product of RP 1 inside RP 2, which we know is a point by the
standard geometric argument (shown in the picture below, depicting an RP 1 and
a small perturbation of it)):
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RP 2

RP 1

In particular, the self-intersection is not empty. This translates to the statement
that (1− [γ])2 6= 0. But

(1− [γ])2 = 1− 2[γ] + [γ2] = 1− 2[γ] + 1 = 2(1− [γ])

where we have used that γ ⊗ γ ∼= 1 (this is true for any real line bundle, over any
base); so this explains why 2(1 − [γ]) 6= 0. Again, we understand this argument
doesn’t make much sense yet. We will come back to it in Section ?????. For the
moment just get the idea that it is the intersection theory of submanifolds in RP 2

that is ultimately forcing K̃O (RP 2) to be Z/4 rather than (Z/2)2.

Remark 13.12. It seems worth pointing out that in fact for every n one has
K̃O (RPn) ∼= Z/2k for a certain value k depending on n. We will return to this
calculation (and complete it) in Section 32.

Exercise 13.13. It is a good idea for the reader to try his or her hand at similar
calculations, to see how the machinery is working. Try calculating some of the
groups below, at least for small values of n:

• K(CPn) (reasonably easy)
• KO(CPn) (a little harder)
• K(RPn) (even harder)
• KO(RPn) (hardest).

Don’t worry if you can’t completely determine some of the groups; just see how far
the machinery takes you.

14. Vector fields on spheres

It is a classical problem to determine how many independent vector fields one
can construct on a given sphere Sn. This problem was heavily studied throughout
the 1940s and 1950s, and then finally solved by Adams in 1962 using K-theory.
It is one of the great successes of generalized cohomology theories. In this section
we discuss some background to the vector field problem. We will not tackle the
solution until Section 33, when we have more tools at our disposal.

14.1. The vector field problem. Given a nonzero vector u = (x, y) in R2, there
is a formula for producing a (nonzero) vector that is orthogonal to u: namely,
(−y, x). However, there is no analog of this that works in R3. That is, there is
no single formula that takes a vector in R3 and produces a (nonzero) orthogonal
vector. If such a formula existed then it would give a nonvanishing vector field on
S2, and we know that such a thing does not exist by elementary topology.

Let us next consider what happens in R4. Given u = (x1, x2, x3, x4), we can
produce an orthogonal vector via the formula (−x2, x1,−x4, x3). But of course this
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is not the only way to accomplish this: we can vary what pairs of coordinates we
choose to flip. In fact, if we consider

v1 =


−x2

x1

−x4

x3

 , v2 =


−x3

x4

x1

−x2

 , v3 =


−x4

−x3

x2

x1

 .
then we find that v1, v2, and v3 are not only orthogonal to u but they are orthogonal
to each other as well. In particular, at each point of S3 we have given an orthogonal
basis for the tangent space.

We aim to study this problem for any Rn. What is the maximum k for which
there exist formulas for starting with u ∈ Rn and producing k orthogonal vectors,
with u as the first of the set? The following gives a different phrasing for the same
question:

Question 14.2. On Sn, how many vectors fields v1, v2, . . . , vr can we find so that
v1, v2, . . . , vr are linearly independent for each x ∈ Sn?

Note that by the Gram-Schmidt process we can replace “linearly independent”
by “orthonormal.” If n is even, the answer is zero because there does not exist even
a single nonvanishing vector field on an even sphere. To start to see what happens
when n is odd, we look at a couple of more examples.

Let u ∈ S5 have the standard coordinates. We notice that the vector v1 =
(−x2, x1,−x4, x3,−x6, x5) is orthogonal to v. However, a little legwork shows that
no other pattern of switching coordinates will produce a vector that is orthogonal
to both u and v1. Of course this does not mean that there isn’t some more elaborate
formula that would do the job, but it shows the limits of what we can do using our
naive constructions.

For v ∈ S7 we can divide the coordinates into the top four and the bottom four.
Take the construction that worked for S3 and repeat it simultaneously in the top
and bottom coordinates—this yields a set of three orthonormal vector fields on S7,
given by the formulas

(−x2, x1,−x4, x3,−x6, x5,−x8, x7),(14.2)

(−x3, x4, x1,−x2,−x7, x8, x5,−x6),

(−x4,−x3, x2, x1,−x8,−x7, x6, x5).

This idea generalizes at once to prove the following:

Proposition 14.3. If there exist r (independent) vector fields on Sn−1, then there
also exist r vector fields on Skn−1 for all k.

For example, since there is one vector field on S1 we also know that there is at
least one vector field on S2k−1 for every k. Likewise, since there are three vector
fields on S3 we know that there are at least three vector fields on S4k−1 for every
k.

We have constructed three vector fields on S7, but one can actually make seven
of them. This can be done via trial-and-error attempts at extending the patterns in
(14.2), but there is a slicker way to accomplish this as well. Recall that S3 is a Lie
group, being the unit quaternions inside of H. We can choose an orthonormal frame
at the origin and then use the group structure to push this around to any point,
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thereby obtaining three independent vector fields; in other words, for any point
x ∈ S3 use the derivative of right-multiplication-by-x to transport our vectors in
T1S

3 to TxS3. The space S7 is not quite a Lie group, but it still has a multiplication
coming from being the set of unit octonions. The multiplication is not associative,
but this is of no matter—the same argument works to construct 7 vector fields on
S7. Note that this immediately gives us 7 vectors fields on S15, S23, etc.

Based on the data so far, one would naturally guess that if n = 2r then there
are n− 1 vector fields on Sn−1. However, this guess turns out to fail already when
n = 16 (and thereafter). To give a sense of how the numbers grow, we give a chart
showing the maximum number of vector fields known to exist on low-dimensional
spheres:

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n− 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

v.f.onSn−1 1 3 1 7 1 3 1 8 1 3 1 7 1 3 1 9

Notice that we have explained how to construct the requisite number of vector
fields until we get to S15—there we know how to make seven of them, but the
claim is that one can make one more. Once we know how to make eight on S15 we
automatically know how to make eight on S31, but the claim is again that one can
construct one more.

Okay. Now that we have a basic sense of the problem let us explain the numerol-
ogy behind the answer.

Definition 14.4. If n = m · 2a+4b where m is odd, then the Hurwitz-Radon
number for n is ρ(n) = 2a + 8b− 1.

Theorem 14.5 (Hurwitz-Radon). There exist at least ρ(n) independent vector
fields on Sn−1.

Consider n = 32 = 25 = 21+4·1. Using the definition, a = b = 1. Then
ρ(32) = 21 + 8(1) − 1 = 9. That is, there are at least 9 vector fields on S31.
If n = 1024 = 210 = 22+4·2 then ρ(n) = 22 + 8 · 2 − 1 = 19; one can make 19
independent vector fields on S1023. One should of course notice that these number
are not going up very quickly.

We will prove the Hurwitz-Radon theorem by a slick, modern method using
Clifford algebras. But it is worth pointing out that the theorem can be proven
through very naive methods, too (it was proven in the 1920s). All of the Hurwitz-
Radon vector fields follow the general patterns that we have seen, of switching
pairs of coordinates and changing signs—one only has to find a way to organize the
bookkeeping behind these patterns.

14.6. Sums-of-squares formulas. Hurwitz and Radon were not actually thinking
about vector fields on spheres. They were instead considering an algebraic question
about the existence of certain kinds of “composition formulas” for quadratic forms.
For example, the following identity is easily checked:

(x2
1 + x2

2) · (y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

Hurwitz and Radon were looking for more formulas such as this one, for larger
numbers of variables:
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Definition 14.7. A sum-of-squares formulas of type [r, s, n] is an identity

(x2
1 + x2

2 + . . .+ x2
r)(y

2
1 + y2

2 + . . .+ y2
s) = z2

1 + z2
2 + . . .+ z2

n

in the polynomial ring R[x1, . . . , xr, y1, . . . , ys], where each zi is a bilinear expression
in x’s and y’s.

We will often just refer to an “[r, s, n]-formula”, for brevity. For what values of r,
s, and n does such a formula exist? This is currently an open question. There are
three formulas that are easily produced, coming from the normed algebras C, H,
and O. The multiplication is a bilinear pairing, and the identity |xy|2 = |x|2|y|2 is
the required sums-of-squares formula. These algebras give formulas of type [2, 2, 2],
[4, 4, 4], and [8, 8, 8]. In a theorem from 1898 Hurwitz proved that these are the
only normed algebras over the reals, and in doing so ruled out the existence of
[n, n, n]-formulas for n /∈ {1, 2, 4, 8}. The question remained (and remains) about
other types of formulas. See ???? for a detailed history of this problem.

Perhaps surprisingly, most of what is known about the non-existence of sums-
of-squares formulas comes from topology. To phrase the question differently, we
are looking for a function φ : Rr ⊗ Rs → Rn such that |φ(x, y)|2 = |x|2 · |y|2 for all
x ∈ Rr and y ∈ Rs. The bilinear expressions z1, . . . , zn are just the coordinates of
φ(x, y).

Write z = φ(x, y) =
∑
xjAjy, where the Aj ’s are n × s matrices. The sum of

squares formula says that zT z = (xTx) · (yT y). But zT z =
∑
i,j

(yTATj xj)(xiAiy),

hence

yT

∑
i,j

xixjA
T
j Ai

 y = yT
(
(xTx)I

)
y

for all y. These quadratic forms in y are equal only if
∑
i,j

xixjA
T
j Ai = (xTx)I =∑

x2
i I, and this must hold for all x. Equating coefficients of the monomials in x,

we find that
• ATi Ai = I (that is, Ai ∈ On) for every i, and
• ATj Ai +ATi Aj = 0 for every i 6= j.

The case s = n turns out to be significantly simpler to address than the general
case. If s = n we may set Bi = A−1

i Ai. Then the conditions to satisfy become
• BTi = −Bi
• B2

i = −In
• BiBj = −BjBi for all i 6= j.

Note that the first two conditions imply Bi ∈ On, and the first and third con-
ditions imply BTj Bi + BTi Bj = 0. So by replacing the A’s with the B’s we have
proven the following:

Corollary 14.8. If an [r, n, n]-formula exists, then one exists where A1 = I and
ATi = −Ai.

In the setting of the corollary, the necessary conditions on the matrices
A2, A3, . . . , Ar become that A2

i = −I and AiAj = −AjAi.

Corollary 14.9. If an [r, n, n]-formula exists, then there exist r − 1 independent
vector fields on Sn−1.
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Proof. If y ∈ Sn−1 then φ(ei, y) ∈ Sn−1 for i = 1, 2, . . . , r: this follows from the
identity |φ(ei, y)|2 = |ei|2 · |y|2. We also have that φ(e1, y) = y since A1 = I. We
claim that φ(ei, y) ⊥ φ(ej , y) if i 6= j. To see this, note that by the norm formula

|φ(ei + ej , y)|2 = |ei + ej |2 · |y|2 = 2|y|2.
On the other hand,

|φ(ei + ej , y)|2 = |φ(ei, y) + φ(ej , y)|2

= |φ(ei, y)|2 + |φ(ej , y)|2 + 2φ(ei, y) · φ(ej , y)

= 2|y|2 + φ(ei, y) · φ(ej , y).

We conclude φ(ei, y) · φ(ej , y) = 0. Therefore we have established that φ(e2,−),
φ(e3,−), . . . , φ(er,−) are orthonormal vector fields on Sn−1. �

14.10. Clifford algebras. We have seen that we get r − 1 independent vector
fields on Sn−1 if we have a sums-of-squares formula of type [r, n, n]. Having such
a formula amounts to producing matrices A2, A3, . . . , Ar ∈ On such that A2

i = −I
and AiAj + AjAi = 0 for i 6= j. If we disregard the condition that the matrices
be orthogonal, we can encoded the latter two conditions by saying that we have a
representation of a certain algebra:

Definition 14.11. The Clifford algebra Clk is defined to be the quotient of the
tensor algebra R〈e1, . . . , ek〉 by the relations e2i = −1 and eiej + ejei = 0 for all
i 6= j.

The first few Clifford algebras are familiar: Cl0 = R, Cl1 = C, and Cl2 = H.
After this things become less familiar: for example, it turns out that Cl3 = H×H
(we will see why in just a moment). It is somewhat of a miracle that it is possible
to write down a precise description of all of the Clifford algebras, and all of their
modules. Before doing this, let us be clear about why we are doing it:

Theorem 14.12. An [r, n, n]-formula exists if and only if there exists a Clr−1-
module structure on Rn. Consequently, if there is a Clr−1-module structure on Rn
then there are r − 1 independent vector fields on Sn−1.

Before giving the proof, we need one simple fact. The collection of monomials
ei1 · · · eir for 1 ≤ i1 < i2 < · · · < ir ≤ k give a vector space basis for Clk, which
has size 2k (note that we include the empty monomial, corresponding to 1, in the
basis). This is an easy exercise.

Proof of Theorem 14.12. The forward direction is trivial: Given an [r, n, n]-
formula, Corollary 14.8 gives us such a formula with A1 = I. Then define a Clr−1-
module structure on Rn by letting ei act as multiplication by Ai+1, for 1 ≤ i ≤ r−1.

Conversely, assume that Clr−1 acts on Rn. We can almost reverse the proce-
dure of the previous paragraph, except that there is no guarantee that the ei’s act
orthogonally on Rn—and we need Ai ∈ On to get an [r, n, n]-formula.

Equip Rn with a positive-definite inner product, denoted x, y 7→ x · y. This
inner product probably has no compatibility with the Clifford-module structure.
So define a new inner product on Rn by

〈v, w〉 =
∑

1≤i1<i2<···<ij≤r−1

(eIv) · (eIw),



88 DANIEL DUGGER

where eI = ei1ei2 · · · eij and the sum runs over all 2r−1 elements of the standard
basis for Clr−1. Basically we are averaging out the dot product. Our inner product
〈v, w〉 is a symmetric bilinear form, and it is positive definite because the dot
product is positive definite. It also has the property that it is invariant under the
Clifford algebra: 〈eiv, eiw〉 = 〈v, w〉 for all i.

Now let v1, . . . , vn be an orthonormal basis for Rn with respect to our new inner
product. Let Ai be the matrix for ei with respect to this basis. Then the Ai’s
are orthogonal matrices, and the relations A2

i = −I and AiAj + AjAi = 0 are
automatic because they are satisfied in Clr−1. In this way we obtain the desired
[r, n, n]-formula. �

Remark 14.13. Most modern treatments of vector fields on spheres go straight
to Clifford algebras and their modules, without ever talking about sums-of-squares
formulas. It seems to us that the sums-of-squares material is an interesting part of
this whole story, both for historical reasons and for its own sake.

From now on we can focus on the following question: For what values of n do we
have a Clr−1-module structure on Rn? This is the neatest part of the story, because
on the face of things it doesn’t seem like we have accomplished anything by shifting
our perspective onto Clifford algebras. We have, after all, just rephrased the basic
question. But a miracle now occurs, in that we can analyze all the Clifford algebras
by a simple trick.

To do this part of the argument, we need a slight variant on our Clifford algebras.
Given a real vector space V and a quadratic form q : V → R, define

Cl(V, q) = TR(V )/〈v ⊗ v = q(v) · 1 | v ∈ V 〉.
For Rk with q(x1, . . . , xk) = −(x2

1 + · · · + x2
k) this recovers the algebra Clk. For

q(x1, . . . , xk) = x2
1 + · · · + x2

k this gives a new algebra we will call Cl−k . It will be
convenient to temporarily rename Clk as Cl+k . Of course there are other quadratic
forms on Rk, but these will be the only two we need for our present purposes.

The discussion that follows is based on the one by Haynes Miller that is given
in [M]. This is by far the best treatment of Clifford algebras that I have found in
the literature.

Proposition 14.14. There are isomorphisms of algebras Cl±k ∼= Cl±2 ⊗R Cl∓k−2.

Proof. One possible isomorphism sends e1 7→ e1 ⊗ 1, e2 7→ e2 ⊗ 1, and for i > 2 we
send ei 7→ e1e2 ⊗ ei−2. We leave it as an exercise to check that this works.. �

In the analysis that follows we will write A(n) for the algebraMn×n(A), whenever
A is an algebra. The following table gives a list of the first ten Clifford algebras:

We will now explain how to obtain the entries of this table.

Step 1: Rows 0–2.
We have already remarked that Cl+0 ∼= R, Cl+1 ∼= C, and Cl+2 ∼= H. It is just as easy
to see that Cl−0 ∼= R and Cl−1 ∼= R×R. Finally, with a little more work we also have
Cl−2 ∼= R(2). To get this last isomorphism, note that Cl−2 is generated by e1 and
e2 subject to the relations e21 = −1, e22 = −1, and e1e2 = −e2e1. The conditions
e2i = −1 might make you think of reflections, and we can realize the second relation
by using two reflections through lines `1 and `2 of R2 that have a 45 degree angle
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Table 14.15. Clifford algebras

r Cl+r Cl−r
0 R R
1 C R× R
2 H R(2)
3 H×H C(2)
4 H(2) H(2)
5 C(4) H(2)×H(2)
6 R(8) H(4)
7 R(8)× R(8) C(8)
8 R(16) R(16)
9 C(16) R(16)× R(16)
10 H(16) R(32)

between them. We get an algebra homomorphism Cl−2 → R(2) by sending ei to the
matrix for reflection in `i. As both the domain and codomain are four dimensional
over R, it is not hard to prove that the map is surjective and therefore gives an
isomorphism.

Step 2: Rows 3–4.
Now using Proposition 14.14 we find

Cl+3 ∼= Cl+2 ⊗R Cl−1 ∼= H⊗R (R× R) ∼= H×H
and

Cl+4 ∼= Cl+2 ⊗R Cl−2 ∼= H⊗R R(2) ∼= H(2).
We also get

Cl−3 ∼= Cl−2 ⊗R Cl+1 ∼= R(2)⊗R C ∼= C(2),
and

Cl−4 ∼= Cl−2 ⊗R Cl+2 ∼= R(2)⊗R H ∼= H(2).
The reader will note that this is fairly easy. Miller [M] describes this process as like
the one of lacing up a shoe.

Step 3: Rows 5–6.
Continuing via the same methods, we now get

Cl+5 ∼= Cl+2 ⊗R Cl−3 ∼= H⊗R C(2) ∼= (H⊗R C)(2).

Here we need to know something new, namely that H⊗RC ∼= C(2) (see Lemma 14.16
below). So then

Cl+5 ∼= C(2)(2) ∼= C(4).
Likewise, we have

Cl+6 ∼= Cl+2 ⊗R Cl−4 ∼= H⊗R H(2) ∼= (H⊗R H)(2)

and we again need to know a new fact: this time, that H⊗R H ∼= R(4) (once again,
see Lemma 14.16 below). Hence

Cl+6 ∼= R(8).

On the other side, we have

Cl−5 ∼= Cl−2 ⊗R Cl+3 ∼= R(2)⊗R (H×H) ∼= H(2)×H(2),
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and
Cl−6 ∼= Cl−2 ⊗R Cl+4 ∼= R(2)⊗R H(2) ∼= H(4).

Step 4: Rows 7–8.
Although this may be getting tedious, let’s do it yet again. We have

Cl+7 ∼= Cl+2 ⊗R Cl−5 ∼= H⊗R (H(2)×H(2)) ∼= (H⊗R H)(2)× (H⊗R H)(2)
∼= R(8)× R(8),

and

Cl+8 ∼= Cl+2 ⊗R Cl−6 ∼= H⊗R H(4) ∼= (H⊗R H)(4) ∼= R(4)(4) ∼= R(16).

Also,
Cl−7 ∼= Cl−2 ⊗R Cl+5 ∼= R(2)⊗R C(4) ∼= C(8)

and
Cl−8 ∼= Cl−2 ⊗R Cl+6 ∼= R(2)⊗R R(8) ∼= R(16).

Step 5: The rest of the table.
We are almost ready to stop. Notice that at row eight the two columns of the table
come back into juxtaposition: this is a magical fact! We next see that

Cl+9 ∼= Cl+2 ⊗R Cl−7 ∼= H⊗R C(8) ∼= C(16)

and
Cl+10 ∼= Cl+2 ⊗R Cl−8 ∼= H⊗R R(16) ∼= H(16).

Also,
Cl−9 ∼= Cl−2 ⊗R Cl+7 ∼= R(2)⊗R (R(8)× R(8)) ∼= R(16)× R(16)

and
Cl−10 ∼= Cl−2 ⊗R Cl+8 ∼= R(2)⊗R R(16) ∼= R(32).

It is completely trivial to now prove by induction that

Cl+k+8
∼= Cl+k (16) and Cl−k+8

∼= Cl−k (16).

So the table has a quasi-periodicity to it, repeating every eight rows but with an
extra factor of (16) everywhere. We have successfully determined all the Clifford
algebras!

The above analysis used two non-obvious isomorphisms, which we now explain
in the following lemma:

Lemma 14.16. There are isomorphisms H⊗R C ∼= C(2) and H⊗R H ∼= R(4).

Proof. Define an algebra map φ : H⊗R C→ EndR(H) by sending q ⊗ z to the map
v 7→ qvz and extending linearly. One readily checks that this is a map of algebras.
Notice that the map φ(q ⊗ z) is actually C-linear, if we give H the right action of
C. So we actually have a map of algebras H ⊗R C → EndC(H) ∼= C(2). Both the
domain and targer are four-dimensional over C, and it is not hard to prove that
the map is surjective—hence, it is an isomorphism.

The proof of the second claim is similar. Define θ : H⊗R H→ EndR(H) ∼= R(4)
by sending q ⊗ u to the map v 7→ qvu. The conjugation is needed in order to get a
map of algebras. ??? �
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14.17. Modules over Clifford algebras. Now that we know all the Clifford al-
gebras, it is actually an easy process to determine all of their finitely-generated
modules. We need three facts:

• If A is a division algebra then all modules over A are free;
• By Morita theory, the finitely-generated modules over A(n) are in bijective

correspondence with the finitely-generated modules over A. The bijection
sends an A-module M to the A(n)-module Mn.

• If R and S are algebras then modules over R × S can all be written as
M ×N where M is an R-module and N is an S-module.

In the following table we list each Clifford algebra Cl+r and the dimension of its
smallest nonzero module.

Table 14.18. Dimensions of Clifford modules

r Cl+r Smallest dim. of a module over Cl+r
0 R 1
1 C 2
2 H 4
3 H×H 4
4 H(2) 8
5 C(4) 8
6 R(8) 8
7 R(8)× R(8) 8
8 R(16) 16
9 C(16) 32
10 H(16) 64

Note that the third column has a quasi-periodicity, where row k + 8 is obtained
from row k by multiplying by 16.

After all of this, we are ready to prove the Hurwitz-Radon theorem about con-
structing vector fields on spheres. Recall that if Clr−1 acts on Rn then there are
r − 1 independent vector fields on Sn−1. Going down the rows of the above table,
we make the following deductions:

Cl1 acts on R2, therefore we have 1 vector field on S1

Cl2 acts on R4, therefore we have 2 vector field on S3

Cl3 acts on R4, therefore we have 3 vector field on S3

Cl4 acts on R8, therefore we have 4 vector field on S7

Cl5 acts on R8, therefore we have 5 vector field on S7

Cl6 acts on R8, therefore we have 6 vector field on S7

Cl7 acts on R8, therefore we have 7 vector field on S7

Cl8 acts on R16, therefore we have 8 vector field on S15.

It is not hard to deduce the general pattern here. The key is knowing where the
jumps in dimension occur, and then just doing bookkeeping. To this end, note that
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the smallest dimension of a nonzero module over Clr is 2σ(r) where

σ(r) = #{s : 0 < s ≤ r and s ≡ 0, 1, 2, or 4 mod (8)}

We know that we can construct r independent vector fields on S2σ(r)−1.

Proof of Theorem 14.5 (Hurwitz-Radon Theorem). First note that we know much
more about Clifford modules than is indicated in Table 14.18. For each Clifford
algebra Clr we know the complete list of all isomorphism classes of finitely-generated
modules, and their dimensions are all multiples of the dimension listed in the table.
This is important.

Given an n ≥ 1, our job is to determine the largest r for which Clr acts on Rn.
We will then know that there are r vector fields on Sn−1. If we write n = 2u · (odd)
it is clear from Table 14.18 and the previous paragraph that the only way Clr could
act on Rn is if it actually acts on R2u

. Moreover, the quasi-periodicity in the table
shows that if we add 4 to u then the largest r goes up by 8. It follows at once
that if u = a + 4b then the formula for the largest r is 8b+??? where the missing
expression just needs to be something that works for the values a = 0, 1, 2, 3. One
readily finds that r = 8b+ 2a − 1 does the job.

So we know that there are 8b + 2a − 1 vector fields on Sn−1, where n has the
form (odd) · 2a+4b. �

Remark 14.19 (First connection with KO∗). Return to Table 14.18 and look at
the column with the smallest dimensions of the modules. As one reads down the col-
umn, consider where the jumps in dimensions occur: we have “jump-jump-nothing-
jump-nothing-nothing-nothing-jump,” which then repeats. This is strangely remi-
niscent of the periodic sequence

Z2 Z2 0 Z 0 0 0 Z . . .
This is quite the coincidence, and must have been a source of much excitement
when it was first noticed. We will eventually see, following [ABS], that there is
a very direct connection between the groups KO∗ and the module theory of the
Clifford algebras. For now we leave it as an intriguing coincidence.

14.20. Adams’s Theorem. So far we have done all this work just to construct
collections of independent vector fields on spheres. The Hurwitz-Radon lower bound
is classical, and was probably well-known in the 1940’s. The natural question is,
can one do any better? Is there a different construction that would yield more
vector fields than we have managed to produce? People were actively working on
this problem throughout the 1950’s. Adams finally proved in 1962 [Ad2] that the
Hurwitz-Radon bound was maximal, and he did this by using K-theory:

Theorem 14.21 (Adams). There do not exist ρ(n) + 1 independent vector fields
on Sn−1.

This is a difficult theorem, and it will be a long while before we are able to prove
it. We are introducing it here largely to whet the reader’s appetite. Note that it is
far from being immediately clear how a cohomology theory would help one prove
the result. There are several reductions one must make in the problem, but the
first one we can explain without much effort:
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Proposition 14.22. If there are r − 1 vector fields on Sn−1 then the projection
RPun−1/RPun−r−1 → RPun−1/RPun−2 ∼= Sun−1 has a section in the homotopy
category, for every u > 2k−2

n .

The existence of a section in the homotopy category is something that can per-
haps be contradicted by applying a suitable cohomology theory E∗(−). See Exer-
cise 14.24 below for a simple example.

We close this section by sketching the proof of Proposition 14.22. Define

Vk(Rn) = {(u1, . . . , uk) |ui ∈ Rn and u1, . . . , uk are orthonormal}.
This is called the Stiefel manifold of k-frames in Rn. Consider the map
p1 : Vk(Rn) → Sn−1 which sends (u1, . . . , un) 7→ u1. There exist r vector fields
on Sn−1 if and only if there is a section of p1 : Vr+1(Rn)→ Sn−1.

We need a fact from basic topology, namely that there is a cell structure on
Vk(Rn) where the cells look like

ei1 × · · · × eis

with n− k ≤ i1 < i2 < · · · < is ≤ n− 1 and s is arbitrary. We will not prove this
here: see Hatcher [Ha, Section 3.D] or Mosher-Tangora [MT, ???].

The cell structure looks like[
en−k ∪ en−k+1 ∪ · · · ∪ en−1

]
∪
[
(en−k+1 × en−k) ∪ (en−k+2 × en−k) ∪ · · ·

]
∪ · · ·

If n− 1 < (n− k+ 1) + (n− k) (these are the dimensions of the last cell in the first
group and the first cell in the second group) then the (n− 1)-skeleton just consists
of the cells en−k through en−1. This looks like the top part of the cell structure for
RPn−1, and indeed it is:

Proposition 14.23. If n + 2 > 2k then the n-skeleton of our cell structure on
Vk(Rn) is homeomorphic to RPn−1/RPn−k−1.

Proof. See [MT, ???]. �

Proof of Proposition 14.22. If there exist r − 1 vector fields on Sn−1 there also
exist r − 1 vector fields on Sun−1 for any u (see Proposition 14.3). Then
p1 : Vr(Run) → Sun−1 has a section s. By the cellular approximation theorem the
map s is homotopic to a cellular map s′. So s′ factors through the (un−1)-skeleton
of Vr(Run), which is RPun−1/RPun−r−1 under the assumption that ??????. We
have

Sun−1 s′−→ RPun−1/RPun−r−1 π−→ RPun−1/RPun−2 ∼= Sun−1.

The composition is p1s
′, which is homotopic to p1s = id. �

Exercise 14.24. Use singular cohomology to prove that RPn−1/RPn−3 → Sn−1

does not have a section when n is odd. Deduce that an even sphere does not have
a non-vanishing vector field (which you already knew).
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Part 3. K-theory and geometry I

At this point we have seen that there exist cohomology theories K∗(−) and
KO∗(−). We have not proven their existence, but we have seen that their existence
falls out as a consequence of the Bott periodicity theorems Ω2(Z×BU) ' Z×BU
and Ω8(Z× BO) ' Z× BO. If the only cohomology theory you have even seen is
singular cohomology, this will seem like an amazing thing: suddenly you know three
times as many cohomology theories as you used to. But a deeper study reveals that
cohomology theories are actually quite common—to be a little poetic about it, that
they are as plentiful as grains of sand on the beach. What is rare, however, is to
have cohomology theories with a close connection to geometry: and both K and
KO belong to this (vaguely-defined) class. In the following sections we will begin
to explore what this means.

To some extent we have a “geometric” understanding of K0(−) and KO0(−) in
terms of Grothendieck groups of vector bundles. We also know that any Kn(−) (or
KOn(−)) group can be shifted to a K0(−) group using the suspension isomorphism
and Bott periodicity. One often hears a slogan like “The geometry behind K-theory
lies in vector bundles”. This slogan, however, doesn’t really say very much; our aim
will be to do better.

One way to encode geometry into a cohomology theory is via Thom classes for
vector bundles. Such classes give rise to fundamental classes for submanifolds and
a robust connection wth intersection theory. In the next section we begin our story
by recalling how all of this works for singular cohomology.

15. The Thom isomorphism for singular cohomology

The theory of Thom classes begins with the cohomological approach to orienta-
tions. Recall that

H∗(Rn,Rn − 0) ∼= H∗(Dn, Sn−1) ∼= H̃∗(Sn) ∼=

{
Z if ∗ = n,

0 otherwise.

Moreover, an orientation on Rn determines a generator for Hn(Rn,Rn − 0) ∼= Z.
(For a review of how this correspondence works, see the proof of Lemma 16.2 in
the next section).

Now consider a vector bundle p : E → B of rank n. Let ζ : B → E be the zero
section, and write E−0 as shorthand for E−im(ζ). For any x ∈ B let Fx = p−1(x).
Then Hn(Fx, Fx − 0) ∼= Z, and an orientation of the fiber gives a generator. We
wish to consider the problem of giving compatible orientations for all the fibers at
once; this can be addressed through the cohomology of the pair (E,E − 0).

For a neighborhood V of x, let EV = E|V = p−1(V ). If EV is trivial, then
there is an isomorphism EV ∼= V × Rn, and (EV − 0) ∼= V × (Rn − 0). Hence,
H∗(EV , EV − 0) ∼= H∗(V × Rn, V × (Rn − 0)). If V is contractible, this gives that

H∗(EV , EV − 0) ∼= H∗(Rn,Rn − 0) ∼=

{
Z if ∗ = n,

0 otherwise.

Pick a generator UV ∈ Hn(EV , EV − 0) ∼= Z. For all x ∈ V the inclusion
jx : (Fx, Fx−0) ↪→ (EV , EV −0) gives a map j∗x : H∗(EV , EV −0)→ H∗(Fx, Fx−0).
Since we are assuming that V is contractible, j∗x is an isomorphism. So UV gives
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rise to generators in Hn(Fx, Fx − 0) for all x ∈ V . We think of UV as orienting all
of the fibers simultaneously.

Even when V is not contractible the conclusions of the last paragraph still hold.
One has that H∗(V ×Rn, V ×(Rn−0)) ∼= H∗(V )⊗H∗(Rn,Rn−0) by the Künneth
Theorem, and so

Hi(V × Rn, V × (Rn − 0)) ∼= Hi−n(V )⊗Hn(Rn,Rn − 0) ∼=

{
Hi−n(V ) if i ≥ n,
0 if i < n.

Let UV ∈ Hn(EV , EV −0) be an element that corresponds to 1 ∈ H0(V ) under the
above isomorphism. Then one checks that j∗x(UV ) is a generator for Hn(Fx, Fx−0)
for every x ∈ V .

Next suppose that we have two open sets V,W ⊆ B, together with classes
UV ∈ Hn(EV , EV − 0) and UW ∈ Hn(EW , EW − 0) that restrict to generators
(orientations) on the fibers Fx for every x ∈ V and every x ∈ W , respectively.
We would like to require that these orientations match: so we require that the
images of UV and UW in Hn(EV ∩W , EV ∩W − 0) coincide. Consider the (relative)
Mayer-Vietoris sequence:

Hn−1(EV ∩W , EV ∩W − 0)

��
Hn(EV ∩W , EV ∩W − 0)

Hn(EV , EV − 0)⊕
Hn(EW , EW − 0)

oo Hn(EV ∪W , EV ∪W − 0)oo

Under our requirement of compatibility between UV and UW , the class UV ⊕ UW
maps to zero; so it is the image of a class UV ∪W . SinceHn−1(EV ∩W , EV ∩W−0) = 0,
the class UV ∪W is unique. Note that the Mayer-Vietories sequence also shows that
H∗(EV ∪W , EV ∪W −0) = 0 for ∗ < n, which leaves us poised to inductively continue
this argument. In other words, the argument shows that we may patch more and
more U-classes together, provided that they agree on the regions of overlap. This
is the kind of behavior one would expect for orientation classes.

The above discussion suggests the following definition:

Definition 15.1. Given a rank n bundle E → B, a Thom class for E is an
element UE ∈ Hn(E,E − 0) such that for all x ∈ B, j∗x(UE) is a generator in
Hn(Fx, Fx − 0). (Here jx : Fx ↪→ E is the inclusion of the fiber).

There is no guarantee that a bundle has a Thom class. Indeed, consider the
following example:

Example 15.2. Let M → S1 be the Möbius bundle. Take two contractible open
subsets V and W of S1, where V ∪ W = S1. We can choose a Thom class for
M |V , and one for M |W , but the orientations won’t line up correctly to give us a
Thom class for M . In fact, notice that by homotopy invariance H∗(M,M − 0) is
the cohomology of the Möbius band relative to its boundary. But collapsing the
boundary of the band gives an RP 2
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RP 2

Möbius band

and we know H1(RP 2) = 0. So a Thom class cannot exist in this case.

If a bundle E → B has a Thom class then the bundle is called orientable. Said
differently, an orientation on a vector bundle E → B is simply a choice of Thom
class in Hn(E,E − 0; Z). One can readily prove that this notion of orientability
agrees with other notions one may have encountered, and we leave this to the reader.

One can also talk about Thom classes with respect to the cohomology theories
H∗(−;R) for any ring R. Typically one only needs R = Z and R = Z/2, however.
In the latter case, note that any n-dimensional real vector space V has a canonical
orientation in Hn(V, V − 0; Z/2). It follows that local Thom classes always patch
together to give global Thom classes, and so every vector bundle has a Thom class
in H∗(−; Z/2).

Finally, note that we can repeat all that we have done for complex vector spaces
and complex vector bundles. However, a complex vector space V of dimension n
has a canonical orientation on its underlying real vector space, and therefore a
canonical generator in H2n(V, V − 0). Just as in the last paragraph, this implies
that local Thom classes always patch together to give global Thom classes; so every
complex vector bundle has a Thom class.

The following theorem summarizes what we have just learned:

Theorem 15.3.
(a) Every complex bundle E → B of rank n has a Thom class in H2n(E,E − 0).
(b) Every real bundle E → B of rank n has a Thom class in Hn(E,E − 0; Z/2).

The Mayer-Vietoris argument preceding Definition 15.1 shows that if p : E → B
is a rank n orientable real vector bundle then H∗(E,E − 0) vanishes for ∗ < n and
equals Z for ∗ = n. A careful look at the argument reveals that it also gives a
complete determination of the cohomology groups for ∗ > n.

For any z ∈ H∗(B), we may first apply p∗ to obtain an element p∗(z) ∈ H∗(E).
We may then multiply by the Thom class UE to obtain an element p∗(z) ∪ UE ∈
H∗+n(E,E − 0). This gives a map H∗(B)→ H∗(E,E − 0) that increases degrees
by n.

Theorem 15.4 (Thom Isomorphism Theorem). Suppose that p : E → B has a
Thom class UE ∈ H∗(E,E − 0). Then the map H∗(B)→ H∗(E,E − 0) given by

z 7→ p∗(z) ∪ UE

is an isomorphism of graded abelian groups that increases degrees by n.

Proof. If the bundle is trivial, then E = B × Rn, and E − 0 = B × (Rn − 0). Here
one just uses the suspension and Künneth isomorphisms to get

H∗(B × Rn, B × (Rn − 0)) ∼= H∗−n(B).

One readily checks that the map from the statement of the theorem gives the
isomorphism.



A GEOMETRIC INTRODUCTION TO K-THEORY 97

For the case of a general bundle one uses Mayer-Vietoris and the Five Lemma to
reduce to the case of trivial bundles. The argument is easy, but one can also look
it up in [MS]. �

15.5. Thom spaces. The relative groups H∗(E,E − 0) coincide with the reduced
cohomology groups of the mapping cone of the inclusion E−0 ↪→ E. This mapping
cone is sometimes called the Thom space of the bundle E → B, although that
name is more commonly applied to more geometric models that we will introduce
next (the various models are all homotopy equivalent). For the most common model
we require that the bundle have an inner product (see Section 8.20).

Definition 15.6. Suppose that E → B is a bundle with an inner product. Define
the disk bundle of E as D(E) = {v ∈ E | 〈v, v〉 ≤ 1}, and the sphere bundle of
E as S(E) = {v ∈ E | 〈v, v〉 = 1}.

If E has rank n over each component of B, note that D(E)→ B and S(E)→ B
are fiber bundles with fibers Dn and Sn−1, respectively. Note also that we have
the following diagram:

E − 0 // // E

S(E) // //
OO

'

OO

D(E)
OO
'

OO

This diagram shows that E − 0 ↪→ E and S(E) ↪→ D(E) have weakly equivalent
mapping cones. Unlike E−0 ↪→ E, however, the map S(E) ↪→ D(E) is a cofibration
(under the mild condition that X is cofibrant, say): so the mapping cone is weakly
equivalent to the quotient D(E)/S(E). This quotient is what is most commonly
meant by the term ‘Thom space’:

Definition 15.7. For a bundle E → B with inner product, the Thom space of E
is ThE = D(E)/S(E).

Remark 15.8. The notation BE is also commonly used in the literature to denote
the Thom space, although we will not use it in these notes.

Note that if B is compact then ThE is homeomorphic to the one-point com-
pactification of the space E. To see this it is useful to first compactify all the fibers
separately, which amounts to forming the pushout of B ← S(E) → D(E). The
inclusion from B into the pushout P is the ‘section at infinity’, and the quotient
P/B is readily seen to be the one-point compactification of E. But clearly the
quotients P/B and D(E)/S(E) are homeomorphic.

Example 15.9. We will show that Th(nL→ RP k) ∼= RPn+k/RPn−1, where L is
the tautological line bundle. First, we define an isomorphism

RPn+k − RPn−1
∼= //

π

��

nL∗

wwppppppppppp

RP k.
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Consider RPn−1 ↪→ RPn+k as embedded via the last n coordinates. Take a point
` = [x0 : · · · : xk : y1 : · · · : yn] ∈ RPn+k − RPn−1, and note that at least one xi is
nonzero. The map π : RPn+k−RPn−1 → RP k is defined to send ` to [x0 : · · · : xk].

Regard ` as a line in Rn+k+1, and π(`) as a line in Rk+1. The formula
(x0, . . . , xk) 7→ y1 specifies a unique functional π(`) → R (obtained by extending
linearly). Likewise, we obtain n functionals on π(`) via the formulas

(x0, . . . , xk) 7→ y1, . . . (x0, . . . , xk) 7→ yn.

Note also that these functionals are independent of the choice of the homogeneous
coordinates for `: multiplying all the xi’s and yj ’s by λ gives rise to the same
functionals. We have therefore described a continuous map RPn+k−RPn−1 → nL∗,
and this is readily checked to be a homeomorphism.

Since the Thom space is the one-point compactification, we get that

Th(nL∗ → RP k) ∼= (̂nL∗) ∼= (RPn+k − RPn−1)∧ ∼= RPn+k/RPn−1.

We know by Corollary 8.23 that any real vector bundle over a paracompact space
is isomorphic to its dual. So nL∗ ∼= nL, and we have shown that Th(nL→ RP k) ∼=
RPn+k/RPn−1.

Remark 15.10. Note the case n = 1 in the above example: Th(L → RP k) ∼=
RP k+1.

Remark 15.11. A similar analysis to above shows that Th(nL∗ → CP k) ∼=
CPn+k/CPn−1, but note that unlike the real case the dual is important here.

There is another approach to Thom spaces that does not require a metric for
the bundle. If E → B is any vector bundle, let P(E) → B be the corresponding
bundle of projective spaces: the fiber of P(E)→ B over a point b is P(Eb). Another
definition of Thom space is then

ThE = P(E ⊕ 1)/P(E).

Note that this definition does not require a metric on the bundle.
To see that our definitions are equivalent, note that if V is a vector space then

there is a canonical inclusion V ↪→ P(V ⊕R) given by v 7→ 〈v⊕ 1〉. A little thought
shows that we get a diagram

V //

��

P(V ⊕ R)

��
V̂

∼= // P(V ⊕ R)/P(V )

where the bottom map is a homeomorphism. Extending this to the bundle setting,
it is clear that the pushout of B ←− P(E) → P(E ⊕ 1) is the fiberwise one-point
compactification of E. Then P(E ⊕ 1)/P(E) is obtained by taking this fiberwise
one-point compactification and collapsing the section at infinity: this clearly agrees
with the other descriptions we have given of the Thom space.

It is sometimes useful to be able to connect the pairs (P(E ⊕ 1),P(E)) and
(E,E − 0) in a way that doesn’t make use of any metric. To do so, observe that
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every vector space V gives rise to a commutative diagram

V − 0
��

��

// // P(V ⊕ R)− ∗
��

��

P(V )
��

��

∼oo

V // // P(V ⊕ R) P(V ⊕ R).

Here ∗ ∈ P(V ⊕R) is the line formed by the distinguished copy of R, and V → P(V ⊕
R) is the map v 7→ 〈v ⊕ 1〉; all the other maps are the evident inclusions. Taking
homotopy cofibers of the three columns, one gets a zig-zag of weak equivalences
between the homotopy cofiber of V − 0 ↪→ V and the homotopy cofiber of P(V ⊕
R)/P(V ). The latter is weakly equivalent to its cofiber, because P(V ) ↪→ P(V ⊕R)
is a cofibration.

Now consider a fiberwise version of the above diagram. If E → B is a real bundle
then we have maps

E − 0
��

��

// // P(E ⊕ 1)−B
��

��

P(E)
��

��

∼oo

E // // P(E ⊕ 1) P(E ⊕ 1).

The only difference worth noting is that B ↪→ P(E⊕1) is the evident section that in
each fiber selects out the distinguished line determined by the trivial bundle 1. The
left square is again a homotopy pushout square, and so taking homotopy cofibers
of the columns gives a zig-zag of weak equivalences between the homotopy cofibers
of E − 0 ↪→ E and P(E) ↪→ P(E ⊕ 1).

15.12. Thom spaces for virtual bundles. Thom spaces behave in a very simple
way in relation to adding on trivial bundles:

Proposition 15.13. For any real bundle E → X one has Th(E⊕n) ∼= Σn Th(E).
For a complex bundle E → X one has Th(E ⊕ n) ∼= Σ2n Th(E).

Proof. We only prove the statement for real bundles, as the case of complex bundles
works the same (and is even a consequence of the real case). Also, we will give
the proof assuming the bundle has a metric, although the result is true in more
generality. Note the isomorphisms

D(E⊕n) ∼= D(E)×Dn, S(E⊕n) ∼= (S(E)×Dn)qS(E)×Sn−1 (D(E)×Sn−1).

From this one readily sees that

D(E ⊕ n)/S(E ⊕ n) ∼= [D(E)/S(E)] ∧ [Dn/Sn−1] ∼= Th(E) ∧ Sn.
�

Proposition 15.13 allows one to make sense of Thom spaces for virtual bundles,
provided that we use spectra. This material will only be needed briefly in the rest
of the notes, but we include it here because these Thom spectra play a large role
in modern algebraic topology.

Assume that X is compact and let E → X be a bundle. Then E embeds in some
trivial bundle N ; let Q denote the quotient, so that we have E⊕Q ∼= N . Assuming
that Th(−E) had some meaning then we would expect

Th(Q) = Th(N − E) = ΣN Th(−E).
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This suggests the definition

Th(−E) = Σ−N Th(Q),

where the negative suspension must of course be interpreted as taking place in a
suitable category of spectra.

Our definition seems to depend on the choice of embedding E ↪→ N . To see that
this dependence is an illusion, let E ↪→ N ′ be another embedding and let Q′ be
the quotient. Then N ′ ⊕ Q ∼= Q′ ⊕ E ⊕ Q ∼= Q′ ⊕ N . On Thom spaces this gives
ΣN

′
Th(Q) ∼= ΣN Th(Q′), or Σ−N Th(Q) ' Σ−N

′
Th(Q′).

The above discussion can be extended to cover any element α ∈ KO(X). Write
α = E − F for vector bundles E and F , and choose an embedding F ↪→ N . Let
Q denote the quotient N/F . Note that α +N = (E − F ) + (F +Q) = E +Q. If
Th(α) makes sense then we would expect ΣN (Thα) ' Th(α + N) ' Th(E + Q),
and so this suggests the definition

Th(α) = Σ−N Th(E ⊕Q).

Again, one readily checks that this does not depend on the choice of E, F , N , or
the embedding F ↪→ N .

15.14. An application to stunted projective spaces. To demonstrate the use-
fulness of Thom spaces we give an application to periodicities amongst stunted
projective spaces. This material will be needed later, in the solution of the vector
fields on spheres problem.

Consider the space RP a+b/RP a. This has a cell structure with exactly b cells
(not including the zero cell), in dimensions a + 1 through a + b. The space
RP a+b+r/RP a+r has a similar cell structure, although here the cells are in di-
mensions a+ 1 + r through a+ b+ r. The natural question arises: fixing a and b,
what values of r (if any) satisfy

Σr[RP a+b/RP a] ' RP a+b+r/RP a+r.
One can use singular cohomology and Steenrod operations to produce some neces-
sary conditions here. For example, integral singular homology easily yields that if
if b ≥ 2 then r must be even. Use of Steenrod operations produces more stringent
conditions (we leave this for the reader to think about).

We will use Thom spaces to provide some sufficient conditions for a stable ho-
motopy equivalence between stunted projective spaces. We begin with a simple
lemma:

Lemma 15.15. The element λ = [L] − 1 ∈ K̃O(RPn) satisfies λ2 = −2λ and
λn+1 = 0. Consequently, 2nλ = 0.

Proof. L2 is the trivial bundle, and this immediately yields λ2 = −2λ. The second
statement follows from the fact that RPn may be covered by n + 1 contractible
sets U0, . . . , Un. (If homogeneous coordinates are used on RPn, one may take
Ui to be the open set xi 6= 0). The element λ ∈ KO(RPn, ∗) lifts to a class
λi ∈ KO(RPn, Ui), and therefore λn+1 is the image of λ0λ1 · · ·λn under the natural
map

KO(RPn, U0 ∪ · · · ∪ Un)→ KO(RPn).
But since ∪iUi = RPn, the domain of the above map is zero; hence λn+1 = 0.

Finally, since λ2 = −2λ it follows that λe = (−2)e−1λ for all e. In particular,
(−2)nλ = λn+1 = 0. �
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Proposition 15.16. Let r be any positive integer such that r([L] − 1) = 0 in
K̃O(RP b−1). Then there is a stable homotopy equivalence

Σr[RP a+b/RP a] ' RP a+b+r/RP a+r.

Proof. The assumption that r([L] − 1) = 0 implies that rL ⊕ s ∼= r ⊕ s for some
s ≥ 0. We have

RP a+b/RP a ∼= Th

(
(a+1)L

↓
RP b−1

)
' Σ−r−s Th

(
(a+1)L⊕r+s

↓
RP b−1

)

' Σ−r−s Th

(
(a+1+r)L⊕s

↓
RP b−1

)

' Σ−r Th

(
(a+1+r)L

↓
RP b−1

)
' Σ−r

[
RP a+b+r/RP a+r

]
.

The first and last steps use the identification of stunted projective spaces with a
corresponding Thom space—see Example 15.9 for this. �

Combining Lemma 15.15 and Proposition 15.16 we see that stunted projective
spaces with b cells have a periodicity of 2b−1:

Σ2b−1[
RP a+b/RP a

]
' RP a+b+2b−1

/RP a+2b−1
.

However, this is not the best result along these lines: we will get a better result by
finding the exact order of [L]− 1 in K̃O(RP b−1). This was determined by Adams;
see Theorem 32.14

16. Thom classes and intersection theory

In this section we will see how Thom classes give rise to fundamental classes for
submanifolds, and we will develop the connection between products of such classes
and intersection theory.

Let E → B be a real vector bundle of rank n. In general, E may not have a
Thom class; and if it does have a Thom class, it actually has two Thom classes
(since Hn(E,E − 0) ∼= Z by the Thom Isomorphism Theorem). The situation is
familiar, as it matches the usual behavior of orientations. It is, of course, possible—
and necessary!—to do geometry in a way that includes keeping track of orientations
and computing signs according to whether orientations match up or not. But it is
easier if we are in a situation where we don’t have to keep track of quite so much,
and there are two situations with that property: we can work always with mod 2
coefficients, or we can work in the setting of complex geometry. In either case we
have canonical Thom classes all the time. In this section, and for most of the rest
of these notes, we choose to work in the setting of complex bundles and complex
geometry. But it is important to note that almost everything works verbatim for
real bundles if we use Z/2 coefficients, and that many things can be made to work
for oriented real bundles if one is diligent enough about keeping track of signs.

For a rank n complex bundle E → B we have a canonical Thom class UE ∈
H2n(E,E − 0). The following result gives two useful properties:

Proposition 16.1.
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(a) (Naturality) Suppose E → B is a rank n complex vector bundle, and f : A→ B.
Consider the pullback

f∗E
f̄ //

��

E

��
A

f // B.

Then f̄∗ : H2n(E,E − 0) → H2n(f∗E, f∗E − 0) sends UE to Uf∗E; that is,
f̄∗(UE) = Uf∗E

(b) (Multiplicativity) Suppose that E → B is a rank n vector bundle, and E′ → B
is a rank k vector bundle, with Thom classes UE ∈ H2n(E,E − 0) and UE′ ∈
H2k(E′, E′ − 0). Then UE × UE′ = UE⊕E′ in H2n+2k(E × E′, (E × E′)− 0).

Proof. Recall that the Thom class of a rank n complex bundle E → B is the unique
class in H2n(E,E − 0) that restricts to the canonical generator in H2n(Fx, Fx − 0)
for every fiber Fx. Part (a) follows readily from this characterization. Using the
same reasoning, part (b) is reduced to the case there B is a point; this is checked
in the lemma below. �

Lemma 16.2. Let V and W be two real vector spaces, of dimensions n and k,
respectively. Assume given orientations on V and W , and let V ⊕ W have the
product orientation. Let UV ∈ Hn(V, V − 0), UW ∈ Hk(W,W − 0), and UV⊕W ∈
Hn+k(V ⊕W, (V ⊕W )−0) be the corresponding orientation classes. Then UV⊕W =
UV × UW .

Proof. Let v1, . . . , vn be an oriented basis for V , and let σV : ∆n → V be the affine
simplex whose ordered list of vertices is 0, v1, . . . , vn. Let σtV denote any translate
of σ that contains the origin of V in the interior. Then [σtV ] is a generator for
Hn(V, V − 0), and any relative cocycle in C∗sing(V, V − 0) that evaluates to 1 on
σtV is a generator (in fact, the same generator) for Hn(V, V − 0). This is how an
orientation of V determines a generator of Hn(V, V − 0).

Now let w1, . . . , wk be an oriented basis for W . Let σV⊕W : ∆n+k → V ⊕W
be the affine simplex whose ordered list of vertices is 0, v1, . . . , vn, w1, . . . , wk (note
that omitting 0 gives an oriented basis for V ⊕ W ). Again, let σtV⊕W denote a
translate of σV⊕W that contains the origin in its interior.

Recall that UV × UW = (π1)∗(UV ) ∪ (π∗2)(UW ), where π1 : V × W → V and
π2 : V ×W →W are the two projections. The definition of the cup product gives

(UV × UW )(σtV⊕W ) = (π∗1UV )(σtV⊕W [01 · · ·n]) · (π∗2UW )(σtV⊕W [n · · · (n+ k)])

= UV (π1 ◦ σtV⊕W [01 · · ·n]) · UW (π2 ◦ σtV⊕W [n · · · (n+ k)]).

It is clear that π1 ◦ σtV⊕W [01 · · ·n] gives a simplex in the same homology class as
σtV , and so UV evaluates to 1 on this simplex. Similarly, π2 ◦ σtV⊕W [n · · · (n + k)]
gives a simplex in the same homology class as σtW , and so UW evaluates to 1 here.
Since 1 · 1 = 1, we see that UV × UW satisfies the defining property of UV⊕W .

Given that a picture is worth a thousand words, here is a picture showing what
is happening in the smallest nontrivial case:
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v1

w1

V V

W W

σV⊕W

σtV⊕W π1σ
t
V⊕W [01]

π2σ
t
V⊕W [12]

0 1

2

�

16.3. Fundamental classes. Next we use the Thom isomorphism to define fun-
damental classes for submanifolds. Let M be a complex manifold, and let Z be
a regularly embedded submanifold of complex codimension c. By “regularly em-
bedded” we mean that there exists a neighborhood U of Z and a homeomorphism
φ : U → N between U and the normal bundle N = NM/Z , with the property that
φ carries Z to the zero section of N . The neighborhood U is called a tubular
neighborhood of Z. Keep in mind the following rough picture:

M Z

U

In the above situation we have that H∗(U,U −Z) ∼= H∗(N,N − 0). Notice that
N → Z is a complex bundle of rank c, with Thom class UN ∈ H2c(N,N − 0), and
so by the Thom Isomorphism we get Hi−2c(Z) ∼= Hi(N,N − 0). Also, by excision
one has H∗(M,M − Z) ∼= H∗(U,U − Z). So we have isomorphisms

Hi−2c(Z) Thom−→ Hi(N,N − 0) ∼= Hi(U,U − Z)
∼=←− Hi(M,M − Z).

Now consider the long exact sequence for the pair (M,M−Z), but use the above
isomorphisms to rewrite the relative groups H∗(M,M − Z) and H∗−2c(Z):

· · · H∗(M − Z)oo H∗(M)oo H∗(M,M − Z)oo

∼=
��

· · ·oo

H∗(U,U − Z)

∼=
��

H∗(N,N − 0)

H∗−2c(Z)

∼=

OO

j!

PP
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If j : Z ↪→M is the inclusion, then the indicated composition in the above diagram
is denoted j! and called a pushforward map or Gysin map. We can rewrite
the long exact sequence to get the Gysin sequence, also called a localization
sequence by algebraic geometers:

· · · Hi(M − Z)oo Hi(M)oo Hi−2c(Z)
j!oo Hi−1(M − Z)oo · · ·oo

Definition 16.4. Let Z be a regularly embedded, codimension c submanifold of the
complex manifold M . Let j! be the Gysin map described above, and take 1 ∈ H0(Z).
We define the fundamental class of Z to be [Z]M = j!(1) ∈ H2c(M). We also
define the relative fundamental class [Z]rel ∈ H2c(M,M − Z) to be the image
of 1 under the chain of isomorphisms from H0(Z) to H2c(M,M − Z). Note that
j∗([Z]rel) = [Z], where j∗ denotes the induced map in cohomology associated to the
inclusion (M, ∅) ↪→ (M,M − Z).

On an intuitive level one should think of [Z] as being the Poincaré Dual of the
usual fundamental class of Z in H∗(M). The point, however, is that we don’t need
to think through the hairiness of the Poincaré duality isomorphism; this has been
replaced with the machinery of vector bundles and Thom classes.

One must of course prove a collection of basic results showing that the classes
[Z] really do behave as one would expect fundamental classes to behave, and have
the expected ties with geometry. We will do a little of this, just enough to give the
reader the idea that it is not hard. Before tackling this let us do the most trivial
example:

Example 16.5.
(a) Check that the relative fundamental class of the origin in Cd is the canonical

generator: i.e., [0]rel ∈ H2d(Cd,Cd − 0) is the canonical generator provided by
the complex orientation on Cd.

(b) Let M be a d-dimensional complex manifold. If a, b ∈ M are path-connected,
verify that [a] = [b]. Hint: Reduce to the case where a and b belong to a
common chart U of M , with U ∼= Cd. Let I be a line joining a and b inside of
U , and consider the diagram

H∗(M,M − a)

∼=
��

∼= // H∗(M,M − I)

∼=
��

H∗(M,M − b)

∼=
��

∼=oo

H∗(U,U − a)
∼= // H∗(U,U − I) H∗(U,U − b).

∼=oo

Using an argument similar to that in the proof of Lemma 16.2, show that
[a]rel,U and [b]rel,U map to the same element in H∗(U,U − I).

(c) Suppose M is compact and connected. Verify that if a ∈M then [a] ∈ H2d(M)
is a generator. (Use that the mapH2d(M)→ H2d(M,M−a) is an isomorphism
in this case).

The following theorem connects our fundamental classes to intersection theory.
It is far from the most general statement along these lines, but it will suffice for
our applications later in the text. The diligent reader will find that the proof
readily generalizes to tackle more complicated situations, for example where the
intersection is not discrete.
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Theorem 16.6. Let M be a connected complex manifold. Suppose that Z and W
are regularly embedded submanifolds of M that intersect transversally in d points.
Then
(a) [Z]M ∪ [W ]M = d[∗]M
(b) j∗([Z]M ) = d[∗]W , where j : W ↪→M .

Proof. We begin by proving (a). Suppose that dimZ = k and dimW = `, so that
dimM = k + `. Let Z ∩W = {p1, . . . , pd}, and for each i let Ui be a Euclidean
neighborhood of pi such that Ui∩Uj = ∅ for i 6= j. Consider the following diagram:

Hk(M,M − Z)⊗H l(M,M −W ) //

∪rel

��

Hk(M)⊗H l(M)

∪
��

Hk+l(M,M − (Z ∩W )) // Hk+l(M)

Hk+l(M,M − {p1, . . . , pd})

⊕rHk+l(M,M − {pr})

∼=

OO

88qqqqqqqqqqqqqqqqqqqqqqqqqq

Since [Z] and [W ] lift to relative classes [Z]rel and [W ]rel, it will suffice to show that
if we take [Z]rel∪[W ]rel and take its projection to the rth factor Hk+l(M,M−{pr})
of the summand then we get [pr]rel. From this it will follow from the diagram that
[Z]∪ [W ] = [p1]+ . . .+[pd] in Hk+l(M). Since we have already seen in Exercise 16.5
that [pi] = [pj ] for any i and j, this will complete the proof of (a).

Next, fix an index r and consider the second diagram

Hk(Ur, Ur − Z)⊗H l(Ur, Ur −W )

��

Hk(M,M − Z)⊗H l(M,M −W )

��

oo

Hk+l(Ur, Ur − {pr}) Hk+l(M,M − {p1, . . . , pd})oo

Hk+l(M,M − {pr}).

OO
∼=

kkXXXXXXXXXXXXXXXXXXXXX

Thanks to this diagram, it is enough to replace M by Ur, Z by Z ∩ Ur, and W by
W ∩ Ur, and to prove that [Z]rel ∪ [W ]rel = [pr]rel.

But now M is just Ck+l. By choosing our neighborhood small enough, we can
find local coordinates so that Z is just Ck andW is just Cl, intersecting transversally
at the origin. We need to compute [Ck]rel ∪ [Cl]rel ∈ Hk+l(Ck+l,Ck+l − 0). By
writing Ck+l = Ck × Cl one sees that [Ck]rel coincides with the Thom class for
the bundle l → Ck. Likewise, [Cl]rel coincides with the Thom class for the bundle
k → Cl. These are trivial bundles, so they are pulled back from Cl → ∗ and
Ck → ∗ along the projection maps Ck → ∗ and Cl → ∗, respectively. In particular,
by Proposition 16.1(a) we can write

[Ck]rel ∪ [Cl]rel = π∗1(U1) ∪ π∗2(U2)
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where U1 ∈ H2l(Cl,Cl−0) and U2 ∈ H2k(Ck,Ck−0) are the canonical classes and
π1 : Ck+l → Cl, π2 : Ck+l → Ck are the projection maps. But π∗1(U1) ∪ π∗2(U2) is
the external cross product U1 × U2, and so Lemma 16.2 says that this is the same
as the canonical generator in H2k+2l(Ck+l,Ck+l − 0). This canonical generator is
[0]rel, by Exercise 16.5(a). We have therefore shown that [Ck]rel ∪ [Cl]rel = [0]rel,
and this completes the proof of (a).

The proof of (b) is very similar. One considers the diagram

Hk(W ) Hk(M)
j∗oo

⊕rHk(W,W − pr)
∼= // Hk(W,W − {p1, . . . , pd})

OO

Hk(M,M − Z)oo

OO

��
Hk(W ∩ Ur, (W ∩ Ur)− pr)

OO

Hk(Ur, Ur − pr)oo

where r is an arbitrary choice of index. The top square implies that it suffices
to show that the projection of j∗([Z]rel) to Hk(W,W − pr) equals [pr]rel, for any
choice of r. The bottom square then allows us to replace M by Ur and Z and W
by Z ∩Ur and W ∩Ur. That is, we are again reduced to the case where M = Ck+l,
Z = Ck, and W = Cl. Here we are considering the map

H2l(Cl,Cl − 0)
j∗←− H2l

(
Ck × Cl, (Ck × Cl)− (Ck × {0})

)
and must show that the image of [Ck]rel is the canonical generator in the target.
But if we identity Ck × Cl with the bundle l → Ck then [Ck]rel is just the Thom
class U, and the map j∗ is restriction to the fiber over 0 ∈ Ck; so it becomes the
canonical generator by definition of the Thom class. �

It is important to notice that for the most part the above proof used nothing
special about singular cohomology—we only used the basic properties of Thom
classes, together with generic properties that hold in any cohomology theory. In
the proof of Lemma 16.2 we apparently used particular details about the definition
of the cup product, but in fact what we needed could have been written in a way
that doesn’t reference the peculiar definition of the cup product at all. Indeed, we
have the identifications H∗(Cn,Cn − Ck) = H∗(Ck × Cn−k,Ck × (Cn−k − 0)) =
H∗(Cn−k,Cn−k − 0) = H∗(D2n−2k, ∂D2n−2k) ∼= H̃∗(S2(n−k)) (for the second iden-
tification we use the map induced by projection Ck × Cn−k → Cn−k, and for
third identification we use the induced map of any orientation-preserving em-
bedding of the disk into Cn−k). Similarly, we have a canonical identification
H∗(Cn,Cn − Cn−k) = H̃∗(S2k) . Considering the commutative diagram

H∗(Cn,Cn − Ck)⊗H∗(Cn,Cn − Cn−k)
µ // H∗(Cn,Cn − 0)

H̃∗(S2(n−k))⊗ H̃∗(S2k)
µ // H̃∗(S2n)

where µ denotes our product, the property needed for the proof of Lemma 16.2
boils down to the requirement that

σ2(n−k)(1)⊗ σ2k(1)
µ−→ σ2n(1).
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In other words, the computation comes down to the fact that the product behaves
well with respect to the suspension isomorphism.

Example 16.7. We will be content with the usual first example. Let Z ↪→ CPn
be a codimension c complex submanifold. Then [Z] ∈ H2c(CPn) ∼= Z. A generator
for this group is [CPn−c], so [Z] = d[CPn−c] for a unique integer d. This integer is
called the degree of the submanifold Z. A generic, c-dimensional, linear subspace
of CPn will intersect Z transversally in finitely many points, say e of them. The-
orem 16.6 gives that [Z] ∪ [CP c] = e[∗], but we also have d[CPn−c] ∪ [CP c] = d[∗]
since [CPn−c] ∪ [CP c] = [∗] (again by Theorem 16.6). So d = e, and this gives
the geometric description of the degree: the number of intersection points with a
generic linear subpace of complementary dimension.

The following result is the evident generalization of Theorem 16.6.

Theorem 16.8. Let M be a connected complex manifold. Suppose that Z and W
are regularly embedded submanifolds of M that intersect transversally. Then
(a) [Z]M ∪ [W ]M = [Z ∩W ];
(b) j∗([Z]M ) = [Z ∩W ], where j : W ↪→M .

Outline of proof. We omit the details here, since the proof is largely similar to that
of Theorem 16.6. For (a) use the relative fundamental classes [Z]rel and [W ]rel,
and show that [Z]rel ∪ [W ]rel = [Z ∩ W ]rel in H∗(M,M − (Z ∩ W )). For this,
restrict to a tubular neighborhood and then show that both classes restrict to the
canonical generators on the fibers of the normal bundle. For [Z ∩W ]rel this is the
definition, and for [Z]rel ∪ [W ]rel this is a computation with the cup product. The
proof of (b) is similar. �

16.9. Topological intersection multiplicities. We can now use our machinery
to give a topological definition of intersection multiplicity. Suppose that Z and W
are complex submanifolds of the complex manifold M , and that Z and W have an
isolated point of intersection at p. Let U be a Euclidean neighborhood of p that
contains no other points of Z ∩W . Consider the classes ????

17. Thom classes in K-theory

In the last section we saw how Thom classes for complex vector bundles give
rise to cohomological fundamental classes for submanifolds, and we saw that these
fundamental classes have the expected connections to geometry. The discussion was
carried out in the case of singular cohomology, but very little specific information
about this cohomology theory was actually used. In fact, once we showed that
Thom classes existed everything else followed formally. So let us now generalize a
bit:

Definition 17.1. A multiplicative generalized cohomology theory is a coho-
mology theory E equipped with product maps

Ep(X,A)⊗ Eq(Y,B)→ Ep+q(X × Y,X ×B ∪A× Y )

has requirements:
(1) natural
(2) ∃ unit in E0(pt, ∅) = E0(pt)
(3) associative
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(4) compatibility with δ, the connecting homomorphism

Let E be a multiplicative generalized cohomology theory.

Definition 17.2. Let E → B be a rank n complex vector bundle. A Thom
class for E is an element UE ∈ E2n(E,E − 0) such that ∀x ∈ B, i∗(UE) ∈
E2n(Fx, Fx \0) ∼= E2n(Cn,Cn \0) ∼= E2n(D2n, ∂D2n) ∼= ˜E2n ∼= Ẽ0(S0) = E0(pt), and
the condition is i∗(UE) maps to 1 ∈ E0(pt)

Definition 17.3. A complex orientation for E is a choice, for every rank n
complex bundle E → B, of a Thom class UE ∈ E2n(E,E − 0) such that

(1) (Naturality) Uf∗E = f∗(UE) for every map f : A→ B;
(2) (Multiplicativity) UE⊕E′ = UE · UE′

A given cohomology theory may or may not admit a complex orientation—
most likely, it will not. The complex-orientable cohomology theories are a very
special class. Note that once a complex orientation is provided one gets the Thom
isomorphism, Gysin sequences, and fundamental classes for complex submanifolds
just as before—as well as the same connections to intersection theory.

Our goal in this section is the following:

Theorem 17.4. Complex K-theory admits a complex orientation.

We will spend a long time exploring the geometric consequences of this, but let us
go ahead and give one example right away. Let Z ↪→ CPn be a complex submanifold
of codimension c. The above theorem implies that we have a fundamental class [Z] ∈
K2c(CPn), just as we did in the case of singular cohomology. Whereas H2c(CPn) ∼=
Z and only resulted in one integral invariant, we will find that K2c(CPn) ∼= Zn+1.
This is a much larger group, and so there is suddenly the potential for detecting
more information: the K-theoretic fundamental class [Z] is an (n + 1)-tuple of
integers rather than just a single integer. Of course it might end up that all of these
new invariants are just zero, or some algebraic function of the invariant we already
had—we will have to do some computations to find out. But this demonstrates
the general situation: K-theory has an inherent ability to detect more information
than singular cohomology did.

To prove Theorem 17.4 we need to give a construction, for every rank n complex
vector bundle E → B, of a Thom class in K2n(E,E − 0). By Bott periodicity this
group is the same as K0(E,E − 0). Our first step will be to develop some tools for
producing elements in relative K-groups.

17.5. Relative K-theory. Let A ↪→ X be an inclusion of topological spaces.
When we talked about algebraic K-theory back in Part 1, we defined the relative
K-group K0(X,A) using quasi-isomorphism classes of chain complexes that were
exact on A (Section 5.10). We will make a similar construction in the topological
case, with some important differences.

Definition 17.6. Let F(X,A) be the free abelian group on isomorphism classes of
bounded chain complexes of vector bundles E• on X that are exact on A (meaning
that for every x ∈ X the complex of vector spaces (Ex)• is exact). Define K(X,A)
to be the quotient of F(X,A) by the following relations:
(1) [E• ⊕ F•] = [E•] + [F•];
(2) [E•] = 0 whenever E• is exact on all of X;
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(3) If E• is a boundex complex of vector bundles on X × I that is exact on A × I
then [E|X×0] = [E|X×1].

Note that pullback of vector bundles makes K(X,A) into a contravariant functor.
Relations (1) and (2) are familiar, although the reader might be surprised that

(1) only deals with direct sums and not short exact sequences. We will say more
about this in a moment. Let us first make some remarks on relation (3), since we
have not dealt with relations of this type before.

If d : E → F is a map of vector bundles over X there is a clear, intuitive notion
of deformation of d. One way to make this rigorous is to consider the subspace
VB(E,F ) ⊆ Top(E,F ) consisting of the vector bundle maps; then a deformation of
d is just a continuous map I → VB(E,F ) that sends 0 to d. If π : X×I → X is the
projection, a little thought shows that the above notion of deformation is the same
as a map of vector bundles π∗E → π∗F over X × I that restricts to d on X × {0}.

Likewise, a deformation of a chain complex E• over X can be thought of in two
ways. One way involves a collection of deformations for all the maps of E•, having
the property that at any given time t the maps in the deformation assemble into a
chain complex. The other way is simply as a chain complex structure on the set of
vector bundles {π∗Ei}. These notions are equivalent.

The point here is that if (E•, d) is a given chain complex and d′ is a deformation
of the differential on d, then relation (3) implies that [(E•, d)] = [(E•, d

′)]. (To be
precise, there is an exactness condition required for the deformation, namely that
at every time t the differential dt is exact on A). Moreover, if X is paracompact
Hausdorff then by Corollary 11.2(b) every bundle on X × I is isomorphic to the
pullback of a bundle from X; it follows that every relation from (3) can be recast
in this form. That is to say, for paracompact Hausdorff spaces it is equivalent to
replace (3) by
(3’) [(E•, d)] = [(E•, d

′)] for any bounded chain complex (E•, d) and any deforma-
tion d′ of d.

The following important lemma will help give a feel for the idea of deforming a
chain complex:

Lemma 17.7. Let E• be a bounded complex of vector bundles on X that is exact
on A. Then [E•] = −[ΣE•] in K(X,A), where ΣE• is the shifted complex having
Ei in degree i+ 1.

Proof. First note that if V• and W• are exact complexes of vector spaces and
f : V• → W• is any map, then the mapping cone Cf is still exact. This follows
by the long exact sequence on homology. Consequently, if E• → F• is a map be-
tween complexes of vector bundles on X, each of which is exact on A, then the
mapping cone is also exact on A.

Let C denote the mapping cone of the identity id : E• → E•. We depict this
complex as follows:

· · · // E3

⊕

// E2

⊕

// E1

⊕

// E0

· · ·

>>|||||||| // E2
//

id|||

>>|||

E1
//

id|||

>>|||

E0

id|||

>>|||
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The arrows depict the various components of the differentials in the mapping cone;
recall that d(a, b) = (da+id(b),−db) for (a, b) ∈ En⊕En−1, where we have written
id(b) just to indicate the role of the original chain map.

Consider the deformation of C obtained by putting a t in front of all the diagonal
arrows and letting t 7→ 0. That is, Ct is the mapping cone for t(id) : E• → E•.
Then Ct is exact on A for every t, and when t = 0 we have C0 = E• ⊕ ΣE•. So
[C] = [C1] = [C0] = [E•] + [ΣE•] in K(X,A).

But C is exact on all of X, being the mapping cone of an identity map. So
[C] = 0 in K(X,A), and hence [E•] = −[ΣE•]. �

Remark 17.8. The ideas used in the above proof immediately also give the fol-
lowing. Let E• and F• be complexes of vector bundles on X that are exact on
A and let f : E• → F• be any map, with Cf denoting the mapping cone. Then
[Cf ] = [F•]− [E•] in K(X,A).

Our next task is to analyze exact complexes, and see that just as in homological
algebra they split up into basic pieces.

Definition 17.9. An elementary complex is one of the form

[0→ · · · → 0→ E
id−→ E → 0→ · · · → 0]

where E is a vector bundle on X and the E’s occur in some dimensions i and i+1.
Denote this complex as Di(E).

Proposition 17.10. Let X be a paracompact Hausdorff space. If E• is a bounded
complex of vector bundles on X that is exact, then E• is a direct sum of elementary
complexes.

Proof. The proof is really the same as in homological algebra. Assume without
loss of generality that Ei = 0 for i < 0. Then E1 → E0 is a surjection, so the
kernel K1 is a vector bundle by Proposition 9.3. By Proposition 9.2 the sequence
0→ K1 → E1 → E0 → 0 is split-exact, and a choice of splitting allows us to write
E1
∼= K1 ⊕ Q1 where the composite Q1 ↪→ E1 → E0 is an isomorphism. Noting

that E2 → E1 has image contained in K1, the complex E• splits as the direct sum
of D0(E0) and a complex that is zero in dimensions smaller than 1. Now continue
inductively, replacing E• with this smaller factor, until the nonzero degrees of E•

have been exhausted. �

Remark 17.11. Observe now that relation (2) of Definition 17.6 could be replaced
with the relation that [Di(E)] = 0 for any vector bundle E on X and any i ∈ Z.
This fact is sometimes useful.

The next result explains why we were able to forego short exact sequences in
relation (1) from Definition 17.6.

Proposition 17.12. Let X be paracompact and Hausdorff. Assume given a short
exact sequence 0→ E′• → E• → E′′• → 0 of complexes of vector bundles, where each
complex is exact on A. Then [E•] = [E′•] + [E′′• ] in K(X,A).

Proof. Let C• be the mapping cone of E′• ↪→ E•, and recall that there is a natural
map C• � E′′• . Let K• be the kernel, which is a chain complex of vector bundles
by Proposition 9.3. Elementary homological algebra (applied in each fiber) shows
that K• is exact on X. By Lemma 17.13 below the inclusion K• ↪→ C• is split, and
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so C•
∼= K•⊕E′′• . So [C•] = [K•] + [E′′• ] = [E′′• ] in K(X,A). Yet Remark 17.8 gives

[C•] = [E•]− [E′•]. �

Lemma 17.13. Let X be a paracompact Hausdorff space. Let j : K• ↪→ C• be an
inclusion between bounded complexes of vector bundles on X, and assume that K•

is exact. Then the map j admits a splitting χ : C• → K•.

Proof. Without loss of generality assume that Ki = 0 = Ci for i < 0. We start by
writing K = ⊕Ni=0D(Ai) for some vector bundles A1, . . . , AN on X. The inclusion
j looks as follows:

...
id��

...
��

A2 ⊕ A1

id��

// C2

��
A1 ⊕ A0

id��

// C1

��
A0

// C0

Starting at the bottom, choose a splitting χ0 for the inclusion A0 ↪→ C0, using
Corollary 9.4. Likewise, choose a splitting α1 for the inclusions A1 ↪→ C1/A0 (note
that C1/A0 is a vector bundle by Proposition 9.3). Define χ1 : C1 → A1⊕A0 to be
the sum of C1 → C1/A0

α1−→ A1 and C1 → C0
χ0−→ A0. It is readily checked that

χ1 is a splitting for j1 and that dχ1 = χ0d. Continue inductively to define χ at all
levels. �

The groups K(X,A) are readily seen to be homotopy invariant constructions:

Proposition 17.14. For any pair (X,A) the map π∗ : K(X,A)→ K(X×I,A×I)
is an isomorphism.

Proof. If j0, j1 : (X,A) ↪→ (X × I, A× I) are the evident inclusions then it is clear
that j∗0 = j∗1 . It then follows by category theory that homotopic maps (X,A) →
(Y,B) induce the same map upon applying K(−,−). Consequently, if f : (X,A)→
(Y,B) is part of a relative homotopy equivalence then it induces an isomorphism
on K-groups. Now just apply this to π. �

Before finishing with our basic exploration of the group K(X,A), let us note the
following simple result:

Proposition 17.15. For any compact Hausdorff space X there is an isomorphism
K(X, ∅)→ K0(X) given by the formula [E•]→

∑
i(−1)i[Ei].

Proof. It is immediate that the indicated formula gives a group homomorphism
χ : K(X, ∅) → K0(X); the only nontrivial part is verifying relation (3), but here
one uses that if F is a vector bundle on X × I then F |X×0

∼= F |X×1.
There is also the evident map j : K0(X) → K(X, ∅) sending a vector bundle E

to the chain complex E[0] consisting of E in degree 0 and zeros in all other degrees.
Certainly χ ◦ j = id.

If E• is any chain complex of vector bundles on X then we may deform E• to
the complex with zero differentials, by putting a t in front of all the d maps and
letting t 7→ 0. So [E•] = [(E•, d = 0)] =

∑
i[Σ

iEi] in K(X, ∅). But by Lemma 17.7
we know [ΣiEi] = (−1)i[Ei]. This proves that j ◦ χ = id. �
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Let E• and F• be bounded chain complexes of vector bundles on X. Let E•⊗F•
denote the usual tensor product of chain complexes, giving another complex of
vector bundles on X. In contrast to this, there is also an external tensor product.
If G• is a complex of vector bundles on a space Y , define

E•⊗̂G• = π∗1(E•)⊗ π∗2(G•)

where π1 : X × Y → X and π2 : X × Y → Y are the two projections. Note that if
∆: X → X ×X is the diagonal map then E• ⊗ F• ∼= ∆∗(E•⊗̂F•).

The internal and external tensor products induce pairings on the K-groups de-
fined above, taking the form

⊗ : K(X,A)⊗K(X,B)→ K(X,A ∪B)

and
⊗̂ : K(X,A)⊗K(Y,B)→ K(X × Y, (A× Y ) ∪ (X ×B)).

The main point is that if V• and W• are bounded exact sequences of vector spaces
and V• is exact, then V•⊗W• is exact. It follows that if E• is exact on A and F• is
exact on B, then E•⊗F• is exact on A∪B, with a similar analysis for the external
case. Note again that the internal and external tensor products are connected by
the formula

[E•]⊗ [F•] = ∆∗([E•]⊗̂[F•]
)
.

The following theorem is essentially due to Atiyah, Bott and Shapiro [ABS].

Theorem 17.16. On the category of homotopically compact pairs, there is a unique
natural transformation of functors χ : K(X,A) → K0(X,A) such that when A =
∅ one has χ(E•) =

∑
i
(−1)i[Ei]. In fact, χ is a natural isomorphism and is

compatible with (external and internal) products in the sense that χ(E• ⊗ F•) =
χ(E•) · χ(F•).

The proof of Theorem 17.16 involves some technicalities that would be a distrac-
tion at this particular moment, so we postpone the proof until Section 19 below.
See, in particular, Section 19.21 for the final proof.

17.17. Koszul complexes. Now that we know how to produce classes in relative
K-theory, we will put this knowledge to good use.

Let V be a complex vector space of dimension n. For any v ∈ V consider the
chain complex

0 // Λ0V
v∧− // Λ1V

v∧− // · · · v∧−// Λn−1V
v∧− // ΛnV // 0.

Denote this chain complex by JV,v. It is easy to see that this is exact when v 6= 0:
indeed, pick a basis e1, . . . , en for V where e1 = v, then use the usual induced basis
for the exterior products. It is clear that if e1 ∧ ω = 0 then all the basis elements
appearing in ω have an e1 in them.

Exercise 17.18. Check that JV,v ⊗ JW,w ∼= JV⊕W,v⊕w, and the isomorphism is
canonical.

For various reasons we will need to consider the dual of JV,v, which has the form

0→ ΛnV ∗ dv−→ Λn−1V ∗
dv−→ · · · dv−→ Λ1V ∗

dv−→ Λ0V ∗ → 0

We denote this by J∗V,v, and this is called a Koszul complex. Here is a description
of the differential:
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Proposition 17.19. Let e1, · · · , en be a basis for V and write v =
∑
viei. Let

e∗1, . . . , e
∗
n be the dual basis for V ∗. Then the differential in J∗V,v is given by

dv(e∗i0 ∧ · · · ∧ e
∗
ik

) =
k∑
j=0

(−1)jvije
∗
i0 ∧ · · · ∧ ê

∗
ij
∧ · · · ∧ e∗ik ,

where the hat indicates that that term is omitted from the wedge.

Proof. Left to the reader. �

Example 17.20. Prove that JV,v and J∗V,v are isomorphic as chain complexes.
(The isomorphism is not canonical, however.)

Recall that K-theory is largely about ‘doing linear algebra fiberwise over a base
space’. Anything canonical that we can do for vector spaces can be done for vector
bundles as well. So let E → B be a rank n complex vector bundle, and let s : B → E
be a section. We get a chain complex of vector bundles

0 // Λ0E
s∧− // Λ1E

s∧− // · · · s∧−// Λn−1E
s∧− // ΛnE // 0

which we will denote JE,s. For x ∈ B this chain complex is exact over x provided
that s(x) 6= 0. Thus it determines an element in K0(B,B − s−1(0)). We can
just as well consider the dual complex, which also determines an element [J∗E,s] ∈
K0(B,B − s−1(0)).

Now let V be a complex vector space of dimension n. Consider the vector bundle
π1 : V × V → V , with section given by the diagonal map ∆: V → V × V . Our
Koszul complex J∗V×V,∆ is exact on V − 0, and so defines an element

β(V ) = [J∗V×V,∆] ∈ K0(V, V − 0).

Example 17.21. One readily checks that β(C) is the complex

1 ·z //

��>
>>

>>
>>

1

����
��

��
�

C
where the fiber over z ∈ C is the chain complex 0 → C z−→ C → 0 (multiplication
by z). The Koszul complex β(C2) has the form

1 A //

��?
??

??
??

2 B //

��

1

����
��

��
�

C2

,

where over a point (z, w) ∈ C2 we have

A =
[
−w
z

]
and B =

[
z w

]
.

Finally we look at β(C3), which has the form

1 A // 3 B // 3 C // 1
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where the fiber over (z, w, u) ∈ C3 has

A =

 u
−w
z

 , B =

−w −u 0
z 0 −u
0 z w

 , C =
[
z w u

]
.

Let us return to our element β(V ) ∈ K0(V, V − 0). If we pick a basis for V then
we get isomorphisms

K0(V, V − 0) ∼= K0(Cn,Cn − 0) ∼= K0(D2n, ∂D2n) ∼= K̃0(S2n)
∼= K̃−2n(S0) = K−2n(pt).

Moreover, one checks that any two choices of basis for V give rise to the same
isomorphism (essentially because a C-linear automorphism of Cn is orientation-
preserving). So we may regard β(V ) as giving us an element of K−2n(pt). Using
Exercise 17.18 we have β(V ⊕W ) = β(V ) · β(W ).

When we first learned about K-theory as a cohomology theory, we set ourselves
the goal of having explicit generators for K∗(pt). We can now at least state the
basic result:

Theorem 17.22.
(a) K0(Cn,Cn − 0) ∼= K−2n(pt) ∼= Z and β(Cn) = (β(C))n is a generator.
(b) K∗(pt) = Z[β, β−1], where β = β(C) ∈ K−2(pt).

The element β = β(C) ∈ K−2(pt) is often called the Bott element, although
sometimes this name is applied to β−1 ∈ K2(pt) instead. This theorem is best
regarded as part of Bott periodicity. And just as for the periodicity theorem, we
again postpone the proof in favor of moving forward and seeing how to use it.

Let p : E → B be a rank n complex vector bundle. Consider the pullback p∗E,
which is π1 : E×BE → E. This bundle has an evident section given by the diagonal
map ∆: E → E ×B E, and we may consider the Koszul complex with respect to
this section. Since ∆ is nonzero away from the zero-section of E, this gives us an
element in K0(E,E − 0): we define

UE = [J∗p∗E,∆] ∈ K0(E,E − 0).

Note that if x ∈ B and jx : Fx ↪→ E is the inclusion of the fiber, it is completely
obvious that j∗x(UE) = β(Fx) ∈ K0(Fx, Fx − 0).

The element UE is not quite our desired Thom class, since the Thom class is
supposed to lie in K2n(E,E−0) rather than K0(E,E−0). Of course these groups
are the same because of Bott periodicity. To be completely precise, we should
define our Thom class to be UE = β−n · [J∗p∗E,∆]. However, it is common practice
to leave off the factors of β and just do constructions in K0. We will often follow
this practice, but sometimes we will put the factors of β back into the equations in
order to emphasize a point. Hopefully this won’t be too confusing.

17.23. Koszul complexes in algebra. Now that we have seen Koszul complexes
in geometry it seems worthwhile to also see how they appear in algebra. They turn
out to be very important tools in homological algebra.
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Let R be a commutative ring, and let x1, · · · , xn ∈ R. Define the Koszul complex
K(x1, · · · , xn;R) to be the complex

0 // ΛnRn
d // Λn−1Rn

d // · · · d // Λ2Rn
d // Λ1Rn

d // Λ0Rn // 0,

where the differential d is given by

d(ei0 ∧ · · · ∧ eik) =
k∑
j=0

(−1)jxij (ei0 ∧ · · · ∧ êij ∧ · · · ∧ eik).

Note that d is the unique derivation such that d(ei) = xi. Define the Koszul
homology groups as H∗(x1, · · · , xn;R) = H∗(K(x1, · · · , xn;R)). We will often
abbreviate the sequence x1, . . . , xn to just x, and write K(x;R) and so forth. It is
easy to see that H0(x;R) = R/(x1, . . . , xn).

In some cases the Koszul complex K(x;R) is actually a resolution of
R/(x1, . . . , xn), and this is perhaps the main reason it is useful. To explain when
this occurs we need a new definition. The sequence x1, . . . , xn is said to be a reg-
ular sequence if xi is a non-zero-divisor in R/(x1, . . . , xi−1) for every 1 ≤ i ≤ n
(in partcular, x1 is a non-zero-divisor in R). For example, in the polynomial ring
C[z1, . . . , zn] the indeterminates z1, . . . , zn are a regular sequence.

Theorem 17.24. Let x1, . . . , xn ∈ R.
(a) If x1, . . . , xn is a regular sequence, then Hi(x;R) = 0 for all i ≥ 1.
(b) Suppose R is local Noetherian and x1, · · · , xn ∈ m, where m is the maximal

ideal. Then x1, . . . , xn is a regular sequence if and only if Hi(x;R) = 0 for all
i ≥ 1.

Proof. The subalgebra of Λ∗Rn generated by e1, . . . , en−1 is a subcomplex of
K(x1, . . . , xn;R), and is isomorphic to K(x1, . . . , xn−1;R). The quotient complex
has a free basis consisting of wedge products that contain en; and in fact the pro-
cess of ‘wedging with en’ gives an isomorphism between K(x1, . . . , xn−1;R) and
this quotient complex that shifts degrees by one. We can summarize this by saying
that there is a short exact sequence of chain complexes

0→ K(x1, · · · , xn−1;R) ↪→ K(x1, · · · , xn;R)� ΣK(x1, · · · , xn−1;R)→ 0.

Denote the sequence x1, . . . , xn by x and x1, . . . , xn−1 by x′.
Our short exact sequence induces a long exact sequence in homology groups:

· · · → Hi(x′;R)→ Hi(x;R)→ Hi−1(x′;R) d−→ Hi−1(x′;R)→ Hi−1(x;R)→ · · ·
and one easily checks that the connecting homomorphism is multiplication by ±xn
(we leave this as an exercise).

Our proof of part (a) now proceeds by induction on the length of the sequence

n. When n = 1 the Koszul complex is 0 // R
x1 // R // 0 , so H1(x;R) =

AnnR x1 = 0 since x1 is a nonzerodivisor.
Now assume that we know part (a) for all regular sequences of length n− 1. By

the induction hypothesis and the above long exact sequence, it is easy to see that
Hi(x;R) = 0 for i ≥ 2. So we only need to worry about H1(x;R), for which we
have

H1(x′;R)→ H1(x;R)→ H0(x′;R) ±xn−→ H0(x′;R)→ H0(x;R)→ 0
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By induction H1(x′;R) = 0, and we know H0(x′;R) = R/(x1, . . . , xn−1). Since xn
is a nonzerodivisor in this ring, the kernel of the map labelled ±xn is zero—hence
H1(x;R) = 0 as well. This completes the proof of (a).

For (b), the point is that the above argument is almost reversible. For n = 1 the
other direction works without any assumptions on R, because H1(x;R) = Ann(x).
So assume by induction that the result holds for sequences of length n − 1. It
follows from the long exact sequence we saw in part (a) that there are short exact
sequences

0→ Hi(x′;R)/xnHi(x′;R)→ Hi(x;R)→ AnnHi−1(x′;R)(xn)→ 0.

The assumption that Hi(x;R) = 0 implies that xnHi(x′;R) = Hi(x′;R). But
xn ∈ m, so by Nakayama’s Lemma this yields Hi(x′;R) = 0. This holds for all
i ≥ 1, so induction gives that x′ is a regular sequence. The assumption Hi(x;R) = 0
also yields that xn is a nonzerodivisor on AnnHi−1(x

′;R); so for i = 1 this says that
xn is a nonzerodivisor on R/(x1, . . . , xn−1). Hence, x is a regular sequence. �

We can use our knowledge of Koszul complexes to prove the Hilbert Syzygy
Theorem:

Theorem 17.25 (Hilbert Syzygy Theorem). Let L be a field. Then every finite-
generated module over L[x1, . . . , xn] has a finite, projective resolution.

Proof. We first prove the result in the graded case. Let R = L[x1, · · · , xn], and
grade R by setting deg(xi) = 1. Assume that M is a finitely-generated, graded R-
module. We construct the so-called “minimal resolution” of M : Start by picking a
minimal set of homogeneous generators w1, . . . , wk for M . Define F0 = Rk, graded
so that the ith generator has degree equal to deg(wi). Let d0 : F0 → M be the
map sending ei to wi, and let K0 be the kernel. Then d0 preserves degrees, so K0

is again a graded module. Repeat this process to construct F1 � K0, let K1 be
the kernel, repeat to get F2 � K1, and so forth. This constructs a free resolution
F• →M of the form

· · · → Rb2 → Rb1 → Rb0 →M → 0

We claim that the matrix for each differential has entries in the ideal (x1, . . . , xn):
this follows from the fact that at each stage we chose a minimal set of generators.

Next, form the complex F• ⊗R R/(x1, . . . , xn) and take homology. Tensoring
with R/(x1, . . . , xn) kills all the entries of the matrices and changes every R to an
L; so we have

Lbi ∼= Hi(F• ⊗R R/(x1, . . . , xn)) = Tori(M,R/(x1, . . . , xn)).

Now we use the fact that we can also compute Tor by resolving R/(x1, . . . , xn) and
tensoring with M . Yet R/(x1, . . . , xn) is resolved by the Koszul complex, which has
length n: so this immediately yields that Tori(M,R/(x1, . . . , xn)) = 0 for i > n. It
follows that bi = 0 for i > n, which says that F• was actually a finite resolution.

Now we prove the general case, for modules that are not necessarily graded.
Choose a presentation of the module

Rb1
A // Rb0 // // M

where A is a matrix with entries in R. Now introduce a new variable x0 and
homogenize A to Ã: that is, multiply factors of x0 onto the monomials ap-
pearing in the entries of A so that all the entries have the same degree. Put
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S = L[x0, · · · , xn] = R[x0], and let M̃ be the cokernel of Ã:

Sb1
Ã // Sb0 // M̃ // 0 .

Note that M̃ is a graded module over S, and M̃ ⊗ S/(1− x0) ∼= M .
What we have already proven in the graded case guarantees a finite S−free

resolution F̃ • → M̃ → 0. Let F• = F̃ • ⊗ (S/(1 − x0)). This is an R-free chain
complex, and H0(F•) ∼= M . Note that Hi(F ) = TorSi (M̃ , S/(1− x0)), and the Tor-
module can again also be computed by resolving S/(1−x0). We use the resolution
0→ S

1−x0−→ S → 0 and immediately find that Hi(F ) = 0 if i ≥ 2. We also have that
H1(F ) ∼= Ann eM (1− x0), but such an annihilator is zero for any finitely-generated,
graded module. So F• →M is a finite free resolution over R. �

Remark 17.26. In the above proof, the deduction of the general case from the
graded case was taken from [E, Corollary 19.8].

18. The denouement: connecting algebra, topology, and geometry

Although we are far from the end of these notes, we have reached the point where
we can finally explain Serre’s definition of intersection multiplicities.

18.1. The local index. Suppose that E• is a bounded chain complex of vector
bundles on Cn that is exact on Cn−0. Then we get a class [E•] ∈ K0(Cn,Cn−0) ∼=
K−2n(pt). But the Bott calculations say that this group is cyclic, generated by βn.
Thus [E•] = d · βn for a unique integer d. We call this integer the local index of
the complex E•, and we will denote it ind0(E•). The natural question is: how do
we compute this invariant from the data in E•?

I don’t know a simple answer to this question, but the question becomes more
manageable if we assume that the complex E• is algebraic: that is, if we assume
that each Ei is an algebraic vector bundle and the maps Ei → Ei−1 are algebraic.

Theorem 18.2. If E• is a bounded complex of algebraic vector bundles on Cn that
is exact on Cn − 0, then the local index is given by

ind0(E•) =
∑
i

(−1)i dimC Hi(P•)

where P• is a complex of finitely-generated, projective C[x1, . . . , xn]-modules such
that P•(C) ∼= E•.

For the above statement, recall that P 7→ P (C) is the functor that associates
to every projective C[x1, . . . , xn]-module the corresponding vector bundle over Cn;
see Section 10.6.

The proof of Theorem 18.2 comes down to a comparison between algebraic and
topological K-theory groups. Once the machinery for this comparison is in place,
the theorem follows by a simple computation. To set up this machinery we need to
recall some ideas from Part 1 of these notes.

Let R = C[x1, . . . , xn]/Q where Q is a prime ideal, and let X = SpecR be the
corresponding algebraic variety. Let Z ⊆ SpecR be a Zariski closed set. We use
the term “algebraic vector bundle on X” synonymously with “finitely-generated
projective over R”. If P• is a complex of algebraic vector bundles on X and p is a
point of X, we will say that P• is exact at p if the localization (P•)p is exact as a
complex of Rp-modules (where p is regarded as a prime ideal in R). This notion of
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exactness at first seems a bit different than what we used in the topological case:
here we are considering exactness on germs of sections, whereas in the topological
case we used exactness on fibers. In the algebraic world the notions are equivalent:

Lemma 18.3. Let P• be a bounded-below complex of finitely-generated projectives
over a Noetherian ring R. Let U ⊆ SpecR be closed under specialization (i.e.,
having the property that if q1 ∈ U and q1 ⊆ q2 then q2 ∈ U). Then the following
statements are equivalent:
(1) (P•)q is exact for all primes q ∈ U;
(2) (P•)m is exact for all maximal ideals m ∈ U;
(3) P• ⊗R R/m is exact for all maximal ideals m ∈ U.

Condition (c) is the fiberwise exactness condition, analagous to what we used in
the toplogical case. The complex P• ⊗R R/m is the pullback of P• along the map
SpecR/m → SpecR, and therefore represents the fiber of P• over the geometric
point SpecR/m.

Proof of Lemma 18.3. Of course (1)⇒(2) is trivial, and (2)⇒(1) follows from the
fact that (P•)q =

[
(P•)m

]
q

for any maximal ideal m ⊇ q (and the fact that a
localization of an exact complex is still exact).

The direction (2)⇒(3) is also easy, since

P• ⊗R R/m ∼= (P•)m ⊗Rm Rm/mRm.(18.4)

The complex (P•)m is a bounded-below exact sequence of projectives, and hence is
split-exact; so tensoring with any module still gives an exact sequence.

Finally, we must prove (3)⇒(2). Using the isomorphism of (18.4) it suffices to
prove that if Q• is a bounded-below complex of finitely-generated projectives over a
Noetherian local ring R such that Q• ⊗R R/m is exact, then Q• is exact. Without
loss of generality assume that Qi = 0 for i < 0, and let M be the cokernel of
Q1 → Q0. Since Q1 → Q0 is surjective after tensoring with R/m, this implies that
M/mM = 0. Nakayama’s Lemma says that this can only happen in M=0. So
Q1 → Q0 is surjective and H0(Q) = 0. Now choose a splitting for Q1 → Q0, and
use this to write Q• as a direct sum of Q0

id−→ Q0 and a complex that vanishes in
degrees smaller than 1. Apply the same argument as above to this smaller complex,
and continue by induction.

To phrase the above argument slightly differently, over a local ring R one can
always decompose Q• = F•⊕G• where F• is split-exact and G• is a complex where
the matrices for all differentials have entries in m. The assumption that Q•⊗R/m
is exact implies that G•⊗R/m is exact, but this can only happen if G• = 0. So we
conclude Q• = F•, and hence Q• is exact. �

Define K0
alg(X,X −Z) by taking the free abelian group on bounded chain com-

plexes of algebraic vector bundles on X that are exact at every point in Z and
quotienting by the following two relations:
(1) [P•] = 0 if P• is exact on all of X, and
(2) [P•] = [P ′•] + [P ′′• ] for every short exact sequence of chain complexes 0→ P ′• →

P• → P ′′• → 0.
Note that K0

alg(X,X − Z) is exactly the same as the group denoted K(R)Z in
Section 5.16; sometimes we will revert to that notation when we want to concentrate
on the underlying algebraic perspective.
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The assignment P 7→ P (C) from algebraic to topological vector bundles induces
a map of abelian groups

φ : K0
alg(X,X − Z)→ K0(X(C), X(C)− Z(C)).

Indeed we just have to note that relations (1) and (2) in the definition of
K0
alg(X,X−Z) are preserved, but this is something that we know. To avoid cumber-

some notation it will be convenient to write the target group of φ as K0
top(X,X−Z);

it looks much more pleasant to write

φ : K0
alg(X,X − Z)→ K0

top(X,X − Z).

Sometimes we will drop the “top” and just write K0(X,X −Z), but we will never
drop the “alg”.

If M is a finitely-generated R-module, recall that the support of M is

SuppM = {Q ⊆ R |Q is prime and MQ 6= 0}.
This coincides with V (AnnM), namely the set of all primes containing AnnM .
In particular, SuppM is Zariski-closed. Let G(X)Z (or G(R)Z) denote the
Grothendieck group of finitely-generated R-modules M such that SuppM ⊆ Z.

We have the usual Euler characteristic map χ : K0
alg(X,X − Z) → G(X)Z that

sends [P•] to
∑
i(−1)i[Hi(P )]. The following result should come as no surprise:

Theorem 18.5. If R is regular, then χ : K0
alg(X,X − Z)→ G(X)Z is an isomor-

phism, for any Z ⊆ SpecR.

Proof. The inverse sends a class [M ] to the class [P•] for any finite projective
resolution P• for M over R. The proof that this is well-defined, and that the maps
are inverses, is exactly the same as for Theorem 2.10. �

Now let us restrict to the case where R = C[x1, . . . , xn], so that X is affine n-
space AnC; we will just write X = Cn for convenience. Let Z = {0} = V (x1, . . . , xn)
be the closed set consisting only of the origin. Our aim will be to calculate the
group K0

alg(X,X − Z) = K0
alg(Cn,Cn − 0) in this case.

Let m = (x1, . . . , xn). It is easy to see that the following conditions on an
finitely-generated R-module M are equivalent:
(1) SuppM = {m} ;
(2) AnnM is contained in only one maximal ideal, namely m;
(3) Rad(AnnM) = m;
(4) M is killed by a power of m.
Assuming M satisfies these conditions, consider the finite filtration

M ⊇ mM ⊇ m2M ⊇ · · · ⊇ mkM ⊇ mk+1M = 0.

Then in G(R)Z we have [M ] =
∑k
i=0[m

iM/mi+1M ]. But each quotient is a finite-
dimensional R/m-vector space, so [M ] is just a multiple of [R/m]. This shows
that G(R)Z is cyclic, generated by [R/m]. Moreover, each quotient miM/mi+1M
is finite-dimensional as a C-module (where the module structure is coming from
C ⊆ R). It follows thatM is also finite-dimensional as a C-module. Since dimension
is additive it gives a function

dim: G(R)Z → Z,
which is clearly surjective and hence an isomorphism.



120 DANIEL DUGGER

Since G(Cn){0} is generated by [R/m], it follows that K0
alg(Cn,Cn − 0) is gen-

erated by the Koszul complex K(x1, . . . , xn;R).
Now consider the following diagram:

K0
alg(Cn,Cn − 0)

φ //

χ∼=
��

K0
top(Cn,Cn − 0)

∼= // Z〈βn〉

G(R){m}
dim
∼=

// Z.

(18.6)

We know by Bott’s calculations that the target of φ is isomorphic to Z and is
generated by the Koszul complex. Likewise, we have just see that the domain of φ
is isomorphic to Z and is generated by the algebraic Koszul complex. Since φ clearly
carries the algebraic Koszul complex to the topological one, φ is an isomorphism.

Proof of Theorem 18.2. Fill in diagram (18.6) with the map Z〈βn〉 → Z that sends
βn to 1. The diagram then commutes, because one only has to check this on
the Koszul complex that generates K0

alg(Cn,Cn − 0); and here it is obvious. The
commutativity of this diagram is exactly the statement of Theorem 18.2. �

18.7. Resolutions and fundamental classes. Now we’ll use these ideas to do
something a bit more sophisticated. Let Z ↪→ Cn be a closed algebraic subvariety:
Z = V (I) for some ideal I ⊆ C[x1, . . . , xn]. Assume that Z is smooth of codimen-
sion c. Then we have a relative fundamental class [Z]rel ∈ K2c(Cn,Cn − Z).

Let P• be a bounded, projective resolution of C[x1, . . . , xn]/I over C[x1, . . . , xn].
Note that if Q ∈ Spec Cn then

Q ∈ Z ⇐⇒ Q ⊇ I ⇐⇒ (R/I)Q 6= 0,

and so if Q /∈ Z then (P•)Q is exact. So P• gives a class [P•] ∈ K0
alg(Cn,Cn − Z).

Using our natural transformation K0
alg(Cn,Cn − Z) → K0(Cn,Cn − Z), we get a

corresponding class [P•] in relative topological K-theory. We can promote this to
a class in relative K2c by multiplying by β−c. It is reasonable to expect this class
to be related to [Z]rel:

Theorem 18.8. In the above situation we have [Z]rel = β−c · [P•].

Note that the β−c could be dropped if we regarded [Z]rel as a class in
K0(Cn,Cn − Z) instead of K2c(Cn,Cn − Z).

Theorem 18.8 gives the main connection between K-theory and homological
algebra: projective resolutions give fundamental classes in K-theory. To prove this
theorem, recall that [Z]rel is defined by choosing a tubular neighborhood U of Z in
Cn, together with an isomorphism between U and the normal bundle N = NCn/Z .
The class [Z]rel is the unique class that restricts to the Thom class UN . This is all
encoded in the following diagram:
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[Z]rel ∈ K2c(Cn,Cn − Z)

∼=excision

��

K0(Cn,Cn − Z)
β−c

∼=oo

����

K0
alg(Cn,Cn − Z)

φoo

K2c(U,U − Z) K0(U,U − Z)
β−c

oo

UN ∈ K2c(N,N − 0) K0(N,N − 0)
β−c

oo K0
alg(N,N − 0).

φoo

Our goal is to take [P•] ∈ K0
alg(Cn,Cn − Z), push it across the top row and

then down, and show that the image is UN . But note that UN is algebraic—it is
represented by the Koszul complex, which is entirely algebraic. So UN lifts to a
class in K0

alg(N,N − 0). In some sense the most natural idea for our proof would
be to stay entirely in the right-most column, and to compare both [P•] and UN on
the algebraic side of things. Of course one immediately sees the trouble, which is
that the neighborhood U is not algebraic—and so we have a missing group in the
third column, obstructing our proof. Our goal will be to give a clever way around
this, using a technique from algebraic geometry called deformation to the normal
bundle.

Remark 18.9. Before giving the next argument we need to give a brief review of
blow-ups. Let X be a smooth variety and A ↪→ X a closed subvariety, which for
convenience we assume to be smooth as well. The blow-up BlA(X) of X at A is an
algebraic variety that topologically corresponds to removing A and then sewing in
a copy of the projectived normal bundle in its place. That is, let V be a tubular
neighborhood of A, with associated homeomorphism V ∼= NX/A. Then there is a
homeomorphism

BlA(X) ∼= (X −A)q(V−A) P(N).
Here the map V − A → P(N) is the map N − 0 → P(N) that sends any nonzero
element of a fiber Fa to the corresponding line it spans, regarded as an element of
P(Fa). Observe that the pushout

P(N) //

��

BlA(X)

��
A // X

is homeomorphic toX. If π denotes the map BlA(X)→ X, note that π−1(X−A)→
X−A is an isomorphim, whereas for any point a ∈ A the fiber π−1(a) is a projective
space CP c−1 where c is the codimension of A in X. These are the main properties
of blow-ups.

We are now ready to give the proof of our result:

Proof of Theorem 18.8. Write Cn = X. The argument we will give doesn’t use
anything special about Cn, and actually works for any smooth variety. We begin
by considering X × A1:
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X × {0} X × {1}

X × A1

Z × {0} Z × {1}

We will work with the blow-up of X × A1 at the subvariety Z × {0}:
B = B`Z×0(X × C).

Set N = NX/Z and N ′ = NX×A1/Z×{0}. Note that N ′ = N ⊕ 1. Topologically, we
have a homeomorphism

B ∼=
[
(X × A1)− (Z × {0})

]
q(V−0) P(N ′)

where V is a tubular neighborhood of Z × {0} in X × A1.
Let π : B → X×A1 be the blow-up map. Let j1 : X ↪→ B be the map x 7→ (x, 1).

Let j0 : P(N ⊕1) ↪→ B be the inclusion into π−1(X×{0}). These can be visualized
via the following schematic picture:

Z×A1

B

j0 j1

XP(N⊕1)

We claim that π : B → X × A1 has a section f over Z × A1. The definition of
this section is completely clear (and unique) on Z× (A1−0), the only sublety is the
definition on Z × {0}; but here we use the canonical section of P(N ⊕ 1) → Z. A
little effort shows that this gives a well-defined map Z × A1 → B, and it is clearly
a section (indicated in the above picture).

Consider the following (non-commutative) diagram of pairs of spaces:

(X,X − Z)
j1 // (B,B − (Z × A1))

(U,U − Z)

OO

(N,N − 0) i // (P(N ⊕ 1),P(N ⊕ 1)− P(1))

j0

OO
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Here j1 is the inclusion of the fiber of B → A1 over 1. A little thought shows that
this diagram commutes up to homotopy. Note that all of the maps are algebraic
except for the inclusion h : N ↪→ X (we implicitly identify N with U here). Apply
K0(−) to obtain the commutative diagram

K0(X,X − Z)

h∗

��

K0(B,B − (Z × A1))
j∗1oo

j∗0
��

K0(N,N − 0) K0(P(N ⊕ 1),P(N ⊕ 1)− P(1)).i∗oo

(18.10)

The left vertical arrow is dotted only as a reminder that it is not algebraic. There
is a similar diagram, without the dotted arrow, in which every K0(−) has been
replaced with K0

alg; and this new diagram maps to the one above.
Let Q• be a resolution of OZ×A1 by locally free OB-modules. Then we have the

corresponding class [Q•] ∈ K0(B,B − (Z × A1)). We will show that
(1) j∗1 (Q•) is a resolution of OZ on X, and
(2) (j0 ◦ i)∗(Q•) is a resolution of the structure sheaf of the zero-section on N .
From (1) it follows that there is a chain homotopy equivalence j∗1 (Q•) ' P•, where
P• is our chosen resolution of OZ on X. Hence j∗1 ([Q•]) = [P•] in K0

alg(X,X − Z).
From (2) it follows that there is a chain homotopy equivalence (j0◦i)∗(Q•) ' J∗p∗N,∆,
since both gives resolutions of the structure sheaf of the zero section on N . Hence
i∗(j∗0 ([Q•])) = UN in K0

alg(N,N − 0). Now push all of this into topological K0

and use the commutativity of (18.10) to obtain that h∗([P•]) = UN . But h∗ is an
isomorphism, and [Z]rel was defined to be the unique class in K0(X,X − Z) that
maps to UN via h∗. So [P•] = [Z]rel.

So the proof reduces to checking the algebraic facts (1) and (2). To do so, start
with the following diagram

B1
// j1 //

��

B

��
X × {1} // //

��

X × A1

��
{1} // A1

(18.11)

where B1 is the fiber of B → A1 over 1 (note that B1
∼= X). Every square in this

diagram is a pullback, including the outer square (which is more of a rectangle).
Applying j∗1 to Q• amounts to pulling back along {1} ↪→ A1 (or algebraically,
tensoring over C[t] with C[t]/(t − 1)). But note that B → A1 is flat—a map from
a variety to a curve is flat as long as it is dominant, which this clearly is. So OB
is flat over A1, and it is trivial that the OB-module OZ×A1 is flat over A1. So the
complex Q• → OZ×A1 → 0 is an exact sequence of sheaves that are flat over A1,
therefore the pullback to B1 is still exact. This proves (1).

The proof of (2) is very similar. Consider the analog of diagram (18.11) built
around the inclusions B0 ↪→ B and {0} ↪→ A1. We argue as above that the pullback
of Q• → OZ×A1 to B0 is still exact. Note that B0 = BlZ(X) qP(N) P(N ⊕ 1), with
BlZ(X) a closed subscheme. So B0 − BlZ(X) = P(N ⊕ 1) − P(N) = N . The
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bundle N is therefore an open subscheme of B0, and of course the inclusion of an
open subscheme is flat—so restricting further to N still preserves exactness. The
last thing to check is that restricting OZ×A1 to B0 gives the structure sheaf for the
canonical section of P(N ⊕ 1) (which then corresponds to the zero section of N
under N ↪→ P(N ⊕ 1))—but this is obvious. �

Remark 18.12. The technique used in the above proof, centering around the
variety B, is called “deformation to the normal bundle”. It was used extensively
in papers by Fulton and Macpherson in the 1970s, and has a prominent role in the
book [F]. The technique gives a substitute in algebraic geometry for the role played
by tubular neighborhoods in topology.

As a consequence of Theorem 18.8 we can now obtain Serre’s formula for inter-
section multiplicities:

Corollary 18.13. Let Z and W be smooth, closed subvarieties of Cn such that
Z ∩ W = {0}. Then i(Z,W ; 0) =

∑
(−1)i dim Tori(R/I,R/J), where R =

C[x1, . . . , xn] and I and J are the ideals of functions vanishing on Z and W , re-
spectively.

Proof. Start with the relative fundamental classes [Z]rel ∈ K2c(Cn,Cn − Z) and
[W ]rel ∈ K2d(Cn,Cn−W ), where c and d are the codimensions of Z and W inside
of Cn. Note that since 0 is an isolated point of intersection we must have c+ d ≥ n
(this is an algebraic lemma, see ????). There are in some sense two cases, depending
on whether c+d = n or c+d > n. In the former case, multiplying our fundamental
classes together we get

[Z]rel · [W ]rel ∈ K2n(Cn,Cn − (Z ∩W )) = K2n(Cn,Cn − 0).

Note thatK2n(Cn,Cn−0) ∼= Z and is generated by [0]rel. The topological definition
of i(Z,W ; 0) is that it is the unique integer for which

[Z]rel · [W ]rel = i(Z,W ; 0) · [0]rel(18.14)

This definition works in any complex-oriented cohomology theory.
If c+d > n then it is clear that Z and W may be moved near 0 (in the topological

setting) so that they do not intersect at all, and therefore [Z]rel · [W ]rel = 0.
Equation (18.14) is still a valid definition, it just yields that i(Z,W ; 0) = 0 here.

The key to the proof is simply realizing that all of our constructions can be lifted
back into K0

alg. Let P• → R/I and Q• → R/J be bounded free resolutions. Then
[Z]rel = β−c · [P•] and [W ]rel = β−d · [Q•]. So [Z]rel · [W ]rel = β−c−d · [P.⊗R Q] ∈
K2(c+d)(Cn,Cn − 0). Recall that K0(Cn,Cn − 0) ∼= Z and is generated by the
Koszul complex J∗. Recall as well that [0]rel = β−n · [J∗], by definition. If we write
[P ⊗R Q] = s[J∗] for s ∈ Z, then we have the formula

s · β−c−d · [J∗] = i(Z,W ; 0) · β−n · [J∗].
If c+d = n then the formula implies s = i(Z,W ; 0). If c+d 6= n then the only way
the formula can be true is if both sides are zero, in which case s = 0 = i(Z,W ; 0).
So s = i(Z,W ; 0) in either case.

To conclude the proof we just note that the Local Index Theorem (18.2) gives
s =

∑
i(−1)i dimC Hi(P ⊗R Q), and Hi(P ⊗Q) ∼= Tori(R/I,R/J). �

Exercise 18.15. Suppose that Z and W are smooth algebraic subvarieties of Cn
such that Z ∩W = {p1, . . . , pd}.
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(a) Choose a polynomial f ∈ C[x1, . . . , xn] such that f(pi) = 0 for i > 1 and
f(p1) 6= 0, and let S = Rf . Let U = SpecRf ⊆ Cn be the corresponding Zariski
open set. Convince yourself that it is reasonable to define the intersection
multiplicity i(Z,W ; p1) by the formula

[Z]rel,U · [W ]rel,U = i(Z,W ; p1) · β−n · [p1]rel,U
where [Z]rel,U is the image of [Z]rel under K∗(Cn,Cn − Z) → K∗(U,U − Z),
and similarly for [W ]rel,U and [p1]rel,U . In particular, convince yourself that
this is independent of the choice of f .

(b) Next, modify the proof of Corollary 18.13 to show that

i(Z,W ; p1) =
∑

(−1)i dimC Tori(R/I,R/J)f

where I and J are the ideals corresponding to Z and W .
(c) If M is a finitely-generated module over Rf such that SuppM = {p} (p a

maximal ideal of R), prove that M = Mp. Deduce that

i(Z,W ; p1) =
∑

(−1)i dimC Tori(R/I,R/J)p1 .

Corollary 18.13 (and Exercise 18.15) in some sense brings to a close the main
questions we raised at the beginning of these notes. We have now seen why Serre’s
alternating sum of Tor’s definition of intersection multiplicity is the ‘correct’ one,
and how this ties in to the study of K-theory.

19. More about relative K-theory

Our aim in this section is to revisit the issue of relative K-theory and give the
proof of Theorem 17.16. The ideas behind the proof are interesting and have their
own intrinsic appeal, but in fact they hardly ever resurface outside the confines
of this one argument. This section should be regarded as giving some technical
information which is not necessary for anything later in the notes.

Throughout this section (X,A) will be a finite CW -pair, unless otherwise noted.
Recall the group K(X,A) introduced in Definition 17.6, made from bounded com-
plexes of vector bundles on X that are exact on A. We take several steps aimed at
analyzing these groups:
(1) Instead of studying K(X,A) directly we look instead at a certain set of equiv-

alence classes of complexes. This set is a monoid whose group completion is
K(X,A), but it has the property that the equivalence classes are a bit easier
to get our hands on.

(2) Rather than consider all bounded complexes, we consider complexes which are
concentrated in degrees between 0 and n, for some fixed n ≥ 1. We prove
that all choices of n give rise to the same theory; so in some sense the use of
chain complexes is overkill, as it suffices to just look at complexes of length 1.
(The use of all chain complexes makes for a more natural theory, however—for
example, the tensor product of two complexes of length 1 is a complex of length
2, and can only be turned back into a complex of length 1 by a cumbersome
process).

(3) Finally, and most importantly, we replace our consideration of chain complexes
by that of a related but different construct. Namely, we consider Z-graded
collections of vector bundles {Ei} together with an exact differential defined
only over the set A (that is, a differential on (E•)|A). Let us call such things
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“A-relative chain complexes”. It turns out that every A-relative chain complex
may be extended to give an ordinary chain complex (that is exact on A), and
the space of all possible extensions is contractible. So homotopically speaking
there is no real difference between the theories obtained from the two notions.
The A-relative chain complexes turn out to give a theory that is a bit easier to
manipulate, essentially because one doesn’t have to deal with extraneous data.

19.1. Relative chain complexes. Let Ch(X,A) denote the category whose ob-
jects are bounded chain complexes of vector bundles on X that are exact on A.
A map in this category is simply a map of chain complexes of vector bundles. In
contrast to this, let Ch(X,A)A denote the category whose objects are collections
{Ei} of vector bundles on X, all but finitely-many of which are zero, together with
maps d : Ei+1|A→ Ei|A making the restriction E•|A into an exact chain complex of
vector bundles on A. A map E → E′ in Ch(X,A)A is a collection of maps Ei → E′i
of vector bundles on X that commute with the maps d where defined (i.e., over the
set A). An object in Ch(X,A)A will be called an A-relative chain complex.

Note the difference between Ch(X,A) and Ch(X,A)A: in the former the differ-
entials are defined on all of X, whereas in the latter they are only defined on A.
Observe that there is an evident functor Ch(X,A) → Ch(X,A)A, which we will
denote E 7→ E(A).

Say that two complexes E• and E′• in Ch(X,A) are homotopic if there is an
object E in Ch(X× I,A× I) together with isomorphisms E|X×0

∼= E• and E|X×1
∼=

E′• in Ch(X,A). Write this relation as E• ∼h F•. Likewise, define two complexes E•

and E′• in Ch(X,A)A to be homotopic if there is an object E in Ch(X×I,A×I)A×I
together with isomorphisms E|X×0

∼= E• and E|X×1
∼= E′• in Ch(X,A)A. In each

of these two settings the notion of homotopy is readily seen to be an equivalence
relation.

We will also need a second equivalence relation on chain complexes. Say that two
complexes E• and E′• in Ch(X,A) are stably equivalent if there exist elementary
complexes (see Definition 17.9) P1, . . . , Pr, Q1, . . . , Qs in Ch(X,A) such that

E ⊕ P1 ⊕ · · · ⊕ Pr ∼= E′ ⊕Q1 ⊕ · · · ⊕Qs.
Write this as E• ∼st E′•. We define a similar equivalence relation on the objects of
Ch(X,A)A.

Let Chn(X,A) be the full subcategory of Ch(X,A) consisting of chain complexes
E• such that Ei = 0 when i /∈ [0, n], and let Chn(X,A)A be the analogous sub-
category of A-relative complexes. It will be convenient to allow the index n to be
∞ here. Let Ln(X,A) and Ln(X,A)A denote the sets of isomorphism classes of
objects in these two categories.

Write Ln(X,A)h for the equivalence classes of Ln(X,A) under the homotopy
relation. Also, write Ln(X,A)st for the equivalence classes of Ln(X,A) under
the stable-equivalence relation. Finally, write Ln(X,A)h,st for the equivalence
classes generated by combination of these two types of equivalence. Note that we
also have sets Ln(X,A)hA, Ln(X,A)stA , and Ln(X,A)h,stA . The restriction functor
Chn(X,A)→ Chn(X,A)A clearly induces maps of sets Ln(X,A)h,st → Ln(X,A)h,stA

and so forth.
Note that direct sum of complexes makes Ln(X,A) into a monoid, and similarly

for Ln(X,A)h, Ln(X,A)st, and Ln(X,A)h,st. The same remark holds for the A-
relative versions.



A GEOMETRIC INTRODUCTION TO K-THEORY 127

19.2. Comparing complexes to A-relative complexes. Our first important
result is the following:

Proposition 19.3. For any n ≥ 1 the map Ln(X,A)h,st → Ln(X,A)h,stA is a
bijection.

We start with a lemma:

Lemma 19.4. The functor Ch(X,A)→ Ch(X,A)A is surjective on objects. Addi-
tionally, if E1 and E2 are objects in Ch(X,A)A such that E1(A) ∼= E2(A) then E1

and E2 are homotopic.

Proof. Given a collection of complex vector spaces Vi, i ∈ Z, let Ch-struct(V ) ⊆∏
i Hom(Vi+1, Vi) denote the collection of sequences (di)i∈Z satisfying di ◦ di+1 = 0

for all i. Regard Ch-struct(V ) as a topological space by giving it the subspace
topology. Note that if d ∈ Ch-struct(V ) then t · d ∈ Ch-struct(V ) for any t ∈ C,
and letting t 7→ 0 thereby gives a contracting homotopy showing that Ch-struct(V )
is contractible.

Now suppose that {Ei}i∈Z is a collection of vector bundles on X having the
property that only finitely many are nonzero. Let Ch-struct(E)→ X be the evident
map whose fiber over a point x is Ch-struct({(Ei)x}). The assumption that there
are only finitely many Ei implies that each x has a neighborhood over which all
the bundles are trivial, and from this it readily follows that Ch-struct(E)→ X is a
fiber bundle. As the fibers are contractible, it is also a weak homotopy equivalence.

Note that making {Ei} into a chain complex is precisely the same as giving
a section of Ch-struct(E) → X. Likewise, equipping {Ei} with a chain complex
differential over A is the same as giving a section defined over A.

Suppose given an object E in Ch(X,A)A. Consider the diagram

A //
��

��

Ch-struct(E)

'
����

X // X

(19.5)

where the top horizontal map encodes the differentials on E. Since A → X is
a cofibration and Ch-struct(E) → X is a trivial fibration, there is a lifting X →
Ch-struct(E). This lifting precisely gives a chain complex structure on {Ei}, defined
on all of X, that extends the one defined over A. This proves that the functor
E 7→ E(A) is surjective on objects.

Next observe that if f : Y → X is any map then Ch-struct(f∗E) is canonically
identified with the pullback of Y → X ← Ch-struct(E). This is an easy exercise.
Suppose that (E, s) and (E, s′) are two preimages in Ch(X,A) for the same object
E in Ch(X,A)A. Then s and s′ correspond to two liftings in the square (19.5).
Given this data, form the new diagram

(X × 0)q(A×I) (X × 1) //
��

��

Ch-struct(E)

'
����

X × I π // X

where π : X × I → X is the projection, A × I → Ch-struct(E) is the constant
homotopy, and the top horizontal map equals s and s′ on the two copies of X.
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Once again, the diagram has a lifting. The resulting map X × I → Ch-struct(E)
corresponds to a section of Ch-struct(π∗E)→ X × I, and so specifies a complex of
vector bundles on X× I. It is clear that the differentials are constant (with respect
to ‘time’) on A × I, so the complex lives in Ch(X × I, A × I). By construction it
restricts to the two liftings (E, s) and (E, s′) at times 0 and 1.

Now suppose that E and F are objects in Ch(X,A) and that E(A) ∼= F (A). So
there are isomorphisms fi : Ei → Fi of bundles over X which, when restricted to
A, commute with the differentials d. Let d′i be the composite

Ei
fi−→ Fi

d−→ Fi−1

f−1
i−1−→ Ei−1.

Note that the d′ maps give a chain complex structure on {Ei}; call this new chain
complex E′. We have E′ ∼= F as objects in Ch(X,A). Observe that d′|A = d|A,
and so E(A) = E′(A). It follows by what we have already proven that E and E′

are homotopic in Ch(X,A). Since E′ and F are (trivially) homotopic, transitivity
gives that E is homotopic to F . �

Remark 19.6. The above proof was written in part to demonstrate the technique
of translating a desired task into a lifting problem. This is a useful technique that
we will need again later in this section. However, it is worth pointing out that in
the particular cases from the above proof the lifting problems could be solved in
a very concrete and simple way. If (Y,B) is a CW -pair and E• is an object in
Ch(Y,B)B , we extend the differentials from B to all of Y by an induction over the
cells of Y − B. If en is such a cell, we assume inductively that the differentials
have been defined over the boundary. Identifying the cell with the disk Dn, points
in the interior of the cell have the form tx for x ∈ ∂Dn and t ∈ [0, 1). Define
the differential over tx to be t times the differential over x. This clearly gives the
required extension.

Proof of Proposition 19.3. It remains to prove that Ln(X,A)h,st → Ln(X,A)h,stA is
injective. Let E and F be two objects in Chn(X,A). It will suffice to prove that
(1) if E(A) ∼h F (A) then E = F in Ln(X,A)h,st, and
(2) if E(A) ∼st F (A) then E = F in Ln(X,A)h,st.

For suppose that E(A) and F (A) are identified in Ln(X,A)h,stA . Then there is a
finite chain of objects Ẽ1, Ẽ2, . . . , Ẽr in Chn(X,A)A such that Ẽ1 = E(A), Ẽr =
F (A), and for each i either Ẽi ∼h Ẽi+1 or Ẽi ∼st Ẽi+1. By Lemma 19.4 there are
chain complexes Ei ∈ Chn(X,A) such that Ei(A) = Ẽi, for each i. We can choose
E1 = E and Er = F , and we do so. By iterated applications of (1) and (2) we then
know that E1, E2, . . . , Er are all identified in Ln(X,A)h,st, and in particular E and
F are identified. This is what we needed to prove.

We turn to the proofs of (1) and (2). Suppose that E(A) ∼h F (A). Then there
exists an Ẽ ∈ Ch(X × I,A× I)A×I together with isomorphisms Ẽ|X×0

∼= E(A) and
Ẽ|X×1

∼= F (A). By Lemma 19.4 there is an E ∈ Ch(X×I,A×I) such that E(A) = Ẽ.
So E|X×0 and E|X×1 are homotopic. Moreover, we have E|X×0(A) ∼= E(A), and so
by Lemma 19.4 E|X×0 is homotopic to E. The same reasoning gives that E|X×1 is
homotopic to F . By transitivity, E is homotopic to F .

Finally, suppose that E(A) ∼st F (A). So there exist elementary complexes
P1, . . . , Pr and Q1, . . . , Qs such that E(A)⊕

⊕
i Pi
∼= F (A)⊕

⊕
j Qj . Let P = ⊕iPi

and Q = ⊕jQj , and observe that these belong to Chn(X,A) (i.e, the differentials
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are defined over all of X). Then (E ⊕ P )(A) ∼= (F ⊕ Q)(A), and so Lemma 19.4
tells us that E⊕P and F ⊕Q are homotopic. Consequently, E and F are identified
in Ln(X,A)h,st. �

19.7. Where we are headed. The group K(X,A) is readily checked to be the
group completion of the monoid L∞(X,A)h,st (use Proposition 17.10). By Propo-
sition 19.3 this is the same as the group-completion of L∞(X,A)h,stA , and we will
now focus entirely on this latter object.

Note that L∞(X,A)h,stA is the colimit of the directed system

L1(X,A)h,stA −→ L2(X,A)h,stA −→ L3(X,A)h,stA −→ · · ·

Our next task will be reduce the study of L∞(X,A)h,stA to the much more accessible
object L1(X,A)h,stA . We will show that the maps Ln(X,A)h,stA → Ln+1(X,A)h,stA

are bijective for all n ≥ 1. This will be based on a strange technique for folding the
top group of an exact complex two degrees lower down, to construct a new complex
that happens to also be exact. We pause to describe the algebra underlying this
technique.

19.8. An unusual construction from homological algebra. Let V be an exact
complex of vector spaces and assume that Vi = 0 for i > n. (The complex could
actually consist of projectives over some ring, but let us stick with the simpler
setting). Since the complex is exact there exists a contracting homotopy: maps
e : Vi → Vi+1 such that de + ed = id. Let ΓV be the following chain complex,
concentrated in degrees smaller than n and agreeing with V in degrees smaller
than n− 2:

0 // Vn−1
// Vn−2 ⊕ Vn // Vn−3

// Vn−4
// · · ·

x // (dx, ex)

(a, b) // da.

It is an elementary exercise to prove that ΓV is exact, but this will also follow
directly from the two decompositions we produce next.

For any vector space W and any k ∈ Z, write Dk(W ) for the chain complex
consisting of W in degrees k and k + 1, where the differential is the identity.

Returning to our chain complex V with contracting homotopy e, note that for
x ∈ Vn one has ed(x) = x. Using this, we can write down a natural chain map
V → Dn−1(Vn) that is the identity in degree n and the map e : Vn−1 → Vn in degree
n−1. Let Γ̃V be the desuspension of the mapping cone of this map; specifically, Γ̃V
is the following chain complex, concentrated in dimensions at most n and agreeing
with V in dimensions smaller than n− 2:

0 // Vn // Vn−1 ⊕ Vn // Vn−2 ⊕ Vn // Vn−3
// Vn−4

// · · ·

x // (dx,−x) (x, y) // dx

(a, b) // (da, ea+ b)

There is a canonical inclusionDn−2(Vn) ↪→ Γ̃V , and the quotient is V . Moreover,
this inclusion has a canonical splitting χ defined by χ(a, b) = ea + b for (a, b) ∈
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Vn−1 ⊕ Vn = (Γ̃V )n−1 and χ(a, b) = b for (a, b) ∈ Vn−2 ⊕ Vn = (Γ̃V )n−2. This
splitting gives an isomorphism Γ̃V ∼= Dn−2(Vn)⊕ V .

Notice as well that there is an evident map Dn−1(Vn) ↪→ Γ̃V : in degree n

this equals the identity and in degree n − 1 it equals the differential of Γ̃V . The
cokernel of this inclusion is precisely ΓV . Moreover, there is again a canonical
splitting for the inclusion: in degree n it is equal to the identity, and in degree
n− 1 it is the negation of the projection map Vn−1⊕Vn → Vn. This splitting gives
Γ̃V ∼= Dn−1(Vn)⊕ ΓV .

Summarizing, we have produced two split-exact sequences

0→ Dn−2(Vn)→ Γ̃V → V → 0 and 0→ Dn−1(Vn)→ Γ̃V → ΓV → 0

and these induce isomorphisms

Γ̃V ∼= Dn−2(Vn)⊕ V and Γ̃V ∼= Dn−1(Vn)⊕ ΓV.(19.9)

An important point is that the maps in these short exact sequences, their splittings,
and therefore the induced isomorphisms in (19.9) are all canonical in the pair (V, e).

By the way, notice that it follows immediately from the isomorphisms in (19.9)
that the homology groups of ΓV and V coincide; therefore ΓV is exact.

The constructions from above depended on the choice of contracting homotopy
e. As one last remark before getting back to topology, let us consider the space of
all contracting homotopies on an arbitrary chain complex V . Denote this space as
contr-h(V ) ⊆

∏
i Hom(Vi, Vi+1); an element of contr-h(V ) is a collection of maps

{ei : Vi → Vi+1} satisfying de+ ed = id. Of course this space might be empty, but
we claim that it is either empty of contractible. To see this, recall the internal Hom-
complex Hom(V, V ). In dimension k this is

∏
i Hom(Vi, Vi+k), and given a collection

{αi : Vi → Vi+k} the differential is the collection of maps {d◦αi−(−1)kαi−1◦d}. A
contracting homotopy for V is just an element e ∈ Hom(V, V )1 satisfying de = id,
and the space of contracting homotopies is just d−1(id). If this space is nonempty
then it is homeomorphic to the space of 1-cycles in Hom(V, V ), which is a vector
space and hence contractible.

Remark 19.10. The Γ- and Γ̃-constructions used in this section seem to have first
appeared in [Do]. Notice that very little about the contracting homotopy e was ever
used—in fact, all we really needed was the component of e in the top dimension,
the map e : Vn−1 → Vn. And all that was important about this map was that it
was a splitting for the differential dn : Vn → Vn−1. Rather than use the space of
contracting homotopies as a parameter space, we could have used the (simpler)
space of splittings for dn. The reader can check that this is again an affine space,
homeomorphic to the vector space of all maps f : Vn−1 → Vn such that fd = 0; in
particular, this parameter space is again contractible.

We have used the space of contracting homotopies because this approach gener-
alizes a bit more easily to the situation of algebraic K-theory. See [FH] and [D3]
for the importance of these contracting homotopies.

19.11. Back to topology. Let E• be a bounded chain complex of vector bundles
on a space Z, and assume that E• is exact. One can prove by brute force that
E• has a contracting homotopy, by successively splitting off bundles starting in
the bottom degree of the complex (as in the proof of Proposition 17.10). But as
another argument, consider the map contr-h(E) → Z whose fiber is the space of
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contracting homotopies for (E•)z. It is easy to see that contr-h(E) → Z is a fiber
bundle, and our remarks in the last section show that the fibers are contractible.
If Z is a CW -complex then a lift is guaranteed in the diagram

contr-h(E)

'
����

Z
id // Z,

and this lift precisely gives a contracting homotopy for E•. Moreover, if e and e′ are
two liftings then there is a homotopy Z × I → contr-h(E) between them because
the diagram

(Z × 0)q (Z × 1) eqe′ //

��

contr-h(E)

'
����

Z × I π // Z,

admits a lifting. This is all we will need, but it is worth observing that one can
say even more here: the space of all liftings, which is the space of contracting
homotopies on E•, is contractible.

If e is a chosen contracting homotopy for E• then we can form the associated
chain complex ΓE by repeating the construction from Section 19.8 but in the bundle
setting. This is a new chain complex of vector bundles that is still exact on Z. This
construction of course depends on the choice of contracting homotopy e, and so
we should probably write ΓeE. But since any two choices for e are homotopic, it
follows that ΓE is well-defined up to homotopy.

We will use the above construction to prove the following:

Proposition 19.12. For any n ≥ 2 the map j : Ln−1(X,A)h,stA → Ln(X,A)h,stA is
a bijection.

Proof. Let E• be a chain complex in Ln(X,A)A, where n ≥ 2. By the preceding
considerations there exists a contracting homotopy for (E•)|A. Using such a con-
traction e we can form ΓeE, which is an object in Ln−1(X,A)A. Different choices
for e give rise to homotopic complexes, so we get a well-defined function

Γ: Ln(X,A)A → Ln−1(X,A)h,stA .

It is an elementary exercise to see that if E ∼st E′ then ΓE ∼st ΓE′, and that if
E ∼h E′ then ΓE ∼h ΓE′. So we actually get

Γ: Ln(X,A)h,stA → Ln−1(X,A)h,stA .

If j denotes the map Ln−1(X,A)h,st → Ln(X,A)h,stA induced by inclusion, it is
trivial that Γj = id. We claim that jΓ = id as well, thus establishing that j is
a bijection. This claim almost follows directly from the canonical isomorphisms
(19.9), except there is an important step we must fill in. We would like to say that
these isomorphisms globalize to give

Γ̃E ∼= Dn−2(En)⊕ E and Γ̃E ∼= Dn−1(En)⊕ ΓE.(19.13)

This is certainly true if we restrict all the chain complexes to the subspace A. How-
ever, to give an isomorphism in Ch(X,A)A we actually need to give a collection
of isomorphisms for bundles over X (they are only required to commute with the
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differentials over A, however). So we must verify that in each degree the isomor-
phisms from (19.9) globalize not just to A but to X. Those isomorphisms were
obtained from split short exact sequences, so we must check that all the maps in-
volved can be extended over X. But we have formulas for all of these maps, and
most of them are inclusions of a summand or projections onto a summand—these
obviously extend to all of X. The one exception is in one of the splittings, where
we used the map χ : En−1 ⊕ En → En given on fibers by (a, b) 7→ ea + b where e
was part of the given contracting homotopy. Since e is only defined on A, this does
not automatically make sense on all of X. However, the particular map e we are
using in this formula is a section over A of the bundle Hom(En−1, En) → X. The
diagram

A //
��

��

Hom(En−1, En)

'
����

X
id // X

must have a lifting, and this gives an extension of e to a bundle map ẽ : En−1 → En
defined on all of X. The formula (a, b) 7→ ẽa + b then gives the desired splitting
that works on all of X. Note: it is important here that the splitting is only required
to commute with the differentials on A, since this is all we have guaranteed.

To summarize, we have indeed justified the isomorphisms in (19.13). These imply
that ΓE and E represent the same class in Ln(X,A)h,stA . In other words, we have
proven that j ◦ Γ = id, and so Γ is a two-sided inverse for j. �

Remark 19.14 (Atiyah’s proof). Atiyah proves a version of Proposition 19.12 in
[At1, Chapter 2.6]; the argument orginally comes from [ABS]. We will explain the
basic ways his proof differs from ours, and why these differences are important.

Let E• be a chain complex in Chn(X,A)A. There is a canonical map
Dn−1(En) → E• which in degree n equals the identity and in degree n − 1 equals
the differential En → En−1. Let E′• = E•⊕Dn−2(En) and consider the composition

Dn−1(En)→ E• ↪→ E′•.

The map in degree n − 1 is d ⊕ 0: En → En−1 ⊕ En, which is defined only on A.
Atiyah shows via a lifting argument that this can be extended to a monomorphism
of bundles on X. Let Q be the quotient, and observe that by Proposition 9.2 the
sequence 0 → En → E′n → Q → 0 is a split-exact sequence of bundles over X. A
choice of splitting χ : E′n → En then shows that E′• is the direct sum of Dn−1(En)
and a complex

0→ Q→ En−2 ⊕ En → En−3 → En−4 → · · ·(19.15)

This last complex lies in Chn−1(X,A)A, and it represents the same class as E in
Ln(X,A)h,stA . This shows that j : Ln−1(X,A)h,stA → Ln(X,A)h,stA is surjective.

This argument does not give an inverse for j, however. The complex in (19.15)
depends on a choice (the extension of a certain map to all of X), and so it is not
clear how to use this construction to make an inverse for j.

In our argument we gave a construction ΓE that did not depend on choosing
any such extensions toX. Such extensions did appear, but only in the isomorphisms
showing that our ΓE had the correct properties. By pushing these choices into the
maps rather than the objects, we were able to write down an explicit inverse for j.
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In Atiyah’s case he found a clever way around his problem, by instead con-
structing a map Ln(X,A)h,stA → L1(X,A)h,stA that is an inverse to the appropriate
composition of j’s. This is clearly enough to deduce injectivity of all the j maps.
Atiyah’s construction proceeds by choosing Hermitian inner products on all of the
bundles Ei, and then letting α : Ei → Ei+1 be the adjoint of the differential. The
map d + α :

⊕
i oddEi →

⊕
i evenEi is seen to lie in Ch1(X,A)A, and it clearly

has the desired properties. This element seems to again depend on choices, namely
the choice of inner products; but the space of all such choices is contractible, and
so one indeed gets a well-defined element of L1(X,A)h,stA . The exercises below will
give you enough information to fill in the details of this approach.

The disappointing aspect of Atiyah’s argument is that it does not work in the
related context of algebraic K-theory. In that setting one cannot play a corre-
sponding game with inner products. In contrast, our argument with contracting
homotopies does generalize. See ????.

Exercise 19.16. Assume V is an exact chain complex of real vector spaces, and
that Vi = 0 for i < 0 and for i > n. Choose an inner product on each Vi, and let
αi : Vi → Vi+1 be the adjoint of di+1 : Vi+1 → Vi. That is, for each x ∈ Vi and
y ∈ Vi+1 one has 〈αx, y〉 = 〈x, dy〉.
(a) Prove that α2 = 0, and so (V, α) is a cochain complex. Observe that this is

isomorphic to the dual complex V ∗, and therefore is exact.
(b) For each i prove that kerαi is orthogonal to im di+1 inside of Vi. As a corollary,

deduce that d restricts to an isomorphism kerαi → im di−1 and α restricts to
an isomorphism im di−1 → kerαi. Produce an example when n = 1 showing
that these isomorphisms need not be inverses.

(c) Use a dimension count to show Vi = (im di+1) ⊕ (kerαi), for each i. The
following picture shows V decomposing into a direct sum of length 1 complexes:

· · · (im di+1)
⊕

α

wwppppppp
(im di)

⊕
α

uullllllll (im di−1)
⊕

α

uulllllll
· · ·

α

wwooooooo

· · · d

77ppppppp (kerαi)
d

55llllllll
(kerαi−1)

d

55lllllll
(kerαi−2)

d

77ooooooo
· · ·

(d) Let Vodd = ⊕i oddVi and Vev = ⊕i evenVi. Observe that d + α : Vodd → Vev is
an isomorphism, by the following diagram:

(im d)1 ⊕

α

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX (kerα)1 ⊕

d
yysssssssss

(im d)3 ⊕

α

++WWWWWWWWWWWWWWWWWWWWWWWWWW (kerα)3 ⊕

d

yysssssssss
· · ·

(im d)0 ⊕ (kerα)0 ⊕ (im d)2 ⊕ (kerα)2 ⊕ · · · · · ·

Note: Here we have written (im d)i for the component of im d contained in
degree i; i.e., (im d)i = im di+1, but (kerα)i = kerαi.

(e) Prove an analog of these results for exact complexes of C-vector spaces, in
which one chooses Hermitian inner products on all of the Vi’s.

Exercise 19.17. Let IPn denote the space of all inner products on Rn. Note
that this may be identified with the space of all positive-definite, symmetric n× n
matrices, which we topologize as a subspace of Mn×n(R). We will prove that IPn
is contractible, for all n.
(a) Prove IP1

∼= R>0.
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(b) Consider the subspace Rn−1 ⊆ Rn, and let Hn denote the upper half-space
{x ∈ Rn |xn > 0}. Prove that IPn ∼= IPn−1×Hn, and deduce that IPn is
contractible for all n ≥ 1.

(c) Use a similar line of argument to show that the space of Hermitian inner prod-
ucts on Cn is contractible. The analog of Hn is the space (Cn − Cn−1)/S1,
where S1 is the group of unit complex numbers acting via scalar multiplication
on Cn. As part of your argument you will have to show that this orbit space is
contractible.

19.18. Another interlude on where we are headed. Recall that we are trying
to produce a natural map of groups K(X,A)→ K0(X,A). The following reductions
have been made:

• Produce a natural map of monoids L∞(X,A)h,st → K0(X,A);
• Produce a natural map of monoids L∞(X,A)h,stA → K0(X,A);
• Produce a collection of natural monoid maps Ln(X,A)h,stA → K0(X,A)

that are compatible as n changes;
• Produce a natural map of monoids L1(X,A)h,stA → K0(X,A).

In all of these cases we will call the natural map an Euler characteristic. In
the next section we produce an Euler characteristic on Ch1(X,A)A and show that
it is the unique one satisfying some evident desirable properties.

19.19. The difference bundle construction. Consider the space X qA X to-
gether with the two evident inclusions i1, i2 : X → X qA X. We will write X1 and
X2 for the images of X under these two maps. The inclusion of pairs (X1, A) →
(X qAX,X2) induces an excision isomorphism i∗1 : K0(X qAX,X2)→ K0(X1, A).
The fold map X qA X → X shows that the long exact sequence for the pair
(X qA X,X2) breaks up into split short exact sequences, and in particular we get

0 // K0(X qA X,X2)

∼= i∗1
��

// K0(X qA X)
i∗2 // K0(X2) // 0.

K0(X,A)

This diagram shows that we can produce elements of K0(X,A) by producing ele-
ments in the kernel of i∗2.

Suppose 0 → E1
d−→ E0 → 0 is an object in Ch1(X,A)A. Produce a bundle

on X qA X by taking E1 → X1 and E0 → X2 and gluing them together along
the isomorphism d defined over A (see Corollary 8.17). Call this new bundle Ẽ →
X qA X. Likewise, by gluing two copies of E0 along the identity map we produce
a bundle Ẽ 0 on X qA X. Set α(E) = [Ẽ 0] − [Ẽ ] ∈ K0(X qA X) and notice that
i∗2(αE) = [E0]− [E0] = 0. Let d(E) = i∗1(α(E)) ∈ K0(X,A). This element is called
the difference bundle corresponding to the complex E. It is immediate from the
definition that the image of d(E) in K0(X) is [E0]− [E1].

We must argue that if E ∼h E′ then d(E) = d(E′). But this follows from the
homotopy invariance of K-theory; to see this, suppose E ∈ Ch1(X × I,A × I)A
and that there are isomorphisms E|X×0

∼= E and E|X×1
∼= E′. Then d(E) ∈

K0(X×I,A×I), and it is immediate that j∗0d(E) = d(E) and j∗1d(E) = d(E′) where
j0, j1 : X ↪→ X × I are the inclusions of the two ends. But homotopy invariance of
K-theory gives that j∗0 = j∗1 , hence d(E) = d(E′).
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We must also argue that if E ∼st E′ then d(E) = d(E′). This reduces to showing
that if Q is the complex 0 → F

id−→ F → 0 then d(E ⊕ Q) = d(E). But there
is an isomorphism of bundles Ẽ ⊕Q ∼= Ẽ ⊕ ∇∗Q where ∇ : X qA X → X is the
projection, and also Ẽ0 ⊕Q ∼= Ẽ 0 ⊕∇∗Q. We now simply observe that

α(E ⊕Q) = [Ẽ 0 ⊕∇∗Q]− [Ẽ ⊕∇∗Q] = [Ẽ 0]− [Ẽ ] = α(E),

which immediately yields d(E ⊕Q) = d(E).
We have now shown that the difference bundle construction gives a map

χ1 : L1(X,A)h,stA → K0(X,A). It is clearly natural in the pair (X,A), and also
a map of monoids.

Proposition 19.20. The map χ1 : L1(X,A)h,stA → K0(X,A) is an isomorphism
for every finite CW -pair (X,A).

Proof. The proof proceeds in three steps.
Step 1: A = ∅. This step is trivial.
Step 2: A = ∗. Here we consider the diagram

0 // L1(X, ∗)h,st∗
α //

χ

��

L1(X, ∅)h,st∅
β //

χ

��

L1(∗, ∅)h,st∅

χ

��

// 0

0 // K0(X, ∗) // K0(X) // K0(∗) // 0

(note that the objects on the top row are a priori only monoids, not groups). The
bottom row is exact, and the middle and right vertical maps are isomorphisms by
Step 1. It will suffice to show that the top row is exact, since then the left vertical
map is also an isomorphism.

For the remainder of this step let x ∈ X denote the basepoint.
Surjectivity of β is trivial (and also not really needed for the proof). For exactness

at the middle spot, note that L1(∗, ∅)h,st∅
∼= Z via (E1, E0) → rankE0 − rankE1.

So if E• is in the kernel of β then rankE1 = rankE0, and certainly there exists
an isomorphism (E1)x ∼= (E0)x. Such an isomorphism determines an element of
L1(X, ∗)h,st∗ that is a preimage for E•.

Finally, let E• ∈ Ch(X, ∗)∗ and assume that E• is in the kernel of α. Using
the isomorphism L1(X, ∅)h,st∅

∼= K0(X), this means that [E1] = [E0] in K0(X). So
there exists a trivial vector bundle Q such that E1⊕Q ∼= E0⊕Q. Adding id: Q→ Q
to E• and using this isomorphism, we may assume that E• satisfies E1 = E0. Our
isomorphism of fibers over x is then an element σ ∈ Aut((E0)x) ∼= GLn(C) for
n = rank(E0). As GLn(C) is connected, choose a path between σ and the identity
element. Consider the lifting square

(X × 0) ∪ (x× I) //
��

'
��

Aut(E0)

����
X × I π // X

where the top map is the identity section on X × 0 and the chosen path from σ
to the identity on {x} × I. The object Aut(E0) → X is the fiber bundle whose
fiber over a point z is Aut((E0)z. Since the left vertical map in the square is a
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trivial cofibration, the square admits a lifting. Such a lifting is an isomorphism
φ : E0 → E0 that restricts to σ on x. The diagram

E0
φ //

d

��

E0

id

��
E0

id // E0

is an isomorphism between E• and E0
id−→ E0, thereby showing that E• represents

0 in L1(X, ∗)h,st∗ .
Step 3: General case. First consider the square

L1(X,A)h,stA

χ // K0(X,A)

L1(X/A, ∗)h,stA

π∗

OO

∼=
// K0(X/A, ∗)

∼=

OO

induced by the map of pairs π : (X,A) → (X/A, ∗). The bottom horizontal map
is an isomorphism by Step 1, and the right vertical map is an isomorphism by
excision. It follows that the map π∗ is injective. If we prove π∗ is surjective then it
is an isomorphism, and therefore χ is also an isomorphism.

Suppose given a chain complex 0 → E1 → E0 → 0 in Ch(X,A)A. Since X is
compact, there is a bundle Q such that E1 ⊕ Q is trivial. By adding id: Q → Q
to the complex E•, we may assume that E1 is trivial. Choose a trivialization
φ : E1

∼=−→ X × Cn and consider the following diagrams:

Cn

��

(E1)|Aoo //

��

E1

��

Cn

��

(E0)|Aoo //

��

E0

��
∗ A //oo X ∗ A //oo X.

Here (E1)|A → Cn is the composite of φ with the projection onto Cn, and (E0)|A →
Cn is obtained by precomposing the former map with the inverse of the given
isomorphism (E1)|A ∼= (E0)|A. Let F1 and F0 be the pushouts of the top rows of
the two diagrams. These come with maps F1 → X/A and F2 → X/A which are
readily checked to be vector bundles. Moreover, there are natural maps E1 → π∗F1

and E0 → π∗F0, and these are isomorphisms of vector bundles.
The fibers of F1 → X/A and F2 → X/A over the basepoint are canonically

identified with Cn, and so the identity map on these fibers yields a relative chain
complex 0→ F1 → F0 → 0 in Ch(X/A, ∗)∗. It is an easy check that the diagram

(E1)|A
∼=

��

// (E0)|A
∼=

��
(π∗F1)|A // (π∗F0)|A

is commutative. So our original chain complex E• is isomorphic to π∗(F•). This
proves surjectivity of π∗ in the original diagram. �
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19.21. Wrapping things up. We can now bring together all the work in this
section to prove the main results.

Proposition 19.22. Fix 1 ≤ n ≤ ∞. There is a unique natural transformation
χn : Ln(X,A)h,stA → K0(X,A) such that when A = ∅ one has χ(E•) =

∑
i(−1)i[Ei].

Moreover, the map χn is an isomorphism for every pair (X,A).

Proof. We have already established the existence of χ1 and seen that it is a natural
isomorphism. Define χn via the zig-zag

Ln(X,A)h,stA

j←− L1(X,A)h,stA

χ1−→ K0(X,A).

using the fact that j is an isomorphism by Proposition 19.12. Since j is natural,
χn is also natural.

For uniqueness, note first that a natural transformation χ′n determines a corre-
sponding natural tranformation χ′1 by precomposing with j. Since j is an isomor-
phism, it will be sufficient to prove that χ′1 = χ1. For this, first note that exactly
the same proof as for Proposition 19.20 shows that χ′1 is a natural isomorphism.
This allows us to consider the composite η = χ′1 ◦ (χ1)−1, which is a natural iso-
morphism η : K0(X,A) → K0(X,A). The fact that χ1 and χ′1 agree on K0(X, ∅)
for any X shows that η is the identity on these groups. Now one merely observes
the natural isomorphism π∗ : K0(X/A, ∗)→ K0(X,A) and the natural short exact
sequence

0→ K0(X/A, ∗)→ K0(X/A)→ K0(∗)→ 0.
It follows at once that a natural isomorphism η that is the identity on K0(X) for
all X is also equal to the identity on K0(X,A) for all pairs (X,A). So η = id, thus
χ1 = χ′1, and therefore χn = χ′n. �

Since the natural maps Ln(X,A)h,st → Ln(X,A)h,stA are isomorphisms by Propo-
sition 19.3, the above proposition also gives a uniquely determined natural trans-
formation Ln(X,A)h,st → K0(X,A). We will also call this χn, by abuse.

Recall that K(X,A) is the group completion of L∞(X,A)h,st. But it follows as
a consequence of Proposition 19.22 above that L∞(X,A)h,st is already a group,
hence the two are canonically identified. This proves the following:

Corollary 19.23. The evident map L∞(X,A)h,st → K(X,A) is an isomorphism.

Corollary 19.24. There is a unique natural map χ : K(X,A)→ K0(X,A) having
the property that for A = ∅ one has χ([E•]) =

∑
i(−1)i[Ei]. The map χ is a natural

isomorphism.

Proof. Immediate from the preceding results. �

As we have observed before, if E• ∈ Ch(X,A) and F• ∈ Ch(Y,B) then E•⊗̂F• ∈
Ch(X × Y, (A× Y ) ∪ (X ×B)). This is readily seen to induce pairings

µ : K(X,A)⊗K(Y,B)→ K(X × Y, (A× Y ) ∪ (X ×B)).

Corollary 19.25. For any finite CW -pairs (X,A) and (Y,B) the diagram

K(X,A)⊗K(Y,B)

χ⊗χ
��

µ // K(X × Y, (A× Y ) ∪ (X ×B))

χ

��
K0(X,A)⊗K0(Y,B) // K0(X × Y, (A× Y ) ∪ (X ×B))
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is commutative, where the bottom horizontal map is the product on K-theory.

Proof. It is trivial to check that the diagram commutes when A = B = ∅. The
general case follows formally from this one using naturality. First check that it
works for A = B = ∗ using the diagram

K0(X, ∗)⊗K0(Y, ∗) //
��

∼=
��

K0(X × Y, (X × ∗) ∪ (∗ × Y ))
**

**UUUUUUUUUUUUUUU
K0(X ∧ Y, ∗)

∼=oo
��

��
K0(X)⊗K0(Y ) // K0(X × Y )

(and the similar one for K(−,−)). It is important that the indicated maps are
injections, but that they are so is an easy argument. Finally, deduce the general
case using the diagrams

K0(X,A)⊗K0(Y,B) // K0(X × Y, (A× Y ) ∪ (X ×B)) K0(X/A ∧ Y/B, ∗)

∼=ttiiiiiiiiiiiiiiii

∼=oo

K0(X/A, ∗)⊗K0(Y/B, ∗)

∼=

OO

// K0(X/A× Y/B,X/A ∨ Y/B).

�

Finally, we note that the above results for finite CW -pairs (X,A) automatically
extend to homotopically compact pairs. If (X,A) is homotopically compact then
choose a finite CW -pair (X ′, A′) and a map (X ′, A′) → (X,A) that is a weak
homotopy equivalence on each factor. Define χ : K(X,A) → K0(X,A) via the
diagram

K(X ′, A′)

∼=
��

K(X,A)
∼=oo

��
K0(X ′, A′) K0(X,A).∼=

oo

A straightforward argument using Proposition 17.14 and Proposition C.3 shows
that this does not depend on the choice of (X ′, A′). Everything that we have
proven about K(−,−) → K0(−,−) for finite CW -pairs now immediately follows
for homotopically compact pairs as well.

Remark 19.26. Note that we have now proven Theorem 17.16, since that result
is just a compilation of Corollaries 19.24 and 19.25.
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Part 4. K-theory and geometry II

In the last several sections we developed the basic connections between K-theory
and geometry. We have seen that K-theory is a complex-oriented cohomology
theory, and we understand “geometric” representatives for the Thom classes and
fundamental classes that come with such a theory; in this case “geometric” means
that we can write down explicit chain complexes of vector bundles representing the
classes. In the following sections our aim is to further explore this general area:
now that the basic picture is in place, where does it take us? The topics we cover
are somewhat of a hodgepodge, but in some sense they they all revolve around the
exploration of fundamental classes.

20. K∗(CPn) and the K-theoretic analog of the degree

If Z ↪→ CPn is a complex submanifold then it has a fundamental class [Z]
in H∗(CPn). Knowing this fundamental class comes down to knowing a single
integer, called the degree of Z. The geometric interpretation of the degree is that
it equals the number of points of intersection between Z and a generically chosen
linear subspace of complementary dimension. In this section we will repeat this
line of investigation but replacing H∗ with K∗. So we must compute K∗(CPn)
and investigate what information is encoded in the fundamental class [Z]K . We
will find that knowing [Z]K amounts to knowing several integers (not just one);
while we can give methods for computing these, their geometric interpretation is
somewhat mysterious.

20.1. Calculation of K∗(CP n). We begin with the following easy lemma:

Lemma 20.2. Let E be any multiplicative cohomology theory. If x1, . . . , xn+1 ∈
Ẽ∗(CPn), then x1 · · ·xn+1 = 0.

Proof. The key is just that CPn can be covered by n + 1 contractible sets. To be
explicit, let Ui = {[z0 : . . . : zn] ∈ CPn | zi 6= 0}. Then Ui is open in CPn and is
homeomorphic to Cn.

Choose our basepoint of CPn to be [1 : 1 : · · · : 1] (or any other point in the
intersection of all the Ui’s). The contractibility of Ui implies that E∗(CPn, Ui)→
E∗(CPn, ∗) is an isomorphism. So we may lift each xi to a class x̃i ∈ E∗(CPn, Ui).

It now follows that x̃1x̃2 · · · x̃n+1 lifts x1 . . . xn+1 in the map

E∗(CPn, U1 ∪ · · · ∪ Un+1)→ E∗(CPn, ∗).
Since U1∪ · · ·∪Un+1 = CPn, the domain is the zero group. So x1 . . . xn+1 = 0. �

Recall that H∗(CPn) ∼= Z[x]/(xn+1) where x is a generator in degree 2. It is
not hard to see that we may take x = [CPn−1]. This calculation works for any
complex-oriented cohomology theory:

Proposition 20.3. Let E be a complex-oriented cohomology theory. There is an
isomorphism of rings

E∗(pt)[x]/(xn+1)→ E∗(CPn)
sending xi to [CPn−i].
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Proof. Consider the reduced Gysin sequence for the submanifold CPn−1 j
↪→ CPn:

· · · Ẽk(CPn − CPn−1)oo Ẽk(CPn)oo

Ek−2(CPn−1)

j!

OO

Ẽk−1(CPn − CPn−1)oo · · ·oo

Let x = [CPn−1] = j!(1) ∈ Ẽ2(CPn). By Lemma 20.2 we know xn+1 = 0, so
we get a map E∗(pt)[x]/(xn+1) → E∗(CPn). We will show that this map is an
isomorphism via induction on n. The case n = 0 is trivial.

Note that x2 = [CPn−2] by intersection theory, and more generally xi = [CPn−i].
The spaces CPn − CPn−1 are homeomorphic to Cn and hence contractible.

So the reduced Gysin sequence considered above breaks up into a collection of
isomorphisms

j! : Ek−2(CPn−1)
∼=−→ Ẽk(CPn).

Taking all k’s together, j! is a map of E∗(pt)-modules and therefore an isomorphism
of such modules. By induction E∗(CPn−1) is a free E∗(pt)-module generated by
the classes 1 = [CPn−1], [CPn−2], [CPn−3], . . . , [CP 0]. Since the pushforward j!
sends [CPn−i] to [CPn−i], we conclude that Ẽ∗(CPn) is a free E∗(pt)-module on
[CPn−1], . . . , [CP 0]. If we add 1 to this collection then we get a free basis for
E∗(CPn) over E∗(pt). This proves that our map E∗(pt)[x]/(xn+1) → E∗(CPn) is
an isomorphism. �

In the case of complex K-theory, we can rephrase the above result as saying
that Kodd(CPn) = 0 and K0(CPn) = Z[X]/(Xn+1), where X = β · [CPn−1]. In
particular, note that additively we have K0(CPn) ∼= Zn+1 with free basis consisting
of the powers of X. Ignoring powers of the Bott element at usual, we can write this
free basis as [CPn], [CPn−1], . . . , [CP 0].

20.4. Fundamental classes in K∗(CP n). Now let Z ↪→ CPn be a complex,
closed submanifold of codimension c. Recall that if we consider fundamental classes
in singular cohomology then we have [Z] = d · [CPn−c] for a unique integer d that
is called the degree of Z. Geometrically, d is the number of points on intersection
of Z with a generically chosen copy of CP c.

We can now play this same game in the context of K-theory. We have a funda-
mental class [Z]K ∈ K0(CPn), and we can therefore write

[Z]K = d0 · [CPn] + d1 · [CPn−1] + · · ·+ dn[CP 0]

= d0 · 1 + d1X + d2X
2 + · · ·+ dnX

n

for unique integers di. These integers are topological invariants of the embedding
Z ↪→ CPn; our goal will be to explore them further. Multiply the above equation
by Xn to obtain

d0X
n = [Z]K ·Xn = [Z]K · [CP 0] = [Z ∩ CP 0]

where in the last term we mean the intersection of Z with a generically chosen
copy of CP 0. But as long as Z is not all of CPn, this generic intersection will
be empty—so if Z is codimension at least one then d0 = 0. We then repeat this
argument, but multiplying by Xn−1 instead of Xn: we get

d1X
n = [Z]K · [CP 1] = [Z ∩ CP 1].
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Again, if the codimension of Z is at least 2 then the CP 1 can be moved so that it
doesn’t intersect Z at all, hence d1 = 0. Continuing this argument we find that

0 = d0 = d1 = · · · = dc−1 and dc = deg(Z).

The last equality follows because Z intersects a generic CP c in deg(Z) many points.
The situation can be summarized as follows: the first non-vanishing di coincides
with the classical degree of Z, but there is the possibility of the higher di’s being
nonzero. This is what we will investigate next.

Remark 20.5. Notice that what we have done so far works in any complex-oriented
cohomology theory E∗. The fundamental class [Z] can be written as a linear com-
bination of the classes [CPn−i] with coefficients from E∗(pt). The first c of these
coefficients vanish, until one gets to the coefficient of [CPn−c]—which must be equal
to deg(Z). After this things become interesting, in the sense that one has invariants
that are not detected in singular cohomology.

To proceed further with our analysis of the higher di’s in K-theory, we need to
connect our fundamental classes with the vector bundle description of K-theory:

Lemma 20.6. In K0(CPn) one has [CPn−1] = 1 − L where L → CPn is the
tautological line bundle. Consequently, [CPn−k] = (1− L)k for all k.

Proof. We give two explanations. For the first, consider the map of vector bundles
f : L → 1 defined as follows: in the fiber over x = [x0 : x1 : · · · : xn] we send
(x0, . . . , xn) to x0. Note that this is well-defined, since multiplying all the xi’s by
a scalar λ yields the same homomorphism Lx → C.

The map f is exact on all fibers except those where x0 = 0. The complex
0 → L → 1 → 0 is a resolution of the structure sheaf for CPn−1, and hence 1− L
represents the associated fundamental class in K-theory by Theorem 18.8.

Our second explanation takes place entirely in the topological world. The key
fact is that the normal bundle to CPn−1 inside CPn is L∗. Let U be a tubular
neighborhood of CPn−1, and consider the chain of isomorphisms

K0(CPn,CPn − CPn−1)
∼=−→ K0(U,U − CPn−1) ∼= K0(N,N − 0).

The relative fundamental class [CPn−1]rel is the unique class that maps to the
Thom class UN under the above isomorphisms. But N is a line bundle, and recall
that the Thom class is then [J∗] = [π∗N∗ → 1] where π : N → CPn−1. A little
thought shows that the complex 0 → π∗N∗ → 1 → 0 is exactly the restriction
of 0 → L → 1 → 0 on CPn. So this latter complex represents [CPn−1]rel, and
therefore 1− L equals [CPn−1]. �

Example 20.7. Note that it follows from the above lemma that (1 − L)n+1 = 0
in K0(CPn). This relation comes up in many contexts, and it is useful to have a
different perspective on it. Let R = C[x0, . . . , xn] and consider the Koszul complex
for the regular sequence x0, . . . , xn. It has the form

0→ R(−n− 1)→ · · · → R(−2)(
n+1

2 ) → R(−1)n+1 → R→ 0,

and we know this complex is exact. It therefore gives a corresponding exact se-
quence of vector bundles on CPn, which tells us that

0 = 1− (n+ 1)L+
(
n+1

2

)
L2 − · · ·+ (−1)n+1Ln+1

in K0(CPn). Of course the expression on the right is precisely (1− L)n+1.
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We next compute the K-theoretic fundamental classes in a couple of simple
examples:

Example 20.8. Let Z = V (f) ↪→ CPn be a smooth hypersurface of degree d. Let
R = C[x0, . . . , xn]. The coordinate ring of Z is R/(f), which has the short free
resolution given by

0→ R(−d) ·f−→ R→ R/(f)→ 0.
So [Z] = 1−Ld in K0(CPn). To write [Z] as a linear combination of the [CPn−i]’s
we need to write 1− Ld in terms of powers of 1− L. This is easy, of course:

[Z] = 1− Ld = 1− [1− (1− L)]d = 1− (1−X)d

= 1− [1− dX +
(
d
2

)
X2 − · · ·+ (−1)dXd]

= dX −
(
d
2

)
X2 +

(
d
3

)
X3 − · · ·

So we find that the higher di’s for a hypersurface are all just (up to sign) binomial
coefficients of d. This is somewhat disappointing, as we are not seeing new topolog-
ical invariants—it is just the degree over and over again, encoded in different ways.
[This is not actually not a surprise: the degree is known to be the only topological
invariant for embedded hypersurfaces].

Things become more interesting in the next example:

Example 20.9. Consider Z = V (f, g) where f, g is a regular sequence of homoge-
neous elements in R = C[x0, . . . , xn]. Let d = deg(g) and e = deg(g). Because f, g
is a regular sequence, R/(f, g) is resolved by the Koszul complex:

0→ R(−d− e)→ R(−d)⊕R(−e)→ R→ R/(f, g)→ 0.

We can now calculate

[Z]K =
[

0 // Ld+e // Ld ⊕ Le // 1 // 0
]

= 1− (Ld + Le) + Ld+e

= 1− (1−X)d − (1−X)e + (1−X)d+e

=
[(
d+e
2

)
−
(
d
2

)
−
(
e
2

)]
X2 −

[(
d+e
3

)
−
(
d
3

)
−
(
e
3

)]
X3 + · · ·

= deX2 + 1
2de(2− d− e)X

3 + . . . .

The classical degree of Z is de, but our ‘higher invariants’ now see more than just
this number. In fact, knowing the expansion of [Z]K as a linear combination of the
Xi’s implies that we know de and de(2−d−e), which implies that we know d+e. But
if we know de and d+e then we know the polynomial (ξ−d)(ξ−e) = ξ2−(d+e)ξ+de,
which means we know its roots. So knowing the expansion of [Z]K is the same as
knowing d and e. This example shows that the K-theoretic fundamental class sees
more topological information than the singular cohomology fundamental class does.

Now that we have seen these simple examples we can return to our main question.
Given Z ↪→ CPn of codimension c, how does one compute the di’s in the equation

[Z]K = (degZ)[CPn−c] + dc+1[CPn−c−1] + dc+2[CPn−c−2] + · · ·
And what do these di’s mean in terms of geometry? We will soon see that one
answer is given by the Hilbert polynomial.
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20.10. Review of the Hilbert polynomial. Let R = C[x0, . . . , xn], and regard
this as a graded ring where each xi has degree one. If M is a graded R-module
write Ms for the graded piece in degree s. The Poincaré series of M is the formal
power series

PM (ξ) =
∞∑

s=−∞
(dimMs)ξs ∈ Z[[ξ]]

(defined if M is finitely-generated over R). Note that this is evidently an additive
invariant of finitely-generated, graded modules: if 0 → M ′ → M → M ′′ → 0 is an
exact sequence then clearly PM (ξ) = PM ′(ξ) + PM ′′(ξ). We may therefore regard
the Poincaré series as a map of abelian groups

P : Ggrd(R)→ Z[[ξ]]

where Ggrd(R) is the Grothendieck group of finitely-generated graded modules over
R.

We will calculate the Poincaré series of each R(−k), but for this we need the
following useful calculation:

Lemma 20.11. The number of monomials of degree d in the variables z1, . . . , zn
is equal to

(
d+n−1

d

)
.

Proof. Monomials are in bijective correspondence with patterns of “dashes and
slashes” that look like

−−−/−−//−−−−/− .
The above pattern corresponds to the monomial z3

1z
2
2z

4
4z5, and from this the general

form of the bijection should be clear. Monomials of degree d will correspond to
patterns with d dashes, and if there are n variables then there will be n−1 slashes.
So we need to count patterns where there will be d+ n− 1 total symbols, of which
d are dashes: the number of these is

(
d+n−1

d

)
. �

It is an immediate consequence that PR(ξ) =
∑
s≥0

(
s+n
n

)
ξs. For R(−k) we

simply shift the coefficients and obtain

PR(−k)(ξ) =
∑
s≥k

(
s+n−k
n

)
ξs = ξkPR(ξ).

The power series {ξkPR(ξ) | k ∈ Z} are obviously linearly independent over Q, which
shows that Ggrd(R) has infinite rank as an abelian group.

Proposition 20.12. Ggrd(R) is isomorphic to Z∞, with free basis the set of rank
one, free modules {[R(−d) | d ∈ Z}.

Proof. The key is the Hilbert Syzygy Theorem. Consider the diagram

Z∞ //

$$HHHHHHHHH Ggrd(R)

P

��
Z[[ξ]]

where the horizontal map sends the ith basis element to [R(−i)] and the diagonal
map is the composite. We have already seen that this composite is injective, because
there is no Z-linear relation amongst the images of the basis elements. So Z∞ →
Ggrd(R) is injective, and it only remains to prove surjectivity. But if M is any
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finitely-generated, graded R-module then the Syzygy Theorem guarantees a finite,
graded, free resolution

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0.

So [M ] =
∑
i(−1)i[Fi], and each Fi is a sum of elements [R(−k)]. This proves

surjectivity. �

The Hilbert polynomial is a variant of the Poincaré series that keeps track of
less information. At first this might seem to be a bad thing, but we will see that
what it does is give us a closer connection to geometry and topology. Here is the
main result that gets things started:

Proposition 20.13. Let M be a finitely-generated module M over R. Then there
exists a unique polynomial HM (s) ∈ Q[s] that agrees with the function s 7→ dimMs

for s � 0. One has degHM (s) ≤ n. The polynomial HM (s) is called the Hilbert
polynomial of M .

Proof. Consider first the case M = R. A basis for Ms consists of all monomials in
x0, . . . , xn of degree s, which Lemma 20.11 calculates to be

(
n+s
s

)
=
(
n+s
n

)
. This is

a polynomial in s of degree n. Next consider M = R(−k). The function s 7→ Ms

is zero for s < k, and then for s ≥ k it coincides with
(
n+s−k
n

)
. This is again a

polynomial in s of degree n.
Finally, consider the case of a general M . By the Hilbert Syzygy Theorem M

has a finite, graded, free resolution

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0.

It follows that

dimMs = dim(F0)s − dim(F1)s + · · ·+ (−1)n dim(Fn)s.

But each Fi is a direct sum of finitely-many R(−k)’s, and so s 7→ dim(Fi)s has
been shown to agree with a polynomial in s of degree at most n, for s � 0. The
desired result follows at once. �

The following calculation was given in the above proof, but we record it below
because it comes up so often:

Corollary 20.14. When R = C[x0, . . . , xn] and k ∈ Z the Hilbert polynomial for
R(−k) is

(
s+n−k
n

)
.

Example 20.15. Consider a hypersurface M = R/(f), where f ∈ R is homoge-
neous of degree d. We then have the resolution

0 // R(−d)
·f // R // R/(f) // 0

from which we find

HR/(f) = HR −HR(−d) =
(
s+n
n

)
−
(
s+n−d
n

)
= (s+n)...(s+1)

n! − (s+n−d)...(s−d+1)
n! .

Note that the two binomial coefficients have leading terms sn/n!, which therefore
cancel. The coefficient of sn−1 is

1
n! ·
[
n(n+1)

2 − (n−2d+1)n
2

]
= d

(n−1)! .

Note that the degree of HR/(f) is one less than the Krull dimension of R/(f), and
the leading coefficient is the degree of f (the geometric degree of the hypersurface)
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divided by n!. These are general facts that hold for any module: the degree ofHM is
one less than the Krull dimension of M , and the leading coefficient times (degHM )!
is always an integer—this integer is called the multiplicity of the module M .
Proofs can be found in most commutative algebra texts.

The Hilbert polynomial is an additive invariant of finitely-generated modules: if
0 → M ′ → M → M ′′ → 0 is an exact sequence then clearly HM (s) = HM ′(s) +
HM ′′(s). We may therefore regard the Hilbert polynomial as a map of abelian
groups

Hilb: Ggrd(R)→ Q[s].
This map is clearly not injective, however: it kills any module that is finite-
dimensional as a C-vector space. The subgroup of Ggrd(R) generated by such
modules is A = 〈[C(−d)] | d ∈ Z〉. We may regard Hilb as a map

Hilb: Ggrd(R)/A→ Q[s].

The domain of this map is calculated as follows:

Proposition 20.16. The group Ggrd(R)/A is isomorphic to Zn+1, with free basis
R,R(−1), R(−2), . . . , R(−n). The map Hilb is an injection.

Proof. Let B be the subgroup of Ggrd(R)/A generated by [R], [R(−1)], . . . , [R(−n)].
We will show that B is equal to the whole group.

The module C is resolved by the Koszul complex K(x0, . . . , xn;R). This gives
the relation in Ggrd(R) of

[C] = [R]− (n+ 1)[R(−1)] +
(
n+1

2

)
[R(−2)] + · · ·+ (−1)n+1[R(−n− 1)].

In Ggrd(R)/A we therefore have [R(−n − 1)] ∈ B. For d > 0 we can tensor
the Koszul complex with R(−d) and then apply the same argument to find that
[R(−n − 1 − d)] ∈ 〈[R], [R(−1)], . . . , R(−n − d)]〉. By induction we therefore have
that [R(−k)] ∈ B for every k ≥ n+ 1.

A similar induction works for d < 0 to show that [R(−d)] ∈ B for all d ∈ Z. In
other words, B = Ggrd(R)/A.

Now consider the map Zn+1 → Ggrd(R)/A that sends the ith basis element ei
to [R(−i)] for 0 ≤ i ≤ n. We have just shown that this map is surjective. Consider,
then, the composite

Zn+1 −→ Ggrd(R)/A Hilb−→ Q[s].
The images of our basis elements are the polynomials(

s+n
n

)
,
(
s+n−1
n

)
,
(
s+n−2
n

)
, . . . ,

(
s
n

)
.

Evaluating these polynomials at s = 0 gives the sequence 1, 0, 0, . . . , 0. Evaluating
at s = 1 gives n + 1, 1, 0, 0, . . . , 0, and so forth. For s = i the ith polynomial
in the list evaluates to 1 and all the subsequent polynomials evaluate to 0. This
proves that these polynomials are linearly independent over Z, hence the above
composite map is injective. So Zn+1 → Ggrd(R)/A is injective, and therefore is an
isomorphism. Moreover, Hilb is injective. �

The reader might notice that the Zn+1 in the above result is really ‘the same’ as
the group K0(CPn). This is the basis for what we do in the next section.
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Example 20.17. We will not need this, but it is a cute fact: Prove that the image
of Hilb : G(R)/A → Q[s] equals the set of polynomials f(s) ∈ Q[s] having the
property that f(Z) ⊆ Z. That is, the image consists of all rational polynomials
that take integer values on integers.

20.18. K-theory and the Hilbert polynomial. We now explain how the Hilbert
polynomial encodes the same information as the K-theoretic fundamental class.

Given Z ↪→ CPn a smooth subvariety of codimension c, recall that we have the
fundamental class [Z] ∈ K0(CPn) and that we may write

[Z] = dc[CPn−c] + dc+1[CPn−c−1] + · · ·+ dn[CP 0].

We know that dc = deg(Z), and our goal is to understand how to compute the
higher di’s.

Recall that K0(CPn) is spanned by the classes [CPn−k] = (1 − L)k for k =
0, 1, . . . , n. Evidently one can also use the basis 1, L, L2, . . . , Ln. We next introduce
an algebraic analogue of K0(CPn). Let R = C[x0, . . . , xn]. Take the Grothendieck
group K0

grd(R) of finitely-generated, graded, projective R-modules (or equivalently,
chain complexes of such modules) and quotient by the subgroup Ã generated by all
complexes K(x0, . . . , xn;R)⊗R(−d) for d ∈ Z. We obtain a diagram

K0
grd(R)/Ã

φ

∼=
//

∼=
��

K0(CPn)

Ggrd(R)/A // Hilb // Q[s]

(20.19)

where the vertical map is our usual ‘Poincaré Duality’ isomorphism and φ sends
[R(−d)] to Ld. The map φ is an isomorphism by inspection: we have computed
Ggrd(R)/A and K0(CPn), both are Zn+1, and φ clearly maps a basis to a basis.

Given Z = V (I), we know that its fundamental class [Z] ∈ K0(CPn) is repre-
sented by a finite, free resolution F• → R/I → 0. This resolution (or the alternating
sum of its terms) lifts to K0

grd(R)/Ã, and pushing this around the diagram into Q[s]
just gives us HilbR/I(s). So the above diagram shows that knowing HilbR/I(s) is
the same as knowing [Z].

To say something more specific here, consider first the case Z = CPn−k. Then
R/I = R/(x0, . . . , xk−1), which as a graded ring is just C[xk, . . . , xn]. The Hilbert
polynomial is then

HilbCPn−k(s) =
(
s+n−k
n−k

)
.

So pushing our basis [CPn], [CPn−1], . . . , [CP 0] around diagram (20.19) into Q[s]
yields the polynomials (

s+n
n

)
,
(
s+n−1
n−1

)
,
(
s+n−2
n−2

)
, . . . ,

(
s
0

)
.

If Z = V (I) ↪→ CPn is now arbitrary, then writing

HilbR/I(s) = d0

(
s+n
n

)
+ d1

(
s+n−1
n−1

)
+ d2

(
s+n−2
n−2

)
+ . . .

implies that [Z] = d0[CPn] + d1[CPn−1] + d2[CPn−2] + . . . . In other words, one
obtains the expansion of [Z] as a linear combination of the [CPn−i]’s by writing
HilbZ(s) as a linear combination of the above-listed binomial functions.
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We have shown how to calculate the di’s from the ideal I of equations defin-
ing Z: decompose the Hilbert polynomial into a sum of terms

(
s+n−k
k

)
, and take

the resulting coefficients. This is still not exactly a ‘geometric’ description of the
di’s, although it is a description that takes place in the domain of algebraic ge-
ometry. We will get another perspective on this material via the Todd genus and
the Grothendieck-Riemann-Roch Theorem, studied in Section 25. See especially
Section 25.28.

21. Interlude on the calculus of finite differences

If f ∈ Q[t] let ∆f be the polynomial given by

(∆f)(t) = f(t+ 1)− f(t).

For example, ∆(t2) = (t+1)2− t2 = 2t+1, and ∆(t3) = (t+1)3− t3 = 3t2 +3t+1.
Note that ∆: Q[t] → Q[t] is a linear map, and that it lowers degrees by one. We
call ∆ the finite difference operator, and we regard it as an analog of the familiar
differentiation operator D : Q[t]→ Q[t].

The opposite of differentiation is integration, and there is an analogous operator
that is the opposite of ∆. If f ∈ Q[t] define Sf to be the function given by

(Sf)(t) = f(0) + f(1) + f(2) + · · ·+ f(t− 1).

For example,
S(t) = 0 + 1 + 2 + · · ·+ (t− 1) =

(
t
2

)
= t(t−1)

2

and
S(t2) = 02 + 12 + · · ·+ (t− 1)2 = (t−1)t(2t−1)

6 .

One should think of the formula for S(t) has giving a finite Riemann sum, based on
intervals of width 1. It is not immediately clear that Sf is always a polynomial, nor
that it raises degrees by one, but we will prove these things shortly. The following
two facts are easy, though:

∆S(f) = f D
∫

(f) = f

S∆(f) = f − f(0)
∫
D(f) = f − f(0).

We have written each identity paired with the corresponding identity for classical
differentiation/integration. Note that, like the usual integral, Sf will always be a
polynomial that has zero as its constant term, since (Sf)(0) = 0 by definition.

Derivatives and integrals of polynomials are easy to compute because their val-
ues on the basic polynomials tn are very simple. In fact, the point is really that
operators D and

∫
act very simply on the sequence of polynomials

1, t, t2

2 ,
t3

3! ,
t4

4! , . . .

Of course D carries each polynomial in the sequence to the preceding one, and
∫

carries each polynomial to the subsequent one. In contrast, the operators ∆ and S
are not very well-behaved on this sequence. It is better to use the sequence

1, S(1), S2(1), S3(1), . . .

so let us compute these. It is easy to see that S(1) = t, and we previously saw that
S2(1) = S(t) =

(
t
2

)
. It follows from the following useful lemma that Sk(1) =

(
t
k

)
,

where the binomial coefficient stands for the polynomial 1
k! t(t−1)(t−2) · · · (t−k+1).
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Lemma 21.1. For any d, k ∈ Z one has

∆
(
t+d
k

)
=
(
t+d
k−1

)
, S

(
t
k

)
=
(
t

k+1

)
.

Proof. The statement about ∆ follows from Pascal’s Identity. The statement about
S is the identity (

0
k

)
+
(
1
k

)
+ · · ·+

(
t−1
k

)
=
(
t

k+1

)
.

To prove this, imagine t slots labelled 1−−t where we are to place k+ 1 asterisks:

∗ ∗ ∗ ∗
If the leftmost asterisk is in spot i, there are

(
t−i
k

)
ways to place the remaining

asterisks. Summing over i ∈ [1, t] yields the desired formula. �

The sequence of polynomials

1 =
(
t
0

)
,
(
t
1

)
,
(
t
2

)
,
(
t
3

)
, . . .

is clearly a basis for Q[t], as the kth term has degree equal to k. In relation to the
∆ and S operators, this basis plays the role classically taken by the polynomials td

d! .
It is now clear that S applied to a polynomial of degree d yields a polynomial of
degree d+ 1: a polynomial of degree d is a linear combination of

(
t
d

)
,
(
t

d−1

)
, . . . ,

(
t
0

)
with the coefficient on the first term nonzero. Applying S changes each

(
t
k

)
to(

t
k+1

)
, and it is clear that this yields a polynomial of degree d+ 1.

For another example of the use of this binomial basis, note the following analog
of the Taylor–Maclaurin explansion for writing polynomials in this basis:

Proposition 21.2. Let f ∈ Q[t]. Then

f =
∞∑
k=0

(∆kf)(0) ·
(
t
k

)
.

Proof. We know f =
∑N
k=0 ak

(
t
k

)
for some N and some values ak ∈ Q. Plugging in

t = 0 immediately gives f(0) = a0. Now apply ∆ to get ∆f =
∑N=1
k=0 ak+1

(
t
k

)
and

again plug in t = 0: this yields (∆f)(0) = a1. Continue. �

Exercise 21.3. Let Q[t]int ⊆ Q[t] be the set of all polynomials f(t) such that
f(Z) ⊆ Z. Note that Q[t]int is stable under ∆ and S, and use this to prove that
Q[t]int is the Z-linear span of the polynomials

(
t
k

)
, k ≥ 0.

In contrast to the large number of similarities of the pair of operators (∆, S)
to (D,

∫
), there is an important difference when it comes to the product rule. Of

course we have D(fg) = (Df)g+ f(Dg), but one readily checks that this does not
work for ∆. The correct rule is as follows:

Lemma 21.4. For any f, g ∈ Q[t] one has ∆(fg) = (∆f)g + f(∆g) + (∆f)(∆g).

Proof. A simple calculation, left to the reader. �

In the present section we will not have much use for this product rule, but it
is a very important formula whose significance will become larger in subsequent
sections.
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21.5. Translating between (∆, S) and (D,
∫

). If f ∈ Q[t] and h is any integer
(or even better, a formal variable) we have the Taylor fomula

f(t+ h) =
∞∑
k=0

f (k)(t) · h
k

k! =
∞∑
k=0

(Dkf)(t) · h
k

k! .

Note that the sum is really finite, since large enough derivatives of f are all zero.
Taking h = 1 and rearranging somewhat we get

f(t+ 1) =
( ∞∑
k=0

Dk

k!

)
f = (eD)f.

Let us be clear about what this means. The expression
∑∞
k=0

Dk

k! makes perfect
sense as an operator , since evaluating this at any fixed polynomial gives a well-
defined answer. It is sensible to denote this operator as eD.

Taking one more step, we can write (∆f)(t) = f(t+1)− f(t) = (eD−1)f where
1 denotes the identity operator. Or even more compactly,

∆ = eD − 1

is an identity of operators on Q[t]. This identity gives us ∆ as a linear combination
of iterates of D.

We are next going to cook up a similar formula for the operator S, but this is
a little harder. One does not wish for a formula using higher and higher powers
of
∫

, as these operators become more and more complicated. Instead, we say to
ourselves that S is very close to being an inverse for D (it is a right inverse, but
not a left inverse). If it were an inverse we might want to write S = 1

eD−1
, but it is

difficult to make sense of the latter expression as an operator—the trouble is that
eD − 1 has no constant term, otherwise we could expand as a power series. While
this didn’t work, we can make sense of the operator

B = D
eD−1

.(21.6)

By this we mean write x
ex−1 =

∑
akx

k = 1− x
2 + x2

12 − · · · as a formal power series,
and set B equal to

∑∞
k=0 akD

k. It follows purely formally that ∆Bf = Df for any
polynomial f , and therefore that

Bf − (Bf)(0) = SDf

(because S(Df) will not have a constant term). Replacing f by
∫
f in the above

formula, we get
Sf = SD(

∫
f) = B(

∫
f)− (B

∫
f)(0).

Note that B(
∫
f) is equal to

∫
f − 1

2f + 1
12Df − · · · . So this is as computable as

the series x
ex−1 ; the coefficients of this series are related to the Bernoulli numbers

(see Appendix A). We have

B =
∞∑
k=0

Bk

k! D
k

where the Bk’s are the Benoulli numbers.
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21.7. Sums of powers and Bernoulli numbers. The (∆, S) pair of operators
is useful in a variety of mathematical situations. In a moment we will see an
application to determining K-theoretic fundamental classes, but let us first look at
a non-topological example. Almost every math student has seen the formulas

1 + 2 + · · ·+ n = n(n+1)
2 and 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)

6 .

The proof of such formulas by mathematical induction is a common exercise in
elementary proof courses. It turns out that there are also formulas for higher
powers, of the form

1k + 2k + · · ·+ nk = pk(n)
where pk(n) is a polynomial of degree k+1. How does one discover the appropriate
polynomials? This seems to have first been done by Jacob Bernoulli, the coefficients
in these polynomials being closely related to what are now called Bernoulli numbers.

Clearly we may rephrase the problem as that of computing S(tk), the exact
connection being S(tk) = pk(t− 1). In the last section we developed a formula for
S in terms of the usual derivative and integral operators, and we will now use that;
but here it is easiest to use it in the form

SD(f) = Bf−(Bf)(0) =

( ∞∑
j=0

Bj

j! D
j

)
f−(constant term of preceding expression).

We obtain

S(tk) = SD
(
tk+1

k+1

)
= 1

k+1

∞∑
j=0

Bj

j! D
j(tk+1)− (constant term)

= 1
k+1

k∑
j=0

Bj

j! (k + 1)(k)(k − 1) · · · (k + 2− j)tk+1−j

= 1
k+1

k∑
j=0

Bj ·
(
k+1
j

)
tk+1−j .

Note that the last expression is a polynomial in t, with all of its coefficients clearly
visible.

Finally, recalling that S(tk) = pk(t− 1) we conclude that

1k + 2k + · · ·+ nk = 1
k+1

k∑
j=0

Bj ·
(
k+1
j

)
(n+ 1)k+1−j .

Exercise 21.8. Check that the above formula gives the familiar identities in the
cases k = 1 and k = 2, and then see what it gives when k = 3. Compare the above
formula to (A.3).

21.9. Back to K-theoretic fundamental classes. Let Z ↪→ CPn be a smooth
hypersurface defined by the homogeneous ideal I ⊆ C[x0, . . . , xn]. We saw in Sec-
tion 20.18 that the coefficients in

[Z]K = a0[CP 0]K + a1[CP 1]K + a2[CP 2]K + · · ·
are the same as the coefficients in

HilbZ(t) = a0

(
n+t
n

)
+ a1

(
n+t−1
n−1

)
+ a2

(
n+t−2
n−2

)
+ · · ·(21.10)
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The sequence of polynomials
(
n+t
n

)
,
(
n+t−1
n−1

)
,
(
n+t−2
n−2

)
, . . . is not quite the standard

basis of binomial coefficients we used above, but it is close. Here is a small lemma
about expanding polynomials in this basis (compare to Proposition 21.2):

Lemma 21.11. If f ∈ Q[t] then f =
∑∞
k=0(∆

kf)(−k − 1) ·
(
t+k
k

)
.

Proof. The collection of polynomials
(
t+k
k

)
for k ≥ 0 is clearly a basis for Q[t].

Write f =
∑
ck
(
t+k
k

)
. Plugging in t = −1 immediately gives f(−1) = c0. Apply ∆

to both sides to get ∆f =
∑
ak
(
t+k
k−1

)
= a1 +a2

(
t+2
1

)
+ · · · . Now plugging in t = −2

makes all the expressions vanish except the first, so a1 = (∆f)(−2). Continue in
this way. �

The following corollary is immediate, by applying the above lemma to (21.10):

Corollary 21.12. We have [Z]K =
∑
i ai[CP

i]K where the coefficients are given
by ai = (∆n−i HilbZ)(−n+ i− 1).

Example 21.13. Let Z ↪→ CPn be a hypersurface of degree d, and write Z = V (f).
Then R/(f) is resolved by 0 → R(−d) → R where the map is mutiplication by f .
So

HilbZ = HilbR−HilbR(−d) =
(
n+t
n

)
−
(
n+t−d
n

)
.

But then
∆n−i HilbZ =

(
n+t

n−(n−i)
)
−
(
n+t−d
n−(n−i)

)
=
(
n+t
i

)
−
(
n+t−d

i

)
and

ai =
(
i−1
i

)
−
(
i−1−d
i

)
=
(
i−1
i

)
+ (−1)i+1

(
d
i

)
where in the last step we have used the identity

(−s
r

)
= (−1)rr + s− 1r. The

expression
(
i−1
i

)
is nonzero only when i = 0, so that we get

ai =

{
0 if i = 0
(−1)i+1

(
d
i

)
if i > 0.

This of course agrees with what we found in Example 20.8.

Just as in the last example, in practice Hilbert polynomials are often computed
by first having a free resolution of R/I. Let us look at what happens in general
here, so let the (finite) free resolution be

· · · ⊕j R(−d2j)→ ⊕iR(−d1i)→ ⊕eR(−d0e)→ R/I → 0.

Then the Hilbert series is given by

HilbZ(t) =
∞∑
k=0

(−1)k
∑
j

(
t+n−dkj

n

)
.

Then

ai = (∆n−i HilbZ)(−n+i−1) =
∞∑
k=0

(−1)k
∑
j

(
i−1−dkj

i

)
= (−1)i ·

∞∑
k=0

(−1)k
∑
j

(
dkj

i

)
.

Example 21.14. Let Z ↪→ CPn be a complete intersection where the degrees of
the defining equations are d and e. Then R/I is resolved by the Koszul complex,
which looks like 0→ R(−d− e)→ R(−d)⊕R(−e)→ R→ R/I → 0. We conclude
that ai =

(
d
i

)
+
(
e
i

)
−
(
d+e
i

)
.
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Recall that if the codimension of Z ↪→ CPn is equal to c then we have ai = 0
for i < c and ac = deg(Z). So any free resolution of R/I must satisfy the identities∑

k

(−1)k
∑
j

(
dkj

i

)
=

{
0 for i < c

deg(Z) for i = c.

In this way we obtain topological conditions on what free resolutions can look like.

Example 21.15. Show that the above conditions on the free resolution are equiv-
alent to ∑

k

(−1)k
∑
j

dikj =

{
0 for i < c

deg(Z) · i! for i = c.

21.16. A digression on the Riemann zeta function. If Z ↪→ CPn then the
values of the polynomial HilbZ(t) only have an a priori significance for t� 0; recall
that these values represent the dimensions of the graded pieces of the coordinate ring
of Z. Yet, we saw in Corollary 21.12 that the values of HilbZ(t) at certain negative
integers (encoded as the value of a particular finite difference ∆? HilbZ) are equal to
some naturally-occurring topological invariants of Z. The fact that these negative
values have any significance at all is a bit surprising. This situation is somewhat
reminiscent of one involving the Riemann zeta function, that coincidentally (or not)
is also related to the story of the (∆, S) operators. We are going to take a moment
and talk about this, because of the feeling that it might be related to topology in
a way that no one really understands yet.

Recall that Riemann’s ζ(s) is defined for Re(s) > 1 by the formula

ζ(s) =
∞∑
n=1

n−s.

Standard results from analysis show that this sum converges for Re(s) > 1, and
defines an analytic function in that range. It is a non-obvious fact that ζ(s) can
be analytically continued to the punctured plane C− {1}. The values on negative
numbers turn out to be computable and are related to the Bernoulli numbers. We
will give an entirely non-rigorous treatment of this computation; despite its failure
to actually make sense, it is nevertheless somewhat intriguing.

If f ∈ Q[t] then we have seen that eDf makes sense and is equal to the polynomial
f(t+ 1). It readily follows that enDf = f(t+ n) for any integer n ≥ 0. Now write

f(t) + f(t+ 1) + f(t+ 2) + · · · = [I + eD + e2D + e3D + · · · ]f =
[

1
I−eD

]
f.

Of course none of the terms in the above identities make any sense, but let us
pretend for a moment that this is not a problem. Replacing f by Df we can then
write

Df(t) +Df(t+ 1) + · · · =
[

D
I−eD

]
f = −Bf

where B is the Bernoulli operator of (21.6). Evaluating at t = 0 we would obtain

Df(0) +Df(1) +D2f(2) + · · · = −(Bf)(0).

Let us next try to apply this fanciful formula to compute ζ(−n) = 1n + 2n +
3n + 4n + · · · . We want Df(t) = tn, and so should take f(t) = tn+1

n+1 . The above
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formula then suggests that

ζ(−n) = −B
(
tn+1

n+1

)
(0) = −

[ ∞∑
k=0

Bk

k! D
k
(
tn+1

n+1

)]
(0) = − Bn+1

(n+1)! ·
(n+1)!
n+1 = −Bn+1

n+1 .

Amazingly, this is the correct answer—the same value can be deduced by rigorous
arguments from complex analysis. The challenge is to find some explanation for
why this wacky argument actually leads to something correct.

22. The Euler class

There is a general principle in algebraic topology that all rational cohomology
theories detect the same information. The information is not necessarily detected in
the same way , however, and this makes it hard to formulate the principle precisely.
But here is a nice example of it. If Z ↪→ CPn is a complex submanifold then we
have seen that knowing [Z] ∈ K0(CPn) is the same as knowing the integers di
for which [Z] =

∑
di[CPn−i]. Since K0(CPn) is free abelian, there is no loss of

information in regarding this equation as taking place in K0(CPn) ⊗ Q. By the
above-mentioned principle, the numbers di should be able to be detected in rational
singular cohomology. The Grothendieck-Riemann-Roch Theorem tells us how to
do this, and that will be our next main goal.

To understand Riemann-Roch we need to first understand characteristic classes.
I will give a very brief treatment, spread over the next two sections. For a more
in-depth treatment I suggest the book [MS].

The present section deals with the Euler class, which is in some sense the most
“primary” of characteristic classes. We discuss two versions: Euler classes in sin-
gular cohomology and Euler classes in K-theory.

22.1. The Euler class for a vector bundle. We will start with a geometric
treatment that is lacking in rigor but shows the basic ideas, and then I will give
a more rigorous treatment. Don’t worry about verifying all the details in the
following, just get the basic idea.

Start with a bundle E → B of rank k, where B is a smooth manifold of dimension
n. Let ζ denote the zero-section. We will try to construct something like an
intersection-product ζ · ζ. To do this, we let s be a section of E that is a “small-
perturbation” of ζ, chosen so that s and ζ intersect as little as possible. A good
example to keep in mind is the Möbius bundle, shown below with two deformations
of the zero section:

ζs

ζ

s

The zero locus s−1(0) ⊆ im(ζ) may, under good conditions, be given the structure
of a cycle—part of this involves assigning multiplicities to the components in a
certain way. The “good conditions” are that the bundle must be orientable for
multiplicites in Z, whereas for any bundle one may assign multiplicities in Z/2. The
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dimension of this cycle is dim ζ + dim ζ − dimE, which is n+ n− (n+ k) = n− k.
This cycle clearly depends on the choice of s, but a different choice of s gives
a homologous cycle. So the associated class in homology is independent of our
choices, and is an invariant of E. We call it the homology Euler class of E: for
orientable bundles we have

eH(E) = ζ · ζ = s−1(0) ∈ Hn−k(B),

whereas for arbitrary bundles we have eH(E) ∈ Hn−k(B; Z/2). The sections s used
here are usually referred to as “generic sections” of E.

The following are easy properties of the Euler class construction:
(1) if E has a nonvanishing section, the eH(E) = 0, and
(2) eH(E ⊕ F ) = eH(E) · eH(F ) (where · is the intersection product).
(3) If L1 and L2 are line bundles on B then eH(L1 ⊗ L2) = eH(L1) + eH(L2).

For (1) we simply note that if σ is a nonvanishing section then the deformation
t 7→ tσ (for t ∈ [0, 1]) allows us to regard s as a deformation of the zero-section.
Taking s = εσ for small ε, the vanishing locus of s is the same as the vanishing
locus of σ—which is the empytset. So eH(E) = 0.

For (2), if s is a generic section of E and s′ is a generic section of F then s⊕ s′
is a generic section of E⊕F . The vanishing locus of s⊕ s′ is the intersection of the
vanishing loci of s and s′.

For (3), if s1 and s2 are generic sections of L1 and L2 then s1 ⊗ s2 is a generic
section of L1⊗L2. But s1⊗s2 vanishes at points in B where either s1 or s2 vanish.
So the vanishing locus of s1 ⊗ s2 is the union of the vanishing loci of s1 and s2.

Example 22.2.
(a) For the Möbius bundle M → S1 we have eH(M) = [∗] ∈ H0(S1; Z/2), as is

clearly depicted in the pictures above. Note the necessity of Z/2-coefficients
here.

(b) If B is an orientable, smooth manifold of dimension d, then eH(TB) ∈ H0(B).
So eH(TB) is a multiple of [∗], and this multiple is precisely the Euler char-
acteristic χ(B): a section of TB is just a vector field on B, and so this is the
classical statement that a generic vector field on B vanishes at precisely χ(B)
points. This connection with the Euler characteristic is why eH is called the
Euler class.

(c) Let L→ RPn be the tautological line bundle, and recall that L ∼= L∗. We exam-
ine L∗ instead, since it is easier to write down formulas for sections. Generically
choose a tuple α = (α1, . . . , αn) ∈ Rn and consider the section sα whose value
over x = [x0 : · · · : xn] is the functional sending (x0, . . . , xn) to α0x0+· · ·+αnxn.
The vanishing locus for this section is a linear subspace of RPn, and of course
we know that all such things are homotopic. So eH(γ) = [RPn−1].

(d) A similar analysis allows one to calculare eH(L∗) where L → CPn is the tau-
tological line bundle, but here one must be careful about getting the signs
correct. It is clear enough that eH(L∗) = ±[CPn−1], but determining the sign
takes some thought. ?????

(e) Normal bundle of Z ↪→ CPn????

22.3. Cohomology version. Let E → B be an orientable real bundle of rank k;
that is, a bundle with a Thom class UE ∈ Hk(E,E − 0). Note that B need no
longer be a manifold. Let ζ : B → E denote the zero section, as usual. We may
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interpret ζ as a map of pairs (B, ∅)→ (E,E−0), so that pulling back along ζ gives
cohomology class ζk(UE) ∈ H∗(B). Define the (cohomology) Euler class of E
to be

eH(E) = ζ∗(UE).
The main properties of the Euler class are as follows:

Proposition 22.4. Let E → B be an oriented real bundle. Then
(a) If E has a nonzero section then eH(E) = 0.
(b) eH(E ⊕ F ) = eH(E) ∪ eH(F ) for any oriented bundle F → B.
(c) For any map f : Y → B one has eH(f∗E) = f∗(eH(E)) (naturality under

pullbacks).

Proof. Properties (b) and (c) follow from the corresponding properties of Thom
classes. To see (a), let s be a nonzero section. Consider the homotopyH : I×B → E
given by H(t, b) = t · s(b). This can be regarded as a homotopy between maps of
pairs (B, ∅)→ (E,E−0). It follows that eH(E) = ζ∗(UE) = s∗(UE). But s factors
through E − 0, and so s∗(UE) = 0. �

Note that analogs of the above properties are all true for non-orientable bundles
as long as one uses Z/2-coefficients everywhere.

Example 22.5.
(1) For the Möbius bundle M → S1 we have eH(M) = [∗] ∈ H1(S1; Z/2). To

prove this note that the Thom space of M is D(M)/S(M) ∼= RP 2, and the
zero section ζ : S1 → Th(M) is just a typical embedding of RP 1 into RP 2.
The Thom class UM ∈ H1(ThM ; Z/2) = H1(RP 2; Z/2) is the unique nonzero
class, and we know restricting along RP 1 ↪→ RP 2 sends this class to the unique
nonzero class in H1(RP 1; Z/2).

(2) Let γ → RPn be the tautological bundle. If j ↪→ RP 1 ↪→ RPn is the
inclusion, then j∗γ ∼= M . So naturality gives j∗eH(γ) = eH(M). But
j∗ : H1(RPn; Z/2) → H1(RP 1; Z/2) is an isomorphism, and so it follows from
(1) that eH(γ) must be the unique nonzero class in H1(RPn; Z/2).

(3) LetM be a smooth, oriented manifold of dimension n. Then the tangent bundle
TM → M is a rank n oriented bundle. In this case, eH(TM) ∈ Hn(M ; Z) =
Z〈[∗]〉 and so the problem is to determine the integer d for which eH(TM) =
d[∗]. It is a fact from geometric topology ???? that there is a vector field
s : M → TM with a finite number of vanishing points, and that when counted
with appropriate signs this number is χ(M). Let A = s−1(0) = {p1, . . . , pr} ⊆
M . The deformation t 7→ ts shows that s is homotopic to the zero section ζ,
so that we get the following diagram

Hn(M) Hn(M,M − {p1, . . . , pr})
j∗oo Hn(TM,TM − 0)s∗oo

where the composite map is ζ∗ = s∗. As is typical in these arguments, we next
use that Hn(M,M−{p1, . . . , pr}) ∼= ⊕iHn(M,M−pi) and that the orientation
of M gives canonical generators [∗] ∈ Hn(M) and [pi] ∈ Hn(M,M − pi). The
map j∗ sends each [pi] to [∗], and so it is really just a fold map Zr → Z. It
remains to see how the Thom class UTM maps to the canonical generators in
Hn(M,M − pi) under s∗, but this is a local problem—by working through
the definitions one sees that UTM 7→ di[pi] where di is the local index of the
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vector field at pi. We finally obtain that eH(TM) = (d1 + · · · + dr)[∗], where
d1 + · · ·+ dr is the sum of the local indices and therefore equal to χ(M).

The following property of the Euler class is also useful:

Proposition 22.6. Let M be an oriented manifold and let j : X ↪→ M be a reg-
ularly embedded, oriented submanifold. Let NM/X be the normal bundle. Then
e(NM/X) = j∗([X]).

Proof. Intuitively the result should make sense, since both e(NM/X) and j∗([X])
are modelled by the intersection product of X with itself inside of M . To give
a rigorous proof, let U be a tubular neighborhood of X in M and U ∼= N be a
regular homeomorphism. Note that the zero section ζ : X ↪→ N corresponds with
the inclusion j : X ↪→ U under this isomorphism.

Let c be the codimension of X in M . Consider the commutative diagram

H0(X) // Hc(N,N − 0)

ζ∗ ''OOOOOOOOOOO

∼= // Hc(U,U − 0)

��

Hc(M,M −X)
∼=oo

j∗

��

// Hc(M)

j∗

��
Hc(X) Hc(X) Hc(X).

The image of 1 across the top row is [X], with UN being an intermediate value in
the composite. The image of UN under ζ∗ is e(N), and so the diagram immediately
yields e(N) = j∗[X]. �

Example 22.7. Consider the usual embedding j : CPn ↪→ CPn+1. We claim that
the normal bundle is L∗ → CPn, the dual of the tautological line bundle. The
proof is that a linear functional φ on the line ` ⊆ Cn+1 determines a “nearby” line
`′ = {(x, φ(x))x ∈ `}, as shown below:

en+2

Cn+1

`

`′

By Proposition 22.6 we find that e(L∗) = j∗([CPn]), and we know the latter is
[CPn−1] by intersection theory. We have shown that e(L∗ → CPn) = [CPn−1].

We next wish to give a formula for the Euler class of a tensor product of line
bundles. At the moment this might seem to be of limited interest, but it turns out
to be very significant. We need to be careful about what context we are working
in, however. All orientable real line bundles are trivial (one can write down an
evident nonvanishing section), and so using the integral Euler class in this context
doesn’t lead to anything interesting. So we should work with mod 2 Euler classes
and arbitrary real line bundles. Alternatively, if we use complex line bundles then
they are automatically oriented and then we can indeed use the integral Euler class
(of the underlying real plane bundle). So we really get two parallel results, one for
the real and one for the complex case:
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Proposition 22.8. If L1 and L2 are real line bundles on B then the mod 2 Euler
class satisfies

eH(L1 ⊗ L2) = eH(L1) + eH(L2).
Likewise, if L1 and L2 are complex line bundles on B then the integral Euler class
satisfies the same formula.

Proof. The proofs of the two parts are basically identical; we will do the complex
case. Let L → CP∞ denote the tautological line bundle, and consider the bundle
π∗1(L) ⊗ π∗2(L) → CP∞ × CP∞, where π1, π2 : CP∞ × CP∞ → CP∞ are the two
projections. Since L is the universal example of a line bundle, π∗1(L)⊗π∗2(L) is the
universal example of a tensor product of line bundles. Write E = π∗1(L) ⊗ π∗2(L),
for short. There is a classifying map f : CP∞ × CP∞ → CP∞ for E, giving a
pullback diagram

E //

��

L

��
CP∞ × CP∞

f // CP∞.
By naturality eH(E) = f∗(eH(L)) = f∗(x) where x ∈ H2(CP∞) is the canonical
generator.

If ∗ is a chosen basepoint in CP∞ then observe that the diagram

CP∞ × {∗}

j2 **UUUUUUUU
id

''
CP∞ × CP∞

f // CP∞

{∗} × CP∞
j1

44iiiiiiii

id

77

commutes up to homotopy. This is because fj1 classifies j∗1 (E), and this bundle is
clearly isomorphic to L; similarly for fj2.

Note that H2(CP∞ × CP∞) is the free abelian group generated by x ⊗ 1 and
1⊗x. So f∗(x) = k(x⊗1)+ l(1⊗x) for some integers k and l. The above homotopy
commutative diagram forces k = l = 1. So we have proven that

eH(E) = eH(L)⊗ 1 + 1⊗ eH(L).

Now let L1 and L2 be two complex line bundles on a space B. There are maps
g1, g2 : B → CP∞ such that L1 = g∗1(L) and L2 = g∗2(L). Then L1 ⊗ L2 = γ∗(E),
where γ is the composite

B
∆−→ B ×B g1×g2−→ CP∞ × CP∞.

We obtain

eH(L1 ⊗ L2) = γ∗(eH(E)) = γ∗
(
eH(L)⊗ 1 + 1⊗ eH(L)

)
= ∆∗(eH(L1)⊗ 1 + 1⊗ eH(L2)

)
= eH(L1) + eH(L2).

�

Remark 22.9. One should note that the above proof is not geometric—this turns
out to be important. Rather, the proof in some sense proceeds by showing that
there is really not much choice for what eH(L1 ⊗ L2) could be, given how small
H∗(CP∞ × CP∞) is; there is in fact only one possibility. We will shortly see
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that replacing H by other cohomology theories—ones with “more room”, so to
speak—allows for more to happen here.

Corollary 22.10. Let L → CPn be the tautological line bundle. Then eH(L∗) =
[CPn−1] and so

eH((L∗)⊗k) = k[CPn−1] and eH(L⊗k) = −k[CPn−1].

Proof. The first statement was proven in Example 22.7. All of the other statements
follow directly from the first via Proposition 22.8. For eH(L) use that L⊗ L∗ ∼= 1
and so 0 = eH(1) = eH(L) + eH(L∗). �

A nice consequence of all of the above work is that for complex line bundles the
Euler class gives a complete invariant:

Corollary 22.11. Let L1, L2 be two complex line bundles over a space X. If
e(L1) = e(L2) then L1

∼= L2.

Proof. Let f1, f2 : X → CP∞ be classifying maps for the two line bundles: so
f∗1L

∼= L1 and f∗2L ∼= L2. Then e(L1) = f∗1 e(L) and e(L2) = f∗2 (e(L)), by naturality
of the Euler class. Our assumption is therefore equivalent to f∗1 (e(L)) = f∗2 (e(L)).

But CP∞ is an Eilenberg-MacLane space K(Z, 2), and so [X,CP∞] is naturally
isomorphic to H2(X) via the map f 7→ f∗(z) where z is a chosen generator of
H2(CP∞). Corollary 22.10 gives that e(L) is such a generator, so the fact that
f∗1 (e(L)) = f∗2 (e(L)) implies that f1 is homotopic to f2. But this implies that L1

is isomorphic to L2. �

The following easy corollary will be needed often:

Corollary 22.12. Let j : Z ↪→ CPn be a degree d hypersurface. Then the normal
bundle is isomorphic to j∗

(
(L∗)⊗d

)
.

Proof. By Proposition 22.6 the Euler class of the normal bundle is e(N) = j∗([Z]).
But we know [Z] = d[CPn−1] = e((L∗)⊗d), and so j∗[Z] is the Euler class of
j∗((L∗)⊗d). Now use Corollary 22.11. �

22.13. Euler classes in K-theory. Let E π−→ X be a C-bundle of rank k. We
have a Thom class UE ∈ K0(E,E−0), and so we can mimic the above construction
and define

eK(E) = ζ∗(UE) ∈ K0(X).
This is the K-theory Euler class of E.

Let us unravel the above definition a bit. First, recall that UE is the complex

[ 0 // /\0(π∗E)
∆∧− // /\1(π∗E) // . . . // /\k(π∗E) // 0. ]∗

where ∆ is the usual diagonal section as shown in the following diagram:

E ζ∗(π∗E) //

��

π∗E //

��

E

��
X

ζ
// E π

//

∆

BB

X.

Note that ζ∗(π∗(E)) = E because π ◦ ζ = id. Next let us look at ζ∗(UE). For each
j one has ζ∗(/\j(π∗E)) = /\j(E), and the restriction of ∆ to the image of ζ is just
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the zero section! So the maps in the complex ζ∗(UE) are all zero. In other words,
ζ∗(UE) is the Koszul complex for the zero section on E. Therefore

ζ∗(UE) = J∗E,0

= [ 0 // /\0
E

0 // /\1
E

0 // . . . // /\kE // 0 ]∗

=
∑

(−1)i[/\i(E∗)].

We see immediately that if E has a nonzero section then eK(E) = 0. Indeed,
if s is the nonzero section then we can deform ζ to s, and likewise deform J∗E,ζ to
J∗E,s. But this latter complex is exact, and so represents zero in K0(X).

The analogs of properties (b) and (c) from Proposition 22.4 also hold, as these
are simple consequences of corresponding properties of Thom classes. What about
the analog of Proposition 22.8? If L→ X is a complex line bundle then we have

eK(L) = 1− L∗.
So eK(L1 ⊗ L2) = 1 − L∗1L∗2, which is visibly not the same as eK(L1) + eK(L2).
Indeed, one can check the following more complicated formula:

Proposition 22.14. Let L1 and L2 be complex line bundles on a space X. Then

eK(L1 ⊗ L2) = eK(L1) + eK(L2)− eK(L1)eK(L2).

Proof. We simply observe that 1−L∗1L∗2 = (1−L∗1)+(1−L∗2)−(1−L∗1)(1−L∗2). �

Remark 22.15. The difference between how eH and eK behave on tensor products
of line bundles turns out to have much more significance than one might expect.
In some sense it ends up accounting for all of the differences between H and K, at
least in terms of how they encode geometry. See Section 27 for more discussion.

We end this section with some detailed computations of K-theoretic Euler
classes:

Example 22.16. Let T be the complex tangent bundle to CPn. Our goal will be
to compute eK(T ) from first-principles. Let L denote the tautological line bundle
over CPn. Note that L sits inside of the trivial bundle n+ 1 in the evident way
(if l is a line in Cn+1, then points on l are defacto points in Cn+1). Let L⊥ be the
orthogonal complement to L relative to the usual Hermitian metric on Cn+1. So
we have a short exact sequence of bundles

0→ L ↪→ n+ 1→ L⊥ → 0.(22.17)

Since CPn is compact this sequence is split, and hence L⊕ L⊥ ∼= n+ 1.
The basis of our computation is the following geometric fact:

T ∼= Hom(L,L⊥)(22.18)

where Hom(L,L⊥) is the bundle over CPn whose fiber over a point x is the vector
space of linear maps Lx → L⊥x . To understand this isomorphism, if ` is a point in
CPn then think of the tangent space T` as giving “local directions” for moving to
all nearby points around `. The following picture shows the line ` in Cn+1 together
with its orthogonal complement `⊥ and a “nearby line” `′:
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`

`⊥
`′

v

w

Note that `′ determines a linear map ` → `⊥ as shown in the picture: a vector
v ∈ ` is sent to the unique vector w ∈ `⊥ such that v+w ∈ `′. This makes sense as
long as `′ is not orthogonal to `, which will be fine for all nearbly lines. We clearly
get a bijection between Hom(`, `⊥) and a certain neighborhood of ` in CPn, and it
is not hard to extrapolate from this to the isomorphism (22.18).

Now take the short exact sequence of (22.17) and apply Hom(L,−) to get the
short exact sequence

0 // Hom(L,L) // Hom(L, n+ 1) // Hom(L,L⊥) // 0.

(To see that this sequence is exact, just check it on fibers—there it is obvious,
because we are just dealing with vector spaces.) For any line bundle L one has
the identity Hom(L,L) = 1: for a one-dimensional vector space V the map C →
Hom(V, V ) mapping 1 to the identity is a canonical isomorphism, so we can do this
fiberwise. Using this, together with the identification T ∼= Hom(L,L⊥), the above
short exact sequence can be written as

0→ 1→ (n+ 1)L∗ → T → 0.

Since there must be a splitting, 1⊕ T ∼= (n+ 1)L∗. Dualizing, we obtain 1⊕ T ∗ ∼=
(n+ 1)L

Recall that eK(T ) =
∑
i(−1)i[/\i(T ∗)]. We will compute /\i(1 ⊕ T ∗) and then

extract formulas for [/\i(T ∗)].
Of course /\01 = /\11 = 1 and /\j1 = 0 for j ≥ 2. This allows us to calculate

/\j(1⊕ T ∗) = (/\01⊗ /\jT ∗)⊕ (/\11⊗ /\j−1
T ∗)

= /\jT ∗ ⊕ /\j−1
T ∗.

On the other hand, /\j(1 ⊕ T ∗) = /\j((n + 1)L) =
(
n+1
j

)
(L⊗j). So for every j we

have
[/\j(T ∗)] =

(
n+1
j

)
L⊗j − [/\j−1(T ∗)]

in K-theory.
The evident recursion now gives that

[T ∗] = (n+ 1)[L]− [1]

[/\2
T ∗] =

(
n+1

2

)
[L⊗2]− (n+ 1)[L] + [1]

[/\3
T ∗] =

(
n+1

3

)
[L⊗3]−

(
n+1

2

)
[L⊗2] + (n+ 1)[L]− [1],
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and so on. The general formula, obtained by an easy induction, is

[/\jT ∗] =
j∑

k=0

(−1)k+j
(
n+1
k

)
[L⊗k].

This now lets us calculate

eK(T ) = (−1)n
[(
n+1

1

)
[L]n − 2

(
n+1

2

)
[L]n−1 + 3

(
n+1

3

)
[L]n−2 − . . .

]
= (−1)n(n+ 1)

[
[L]n −

(
n
1

)
[L]n−1 +

(
n
2

)
[L]n−2 − . . .

]
= (n+ 1)(1− [L])n.

Recall that (1− [L])n = [∗], and so we have determined that

eK(T ) = (n+ 1)[∗].
Let us now confess that the result of this computation is not unexpected. Indeed,

we saw previously that eH(TM) = χ(M)[∗] for any smooth manifold M , and in
fact the same is true in any complex-oriented cohomology theory (by essentially
the same proof). The “n + 1” in our formula for eK(T ) is just χ(CPn). But
note that we computed this without writing down anything remotely resembling
a cell structure! In fact, the only geometry in the calculation was in the fact
T ∼= Hom(L,L⊥); everything else was some simple linear algebra and then basic
algebraic manipulation. It is useful to remember the overall theme of K-theory: do
linear algebra fiberwise over a base space X, and see what this tells you about the
topology of X. Our computation of eK(TCPn) gives an example of this.

The calculation in the above example is a little clunky. One way to streamline
it is to introduce the formal power series

λt(E) =
∞∑
i=0

ti[/\i(E)] = 1 + t[E] + t2[/\2(E)] + · · ·

which we regard as living in the ring K(X)[[t]], where E → X was a vector bundle.
Notice that this is actually a polynomial in t, since the exterior powers vanish
beyond the rank of E; we consider it as a power series because in that context it
has a multiplicative inverse, which we will shortly need.

If L is a line bundle then λt(L) = 1 + t[L]. Also, the formula /\k(E ⊕ F ) =⊕
i+j=k /\i(E)⊗ /\j(F ) yields the nice relation

λt(E ⊕ F ) = λt(E) · λt(F ).

This is what ultimately simplifies our calculations. Finally, notice that the K-
theoretic Euler characteristic can be written as eK(E) = λt(E∗)|t=−1.

Returning to the above calculation, the starting point for the algebra was the
bundle isomorphism 1⊕ T ∗ ∼= (n+ 1)L. Applying λt we obtain

λt(1)λt(T ∗) = λt(1⊕ T ∗) = λt((n+ 1)L∗) = (λt(L))n+1.

But λt(1) = 1 + t and λt(L) = 1 + t[L], so we can write

λt(T ∗) = (1+t[L])n+1

1+t , or eK(T ) = (1+t[L])n+1

1+t

∣∣∣
t=−1

(and here is where we are using that our power series have multiplicative inverses).
Our task is to expand the formula for eK(T ) into powers of t, and then to set
t = −1. The trick is to do this in a clever way.
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We are going to ultimately want to write eK(T ) in terms of powers of (1 − L),
as they give our usual basis for K∗(CPn). The trick is to do this before plugging
in t = −1, rather than afterwards. Regard L as a formal variable and consider
f(L) = (1 + tL)n+1/(1 + t), regarded as a formal power series in two variables (but
where we are choosing not to write t in the inputs of f). Let us expand this in
powers of (L− 1) via the usual Taylor series:

f(L) = f(1) + f ′(1)(L− 1) + f ′′(1)
2 (L− 1)2 + · · ·

It is simple to compute that the coefficient of (L− 1)k is
(
n+1
k

)
(1 + t)n−k+1tk, and

so we obtain

λt(T ∗) =
n+1∑
k=0

(
n+1
k

)
(1 + t)n−ktk(L− 1)k.

Notice that the substitution t = −1 will make the summands vanish for k smaller
than n, and that the term k = n+ 1 vanishes because (L− 1)n+1 = 0 in K(CPn).
So we quickly find that

eK(T ) = λt(T ∗)|t=−1 =
(
n+1
n

)
tn(L− 1)n = (n+ 1)(1− L)n = (n+ 1)[∗].

Example 22.19 (Euler characteristic of a hypersurface). Using the λt operators
introduced above, we will attempt a harder computation of an Euler class. Let
j : Z ↪→ CPn be a smooth hypersurface of degree d. Our goal is to compute the
Euler characteristic χ(Z). If TZ and NZ denote the tangent and normal bundles,
respectively, then TZ ⊕ NZ ∼= j∗TCPn . We know from Corollary 22.12 that NZ ∼=
j∗O(d), so we have

1⊕ TZ ⊕ j∗O(d) ∼= 1⊕ j∗TCPn ∼= (n+ 1)j∗O(1).

Taking duals and applying λt, we obtain

λt(1) · λt(T ∗Z) · λt(j∗Ld) = λt(j∗L)n+1.

Let X = j∗L. Then we can write

λt(T ∗) = (1+tX)n+1

(1+t)(1+tXd)
.

We wish to compute the Euler class eK(T ) = λt(T ∗)|t=−1 and then write it in the
form (???) · [∗], in which case the mystery number in parentheses will be χ(Z). The
trick is again to expand in powers of (X − 1), since the powers of 1 − L are our
standard generators for K0(CPn).

Consider the power series

f(X) = (1+tX)n+1

(1+t)(1+tXd)
= f(t, 1) + f ′(1)(X − 1) + f ′′(1)

2 (X − 1)2 + · · ·

Note that (1−L)n+1 is zero inK0(CPn) and therefore (1−X)n+1 vanishes inK0(Z).
Even better, (1−L)n = [∗] in K0(CPn) and since j∗[∗] = 0 by intersection theory it
follows that (1−X)n = 0 in K0(X). So we don’t care about any terms in the above
series beyond (X − 1)n−1. Let us also note at this point that (1 − L)n−1 = [CP 1]
in K0(CPn), and therefore (1 −X)n−1 = j∗

(
(1 − L)n−1

)
= j∗([CP 1]) = d[∗]; the

last equality holds by intersection theory, since a generic CP 1 will intersect Z in
exactly d points.
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Before tackling the general calculation let us do the first example, where n = 2.
Here f(X) = (1+tX)3

(1+t)(1+tXd)
and we only need the first two terms of the series. Clearly

f(1) = 1 + t and an easy calculation gives

f ′(X) = 1
1+t ·

(1+tX)2

(1+tXd)2

[
3t(1 + tXd)− (1 + tX)tdXd−1]

so that
f ′(1) = (3− d)t.

Putting everything together,

f(X) = (1 + t) + (3− d)t(X − 1)

and so

eK(TZ) = f(X)|t=−1 = 0 + (d− 3)(X − 1) = (3− d)(1−X) = (d− 3) · d[∗].
We conclude that χ(Z) = d(3− d).

For larger n here is how things are going to work. First, we will calculate the
derivatives f (k)(1) for 0 ≤ k ≤ n− 1, and then substitute t = −1 into all of them.
It will turn out (but is far from obvious) that the resulting expressions vanish for
k < n− 1, so that

eK(TZ) = f (n−1)(1)|t=−1 · (X − 1)n−1

= f (n−1)(1)|t=−1 · (−1)n−1 · (1−X)n−1

= f (n−1)(1)|t=−1 · (−1)n−1 · d[∗].
The conclusion will then be that

χ(Z) = f (n−1)(1)|t=−1 · (−1)n−1 · d.
Notice that everything comes down to computing the expressions f (k)(1)|t=−1,

which is a purely algebraic problem. Unfortunately we cannot first plug in t = −1,
since our formula for f has a 1 + t in the denominator; we have to first do the hard
work of writing f as a polynomial in t before plugging in. At first glance this work
looks very hairy! Already the formula for f ′(X) was quite complicated, and it only
gets worse for the higher derivatives. The reader might wish to carry this out by
brute force for n = 3, to get a feel for the difficulties.

We are going to sketch the completion of the calculations for the above exam-
ple, but before diving into that we need to make a confession. It is possible to
compute χ(Z) by doing a similar kind of calculation using singular cohomology
instead of K-theory, and in that setting the algebra turns out to be much easier !
There is a trade-off, which is that the computation cannot be done merely with
Euler classes—one needs the complete theory of Chern classes, to be developed in
the next section. See Example 23.7 for the computation of χ(Z) in that context.
This situation is fairly typical of the relationship between K-theory and singular
cohomology. For calculations that can be done in either theory, usually the singular
cohomology version will involve simpler algebra, but more advanced geometric tech-
niques; the K-theory version will involve more advanced algebra, but one needs less
geometry. In some sense we saw this phenomenon already in the case of intersection
multiplicities.

The completion of our calculation will proceed via the following steps:
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(a) Suppose that f(w) ∈ Q[w] has degree k. Then there is an identity of formal
power series

f(0)− tf(1) + t2f(2)− · · · = u(t)
(1+t)k+1

for a unique polynomial u(t). Moreover, the degree of u(t) is at most k and
u(−1) is k! times the leading coefficient of f .

To justify the above claim, write Af =
∑
k≥0(−1)kf(k)tk. Note the formula

(1+t)Af = f(0)−tA∆f where ∆ is the finite difference operator from Section 21.
Check the claim is true when deg f = 0, and then do an induction on the degree.
(Extra credit: Find a formula for u(t) in terms of the numbers ∆kf(0)).

(b) By collecting terms notice that
1

1+tXd = 1− tXd + t2X2d − · · ·

= 1− t((X − 1) + 1)d + t2((X − 1) + 1)2d − · · ·
= 1

1+t + (X − 1)Γ1 + (X − 2)Γ2 + · · ·
where

Γk = −t
(
d
k

)
+ t2

(
2d
k

)
− t3

(
3d
k

)
+ · · ·

It follows from (a) that Γk = uk(t)
(1+t)k+2 where uk(t) is a polynomial such that

u(−1) = dk.
(c) Set fr = (1+tX)r

(1+t)(1+tXd)
. Notice the recursion relation

fr+1 = (1 + tX)fr = (1 + t((X − 1) + 1))fr = (1 + t)fr + (X − 1)tfr.

So if we know the expansion of fr in terms of powers of X − 1, it is easy to
get the expansion of fr+1. In the following table, row r shows the terms in the
expansion for fr (starting with f0):

r (X − 1)0 (X − 1)1 (X − 1)2 (X − 1)3 · · ·
0 1

(1+t)2
u1

(1+t)3
u2

(1+t)3
u3

(1+t)3 · · ·

1 1
1+t

u1+t
(1+t)2

u2+tu1
(1+t)3

u3+tu2
(1+t)3 · · ·

2 1 u1+2t
(1+t)

u2+2tu1+t
2

(1+t)2
u3+2tu2+t

2u1
(1+t)3 · · ·

3 1 + t u1 + 3t u2+3tu1+3t2

1+t
u3+3tu2+2t2u1+t

3

(1+t)2 · · ·

4 (1 + t)2 (1+t)(u1+3t)+t(1+t) u2 + 4tu1 + 6t2 · · · · · ·

(c) Ignoring the terrible-looking formulas, one important thing is evident from the
table: in the column for (X − 1)r, after row r + 2 we are getting polynomial
multiples of 1+ t. So these entries will all vanish when we specialize to t = −1,
and we see that in fr|t=−1 the first nonzero coefficient appears in the (X−1)r−2

term. Our job is to calculate this coefficient. In order to do so, notice that it
suffices to just look at all the numerators in the table; the denominators can
basically be ignored. To this end, let gr(W ) be the generating function for
the numerators in row r of the table, specialized to t = −1. For example,
g0(W ) = 1 + dW + d2W 3 + · · · . The recursion relation for these numerators is

gr+1 = gr −Wgr = (1−W )gr.
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So of course we will have

gr = (1−W )rg0 = (1−W )r · 1
1−dW = (1−W )r · (1 + dW + d2W 2 + · · · ).

The number we are looking for is the coefficient of W r−2 in this power series,
and it is a simple matter to compute it. The desired coeffient is

dr−2 − dr−3
(
r
1

)
+ dr−4

(
r
2

)
− · · ·+ (−1)r−2

(
r
r−2

)
.

(d) Now putting everything together, we have proven that

χ(Zd ↪→ CPn) = (−1)n+1d
[
dn−1 − dn−2

(
n+1

1

)
+ · · ·+ (−1)n−1

(
n+1
n−1

)]
= (−1)n+1d ·

[
(d−1)n+1−(−1)n+1((n+1)d−1)

d2

]
= (1−d)n+1−((n+1)d−1)

d .

None of the above formulas are particularly pleasant to look at, and they are
difficult to remember. I like to encode the formula in a different way. Let `
denote the formal “lowering operator” that sends ds to ds−1, for each s. Then
we may write

χ(Zd ↪→ CPn) = d · (`− I)n+1(dn−1)
where I is the identity operator. For example,

χ(Zd ↪→ CP 3) = d · (`4 − 4`3 + 6`2 − 4`+ I)(d2) = d · (6− 4d2 + d3).

23. Chern classes

Fix a certain collection of vector bundles. A characteristic class for this collec-
tion assigns to each vector bundle E → X a cohomology class b(E) belonging to
some cohomology theory; the assignment is required to be natural. We have seen
essentially two examples so far: for the collection of oriented, rank k vector bundles,
we have the Euler classes eH and eK .

The Chern classes are characteristic classes for complex vector bundles, that
generalize the Euler class in a certain way. Like the Euler class, they have close ties
to geometry. Also like the Euler class, there are versions of Chern classes in both
singular cohomology and K-theory—indeed, there are versions in any complex-
oriented cohomology theory.

In this section we begin with a purely geometric look at the Chern classes, where
we again forego all attempts at rigor. Afterwards we will pursue a more rigorous
approach, which can even be done axiomatically.

23.1. Geometric Chern classes in homology. Let B be a complex manifold
of dimension n, and let E → B be a complex vector bundle of rank k. If s is a
generic section of E, then the locus where s vanishes gives a cycle in B that carries
the Euler class eH(E) ∈ H2(n−k)(B). This homology class will now be renamed as
Ck(E) and called the kth homology Chern class of E.

Now let s1 and s2 be two generic sections, chosen so that s1(x) and s2(x) are
linearly independent on as large a subset of B as possible. We can now look at the
degeneracy locus

D(s1, s2) = {b ∈ B | s1(b) and s2(b) are linearly dependent}.
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Again, for generically chosen s1 and s2 this gives a cycle on B whose associated
homology class is independent of any choices. The homology class lies in dimension
2(n− k − 1), and we call it the (k − 1)st homology Chern class Ck−1(E).

At this point it is clear how to continue. For each j in the range 1 ≤ j ≤ k, let
s1, . . . , sj be sections generically chosen to be as maximally linearly independent as
possible. Consider the degeneracy locus

D(s1, . . . , sj) = {b ∈ B | s1(b), . . . , sj(b) are linearly dependent},
which determines a homology class Ck−j+1 ∈ H2(n−k−j+1)(B).

These homology classes can be thought of as the primary obstructions to splitting
off a trivial bundle. More precisely, if E contains a trivial bundle of rank s then
0 = Ck(E) = Ck−1(E) = · · · = Ck−s+1(E). This is clear, as by working inside
the trivial subbundle we can choose our “generic sections” so that they are linearly
independent everywhere.

23.2. Chern classes in singular cohomology. We adopt an axiomatic approach.
For any complex vector bundle E → X the Chern classes are cohomology classes
ci(E) ∈ H2i(X; Z) for 0 ≤ i <∞ satisfying the following properties:
(1) c0(E) = 1
(2) ci(E) = 0 if i > rank E
(3) ci(f∗E) = f∗ci(E) (naturality under pullback)
(4) The Whitney Formula: ck(E ⊕ F ) =

∑k
i=0 ci(E)ck−i(F ), for any k.

(5) c1 (L∗ → CPn) = eH(L∗) = [CPn−1], where L → CPn is the tautological line
bundle.

Remark 23.3. The Whitney Formula can be written in a more convenient way
using the total Chern class, namely

c(E) = c0(E) + c1(E) + c2(E) + · · · ∈ H∗(X)

Then the Whitney Formula becomes c(E ⊕ F ) = c(E) · c(F ).

Note that if E → X is a trivial bundle then ci(E) = 0 for i > 0. Indeed, E is the
pullback of a bundle on a point: E ∼= π∗(Cn) where π : X → ∗ and n = rank(E).
One has ci(Cn → ∗) = 0 for i > 0 because a point has no cohomology in positive
degrees; the fact that ci(E) = 0 then follows from naturality.

Before showing the existence of the Chern classes, let us show that they are
uniquely characterized by the above properties:

Proposition 23.4. There is at most one collection of characteristic classes satis-
fying properties (1)–(5) above.

Proof. Let η be the tautological k-plane bundle on Grk(C∞). Consider the diagram

π∗1(L)⊕ π∗2(L)⊕ · · · ⊕ π∗k(L) //__________

��

η

��
CP∞ × · · · × CP∞ S // Grk(C∞ × · · · × C∞) = Grk(C∞)

with the obvious maps. Note that there are k copies of CP∞ and C∞ in the bottom
row. Also, πi : CP∞ × · · · × CP∞ → CP∞ is the ith projection map.
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This diagram is a pullback diagram. Hence,

S∗(η) = (π∗1L)⊕ · · · ⊕ (π∗kL).

Applying cohomology to the map on the bottom row gives

H∗(CP∞ × · · · × CP∞) H∗(Grk(C∞))S∗oo .

By the Künneth Theorem,

H∗(CP∞ × · · · × CP∞) ∼= H∗(CP∞)⊗ · · · ⊗H∗(CP∞) = Z[x1, . . . , xk]

where xi = π∗i (x) with x ∈ H2(CP∞) being the canonical generator. There is
an evident action on CP∞ × · · · × CP∞ by the symmetric group Σk. This action
descends in cohomology to give the statement

H∗(CP∞ × · · · × CP∞)Σk ∼=
[
H∗(CP∞)⊗ · · · ⊗H∗(CP∞)

]Σk

= Z[x1, . . . , xk]Σk

= Z[σ1, . . . , σk]

where σi is the ith elementary symmetric function in the xi’s.
Recall that [X,Grk(C∞)] ' Vectk(X). Under this bijection, S corresponds to

the bundle E = ⊕iπ∗i (L). If α ∈ Σk then the map S ◦ α corresponds to the
direct sum of π∗i (L)’s but where the sum is taken in a different order. Since this is
isomorphic to the original bundle E, is must be that S and S ◦ α are homotopic;
in particular, they induced the same map on cohomology. Since this holds for all
α, it follows that S∗ lands inside the Σk invariants. That is, S∗ can be regarded as
a map

H∗(Grk(C∞)) S∗−→
[
H∗(CP∞)⊗k

]Σk

= Z[σ1, . . . , σk].

It is a theorem that the above map S∗ is an isomorphism. We will not take the
time to prove this, but the idea is simple enough. The Schubert cell decomposition
of Grk(C∞) has all cells in even dimensions, and hence the coboundary maps are
all zero; this computes H∗(Grk(C∞)) additively, and one readily checks that the
groups have the same ranks as in Z[σ1, . . . , σk]. ????

Using the Whitney Formula (iteratively), we can see that

ci(π∗1L⊕ · · · ⊕ π∗kL) =
∑
β

c1(π∗β(1)(L)) · c1(π∗β(2)(L)) . . . c1(π∗β(i)(L))

=
∑
β

π∗β(1)(x) · π
∗
β(2)(x) . . . π

∗
β(i)(x)

where the sum ranges over strictly-increasing maps β : {1, . . . , i} → {1, . . . , k}, and
in the second sum x = c1(L) ∈ H2(CP∞). But note that if we write xj = π∗j (x)
then the second sum is simply the elementary symmetric function σi in the xj ’s.

It follows from the above that ci(η) is the unique element of H2i(Grk(C∞)) that
maps to σi under S∗.

Finally, suppose that E → X is any complex vector bundle, say of rank k. Then
there is a map f : X → Grk(C∞) and an isomorphism f∗η ∼= E. It follows that
ci(E) = f∗(ci(η)).

To complete the proof, assume that c∗ and c′∗ are two sets of characteristic classes
satisfying properties (1)–(5). Then ci(η) and c′i(η) must agree, for they each must
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be the unique element of H2i(Grk(C∞)) that maps to σi. It then follows from
naturality that ci(E) = c′i(E) for all bundles E. �

By examining the above proof, one finds that we can define the Chern classes
in the following way. First, when η → Grk(C∞) is the tautological bundle then
define ci(η) to be the unique element of H2i(Grk(C∞)) that maps to σi under S∗.
Second, for an arbitrary bundle E → X let f : X → Grk(C∞) be a classifying map
and define ci(E) = f∗(ci(η)).

Remark 23.5. For a bundle E → X one can also define K-theoretic Chern classes
cKi (E) ∈ K0(X) (or really in K2i(X), but this is the same by periodicity). We will
not pursue this at the moment, but see ????

Example 23.6. Consider the tangent bundle T = TCPn → CPn. We saw in
Example 22.16 that 1⊕ T ∼= (n+ 1)L∗. Then by the Whitney Formula,

c(T ) = c(1) · c(T ) = c(1⊕ T ) = c(L∗)n+1 = (1 + [CPn−1])n+1.

Therefore,
ci(T ) =

(
n+1
i

)
[CPn−i] =

(
n+1
i

)
xi

where x ∈ H2(CPn) is the canonical generator [CPn−1]. Note that the Euler
class is e(T ) = cn(T ) = (n + 1)xn = (n + 1)[∗], and so this again calculates that
χ(CPn) = n+ 1.

Example 23.7. Consider a hypersurface j : Z ↪→ CPn of degree d. Recall from
Corollary 22.12 that the normal bundle of this inclusion is j∗O(d), and we know
TZ ⊕NZ ∼= j∗TCPn . Then applying total Chern classes we get

c(TZ) · c(NZ) = j∗c(TCPn).

But above we calculated that c(TCPn) = (1 + x)n+1, and c(NZ) = c(j∗O(d)) =
j∗(c(Od)) = 1 + d(j∗x). Let z = j∗x, so that we have

c(TZ) = (1+z)n+1

1+dz = (1 + (n+ 1)z +
(
n+1

2

)
z2 + · · · ) · (1− dz + d2z2 − · · · ).

We can compute χ(Z) by finding the top Chern class (the Euler class), which in
this case is cn−1(TZ). A direct computation shows that

cn−1(TZ) = zn−1 ·
((
n+1
n−1

)
−
(
n+1
n−2

)
d+

(
n+1
n−2

)
d2 − · · ·

)
.

Finally, we need to remember that xn−1 = [CP 1] in H∗(CPn) and therefore zn−1 =
j∗(xn−1) = d[∗], since a generic line intersects Z in d distinct points. So we have

cn−1(TZ) = [∗] · d · (
(
n+1
n−1

)
−
(
n+1
n−2

)
d+

(
n+1
n−2

)
d2 − · · ·

)
,

thereby yielding

χ(Z) = d ·
((

n+1
n−1

)
−
(
n+1
n−2

)
d+

(
n+1
n−2

)
d2 − · · ·

)
.

For example, a degree d hypersurface in CP 2 has χ(Z) = d · (3− d) and a degree d
hypersurface in CP 3 has χ(Z) = d · (6− 4d+ d2).
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23.8. Stiefel-Whitney classes. One can repeat almost all of our above work in
the setting of real vector bundles, but using Z/2 coefficients everywhere. The
analogs of the Chern classes in this setting are called Stiefel-Whitney classes.
If E → X is a real vector bundle then the Stiefel-Whitney classes are cohomol-
ogy classes wi(E) ∈ Hi(X; Z/2), 0 ≤ i < ∞, satisfying the evident analogs of the
axioms in Section 23.2. Geometrically, these are Poincaré Duals of certain cycles
determined by degeneracy loci, just as in the complex case. In terms of our develop-
ment, most things go through verbatim but the one exception is the computation
H∗(Grk(R∞); Z/2) ∼= Z/2[σ1, . . . , σk]. In the complex case this was fairly easy,
because the standard cell structure on Grk(C∞) has cells only in even dimensions.
This is of course not true for Grk(R∞), and so one must work a bit harder here.
We will not give details; see [MS].

Just as for the Chern classes, we will write w(E) for the total Stiefel-Whitney
class 1 + w1(E) + w2(E) + · · · .

Example 23.9. Here is an example where we can use Stiefel-Whitney classes to
solve a problem that appeared earlier in these notes. Let γ → RPn denote the
tautological line bundle, and recall that once upon a time we needed to know
whether γ ⊕ γ was stably trivial. This came up (for n = 2) in Section 13.10 during
the course of trying to compute KO(RP 2).

If (γ ⊕ γ)⊕N ∼= N + 2 then applying total Stiefel-Whitney classes gives

1 = w(N + 2) = w(γ ⊕ γ ⊕N) = w(γ) · w(γ) · w(N) = w(γ)2.

But γ is a line bundle, so wi(γ) = 0 for i > 1 and w1(γ) is the mod 2 Euler class,
which we have previously computed to be the generator x on H1(RPn; Z/2). So
w(γ) = 1 + x and therefore w(γ)2 = 1 + x2. As long as n ≥ 2 this is not equal to
1, and hence γ ⊕ γ cannot be stably trivial.

Example 23.10. Let T be the tangent bundle of RPn. Just as in Example 22.16
there is an isomorphism 1⊕T ∼= (n+1)L∗, where L→ RPn is the tautological line
bundle. But since we are now in the case of real bundles, L ∼= L∗ by Corollary 8.23;
so we will usually write 1⊕ T ∼= (n+ 1)L. One of course finds that

w(T ) = w(1⊕ T ) = w((n+ 1)L) = w(L)n+1 = (1 + x)n+1,

similarly to the complex case.

24. Comparing K-theory and singular cohomology

We have seen that singular cohomology and K-theory both encode geometry
in similar ways: they have Thom classes, Euler classes, fundamental classes for
submanifolds, etc. They can both be used to compute intersection multiplicities.
One might hope for a natural transformation from one to the other, that allows one
to directly compare what is happening in each theory. Our goal in this section is to
construct such a natural transformation, with some caveats which we will discover
along the way.

Let us imagine that we have a natural transformation φ : K∗(−) → H∗(−),
and that this is a ring homomorphism. Note first that φ cannot preserve the
gradings, for β ∈ K−2(pt) is a unit whereas there is no unit in H−2(pt). We can fix
this by formally adjoining a unit to H∗: let H∗[t, t−1] be the cohomology theory
X 7→ H∗(X)[t, t−1], where t is given degree −2. Then we can ask for a natural
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ring homomorphism φ : K∗(−)→ H∗(−)[t, t−1]. Restricting to ∗ = 0 would give a
natural ring homomorphism

φ : K0(−)→ Hev(−) = ⊕iH2i(−).

We will investigate what this map can look like.
If L→ X is a complex line bundle then we have the element eK(L) ∈ K0(X), in

some sense representing the intersection of the zero-section with itself. One’s first
guess would be that φ should send eK(L) to eH(L), as the latter represents the
same ‘geometry’ inside of H∗. However, this hypothesis is not compatible with φ
being a ring homomorphism. Recall that

eK(L1 ⊗ L2) = eK(L1) + eK(L2)− eK(L1)eK(L2),

whereas
eH(L1 ⊗ L2) = eH(L1) + eH(L2).

These formulas are incompatible.
So it cannot be that φ sends eK(L) to eH(L). However, it is guaranteed that

eK(L) must be sent to some algebraic expression involving eH(L). Indeed, this is
obviously so for the tautological bundle L → CP∞, since eH(L) is a generator of
H2(CP∞) and everything else in H∗(CP∞) is a polynomial in this generator; the
case for general line bundles then follows from naturality.

So we know that we will have φ send eK(L) 7→ f(eH(L)) where f(x) ∈ Z[[x]].
Note that when X is compact then sufficiently large powers of eH(L) will be zero,
so in practice f(eH(L)) is really just a polynomial in eH(L). Using a power series
allows us to treat all spaces X at once, without assuming some uniform bound on
their dimensions.

Let f(x) = α0 +α1x+α2x
2 + . . . be the expansion for f . Note that if L→ X is

a trivial bundle then both eK(L) and eH(L) are zero, and from this it follows that
α0 = 0. Next note that if φ is a ring homomorphism then we must have

f(eH(L1) + eH(L2)) = f(eH(L1 ⊗ L2))

= φ(eK(L1 ⊗ L2))

= φ(eK(L1) + eK(L2)− eK(L1)eK(L2))

= f(eH(L1)) + f(eH(L2))− f(eH(L1))f(eH(L2)).

This suggests that we’re looking for f(x) ∈ Z[[x]] such that

f(a+ b) = f(a) + f(b)− f(a)f(b).(24.1)

We can take two approaches to determine the coefficients of such an f .

Approach 1. Substitute f(x) =
∑
i αix

i into (24.1) to get

LHS = α0 + α1(a+ b) + α2(a+ b)2 + . . .

and

RHS = [α0 + α1a+ α2a
2 + . . . ] + [α0 + α1b+ α2b

2 + . . . ]

− [α0 + α1a+ α2a
2 + . . . ][α0 + α1b+ α2b

2 + . . . ].

By expanding and equating coefficients, we can determine the coefficients αi. The
first equation is α2

0 = α0, and since α0 6= 0 this means α0 = 1. It turns out
there is no equation determining α1, but looking at the coefficient of abn−1 yields
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nαn = −α1αn−1, or αn = −α1αn−1
n . So by induction αn = (−1)n−1 α

n
1
n! . Note, in

particular, this last equation: it shows that f cannot have integral coefficients, as
we were orginally guessing! So we can only make things work if the target of φ is
Hev(−; Q).

We have been led to the conclusion f(x) = 1−e−α1x, and the reader may readily
check that this does indeed yield a power series f(x) satisfying (24.1).

Approach 2. In case you don’t like the “equating coefficients” approach, one can
also use some basic tools from differential equations to determine f . Recall that we
want f(a+b) = f(a)+f(b)−f(a)f(b). Define functions g and h by g(a, b) = f(a+b)
and h(a, b) = f(a) + f(b)− f(a)f(b). The partial derivatives are readily computed
to be

∂g

∂a
(a, b) = f ′(a+ b) and

∂h

∂a
(a, b) = f ′(a)− f ′(a)f(b).

If g(a, b) and h(a, b) are the same function then the above partial derivatives are
the same, so that f ′(a+ b) = f ′(a)− f ′(a)f(b). Evaluating at a = 0 gives the ODE

f ′(b) = f ′(0)[1− f(b)].

Setting y = f(x), this becomes the separable ODE
dy

dx
= f ′(0)(1− y), or

dy

1− y
= f ′(0) dx.

Integrating both sides yields

− ln |1− y| = f ′(0)x+ C, or y = 1−De−f
′(0)x

where C and D are constants. Since f ′(0) = α1, we will write this solution as
f(x) = y = 1 − De−α1x. We did lose some information in the differentiation
process, so let’s make sure this works by plugging this formula back into (24.1). We
get

1−De−α1(a+b) = [1−De−α1a] + [1−De−α1b]− [1−De−α1a][1−De−α1b],

which reduces to
De−α1(a+b) = D2e−α1(a+b).

This implies D = D2, so D = 0 or D = 1. The case D = 0 is uninteresting to us (it
corresponds to f(x) = 1, and we have already noted that the constant term must
be zero for our application). So D = 1 and f(x) = 1− e−α1x.

We now comment on the fact that α1 seems to be able to take on any value
whatsoever. Note that the presence of the grading on H∗(X) immediately gives
rise to a collection of endomorphisms on this theory. Indeed, for any n ∈ Z write
ψn : H∗(X) → H∗(X) for the function that multiplies each Hi(X) by ni. This is
clearly a ring homomorphism, and if we are using rational coefficients then it is even
an isomorphism (provided n 6= 0). Note that with rational coefficients we actually
have maps ψq for any q ∈ Q.

So if we have a natural transformation φ : K∗(−) → H∗(−; Q)[t, t−1] we can
compose it with the natural automorphisms ψq to makes lots of other natural
transformations. We see that such a φ is far from unique. If we had a φ whose
associated power series f was f(x) = 1− e−α1x, then composing with φq gives one
with associated power series 1 − e−qα1x. This is why α1 could not be explicitly
determined.
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We can turn these observations around and use them to our advantage. Since
we can always compose with a ψq, we might as well do so in a way that simplifies
things as much as possible. In particular, if we have a φ with associated power
series f(x) = 1 − e−α1x then we can compose with ψα−1

1
to get one with power

series 1− e−x. We might as well do this, to simplify matters.

Let us summarize what has happened so far. We knew that φ, if it exists, must
send eK(L) to some power series in eH(L), for any line bundle L→ X. The different
equations for e(L1⊗L2) in K-theory versus singular cohomology then forced what
this power series must be: φ(eK(L)) = 1 − e−α1x|x=eH(L), for some α1 ∈ Q. We
then saw that we might as well assume α1 = 1, since by composing with a certain
“trivial” automorphism one can arrange for this.

So now we are looking at an imagined natural transformation φ that sends eK(L)
to 1 − e−x|x=eH(L) for any line bundle L → X. Recall that eK(L) = 1 − L∗, and
so φ(L∗) = e−x|x=eH(L). But eH(L∗) = −eH(L) (use that L ⊗ L∗ ∼= 1, and so
eH(L) + eH(L∗) = eH(1) = 0). So we have φ(L∗) = ex|x=eH(L∗) = ec1(L

∗). Since
this must hold for any line bundle L, we might as well just write it as

φ(L) = ec1(L).(24.2)

We next claim that φ is completely determined by formula (24.2). Recall the
inclusion j : (CP∞)×k ↪→ Grk(C∞), and consider the diagram

K∗(CP∞ × · · · × CP∞)

φ

��

K0(Grk(C∞))

φ

��

j∗oo

Hev(CP∞ × · · · × CP∞; Q) Hev(Grk(C∞); Q).
j∗oo

We know that j∗η = π∗1(L)⊕ · · · ⊕ π∗k(L), and therefore we see that

j∗(φ(η)) = φ(j∗η) =
k∑
i=1

φ(π∗i (L)) =
k∑
i=1

π∗i (φ(L)) =
k∑
i=1

eπ
∗
i (c1(L)).

Clearly this expression is invariant under the action of Σk, and we have said pre-
viously that j∗ maps its domain isomorphically onto the subring of Σk-invariants.
Thus, φ(η) is determined by this formula.

Let xi = π∗i (c1(L)). The power sum xr1 + · · ·+ xrk can be written uniquely as a
polynomial Sr(σ1, . . . , σk) in the elementary symmetric functions of the xi’s. Here
Sr is called the rth Newton polynomial; see Appendix B for a review of these.
The first few Newton polynomials are

S1 = σ1, S2 = σ2
1 − 2σ2, S3 = σ3

1 − 3σ1σ2 + 3σ3.

If E → X is a vector bundle then define sr(E) = Sr(c1(E), . . . , ck(E)) ∈ H2r(X),
where k = rankE. This is a characteristic class for bundles, but it doesn’t seem to
have a common name. We have seen that

φ(η) =
∞∑
k=0

1
k!
sk(η).
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But if f : X → Grk(C∞) is a classifying map for E then the commutative diagram

K0(X)

φ

��

K0(Grk(C∞))

φ

��

f∗oo

Hex(X; Q) Hev(Grk(C∞); Q)
f∗oo

gives

φ(E) = φ(f∗(η)) = f∗(φ(η)) = f∗
( ∞∑
k=0

sk(η)
)

=
∞∑
k=0

sk(f∗η) =
∞∑
k=0

sk(E).

We have, at this point, reasoned as follows. IF there is a natural transformation
of rings φ : K0(−) → Hev(−; Q)[t, t−1] THEN there is one that is given by the
above formula. One can turn this around, by starting with the above formula and
proving that it is a natural transformation of rings. This is not hard, and we will
leave it to the reader. This natural transformation is called the Chern character,
and is usually denoted ch: K0(−)→ Hev(−,Q). The defining formula is

ch(E) =
∞∑
k=0

1
k!
sk(E).

Since ch is a natural transformation, it of course maps K̃0(X) into H̃ev(X; Q).
Replacing X with ΣX and shifting indices, we get

ch: K1(X)→ Hodd(X; Q).

By periodicity we might as well regard the Chern character as giving maps

ch: Kn(X)→ ⊕pHn+2p(X; Q).

Perhaps more reasonably, we can regard ch as a map of graded rings K∗(X) →
H∗(X)[t, t−1] where t has degree 2.

Theorem 24.3. The induced maps Kn(X) ⊗ Q → ⊕pHn+2p(X; Q) are isomor-
phisms, for all CW-complexes X.

Proof. One checks this for spheres by brute force calculation. Then use the cellular
filtration, long exact sequences for a pair, and the Five Lemma to deduce the
result for finite CW-complexes. Pass to arbitrary CW-complexes by taking a direct
limit. �

Our definition of ch: K∗(X) → H∗(X; Q) extends in a unique way to a
natural transformation defined on pairs; that is, it uniquely determines maps
ch: K∗(X,A) → H∗(X,A; Q). To see this, recall the space X qA X where X1

and X2 denote the two copies of X. We saw in Section 19.19 that we have a
natural diagram

0 // K∗(X qA X,X2) //

∼=
��

K∗(X qA X) // K(X2)
vv

// 0

K∗(X1, A)

where the top row is split short-exact. There is a similar diagram involving
H∗(−; Q), or any cohomology theory for that matter. The ch maps defined on pairs
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(Y, ∅) then uniquely determines a map ch: K∗(XqAX,X2)→ H∗(XqAX,X2; Q),
and therefore a map ch: K∗(X,A)→ H∗(X,A; Q).

This raises the following interesting question. Suppose E• is a complex of vec-
tor bundles on X that is exact on A. Then ch([E•]) is a well-defined element of
H∗(X,A; Q). How does one describe what this element is? We will return to this
question in the future. ?????

The existence of the Chern character, as a multiplicative natural transforma-
tion between cohomology theories, immediately has an interesting and unexpected
consequence:

Proposition 24.4. For any n ≥ 1, the image of ch: K̃0(S2n) → H̃ev(S2n; Q)
is precisely H̃ev(S2n; Z). Consequently, if X is any (2n − 1)-connected space and
E → X is a complex vector bundle then cn(E) ∈ H2n(X; Z) is a multiple of (n−1)!.

Proof. For the first statement recall that K̃0(S2n) is generated by β×n where β =
1−L ∈ K̃0(S2). We can compute that ch(β) = 1−ch(L) = 1−(1+c1(L)) = −c1(L),
but this is a generator of H2(S2; Z). Multiplicativity of the Chern character gives

ch(β×n) =
(
ch(β)

)×n = c1(L)×n,

but the nth external product of a generator for H2(S2; Z) gives a generator of
H2n(S2n; Z). This completes the proof of the first statement.

Note that if E → S2n is a complex vector bundle then ch(E) = 1
n! · sn(E). The

Newton identities from Lemma B.1 show that sn(E) = (−1)n+1n · cn(E), since
in this case c1(E), . . . , cn−1(E) must all vanish. The fact that ch takes its image
in H2n(S2n; Z) then shows that ncn(E)

n! is integral; that is, cn(E) is a multiple by
(n− 1)!.

Finally, let X be any (2n−1)-connected space. Replacing X by a weakly equiva-
lent space, we can assume X has a cell structure with no cells of degree smaller than
2n; that is, the 2n-skeleton is a wedge of 2n-spheres. Consider the cofiber sequence
∨S2n ↪→ X → Q where C is the cofiber, and the induced maps in cohomology:

· · · ⊕K̃0(S2n)oo

ch

��

K̃0(X)oo

ch

��

K̃0(C)oo

ch

��

· · ·oo

· · · ⊕H̃ev(S2n; Q)oo H̃ev(X; Q)
j∗oo H̃ev(C; Q)oo · · ·oo

We know by the commutativity of the diagram that j∗(chn(E)) lies in
⊕H̃ev(S2n; Z). But since H2n(C; Q) = 0 the map j∗ is injective in degree 2n,
and it is easy to see that (j∗)−1(H2n(∨S2n; Z)) = H2n(X; Z) (if a cellular 2n-
cochain takes integral values on all of the 2n-cells, it is integral). So chn(E) is
an integral class. The same computation as in the previous paragraph shows that
chn(E) = ± cn(E)

(n−1)! , and this completes the proof. �

The space CP 1 is a complex manifold whose underlying topological manifold is
S2. Can any other spheres be given the structure of a complex manifold? Clearly
this is only interesting for the even spheres. A simple corollary of the previous
result rules out almost all possibilities:
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Corollary 24.5. If n ≥ 4 then there is no complex structure on S2n. Even more,
there is no complex vector bundle whose underlying real bundle is the tangent bundle
TS2n .

Proof. The second statement clearly implies the first. Let T = TS2n and suppose
that T has a complex structure. By Proposition 24.4 we know that cn(T ) is a
multiple of (n− 1)! in H2n(S2n; Z). But cn(T ) is the Euler class of the underlying
real bundle, and therefore it is twice a generator since χ(S2n) = 2. This implies
that 2

(n−1)! is an integer, which clearly cannot happen if n ≥ 4. �

Remark 24.6. It is also know that S4 is not a complex manifold; we will give a
proof in Example 25.16 below, using the Todd genus. Whether or not S6 admits
the structure of complex manifold is an open problem.

We close this section with an example showing how the Chern character can help
us carry out the calculation of K-groups. This example will play an important role
when we study the Atiyah-Hirzebruch spectral sequence.

Example 24.7. Recall that CP 2 is the mapping cone on the Hopf map η : S3 → S2.
Since the suspension of η is 2-torsion (π4(S3) ∼= Z/2), a choice of null-homotopy
for η ◦2 gives a map f : Σ3RP 2 → S3 which coincides with η when restricted to the
bottom cell. Let X be the cofiber of f ; this is a cell complex with a 3-cell, a 5-cell,
and a 6-cell. The 5-skeleton of X is ΣCP 2. Our goal will be to compute the groups
K̃∗(X). [Note: This choice of X, which seemingly has come out of nowhere, is
motivated by the fact that this is in some sense the smallest space for which K̃∗(X)
and H̃∗(X) have different orders—see Remark 29.19 for a deeper perspective.]

There are two cofiber sequences that we can exploit: S3 ↪→ X → Σ4RP 2 and
ΣCP 2 ↪→ X → S6. We leave it to the reader to compute that K̃0(RP 2) = Z/2 and
K1(RP 2) = 0, using that RP 2 is the cofiber of 2 : S1 → S1. Using this, the first
cofiber sequence gives

0 K̃0(S3) K̃0(X)oo Z/2oo Zoo K1(X)oo 0.oo

Note that we immediately deduce K1(X) ∼= Z, and K̃0(X) is either 0 or Z/2.
However, it is not clear how to analyze the map Z → Z/2. The second cofiber
sequence gives

0 K̃0(X)oo Zoo Z2oo K1(X)oo 0oo

where the map Z2 → Z is the connecting homomorphism δ : K̃−1(ΣCP 2) →
K̃0(S6). Again, we are left with the task of determining this map; agreement
with the previous (partial) calculation demands that the cokernel either be 0 or
Z/2, and we need to determine which one. The good news is that because the
domain and target are both torsion-free, there is a chance that the Chern character
will give us the information we need. We will examine the commutative square

Z2
∼= // K̃−1(ΣCP 2)

δK //
��

ch

��

K̃0(S6)
��
ch

��

∼= // Z

H̃odd(ΣCP 2; Q)
δH // H̃ev(S6; Q).
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The two Chern characters are injective because they are rational isomorphisms and
the domains are torsion-free.

Recall that K0(CP 2) = Z[Y ]/(Y 3) where Y = 1 − L. Let u be the standard
generator for H2(CP 2), so that c1(L) = −u. We have

ch(Y ) = 1− ch(L) = 1− (1− u+ u2

2 ) = u− u2

2 , ch(Y 2) = ch(Y )2 = u2.

Write Y1 and Y2 for the suspensions of Y and Y 2, lying in K̃1(ΣCP 2); likewise,
write u1 and u2 for the suspensions of u and u2 in H∗(ΣCP 2; Z). Compatibility of
the Chern character with suspension shows that

ch(Y1) = u1 − u2
2 , ch(Y2) = u2.

We must next compute the images of these classes under δH . But this is easy
from the long exact sequence for ΣCP 2 ↪→ X → S6: one finds that δ(u1) = 0 and
δ(u2) is twice a generator in H6(S6). So the subgroup 〈δH(ch(Y1)), δH(ch(Y2))〉 ⊆
H∗(S6; Q) equals the subgroup H6(S6; Z) ⊆ H6(S6; Q). Finally, recall from Propo-
sition 24.4 that the image of ch: K̃0(S6)→ Hev(S6; Q) is also equal to H6(S6; Z).
It follows that δK is surjective, and so the cokernel of δK is zero. This completes
our calculation: K̃0(X) = 0.

To appreciate the significance of this example, note that H̃ev(X) ∼= Z/2 (concen-
trated in degree 6) and H̃odd(X) ∼= Z (concentrated in degree 3). The corresponding
K-groups are K̃0(X) ∼= 0 and K̃0(X) ∼= Z. It is a general fact that all torsion-free
summands inH∗(X) will also appaear inK∗(X), as this follows from Theorem 24.3.
But the present example demonstrates that the torsion subgroups of H∗(X) and
K∗(X) can be quite different.

25. The Grothendieck-Riemann-Roch Theorem

As we present it here, the Grothendieck-Riemann-Roch (GRR) Theorem re-
ally has two components: one that is purely topological, and one that is algebro-
geometric. The topological part is a comparison between the complex-oriented
structures on K-theory and singular cohomology, and gives precise formulas for
how they line up under the Chern character. From the perspective that we have
adopted in these notes, this topological GRR theorem is fairly easy. The algebro-
geometric component, on the other hand, is of a somewhat different nature; in our
presentation it is a comparison between algebraic and topologicalK-theory, showing
that certain topologically-defined maps are compatible with purely algebraic ones
that at first glance appear quite different. This second part of the GRR theorem
lets us see that certain algebraic constructions actually give topological invariants;
the first part leads to precise (although often complex) topological formulas for
these invariants.

In the present section we discuss the topological GRR theorem and some of its
consequences. The next section will deal with the algebro-geometric version.

25.1. The Todd class. We have seen that for a line bundle L→ X one has

ch(eK(L)) = (1− e−x)|x=eH(L).
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The power series 1− e−x is a multiple of x, which means that the right-hand-side
can be written as eH(L) multiplied by a ‘correction factor’:

ch(eK(L)) = eH(L) ·
[1− e−x

x

]∣∣∣
x=eH(L)

.

It is useful to have a name for this correction factor; for historical reasons, the name
is actually attached to its inverse. We define the Todd class of L to be

Td(L) =
( x

1− e−x
)∣∣∣
x=c1(L)

=
(
1− x

2 + x2

6 −
x3

24 + · · ·
)∣∣∣
x=c1(L)

=
(
1 + x

2 + x2

12 −
x4

720 + · · ·
)∣∣∣
x=c1(L).

The coefficients in this power series are related to Bernoulli numbers, and we refer
the reader to Appendix A for a review of the basics about these. The Bernoulli
numbers are defined by x

ex−1 =
∑
i
Bi

i! x
i, and so we have

Td(L) =
∑
i

(−1)i Bi

i! c1(L)i.

Next observe that if E → X is a sum of line bundles L1 ⊕ · · · ⊕ Lk then

ch(eK(E)) = ch(eK(L1) · · · eK(Lk))

= ch(eK(L1)) · · · ch(eK(Lk))

= [eH(L1) · · · eH(Lk)] ·
[1− e−x

x

]∣∣∣
x=c1(L1)

· · ·
[1− e−x

x

]∣∣∣
x=c1(Lk)

= eH(E) ·
∏
i

[1− e−x
x

]∣∣∣∣
x=c1(Li)

.

It therefore makes sense to define Td(E) to be the inverse of the product in the
final formula. More generally, if E is a bundle of rank k then the Todd class of E
is

Td(E) =
k∏
i=1

( xi
1− e−xi

)
where ci(E) = σi(x1, . . . , xk). In other words, take the expression on the right
and write each homogeneous piece as a polynomial in the elementary symmetric
functions. Then replace those symmetric functions with the Chern classes of E,
and one gets the Todd class. For example, if rankE = 2 then we would expand(

1 + x
2 + x2

12 −
x4

720 + · · ·
)
·
(
1 + y

2 + y2

12 −
y4

720 + · · ·
)

to get

1 + 1
2 (x+ y) + 1

12 (x2 + y2) + 1
4xy + x2y+xy2

24 − x4+y4

720 + x2y2

144 + · · ·
and then write this as

1 + 1
2σ1 + 1

12 (σ2
1 − 2σ2) + 1

4σ2 + 1
24 (σ1σ2) + 1

720 (−σ4
1 + 4σ2

1σ2 + 3σ4
2).

Then replace each σi with ci(E) to get the formula for Td(E).
The first few terms of the Todd class of an arbitrary bundle are

(25.2) Td(E) = 1 +
c1
2

+
c21 + c2

12
+
c1c2
24

+
−c41 + 4c21c2 − c4 + c1c3 + 3c22

720
+ · · ·
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The homogeneous components of this series are called the Todd polynomials.
The fourth Todd polynomial, seen as the last term in the formula above, gives a
sign of the growing complexity—particularly in the size of the denominators.

We will have more to say about computing the Todd class in Section 25.17 below.
But let us now turn to the study of how it measures the comparison between K-
theory and singular cohomology. As we have remarked above, one should think of
the Todd class as a ‘correction factor’. The most basic formula where it enters is

ch(eK(E)) = eH(E) · Td(E)−1.

In our above analysis we showed this when E is a sum of line bundles, but the
general case readily follows from this one using the splitting principle. A very
similar formula, which actually implies the above one, is the following:

Proposition 25.3. Let E → X be a complex vector bundle. Then

ch(UKE ) = UHE · Td(E)−1.

That is to say, applying the Chern character to a K-theoretic Thom class does
not quite give the H-theoretic Thom class—one needs the Todd class correction
factor. Note, by the way, that it does not matter whether we write UHE · Td(E)−1

or Td(E)−1 ·UHE in the above result, since both the Thom class and the Todd class
are concentrated in even degrees.

Proof. The proof has four steps:

Step 1: If the result is true for sums of line bundles, it is true for all bundles.
Step 2: If the result is true for line bundles, it is true for all sums of line bundles.
Step 3: If the result is true for the tautological line bundle over CP∞, it is true
for all line bundles.
Step 4: The result is true for the tautological line bundle L→ CP∞.

Step 1 is a direct consequence of the splitting principle. Indeed, if E → X is a
line bundle then choose a map p : X̃ → X such that p∗E is a sum of line bundles and
such that p∗ induces monomorphisms in both singular cohomology and K-theory.
If Ẽ = p∗E, the claim follows at once from the commutative square

K0(E,E − 0)
��

��

ch // H∗(E,E − 0)
��

��
K0(Ẽ ,Ẽ − 0)

ch // H∗(Ẽ ,Ẽ − 0).

Step 2 follows from the fact that UL1⊕L2⊕···⊕Lr = UL1 ⊗ UL2 ⊗ · · · ⊗ ULr and
the fact that ch is multiplicative. Step 3 follows at once from naturality and the
fact that every line bundle is pulled back from the tautological line bundle.

So we are reduced to Step 4, which is a calculation. Consider the zero section
ζ : CP∞ ↪→ L and the composite of natural maps

H∗(L,L− 0)
j∗−→ H∗(L)

ζ∗−→ H∗(CP∞).

Recall that this composite sends UL to the Euler class eH(L). The map ζ∗ is an
isomorphism by homotopy invariance, and the map j∗ is also an isomorphism: the
latter follows from the long exact sequence for the pair (L,L− 0) together with the
fact that as spaces L− 0 ∼= C∞ − 0 and is therefore contractible.
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Consider the two elements ch(UKL ) and UHL ·Td(L)−1 in H∗(L,L− 0). Applying
the composite ζ∗ ◦ j∗ sends the first to ch(eK(L)), by naturality. Likewise, the
second is sent to eH(L) · Td(L)−1. We have already computed that these two
images are the same (indeed, this is how we started off this section); since ζ∗ ◦ j∗
is an isomorphism this means ch(UKL ) = UHL · Td(L)−1. �

25.4. The Grothendieck-Riemann-Roch Theorem for embeddings. Let
j : X ↪→ Y be an embedding of complex manifolds of codimension c. We have
seen that one can construct a push-forward map j! : K∗(X)→ K∗+2c(Y ) and like-
wise in any complex-oriented cohomology theory (for example, in H∗). We will
take advantage of Bott periodicity to write j! as a map K0(X)→ K0(Y ).

Consider the square

K0(X)
j! //

ch

��

K0(Y )

ch

��
Hev(X; Q)

j! // Hev(Y ; Q).

This square does not commute; while this might seem strange, the point is just
that the j! maps are defined using Thom classes and ch doesn’t preserve these. But
since ch almost preserves Thom classes, up to a correction factor, it follows that
the above square almost commutes—up to the same factor. The precise result is
as follows:

Proposition 25.5. Let j : X ↪→ Y be an embedding of complex manifolds. Then
for any α ∈ K0(X) one has

ch(j!α) = j!(Td(NY/X)−1 · ch(α)).

Proof. Simply consider the diagram

K0(X) //

ch

��

K0(N,N − 0)

ch

��

K0(Y, Y −X)

ch

��

∼=oo // K0(Y )

ch

��
Hev(X) // Hev(N,N − 0) Hev(Y, Y −X) //∼=oo Hev(Y )

where all singular cohomology groups have rational coefficients. The left horizon-
tal arrows are the Thom isomorphism maps, and so the leftmost square does not
commute; but the other two squares do. The compositions across the two rows are
the pushforward maps j! in K-theory and singular cohomology, respectively. The
desired result is now an easy application of Proposition 25.3. �

The next result records how the Chern character behaves on fundamental classes:

Corollary 25.6. If j : X ↪→ Y is an embedding of complex manifolds then
ch([X]K) = j!(Td(NY/X)−1) = [X]H + (higher degree terms).

Proof. Recall that [X]K = j!(1), and so the first equality is just Proposition 25.5
applied to α = 1. The second equality then follows directly from the fact that
the Todd class of a bundle has the form 1 + higher degree terms together with
j!(1) = [X]H . �
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Example 25.7. Let j : Z ↪→ CPn be a hypersurface of degree d, and consider the
GRR square

K0(Z)
j! //

ch

��

K0(CPn)

ch

��
Hev(Z; Q)

j! // Hev(CPn; Q).

Recall that K0(CPn) = Z[y]/(yn+1) where y = 1 − L = [CPn−1]K , and that
H∗(CPn; Q) = Q[x]/(xn+1) where x = [CPn−1]H . One has

ch(y) = ch(1− L) = ch(1)− ch(L) = 1− ec1(L) = 1− e−x.
We will determine a formula for [Z]K by using the GRR statement ch([Z]K) =

j!(Td(N)−1). The normal bundle is N = j∗
(
(L∗)⊗d

)
. So

Td(N)−1 = j∗
(

1− e−dx

dx

)
= j∗

(
1− dx

2 + d2x2

6 − d3x3

24 + · · ·
)
.

Recall that for any α one has j!(j∗(α)) = j!(j∗(α) · 1) = α · j!(1), and of course we
know that j!(1) = dx. We therefore conclude that

ch([Z]K) = dx ·
(
1− dx

2 + d2x2

6 − d3x3

24 + · · ·
)

= 1− e−dx.
We can now work backwards to determine [Z]K . If we write

[Z]K = a1y + a2y
2 + · · ·+ any

n

then

1− e−dx = ch([Z]K) = a1(1− e−x) + a2(1− e−x)2 + · · ·+ an(1− e−x)n.
Let α = e−x; then to determine the ai’s we need to expand 1 − αd in terms of
powers of 1− α. To do this, simply write

1− αd = 1− (1− (1− α))d =
d∑
k=1

(−1)k−1
(
d
k

)
(1− α)k.

We conclude [Z]K = dy −
(
d
2

)
y2 +

(
d
3

)
y3 − · · · .

Of course, we have seen this calculation before in a slightly different form—
see Example 20.8. But notice that GRR allowed us to carry it through without
knowing anything about [Z]K , whereas before we relied on the connection between
K-theoretic fundamental classes and resolutions (and our ability to write down an
appropriate resolution in this case).

25.8. The general GRR theorem and some applications. One can produce a
version of the Grothendieck-Riemann-Roch theorem that works for arbitrary maps
f : X → Y between compact, complex manifolds, not just embeddings. To do this,
we first must extend our definition of pushforward maps. Note that for large enough
N there is an embedding j : X ↪→ CN , and therefore the map f can be factored as

Y × CN

π
����

X

f×j
;;

f // Y
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where π is projection onto the first factor. Let B ⊆ CN be a large disk that contains
j(X). Now consider the composition

K0(X)
j!−→ K0(Y × CN , Y × (CN −B)) ∼= K̃0(Y+ ∧ S2N ) ∼= K−2N (Y ).

Define this composite to be f!. It requires some checking to see that this is inde-
pendent of the choice of factorization of f .

Example 25.9. It is interesting to take Y = ∗. Then the pushforward f! is a map
K0(X) → K−2d(∗) ∼= Z, so f!(1) gives an integer-valued invariant of the complex
manifold X. It is called the Todd genus of X, and we will denote it Td-genus(X).

Example 25.10. We can duplicate the above definition of f! in any complex-
oriented cohomology theory, and therefore we get an associated genus for complex
manifolds (taking values in the coefficient ring of the theory). For singular coho-
mology let us call this the H-genus.

Note that if f : X → Y then f! is a map

f! : Hi(X)→ Hi+2(dimY−dimX)(Y ).

If Y is a point then f! sends Hi(X) to Hi−2 dimX(pt), and so this is the zero map
unless i = 2dimX. In that dimension the cohomology of X is Z, generated by [∗].
But recall that [∗] = j!(1) for any inclusion j : ∗ ↪→ X, and so

f!([∗]) = f!(j!(1)) = (f ◦ j)!(1) = id!(1) = 1.

We have therefore shown that f! : H∗(X) → H∗(pt) sends an element α ∈ H∗(X)
to the coefficient of [∗] appearing in its 2 dim(X)-dimensional homogeneous piece.
Usually it will be convenient to just say “f!(α) is the top-dimensional piece of α”.

As far as the H-genus is concerned, recall that it equals f!(1) for f : X → ∗. But
this will be zero unless X = ∗, in which case it is 1. So

H-genus(X) =

{
0 if dimX > 0,
#X if dimX = 0.

This is somewhat of a silly invariant, but it is what the theory gives us.

For the proof of our general version of GRR we will need to know the Todd genus
of CPn, so let us compute this next:

Example 25.11 (Todd genus of CPn). Recall that Td(E ⊕ F ) = Td(E) · Td(F ),
and that 1⊕ TCPn ∼= (n+ 1)L∗. So

Td(TCPn) = Td(TCPn) · Td(1) = Td
(
(n+ 1)L∗

)
=
[
Td(L∗)

]n+1
.

Recall that c1(L∗) = [CPn−1] ∈ H2(CPn). Call this generator x, for short. Then

Td(TCPn) =
( x

1− e−x
)n+1

=
(
1 +

x

2
+
x2

12
− x4

720
+ · · ·

)n+1

.

Let’s look at some examples. When n = 1 we have x2 = 0 and so Td(TCP 1) =
1 + x. When n = 2 we have x3 = 0 and

Td(TCP 2) =
(
1 + x

2 + x2

12

)3

= 1 + 3
2x+ x2.

Finally, for n = 3 we have x4 = 0 and

Td(TCP 3) =
(
1 + x

2 + x2

12

)4

= 1 + 2x+ 11
6 x

2 + x3.
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One discernible pattern in these polynomials is that the leading coefficient is al-
ways 1. This is an amusing exercise that we leave to the reader. It shows that
Td-genus(CPn) = 1 for all n.

Exercise 25.12. Complete the above example by proving that the coefficient of
xn in

(
x

1−e−x

)n+1 is equal to 1, for all n. One method is to interpret the coefficient
as a residue:

Resx=0

(
1

(1−e−x)n+1

)
= 1

2πi

∫
C

1
(1−e−x)n+1 dx

where C is a small counterclockwise circle around the origin. Use the substitution
z = 1− e−x to convert this to a different residue that is easily computed. You will
need to convince yourself that the mapping x 7→ 1− e−x takes C to another small
counterclockwise loop around the ogigin.

Exercise 25.13. Let Z ↪→ CPn be a smooth hypersurface of degree d. Show that

Td-genus(Z) = d−
(
d
2

)
+
(
d
3

)
− · · ·+ (−1)n

(
d
n

)
.

Conclude that if d ≤ n then Td-genus(Z) = 1.

We now state the general GRR theorem:

Theorem 25.14 (Grothendieck-Riemann-Roch, full version). Let X and Y be com-
pact, complex manifolds and let f : X → Y be a map. Then in the square

K0(X)
f! //

ch

��

K0(Y )

ch

��
Hev(X; Q)

f! // Hev(Y ; Q).

one has
ch(f!α) · Td(TY ) = f!(ch(α) · Td(TX))

for all α ∈ K0(X), where TX and TY are the tangent bundles of X and Y .

Exercise 25.15. Check that when X ↪→ Y is an embedding then the above version
of GRR is equivalent to the version given in Proposition 25.5.

Proof of Theorem 25.14. The proof is via the steps listed below. We will outline
arguments in each case, but leave some of the details to the reader.

Step 1: The result is true when f is an embedding.
Step 2: The result is true when f is CPn → ∗.
Step 3: The result is true when f is the projection Y ×CPn → Y , for any compact
complex manifold Y .
Step 4: The result is true in general.

Step 1 was handled in Proposition 25.5. Step 2 is just a computation, where
one computes both sides of the GRR formula and sees that they are the same.
Use that K0(CPn) is generated by the classes [CP i]. For the left side of GRR use
that [CP i] is mapped to 1 via f!, as Td-genus(CP i) = 1. For the right side use
that ch([CP i]) = (1− e−x)n−i and compute that the coefficient of xn in the series
(1 − e−x)n−i ·

(
x

1−e−x

)n+1 is equal to 1. For this final piece use a method similar
to what we did in Exercise 25.12 above.
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For Step 3 consider the product map K0(Y ) × K0(CPN ) → K0(Y × CPN ).
We claim that this is an isomorphism, for any CW -complex Y . Indeed, consider
the functors (X,A) 7→ K∗(X,A) ⊗ K0(CPN ) and (X,A) 7→ K∗(X × CPN , A ×
CPN ). Our product map gives a natural transformation from the first to the
second, and both functors are generalized cohomology theories (in the second case
this is automatic, but in the first case this uses that K0(CPN ) is free and therefore
flat). One readily checks that the comparison map is an isomorphism when (X,A) =
(pt, ∅), and so it follows that it is an isomorphism for all CW -pairs (X,A).

To complete Step 3 it now suffices to verify the GRR formula on classes of the
form α = (p1)∗(β) · (p2)∗(γ) where β ∈ K0(Y ), γ ∈ K0(CPN ), and p1 and p2 are
the projections of Y × CPN onto Y and CPN , respectively. Use the diagram

Y × CPN
p2 //

p1

��

CPN

π1

��
Y

π2 // ∗
and the formulas

(p1)!
[
p∗1β · p∗2γ

]
= β · (p1)!(p∗2γ) = β · π∗2

(
(π1)!γ

)
(as well as the analog of this in singular cohomology), together with Step 2.

Finally, for Step 4 factor f : X → Y as X
j−→ Y × CPN π−→ Y where j is an

embedding and π is projection. Use the diagram

K0(X)
j! //

ch

��

K0(Y × CPN )

ch

��

π! // K0(Y )

ch

��
H∗(X; Q)

j! // H∗(Y × CPN ; Q)
π! // H∗(Y ; Q),

where the horizontal composites are f!. We established GRR for the two squares, by
Steps 1 and 3. Deduce the general GRR by putting these two squares together. �

To see one example of GRR, consider the case Y = ∗. Here the GRR the-
orem says ch(f!(1)) = f!(Td(TX)). We will compute both sides independently,
and then see what information this theorem is giving. On the left-hand-side,
f!(1) = Td-genus(X) · 1 ∈ K0(∗) and so ch(f!(1)) = Td-genus(X) · 1 ∈ H0(pt; Q).

To analyze the right-hand-side we recall from Example 25.10 above that
f! : Hev(X) → Hev(pt) sends a class α to its top-dimensional piece (the compo-
nent in dimension 2 dimX). So GRR says that

Td-genus(X) · [∗] = top-dimensional piece of Td(TX).

One of the surprises here is that the right-hand-side is not a priori an integer
multiple of [∗]: recall that the definition of the Todd class contains complicated
denominators. The resulting integrality conditions can lead to some nonexistence
results in topology, as demonstrated in the following example.

Example 25.16. We claim that there is no complex manifold whose underlying
topological manifold is S4; said differently, the space S4 cannot be given a complex
structure. If S4 were a complex manifold then it would have a Todd genus, which
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we know will be an integer. But GRR tells us that the Todd genus is also the top-
dimensional component of Td(T ), where T denotes the complex tangent bundle
of our fictitious complex manifold. But c1(T ) = 0 because H2(S4) = 0, and
c2(T ) = 2[∗] because c2(T ) is the Euler class and χ(S4) = 2. Plugging into (25.2)
we find that Td(T ) = 1 + c2

12 and so the top-dimensional piece is 1
6 . As this is not

an integer, we have arrived at a contradiction.
A similar argument shows that S4n is not a complex manifold for any n, although

to follow through with this we will need to get better at computing terms in the
Todd class. We return to this problem in Proposition 25.23 below.

25.17. Computing the Todd class. Let a1, a2, . . . be indeterminates and write
Q(x) = 1 + a1x+ a2x

3 + · · · . Let

Q(x) = Q(x1, . . . , xn) = Q(x1)Q(x2) · · ·Q(xn)

where the xi’s are formal variables of degree 1. This gives us a power series that
is invariant under permutations of the xi’s, and so it may be written as a power
series in the elementary symmetric functions σi = σi(x1, . . . , xn), 1 ≤ i ≤ n. Our
goal will be to give a formula, in terms of the ai’s, for the coefficient of any given
monomial m = σm1

1 · · ·σmn
n .

Notice that the degree of m is m1 + 2m2 + · · ·+ nmn; call this number N . The
coefficient of m in Q(x) will not involve any terms ai for i > N , so we might as
well just assume that ai = 0 for i > N . In this case write

Q(x) = 1 + a1x+ · · ·+ aNx
N = (1 + t1x)(1 + t2x) · · · (1 + tNx

N )

as a formal factorization of Q(x) (or if you like, we are working in the algebraic
closure of Q(a1, . . . , an)). Then

Q(x) =
N∏
i=1

Q(xi) =
N∏
i=1

N∏
j=1

(1 + tjxi).

The evident next step is to reverse the order of the products, so let

Qj =
N∏
i=1

(1 + tjxi) = 1 + tjσ1 + t2jσ2 + · · ·+ tNj σN

and observe that Q(x) =
∏
j Qj . Consider the process of multiplying out all factors

in

(1 + σ1t1 + · · ·+ σN t
N
1 ) · (1 + σ1t2 + · · ·+ σN t

N
2 ) · · · (1 + σ1tN + · · ·+ σN t

N
N ).

The first few terms are

1 + σ1[t1] + σ2[t21] + σ2
1 [t1t2] + σ3[t31] + σ1σ2[t1t22] + · · ·

where the bracket notation means to sum the terms in the ΣN -orbit of the monomial
inside the brackets (see Appendix B). Each of these brackets is a polynomial in the
ti’s that is invariant under the symmetric group, and therefore can be written (in a
unique way) as a polynomial in the ai’s. These are the desired coefficients of Q(x).
The general result, whose proof has basically just been given, is the following:

Proposition 25.18. The coefficient of σm1
1 · · ·σmn

n in Q(x) is

[t1t2 · · · tm1t
2
m1+1 · · · t2m1+m2

t3m1+m2+1 · · · t3m1+m2+m3
· · · tnm1+···+mn

].
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The bracketed expression in the above result looks horrible, but it is simpler
than it looks. The subscripts can basically be ignored. The idea is to write down a
product of powers of the ti’s where no index i appears more than once and where
the number of ti’s raised to the kth power is mk. For example, here are a few
σ-monomials and their associated coefficients:

σ4 : [t41], σ1σ3 : [t1t32], σ2σ
2
3 : [t21t

3
2t

3
3], σ1σ

2
4σ6 : [t1t42t

4
3t

6
4].

For Proposition 25.18 to be useful one has to write the bracketed expression as
a polynomial in the elementary symmetric functions σi(t) = ai. This is, of course,
an unpleasant process. One case where it is not so bad is for the power sum [tn1 ],
since here we have the Newton polynomials Sn described in Appendix B.

Corollary 25.19. For any k ≥ 1, the coefficient of σk in Q(x) is Sk(a1, . . . , ak),
where Sk is the kth Newton polynomial. By Proposition B.3 this is also equal to
the two expressions

(−1)k ·
[
coeff. of xk in 1− x d

dx

(
logQ(x)

) ]
= (−1)k−1 ·

[
coeff. of xk−1 in

Q′(x)
Q(x)

]
.

Now let us specialize to Q(x) = x
1−e−x =

∑
i(−1)i Bi

i! x
i. Then writing

Q(x1, . . . , xn) as a power series in the elementary symmetric functions exactly yields
an expression for the Todd class of a rank n vector bundle in terms of its Chern
classes. Let us apply Corollary 25.19 to this situation; to do so we must compute
Q′(x)/Q(x). This is easy enough:

Q′(x) = 1
1−e−x − xe−x

(1−e−x)2 = 1
xQ(x)− e−x

1−e−xQ(x) =
(

1
x + 1− 1

1−e−x

)
·Q(x)

and so
1− xQ

′(x)
Q(x) = 1− x

(
1
x + 1− 1

1−e−x

)
= −x+Q(x).

Specializing Corollary 25.19 to the present situation now gives:

Corollary 25.20. Let E → X be a rank n vector bundle. Then for any 2 ≤ k ≤ n,
the coefficient of ck in the formula for Td(E) is equal to Bk

k! , whereas the coefficient
of c1 is −B1

1! = 1
2 .

Remark 25.21. Note that the above calculation reveals an interesting property
of the coefficients of x

1−e−x : when you put them into the Newton polynomials Sk
the output is unaltered, at least for k ≥ 2. That is, if x

1−e−x =
∑
i aix

i then
Sk(a1, . . . , ak) = ak for k ≥ 2. For example, S4 = a4

1 − 4a2
1 + 4a1a3 + 2aa2 − 4a4

and the first few coeffcients of x
1−e−x are 1

2 , 1
12 , 0, and − 1

720 . Some grade-school
arithmetic checks that indeed

S4( 1
2 ,

1
12 , 0,−

1
720 ) = − 1

720 .

But this is hardly obvious from just looking at the formula for S4.

25.22. An application of GRR. The following proposition is (mostly) weaker
than what we proved back in Corollary 24.5. Still, we offer it as a sample application
of the Todd genus.

Proposition 25.23. No sphere S4n admits the structure of a complex manifold.
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Proof. Assume S4n is a complex manifold. Then it has a Todd genus, which is
necessarily an integer by definition. This will be the coefficient of [∗] in the top
component of the Todd class Td(T ), where T denotes the complex tangent bundle
to S4n. To compute this Todd class directly from its definition, first note that
ci(T ) = 0 for i < 2n, because H2i(S4n) = 0 in this range. We must also have
cn(T ) = e(T ) = 2[∗], because the Euler characteristic of an even sphere equals 2.
These facts let us easily write down Td(TS4n). Let us consider some examples of
this.

When n = 1 we would have Td(TS4) = 1 + c2
12 . The Todd genus of S4 would

then be 2
12 , which is not an integer. When n = 2 we would have Td(TS8) = 1− c4

720 ,
and so the Todd genus of S8 would be − 2

720 ; again, not an integer. These examples
give the general idea, and the denominators only get worse as n gets larger.

To be specific, one will have TdS4n = 1 +Mc2n where M is a mystery number
that must be computed from the definition of the Todd class. It is a consequence of
Corollary 25.20 that M = B2n

(2n)! . The Todd genus of S4n will then be 2 ·B2n/(2n)!.
By Theorem A.5 the number 3 divides the lowest-terms-denominator of B2n, and
so this expression cannot be an integer. This is our contradiction. �

Remark 25.24. Notice why our proof of Proposition 25.23 does not extend to
cover spheres S4n+2: the Chern class c2n+1 does not appear by itself in the formula
for the Todd class, because the odd Bernoulli numbers are zero. If S4n+2 has a
complex structure one can conclude that its Todd genus is zero, but this by itself
does not produce a contradiction.

25.25. The arithmetic genus. We now discuss the problem of computing the
Todd genus for smooth algebraic subvarieties Z ↪→ CPn. We will see that it can be
described entirely in terms of algebro-geometric data. This material foreshadows
much of what we do in Section 26.

Let p : CPn → ∗ and q : Z → ∗ be the squash maps, and consider the composition

K0(Z)
j!−→ K0(CPn) p!−→ K0(pt).

The composite is q! and therefore sends 1 to Td-genus(Z) · [∗]. On the other hand,
if we write

j!(1) = [Z] = an−1[CPn−1] + an−2[CPn−2] + · · ·+ a0[CP 0]

then since p!([CPn−i]) = Td-genus(CPn−i) · [∗] = [∗] we have

p!(j!(1)) = (an−1 + an−2 + · · ·+ a0)[∗].
So Td-genus(Z) =

∑
i ai.

Recall that knowing [Z] is the same as knowing the Hilbert polynomial of Z. We
wish to ask the question: how can the Todd genus be extracted from the Hilbert
polynomial? To answer this, start by recalling the diagram

K0
alg(CP

n)
φ

∼=
//

∼=
��

K0(CPn)

Ggrd(C[x0, . . . , xn])/〈[C]〉 // Hilb // Q[s]

from Section 20.18. The image of the function Hilb is the Z-submodule of Q[s]
generated by

(
s+n
n

)
,
(
s+n−1
n−1

)
, . . . ,

(
s
0

)
. If one takes [CPn−i] ∈ K0(CPn) and pushes
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it around the diagram, we have seen in Section 20.18 that the corresponding Hilbert
polynomial is

(
s+n−i
n−i

)
.

The Todd genus can be thought of as the unique function K0(CPn)→ Z sending
all the classes [CPn−i] to 1. We look for a similar function im(Hilb)→ Z that sends(
s+n−i
n−i

)
to 1, for all i. A moment’s thought shows that the map “evaluate at s = 0”

has this property. We have therefore proven the following:

Proposition 25.26. Let Z ↪→ CPn be an algebraic subvariety. Then the Todd
genus of Z is HilbZ(0).

In algebraic geometry, the invariant HilbZ(0) is sometimes called the arithmetic
genus. So we have proven that the arithmetic genus and Todd genus coincide.

Remark 25.27. Many authors use the term arithmetic genus for the invariant
(−1)dimZ(HilbZ(0) − 1). This is the definition in both [H] and [GH], for exam-
ple. Obviously the two definitions carry the same information, and the difference
between them is only a matter of “normalization”. The invariant HilbZ(0) is some-
times called the Hirzebruch genus, or the holomorphic Euler characteristic (see
Section ??? below for more information about this).

25.28. Fundamental classes and the Todd genus. Again let Z ↪→ CPn be a
complex submanifold of codimension c and consider the fundamental class [Z] ∈
K0(CPn). Write

[Z] = an−c[CPn−c] + an−c−1[CPn−c−1] + · · ·+ a0[CP 0].

We have seen that an−c is the degree of Z, which has a simple geometric interpre-
tation: it is the number of intersection points of Z with a generic linear subspace of
dimension c. But the question remains as to how to give a geometric interpretation
for the other ai’s. We will now explain how the Todd genus gives an answer this
(although perhaps not an entirely satisfactory one).

As we saw in the last section, Td-genus(Z) =
∑

0≤i ai. But note that multiplying
the equation for [Z] by [CPn−1] gives [Z]·[CPn−1] = an−c[CPn−c−1]+· · ·+a1[CP 0]
and therefore

Td-genus(Z ∩ CPn−1) =
∑
1≤i

ai.

Here Z ∩CPn−1 indicates the intersection of Z with a generic hyperplane in CPn.
Likewise we have [Z] · [CPn−j ] = an−c[CPn−c−j ] + · · ·+ aj [CP 0], and hence

Td-genus(Z ∩ CPn−j) =
∑
j≤i

ai.

So the partial sums
∑
j≤i ai for j = 0, 1, . . . , n− c are the same as the Todd genera

of Z,Z ∩CPn−1, . . . , Z ∩CP c. (This gives another explanation for why an−c is the
degree of Z). We immediately obtain the formulas

ai = Td-genus(Z ∩ CPn−i)− Td-genus(Z ∩ CPn−i−1),(25.29)

where again the intersections are interpreted to be generic. This is our desired
geometric description of the ai’s. Note, however, that whether or not this is indeed
“geometric” depends on whether one feels that this adjective applies to the Todd
genus.
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26. The algebro-geometric GRR theorem

Let X be a compact complex manifold and E → X a complex vector bundle.
If π denotes the projection X → ∗ then we get an element π!([E]) ∈ K0(pt) = Z.
This gives an integer-valued invariant of the bundle E, which we will call the Todd
number of E. We will write it as

Td-numX(E) = π!([E]).

The topological GRR theorem identifies this number as ΘX(Td(TX) · ch(E)), and
so we can calculate it in terms of the Chern classes of E and TX . Note that the
Todd number of the trivial bundle 1 is the Todd genus of X.

If X is an algebraic variety and E → X is an algebraic vector bundle then there
is another way to compute the Todd number of E, in terms of algebro-geometric
invariants. This identification of invariants is an example of the algebro-geometric
GRR theorem. Although the theorem covers far more than just the Todd number,
we will concentrate on this special case before stating the more general result.

26.1. Sheaf cohomology. As we saw in ???? the algebraic vector bundle E → X
gives rise to an associated coherent sheaf on the Zariski space XZar. We also call
this sheaf E, by abuse. Modern algebraic geometry shows how to obtain sheaf
cohomology groups Hi(X;E). The general theory is technical (although not in-
credibly hard), and would take too long to recount here; the level of abstraction
and technicality is roughly comparable to that of singular cohomology. But just as
in the latter case, there are methods for computing the sheaf cohomology groups
that do not require the high-tech definitions.

Suppose we have a Zariski open cover {Uα} of X with the property that each
Uα is affine, and moreover assume that each iterated intersection Uα1 ∩ · · · ∩Uαk

is
affine (for each k ≥ 1). Write Γ(Uα, E) for the algebraic sections of E defined over
Uα. Then we may form the Čech complex

0→
⊕
α

Γ(Uα, E)→
⊕
α1,α2

Γ(Uα1 ∩ Uα2 , E)→ · · ·

and the sheaf cohomology group Hi(X;E) is just isomorphic to the ith cohomology
group of this complex.

Example 26.2 (Cohomology of O(k) on CPn). Let x0, . . . , xn+1 be homogeneous
coordinates on CPn, and for each 0 ≤ j ≤ n let Uj ⊆ CPn be the open subscheme
defined by xj 6= 0. Write Uj1···jr = Uj1 ∩ · · · ∩ Ujr , and note that all of these are
affine. Indeed, Uj is the spectrum of C[x0

xj
, x1
xj
, . . . , xn

xj
], Uj,k is the spectrum of the

localization of this ring at xk/xj , and so forth.
Let S = C[x0, . . . , xn], regarded as a graded ring where all xi’s have degree 1.

Let Rj = Γ(Uj ,O) = C[x0
xj
, x1
xj
, . . . , xn

xj
]. This is the degree zero homogeneous piece

of the localization Sxj
. Further, observe that each O(k) is trivializable over Uj ,

and so Γ(Uj ,O(k)) will be a free Rj-module of rank 1. We can identify Γ(Uj ,O(k))
with the degree k homogeneous component of the localization Sxj ; that is, it is the
C-linear span of all monomials xa0

0 · · ·xan
n where aj ∈ Z and all other ai ≥ 0. This

is readily checked to coincide with the cyclic Rj-module xkjRj .
The analogs of the above facts work for any open set Uj = Uj1 ∩ · · · ∩ Ujr .

The sections Γ(Uj ,O(k)) form the degree k homogeneous component of the ring
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Sxj1 ···xjr
. We want to examine the Čech complex Č(U•,O(k)) for each value of k,

but it is more convenient to take the direct sum over all values for k and consider
them all at once.

For a collection of indices σ ⊆ {0, . . . , n} let Sσ be the localization of S at the
element

∏
i∈σ xi. Then consider the augmented Čech complex

C• : 0→ S → ⊕iSi → ⊕i<jSij → · · · → S01···n → 0

where the S is in degree −1 and where the differentials are all induced by the
inclusions Sσ ↪→ Sσ′ for σ ⊆ σ′. That is to say, if we have a tuple α = (ασ ∈
Sσ)#σ=r then dα is the tuple whose value at σ′ = {i0, · · · , ir} (with the entries
ordered from least to greatest) is

(dα)σ′ =
r∑

k=0

(−1)kαi0···bik···ir .
The Čech complex for computing cohomology is obtained from C• by omitting the
S in degree −1, but we will quickly see why it is convenient to have that S around.

It is easy to compute the cohomology group Hn(C•). The ring S01···bi···n is
generated as a vector space by monomials xa0

0 · · ·xan
n where ai ≥ 0. So the image

of Cn−1 → Cn is the span of all monomials where some ai is nonnegative. The
monomials that are not in the image have the form x−1

0 · · ·x−1
n · (x

−b0
0 · · ·x−bn

n )
where all bi ≥ 0. So Hn(C•) only has terms in degree k ≤ −(n + 1), and in such
a degree the group is isomorphic to S−k−(n+1)(Cn+1). This computation will be
subsumed by the more general one in the next paragraph, but it is useful to see
this particular case by itself.

To compute the cohomology of C• in all dimensions it is useful to regard S, and
each of its localizations, as multigraded by the group Zn+1 (by the multidegrees of
monomials). The maps in the complex preserve this multigrading, so we might as
well look at one multidegree a = (a0, . . . , an) ∈ Zn+1 at a time. Let τ = {i0, . . . , iu}
be the complete list of indices for which ai < 0. Note that Sσ is zero in multidegree
a unless σ ⊇ τ : that is, we will only have monomials of multidegree a if we have
inverted the xi’s for i ∈ τ . It is not hard to check that C•

a (the portion of C• in
multidegree a) coincides with the augmented simplicial chain complex for ∆n−#τ

with coefficients in C. The point is that the rings Sσ that are nonzero in degree
a correspond to precisely those σ that contain τ , and these correspond in turn
to subsets of {0, 1, . . . , n + 1} − τ . Subsets of {0, 1, . . . , n + 1} − τ also index the
simplices of ∆n−#τ , and we leave it to the reader to verify that the complexes do
indeed coincide.

The augmented simplicial cochain complex for ∆n−#τ has zero cohomology ex-
cept in one extreme case—for when #τ = n + 1 we have the augmented cochain
complex of the emptyset, and this has a single Z in its cohomology. This cor-
responds to those multidegrees a in which all ai < 0; for these the total degree
satisfies

∑
ai ≤ −(n+ 1).

We have seen that C• is exact except in cohomological degree n, and there we
get a single copy of C in every multidegree a for which

∑
ai ≤ −(n+ 1). So for a

fixed integral degree k ≤ −(n+1) the kth homogeneous component of Hn(C) is the
C-linear span of monomials xa where all ai < 0 and

∑
ai = k. This is what we saw

earlier in the argument as well, and it gives us that Hn(C)k ∼= S−k−(n+1)(Cn+1).
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Finally, let us turn to our original Čech complex by removing the S from degree
−1 of C•. In doing so we introduce homology in degree 0, and the graded homology
groups exactly coincide with the homogeneous components of S. That is, the kth
graded piece of H0 is isomorphic to Sk(Cn+1).

We have now proven that

Hi(CPn;O(k)) ∼=


Sk(Cn+1) if i = 0,
S−k−(n+1)(Cn+1) if i = n,

0 otherwise.

The following table shows these sheaf cohomology groups. Note that these vanish
except for 0 ≤ i ≤ n. In the table we write Ok instead of O(k), for typographical
reasons, and we write V = Cn+1. The dth symmetric power of V is denoted SdV ;
note that this is isomorphic to the space of degree d homogeneous polynomials in
x0, . . . , xn.

Table 26.2. Cohomology groups Hi(CPn;O(k))

i O−(n+3) O−(n+2) O−(n+1) O−n · · · O−1 O O1 O2 O3

0 0 0 0 0 · · · 0 C S1V S2V S3V
1 0 0 0 0 · · · 0 0 0 0 0
...

...
...

...
... · · ·

...
...

...
...

...
n−1 0 0 0 0 · · · 0 0 0 0 0
n S2V S1V C 0 · · · 0 0 0 0 0

26.3. Sheaf cohomology and the Todd number. When X is a projective vari-
ety the sheaf cohomology groups we introduced in the last section turn out to have
the following properties:

• They are finite-dimensional over C;
• Hi(X;E) vanishes when i > dimX;
• A short exact sequence of vector bundles 0 → E′ → E → E′′ → 0 gives

rise to a long exact sequence of sheaf cohomology groups.
The first two properties allow us to define the sheaf-theoretic Euler characteristic

χ(X;E) =
∑
i

(−1)i dimHi(X;E).

and the third property yields that χ(X;E) = χ(X;E′) + χ(X;E′′). So χ(X;−)
gives a homomorphism K0

alg(X)→ Z. It will not come as a surprise that this agrees
with the topologically-defined pushforward map π!:

Proposition 26.4. If X is a projective algebraic variety and E → X is an algebraic
vector bundle then

Td-numX(E) = χ(X;E).

This gives us our algebro-geometric interpretation of the Todd number. We
postpone the proof for the moment, prefering to obtain this as a corollary of our
general GRR theorem. But let us at least check the proposition in the important
example of CPn. Recall that K0

alg(CP
n) is the free abelian group generated by

[O], [O(1)], [O(2)], . . . , [O(n)]; so we can verify the result for all algebraic vector
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bundles E by checking it for these particular n+ 1 cases. Luckily we have already
computed the vector spaces Hi(CPn;O(k)). From Table 26.1 we find that

χ(CPn;O(k)) =


dimSkCn+1 if k ≥ 0,
0 if −n ≤ k < 0,
(−1)n dimS−k−(n+1)Cn+1 if k < −n.

We leave the reader to check that all three cases in the above formula can be unified
into the simple statement χ(CPn;O(k)) =

(
n+k
n

)
.

It remains to compute the Todd number of O(k). We use the by-now-familiar
technique from Exercise 25.12:

ΘX

[
Td(TX) · ch(O(k))

]
= Θn

[(
x

1−e−x

)n+1 · ekx
]

= Resx=0

(
1

1−e−x

)n+1 · ekx dx

= Resz=0

(
1

zn+1 · 1
(1−z)k+1 dz

)
= Θn

(
(1− z)−(k+1)

)
= (−1)n

(−(k+1)
n

)
=
(
n+k
n

)
.

Note that the substitution z = 1− e−x was used for the third equality.

27. Formal group laws and complex-oriented cohomology theories

28. Algebraic cycles on complex varieties

Note: The material in this section requires the Atiyah-Hirzebruch spectral se-
quence from Section 29 below.

Let X be a smooth, projective algebraic variety over C. Every smooth subvariety
Z of codimension q has a fundamental class [Z] ∈ H2q(X; Z). In fact the smoothness
of Z is not needed here: every subvariety Z ↪→ X of codimension q has such a
fundamental class. This can be proven either by using resolution of singularieties
or by more naive methods—we will explain below.

Define H2q
alg(X; Z) ⊆ H2q(X; Z) to be the subgroup generated by the fundamen-

tal classes of all algebraic subvarieties. How large are these “algebraic” parts of the
even cohomology groups? Are there examples of varieties X for which the algebraic
part does not equal everything?

The answer to the latter question is provided by Hodge theory: yes, there do
exist varieties X where not all of the even cohomology is algebraic. Hodge theory
gives a decomposition of the cohomology groups Hn(X; C) ∼= ⊕p+q=nHp,q(X), and
the algebraic classes all lie in the Hi,i pieces. The (even-dimensional) cohomology
is entirely algebraic only when Hp,q = 0 for p 6= q and p+ q even. But it is known
that for an elliptic curve E one has H1,0 = C = H0,1, and so for E × E one gets
H2,0(E × E) ∼= C ∼= H0,2(E × E). So not all of H2(E × E) is algebraic.

The problem with Hodge theory is that it cannot see any torsion classes, as the
coefficients of the cohomology groups need to be C. Could it be true that torsion
cohomology classes are always algebraic? A classical theorem of Lefschetz, reproved
by Hodge, says that this holds for classes in H2. But for higher cohomology groups
the answer is again no, and the first proof was given by Atiyah and Hirzebruch
[AH2]. There are three basic components to their proof:
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(1) Every algebraic class must survive the Atiyah-Hirzebruch spectral sequence.
The vanishing of the differentials therefore gives a sequence of obstructions for
a given cohomology class to be algebraic.

(2) The differentials in the spectral sequence can be analyzed in terms of cohomol-
ogy operations. On a pe-torsion class the first nonzero differential is d2p−1 and
coincides with the operation −βP 1.

(3) A clever construction of Serre’s shows how to obtain smooth algebraic varieties
whose cohomology contains that of BG through a range of dimensions. Using
this, one readily finds smooth varieties with even-dimensional, p-torsion coho-
mology classes for which βP 1 does not vanish; such a class cannot be algebraic.

The Atiyah-Hirzebruch proof is no longer the most efficient way to obtain condi-
tions for torsion classes to be algebraic. Resolution of singularities shows that every
algebraic class is actually a pushforward of the fundamental class of a manifold—
i.e., every algebraic class lifts into complex cobordism. In the 1950s Thom had
already obtained some necessary conditions for such a lifting to exist, in terms of
Steenrod operations. Via this method K-theory is not needed at all, and moreover
Thom’s theory yields a stronger set of conditions. Note that resolution of singular-
ities was not provided by Hironaka until 1964, and so of course was not available
at the time of [AH2].

Despite the modern shortcomings of Atiyah and Hirzebruch’s method, we will
spend this section describing it in detail. It sheds some light on the relationship
between K-theory and singular cohomology, and also offers some neat observations
about algebraic varieties.

Remark 28.1. We should mention that [AH2] treats the case of analytic cycles in
addition to algebraic cycles. The proofs are essentially the same, with one or two
key differences. We will not cover the material on analytic cycles here.

Remark 28.2. The modern Hodge conjecture states that any class α ∈ H2n(X; Q)
whose image in H2n(X; C) lies in the Hodge group Hn,n(X) is necessarily
algebraic—that is, it lies in the subgroup H2n(X; Q)alg. When Hodge originally
raised this question he did not explicitly specify rational coefficients. Since any tor-
sion class in H2n(X; Z) would map to zero in H2n(X; C), and therefore lie inside
Hn,n(X), an integral version of the Hodge conjecture would imply that all torsion
classes are algebraic. One of the main points of [AH2] was to demonstrate that this
integral form of the Hodge conjecture does not hold.

28.3. Fundamental classes for subvarieties. If X is a smooth algebraic variety
and Y ⊆ X is a smooth subvariety of codimension q then we have seen that complex
orientability yields a fundamental class [Y ] ∈ H2q(X) and a relative fundamental
class [Y ]rel ∈ H2q(X,X−Y ). This comes about by choosing a tubular neighborhood
U of Y that is homeomorphic to the normal bundle, and using the isomorphisms

H2q(X,X − Y ) ∼= H2q(U,U − Y ) ∼= H2q(N,N − 0).

Assuming Y is connected it follows that H2q(X,X − Y ) ∼= Z (by Thom isomor-
phism), and [Y ]rel is defined to be the image of the Thom class UN ∈ H2q(N,N−0).
The fundamental class [Y ] is just the image of [Y ]rel underH∗(X,X−Y )→ H∗(X).
Note that the argument shows that choice of U and homeomorphism U ∼= N to be
irrelevant: there are only two generators in H2q(X,X − Y ), and ???

We aim to show the existence of fundamental classes [Y ] even when the subvariety
Y is not smooth.
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Lemma 28.4. Let X be a smooth algebraic variety and let W ↪→ Y ↪→ X be subva-
rieties. Assume that Y has codimension q inside of X, and that W has codimension
at least one inside of Y .
(a) H∗(X)→ H∗(X − Y ) is an isomorphism for ∗ ≤ 2q − 2.
(b) H∗(X,X − Y )→ H∗(X −W,X − Y ) is an isomorphism for ∗ ≤ 2q.
(c) If Y is irreducible then H2q(X,X − Y ) ∼= Z.

Proof. First note that part (a) is true when Y is smooth, using the long exact
sequence for the pair (X,X−Y ), the isomorphism H∗(X,X−Y ) ∼= H∗(N,N −0),
and the Thom isomorphism theorem. For the general case, we can filter Y by
subvarieties

∅ ⊆ Y0 ⊆ Y1 ⊆ · · · ⊆ Ys = Y

where each Yi is the singular set of Yi+1 (so that Yi+1 − Yi is smooth). Since Y0 is
smooth, we can assume by induction that H∗(X)→ H∗(X−Yi) is an isomorphism
for ∗ ≤ 2(codimYi)− 2. Now look at the composition

H∗(X)→ H∗(X − Yi)→ H∗(X − Yi+1) = H∗((X − Yi)− (Yi+1 − Yi)
)
.

Since Yi+1 − Yi is smooth in X − Yi, the second map is an isomorphism for
∗ ≤ 2(codimYi+1) − 2. It follows that the composite is an isomorphism for
∗ ≤ 2(codimYi+1)− 2 as well, and now the desired result follows by induction.

Part (b) follows from part (a) via the long exact sequences

· · · // H∗−1(X − Y ) // H∗(X,X − Y ) // H∗(X) // H∗(X − Y ) // · · ·

· · · // H∗−1(X − Y )

∼=

OO

// H∗(X −W,X − Y )

OO

// H∗(X −W )

j∗

OO

// H∗(X − Y ) //

∼=

OO

· · ·

By (a) the map labelled j∗ is an isomorphism for ∗ ≤ 2q, and so the result follows
by the five lemma.

Finally, for (c) we let Z be the singular set of Y . Then H2q(X,X − Y ) ∼=
H2q(X−Z, (X−Z)− (Y −Z)) by (b). But Y −Z is a smooth subvariety of X−Z
of codimension q, and it is connected because Y was irreducible. The remarks from
the beginning of this section show that this cohomology group is isomorphic to Z,
with generator [Y − Z]rel. �

Now let Y ↪→ X be an algebraic subvariety of codimension q, and let Z be the
singular set. Since Y −Z is a smooth subvariety of X −Z, we have a fundamental
class [Y −Z] ∈ H2q(X−Z). But by Lemma 28.4(a) the mapH2q(X)→ H2q(X−Z)
is an isomorphism. We define [Y ] ∈ H2q(X) to be the preimage of [Y − Z] under
this map.

Define H∗
alg(X) ⊆ H∗(X) to be the subgroup generated by the fundamental

classes of all the algebraic subvarieties of X.
In the next section it will help to be able to focus on classes [Y ] where Y is

irreducible. To this end, the following is useful:

Lemma 28.5. If Y ↪→ X is a codimension q subvariety with irreducible components
Y1, . . . , Yk then [Y ] =

∑
i[Yi] ????? The subgroup H∗

alg(X) is spanned by classes

Proof. ???? �

We need one more lemma before moving on:
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Proposition 28.6. Let M be a real manifold and let N ↪→ M be a codimension
k real submanifold with a tubular neighborhood. Then M − N ↪→ M is (k − 1)-
connected.

Sketch. ???? �

28.7. Vanishing of differentials on algebraic classes. Let X be a smooth
algebraic variety, and let Y ⊆ X be subvariety. Let F• be a resolution of OY by
locally-free OX -modules, and write F• for the associated chain complex of complex
vector bundles onX. Then [F•] defines a class inK0(X,X−Y ) which we will denote
[Y ]K,rel. Note that when Y is smooth this agrees with the relative fundamental
class provided by the complex orientation of K-theory, by Theorem 18.8.

Proposition 28.8. One has ch([Y ]K,rel) = [Y ]H,rel + higher order terms.

Proof. We first prove this when Y is smooth. If N denotes the normal bundle for Y
in X, then the result will follow once we know ch(UKN ) = UHN +higher order terms—
for both [Y ]K,rel and [Y ]H,rel are obtained from the Thom classes by applying
natural maps. However, we have already seen in our discussion of Riemann-Roch
that the complete formula is in fact

ch(UKN ) = UHN · Td(N)−1

(see Proposition 25.3). Now just observe that Td(N)−1 = 1 + higher order terms.
Now let Y be arbitrary. Let Z be the singular locus, and the q denote the

codimension of Y . Consider the diagram

K0(X,X − Y )
j∗ //

ch

��

K0(X − Z,X − Y )

ch

��
H∗(X,X − Y )

j∗ // H∗(X − Z,X − Y ).

Both maps j∗ are simply restriction to an open set, and so j∗([Y ]K,rel) = [Y −
Z]K,rel and j∗([Y ]H,rel) = [Y − Z]H,rel. By Lemma 28.4(b) the bottom map is an
isomorphism for ∗ ≤ 2q. So the desired result for Y follows from the corresponding
result for Y − Z, which has already been proven because Y − Z is smooth in
X − Z. �

Theorem 28.9. Let X be a smooth algebraic variety, and let Y ⊆ X be a sub-
variety. Then [Y ]H survives the Atiyah-Hirzebruch spectral sequence; that is, all
differentials vanish on this class.

Proof. This is now easy. The class [Y ]H is the image of [Y ]H,rel under the natural
map H∗(X,X − Y ) → H∗(X). By naturality of the Atiyah-Hirzebruch spectral
sequence, it suffices to show that all differentials on [Y ]H,rel are zero. This follows
from Proposition 28.8 and ????. �

Corollary 28.10. Let X be a smooth algebraic variety, and let p be a fixed prime.
If a pe-torsion class u ∈ Hev(X) is algebraic then βP 1(u) = 0.

Proof. Immediate from Theorem 28.9 and Proposition 29.20(b). �
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28.11. Construction of varieties with non-algebraic cohomology classes.
At this point our job is to construct a smooth, projective algebraic variety X that
has a class u ∈ Hev(X) for which βP 1x 6= 0, for some prime p. Such a class cannot
be algebraic by Corollary 28.10. It turns out that p can be any prime we like—that
is, for any given p we can find an example of an X and a u. Moreover, u can be
taken to lie in degree 4. The construction comes out of the following three results:

Theorem 28.12 (Serre). Let G be a finite group and let n ≥ 0.
(a) There exists a linear action of G on a projective space CPN together with

an n-dimensional, closed, smooth subvariety X ↪→ CPN which is a complete
intersection, invariant under G, and has G acting freely.

(b) If X is a variety having the properties in (a), then its homotopy (n− 1)-type is
the same as that of K(Z, 2)×BG.

Corollary 28.13. Let G be a finite group and let n ≥ 0. There exists an n-
dimensional, smooth, projective variety whose (n − 1)-homotopy type is the same
as that of K(Z, 2)×BG.

Proposition 28.14. Let p be a prime. Then there exists a finite group G and a
class u ∈ H4(BG; Z) that is killed by p and is such that βP 1(u) 6= 0.

We postpone the proofs for one moment so that we can observe the immediate
consequence:

Corollary 28.15 (Atiyah-Hirzebruch). Fix a prime p. There exists a smooth,
projective, complex algebraic variety X and a class u ∈ Hev(X) that is killed by p
such that u is not algebraic.

Proof. By Proposition 28.14 there exists a finite group G and a p-torsion class u ∈
H4(BG; Z) such that βP 1(u) 6= 0. By Theorem 28.12 there is a smooth, projective
variety X whose (2p+ 4)-type is the same as K(Z, 2)×BG. But then H∗(BG; Z)
is a direct summand of H∗(X) up through dimension 2p + 4. By Corollary 28.10
the class in H4(X) corresponding to u cannot be algebraic. �

Theorem 28.12 requires some algebraic geometry, but the proofs of both Corol-
lary 28.13 and Proposition 28.14 are purely topological. We tackle these in reverse
order:

Proof of Proposition 28.14. We start by considering p = 2 (the odd case turns out
to be extremely similar). As a first attempt we might try to take G = Z/2. Then
BZ/2 = RP∞, H∗(RP∞; Z/2) = Z/2[x], and H∗(RP∞; Z) = Z/2[x2]. Unfortu-
nately Sq3 = β Sq2 vanishes on all the integral classes, by an easy calculation.

Next look at B(Z/2×Z/2) = RP∞×RP∞. The mod 2 cohomology is Z/2[x, y],
and the integral cohomology is the subring consisting of all elements whose Bock-
stein vanishes. Such elements of course include all polynomials in x2 and y2, but
it also includes θ = x2y + xy2 = β(xy). In fact all the elements of the integral
cohomology look like x2iy2j · θ. Another easy calculation shows that Sq3 applied
to such an element is x2iy2j Sq3(θ), and Sq3(θ) = x4y2 + x2y4 6= 0. This gives us
lots of classes that are not killed by Sq3, however they are all in odd dimensions.
So this still doesn’t solve our problem.

In the preceding paragraph, the reason things didn’t work ultimately came down
to the fact that β(xy) had odd dimension. This gets fixed once we move to
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B(Z/2 × Z/2 × Z/2). The mod 2 cohomology is Z/2[x, y, z], and again the in-
tegral cohomology is the subring consisting of the elements where the Bockstein
vanishes. One such element is θ = β(xyz) = x2yz + xy2z + xyz2. It is easy to cal-
culate that Sq3 θ = x4y2z+x4yz2 + · · · 6= 0. So finally we have an even-dimensional
integral cohomology class where Sq3 vanishes.

The argument for odd primes works the same way. Recall that H∗(BZ/p; Z/p) =
Λ(u)⊗ Fp[v], with β(u) = v and P 1(v) = vp. Take G = Z/p× Z/p× Z/p and look
at θ = β(u1u2u3) ∈ H4(BG; Z). A simple calculation shows that βP 1(θ) 6= 0. �

Next, the corollary to Serre’s theorem:

Proof of Corollary 28.13. Let X ↪→ CPN be the subvariety provided by Theo-
rem 28.12. Since X ↪→ CPN is a complete intersection, the strong form of the
Weak Lefschetz Theorem ??? yields that X → CPN is an (n− 1)-equivalence. Let
η → CPN be the tautological line bundle CN+1 − 0 → CPN . Note that G acts
on CN+1, and so G acts on the bundle η. Hence G acts on the pullback bundle
j∗η → X. Since the action of G on X is free we get a line bundle (j ∗ η)/G→ X/G
which pulls back to j∗η along the projection X → X/G. Let the classifying map
for this line bundle be X/G→ CP∞. The diagram

X //

��

CPN

��
X/G // CP∞

necessarily commutes up to homotopy, as the two compositions classify the same
bundle j∗η. Since X → CPN is an (n − 1)-equivalence, so is the composite X →
CP∞.

Consider the composite map X → X/G → CP∞. This is a G-equivariant
map, where the target is given the trivial G-action. Since the map is an (n − 1)-
equivalence, the induced map on homotopy orbit spacesXhG → (CP∞)hG is also an
(n− 1)-equivalence. (Recall that ZhG = (Z ×EG)/G. Crossing with EG preserves
the (n−1)-equivalence, and since Z×EG→ ZhG is a covering space it follows that
quotienting by G also preserves the (n − 1)-equivalence). But since the G-action
on X is free one has XhG ' X/G, and since the action on CP∞ is trivial one has
(CP∞)hG ' CP∞ ×BG. This completes the proof. �

Finally, we prove Serre’s theorem.

Proof of Theorem 28.12. We first give the proof for G = Z/2. Even though the
general case is basically the same, certain steps can be made more concrete by
restricting to this case.

Let C2M have coordinates x1, . . . , xM , y1, . . . , yM , and let G act trivially on the
x’s and by negation on the y’s. Consider the induced action on P = P(C2M ) =
CP 2M−1. The homogeneous coordinate ring is R = C[x1, . . . , xM , y1, . . . , yM ], and
the ring of invariants S = RG is the subring generated by the xi’s and the yiyj ’s
(including i = j). An easy argument shows that every homogeneous element of
S having even degree is a polynomial in the elements xixj and yiyj . That is, if
S(2) ⊆ S is the C-linear span of all even-dimensional homogeneous elements then
S(2) is generated (as a subring) by elements of degree 2.
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Let α1, . . . , αs denote the degree 2 monomials in x, in some order. Similarly, let
β1, . . . , βs denote the degree 2 monomials of y, and let b = 2s−1. Let f : P → CP b
be the map

f([x1 : · · · : xN : y1 : . . . : yN ]) 7→ [α1 : . . . : αs : β1 : . . . : βs].

Clearly f induces a map P/G → CP b. It is easy to see that this is a pro-
jective embedding (???). Its image Z is the closed subvariety whose homoge-
neous coordinate ring is S(2), regarded as a quotient of the polynomial algebra
C[α1, . . . , αs, β1, . . . , βs].

Let A ⊆ P be the set of fixed points for the Z/2-action. One readily checks that
A is the disjoint union CPM−1 qCPM−1, where the first piece corresponds to the
vanishing of the xi’s and the second piece to the vanishing of the yj ’s. The fibers
of f are sets with at most two elements, and so f(A) ⊆ Z is a subvariety having
the same dimension as A. Note that P −A→ Z − f(A) is a covering space, and so
Z − f(A) is nonsingular.

Let H ⊆ CP b be a generic plane of dimension b+ n− (2M − 1). We can choose
H so that it misses the singular set of Z and intersects Z transversally, and if
dim f(A) + dimH < b we can simultaneously require that H does not intersect
f(A). This dimension criterion is M − 1 + b − (2M − 1) + n < b, or just n < M .
Our choice of H guarantees that Z∩H is a nonsingular variety of dimension n. Let
X = f−1(Z ∩H). The criterion that H ∩ f(A) = ∅ implies that X ∩A = ∅, and so
G acts freely on X and the map f |X : X → Z ∩H is a two-fold covering space. So
X is also nonsingular of dimension n.

The planeH is defined by the vanishing of linear elements g1, . . . , gt in the ring S,
where t = (2M − 1)− n. Via the inclusion S ⊆ R we can regard these as elements
of R, where they are homogeneous of degree 2. The variety X is the vanishing
set of these polynomials. Given that X is of codimension t, we find that X is
a set-theoretic complete intersection: it is the intersection of the t hypersurfaces
defined by each of the gi’s. It remains to show that X is actually a scheme-theoretic
complete intersection: i.e., that the ideal of functions vanishing on X is generated
by a regular sequence.

Since X has codimension t is follows that ht (g1, . . . , gt) = t. By ??? this implies
that g1, . . . , gt is a regular sequence. If we let I = (g1, . . . , gt) then the ideal of
functions vanishing on X is Rad(g1, . . . , gt). We will show that Rad(I) = I, as this
proves that X is a scheme-theoretic complete intersection.

By Macaulay’s Unmixedness Theorem [E, Corollary 18.14], all associated primes
of I are minimal primes of I. So I has a primary decomposition I = Q1 ∩ · · · ∩Qk
where each Qi is primary and Rad(Qi) = Pi is a minimal prime of I. The V (Pi)’s
are the irreducible components of X, and so for each i we can choose a closed point
m ∈ V (Pi) that does not belong to any other component. So m is a maximal ideal
containing Pi, and IRm = QiRm.

Let m′ = f(m) and consider the diagram of local rings

OX,m

��

OZ,m′oo

��
ÔX,m ÔZ,m′ .

∼=oo
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The bottom map is an isomorphism because X → Z is a two-fold covering space.
The assumption that H meets Z transversally implies that g1, . . . , gt is part of a
regular system of parameters for OZ,m′ ; that is to say, their images in the Zariski
cotangent space (m′)/(m′)2 are independent. The same is therefore true in OX,m,
because all maps in the above square induce isomorphisms on the Zariski cotangent
space.

In particular, the fact that g1, . . . , gt is part of a regular system of parameters
in OX,m implies that IRm is prime. So QiRm = IRm = Rad(IRm) = PiRm. This
can only happen if Qi = Pi (if Q is primary with radical P and P ⊆ m, then
QRm = PRm if and only if Q = P ). We have thus proven that Qi = Pi for every
i, and this implies I = Rad(I).

This proof is now completed for the case G = Z/2.
For a general finite group G let V be the regular representation and let P =

P(VM ). Let R be the homogeneous coordinate ring of P , and let S = RG. If
S(d) ⊆ S is the subring spanned by homogeneous elements in degrees a multiple of
d, one can prove that for some value of d the ring S(d) is generated as an algebra
by its elements of degree d. Choose a C-basis f0, . . . , fb for these generators and
let f : P → CP b be the map x 7→ [f0(x) : f1(x) : · · · : fb(x)]. This map induces
a projective embedding P/G ↪→ CP b; call the image Z. Let A ⊆ P be the set of
elements with nontrivial stabilizer under G. For g ∈ G an easy argument shows
that any eigenspace of g acting on V must have dimension equal to at most the
number of right cosets of 〈g〉 in G. So the dimension of the eigenspace is at most
#G/#〈g〉, and therefore is bounded above by #G/2. The eigenspaces of g acting
on VM thus have dimension at most M · #G/2, and from this one derives that
dimA ≤ (M · #G/2) − 1. The rest of the argument proceeds almost identically
to the G = Z/2 case, the only change being that we take H to have dimension
b+ n− (M ·#G− 1) and that we only need to require M > 2n

#G in order to choose
H so that it avoids f(A). �

28.16. Thom’s theory. Although this part of the story doesn’t use K-theory, the
obstructions to algebraicity obtained from resolution of singularities are so simple
that they are worth discussing here.

Theorem 28.17. Let X be a smooth algebraic variety, and let p be a fixed prime.
If u ∈ Hev(X; Z) is algebraic then all odd-degree cohomology operations vanish on
the mod p reduction ū ∈ Hev(X; Z/p). In particular, all the odd Steenrod squares
vanish on the mod 2 reduction of u.

The above theorem was probably folklore since the 1960s. It finally explicitly
appeared in the beautiful paper [T].

The first key to the theorem is that there is a map of cohomology theories
MU∗(−)→ H∗(−), and that this map is compatible with the complex orientations.
In particular, if Y ↪→ X is a smooth subvariety it sends [Y ]MU to [Y ]H . We will
not explain this claim in detail, but it is not hard.

The next part of the argument is best explained using the language of spectra.
The above map of cohomology theories comes from a map of spectra MU → HZ.
If Y ↪→ X is a smooth subvariety of codimension q then [Y ]MU ∈ MU2q(X) is
represented by a map X → Σ2qMU , and likewise [Y ]H ∈ H2q(X) is represented by
a map X → Σ2qHZ. In the homotopy category of spectra we have the commutative



A GEOMETRIC INTRODUCTION TO K-THEORY 199

diagram
Σ2qMU

��
X

[Y ]MU

;;vvvvvvvvv

[Y ]H

// Σ2qHZ.

Let θ be a cohomology operation of degree r onH∗(−; Z/p). This is a map of spectra
HZ/p → ΣrHZ/p. The application of this operation to the mod p reduction of
[Y ]H enhances our diagram:

Σ2qMU

��

f

++
X

[Y ]MU

;;wwwwwwwww

[Y ]H

// Σ2qHZ // Σ2qHZ/p
θ

// Σ2q+rHZ/p.

The map labelled f is just the evident composite. Note that f is an element of
Hr(MU ; Z/p). The “miracle” is that we can easily compute this group. The spaces
making up the spectrum MU are just Thom spaces of the universal ηn → BU(n),
and their integral cohomology is known by the Thom isomorphism. We leave the
details to the reader, but the trivial conclusion here is that H∗(MU ; Z) is free
abelian and concentrated in even degrees. It follows that H∗(MU ; Z/p) vanishes
in all odd degrees. In particular, the map f is null when r is odd! Thus, we have
proven Thom’s theorem:

Proposition 28.18 (Thom). Let X be a smooth algebraic variety and let Y ↪→ X
be a smooth subvariety. Then all odd degree cohomology operations vanish on the
class [Y ]H ∈ H∗(X).

Remark 28.19. It is interesting to note how easy the language of spectra makes
the above argument. As a challenge, try to unwind the argument and rephrase it
without using spectra—it is not so pleasant.

One can deduce Theorem 28.17 from Proposition 28.18 using resolution of sin-
gularities and a little work. We are not going to give complete details, but we give
a rough sketch. Complete details (and much more) can be found in [T].

It suffices to prove Theorem 28.17 when u is the fundamental class of an ir-
reducible subvariety Y ↪→ X, say of codimension q. Such elements generate all
algebraic cohomology classes. By Hironaka there is a resolution of singularities
Ỹ → Y obtained by successively blowing up Y at closed subschemes. Even more,
one can successively blow up X at the same subschemes to produce a commutative
square

Ỹ // //

��

X̃

π

��
Y // // X

where the horizontal maps are closed inclusions and the vertical maps are compo-
sitions of successive blow-ups (in particular, they are proper). We of course have
the class [Ỹ ]MU ∈ MU2q(X̃), and with a little work one can construct a pushfor-
ward map π! : MU2q(X̃) → MU2q(X). We claim that π!([Ỹ ]MU ) is a lift of the
class [Y ]H . By ???? this can be checked by applying j∗ : H∗(X) → H∗(X − Z)
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where Z is the singular set of Y and seeing that j∗(π!([Ỹ ]MU )) = [Y − Z]. This
can in turn be deduced from an appropriate push-pull formula and the fact that
Ỹ − π−1(Y ) → Y − Z is a homeomorphism. In any case, if you accept this last
point then we now have the diagram

Σ2qMU

��
X

π!([Ỹ ]MU )
;;vvvvvvvvv

[Y ]H

// Σ2qHZ

and at this point everything proceeds the same as before. This completes our sketch
of a proof for Theorem 28.17.

Note that even with this approach, as opposed to the K-theory approach of
Atiyah-Hirzebruch, one still needs to gives examples of algebraic varieties with
nontrivial odd-degree operations on even-dimensional cohomology classes. So the
hard work that went on in Section 28.11 is still necessary.
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Part 5. Topological techniques and applications

In the next few sections we will mostly ignore the “geometric” perspective on
K-theory that we have developed so far in these notes. Instead we will concentrate
on the topological aspects of K-theory, in particular its use as a cohomology theory
(forgetting about the complex-orientation). We will develop the basic topological
tools for computing K-groups, use them to carry out some important computations,
and then apply these computations to solve (or at least obtain information about)
certain types of geometric, algebraic, and topological problems.

29. The Atiyah-Hirzebruch spectral sequence

Let E be a cohomology theory. Let X be a CW -complex with cellular filtration

∅ = F−1 ⊆ F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ X.
So each Fk/Fk−1 is a wedge of k-spheres, and X =

⋃
k Fk. Since one knows the

cohomology groups E∗(Fk/Fk−1), one can attempt to inductively determine the
cohomology groups E∗(Fk) and thus to eventually determine E∗(X). A spectral se-
quence is a device for organizing all the information in such a calculation, and it has
the surprising feature that one can determine E∗(X) without explicitly determining
each of the steps E∗(Fk). It is somewhat magical that this can be done.

We will not try to teach the theory of spectral sequences from scratch here. For
a thorough treatment the reader may refer to [Mc], for example. We will assume
the reader has some familiarity with this theory, but at the same time we give a
brief review.

29.1. Generalities. Each inclusion Fq−1 ↪→ Fq yields a long exact sequence on
cohomology, and these long exact sequences braid together to yield the following
infinite diagram:

i
��

i
��

· · · // Ep−1(Fq)

i

��

j // Ep(Fq+1, Fq)
k // Ep(Fq+1)

i

��

j // Ep+1(Fq+2, Fq+1)
k //

· · · // Ep−1(Fq−1)
j //

i

��

Ep(Fq, Fq−1)
k // Ep(Fq)

i

��

j // Ep+1(Fq+1, Fq)
k //

· · · // Ep−1(Fq−2)
j //

i

��

Ep(Fq−1, Fq−2)
k // Ep(Fq−1)

i

��

j // Ep+1(Fq, Fq−1)
k //

(29.2)

The terms in bold-face constitute one long exact sequence: the one for the inclusion
Fq−1 ↪→ Fq. Translating these terms vertically yields an infinite family of long exact
sequences, each linked to the next via two of their three terms. A diagram such as
this is called an exact couple. One obtains a spectral sequence of the form

Ep,q1 = Ep(Fq, Fq−1)⇒ Ep(X).

Let us explain how this works, and in the course of doing so we will also explain
what it means. By the way, notice that in our particular setup the columns of the
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diagram are eventually zero as one proceeds downward, because Fi = ∅ when i is
negative. Notice as well that if X = Fn for some value of n (so the filtration is
finite) then the columns stabilize when moving upwards.

(0). Here is the basic idea for how the spectral sequence operates. Consider an
element x ∈ Ep(Fq, Fq−1), and proceed as follows:

(i) Let x0 = kx.
(ii) If j(x0) = 0 then x0 = i(x1) for some x1 ∈ Ep(Fq+1). We may then look at

jx1.
(iii) If jx1 = 0 then x1 = i(x2) for some x2 ∈ Ep(Fq+2). We may then look at jx2.
(iv) Continuing in this way, we get a sequence of “obstructions” jxu, u = 0, 1, 2, . . ..

Each one only exists if the previous one vanishes. Note that at each stage the
vanishing of jxu doesn’t depend on the choice of xu; however, it may depend
on the choice of xv made at some previous stage v < u. In this sense the
obstructions are not unique: different choices of lifts may lead to different
obstructions later down the line.

(v) If we can make choices such that all of these obstructions vanish then we are
able to lift kx arbitrarily far up in the diagram. If the filtration F• was finite
this means that we have produced an element of Ep(X); it turns out something
like this also works for infinite filtrations, although the resulting element of
Ep(X) is only uniquely determined in good cases. The spectral sequence is
a device for keeping track of these obstructions and liftings, and what they
ultimately produce.

We will now go through all of the machinery needed to define and work with the
spectral sequence associated to our exact couple.

(1). For 1 ≤ r ≤ ∞ write

Zp,qr = {x ∈ Ep(Fq, Fq−1) | kx may be lifted at least r times under i}.
This is called the group of r-cycles in the spectral sequence. The phrasing is
ambiguous when r =∞, but we mean Zp,q∞ =

⋂
r Z

p,q
r . We also define Bp,qr ⊆ Zp,qr

to be the subgroup generated by all “obstructions” that arise from at most r − 1
layers lower down in the diagram. To be precise, Bp,qr is spanned by the sets

ji−sk(Ep−1(Fq−s−1, Fq−s−2))

for 0 ≤ s ≤ r − 1. It is best to immediately forget this precise description and just
remember the idea.

Notice that everything in Bp,qr maps to zero under k, and hence is contained in
every Zp,qs . That is, we have

0 = Bp,q0 ⊆ Bp,q1 ⊆ · · · ⊆ Bp,q∞ ⊆ Zp,q∞ ⊆ · · · ⊆ Zp,q2 ⊆ Zp,q1 ⊆ Zp,q0 = Ep(Fq, Fq−1).

Note that Bp,q∞ =
⋃
r B

p,q
r and Zp,q∞ =

⋂
r Z

p,q
r .

(2). It as an easy exercise to prove that x ∈ Bp,qr if and only if x can be written
as x = j(y1 + y2 + · · · + yr) for some yu’s such that iu(yu) = 0, for all u. As an
immediate corollary, Bp,q∞ coincides with the image of j (or equivalently with the
kernel of k).

Let x0 ∈ Ep(Fq) and assume that we lifted x0 a total of r times: that is, assume
we have chosen elements xu ∈ Ep(Fq+u) for 1 ≤ u ≤ r such that i(xu) = xu−1. If
j(xr) ∈ Bs for some s then (using the result of the previous paragraph) there exists
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a chain of elements x′u ∈ Ep(Fq+u) such that i(x′u) = x′u−1, x
′
u = xu for u ≤ r − s,

and j(x′r) = 0. That is to say, we can alter our chain of xu’s in the top s− 1 spots
and end up with a chain that can be extended upwards one more level. Indeed,
just define x′u = xu − (yr−u+1 + · · · + ys) where j(xr) = j(y1 + · · · + ys) and the
yi’s are as in the preceding paragraph.

(3). Define Ep,qr = Zp,qr−1/B
p,q
r−1. The process “apply k, lift r − 1 times, then apply

j” yields a well-defined map dr : E∗,∗r → E∗,∗r . This is our “obstruction” map, and
it is now well-defined precisely because we are quotienting out by the subgroup
B∗,∗r−1. Note that dr shifts the bigrading, so that we have dr : Ep,qr → Ep+1,q+r

r .
The map dr satisfies d2

r = 0 because kj = 0. A little work shows that E∗,∗r+1 is
precisely the homology of E∗,∗r with respect to dr. The sequence of chain complexes
E1, E2, E3, . . ., each the homology of the previous one, is the spectral sequence
associated to our exact couple.

(4). For any value of p and q we have “entering” and “exiting” differentials

E?,?
r

dr−→ Ep,qr
dr−→ E?,?

r

for certain unimportant values of ‘?’. It is easy to check that
(i) The exiting map dr is zero if and only if Zp,qr−1 = Zp,qr , and
(ii) The entering map dr is zero if and only if Bp,qr−1 = Bp,qr .

(5). It remains to interpret the E∞-term. Notice that, strictly speaking, this is
not one of the stages of our spectral sequence—it is not obtained as the homology
of a previous complex. Still, in many examples one finds that E∞ agrees with some
finite stage Er, at least through a range of dimensions.

Write Ep(Fq)∞ for the set of all x ∈ Ep(Fq) such that i(x) = 0 and x lifts
arbitrarily far up in the diagram (and note that this is not the same as saying that
x lifts to the inverse limit). The map k induces a surjection Zp,q∞ � Ep(Fq)∞, and
Bp,q∞ is clearly the kernel; so we have an induced isomorphism

Γ: Ep,q∞
∼=−→ Ep(Fq)∞.

Consider the groups Ep(F) = limq Ep(Fq). As for any inverse limit these come
with a filtration where we define

Ep(F)ZPq = {α ∈ Ep(F) | the image of α in Ep(Fq−1) is zero.}
The “ZPq” subscript is supposed to remind us “zero past Fq”. We call this the
“ZP -filtration”:

Ep(F) = Ep(F)ZP0 ⊇ Ep(F)ZP1 ⊇ Ep(F)ZP2 ⊇ · · ·
There is an evident map Ep(F)ZPq → Ep(Fq)∞ which induces an injection

Ep(F)ZP (q/q+1) := Ep(F)ZPq/Ep(F)ZP (q+1) ↪→ Ep(Fq)∞ = Ep,q∞ .(29.3)

Notice our notation for the associated graded of the ZP -filtration.

(6). We are ultimately trying to get information about E∗(X). Notice that we have
a natural map Ep(X)→ Ep(F). This is always surjective; while not obvious, it is a
consequence of the fact that if Z is any topological space then [X,Z]→ limq[Xq, Z]
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is surjective, which in turn is a routine application of the homotopy extension
property for cellular inclusions. Let

Ep(X)ZPq = ker
(
Ep(X)→ Ep(Fq−1)

)
and note that we have a map of filtrations Ep(X)ZP• → Ep(F)ZP•. The map on
associated graded groups

Ep(X)ZP (q/q+1) → Ep(F)ZP (q/q+1)

is readily seen to be an isomorphism, for all q.

(7). If we are in “good” cases then the map in (29.3) will actually be an isomor-
phism. The question is whether an element of Ep(Fq) that can be lifted arbitrarily
high in the diagram can also be lifted into the inverse limit—note that this is not
automatic! It might be possible that higher and higher liftings exist but not “coher-
ently”; that is, to get a higher lifting one needs to change arbitrarily many elements
lower down in the chain.

Fix a p and consider the following condition:

(SSCp) :
There exists an N such that for all q the differentials entering and
exiting the group Ep,qr are zero for all r ≥ N .

If this “Spectral Sequence Convergence Condition” holds then by (4) we know
Zp,qN−1 = Zp,qr and Bp,qN−1 = Bp,qr for all r ≥ N . Therefore Zp,q∞ = Zp,qN−1, B

p,q
∞ =

Bp,qN−1, and consequently Ep,q∞ = Ep,qN . These statements hold for all values of q. So
the Ep,∗∞ groups coincide with the stable values of the Ep,∗r groups.

The convergence condition (SSCp) gives us one more important consequence,
namely that the map of (29.3) is an isomorphism:

(SSCp)⇒
[

Ep(F)ZP (q/q+1)
∼= Ep,q∞ , for all q.

]
To prove this, let x0 ∈ Ep(Fq)∞. Then there exist elements xu ∈ Ep(Fq+u) for
1 ≤ u ≤ 2N uch that i(xu) = xu−1 for each u (nothing special about 2N is being
used here, it is just a convenient large number). The element j(x2N ) lies in B2N+1,
which we have seen equals BN−1 by (SSCp). Therefore by (2) we may modify the
xu’s in dimensions x2N , x2N−1, . . . , xN+3 in such a way that the chain extends to
an x2N+1. It is important here that only the top N−2 elements are affected, for we
can now continue by induction and build an element of Ep(F) = lims Ep(Fs) that
maps to x in Ep(Fq). This completes the proof.

To summarize, the statement that the spectral sequence “converges to Ep(X)”
is usually interpreted to mean that

• The groups Ep,∗r stabilize, and equal Ep,∗∞ , at some value of r (usually one
that is independent of the grading ∗); and,

• The maps in (29.3) are isomorphisms, for all values of q.
Under these conditions the stable values of the spectral sequence give the associated
graded groups of the ZP -filtration on Ep(X). We have seen that (SSCp) implies
this kind of convergence.
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(8). Sometimes it is convenient to have in mind a variation on the exact couple
diagram (29.2). Fix an integer q and consider the following:

...

��

...

��

...

Ep(Fq+2, Fq−1)
k //

��

Ep(Fq+2)
j //

��

Ep+1(Fq+3, Fq+2)

Ep(Fq+1, Fq−1)
k //

��

Ep(Fq+1)
j //

��

Ep+1(Fq+2, Fq+1)

Ep(Fq, Fq−1)
k // Ep(Fq)

j // Ep+1(Fq+1, Fq)

The groups in the boxes are “new”, in the sense that they are not part of the
exact couple (and they are being drawn in places which previously were occupied
by other groups from the exact couple). Each trio of groups Ep(Fq+r, Fq−1) →
Ep(Fq+r−1, Fq−1)

jk−→ Ep+1(Fq+r, Fq+r−1) is part of the long exact sequence for a
triple, and so is exact in the middle spot. From this one readily sees that a class u ∈
Ep(Fq, Fq−1) = Ep,q1 lies in Zr if and only if u lifts to a class in Ep(Fq+r, Fq−1). So
the differentials in the spectral sequence can be viewed as a sequence of obstructions
for lifting u to a class in Ep(FN , Fq−1), for larger and larger N .

(9). (Summary of the general workings of spectral sequences). We have produced
a sequence of bigraded chain complexes E∗,∗1 , E∗,∗2 , . . . such that each equals the
homology of the previous one. We also have a “limiting” collection of bigraded
groups E∗,∗∞ , and we have seen that under certain convergence conditions these E∞
groups really are the “stable values” in the sequence of Er’s, and moreover they
give the associated graded groups for the ZP -filtration of E∗(X).

(10). Everything that we have said so far works for any increasing filtration F• of
X. Now we use the fact that a CW -filtration is very special. Notice that

Ep,q1 = Ep(Fq, Fq−1) ∼= Ẽp(Fq/Fq−1) ∼= Ẽp
(∨
α

Sq
)
∼=
⊕
α

Ẽp(Sq) ∼=
⊕
α

Ep−q(pt)

where the wedges and direct sums are over the set of q-cells in X. We can iden-
tify this group with the cellular cochain group Cq(X;Ep−q(pt)). The differential
d1 : Ep,q1 → Ep+1,q+1

1 is a map Cq(X;Ep−q(pt)) → Cq+1(X;Ep−q(pt)) and it is
readily checked to coincide with the differential in the cellular cochain complex.
We conclude that

Ep,q2
∼= Hq(X;Ep−q(pt)).

Notice that the E2-term is a homotopy invariant of X, whereas the E1-term was
not.

(11). The bigraded groups forming each term of the spectral sequence can be rein-
dexed in whatever way seems convenient, and topologists use various conventions
in different settings. For the Atiyah-Hirzebruch spectral sequence the standard
convention is to choose the grading Ep,q1 = Ep+q(Fp, Fp−1) so that we get

Ep,q2 = Hp(X;Eq(pt)).

Under this grading we have that the differential dr is a map

dr : Ep,q2 → Ep+r,q−r+1
2 .



206 DANIEL DUGGER

The groups in the spectral sequence are drawn on a grid where p is the horizontal
axis and q the vertical one, with Ep,q2 drawn in the (p, q)-spot. Finally, in this
grading the Γ-map relating the E∞-term to the associated graded of E∗(X) has the
form

Γ: Ep+q(X)ZP (p/p+1) ↪→ Ep,q∞ .

In terms of the charts, the “total degree” lines are the diagonals where p + q is
constant. The (SSCt) condition, translated into this new indexing, says that on the
diagonal p+q = t all entering and exiting differentials vanish past some finite stage
of the spectral sequence. When this condition holds we are guaranteed convergence
for the groups along this diagonal.

Remark 29.4 (Warning about indexing.). For the rest of these notes we will
adopt the indexing conventions from (11) above, which are the standard ones for
the Atiyah-Hirzebruch spectral sequence. This is different than the indexing we
used in (0)–(10).

Remark 29.5 (Independence of filtration). As we have defined things, the spectral
sequence depends on the chosen CW -structure on X. However, this dependence
actually goes away from the E2-term onward. Let X1 and X2 denote the same space
but with two different CW -structures. The identity map X1 → X2 is homotopic
to a cellular map f : X1 → X2, and f gives us a map of spectral sequences by
naturality. Homotopy invariance of cellular cohomology shows that f induces an
isomorphism on the E2-terms, and therefore on all the finite pages of the spectral
sequence as well.

The ZP -filtration on X was defined in terms of the CW -structure, but we can
define it in a different way that doesn’t make use of that. We leave it as an exercise
to check that

Ep(X)ZPq = {α ∈ Ep(X) |u∗(α) = 0 for any map u : A→ X where A is a

CW -complex of dimension less than q}.
These remarks show us that the spectral sequence from E2-onwards may be

regarded as a natural homotopy invariant of X. In particular, any map g : X → Y
gives a map of spectral sequences in the opposite direction (by replacing g with a
cellular map).

29.6. The Postnikov tower approach. Let E be a spectrum representing the
cohomology theory E∗ and let PnE denote the nth Postnikov section for E. There
is a tower of fibrations

· · · // // P1E // // P0E // // P−1E // // · · ·

ΣH(E1)

OO

H(E0)

OO

Σ−1H(E−1)

OO

where Ei = πi(E) = E−i(pt) and HA denotes the Eilenberg-MacLane spectrum for
the group A. If we apply function spectra F (X,−) to all the spots in this diagram
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we get a new tower of fibrations

· · · // // F (X,P1E) // // F (X,P0E) // // F (X,P−1E) // // · · ·

F (X,ΣH(E1))

OO

F (X,H(E0))

OO

F (X,Σ−1H(E−1))

OO

Each fibration sequence F (X,ΣqH(Eq))→ F (X,PqE)→ F (X,Pq−1E) gives rise to
a long exact sequence in homotopy groups, and these long exact sequences inter-
twine to form an exact couple. The associated spectral sequence has

Ep,q1 = π−p−qF (X,ΣqH(Eq)) = Hp+2q(X;E−q),

dr : Ep,qr −→ Ep−r+1,q+r
r ,

and it is trying to converge to

π−p−qF (X,E) = Ep+q(X).

It is not obvious, but with some trouble it can be seen that after re-indexing this is
“the same” as the previously-constructed spectral sequence but with the E1-term
of this one corresponding to the E2-term of the one constructed via CW -structures.

We won’t really need this Postnikov version of the spectral sequence for anything,
but it often provides a useful perspective. For example, note that this version of
the spectral sequence is manifestly functorial in X and a homotopy invariant.

29.7. Differentials. The d2-differential in the Atiyah-Hirzebruch spectral se-
quence is a map Hp(X;Eq) → Hp+2(X;Eq−1). This is natural in X and it is
also stable under the suspension isomorphism; so it is a stable cohomology opera-
tion. The d3-differential is in some sense a secondary cohomology operation, and
so on for all the differentials. This is often a useful perspective. For example, we
can now prove the following general fact:

Proposition 29.8. Suppose that the coefficient groups E∗(pt) are rational vector
spaces. Then for any space X the differentials in the Atiyah-Hirzebruch spectral
sequence all vanish, and so there are (non-canonical) isomorphisms

En(X) ∼= ⊕p+q=nHp(X;Eq(pt))

for every n ∈ Z.

Proof. The point is that the only stable cohomology operation of nonzero degree
on H∗(−; Q) is the zero operation. This immediately yields that all d2-differentials
are zero. But then d3 is a stable cohomology operation (not a secondary operation
anymore) and therefore it also vanishes. Continue by induction. �

Remark 29.9. In the Postnikov approach to the Atiyah-Hirzebruch spectral se-
quence one sees the d2-differentials very explicitly. The Postnikov tower has “k-
invariants” of the form

ΣqH(Eq)→ Σq+2H(Eq+1)
which desuspend to give H(Eq) → Σ2H(Eq+1). These are quite visibly stable
cohomology operations H∗(−;E−q) → H∗+2(−;E−q−1). The connection between
higher differentials and higher cohomology operations has a similar realization, but
the details are too cumbersome to be worth discussing here.
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It is worth observing that from the E2-term onward there are never any dif-
ferentials emanating from the p = 0 line of the spectral sequence. For conve-
nience assume X is connected and choose a cell structure on X where F0 = {∗}.
By the remarks in (8) above, such differentials would be the obstructions for a
class in Eq(F0, ∅) to lift to Eq(Fr, ∅); but such a lifting necessarily exists, be-
cause F0 ↪→ Fr is split. Note that when X is connected Eq(X)ZP1 = Ẽq(X),
and Eq(X)ZP (1/2) = Eq(X)/Ẽq(X) = Eq(pt), giving further confirmation that the
E∞-term coincides with the E2-term on the p = 0 line.

In the original exact couple (29.2) we could replace all the E∗ groups with Ẽ∗

groups and still have an exact couple, with the resulting spectral sequence having
the form

Ep,q2 = H̃ p(X;Eq)⇒ Ẽp+q(X).
This just amounts to removing the entire p = 0 line from the Atiyah-Hirzebruch
spectral sequence. Sometimes it is convenient to consider this ‘reduced’ version of
the spectral sequence.

29.10. Multiplicativity. Suppose that E is a multiplicative cohomology theory.
Then for spaces X and Y we have the external product

Er(X)⊗ Es(Y )→ Er+s(X × Y ),

and this is readily checked to induce associated pairings on the ZP -filtration:

Er(X)ZPa ⊗ Es(Y )ZPb → Er+s(X × Y )ZP (a+b)

and

(29.11) Er(Z)ZP (a/a+1) ⊗ Es(Y )ZP (b/b+1) → Er+s(X × Y )ZP (a+b/a+b+1).

The pairings Eq(pt) ⊗ Eq
′
(pt) → Eq+q

′
(pt) also can be fed into the cup product

machinery to give

(29.12) Hp(X;Eq(pt))⊗Hp′(Y ;Eq
′
(pt)) −→ Hp+p′(X × Y ;Eq+q

′
(pt)).

Since the Atiyah-Hirzebruch spectral sequence starts with the groups E2(−) =
H∗(−;E∗) and then converges to the groups E∗(−), it is natural to ask if the pairings
of (29.12) and (29.11) are connected via this convergence process. The machinery
for making this connection is somewhat cumbersome to write out, although in
practice not so cumbersome to use.

To say that there is a pairing of spectral sequences E∗(X) ⊗ E∗(Y ) →
E∗(X × Y ) is to say that

(i) For each r there is a product Ep,qr (X)⊗ Ep′,q′r (Y )→ Ep+p
′,q+q′

r (X × Y );
(ii) The differential dr satisfies the Leibniz rule

dr(a · b) = dr(a) · b+ (−1)pa · drb

for all a ∈ Ep,qr (X) and b ∈ Ep
′,q′

r (Y ), and therefore induces a product on
H∗(Er) = Er+1;

(iii) The product on the Er+1-term equals the one induced by the product on the
Er-term, for all r;

(iv) There is a product on the E∞-term which agrees with the products on the
Er-terms where defined (???);
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(v) The maps Ep(−)ZP (a/a+1) → Ep,a∞ (−) are compatible with the products, in
the evident sense.

To give a decent treatment of pairings between Atiyah-Hirzebruch spectral se-
quences it is best to work at the level of spectra, and to work with a category of
spectra where there is a well-behaved smash product. This introduces several layers
of foundational technicalities that we do not wish to dwell on, so let us just say that
these things can all be worked out. In this setting the right notion of “multiplicative
cohomology theory” consists of a spectrum E together with a map E ∧ E→ E that
is associative and unital. Both the complex and real K-theory spectra can be given
this structure. One has the following general result:

Theorem 29.13. Let E be a spectrum with a product E ∧ E → E. Then there is
a pairing of Atiyah-Hirzebruch spectral sequences where the product on E2-terms
Hp(X;Eq)⊗Hp′(Y ;Eq

′
)→ Hp+p′(X × Y ;Eq+q

′
) is equal to (−1)p

′q times the cup
product.

We will not prove the above theorem here, as this would take us too far afield.
For a proof, see [D2, Section 3]. What is more important is how to use the theorem;
we will give some examples in the following section.

Remark 29.14. The signs in the above theorem cannot, in general, be neglected.
See [D2, Section 2] for a complete discussion. However, notice that in the case of
complex K-theory it is irrelevant because the groups Hp(X;Kq) are only nonzero
when q is even. This is a pleasant convenience. A similar convenience occurs for
KO-theory: whereas the coefficients groups do have some nonzero terms in odd
degrees, since these terms are all Z/2’s one can once again neglect the signs.

29.15. Some examples. We now focus entirely on complex K-theory, considering
two sample computations. Further examples, for bothK andKO, are in Section 32.

Let us start by redoing the calculation K0(CPn) = Z[X]/(Xn+1) where X =
L − 1, now using the Atiyah-Hirzebruch spectral sequence. The following is the
E2-term:

Z Z Z Z Z1 x x2 x3 x4

Z Z Z Z Zβ−1 β−1x β−1x2 β−1x3 β−1x4

Z Z Z Z Zβ βx βx2 βx3 βx4

Z Z Z Z Zβ2 β2x β2x2 β2x3 β2x4

t -

6

?

p

q

����

��
��

��
��



210 DANIEL DUGGER

Note that the E2-term vanishes to the right of the line p = 2n, since H∗(CPn)
vanishes in this range. The circled groups (and others along the same diagonal)
are the ones that contribute to K0(CPn). Note that there is no room for any
differentials, because the nonzero groups only occur when both p and q are even.
So the spectral sequence immediately collapses, and E2 = E∞. It follows that the
filtration quotients for the ZP -filtration on K0(CPn) are as follows:

K0(CPn) K0(CPn)ZP1
ooZoo K0(CPn)ZP2

oo0oo K0(CPn)ZP3
ooZoo · · ·oooo

with the Z’s appearing exactly n + 1 times. Since the quotients are free there are
no extension problems and we conclude that K0(CPn) ∼= Zn+1 as abelian groups.

The spectral sequence also gives information about the ring structure on
K0(CPn). Note that K0(CPn)ZP1 = K̃0(CPn), and that K0(CPn)ZP2 =
K0(CPn)ZP1 by the previous paragraph. Consider the canonical map

K0(CPn)ZP (2/3)

∼=−→ E2,−2
∞ = Z〈βx〉.

Let α denote a preimage for βx under this isomorphism. The multiplicativity of
the spectral sequence tells us that αk maps to βkxk under the corresponding map
K0(CPn)ZP (2k/2k+1) → E2k,−2k

∞ . In particular, αk is nonzero for k < n + 1. We
know αn+1 = 0, either by Lemma 20.2 or by the fact that αn+1 ∈ K0(CPn)ZP (2n+2)

and this filtration group is zero by the spectral sequence.
Now consider the map Z[α]/(αn+1) → K0(CPn). This may be regarded as a

map of filtered rings, where the domain is filtered by the powers of (α) and the
target has the ZP -filtration. The spectral sequence tells us this is an isomorphism
on the filtration quotients; but since there are only finitely many of these, it follows
that the map is an isomorphism.

To complete our calculation is only remains to show that we may take α =
±(1− [L]). First verify this when n = 1, where it just comes down to the fact that
1 − [L] is a generator for K̃0(S2). For general n we can now use the naturality
of the spectral sequence, applied to the inclusion j : CP 1 ↪→ CPn. The spectral
sequences tell us that the natural map

K0(CPn)ZP (2/3) → K0(CP 1)ZP (2/3)

is an isomorphism. The element 1− [L] represents an element in the domain, which
must be a generator precisely because it maps to a generator in the target. This
tells us that one of ±(1 − [L]) maps to βx and is therefore a candidate for α, and
this is enough to conclude K0(CPn) = Z[X]/(Xn+1) where X = 1− [L].

For our next example let us consider K0(RPn). The E2-term is very similar to
the one before, with the difference that most Z’s are changed to Z/2’s:
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Z2 Z2 Z2 Z2

1

β−1

β

β2

Z

Z

Z

Z2 Z2 Z2 Z2
y y2 y3 y4

Z2 Z2 Z2 Z2

Z Z2 Z2 Z2 Z2

t -

6

?

p

q

· · ·

· · ·

· · ·

· · ·

Z2
ym

Z2

Z2

Z2

(Z)

(Z)

(Z)

(Z)

The Z’s in parentheses lie in degree p = n when n is odd, and are not present
when n is even. As discussed in (29.7) above, there can be no differential emanating
from the p = 0 column. So the only possible differentials allowed by the grading
would occur when n is odd and would have a Z/2 mapping into one of the Z’s; but
such a map must be zero. So all differentials vanish, and we again have E2 = E∞.
We conclude that the associated graded of the ZP -filtration on K̃0(RPn) consists of
bn2 c copies of Z/2, and so K̃0(RPn) is an abelian group of order 2b

n
2 c. It remains to

determine the group precisely. For this, use the map of spectral sequences induced
by j : RPn ↪→ CPn. The surjection on E∞-terms shows that α = 1−[j∗L] generates
the filtration quotient K0(RPn)ZP (2/3), since 1 − [L] generates the corresponding
quotient in the CPn case. Note that α2, . . . , αb

n
2 c therefore generate the other

filtration quotients, and so in particular are nonzero. But we can compute

α2 = (1− [j∗L])2 = 1− 2[j∗L] + [j∗L]2 = 1− 2[j∗L] + 1 = 2(1− [j∗L]) = 2α,

where in the third equality we have used that the square of any real line bundle
is trivial (Corollary 8.23). It follows that αi = 2i−1α. Since αb

n
2 c 6= 0 this gives

2(bn
2 c−1)α 6= 0. The only abelian group of order 2b

n
2 c that admits such an element

is Z/(2bn
2 c), and so K̃0(RPn) is isomorphic to this cyclic group.

Remark 29.16. Note that we previously determined that K̃0(RP 2) was an abelian
group of order 4, back in Section 13.10. Comparing the “brute force” approach used
there to the spectral sequence machinery really shows the power of the latter: the
argument is really the same, but the spectral sequence allows us to get at the
conclusion much more quickly.

29.17. More on differentials. Since Kodd(pt) = 0 it follows for degree rea-
sons that all differentials d2r vanish in the Atiyah-Hirzebruch spectral sequence.
So our first significant differential is d3, which is a stable cohomology operation
H∗(−; Z) → H∗+3(−; Z). It is an easy matter to compute all such stable opera-
tions, as they are parameterized by the group H3(HZ) of stable homotopy classes
HZ → Σ3HZ; this can be computed as the cohomology group Hn+3(K(Z, n)) for
n ≥ 3. A routine calculation (say, with the Serre spectral sequence) shows that this
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group is Z/2. The nonzero element is an operation α that is an integral lift of Sq3,
in the sense that if u ∈ H∗(X; Z) then

α(u) = Sq3(u)

where x denotes the mod 2 reduction of a class x.
The above paragraph shows that our differential d3 either equals zero (for all

spaces X) or coincides with the operation α. The latter option is the correct one,
and to see this it suffices to produce a single space X where d3 is nonzero. For
this we take the space X from Example 24.7, constructed as the cofiber of a map
Σ3RP 2 → S3 that gives a null-homotopy for 2η. This space has H3(X) = Z and
H6(X) = Z/2, so there is a potential d3 in the spectral sequence. If this d3 were
zero then we would have K̃0(X) = Z/2, but we calculated in Example 24.7 (using
the Chern character) that K̃0(X) = 0. So d3 is nonzero here. We have therefore
proven:

Proposition 29.18. The differential d3 in the Atiyah-Hirzebruch spectral sequence
is the unique nonzero cohomology operation H∗(−; Z) → H∗+3(−; Z). It satisfies
2d3(x) = 0, for all x.

Remark 29.19. We have now explained the motivation for the space X from
Example 24.7. It is literally the smallest space for which there is a nonzero α-
operation in its cohomology.

The fact that 2d3(x) = 0 shows that d3 must vanish on any class x ∈ H∗(X)
whose order is prime to 2. Alternatively, if we tensor the Atiyah-Hirzebruch spec-
tral sequence with Z[ 12 ] then all d3 differentials vanish. In that case d5 is a coho-
mology operation H∗(−; Z[ 12 ]) → H∗+5(−; Z[ 12 ]), and such things are classfied by
H5(HZ; Z[ 12 ]). This group is readily calculated to be Z/3. If one then also inverts
3 this will kill d5, but it turns out to also kill d7 because H7(HZ; Z[ 16 ]) = 0. The
d9 differential becomes a cohomology operation in H9(HZ; Z[ 16 ]) ∼= Z/5, and so
one can kill it by inverting 5. This process continues, and shows that inverting
all primes smaller than p kills all differentials below d2p−1. Note that this gives
another proof of Proposition 29.8 (but with more precise information), saying that
after tensoring with Q all Atiyah-Hirzebruch differentials vanish.

The following result summarizes and expands the discussion in the last para-
graph. The two parts are closely related and almost equivalent, but it is useful to
have them both stated explicitly.

Proposition 29.20. Fix a prime p.
(a) Inverting (p − 1)! in the Atiyah-Hirzebruch spectral sequence results in dr = 0

for r < 2p−1, together with d2p−1(u) = (−1)p+1βP 1(ū) for all classes u, where
ū is reduction modulo p, P 1 is Steenrod’s first reduced power operation (for the
prime p), and β is the Bockstein for the sequence 0→ Z[ 1

(p−1)! ]
p−→ Z[ 1

(p−1)! ]→
Z/p→ 0.

(b) Let u ∈ H∗(X) be pe-torsion, where p is a prime. Then in the Atiyah-
Hirzebruch spectral sequence di(u) = 0 for i < 2p − 1, and d2p−1(u) =
(−1)p+1βP 1(ū) where β is the Bockstein for 0→ Z p−→ Z→ Z/p→ 0 and P 1

is as in (a).

Proof. Fixing a prime p, the following is known about H∗(K(Z, n)) assuming n >
2p− 1:
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(i) Hi(K(Z, n)) = 0 for 0 < i < n and Hn(K(Z, n)) ∼= Z;
(ii) Hi(K(Z, n)) is torsion, with all orders prime to p, for n < i < n+ 2p− 1;
(iii) Hn+2p−1(K(Z, n)) is isomorphic to a direct sum Z/p⊕A where A is a torsion

group whose order only has prime factors smaller than p. The Z/p summand
is generated by βP 1(u), where u ∈ Hn(K(Z, n)) is the fundamental class.

Alternatively, the above results say that

H∗
(
K(Z, n); Z[ 1

(p−1)! ]
)
∼=


0 if i < n,

Z[ 1
(p−1)! ] if i = n,

0 if n < i < n+ 2p− 1,
Z/p if i = n+ 2p− 1.

These facts are easy calculations with the Serre spectral sequence, using the meth-
ods of [MT, Chapter ???].

Consider the Atiyah-Hirzebruch spectral sequence for K(Z, n), and in particular
the differentials on the fundamental class u. By naturality of the spectral sequence
this serves as a universal example for what happens on all spaces. Since inverting
(p− 1)! kills all of the cohomology of K(Z, n) in dimensions strictly between n and
n + 2p − 1, this shows that it also kills the differentials dr(u) for r < 2p − 1. By
universality, inverting (p− 1)! kills these differentials for any space X.

If u ∈ H∗(X) is a pe-torsion class then dr(u) for r < 2p−1 is killed by a power of
(p− 1)! by the preceding paragraph, but it is also killed by pe; since these integers
are relatively prime it follows that dr(u) = 0 for r < 2p− 1.

It remains to identify d2p−1 in both (a) and (b). We know by the calculation of
H∗(K(Z, n)) for n� 0 that after localization at (p− 1)! one must have d2p−1(u) =
λ ·βP 1(ū), for some λ ∈ Z/p. We need to determine λ, and for this we can examine
a single well-chosen example space. The sample space we choose is a generalization
of the one from Example 24.7. Consider the projection π : CP p → CP p/CP p−1 ∼=
S2p. We claim that there is a stable map f : S2p → CP p such that the composite
S2p → CP p π−→ S2p has degreeMp for some integerM prime to p; for the proof, see
Lemma 29.22 below. The “stable map” phrase is to indicate that f might only exist
after suspensing some number of times, so really it is a map f : ΣrS2p → ΣrCP p.
We can assume that r is even. Let X be the cofiber of f , and note that

H̃i(X) =


Z if r + 2 ≤ i < r + 2p and i is even,
Z/(Mp) if i = r + 2p+ 1,
0 otherwise.

Consider the cofiber sequence

ΣrCP p j−→ X
p−→ Sr+2p+1

Let x ∈ H2(CP p) be a chosen generator, and let u ∈ Hr+2(X) be a class that j∗

maps onto the suspension σr(x). Let v ∈ Hr+2p+1(X) be the image under p∗ of
the canonical generator from Hr+2p+1(Sr+2p+1). Note that j∗ is an isomorphism
on H∗(−; Z/p) for ∗ ≤ 2p.

In H∗(CP p; Z/p) we have P 1(x̄) = x̄p, as this is how P 1 behaves on classes of
degree 2. So in H∗(ΣrCP p; Z/p) we have P 1(σrx̄) = σr(x̄p), by stability of the P 1

operation. It follows that βP 1(ū) = Mv.
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In the Atiyah-Hirzebruch spectral sequence for X, after inverting (p− 1)! there
is only one possible nonvanishing differential, namely d2p−1 : Z[ 1

(p−1)! ] → Z/p. We
know that

d2p−1(u) = λ · βP 1(ū) = λMv.(29.21)

But we can also compute d2p−1(u) directly. The class u is represented by an ele-
ment in K0(Xr+2, Xr+1) (a cellular (r+2)-cochain). The differential is represented
by choosing a lift of u ∈ K0(Xr+2, Xr+1) to ξ ∈ K0(X2p+r, Xr+1) and then ap-
plying the connecting homomorphism from the long exact sequence for the triple
(X2p+r+1, X2p+r, Xr+1):

ξ ∈ K0(X2p+r+1, Xr+1)

��

δ // K1(X2p+r+1, X2p+r)

u ∈ K0(Xr+2, Xr+1).

Recall that Xr+1 = ∗ and that u is represented by the class σr(1 − [L]) ∈
K̃0(ΣrCP 1). The element 1− [L] ∈ K̃0(CP 1) lifts to the class with the same name
in K̃0(CP p), and so we may take ξ = σr(1 − [L]) ∈ K0(ΣrCP p, ∗). To compute
δ(ξ) we can use the Chern character:

K0(X2p+r, ∗)
δ //

ch

��

K1(X2p+r+1, X2p+1)

ch

��
Hev(X2p+r, ∗; Q) δ // Hodd(X2p+r+1, X2p+1; Q).

We know from Proposition 24.4 that the right vertical map is an injection and that
its image is the integral subgroup Hodd(X2p+r+1, X2p+1; Z). So we compute

ch(ξ) = ch
(
σr(1− [L])

)
= σr ch(1− [L]) = σr(x− x2

2 + x3

6 − · · · )
Applying δ to this expresstion kills everything except the class in degree 2p + r,
and we therefore get

δ(ch ξ) = (−1)p · 1
p! ·Mp = (−1)p M

(p−1)!

where the first two terms in the product come from ch(ξ) and the Mp comes from
application of δ. Note that commutativity of the above square implies that M

(p−1)!

must be an integer, and that

δ(ξ) = (−1)p M
(p−1)! · v

where v denotes the preferred generator of K1(X2p+r+1, X2p+r) ∼= Z.
Putting everything together, we have just proven that in the Atiyah-Hirzebruch

spectral sequence for X with (p− 1)! inverted one has

d2p−1(u) =
[
(−1)p M

(p−1)!

]
p
· v

where [−]p denotes the residue modulo p. Wilson’s Theorem says that (p−1)! ≡ −1
mod p, and so

d2p−1(u) =
[
(−1)p+1M

]
p
· v.

Comparing to (29.21) gives λ = (−1)p+1, and we are finished with (a).
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Part (b) can be deduced from (a) using the commutative square

H∗(X)
d2p−1 //

��

H∗+2p−1(X)

��
H∗(X; Zf )

d2p−1 // H∗+2p−1(X; Zf )

where we are writing Zf = Z[ 1
(p−1)! ]. Let B ⊆ H∗+2p−1(X) be the subgroup of

elements killed by a power of p, and note that B injects into H∗+2p−1(X; Zf ). If
peu = 0 then both d2p−1u and (−1)p+1βP 1(ū) belong to B. The commutative
square, together with part (a), show that the two classes map to the same element
of H∗+2p−1(X; Zf ); hence, they are the same. �

Lemma 29.22. Fix a prime p. Then for some r > 0 there exists a map S2p+r →
ΣrCP p such that the composite

S2p+r → ΣrCP p Σrπ−→ ΣrS2p

has degree equal to Mp for some M relatively prime to p. Here π : CP p → S2p is
the map that collapses CP p−1 to a point.

Proof. This is a computation with stable homotopy groups. Consider the homology
theory X 7→ E∗(X) = πs∗(X) ⊗ Z(p). When X = S0 the groups E∗(X) are the p-
components of the stable homotopy groups of spheres, and it is known that Ei(X) =
0 for 0 < i < 2p − 3 and E2p−3(X) ∼= Z/p. An easy induction using the cofiber
sequences CPn−1 ↪→ CPn → S2n shows that E2p−1(CPn) ∼= Z/p for all 1 ≤ n ≤
p− 1. The long exact sequence for CP p−1 ↪→ CP p → S2p then gives

· · · → πs2p(CP
p−1)→ πs2p(CP

p)→ Z→ πs2p−1(CP
p−1)→ · · ·

The element p ∈ Z necessarily maps to zero in πs2p−1(CP
p−1)⊗Z(p), since the latter

group is Z/p. This means that there exists M ∈ Z prime to p such that Mp maps
to zero in πs2p−1(CP

p−1). But then Mp is the image of an element in πs2p(CP
p),

and this element is what we were looking for. �

29.23. Differentials and the Chern character. In the proof of Proposi-
tion 29.20 there was a key step where we used the Chern character to help compute
a differential in the Atiyah-Hirzebruch spectral sequence. We will next explain a
generalization of this technique.

The E1-term of the Atiyah-Hirzebruch spectral sequence breaks up into chain
complexes that look like

· · · → K−1(Fq−1, Fq−2)→ K0(Fq, Fq−1)→ K1(Fq+1, Fq)→ · · ·
If q is odd this is the zero complex, and if q is even we have seen that it is iso-
morphic to the cellular chain complex for X with Z coefficients. The latter is
via isomorphisms K0(Fq, Fq−1) ∼= K̃0(∨αSq) ∼=

⊕
α K̃

0(Sq) ∼=
⊕

α Z. Notice
that we can also use the Chern character to obtain such an isomorphism, as we
know ch: K0(Fq, Fq−1) → H∗(Fq, Fq−1; Q) to be injective with image equal to
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H∗(Fq, Fq−1; Z) (Proposition 24.4). Since the Chern character is natural it actu-
ally gives us an isomorphism of chain complexes

· · · // K−1(Fq−1, Fq−2)

∼=
��

// K0(Fq, Fq−1) //

∼=
��

K1(Fq+1, Fq) //

∼=
��

· · ·

· · · // H∗(Fq−1, Fq−2) // H∗(Fq, Fq−1) // H∗(Fq+1, Fq) // · · ·

Taken on its own, this is just a matter of convenience: we already had a natural
isomorphism between these complexes, so identifying it as the Chern character
just gives it a nice name. But using the fact that the Chern character is defined
more globally (i.e., on all pairs (Y,B)) allows us to push this a bit further and
obtain a description of the Atiyah-Hirzebruch differentials. The following result is
a combination of [AH2, Lemmas 1.2 and 7.3]

Proposition 29.24. Let X be a CW -complex and let u ∈ Hp(X). Then in the
Atiyah-Hirzebruch spectral sequence one has diu = 0 for all 2 ≤ i < r if and only
if there exist ũ ∈ Hp(Fp+r−1, Fp−1) and ξ ∈ K∗(Fp+r−1, Fp−1) such that

(i) ũ is a lift for u under Hp(Fp+r−1, Fp−1)→ Hp(Fp+r−1)
∼=←− Hp(X), and

(ii) ch(ξ) = ũ+ higher order terms.
Moreover, if in the above situation α is a cellular cochain representating ch(ξ)p+r−1

then δα is integral and represents the differential dru.

Proof. To symplify some typography we assume throughout the proof that p is
even, although the odd case is identical (or else one could just replace X with its
suspension).

Assume that u ∈ Hp(X) satisfies diu = 0 for 2 ≤ i < r. Identifying u with an
element in E2, this condition says that u can be represented by a class z ∈ E1 =
K0(Fp, Fp−1) with the property that z ∈ Zr−1. The element associated to z by the
isomorphism K0(Fp, Fp−1) ∼= Cpcell(X; Z) is a cellular p-cochain representative for
u.

As remarked in (8) of Section 29.1, the condition z ∈ Zr−1 is equivalent to saying
that z lifts to a class z̃ ∈ K0(Fp+r−1, Fp−1). Now apply the Chern character to get
the square

K0(Fp+r−1, Fp−1) //

ch

��

K0(Fp, Fp−1)

ch

��
H∗(Fp+r−1, Fp−1; Q)

j∗ // H∗(Fp, Fp−1; Q),

z̃ //

��

z

��
ch(z̃) // ch(z).

The element ch(z) is an (integral) cellular p-cochain that represents the class u.
The groups H∗(Fp+r−1, Fp−1) are zero in degrees ∗ < p, so ch(z̃) is of the form
ch(z̃)p + higher order terms. The fact that ch(z) is a cellular cochain representing
u says that any lift of ch(z) into Hp(Fp+1, Fp−1) has the same image in Hp(Fp+1)
as u:

Hp(X) // Hp(Fp+1) Hp(Fp+1, Fp−1)oo

It follows readily that ch(z̃)p has the same image in Hp(Fp+r−1) as u. This com-
pletes the (⇒) direction of the first statement in the proposition. The (⇐) direction
follows in the same way, as all the steps are reversible.
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For the final statement of the proposition we continue to assume (for convenience)
that p is even. Consider the diagram

ξ ∈ K0(Fp+r−1, Fp−1)

ch

��

δ // K1(Fp+r, Fp+r−1)

ch

��
H∗(Fp+r−1, Fp−1; Q) δ // H∗+1(Fp+r, Fp+r−1; Q)

where in both rows the map δ is the connecting homomorphism in the long exact
sequence for the triple (Fp+r, Fp+r−1, Fp−1). Looking back on (8) of Section 29.1,
the element δ(ξ) represents dr(u) in the Er-term of the spectral sequence. But we
know that the right vertical map is an injection whose image consists of the integral
elements, and our isomorphism of the E2-term with H∗(X; Z) identifies δ(ξ) with
ch(δ(ξ)). Commutativity of the square says this element is also δ((ch ξ)q+r−1) (and
also verifies that this class is integral). �

30. Operations on K-theory

Experience has shown that when studying a cohomology theory it is useful to
look not just at the cohomology groups themselves but also the natural operations
on the cohomology groups. In the case of singular cohomology this is the theory of
Steenrod operations. In the present section we will construct some useful operations
K0(X) → K0(X). We start with the λ-operations, which are easy to define but
have the drawback that they are not group homomorphisms. Then we modify these
to obtain the Adams operations ψk, which are more nicely behaved.

30.1. The lambda operations. Fix a topological space X. We start with the
exterior power constructions E 7→ ΛkE on vector bundles over X. These are, of
course, not additive: Λk(E ⊕F ) 6∼= ΛkE ⊕ΛkF . So it is not immediately clear how
these constructions induce maps on K-groups. The key lies in the formula

Λk(E ⊕ F ) ∼=
⊕
i+j=k

ΛiE ⊗ ΛjF.(30.2)

Construct a formal power series

λt(E) =
∞∑
i=0

[ΛiE]ti = 1 + [E]t+ [Λ2E]t2 + · · · ∈ K0(X)[[t]].

Because the zero coefficient is 1, this power series is a unit in K0(X)[[t]]. So λt is
a function into the group of units inside K0(X)[[t]]:

Vect(X)
λt //

��

(
K0(X)[[t]]

)∗

K0(X)

88

Formula (30.2) says that λt(E ⊕ F ) = λt(E) · λt(F ), and this implies the existence
of the dotted-arrow group homomorphism in the above diagram. We will call this
dotted arrow λt as well.
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Finally, define λk : K0(X)→ K0(X) by letting λk(w) be the coefficient of tk in
λt(w). Note that if E is a vector bundle over X then λk([E]) = [ΛkE]. However,
λk is not a group homomorphism; instead one has the formula

λk(u+ w) =
∑
i+j=k

λi(u)λj(v).

Example 30.3. To get a feeling for these operations let us compute λk(−[E]) for
E a vector bundle over X. Note first that

λt(−[E]) = 1
λt([E]) = 1

1+[E]t+[Λ2E]t2+···

For R a commutative ring and a = 1 + a1t+ a2t
2 + · · · ∈ R[[t]], one has

1
a = 1 + P1t+ P2t

2 + · · ·
where the Pi’s are certain universal polynomials in the ai’s with coefficients in Z.
Equating coefficients in the identity 1 = (1+ a1t+ a2t

2 + · · · )(1+P1t+P2t
2 + · · · )

gives
Pk + Pk−1a1 + Pk−2a2 + · · ·+ P1ak−1 + ak = 0,

which allows one to inductively determine each Pk. One finds that

P1 = −a1, P2 = a2
1 − a2, P3 = −a3

1 − 2a1a2 + a3

So we conclude that

λ1(−[E]) = −[E],

λ2(−[E]) = [E]2 − [Λ2E],

λ3(−[E]) = −[E]3 − 2[E][Λ2E] + [Λ3E]

and so forth.

30.4. Symmetric power operations. One can repeat everything from the pre-
vious section using the symmetric product construction E 7→ Symk E in place of
the exterior product ΛkE. One obtains a group homomorphism

symt : K
0(X)→

(
K0(X)[[t]]

)∗
and defines symk(w) to be the coefficient of tk in symt(w). It turns out, how-
ever, that these operations do not give anything ‘new’—they are related to the
λ-operations by the formula

symk(w) = λk(−w).

To explain this we need a brief detour on the deRham complex. The following
material is taken from [FLS].

Let V be a vector space over a field F . Write Sym∗(V ) = ⊕k Symk(V ) and
Λ∗(V ) = ⊕kΛkV . These each have a familiar algebra structure, and we have
canonical isomorphisms

Sym∗(V )⊗ Sym∗(W )
∼=−→ Sym∗(V ⊕W ), Λ∗(V )⊗ Λ∗(W )

∼=−→ Λ∗(V ⊕W ).

These isomorphisms allow us to equip both Sym∗(V ) and Λ∗(V ) with coproducts
making them into Hopf algebras. The coproducts are

Sym∗(V ) −→ Sym∗(V ⊕ V )
∼=←− Sym∗(V )⊗ Sym∗(V )

and
Λ∗(V ) −→ Λ∗(V ⊕ V )

∼=←− Λ∗(V )⊗ Λ∗(V )
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where in each case the first map is the one induced by the diagonal ∆: V → V ⊕V .
Write e : Symk(V )→ Symk−1 V ⊗ Sym1(V ) and e′ : Λk(V )→ Λ1V ⊗ Λk−1(V ) for
the projections of the coproduct onto the indicated factors. Finally, write d and κ
for the composites

Symk(V )⊗ Λi(V )
e⊗id// Symk−1(V )⊗ Sym1(V )⊗ Λi(V )

Symk−1(V )⊗ Λ1(V )⊗ Λi(V ) // Symk−1(V )⊗ Λi+1(V )

and

Symk(V )⊗ Λi(V )
id⊗e′// Symk(V )⊗ Λ1(V )⊗ Λi−1(V )

Symk(V )⊗ Sym1(V )⊗ Λi−1(V ) // Symk+1(V )⊗ Λi−1(V ).

The maps d and κ are called the de Rham and Koszul differentials, respectively.
The following diagram shows the maps d, and the maps κ go in the opposite direc-
tion:

The deRham and Koszul complexes:(30.5)

...
...

...
...

Sym3 V ⊗ Λ2V

d

66llllllllllllll
Sym2 V ⊗ Λ2V

d

66llllllllllllll
Sym1 V ⊗ Λ2V

d

66llllllllllllll
Sym0 V ⊗ Λ2V

Sym3 V ⊗ Λ1V

d

66mmmmmmmmmmmm
Sym2 V ⊗ Λ1V

d

66mmmmmmmmmmmm
Sym1 V ⊗ Λ1V

d

66mmmmmmmmmmmm
Sym0 V ⊗ Λ1V

Sym3 V ⊗ Λ0V

d

66mmmmmmmmmmmm
Sym2 V ⊗ Λ0V

d

66mmmmmmmmmmmm
Sym1 V ⊗ Λ0V

d

66mmmmmmmmmmmm
Sym0 V ⊗ Λ0V

Let e1, . . . , en be a basis for V . It will be convenient to use the notation dej
for the element of Λ1(V ) corresponding to ej under the canonical isomorphism
Λ1(V ) ∼= V . Let m = ei1 ⊗ · · · ⊗ eir ∈ Symr(V ) and ω = dej1 ∧ · · · ∧ dejs ∈ Λs(V ).
It is an exercise to verify that

e(m) =
∑
u

(
ei1 ⊗ · · · ⊗ êiu ⊗ · · · ⊗ eir

)
⊗ eiu

and
e′(ω) =

∑
u

(−1)u−1deju ⊗
(
dej1 ∧ · · · ∧ d̂eju ∧ · · · ∧ dejs

)
.

So
d(m⊗ ω) =

∑
u

(
ei1 ⊗ · · · ⊗ êiu ⊗ · · · ⊗ eir

)
⊗ (deiu ∧ ω)
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and

κ(m⊗ ω) =
∑
u

(−1)u−1(m⊗ eju)⊗
(
dej1 ∧ · · · ∧ d̂eju ∧ · · · ∧ dejs

)
.

From these descriptions one readily sees that d is the usual deRham differential
and κ is the usual Koszul differential. Consequently, d2 = 0 and κ2 = 0. In the
two-dimensional array (30.5), if we take direct sums inside of each row then we get

Sym∗(V )⊗ Λ0(V ) d−→ Sym∗(V )⊗ Λ1(V ) d−→ · · ·
and this is an algebraic version of the deRham complex. We also get

· · · −→ Sym∗(V )⊗ Λ2(V ) κ−→ Sym∗(V )⊗ Λ1(V ) κ−→ Sym∗(V )⊗ Λ0(V )

which is a Koszul complex.

Proposition 30.6.
(a) dκ+ κd : Symr(V )⊗ Λs(V )→ Symr(V )⊗ Λs(V ) is multiplication by the total

degree r + s.
(b) In (30.5) every diagonal deRham chain complex is exact in dimensions where

the total degree is prime to the characteristic of F .
(c) In (30.5) every diagonal Koszul chain complex is exact, regardless of the char-

acteristic of the ground field.

Proof. Part (a) is a computation that is tedious but not particularly hard. Part (b)
follows from (a): the maps κ give a chain homotopy showing that multiplication by
the total degree is homotopic to the zero map. If the total degree is invertible in
the ground field, this implies that the homology must be zero in that dimension.

We do not actually need part (c) below, but we include it to complete the story.
The maps d give a chain homotopy for the κ-complexes, much like in the proof
of (b), but this gives exactness only for some spots in the complex. The proof
of exactness at all spots is something we have already seen in a somewhat more
general context, in Theorem 17.24(a). �

Now we apply the above results to K-theory. Since the deRham and Koszul
complexes were canonical constructions, we can apply them to vector bundles. The
deRham complex gives us exact sequences

0 // Symk E ⊗ Λ0E // Symk−1E ⊗ Λ1E // · · · // Sym1E ⊗ Λk−1E

��
Sym0E ⊗ ΛkE // 0.

These show that in K0(X) one has∑
a+b=k

[SymaE] · [ΛbE] = 0.

Consequently, symt([E]) · λt([E]) = 1. So

symt([E]) = 1
λt([E]) = λt(−[E]) and λt([E]) = 1

symt([E]) = symt(−[E]).



A GEOMETRIC INTRODUCTION TO K-THEORY 221

Any class w ∈ K0(X) has the form w = [E] − [F ] for some vector bundles E and
F , and therefore

symt(w) = symt([E]) · symt(−[F ]) = λt(−[E]) · λt([F ]) = λt([F ]− [E]) = λt(−w).

So the symk and λk operations on K-theory are essentially the same: symk(w) =
λk(−w).

This has been a long discussion with somewhat of a negative conclusion: the
symk operations can be completely ignored in favor of the λk’s (or vice versa). We
have learned some useful things along the way, however.

30.7. The Newton polynomials. The usefulness of the λk operations is limited
by the fact that they are not group homomorphisms. There is a clever method,
however, for combining the λ-operations in a way that does produce a collection
of group homomorphisms. This is originally due to Frank Adams [Ad2]. Before
describing this construction we take a brief detour to develop the algebraic combi-
natorics that we will need.

Moved to appendix

30.8. The Adams operations. Recall that we have a map λt : K0(X) →(
K0(X)[[t]]

)∗ and that this is a group homomorphism:

λt(x+ y) = λt(x) · λt(y).
If we want additive maps K0(X) → K0(X) a natural idea is to apply logarithms
to the above formula. To be precise, start with the formal power series

log(1 + z) = z − z2

2 + z3

3 − · · ·
Since λt(x) has constant term equal to 1, we can use the above series to make sense
of log(λt(x))—but only provided that we add denominators into K0(X), say by
tensoring with Q. If we set µt(x) = log(λt(x)) then we would have

µt(x+ y) = µt(x) + µt(y).

The coefficients of powers of t in µt(x) then give additive operations, with the only
difficulty being that they take values in K0(X)⊗Q.

We can, however, eliminate the need for Q-coefficients by applying the operator
d
dt . Precisely, define

νt(x) =
d

dt

[
µt(x)

]
= λ′t(x)

λt(x)
= (1− z + z2 − z3 + · · · )|z=λt(x)−1 · λ′t(x).

Clearly this eliminates the problem with denominators: νt(x) ∈ K0(X)[[t]], yet
we still have νt(x + y) = νt(x) + νt(y). Taking coefficients of νt(x) thereby yields
additive operations νk : K0(X)→ K0(X).

We could stop here, but there is one more modification that makes things a bit
simpler later on. Suppose that L is a line bundle over X, and take x = [L]. Then
λt(x) = 1 + [L]t = 1 + xt, hence

νt(x) = x
1+xt = x(1− xt+ x2t2 − x3t3 + · · · ) = x− x2t+ x3t2 − · · · .

The ν-operations simply give powers of x, together with certain signs: νk(x) =
(−1)kxk−1. It is easy to adopt a convention that makes these signs disappear, and
we might as well do this; and while we’re at it, lets shift the indexing on the ν’s so
that the kth operation sends x to xk, since that will be easier to remember.
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Putting everything together, we have arrived at the following definition:

ψt(x) = t
d

dt

[
log(λ−t(x))

]
= t · λ

′
−t(x)

λ−t(x)
,

and ψk(x) is the coefficient of tk in ψt(x). The operations ψk are called Adams
operations. We have proven that
(1) Each ψk is a group homomorphism K0(X)→ K0(X), natural in X;
(2) If x = [L] for L a line bundle then ψk(x) = xk.

Conditions (1) and (2) actually completely characterize the Adams operations,
although we will not need this.

The following identities give a recursive formula for the Adams operations in
terms of the λ-operations:

Proposition 30.9.
(a) ψk = Sk(λ1, . . . , λk), where Sk is the kth Newton polynomial;
(b) ψk = λ1ψk−1 − λ2ψk−1 + · · ·+ (−1)kλk−1ψ1 + (−1)k+1kλk.

Proof. Part (b) is, of course, an immediate consequence of (a) via Lemma B.1. Part
(a) follows directly from Proposition B.3. �

We record the first few Adams operations:

ψ1 = λ1, ψ2 = (λ1)2 − 2λ2, ψ3 = (λ1)3 − 3λ1λ2 + 3λ3.

For more of these, just see Table 2.2.

30.10. Properties of the Adams operations.

Proposition 30.11. Fix k, l ≥ 1 and x, y ∈ K0(X). Then
(a) ψk(x+ y) = ψk(x) + ψk(y)
(b) ψk(xy) = ψk(x)ψk(y)
(c) ψk(ψl(x)) = ψkl(x)
(d) If k is prime then ψk(x) ≡ xk mod k.

The proof will use the following terminology. A line element in K0(X) is any
element [L] where L→ X is a line bundle. The span of the line elements consist of
the classes of the form [L1] + · · ·+ [La]− [L′1]− · · · − [L′b] where the Li’s and L′j ’s
are all line bundles.

Proof of Proposition 30.11. Note that if x and y are line elements then all of the
above results are obvious because ψr([L]) = [Lr]. More generally, the results follow
easily if x and y are in the span of the line elements. The general result now
follows from the splitting principle in Proposition 30.12 below. Specifically, choose
a p : X1 → X such that p∗ is injective and p∗(x) is in the span of line elements.
Then choose a q : X2 → X1 such that q∗ is injective and q∗(p∗(y)) is in the span of
line elements. The identities in (a)–(d) all hold for x′ = (pq)∗(x) and y′ = (pq)∗(y),
and so the injectivity of (pq)∗ shows they hold for x and y as well. �

Proposition 30.12 (The Splitting Principle). Let X be any space, and let x ∈
K0(X). Then there exists a space Y and a map p : Y → X such that p∗ : K0(X)→
K0(Y ) is injective and p∗(x) is in the span of line elements.
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Proof. Write x = [E] − [F ] for vector bundles E and F . Consider the map
π : P(E) → X. Then π∗E ∼= E′ ⊕ L where L is a line bundle, and π∗ : K0(X) →
K0(P(E)) is injective (????). Iterating this procedure we obtain a map f : Y → X
such that f∗E is a sum of line bundles and f∗ is injective. Now use the same
process to obtain a map g : Y ′ → Y such that g∗ is injective and g∗(f∗F ) is a sum
of line bundles. The composite Y ′ → X has the properties from the statement of
the proposition. �

Corollary 30.13 (Characterization of Adams operations). Fix k ≥ 1. Suppose
that F : K0(−)→ K0(−) is a natural ring homomorphism such that F ([L]) = [Lk]
for any line bundle L→ X. Then F = ψk.

Proof. Fix a space X, and let α ∈ K0(X). Then α = [E] − [F ] for some vector
bundles E and F on X. By the Splitting Principle there exists a map p : Y → X
such that p∗E and p∗F are direct sums of line bundles, and such that p∗ : K0(X)→
K0(Y ) is injective. Our assumption on F implies at once that F (p∗α) = ψk(p∗α),
or equivalently p∗(Fα) = p∗(ψkα). Injectivity of p∗ now gives F (α) = ψk(α). �

The fact that ψk is natural and preserves (internal) products immediately yields
that it also preserves external products. Recall that if x ∈ K0(X) and y ∈ K0(Y )
then the external product can be written as x × y = π∗1(x) · π∗2(y) ∈ K0(X × Y ).
Clearly ψk(x× y) = ψk(x)× ψk(y). Using this, we easily obtain the following:

Proposition 30.14. For k ≥ 1, ψk acts on K̃0(S2n) as multiplication by kn.

Proof. Let β = 1 − [L] be the Bott element in K̃0(S2), and recall that the interal
square β2 = 0. From this it follows readily that

ψk(β) = 1− Lk = 1− (1− β)k = 1− (1− kβ) = kβ.

Now recall that the external power β(n) = β × β × · · · × β generates K̃0(S2n). But

ψk(β(n)) = (ψkβ)(n) = (kβ)(n) = knβ(n).

�

Recall the canonical filtration of K0(X) discussed in ????. In particular, recall
that F 2n−1K0(X) = F 2nK0(X), for every n. The naturality of the Adams oper-
ations shows that they respect the filtration, and Proposition 30.14 shows that ψk

acts as a scalar on the associated graded:

Proposition 30.15. Let k ≥ 1.
(a) If x ∈ F 2nK0(X) then ψk(x) = knx + terms of higher filtration. That is,

ψk(x)− knx ∈ F 2n+2K0(X).
(b) If the induced filtration on K0(X)Q is finite (e.g., if X is a finite-dimensional

CW -complex) then the operations ψk are diagonalizable on K0(X)Q, with
eigenvalues of the form kr for r ≥ 0. The decomposition

K0(X)Q =
⊕
r≥0

Eigψk(kr)

is independent of k, and it restricts to give

F 2nK0(X)Q =
⊕
r≥n

Eigψk(kr).
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Proof. For part (a) it suffices to replace X by a weakly equivalent CW -complex,
so that F 2nK0(X) = ker[K0(X) → K0(X2n−1)]. If α ∈ F 2nK0(X) then let α1

denote its image in K0(X2n). The cofiber sequence X2n−1 ↪→ X2n → X2n/X2n−1

indcues a long exact sequence

· · · → K̃0(X2n/X2n−1)→ K0(X2n)→ K0(X2n−1)→ · · ·
The element α1 ∈ K0(X2n) maps to zero, and so it is the image of a class α2 ∈
K̃0(X2n/X2n−1). By Proposition 30.14 one knows ψk(α2) = knα2, and so ψkα1 =
knα1. It follows that ψkα − knα maps to zero in K0(X2n), and hence lies in
F 2n+1K0(X2n).

For part (b), let 2n be the largest even integer such that F 2nK0(X)Q 6= 0. It
follows from (a) that ψk acts as multiplication by kn on F 2nK0(X)Q. We now
prove by reverse induction that F 2iK0(X)Q is the sum of kj-eigenspaces of ψk, for
j ≥ i. Assume this holds for a particular value of i, and let α ∈ F 2i−2K0(X). We
know ψkα = ki−1α + γ, where γ is some element of F 2iK0(X)Q. The induction
hypothesis says that γ = σi + σi+1 + · · ·+ σn where each σr is an eigenvector with
eigenvalue kr. A routine calculation now shows that α−

∑
r≥i

1
kr−ki−1σr is a ki−1-

eigenvector for ψk, and hence α belongs to the sum of eigenspaces for eigenvalues
kr, r ≥ i− 1. This completes the induction step. �

31. The Hopf invariant one problem

The Hopf invariant assigns an integer to every map f : S2n−1 → Sn, giving a
group homomorphism H : π2n−1(Sn) → Z. Elementary arguments show that 2 is
always in the image, and the natural question is then whether 1 is also in the image.
This is the Hopf invariant one problem—determine all values of n for which H is
surjective (or said differently, all values of n for which there exists a map of Hopf
invariant one).

It was known classically that H is surjective when n ∈ {1, 2, 4}, because the
classical Hopf maps all have Hopf invariant equal to one. The question for other
dimensions was first settled by Adams in [Ad1], who proved that no other Hopf
invariant one maps exist. Adams’s proof is not simple, even by modern stan-
dards, being based on secondary cohomology operations associated to the Steenrod
squares. Several years after Adams gave his original proof, Adams and Atiyah
used K-theory to give a much simpler solution to the Hopf invariant one problem.
Their ‘postcard proof’ takes less than a page, in dramatic contrast to Adams’s
original method. This was seen—rightly so—as a huge demonstration of the power
of K-theory.

Our goal in this section will be to present the Adams-Atiyah proof, although we
will not quite do this in their style. Specifically, when Adams and Atiyah wrote
their paper they clearly had an agenda: to write down the proof in as small a space
as possible. If the goal is to accentuate how much the use of K-theory simplifies the
solution, this makes perfect sense. But at the same time, writing the proof in this
way results in a certain air of mystery: the proof involves a strange manipulation
with the Adams operations ψ2 and ψ3 that comes out of nowhere—it seems like a
magic trick.

In our presentation below we try to put this (ψ2, ψ3) trick into its proper context:
it is part of a calculation of a certain Ext1 group. The full calculation of this group
is not hard, and quite interesting for other reasons—e.g., it connects deeply to the
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study of the J-homomorphism. Our presentation doesn’t fit on a postcard, but
by the time we are done we will have a good understanding of several neat and
important things. Hopefully it won’t seem like magic.

31.1. Brief review of the problem. Let f : S2n−1 → Sn and consider the map-
ping cone Cf . One readily computes that

Hi(Cf) ∼=

{
Z if i ∈ {0, n, 2n},
0 otherwise.

Fix an orientation on the two spheres, and let a and b be corresponding generators
for Hn(Cf) and H2n(Cf). The b2 = h · a for a unique integer h ∈ Z, and this
integer is called the Hopf invariant of f : we write h = H(f).

Note that if n is odd then b2 = −b2 and so h = 0. Therefore the Hopf invariant
is only interesting when n is even.

Remark 31.2. We follow [Ha, Proposition 4B.1] to see that H : π2n−1(Sn)→ Z is
a group homomorphism. Given f, g : S2n−1 → Sn consider the diagram of mapping
cones

S2n−1

��

f+g // Sn // Cf+g

��
S2n−1 ∨ S2n−1

f∨g // Sn // X

where the left vertical map is the equatorial collapse and X = Cf∨g. Note that
there are inclusions Cf ↪→ X and Cg ↪→ X. The cohomology group H2n(X) has
two generators a1 and a2, and naturality applied to those inclusions shows that
b2 = H(f)a1 +H(g)a2. But under the map Cf+g → X both a1 and a2 are sent to
our usual generator a, and from this one gets that H(f + g) = H(f) +H(g).

Remark 31.3. It is easy to see that 2 (and therefore any even integer) is always
in the image of H. We again follow [Ha] here and let X be the pushout

Sn ∨ Sn // //

∇
��

Sn × Sn

α

��
Sn // X.

One readily checks that the cohomology of X consists of two copies of Z, in degrees
n and 2n. So X is the mapping cone of a certain map f : S2n−1 → Sn, the attaching
map of the top cell. If x ∈ Hn(Sn) is a fixed generator, then there is a generator
b ∈ Hn(X) that maps to x⊗ 1 + 1⊗ x under α∗. It follows that b2 maps to

(x⊗ 1 + 1⊗ x)2 = 2(x⊗ x)
and therefore b2 is twice a generator of H2n(X). It follows that the Hopf invariant
of f is ±2, depending on one’s sign choices.

The problem arises of determining the precise image ofH : π2n−1(Sn)→ Z, when
n is even. By Remarks 31.2 and 31.3 the image is a subgroup that contains 2Z, so
there are only two possibilities: either the image equals 2Z, or else it equals all of
Z. The latter happens if and only if there exists an element in π2n−1(Sn) having
Hopf invariant equal to one. Thus, this is the “Hopf invariant one” problem.
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The following several paragraphs involve the Steenrod squares. The results will
not be needed later in this section, but they constitute an interesting part of the
overall story.

As soon as one is versed in the Steenrod squares it is easy to obtain a necessary
condition for the existence of a Hopf invariant one map f : S2n−1 → Sn. In the mod
2 cohomology of Cf we have Sqn(b) = b2 = h · a. So if f has odd Hopf invariant
then Sqn(b) = a, and the mod 2 cohomology of Cf looks like this:

Sqn

b

a

This picture just says that the cohomology has generators a and b together with a
Sqn connecting b to a. As an immediate consequence we obtain Adem’s theorem:

Proposition 31.4 (Adem). If f : S2n−1 → Sn has Hopf invariant one then n is a
power of 2.

Proof. The above picture represents a module over the Steenrod algebra only if Sqn

is indecomposable. But by our knowledge of the Steenrod algebra, the indecompos-
ables all have degrees equal to a power of 2 (they are represented by the elements
Sq2i

). �

The reader might have noticed that there actually seem to be two problems
here, that are interelated. There is the Hopf invariant one problem, and there
is the question of whether there exists a map Sk+n−1 → Sk whose cofiber has
a nonzero Sqn in mod 2 cohomology. The first problem is inherently unstable in
nature because it deals with the cup product, whereas the second problem is clearly
stable. It is useful to note that the two problems are actually equivalent:

Proposition 31.5. Fix n ≥ 1. The following two statements are equivalent:
(a) There exists a map S2n−1 → Sn of Hopf invariant one;
(b) There exists a k ≥ 0 and a map Sk+n−1 → Sk whose mapping cone has a

nonzero Sqn operation.

Proof. In the discussion preceding Adem’s theorem we saw that (a) implies (b) by
taking k = n. Conversely, if (b) holds for a certain map g then by suspending if
necessary we can assume k ≥ n. The Freudenthal Suspension Theorem guarantees
that π2n−1(Sn)→ πk+n−1(Sk) is surjective, so choose map a map f : S2n−1 → Sn

that is a preimage of g. The spaces Cf and Cg are homotopy equivalent after
appropriate suspensions, so the mod 2 cohomology of Cf has a nonzero Sqn. It
immediately follows that f has odd Hopf invariant, and consequently there exists
a map of Hopf invariant one. �

Adem’s theorem is really an analysis of the stable problem, and it may be
rephrased as follows. If f : Sn+k−1 → Sk then there is a cofiber sequence
Sn+k−1 → Sk → Cf , and the long exact sequence on mod 2 cohomology breaks up
into a family of short exact sequences

0← H̃∗(Sk; Z/2)← H̃∗(Cf ; Z/2)← H̃∗(Sn+k; Z/2)← 0.
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These are maps of modules over the Steenrod algebra A, and both the left and
right terms are isomorphic to the trivial A-module F2 (graded to lie in the ap-
propriate dimension). So the above short exact sequence represents an element of
Ext1A(F2,F2). Standard homological algebra identifies this Ext1 with the module
of indecomposables I/I2, where I is the augmentation ideal of A. Adem’s Theorem
works because we know this module of indecomposables precisely, and therefore
can identify the Ext1 groups precisely.

31.6. An Ext calculation. Most of this section will be spent in pursuit of a purely
algebraic question, somewhat related to what we just saw. Let (N, ·) be the monoid
of natural numbers under multiplication, and let B = Z[N] be the corresponding
monoid ring. Write ψk for the element of B corresponding to k ∈ N. Then B is
simply the polynomial ring

B = Z[ψ2, ψ3, ψ5, . . .],

with one generator corresponding to each prime number. We think of B as the ring
of formal Adams operations, and note that K0(X) is naturally a B-module for any
space X.

Let Z(r) denote the following module over B: as an abelian group it is a copy of
Z, with chosen generator g, and the B-module structure is ψk.g = krg. Our goal
will be to compute the groups

Ext1B(Z(r),Z(s))

for all values of r and s.
Before exploring this algebraic problem let us quickly indicate the application to

topology. Let f : Sn+k → Sn be a map of spheres, and write Cf for the mapping
cone. The Puppe sequence looks like

Sn+k → Sn → Cf → Sn+k+1 → Sn+1 → · · ·
and applying K̃0(−) to this yields

K̃0(Sn+k)← K̃0(Sn)← K̃0(Cf)← K̃0(Sn+k+1)← K̃0(Sn+1)← · · ·

Any K̃0(−) group is naturally a B-module, via the Adams operations; and all the
maps in the above sequence are maps of B-modules. Under the hypotheses that n
is even and k is odd, the groups on the two ends vanish and we get a short exact
sequence

0← K̃0(Sn)← K̃0(Cf)← K̃0(Sn+k+1)← 0.

Proposition 30.14 says that as a B-module K̃0(S2r) is isomorphic to Z(r), and
hence the above sequence yields an element

A(f) ∈ Ext1B
(
Z(n+k+1

2 ),Z(n2 )
)
.

That is to say, we have obtained a topological invariant of f taking values in this
Ext group.

Now we begin our computation. Let X be a B-module that sits in a short exact
sequence

0→ Z(s)→ X → Z(r)→ 0.(31.7)
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Write a for a chosen generator of Z(s) (as well as its image in X) and b̃ for a chosen
generator of Z(r). Write b for a preimage of b̃ in X. Then we have

ψkb = krb+ Pka

for a unique Pk ∈ Z. The B-module structure on X is completely determined by
the ∞-tuple of integers P = (P2, P3, P5, . . .).

Does any choice of P correspond to a B-module? To be a B-module one must
have ψkψl = ψlψk on B. But we can compute

ψk(ψlb) = ψk(lrb+ Pla) = lr · ψk(b) + Pl · ψka
= lr · (krb+ Pka) + Plk

sa

and likewise

ψl(ψkb) = ψl(krb+ Pka) = kr · ψl(b) + Pk · ψla
= kr · (lrb+ Pla) + Pkl

sa.

Equating these expressions we find that (lr − ls)Pka = (kr − ks)Pla. Since a is
infinite order in X it must be that

(lr − ls)Pk = (kr − ks)Pl,
and this holds for every two primes k and l. If r = s this gives no condition and
it is indeed true that any choice of P corresponds to a module X. But in the case
r 6= s we can write

Pl

Pk
= lr−ls

kr−ks .

So once we fix a prime k, all other Pl’s are determined by Pk. For convenience we
take k to be the smallest prime, and obtain

Pl = P2 ·
(
lr−ls
2r−2s

)
for every prime l. This shows that the module X depends on the single parameter
P2; however, it is still not true that all possible integral choices for P2 correspond
to B-modules. Indeed, we will only get a B-module if the above formula for Pl
yields an integer for every choice of l. To this end define

Zr,s =
{
P ∈ Z

∣∣P · ( lr−ls2r−2s

)
∈ Z, for all primes l

}
.

For P ∈ Zr,s let XP denote the corresponding B-module for which P2 = P .
Note that Zr,s ⊆ Z is an ideal, and nonzero because it contains 2r − 2s. In a

moment we will compute this ideal in some examples. For now simply note that
we have a map (in fact a surjection) Zr,s → Ext1B(Z(r),Z(s)) sending P to the
extension (31.7) in which X = XP . It is an exercise to check that this is indeed a
map of abelian groups.

We next need to understand when XP and XQ are isomorphic as elements of
Ext1B(Z(r),Z(s)). This is when there is a map of B-modules XP → XQ yielding a
commutative diagram

0 // Z(s) // XP

f

��

// Z(r) // 0

0 // Z(s) // XQ // Z(r) // 0
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Such an f must satisfy f(a) = a, and f(b) = b+ Ja for some J ∈ Z (note that the
symbols a and b are being used to simultaneously represent different elements of XP

and XQ). The condition that f be a map of B-modules is that ψk(f(b)) = f(ψkb)
for all primes k. For k = 2 the left-hand-side is

ψ2(b+ Ja) = 2rb+Qa+ J · 2sa
and the right-hand-side is

f(ψ2b) = f(2rb+ Pa) = 2r(b+ Ja) + Pa.

We obtain the condition
Q− P = (2r − 2s)J.

The reader may check as an exercise that the condition for the other ψk’s follows
as a consequence of this one.

The conclusion is that XP and XQ are isomorphic as elements of
Ext1B(Z(r),Z(s)) precisely when P − Q is a multiple of 2r − 2s. The map
Zr,s → Ext1B(Z(r),Z(s)) therefore descends to an isomorphism

Zr,s/(2r − 2s)
∼=−→ Ext1B(Z(r),Z(s)).

Finally, it remains to determine the group Zr,s/(2r − 2s). This is a cyclic group
(since Zr,s ∼= Z), and we need to find its order. To this end, note that the condition
P ( l

r−ls
2r−2s ) ∈ Z is equivalent to

2r−2s

gcd(2r−2s,lr−ls)

∣∣∣P.
This is true for all l if and only if P is a multiple of

lcm
{

2r−2s

gcd(2r−2s,lr−ls)

∣∣∣ l prime
}

= 2r−2s

gcd({lr−ls | l prime}) .

So define
Nr,s = gcd(2r − 2s, 3r − 3s, 5r − 5s, 7r − 7s, . . .).

Then we have just determined that Zr,s = ((2r − 2s)/Nr,s), and hence

Ext1B(Z(r),Z(s)) ∼= ( 2r−2s

Nr,s
)/(2r − 2s) ∼= Z/Nr,s.

We will explore the numbers Nr,s in a moment, but we have already done enough
to be able to solve the Hopf invariant one problem. So let us pause and tackle that
first.

31.8. Solution to Hopf invariant one. We are ready to give the Adams-Atiyah
[AA] solution to the Hopf invariant one problem:

Theorem 31.9. If f : S2n−1 → Sn has Hopf invariant one then n ∈ {1, 2, 4, 8}.

Proof. We assume n > 1 and prove that n ∈ {2, 4, 8}. We of course know that n is
even, since otherwise the Hopf invariant is necessarily zero. Write n = 2r, and let
X be the mapping cone of f . We have an exact sequence of B-modules

0← K̃0(Sn)← K̃0(X)← K̃0(S2n)← 0

which has the form
0← Z(r)← K̃0(X)← Z(2r)← 0.

Let a ∈ K̃0(X) be the image of a chosen generator for K̃0(S2n) and let b ∈ K̃0(X)
be an element that maps to a chosen generator of K̃0(Sn). Then b2 maps to 0 in
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K̃0(Sn), so we have b2 = h · a for a unique h ∈ Z. A little thought shows that, up
to sign, h is the Hopf invariant of the map f .

The key to the argument is the equivalence ψ2(b) ≡ b2 mod 2 (Proposi-
tion 30.11(d)). Using our assumption that h is odd, this gives ψ2(b) ≡ a mod
2. However, recall our classification of extensions in Ext1B(Z(r),Z(2r)). Such ex-
tensions are determined by an integer P2 ∈ Z satisfying

P2 ·
(
l2r−lr
22r−2r

)
∈ Z(31.10)

for all primes l, where P2 is defined by the equation ψ2b = 2rb+P2a. Our assumption
about the Hopf invariant of f now gives that P2 is odd. But equation (31.10) says
that

P2 · l
r

2r · l
r−1

2r−1 ∈ Z,
and if P2 is odd and l is odd then this implies that 2r|lr − 1.

Let us pause here and summarize. From the topology we have extracted a
number-theoretic condition: if n = 2r and S2n−1 → Sn has Hopf invariant one,
then 2r|lr − 1 for all odd primes l.

This number-theoretic condition is very restrictive, and it turns out just looking
at l = 3 is enough to give us what we want. The lemma below shows that r lies in
{1, 2, 4}, impying that our original n belongs to {2, 4, 8} as desired. �

Lemma 31.11. If 2r|3r − 1 then r ∈ {0, 1, 2, 4}.

Proof. Let ν(n) be the 2-adic valuation of an integer n: that is, n = 2ν(n) · (odd).
Here is a table showing the numbers ν(3r − 1) for small values of r:

Table 31.12.

r 1 2 3 4 5 6 7 8 9 10 11 12
ν(3r − 1) 1 3 1 4 1 3 1 5 1 3 1 4

The reader will reach the natural guess that ν(3r − 1) = 1 when r is odd,
and this is easy to prove by working modulo 4. In Z/4 we have 3 = −1, and so
3r = (−1)r = −1 when r is odd. Thus 3r − 1 = 2 in Z/4, which confirms that
ν(3r − 1) < 2.

When r is even the reader will note from the table that ν(3r − 1) seems to grow
quite slowly as a function of r. Again, this is easy enough to prove as soon as one
has the idea to do so. If r = 2u then

3r − 1 = 32u − 1 = (3u − 1)(3u + 1).

Modulo 8 the powers of 3 are just 1 and 3, so the possible values for 3u + 1 are
only 2 and 4. In particular, 8 does not divide 3u + 1: that is, ν(3u + 1) < 3 for all
values of u. We therefore have ν(3r − 1) ≤ ν(3u − 1) + 2. If u is odd we stop here,
otherwise we again divide by 2 and apply the same formula; a simple induction
along these lines yields

ν(3r − 1) ≤ 1 + 2ν(r).
The bound 1 + 2ν(r) is generally substantially smaller than r. An easy exercise

verifies that r ≤ 1+2ν(r) only when r ∈ {1, 2, 4}. So to summarize, we have shown
that if r /∈ {1, 2, 4} then 1 + 2ν(r) < r; hence ν(3r − 1) < r, and so 2r - 3r − 1. �
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31.13. Completion of the Ext calculation. At this point we have finished with
the solution to the Hopf invariant one problem. But there is another interesting
problem that is still on the table, namely the exact computation of the groups

Ext1B(Z(r),Z(s)) ∼= Z/Nr,s.
We need to determine the numbers Nr,s.

This calculation, of course, is intriguing from a purely algebraic perspective—
when an answer comes down to finding one specific number, it would be difficult
not to take the extra step and determine just what that number is. But the answer
is also interesting for topological reasons. We have seen that if f : Sn+k−1 → Sn

where n and k are both even, then we get an extension A(f) ∈ Ext1B(Z(n2 ),Z(n+k
2 )).

A little work shows that this actually gives a group homomorphism

A : πn+k−1(Sn)→ Ext1B
(
Z(n2 ),Z(n+k

2 )
) ∼= Z/Nn

2 ,
n+k

2
.

It is important to determine how large the target group is, and how close A is to
being an isomorphism. This was investigated by Adams [A3].

We begin our investigation of the numbers Nr,s by looking at Nr,r−1. Since
lr − lr−1 = lr−1(l − 1) this is

Nr,r−1 = gcd(2r−1, 3r−1 · 2, 5r−1 · 4, 7r−1 · 6, . . .).
The 2r−1 in the first entry tells us that the gcd will be a power of 2, and the 3r−1 ·2
tells us that it will be at most 21. A moment’s thought reveals that the gcd is
precisely 21, as long as r ≥ 2. When r = 1 the gcd is just 1:

Nr,r−1 =

{
1 if r = 1,
2 if r ≥ 2.

Next consider the numbers Nr,r−2, requiring us to look at lr−lr−2 = lr−2(l2−1).
We have

Nr,r−2 = gcd(2r−2(22 − 1), 3r−2(32 − 1), 5r−2(52 − 1), 7r−2(72 − 1), . . .)

= gcd(2r−2 · 3, 3r−2 · 8, 5r−2 · 24, 7r−2 · 48, . . .).

From the first entry we see that the gcd will only have twos and threes in its
factorization, with at most one 3. Later entries show that the gcd has at most 3
twos, and a brief inspection leads to the guess that the gcd is 24 as long as r ≥ 5.
To prove this we need to verify that 24|l2−1 for primes l > 3. This is easy, though.
Consider the numbers l − 1, l, and l + 1. At least one is a multiple of 3, and our
hypotheses on l say that it isn’t l. So 3 divides (l − 1)(l + 1) = l2 − 1. Likwise,
both l − 1 and l + 1 are even and at least one must be a multiple of 4: so 8|l2 − 1
as well. The reader will now find it easy to check the following numbers:

Nr,r−2 =


1 if r = 2,
6 if r = 3,
12 if r = 4,
24 if r ≥ 5.

Remark 31.14. The two cases we have analyzed so far yield an evident conjecture:
that Nr,r−t is independent of r for r � 0. We will see below that this is indeed the
case.
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Let us work out two more cases before discussing the general pattern.

Nr,r−3 = gcd(2r−3(23 − 1), 3r−3(33 − 1), 5r−3(53 − 1), . . .)

= gcd(2r−3 · 7, 3r−3 · 26, 5r−2 · 124, . . .).

A very quick investigation shows that

Nr,r−3 =

{
1 if r = 3,
2 if r ≥ 4.

Moving to Nr,r−4 we have

Nr,r−4 = gcd(2r−4(24 − 1), 3r−4(34 − 1), 5r−4(54 − 1), . . .)

= gcd(2r−4 · 15, 3r−4 · 80, 5r−4 · 624, 74−r · 2400, . . .).

The numbers are getting larger now, and it is harder to see the patterns. The
relevant fact is that l4 − 1 is a multiple of 24 · 3 · 5 for all primes l > 5; and for
l = 2 it is a multiple of 3 · 5, for l = 3 it is a multiple of 24 · 5, and for l = 5 it is
a multiple of 24 · 3. We leave it as an exercise for the reader to prove this, using
the factorization l4 − 1 = (l − 1)(l + 1)(l2 + 1) and some easy number theory. The
conclusion is that

Nr,r−4 =



1 if r = 4,
30 if r = 5,
60 if r = 6,
120 if r = 7,
240 if r ≥ 8.

By now it should be clear what the general pattern is, if not the specifics. To
understand Nr,r−t we consider the numbers

2t − 1, 3t − 1, 5t − 1, 7t − 1, . . .

Excluding some finite set of primes at the beginning, there will be an “interesting”
gcd to this set of numbers. When r is large the bad primes at the beginning
become irrelevant to the computation, and so Nr,r−t is equal to the aforementioned
“interesting” gcd when r is large. We encourage the reader to do some investigation
on his or her own at this point. The “large r” values of Nr,r−t are listed in the
following table, together with their prime factorizations:

t 1 2 3 4 5 6 7 8 9 10 11 12
Nr,r−t 2 24 2 240 2 504 2 480 2 264 2 65520

p.f. 2 23·3 2 24·5 2 23·32·7 2 25·3·5 2 23·3·11 2 24·32·5·7·13

If you have been around the stable homotopy groups of spheres you will see some
familiar numbers in this table, which might make you sit up and take notice. For
example: πs3 ∼= Z/24, πs7 ∼= Z/240, πs11 ∼= Z/504, and πs15

∼= Z/960 (note that the
last one does not quite match). It is remarkable to have these numbers coming up
in a purely algebraic computation! It turns out that what we are seeing here is the
so-called “image of J”. We will say more about this at a later time.
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Fix t ∈ Z+. It turns out that there is a simple formula for the “stable” values
of Nr,r−t, as a function of t. These stable values are also closely connected to the
denominators of Bernoulli numbers. We close this section by explaining this.

Our examples have led to the hypothesis that the sequence of numbers

2N (2t − 1), 3N (3t − 1), 5N (5t − 1), 7N (7t − 1), . . .

has a greatest common divisor that is independent of N when N � 0. Our aim is
to prove this, and to investigate this gcd. To this end, let mN (t) be this gcd:

mN (t) = gcd{lN (lt − 1) | l is prime}.
Also define

m′
N (t) = gcd{kN (kt − 1) | k ∈ Z+}.

Clearly m′
N (t) divides mN (t), but in fact the two are equal:

Lemma 31.15. For all t and N , m′
N (t) = mN (t).

Proof. It will suffice to show that mN (t) divides m′
N (t), or equivalently that every

prime-power factor of the former is also a factor of the latter. So let p be a prime
and suppose pe|mN (t). Then pe|pN (pt−1), so e ≤ N . For any l such that (l, p) = 1
we have pe|lt − 1, so lt = 1 in Z/pe.

Now let k ∈ Z with k ≥ 2. If p | k then pe | kN (kt− 1) since e ≤ N . If p - k then
write k = l1l2 . . . lr where each lr is a prime different from p. We know that lti = 1
in Z/pe for each i, and so kt = lt1l

t
2 . . . l

t
r = 1 in Z/pe as well. That is, pe|kt−1. We

have therefore shown that pe|m′
N (t), which is what we wanted. �

The next proposition proves that mN (t) stabilizes for N � 0, and it also deter-
mines an explicit formula for the stable value in terms of the prime factorization of
t. Let νp(t) denote the exponent of the prime p in the prime factorization of t.

Proposition 31.16. Let L be the supremum of all exponents in the prime factor-
ization of t. Then mN (t) is independent of N for N ≥ L+ 2. If we call this stable
value m(t) then
(a) m(t) = 2 when t is odd;
(b) When t is even m(t) = 22+ν2(t) ·

∏
p odd,(p−1)|t

p1+νp(t).

(c) More generally,

mN (t) = 2min{2+ν2(t),N} ·
∏

p odd,(p−1)|t

pmin{1+νp(t),N}.

Remark 31.17. The notation m(t) comes from Adams [A3].

Before proving the proposition let us look at a couple of examples. To compute
m(50) we write 50 = 2 · 52. Next we make a list of all odd primes p such that p− 1
divides 50; these are 3 and 11. So

m(50) = 23 · 3 · 11 = 264.

For a harder example let us compute m(12). We write 12 = 22 · 3, and our list of p
such that p− 1 divides 12 is 3, 5, 7, and 13. So

m(12) = 24 · 32 · 5 · 7 · 13 = 65520.
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Further, we have m(12) = m4(12) and

m3(12) = 23 · 32 · 5 · 7
m2(12) = 22 · 32 · 5 · 7
m1(12) = 21 · 31 · 5 · 7
m0(12) = 1.

Here are several more values of m for the reader’s curiosity (the numbers are, of
course, better understood in terms of their prime factorizations):

t 2 4 6 8 10 12 14 16 18

m(t) 24 240 504 480 264 65520 24 16320 28728

To prove Proposition 31.16 we need a lemma from algebra. Most basic algebra
courses prove that the group of units in Z/p is a cyclic group, necessarily isomorphic
to Z/(p − 1). One can also completely describe the group of units inside the ring
Z/pe, for any e. Recall that this group simply consists of all residue classes of
integers k such that (p, k) = 1. Here is the result:

Lemma 31.18. Fix a prime p and consider the group of units (Z/pe)∗ inside the
ring Z/pe.
(a) If p is odd then (Z/pe)∗ ∼= Z/((p− 1)pe−1) ∼= Z/(p− 1)× Z/(pe−1).
(b) If e ≥ 2 then (Z/2e)∗ ∼= Z/2× Z/(2e−2). Here the Z/2 is the subgroup {1,−1}

and the Z/(2e−2) is the subgroup of all numbers congruent to 1 mod 4.
(c) (Z/2)∗ = {1}.

Proof. We first recall the proof that (Z/p)∗ is cyclic. If a finite abelian group is
noncyclic, then it contains a subgroup isomorphic to Z/k × Z/k, for some prime k
(this follows readily from the structure theorem for finite abelian groups). But if this
were true for (Z/p)∗ then the field Z/p would have k2 solutions to the polynomial
xk − 1, and this is a contradiction.

Assume that p is odd. Reduction modulo p gives a surjective map (Z/pe)∗ →
(Z/p)∗. Let K denote the kernel. Note that (Z/pe)∗ coincides with the set

{1, 2, . . . , pe − 1} − {p, 2p, 3p, . . . , (pe−1 − 1)p}
and so has order pe− pe−1. Thus, |K| = pe−1. It remains to show that K is cyclic,
and for this it suffices to verify that K has exactly p − 1 elements of order p. Let
a ∈ K − {1}, and let the base p representation of a be

a = 1 + afp
f + af+1p

f+1 + · · ·+ ae−1p
e−1,

for 0 ≤ ai < p − 1 and af 6= 0 (note that a0 = 1 by the definition of K). Write
b = af + af+1p+ af+2p

2 + · · · , so that

ap = (1 + pfb)p = 1 + p · pfb+
(
p
2

)
p2fb2 + · · ·

The terms after p1+fb all contain at least f + 2 factors of p; so modulo pf+2 one
has ap ≡ 1 + pf+1b ≡ 1 + afp

f+1. So we can have ap = 1 in Z/pe only if f = e− 1.
Thus, we have shown that the elements of K that are pth roots of unity are precisely
the elements 1 + ape−1, for 0 ≤ a < p. In particular, we have only p − 1 of these
(excluding the identity element). This completes the proof.
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The proof for p = 2 is similar. Of course (Z/4)∗ ∼= Z/2. For e ≥ 3 consider
the sequence 0 → K → (Z/2e)∗ → (Z/4)∗ → 0, where the right map is reduction
modulo 4. This reduction map is split-surjective, with the splitting sending the
generator of (Z/4)∗ to −1. The proof that K is cyclic proceeds exactly as in the
odd primary case. �

Proof of Proposition 31.16. Let p be an odd prime. Then one has

pe | mN (t) ⇐⇒ pe | pN (pt − 1) and pe | lN (lt − 1) for all primes l 6= p

⇐⇒ e ≤ N and pe | lt − 1 for all primes l 6= p

⇐⇒ e ≤ N and pe|kt − 1 for all k ∈ Z+ such that p - k
⇐⇒ e ≤ N and all units in Z/pe are tth roots of 1

⇐⇒ e ≤ N and (p− 1)pe−1|t.
The second equivalence is by Lemma 31.15, and in the last equivalence we have
used that (Z/pe)∗ ∼= Z/((p − 1)pe−1). This last line shows why N is redundant
when it is large enough: the condition pe−1|t already forces e ≤ νp(t) + 1, and so
e ≤ N is redundant if N ≥ νp(t) + 1.

Assuming now that N is large enough so that we are in the stable case, the
above equivalences show that p|m(t) only when p − 1|t; and also that in this case
νp(m(t)) = 1 + νp(t).

The analysis of p = 2 is very similar. One finds

2e | mN (t) ⇐⇒ e ≤ N and all units in Z/2e are tth roots of 1.

When e = 1 the latter condition is just e ≤ N . When e > 1 the latter condition
is equivalent to e ≤ N and 2e−2|t, using Lemma 31.18(b). This readily yields the
desired result. �

Our final task is to make the connection between the numbers m(t) and the
Bernoulli numbers. For a review of the Bernoulli numbers and their basic properties,
see Appendix A. The result we are after is the following:

Theorem 31.19. When t is even, m(t) is the denominator of the fraction Bt

2t when
expressed in lowest terms.

The following table demonstrates this result in the first few cases:

t 2 4 6 8 10 12

|Bt| 1
6

1
30

1
42

1
30

5
66

691
2730

|Bt|
2t

1
24

1
240

1
504

1
480

1
264

691
65520

m(t) 24 240 504 480 264 65520

It should be remarked, perhaps, that this connection between m(t) and Bernoulli
numbers is worth more in effect than it is in practical value. The explicit formula
for m(t) from Proposition 31.16 is much more useful than its description as the
denominator of Bt/(2t). Moreover, the denominators of Bernoulli numbers are
very simple: for Bn it is simply the product of all primes p such that p− 1 divides
n. So in the end the result of Theorem 31.19 is neither deep nor particularly useful.
Still, it provides a nice-sounding connection between topology and number theory.
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Proof of Proposition 31.19. By the theorem of von Staudt and Claussen (Theo-
rem A.5) we know that the denominator of Bt (in lowest terms) is the product of
all primes p such that p − 1 divides t. Note that one such prime is p = 2, so the
denominator is even (in fact, congruent to 2 modulo 4) and the numerator is odd.
Note also that these are the same primes appearing in the factorization of m(t), by
Proposition 31.16(b).

Consider now α = Bt/(2t). Since the numerator of Bt is odd, the number of
twos in the denominator of α is 1 + 1 + ν2(t). This is the same as the number of
twos in the prime factorization of m(t).

For every prime p such that p−1|t we have one p appearing in the denominator of
Bt and νp(t) of them appearing in t, so the total number of p’s in the denominator
of α is 1 + νp(t). At this point we have thereby shown that m(t)|den(α).

It remains to check that if pe | t and p − 1 - t then pe divides the numerator of
Bt and therefore disappears from the denominator of α. This is the nontrivial part
of the proof.

Let p be an odd prime in the denominator of α, appearing with multiplicity e.
Then pe is also in the denominator of Bt/t. By Proposition A.6 we know that

kt(kt−1)Bt

t ∈ Z
for all k ∈ Z. Consequently we have pe|kt(kt − 1) for all k ∈ Z. But this exactly
says that pe divides the gcd m(t). This verifies that the ‘odd part’ of den(α) divides
m(t), and we have already checked the factors of 2 in a previous paragraph. So
den(α) | m(t), and therefore the two are equal. �

32. Calculation of KO for stunted projective spaces

The goal in this section is to determine KO0(RPn) and KO0(RPn/RP a) for
all values of n and a, together with the Adams operations on these groups. These
computations are the key to solving the vector field problem, which we do in the next
section. As intermediate steps we also compute K∗(RPn) and K∗(RPn/RP a). The
original written source for this material is Adams [Ad2] (although he acknowledges
unpublished work of Atiyah-Todd and Bott-Shapiro for portions of the calculation).
We follow Adams’s approach very closely.

Some words of warning about this material are in order. The complete calcu-
lation of KO for stunted projective spaces is fairly involved. Several things end
up going on at once, so that there is a bunch of stuff to keep track of. And cal-
culations are just never very fun to read in the first place. We have attempted to
structure our presentation to try to help with this, but of course it only goes so far.
After some preliminary material we give a section which has just the statements
of the results, with a minimal amount of discussion in between (and no proofs).
The intent is to give the reader the general picture, and also a convenient reference
section. All of the proofs are then given in a subsequent section.

Some readers might want to skip the proofs the first time through, and this is
not a problem. Later applications in the text only need the results, not details from
the proofs. However, I highly recommend that algebraic topologists go through
the proofs carefully at an early stage in their career. I cannot stress this enough.
Going through the proofs will teach you something important about this subject
that I do not have words for, and it will open up doors for you down the road.
Trust me that this is an important thing to do.
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32.1. Initial material. The results in this section will make heavy use of the
interplay between RPn and CPn in the homotopy category of spaces. We begin by
reviewing the basics of what we will need.

Let η be the tautological complex line bundle on CPn, and let L be the tauto-
logical real line bundle on RPn. Let j : RPn ↪→ CPn be the inclusion.

Lemma 32.2. The complexification of L is the pullback of η: that is, cL ∼= j∗η.

Proof. Complex line bundles on a space X are classified by homotopy classes in
[X,CP∞]. The real line bundle L is classified by the inclusion RPn ↪→ RP∞, so
the complexificaton of L is classified by the composition RPn ↪→ RP∞ ↪→ CP∞.
The complex line bundle η is classified by CPn ↪→ CP∞, so j∗η is classified by
the composition RPn ↪→ CPn ↪→ CP∞. The result follows from the commutative
diagram

RPn //

��

CPn

��
RP∞ // CP∞.

�

Note that CP∞ ' K(Z, 2), so complex line bundles on X are classified by
[X,CP∞] = H2(X). If n > 1 then H2(RPn) = Z/2, so there are only two
isomorphism classes of complex line bundles: the trivial bundle and the non-
trivial bundle. The bundle cL = j∗η is nontrivial, since its classification map
RPn ↪→ RP∞ ↪→ CP∞ represents the generator of H2(RPn).

Remark 32.3. The powers ηk are all distinct line bundles on CPn (e.g., the first
Chern classes are c1(ηk) = kc1(η) = kx where x is the generator of H2(CPn)). The
situation upon pulling back to RPn is very different, however. We have

[j∗(η)]2 = (cL)2 = c(L2) = c(1R) = 1C.

So the even powers of j∗(η) are all trivial, and the odd powers are just j∗(η). We
will see that this accounts for the main difference between K0(CPn) and K0(RPn).

In addition to the inclusion j : RPn ↪→ CPn there is another interesting map from
real to complex projective space. Every real line in Cn+1 determines a complex line
by taking the C-linear span, and therefore we get a map PR(Cn+1)→ PC(Cn+1) =
CPn. It is easy to see that this is a fiber bundle with fiber S1 (the space of real
lines in C). Identifying Cn+1 with R2n+2 shows that the domain is homeomorphic
to RP 2n+1, giving us a fiber bundle

S1 −→ RP 2n+1 q−→ CPn.
In terms of homogeneous coordinates, q sends the point [x0 : x1 : · · · : x2n : x2n+1]
to [x0 + ix1 : x2 + ix3 : · · · : x2n + ix2n+1].

Lemma 32.4. The diagram

RPn
i //

j %%JJJJJJJJJ RP 2n+1

q

��
CPn
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commutes up to homotopy, where i is the standard inclusion. Consequently, q∗

sends x ∈ H2(CPn) to the nonzero element of H2(RP 2n+1). (The latter statement
can also be proven via the Serre spectral sequence for q).

Proof. The diagram commutes on the nose if i is replaced by the inclusion sending
[x0 : x1 : · · · : xn] to [x0 : 0 : x1 : 0 : · · · : xn : 0]. But all linear inclusions from one
projective space to another are homotopic. �

Corollary 32.5. There is an isomorphism of bundles q∗η ∼= cL.

Proof. As we have remarked before, there are only two isomorphism classes of
complex bundles on RP 2n+1. Since j∗η = i∗(q∗η) is not trivial, the bundle q∗η
cannot be trivial. So the only possibility is q∗η ∼= cL. �

Note that for a ≤ n one has the following commutative diagram

RP 2a+1 i //

q

��

RP 2n+1

q

��
CP a

i // CPn,

and therefore q induces a map RP 2n+1/RP 2a+1 → CPn/CP a. We will also use
q to denote this induced map on quotients, as well as various small modifications.
Note that these induced maps fit together to give a big commutative diagram

S2a+2 RP 2a+2/RP 2a+1

��
��

RP 2a+3/RP 2a+1 q //

��

CP a+1/CP a
��
��

S2a+2

...
��
��

...
��
��

RP 2n+1/RP 2a+1 q //
��
��

CPn/CP a
��

��

RP 2n+2/RP 2a+1

��
��

RP 2n+3/RP 2a+1 q //
��
��

CPn+1/CP a
��
��

...
��
��

...
��
��

RP∞/RP 2a+1 q // CP∞/CP a.

(32.6)

We will tend to use ‘q’ as a name for any composition of maps from this diagram
that involves one horizontal step.

Notice that at the very top of the diagram we have a map from S2a+2 to itself.
The next result identifies this map:

Lemma 32.7. For n ≥ 1 the composite

S2n ∼= RP 2n/RP 2n−1 ↪→ RP 2n+1/RP 2n−1 q−→ CPn/CPn−1 ∼= S2n.
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is a homeomorphism.

Proof. The space RP 2n/RP 2n−1 consists of the basepoint and the affine space
R2n made up of points [x0 : x1 : · · · : x2n−2 : x2n−1 : 1]. Likewise, the space
CPn/CPn−1 consists of the basepoint and the affine space Cn made up of the
points [z0 : z1 : · · · : zn−1 : 1]. One readily uses the formula for q to see that it gives
a bijective correspondence, and is therefore a homeomorphism. �

32.8. The main results. Here we state the main theorems about the K-theory
of real and complex projective spaces. The proofs will be deferred until the next
section.

Theorem 32.9 (Complex K-theory of complex projective spaces and stunted pro-
jective spaces). Let η be the tautological line bundle on CPn, and write µ = [η]−1 ∈
K̃0(CPn).
(a) K0(CPn) = Z[µ]/(µn+1) and K1(CPn) = 0.
(b) The Adams operations on K0(CPn) are given by

ψk(µs) =
[
(1 + µ)k − 1

]s = ksµs + s
(
k
2

)
µs+1 + (higher order terms).

(c) The sequence 0 → K̃0(CPn/CP a) → K̃0(CPn) → K̃0(CP a) → 0 is exact,
and identifies K̃0(CPn/CP a) as the free abelian group Z〈µa+1, µa+2, . . . , µn〉 ⊆
K0(CPn). The ring structure and action of the Adams operations are deter-
mined by the corresponding structures on K0(CPn). Also, K1(CPn/CP a) = 0.

Remark 32.10. Following Adams [Ad2] we write µ(i) for the element of
K0(CPn/CP a) that maps to µi in K0(CPn). The extra parentheses in the ex-
ponent remind us that this class is not a true ith power in the ring K0(CPn/CP a).

Theorem 32.11 (Complex K-theory of real projective spaces). Let ν be the ele-
ment [j∗η]− 1 ∈ K̃0(RPn).
(a) K̃0(RPn) ∼= Z/

(
2b

n
2 c
)

with generator ν. The ring structure has ν2 = −2ν and
νf+1 = 0, where f = bn2 c.

(b) K1(RPn) =

{
0 if n is even
Z if n is odd.

.

(c) The Adams operations on K0(RPn) are given by

ψk(νe) =

{
0 if k is even
νe if k is odd.

Recall that we have calculated K̃0(CPn/CP a−1) to be the free abelian group
Z〈µ(a), µ(a+1), . . . , µ(n)〉. For k ≤ 2n + 1 we may pull back these classes along the
map q : RP k/RP 2a−1 → CPn/CP a−1 to get elements of K̃0(RP k/RP 2a−1). We
again follow Adams [Ad2] and set

ν̄(t) = q∗(µ(t)) ∈ K̃0(RP k/RP 2a−1)

for a ≤ t ≤ n. Note that these elements correspond nicely as k and n vary, due
to the commutative diagram (32.6). We may as well take n 7→ ∞ so that we have
classes ν̄(t) for all t ≥ a.
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We claim that upon pulling back along the projection π : RP k → RP k/RP 2a−1

we have π∗(ν̄(t)) = νt; this explains our choice of notation. To prove this claim
we can deal with the cases k = 2u and k = 2u + 1 simultaneously. Consider the
commutative diagram

RP 2u/RP 2a−1 // // RP 2u+1/RP 2a−1 q // CPu/CP a−1

RP 2u

π

OO

// // RP 2u+1
q //

π

OO

CPu.

πC

OO

We have π∗(q∗(µ(t))) = q∗(π∗C(µ(t))) = q∗(µt) = (q∗µ)t = νt, where the last equality
is by Corollary 32.5.

Observe that K̃0(RP 2a/RP 2a−1) = K̃0(S2a) ∼= Z and the class ν̄(a) is a genera-
tor. This follows because µ(a) generates K̃0(CP a/CP a−1) ∼= Z and ν̄(a) is the pull-
back of µ(a) along the map RP 2a/RP 2a−1 → CP a/CP a−1, which by Lemma 32.7
is a homotopy equivalence.

The inclusion i : RP 2a/RP 2a−1 ↪→ RPn/RP 2a−1 induces a map

Z = K̃0(S2a) = K̃0(RP 2a/RP 2a−1) i∗←− K̃0(RPn/RP 2a−1).

This map is surjective, because the class ν̄(a) in the domain maps to the class ν̄(a)

in the target, and the latter is a generator. In particular, not only do we know that
the above map i∗ is surjective but the class ν̄(a) in the domain gives a choice of
splitting. This is their main use to us.

Theorem 32.12 (Complex K-theory of real stunted projective spaces).
(a) If a = 2t then the sequence

0→ K̃0(RPn/RP a)→ K̃0(RPn)→ K̃0(RP a)→ 0

is exact. It identifies K̃0(RPn/RP a) with the subgroup of K̃0(RPn) generated
by νt+1 = (−2)tν. As a group, K̃0(RPn/RP a) ∼= Z/(2g) where g = bn−a2 c.
The ring structure and Adams operations are determined by the structures in
K0(RPn). In particular, ψk acts as zero when k is even and as the identity
when k is odd.

(b) Let a = 2t − 1. The cofiber sequence RP 2t/RP 2t−1 → RPn/RP 2t−1 →
RPn/RP 2t induces a sequence

0← K̃0(RP 2t/RP 2t−1)← K̃0(RPn/RP 2t−1)← K̃0(RPn/RP 2t)← 0

that is short exact. Consequently, K̃0(RPn/RP 2t−1) ∼= Z⊕ Z/(2f ) where f =
bn2 c − t; the former summand is generated by ν̄(t) and the latter summand is
generated by ν(t+1).

(c) The action of ψk on K̃0(RPn/RP 2t−1) is given by

ψk(ν(t+1)) =

{
0 if k is even
ν(t+1) if k is odd,

and

ψk(ν̄(t)) = ktν̄(t) +

{
1
2k

tν(t+1) if k is even
1
2 (kt − 1)ν(t+1) if k is odd.



A GEOMETRIC INTRODUCTION TO K-THEORY 241

Most of the content to the above theorem is represented in the following convo-
luted but useful diagram:

Z/
(
2b

n
2 c
)

= K̃(RPn) K̃(RP 2t/RP 2t−1) = Z

· · · K̃(RPn/RP 2t−2)

OO
OO

oo K̃(RPn/RP 2t−1)oo

jjUUUUUUUUUU
44 44iiiiiiiiiii
K̃(RPn/RP 2t)oo

ll

llZZZZZZZZZZZZZZZZZZZZZZZZZZ
oo

Z/(2B+1) Z⊕ Z/(2B)oooo Z/(2B)oooo B=bn
2 c−t

ν(t) ν̄(t), ν(t+1)oo BC
qqcccccccccccc

ν(t+1)oo

ν(t+1) = −2ν(t)

The indicated maps are injections/surjections, and our chosen generators of the
groups are written in the bottom two lines. The generators ν(t+1) and ν̄(t)

map to the elements νt+1 and νt in K̃(RPn), and ν̄(t) maps to a generator of
K̃(RP 2t/RP 2t−1) = K̃(S2t). The action of the Adams operations on ν(t+1) is com-
pletely determined by what happens in K̃(RPn). Likewise, the action on ν̄(t) is
completely determined by using the surjection onto K̃(S2t) together with the map
into K̃(RPn). These are instructive exercises; but if necessary see the proofs in
Section 32.22 for details.

Remark 32.13. The action of ψk on the element ν̄(t) is of crucial importance to
the solution of the vector field on spheres problem.

We now move from the realm of K-theory to KO-theory. Recall that L→ RPn
always denotes the tautological line bundle.

Theorem 32.14 (Real K-theory of real projective spaces).
K̃O 0(RPn) ∼= Z/(2f ) where f = #{s | 0 < s ≤ n, s ≡ 0, 1, 2, or 4 mod 8}. The
group is generated by λ = [L] − 1, which satisfies λ2 = −2λ and λf+1 = 0. The
Adams operations are given by

ψk(λ) =

{
0 k even,
λ k odd.

Remark 32.15. Because this number comes up so often, write

ϕ(n) = #{s | 0 < s ≤ n, s ≡ 0, 1, 2, or 4 mod 8}.

The following chart shows the groups K̃O 0(RPn) and K̃0(RPn) as functions of
n. To save space we write Zn instead of Z/n; but all the groups are cyclic, and so
really one only needs to keep track of the order.

n 2 3 4 5 6 7 8 9 10 11 12 13 14
KO Z4 Z4 Z8 Z8 Z8 Z8 Z16 Z32 Z64 Z64 Z128 Z128 Z128

K Z2 Z2 Z4 Z4 Z8 Z8 Z16 Z16 Z32 Z32 Z64 Z64 Z128

Observe that the K̃O 0(RPn) groups follow the by-now-familiar 8-fold pattern
from Bott periodicity and Clifford algebras: the orders of the groups jump according
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to the pattern “jump-jump-nothing-jump-nothing-nothing-nothing-jump”, where
the pattern starts in multiples of 8 (the first few are not on the chart because the
associated projective spaces are exceptions in some way). In particular, every eight
steps a total of four jumps have occurred, resulting in the orders being multiplied by
16. This is the quasi-periodicity of the first line. The second line has the simpler
quasi-periodocity of length 2, where every two steps the order of the group gets
doubled. Note that the groups on the two lines coincide in dimensions congruent
to 6, 7, and 8 modulo 8; in other dimensions there is a difference of a factor of 2.

For reference purposes we also include a table showing the numbers ϕ(n) and
bn2 c. Even though this is really the same information as in the previous table, it is
very useful to have around.

Table 32.15. Comparison of ϕ(n) and bn2 c

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ϕ(n) 0 1 2 2 3 3 3 3 4 5 6 6 7 7 7 7 8
bn2 c 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

The table provides some useful information about the comparison between ϕ(n)
and bn2 c. We record it in a proposition:

Proposition 32.16. For every n ≥ 2, the number ϕ(n) equals either bn2 c or bn2 c+1.
The former occurs precisely when n is congruent to 6, 7, or 8 modulo 8.

Recall the complexification map c : K̃O 0(RPn) → K̃0(RPn). Both groups are
cyclic, and by Lemma 32.2 the map sends the generator λ = L − 1 of the domain
to the generator ν = j∗η− 1 of the target. Hence, c is surjective. Our observations
about the orders now proves part (a) of the following result. Part (b) follows at
once from c(λ) = ν and the fact that rRc = 2.

Theorem 32.17. Let n ≥ 2.
(a) The complexification map c : K̃O 0(RPn) → K̃0(RPn) is always surjective. It

is an isomorphism if n is congruent to 6, 7, or 8 modulo 8, and it has kernel
Z/2 otherwise.

(b) The map rR : K̃0(RPn)→ K̃O 0(RPn) sends ν to 2λ.

Finally, we turn our attention toKO-theory of the spaces RPn/RP a. It is almost
true that the Atiyah-Hirzebruch spectral sequence for RPn/RP a is a truncation of
the one for RPn. The mod 2 cohomology groups H∗(RPn/RP a; Z/2) are indeed
a truncation of H∗(RPn; Z/2), and the integral cohomology groups are a similar
truncation when a is even. But when a is odd there is a Z in Ha+1(RPn/RP a) that
does not appear in Ha+1(RPn). This new Z will contribute to K̃O 0(RPn/RP a)
only if it shows up along the main diagonal in the Atiyah-Hirzebruch spectral
sequence, which will happen precisely when a+ 1 is a multiple of 4. This explains
the two cases in the following result:

Theorem 32.18 (Real K-theory of real, stunted projective spaces; part 1).

(a) Suppose a 6≡ −1 mod 4. Then the map π∗ : K̃O 0(RPn/RP a) → K̃O 0(RPn)
is an injection whose image is the subgroup generated by λϕ(a)+1. So
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K̃O 0(RPn/RP a) ∼= Z/(2g) where g = ϕ(n) − ϕ(a) = #{s | a < s ≤ n, s ≡
0, 1, 2, or 4 mod 8}. Let λ(ϕ(a)+1) be the preimage for λϕ(a)+1 under π∗, which
generates the group. Then

ψk(λ(u)) =

{
0 k even,
λ(u) k odd.

(b) Assume that a ≡ −1 mod 4. The sequence

Sa+1 = RP a+1/RP a → RPn/RP a → RPn/RP a+1

induces a split-exact sequence in KO-theory:

0← K̃O 0(Sa+1)← K̃O 0(RPn/RP a)← K̃O 0(RPn/RP a+1)← 0.

In particular,

K̃O 0(RPn/RP a) ∼= Z⊕ K̃O 0(RPn/RP a+1) ∼= Z⊕ Z/2h

where h = ϕ(n)− ϕ(a+ 1) = #{s | a+ 1 < s ≤ n, s ≡ 0, 1, 2, or 4 mod 8}.

Notice that the above result does not give the action of the Adams operations
in part (b). To do this we need to choose a specific generator for the Z summand,
and this requires some explanation. It turns out (and this is not obvious) that the
generator can always be chosen so that it maps to λϕ(a+1) in K̃O 0(RPn). This
property is all that we will really need, but it is not so easy to prove; in fact there
are always two such generators, and proving the desired existence seems to be best
accomplished by having a method for systematically choosing a preferred generator
out of the two possibilities. This is what we do next; in the chain

K̃O (RP 4t/RP 4t−1)← K̃O (RP 4t+1/RP 4t−1)← · · · ← K̃O (RPn/RP 4t−1)← · · ·

we wish to choose elements λ
(ϕ(4t))

in each group with the property that they all
map onto each other, they all map to a generator of the left-most group, and upon
pulling back along the projection RPn → RPn/RP 4t−1 the element λ

(ϕ(4t))
maps

to λϕ(4t) (for any choice of n).
These elements will be produced by starting with the elements ν̄(2t) that we have

already constructed, living in the bottom groups of the following diagram:

K̃O (RP 4t/RP 4t−1)

c

��

· · ·oo K̃O (RPn/RP 4t−1)oo

c

�� ((QQQQQQQQQQQQ

K̃(RP 4t/RP 4t−1)

rR

aa

· · ·oo K̃(RPn/RP 4t−1)oo

rR

aa

((QQQQQQQQQQQQ
K̃O (RPn)

c

��
K̃(RPn)

rR

aa

First note that it suffices to construct the λ
(ϕ(4t))

classes for n sufficiently large,
as we can then construct the classes for smaller n by naturality. In particular,
we may assume that n is congruent to 6 (or 7 or 8) modulo 8. This forces the
right-most vertical c map to be an isomorphism, by Theorem 32.17(a).

The rest of the argument breaks into two cases, depending on whether t is
even or odd. When t is even, ϕ(4t) = 2t − 1 (see Table 32.15) and the vertical
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maps c in the above diagram are all isomorphisms; this will be proven carefully in
Theorem 32.20(b) below, but for now we just accept it. Define

λ
(ϕ(4t))

= c−1(ν̄(2t)).

The desired properties of λ
(ϕ(4t))

are immediate by the naturality of c and the
known properties of ν̄(2t).

When t is odd one has ϕ(4t) = 2t + 1. The vertical maps c are no longer
isomorphisms (except the rightmost one), but we can use the map rR instead. The
idea for this comes from the fact that when t is odd the map c : K̃O (S4t)→ K̃(S4t)
is Z 2−→ Z, and rR sends a generator to a generator. So rR(ν̄(2t)) will gives us an
element of K̃O (RPn/RP 4t−1) that maps to a generator in K̃O (RP 4t/RP 4t−1).

However, note that rR(ν̄2t) maps to −λ(2t+1) in K̃O (RPn). This follows at once
from a simple calculation:

rR(ν2t) = rR((−2)2t−1 ·ν) = (−2)2t−1 ·rR(ν) = (−2)2t−1 ·2λ = −(−2)2t ·λ = −λ2t+1.

The extra minus sign leads us to make the definition

λ
(ϕ(4t))

= −rR(ν̄(2t))

in the case when t is odd.
We have now constructed the desired generators λ

(ϕ(4t))
. The group

K̃O 0(RPn/RP 4t−1) is generated by the two elements λϕ(4t+1) (which is torsion)
and λ

(ϕ(4t))
(which is non-torsion). We next use these generators to describe the

action of the Adams operations:

Theorem 32.19 (Real K-theory of real, stunted projective spaces; part 2). Let
t ≥ 1 and let f = ϕ(4t). The Adams operations on K̃O 0(RPn/RP 4t−1) are given
by the formulas

ψk
(
λ(f+1)

)
=

{
0 k even,
λ(f+1) k odd;

ψk
(
λ

(f)
)

= k2tλ
(f)

+

{
1
2k

2tλ(f+1) k even,
1
2 (k2t − 1)λ(f+1) k odd.

Just as we saw for K̃(RPn/RP a), much of the information about KO-theory
of stunted projective spaces is represented in the following useful diagram. The
above formulas for the Adams operations are obtained easily by chasing information
around the diagram.
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Z/
(
2ϕ(n)

)
= K̃(RPn) K̃O (RP 4t/RP 4t−1) = Z

K̃O (RPn/RP 4t−2)

OO
OO

oo K̃O (RPn/RP 4t−1)oo

jjUUUUUUUUUU
44 44hhhhhhhhhhh

K̃O (RPn/RP 4t)oo
mm

mmZZZZZZZZZZZZZZZZZZZZZZZZZZ
oo

Z/(2B+1) Z⊕ Z/(2B)oooo Z/(2B)oooo B=ϕ(n)−ϕ(4t)

λ(f) λ
(f)
, λ(f+1)oo BC

qqcccccccccccc

λ(f+1)oo f=ϕ(4t)

λ(f+1) = −2λ(f)

Due to lack of space the diagram does not show the groups K̃O (RPn/RP 4t−3),
but these are similar to the K̃O (RPn/RP 4t−2) and K̃O (RPn/RP 4t) cases in that
these groups all inject into K̃O (RPn) and have the “expected” image.

Because we have needed this already in the process of defining the classes λ
(ϕ(4t))

,
we also include some more information on the complexification map for stunted
projective spaces. We want to investigate c : K̃O 0(RPn/RP a) → K̃0(RPn/RP a),
but results are awkward to state in this generality: one runs into a multitude of
cases depending on the congruences classes of n and a modulo 8. We start with the
observation that it is essentially enough to solve the problem for n large enough. If
N ≥ n then we have the diagram

K̃O 0(RPn/RP a)

c

��

K̃O 0(RPN/RP a)

c

��

oooo

K̃0(RPn/RP a) K̃0(RPN/RP a).oooo

So if we know the right vertical map then we can also figure out the left vertical
map, using the horizontal surjections.

Notice that by choosing N so that it is congruent to 6 (or 7 or 8) modulo 8,
we can get ourselves in the situation where c : K̃O 0(RPN ) → K̃0(RPN ) is an
isomorphism (see Theorem 32.17)—clearly this will simplify some matters in our
analysis. This explains why we focus on this special case in the following result.

Here is a notational simplification that is very useful. At this point we have
specified particular generators for the groups K̃O 0(RPn/RP a), for all values of
n and a. These are the elements λ(i) and λ

(j)
for certain values of i and j that

depend on a. To actually name i and j precisely requires separating various cases
for a, and it is convenient to not always have to do this. We will write λ◦ and λ

◦

as abbreviations for our generators, but where we have not bothered to write the
exact number in the exponent (it is uniquely specified, anyway). We also write ν◦

and ν̄◦ for our generators in K̃0(RPn/RP a).
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Theorem 32.20. Consider the map c : K̃O 0(RPn/RP a) → K̃0(RPn/RP a) and
the map rR going in the opposite direction. Assume that n is congruent to 6, 7, or
8 modulo 8.
(a) Suppose a is even, so that both the groups are torsion.

(i) If a ≡ 6, 8 mod 8 then c is an isomorphism, c(λ◦) = ν◦, and rR(ν◦) = 2λ◦.
(ii) If a ≡ 2, 4 mod 8 then c is an injection with cokernel Z/2. One has

c(λ◦) = −2ν◦ and rR(ν◦) = −λ◦.
(b) Suppose that a = 4t− 1. Here both the domain and target of c have copies of Z

inside them.
(i) If a ≡ 7 mod 8 (i.e., t is even) then c is an isomorphism.
(ii) If a ≡ 3 mod 8 (i.e., t is odd) then c is a monomorphism, and the cokernel

is Z/2⊕ Z/2.
(c) Suppose that a = 4t + 1. In this case c maps its domain isomorphically onto

the torsion subgroup of the target of c. One has c(λ◦) = ν◦ and rR(ν◦) = 2λ◦.

32.21. An extended example. Let us demonstrate much of what we have learned
by looking at a specific example. The Atiyah-Hirzebruch spectral sequence for
computing K̃O (RP 10) gives one Z/2 for every dimension from 1 through 10 that
is congruent to 0, 1, 2, or 4 modulo 8. These are the dimensions 1, 2, 4, 8, 9, and
10—so we have six Z/2’s, and K̃O (RP 10) ∼= Z/(26). In comparison, K̃(RP 10) is
just Z/(25) (as 5 = 10

2 ).
There is a visual way of representing this information that is useful, especially

when it comes to the stunted projective spaces. Draw a cell diagram for RP 10,
leaving out the 0-cell. For K̃O (RP 10) discard all cells except the ones in dimensions
congruent to 0, 1, 2, or 4 modulo 8; then label the remaining cells with ascending
powers of λ. For K̃(RP 10) discard all the odd-dimensional cells and label the
remaining ones with ascending powers of ν. Always remembering that λ2 = −2λ
(and ν2 = −2ν), the cells now represent the associated graded of K̃O (RP 10) (or
K̃(RP 10)) with respect to the 2-adic filtration. The picture below also shows the
complexification map c : K̃O (RP 10) → K̃(RP 10). Recall that this is a ring map
and sends λ to ν:

gKO (RP 10)
c−→ eK(RP 10)

λ

λ2

λ3

λ4

λ5

λ6

ν

ν2

ν3

ν4

ν5

We see in this case that c : K̃O (RP 10)→ K̃(RP 10) is surjective with kernel Z/2
(generated by λ6 = −32λ). One has rR(ν) = rR(c(λ)) = 2λ, and more generally

rR(νk) = rR((−2)k−1ν) = (−2)k−1rR(ν) = (−2)k−1 · 2λ = −(−2)kλ = −λk+1.
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Next let us consider the K-groups of RP 10/RP 4, referring to the diagram

K̃O (RP 10/RP 4)

c

��

// // K̃O (RP 10)

c
����

K̃(RP 10/RP 4) // // K̃(RP 10).

In relation to our cell-diagrams, the K-groups of RP 10/RP 4 are obtained by throw-
ing away the bottom four cells. We obtain the picture

gKO (RP 10/RP 4)
c−→ eK(RP 10/RP 4)

λ(4)

λ(5)

λ(6)

ν(3)

ν(4)

ν(5)

This picture tells us that K̃O (RP 10/RP 4) ∼= Z/(23), generated by λ(4), and also
K̃(RP 10/RP 4) ∼= Z/(23) with generator ν(3). These each embed into the respective
K-group of RP 10. The complexification map therefore sends λ(4) to ν(4), and we
find that this map has both kernel and cokernel isomorphic to Z/2.

The situation is a little different if we consider the K-groups of RP 10/RP 3.
Here the bottom cell of RP 10/RP 3 gives rise to a Z in singular cohomology, and a
corresponding Z in the K-groups. The picture becomes as follows:

gKO (RP 10/RP 3)
c−→ eK(RP 10/RP 3)

λ
(3)

λ(4)

λ(5)
λ(6)

−2
ν̄(2)

ν(3)

ν(4)

ν(5)

Here the black dots represent copies of Z, so that K̃O (RP 10/RP 3) ∼= Z ⊕ Z/8
with the two summands generated by λ

(3)
and λ(4), respectively. Likewise,

K̃(RP 10/RP 3) ∼= Z ⊕ Z/8 with the two summands generated by ν̄(2) and ν(3).
The various maps

K̃O (RP 10/RP 4) −→ K̃O (RP 10/RP 3) −→ K̃O (RP 10), and

K̃(RP 10/RP 4) −→ K̃(RP 10/RP 3) −→ K̃(RP 10)

are the evident ones suggested by the diagrams. The only subtlety lies in deter-
mining the complexification map c. Of course c(λ(i)) = ν(i) for i = 4, 5, as this is
forced by that happens on the subgroup K̃O (RP 10/RP 4) ⊆ K̃O (RP 10/RP 3). To
compute c(λ

(3)
) we must remember that λ

(3)
is defined by the equation

λ
(3)

= −rR(ν(2))
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(note that 3 = 4t− 1 where t = 1, and so we are in the case where t is odd; in the
case where t is even the definition of the λ classes is different). So we obtain

c
(
λ

(3))
= −c(rR(ν(2))) = −(1 + ψ−1)(ν̄(2)) = −[ν̄(2) + ν̄(2)] = −2ν̄(2).

Here we have used Theorem 32.12(c) for evaluating ψ−1(ν̄(2)). Note that the pull-
back map induced by RP 10 → RP 10/RP 3 sends λ

(3)
to λ3 and sends −2ν̄(2) to

−2ν2 = ν3; hence the above formula is consistent with our previous computation
of c : K̃O (RP 10)→ K̃(RP 10).

32.22. The proofs. We now give proofs for all of the results previously stated in
this section.

Proof of Theorem 32.9. This is straightforward, and left to the reader. �

Proof of Theorem 32.11. There is no room for differentials in the Atiyah-
Hirzebruch spectral sequence for K∗(RPn), so it collapses at E2. Part (b) follows
immediately. It is also a direct consequence that K̃0(RPn) is an abelian group of
order 2b

n
2 c. It remains to solve the extension problems to determine precisely which

group it is.
Observe that L2 = 1, hence (cL)2 = c(L2) = c(1) = 1. So

ν2 = (cL− 1)2 = (cL)2 − 2(cL) + 1 = 2(1− c(L)) = −2ν.

Note that an immediate consequence is νt = (−2)t−1ν.
Let F i = ker

(
K̃0(RPn)→ K̃0(RP i−1)

)
. So

K̃0(RPn) = F 0 ⊇ F 1 ⊇ F 2 ⊇ · · · ⊇ Fn+1 = 0.

The quotients F i/F i+1 are the groups in the E∞ term of the spectral sequence,
and so are

F i/F i+1 =

{
Z/2 0 < i ≤ 2bn2 c and i even
0 otherwise.

So F 0 = F 1 = F 2 and F 2/F 3 ∼= Z/2. The element ν generates F 2/F 3: we
know this by naturality of the spectral sequence, applied to the map j : RPn ↪→
CPn. The element µ generates F 2/F 3 for K̃0(CPn), and H2(CPn) → H2(RPn)
is the projection Z → Z/2: the image of a generator is another generator. So j∗µ
generates F 2/F 3 for K̃0(RPn), and of course ν = j∗µ.

The multiplicativity of the spectral sequence then gives us that ν2 generates
F 4/F 5, and in general νj generates F 2j/F 2j+1 for j = 1, 2, . . . , bn2 c. In particular,
νj is not equal to zero for j in this range. But νj = (−2)j−1ν, so 2b

n
2 c−1ν 6= 0. This

proves that the only possibility for K̃0(RPn) is Z/2bn
2 c, and that ν is a generator.

Note that we than have 0 = (−2)b
n
2 cν = νb

n
2 c+1.

For part (c) we just observe that ψk(cL) = (cL)k = c(Lk) and this equals 1 if k
is even, and cL if k is odd. �

Proof of Theorem 32.12. Parts (a) and (b) are trivial. In each case one writes
down the evident long exact sequence and quickly sees that the given sequence
is short exact. The only slight subtlety is seeing in the case a = 2t − 1 that
K̃0(RPn/RP 2t−1)→ K̃0(RP 2t/RP 2t−1) is surjective, but this was explained when
we constructed the element ν̄(t) (which maps to a generator in the target group).
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For part (c), the action of ψk on ν(t+1) is determined by the corresponding action
in K̃0(RPn/RP 2t); so there is nothing to prove here. The action on ν̄(t) is more
interesting. We can, of course, write

ψk(ν̄(t)) = Aν̄(t) +Bν(t+1)(32.23)

where A is a unique integer and B is unique modulo 2f . Applying the map
i∗ : K̃0(RPn/RP 2t−1) → K̃0(RP 2t/RP 2t−1) kills ν(t+1) and sends ν̄(t) to a gen-
erator g, so this equation becomes ψk(g) = Ag. But we already know that ψk acts
on such a generator by kt, so A = kt.

Next we apply the map π∗ : K̃0(RPn/RP 2t) → K̃0(RPn) to equation (32.23).
The map π∗ sends ν̄(t) to νt and ν(t+1) to νt+1, so using A = kt we obtain

ψk(νt) = ktνt +Bνt+1

in K̃0(RPn). Now use that ψk is a ring homomorphism, together with νt+1 = −2νt.
We get

(kt − 2B)νt =
[
ψk(ν)

]t =

{
0 if k is even
νt if k is odd.

The group K̃0(RPn) is Z/(2g) with generator ν, and νt = (−2)t−1ν. So the
additive order of νt is 2g−t+1, or equivalently 2f+1. In the case that k is even it
follows that kt − 2B is a multiple of 2f+1, so that kt

2 ≡ B mod 2f (recall that B is
only well-defined modulo 2f in the first place).

In the remaining case where k is odd we get kt − 2B ≡ 1 modulo 2f+1. So
kt−1

2 ≡ B modulo 2f , which is what we wanted. �

Proof of Theorem 32.14. In the Atiyah-Hirzebruch spectral sequence for
K̃O (RPn), the diagonal of the E2-term that is relevant to K̃O 0(RPn) consists
of ϕ(n) copies of Z/2. The first concern is to determine if there are any differentials
causing some of these copies to disappear by E∞, and the second concern is the
problem of extensions.

Observe that the complexification map c : K̃O 0(RPn)→ K̃0(RPn) is surjective,
because ν generates the target and ν = c(L− 1). So it follows from Theorem 32.11
that at least bn2 c among our ϕ(n) copies of Z/2 must survive the spectral sequence.

The trick now is to not consider one n at a time, but rather to consider them
all at once. When n is congruent to 6, 7, or 8 modulo 8 then we know ϕ(n) = bn2 c,
and so here it must be that all the Z/2’s along the main diagonal survive. That
is, all differentials entering or exiting the main diagonal are zero. But then by
naturality of the spectral sequence this is true for all n. We conclude that the order
of K̃O 0(RPn) is 2ϕ(n), no matter what n is.

When n is congruent to 6, 7, or 8 modulo 8 we now know that the orders
of K̃O 0(RPn) and K̃0(RPn) are the same. Since the complexification map is
surjective, it is therefore an isomorphism. So K̃O 0(RPn) is cyclic. Since c(λ) = ν
it follows that λ is a generator. In particular, λ is a generator for the quotient
F 1/F 2.

But then by naturality of the spectral sequence (and with it, naturality of the
filtration F i) it follows that λ generates F 1/F 2 for every value of n. Since L2 = 1
we of course have λ2 = −2λ. At this point the argument follows the one in the
proof of Theorem 32.11 to show that K̃O 0(RPn) is cyclic, for all values of n.
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The computation of the Adams operations again follows from ψk(L) = Lk, which
equals 1 if k is even and L if k is odd. �

Proof of Theorem 32.17. This was given just prior to the statement of the theorem.
�

Proof of Theorem 32.18. For part (a) one examines the Atiyah-Hirzebruch spectral
sequence for K̃O ∗(RPn/RP a). Note that the quotient RPn → RPn/RP a induces
a map of spectral sequences in the other direction. The diagonal groups in the E2-
term for K̃O ∗(RPn/RP a) are a truncation of the diagonal groups appearing in the
E2-term for K̃O ∗(RPn). Since there are no entering or exiting differentials (along
the diagonal) in the latter case, naturality of the spectral sequence guarantees there
are no entering or exiting differentials for RPn/RP a. Passing to E∞-terms now,
we see that the associated graded groups for K̃O (RPn/RP a) are a truncation of
the associated graded groups for K̃O (RPn). Examining the map of filtered groups

K̃O (RPn/RP a)

π∗

��

F1

��

oooo F2
oooo

��

· · ·oooo

K̃O (RPn) F ′1oooo F ′2oooo · · ·oooo

we now find that Fk → F ′k is an isomorphism for k ≥ a + 1 and Fk/Fk+1 = 0
for k ≤ a. It follows that K̃O (RPn/RP a) → K̃O (RPn) is an injection, with
image equal to F ′a+1. In our analysis of KO(RPn) we have already seen that
F ′a+1 ⊆ K̃O (RPn) is the subgroup generated by λa+1. Everything else in part (a)
is then immediate.

For (b) we only need to prove that K̃O 0(RPn/RP 4t−1)→ K̃O 0(RP 4t/RP 4t−1)
is surjective, since the latter group is isomorphic to K̃O 0(S4t) ∼= Z. Everything
else in part (b) is routine. To do this, consider the following diagram:

Z/2

· · · K̃O 1(RPn/RP 4t)oo K̃O 0(RP 4t/RP 4t−2)oo K̃O 0(RPn/RP 4t−2)
j∗1oooo · · ·oo

· · · K̃O 1(RPn/RP 4t)oo

OO

K̃O 0(RP 4t/RP 4t−1)oo

i∗
OOOO

K̃O 0(RPn/RP 4t−1)
j∗2oo

OOOO

· · ·oo

Z
The two indicated vertical maps are surjections because they sit inside long exact
sequences where the third term is K̃O 0(RP 4t−1/RP 4t−2) = K̃O 0(S4t−1) = 0. The
indicated group is Z/2 by part (a) of the theorem, which also yields the diagram

K̃O 0(RP 4t) K̃O 0(RPn)oooo

K̃O 0(RP 4t/RP 4t−2)

OO

OO

K̃O 0(RPn/RP 4t−2).

OO

OO

j∗1oo
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The group K̃O 0(RP 4t/RP 4t−2) is the subgroup of K̃O 0(RP 4t) generated
by ν1+ϕ(4t−2), and K̃O 0(RPn/RP 4t−2) is the similarly-described subgroup of
K̃O 0(RPn). It follows at once that j∗1 is surjective.

Returning to the earlier diagram, the image of j∗2 is an ideal (r) inside of Z. The
fact that i∗j∗2 is surjective (readily observed from the diagram) proves that r must
be odd. But the quotient Z/r will inject into K̃O 1(RPn/RP 4t), by the long exact
sequence. The Atiyah-Hirzebruch spectral sequence shows that this latter group
has no odd torsion, because it has a filtration where the quotients are only Z’s and
Z/2’s. So the conclusion is that r = 1, hence j∗2 is surjective. �

Proof of Theorem 32.19. The evaluation of ψk
(
λ(f+1)

)
is immediate using natural-

ity and Theorem 32.14. For the evaluation of ψk
(
λ

(f)
)

one can repeat the proof
of Theorem 32.12(c) almost verbatim. Alternatively, one can use the result of The-
orem 32.12(c) together with the complexification map c : K̃O 0(RPn/RP 4t−1) →
K̃0(RPn/RP 4t−1), which is a monomorphism for n congruent to 6, 7, or 8 modulo
8; the result for other values of n can then be deduced by naturality. �

Proof of Theorem 32.20. For part (a) we consider the two short exact sequences

0 // K̃O 0(RPn/RP a) //

c

��

K̃O 0(RPn) //

∼=c

��

K̃O 0(RP a) //

c

��

0

0 // K̃0(RPn/RP a) // K̃0(RPn) // K̃0(RP a) // 0.

If a is congruent to 6 or 8 modulo 8 then the right vertical map is an isomorphism,
which means the left vertical map is as well. The desired results are immediate.

If a is congruent to 2 or 4 modulo 8 then the right vertical map is a surjection
with kernel Z/2. It follows from the zig-zag lemma that the left vertical map is an
injection with cokernel Z/2. The generator for the domain is λ(ϕ(a)+1), and we are in
the case where ϕ(a) = ba2 c+1. So c maps this generator to ν(b a

2 c+2) = −2ν(b a
2 c+1).

The statement r(ν◦) = −λ◦ then follows using that rc = 2.
For (b) we look at the short exact sequences

0 // K̃O (RPn/RP 4t) //

c

��

K̃O (RPn/RP 4t−1) //

c

��

K̃O (RP 4t/RP 4t−1) //

c

��

0

0 // K̃(RPn/RP 4t) // K̃(RPn/RP 4t−1) // K̃(RP 4t/RP 4t−1) // 0.

When t is even the right vertical map is an isomorphism by Bott’s calculation, and
the left vertical map is an isomorphism by (a). So the middle vertical map is also
an isomorphism.

When t is odd the right vertical map is an injection with cokernel Z/2, by Bott.
The left vertical map is an injection with cokernel Z/2 by part (a). So by the
Snake Lemma the middle vertical map is also an injection, and its cokernel is either
(Z/2)2 or Z/4. The element ν̄(2t) maps to a generator for the right bottom group
K̃(RP 4t/RP 4t−1). If we verify that 2ν̄(2t) = 0 in the cokernel of c then we will
have proven that this cokernel is (Z/2)2, not Z/4. But note that

crR(ν̄(2t)) = (1 + ψ−1)(ν̄(2t)) = 2ν̄(2t)
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where in the last equality we have used the formula for ψ−1(ν̄(2t)) from Theo-
rem 32.12(c).

For (c) we consider the following:

0 // K̃O (RPn/RP 4t+2)
p∗ //

c

��

K̃O (RPn/RP 4t+1) //

c

��

K̃O (RP 4t+2/RP 4t+1) //

c

��

0

0 // K̃(RPn/RP 4t+2) // K̃(RPn/RP 4t+1) // K̃(RP 4t+2/RP 4t+1) // 0.

We have not yet discussed exactness of the top row. On the left end this follows
because K̃O−1(S4t+2) = 0. By our computations, the cokernel of p∗ is a group of
order 2ϕ(4t+2)−ϕ(4t+1); but by inspection this number is equal to 1 when t is odd
and 2 when t is even. As this is the same as the order of the group K̃O (S4t+2),
this justifies exactness on the right.

If t is odd then the left vertical map is an isomorphism by (a), and the hor-
izontal map p∗ is an isomorphism; the desired claims follow at once. When t is
even we must argue more carefully. Note that the image of K̃(RPn/RP 4t+2) in-
side K̃(RPn/RP 4t+1) is precisely the torsion subgroup; let us call this image T .
Since the group K̃O (RPn/RP 4t+1) is torsion, its image under c is also torsion;
so this image is a subgroup of T . Moreover, K̃O (RPn/RP 4t+1) is generated by
λ(ϕ(4t+1)+1), and one readily computes that ϕ(4t+1) = 2t+1. Consider the square

K̃O (RPn/RP 4t+1) // //

c

��

K̃O (RPn)

c ∼=
��

K̃(RPn/RP 4t+1) // K̃(RPn).

The left vertical map clearly must be injective. Compute that π∗(c(λ(2t+2))) =
c(λ2t+2) = ν2t+2. There is only one element of the torsion subgroup of
K̃(RPn/RP 4t+1) that pulls back to ν2t+2, namely ν(2t+2). It follows that
c(λ(2t+2)) = ν(2t+2). But ν(2t+2) generates T , so c maps K̃O (RPn/RP 4t+1) iso-
morphically onto T . �

33. Solution to the vector field problem

In this section we conclude our story of the vector field problem, following the
original paper by Adams [Ad2]. Let us first recall the Hurwitz-Radon function
ρ(n): if n = 24b+a · (odd) then ρ(n) = 2a + 8b− 1. We have seen in Theorem 14.5
that one can construct ρ(n) independent vector fields on Sn−1. The vector field
problem will be settled once we prove the following:

Theorem 33.1 (Adams). There do not exist ρ(n) + 1 independent vector fields on
Sn−1.

Remark 33.2. There will inevitably come a time when the reader wishes to re-
member the formula for ρ(n) but cannot immediately look it up. The key facts
about the formula are:

(i) ρ(n) only depends on the power of 2 in the prime factorization of n;
(ii) For a ≤ 3 one has ρ(2a) = 2a − 1;
(iii) ρ(16n) = ρ(n) + 8.
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These facts of course uniquely determine ρ(n). Personally, I find the exact form
of (iii) hard to remember when I haven’t been working with this stuff for a while.
What is able to stick in my head is that there are zero vector fields on S0, one on
S1, three on S3, seven on S7—and then I have to remember that there are only
eight on S15. The jump from zero on S0 to eight on S15 is the quasi-periodicity; so
there are nine on S31, eleven on S63, fifteen on S127, and so forth. From this it is
easy to recover the formula ρ(16n) = ρ(n) + 8, and onward to the general formula
for ρ.

The proof of Theorem 33.1 is quite involved—it requires a surprising amount of
algebraic topology. KO-theory is usually regarded as the key tool in the proof, but
one also needs Steenrod operations, James periodicity, and Atiyah duality in the
stable homotopy category. This adds up to a sizable amount of material. We will
take a modular approach to things; we start by giving an outline of the proof, and
then we will fill in the details one by one.

33.3. Outline of the proof.

Step 1: We have the following implications (i)⇒ (ii)⇒ (iii)⇒ (iv):

(i) There exist k − 1 vector fields on Sn−1.

(ii) There exist k − 1 vector fields on Sun−1 for every u ≥ 1.

(iii) The map π1 : Vk(Run)→ Sun−1 has a section, for every u ≥ 1.

(iv) The map RPun−1/RPun−k−1 → Sun−1 (projection onto the top cell) has a
section in the homotopy category, for every u such that un + 2 > 2k. That
is to say, RPun−1/RPun−k−1 splits off the top cell in the stable homotopy
category.

We have seen these implications back in Section 14, but let us briefly recall why
they hold. For (i)⇒(ii) it is a direct construction: given k−1 orthogonal vector fields
made from vectors with n coordinates, one can repeat those patterns in successive
groups of coordinates to make k − 1 orthogonal vector fields in un coordinates,
for any u. The step (ii)⇒(iii) is a triviality, essentially just a restatement of the
problem. Then for (iii)⇒(iv) it is because for a + 2 > 2b the space Vb(Ra) has a
cell structure where the a-skeleton is RP a−1/RP a−b−1 (Proposition 14.23).

Step 2: Steenrod operations allow one to prove that if a + 1 = 2r · (odd) then
RP a/RP a−b does not split off the top cell for b > 2r.

The proof will be described in detail below, but here is a short summary. The
hypothesis says that a = 2r(2t+ 1)− 1 = 2r+1t+ 2r − 1, and this guarantees that
there is a Sq2r

operation in H∗(RP∞) connecting the class in degree 2r+1t−1 to the
class in degree a. If b > 2r then that Sq2r

operation is still present in RP a/RP a−b,
and this obstructs the splitting off of the top cell.

Step 3: Putting steps 1 and 2 together, we have that if n = 2m · (odd) then there
do not exist 2m vector fields on Sn−1.

For m ≤ 3 this solves the vector field problem, because in this case ρ(m) = 2m− 1.
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Step 4: There are periodicities to the spaces RP a/RP a−b. If L−1 has finite order
rb in K̃O(RP b−1), then

RP a/RP a−b ' Σ−srb

(
RP a+srb/RP a+srb−b

)
for every s ≥ 1, where the homotopy equivalence is in the stable homotopy category.
This is called James periodicity . The proof was given in Proposition 15.16.

Step 5: Now things get a bit more sophisticated. Atiyah proved that if M is
any compact manifold and E → M is a real vector bundle, then Th(E → M) is
Spanier-Whitehead dual to Th(−E − TM → M), where TM is the tangent bundle
to M (for Thom spaces of negative bundles, see Section 15.12).

Recall from Example 15.9 that RPn−1/RPn−k−1 ∼= Th((n − k)L → RP k−1).
Also, for M = RP k−1 one has TM = kL − 1 in KO(M) (Example 23.10). So
Atiyah Duality gives that RPn−1/RPn−k−1 is Spanier-Whitehead dual to

Th

(
−(n−k)L−T

↓
RPk−1

)
= Th

(
−(n−k)L−kL+1

↓
RPk−1

)
= Th

(
−nL+1

↓
RPk−1

)
= ΣTh

(
−nL
↓

RPk−1

)
.

If rk is the order of L−1 in K̃O(RP k−1) then the last spectrum may be interpreted
as

Σ Th

(
−nL
↓

RPk−1

)
' ΣΣ−srk Th

(
srkL−nL
↓

RPk−1

)

= Σ1−srk Th

(
(srk−n)L

↓
RPk−1

)

= Σ1−srk

[
RP srk−n+k−1/RP srk−n−1

]
,

where s is any integer sufficiently large so that srk − n− 1 ≥ 0. We have therefore
proven:

The Spanier-Whitehead dual of RPn−1/RPn−k−1 is (up to suspension)
RP srk−n+k−1/RP srk−n−1, where s is any integer such that srk − n− 1 ≥ 0.

Step 6: A direct consequence of the previous statement is that

RPn−1/RPn−k−1 splits off its top cell (stably)
if and only if

RP srk−n+k−1/RP srk−n−1 splits off its bottom cell (stably),

where s� 0 as above.

Step 7: Using step 6 we can add a condition onto the list of implications from step
1. Namely, we have (iv)⇒(v) where the latter is

(v) RP srk−un+k−1/RP srk−un−1 splits off its bottom cell (stably), for any u � 0
and any s� 0.
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Step 8: Adams calculated K̃O(RP a) for all a, together with the Adams operations
on these groups. He used this knowledge, together with Step 2 above, to prove the
following:

For any m ≥ 0, RPm+ρ(m)+1/RPm−1 does not split off its bottom cell in the stable
homotopy category.

Step 9: Completion of the proof .

Proof of Theorem 33.1. Suppose there are k − 1 vector fields on Sn−1. Then by
Step 7 the space RP srk−un+k−1/RP srk−un−1 stably splits off its bottom cell for
any u and s such that un + 2 > 2k and srk − un − 1 ≥ 0. Choose u to be odd,
and choose s to be a multiple of 2n. Set m = srk − un, and note that m is an odd
multiple of n; consequently, we have ρ(m) = ρ(n).

We have that RPm+k−1/RPm−1 splits off its bottom cell. By Step 8 this implies
that k − 1 ≤ ρ(m) = ρ(n). So there are at most ρ(n) vector fields on Sn−1. �

The missing pieces from our outline are: Step 2, Step 5, and Step 8. We now
fill in the details for these steps, one by one—but not quite in the above order. We
save Atiyah duality for last, only because the other two pieces belong more to the
same theme.

33.4. Steenrod operations and stunted projective spaces (steps 2 and 3).
Let x ∈ H1(RP∞; Z/2) be the nonzero element. The Steenrod operations on RP∞

are easily computed from the facts Sq1(x) = x2, Sqi(x) = 0 for i > 1, and the
Cartan formula. We leave this as an exercise for the reader. In the following
picture we show the Sq1, Sq2, and Sq4 operations on H∗(RP 20; Z/2):

bbb
bbb
bbb
bbb
bbb
bbb
bb

x

x2

x5

x9

x13

x18

x20

The Sq1 operations are depicted as vertical lines, the Sq2 operations as curved
lines, and the Sq4s as “offseted vertical lines”. For example, one can read off of the
diagram that Sq1(x5) = x6, Sq2(x10) = x12, and Sq4(x10) = 0 (in the latter case
because the diagram does not have a Sq4 emanating from the x10 class).



256 DANIEL DUGGER

The pattern of Sq2r

operations in H∗(RP∞; Z/2) is very simple. The first Sq2r

operation occurs on x2r

and thereafter they follow the pattern of “2r on/2r off”.
This is captured by the formula

Sq2r

(xa) =

{
xa+2r

if a ≥ 2r and a ≡ 2r, 2r + 1, . . . , 2r+1 − 1 mod 2r+1,
0 otherwise.

Of course for H∗(RPn; Z/2) the formulas must be truncated to account for the fact
that classes above dimension n are not present.

To see how Steenrod operations give obstructions to stable splittings, consider
RP 9/RP 6. Its cohomology has a Sq2 connecting the class in degree 7 to the class
in degree 9. Suppose the projection onto the top cell p : RP 9/RP 6 → S9 has a
splitting χ in the stable homotopy category. Then the composite

H∗(S9)
p∗−→ H∗(RP 9/RP 6)

χ∗−→ H∗(S9)

is an isomorphism. Write xi for the generator in Hi(RP 9/RP 6), so that in this
notation we have Sq2(x7) = x9. Necessarily we must have χ∗(x7) = 0, therefore
0 = Sq2(χ∗x7) = χ∗(Sq2 x7) = χ∗(x9). But x9 is in the image of p∗, so this is a
contradiction.

Clearly this kind of argument will work for any RPn/RPn−b where we have a
nontrivial cohomology operation hitting the top class. Based on this, it is now easy
to prove the following:

Proposition 33.5. Write n + 1 = 2s · odd. If RPn/RPn−b splits off its top cell
stably then b ≤ 2s.

Proof. If n is even then in H∗(RP∞) there is a Sq1 hitting the class in degree n,
and this operation will be present in H∗(RPn/RPn−b) as long as b > 1. So the top
cell can not split off in this case. In other words, if n+ 1 = 20 · (odd) then splitting
of the top cell can only happen if b ≤ 20.

Similarly, if n = 4e + 1 then in H∗(RP∞) there is a Sq2 hitting the class in
degree n. This Sq2 will be present in H∗(RPn/RPn−b) as long as b > 2, and again
we find that under this criterion the top cell can not split off. So n+ 1 = 21 · (odd)
implies splitting of the top cell can only happen if b ≤ 21.

The same style of argument continues. If n = 2re + (2r−1 − 1) then there is a
Sq2r−1

hitting our class in degree n, and this obstructs the splitting of the top cell
as long as b > 2r−1. Rephrased, this says that if n + 1 = 2r−1(2e + 1) then the
splitting does not exist when b > 2r−1. Replacing r− 1 with s, we have the desired
result. �

Corollary 33.6. If n = 2s · odd then there are at most 2s − 1 independent vector
fields on Sn−1.

Proof. If there are k − 1 vector fields on Sn−1 then RPun−1/RPun−k−1 splits off
its top cell for all u � 0. Choose a u that is odd, so that un = 2s · odd. By
Proposition 33.5 we conclude that k ≤ 2s. �

The upper bounds provided by Corollary 33.6 agree with the Hurwitz-Radon
lower bounds when s ≤ 3. Note that these few cases cover quite a bit more than
one first might think. For example, for spheres of dimension less than 50 it follows
that the Hurwitz-Radon number of vector fields is the maximum possible for all
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but three cases, namely the spheres S15, S31, and S47 (multiples of 16 minus one).
Corollary 33.6 yields that there exist at most 15 vector fields on S15, 31 on S31,
and 15 on S47, whereas the Hurwitz-Radon construction only gives 8 vector fields
on S15 and S47, and 9 vector fields on S31. This demonstrates that our bounds for
the spheres S16e−1 are still far away from our goal.

33.7. Adams’s Theorem and KO-theory (Step 8). Next we move to the piece
that finally cracked the proof, namely the following theorem of Adams [Ad2]:

Theorem 33.8. Let m ≥ 1. Then the space RPm+ρ(m)+1/RPm−1 does not split
off its bottom cell in the stable homotopy category.

Proof. Write m = 2u ·odd, and consider RPN/RPm−1 for N ≥ m. Note that there
is a Sq2u

operation on H∗(RPN/RPm−1; Z/2) connecting the generator in degree
m to the generator in degree m + 2u. This proves that the bottom cell does not
split off when N ≥ m + 2u. This settles the theorem in the case u ≤ 3, as here
ρ(m) = 2u − 1 and so m+ 2u = m+ ρ(m) + 1.

We will next do a similar argument—but using K-theory—in the case u ≥ 4.
Actually, the K-theory argument only uses u ≥ 3 so for the sake of pedagogy let
us just make this weaker assumption.

Since m ≡ 0 mod 4 we know by Theorem 32.18 that there is a short exact
sequence
(33.9)

0 K̃O (RPm/RPm−1)oo

∼=
��

K̃O (RPN/RPm−1)oo K̃O (RPN/RPm)oo

∼=
��

0oo

Z Z/(2f )

where f is a certain integer we will recall in a moment. Each of the groups has
Adams operations on it, and the maps are compatible with these operations. If
we let B = Z[ψ2, ψ3, ψ5, . . .], then (33.9) is an exact sequence of B-modules (note
that B is just the monoid ring Z[N] from Section 31). If RPN/RPm−1 splits off its
bottom cell then this extension is split; so we will attempt to algebraically analyze
when such a splitting exists.

As a B-module the group K̃O (RPm/RPm−1) is Z(m2 ), meaning that each ψk

acts as multiplication by k
m
2 . It will be convenient to set r = m

2 . Also, we know by
Theorem 32.18(a) that on K̃O (RPN/RPm) the operation ψk acts as zero when k
is even, and the identity when k is odd. We also have determined the action of the
ψk’s on the middle group, but let us ignore this for the moment and consider the
situation in a bit more generality.

Let A be any abelian group, and let A[2] be the B-module whose underlying
abelian group is A and where ψk acts as zero when k is even, and the identity when
k is odd. Consider an extension of B-modules

0← Z(r)← E ← A[2]← 0.

Let g be an element of E that maps onto a generator for Z(r). Then we can write
ψkg = krg + αk for unique elements αk ∈ A, and the relations ψkψl = ψlψk show
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that we must have
krαl = (lr − 1)αk whenever k is even and l is odd,
krαl = lrαk whenever k and l are both even,
(kr − 1)αl = (lr − 1)αk whenever k and l are both odd.

(33.10)

So the extension E is determined by the elements αk ∈ A, for k ≥ 2, satisfying the
above equations.

To analyze when the sequence is split, let g̃ denote the image of g in Z(r). A
splitting would send g̃ to an element g + a, for some a ∈ A. Since ψk(g̃) = kr g̃ we
find that

kr(g + a) = ψk(g + a) = krg + αk +

{
0 if k is even,
a if k is odd.

Rearranging to solve for αk, we obtain

αk =

{
kra if k is even,
(kr − 1)a if k is odd.

So these are the properties of an (αk) sequence that are equivalent to the extension
0 ← Z(r) ← E ← A[2] ← 0 being split. Notice that such sequences are in some
sense the “trivial” solutions of the relations (33.10).

We make one more general comment before returning to our specific situation.
Let a ∈ A and consider the sequence defined by

αk =

{
1
2k

r.a k even
1
2 (kr − 1).a k odd.

(33.11)

Note that the fractions multiplying a are in fact integers. So this sequence defines
a valid extension E, and if a is not a multiple of 2 in A then the extension doesn’t
“look” split. Precisely, if A is torsion-free and a /∈ 2A, then the extension is clearly
nonsplit. We will see that the case where A is torsion is a bit more subtle.

Now let us return to the extension in (33.9). Here A = Z/(2f ), where f =
ϕ(N) − ϕ(m). Since m is a multiple of 8 (and this is the first place where we use
this assumption), f also equals ϕ(N −m).

In Theorem 32.19 we previously computed the action of the Adams operations
on K̃O (RPN/RPm−1). The corresponding α-sequence is precisely the one given
by (33.11), where a is a generator for Z/(2f ). So the extension is split if and only
if there exists a B ∈ Z such that

1
2k

r.a = kr.(Ba) (k even), 1
2 (kr − 1).a = (kr − 1).(Ba) (k odd)

for all k. Phrased differently, these say that

2f divides

{
1
2k

r(1− 2B) if k is even,
1
2 (kr − 1)(1− 2B) if k is odd.

Since 1− 2B is always odd, this is equivalent to

2f+1 divides

{
kr k even,
kr − 1 k odd.
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Let ν(x) denote the 2-adic valuation of the integer x, and let us restate what we
have now shown: If 8|m and RPN/RPm−1 splits off its bottom cell, then

ϕ(N −m) + 1 ≤ min
{
r, ν(3r − 1), ν(5r − 1), ν(7r − 1), ν(9r − 1), . . .

}
where r = m/2. Here we have used ν(2r) = r and have also left out ν(kr) for
even integers k > 2, as these numbers are at least r and hence irrelevant for the
minimum.

Our next task is to consider the numbers ν(3r − 1), and for these we refer to
Lemma 33.12 below. Since in our case r is even one has ν(3r − 1) = ν(r) + 2.
Note that as r ≥ 4 this term is no larger than r, and so the first term in the above
minimum is irrelevant.

We could proceed to analyze the terms ν(kr − 1) for odd k > 3, which is not
hard, but in fact we have done enough to conclude the proof already. We have
shown that if 8|m and RPN/RPm−1 splits off its bottom cell, then

ϕ(N −m) + 1 ≤ ν(r) + 2 = ν(m) + 1,

or simply ϕ(N −m) ≤ ν(m). So our task is to find the largest x for which ϕ(x) =
ν(m). To do this, write ν(m) = 4b + a where 0 ≤ a ≤ 3. Let “ϕ-count” stand for
counting the integers that are congruent to 0, 1, 2, or 4 modulo 8. Every cycle of
8 consecutive integers contribules 4 to the ϕ-count, and so for ϕ(x) ≥ 4b we would
need x ≥ 8b. The cases a = 0, 1, 2, 3 can now be analyzed by hand: for a = 0 we
have x = 8b; for a = 1 we have x = 8b + 1; for a = 2 we have x = 8b + 3; and for
a = 3 we have x = 8b + 7. So in general the largest x such that ϕ(x) = 4b + a is
x = 8b+ 2a − 1.

Putting everything together, if ϕ(N − m) ≤ ν(m) = 4b + a then N − m ≤
8b+ 2a− 1 = ρ(m). So if N ≥ m+ ρ(m) + 1 then RPN/RPm−1 cannot split off its
bottom cell. �

Lemma 33.12. If r is even then ν(3r−1) = ν(r)+2. If r is odd then ν(3r−1) = 1.

Proof. If r is odd then modulo 4 we have 3r = (−1)r = −1, so 3r − 1 ≡ 2 mod 4.
This proves that ν(3r − 1) = 1.

If r = 2f · u where u is odd, we prove by induction on f that ν(3r − 1) = f + 2.
The base case is f = 1, and here we use 3r−1 = 32u−1 = (3u−1)(3u+1). We know
ν(3u−1) = 1 by the preceding paragraph. Modulo 4 one has 3u+1 = (−1)u+1 = 0,
but modulo 8 one has 3u+1 = 4. So ν(3u+1) = 2, which confirms that ν(3r−1) = 3.

For the inductive step, if r = 2f+1u where u is odd then write

3r − 1 = (32fu − 1)(32fu + 1).

By induction we know ν(32fu − 1) = f + 2. Modulo 4 we have 32fu + 1 =(
(−1)2

f )u+1 = 1 + 1 = 2. So ν(32fu + 1) = 1, hence ν(3r − 1) = f + 3. �

Remark 33.13. It is intriguing that a number-theoretic analysis of ν(3r − 1) was
the ultimate step in both the Hopf invariant one problem and the vector fields on
spheres problem. To my knowledge, there is no reason to suspect any connection
between these two problems.

Exercise 33.14. If k is any odd number, prove that ν(kr − 1) ≥ ν(r) + 2 when r
is even. This confirms that the terms for k > 3 were irrelevant for the minimum
considered in the above proof.
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Example 33.15. To demonstrate the proof of Adams’s Theorem, consider m =
576 = 26·9. Starting strictly above 576, we mark off numbers until we have exceeded
a ϕ-count of ν(m) = 6. In the following sequence, the numbers contributing to the
ϕ-count have boxes around them:

576 | 577 , 578 , 579, 580 , 581, 582, 583, 585 , 585 , 586 , 587, 588

Adams’s argument shows that RP 588/RP 575 does not split off its bottom cell. Note,
of course, that ρ(576) = 11 and 588 = 576+11+1. The point, however, is that one
does not need to remember the awkward formula for ρ(m); the procedure is simply
to count past m until the ϕ-count exceeds ν(m).

33.16. Atiyah duality (Step 5). This is the final piece. The material in this
section will complete our proof of Theorem 33.1.

Consider the space RP 9/RP 4. Its cohomology is shown below in the diagram
on the left:

bbb
bb

H∗(RP 9/RP 4) bbb
bb

H∗(????)

We obtained the picture on the right by simply turning the left diagram upside
down; is this also the cohomology of a space? It is easy to see that the answer is yes:
the right diagram is H∗(RP 10/RP 5). This turns out to be a general phenomenon,
first discovered by Atiyah. And the kind of ‘duality’ we are seeing actually takes
place at a deeper level than just that of cohomology. It is essentially a geometric
duality, taking place inside of the stable homotopy category.

The stable homotopy category is symmetric monoidal: the monoidal product is
the smash E,F 7→ E ∧ F , and the unit is the sphere spectrum S. It is also closed
symmetric monoidal, meaning that there exist function objects E,F 7→ F(E,F )
and a natural adjunction

HomHo (Sp)(E,F(X,Y )) ∼= HomHo (Sp)(E ∧X,Y ).

Spanier-Whitehead duality has to do with the functor X 7→ DX = F(X,S). This
functor preserves cofiber sequences and it sends the n-sphere Sn = Σ∞Sn to the
(−n)-sphere S−n. So if a certain spectrum X is built from cells in dimensions 0
through n, the spectrum DX is built from cells in dimensions −n through 0.

For nice enough spectra X one has the property that D(D(X)) ' X; such
spectra are called dualizable. All finite cell complexes are dualizable. One can
prove that H∗(DX) agrees with ‘taking H∗(X) and turning it upside down’.

The essentials of Spanier-Whitehead duality were known long before the details
of the stable homotopy category had all been worked out (particularly the details
behind the smash product). Here is the main result for finite complexes:

Proposition 33.17. Let X be a finite cell complex that is embedded in Sn as a
subcomplex (of some chosen cell structure on Sn). Then

Σn−1D(Σ∞X) ' Σ∞(Sn −X).

Example 33.18. Let us check the above proposition in some very easy examples.
We use the form D(X) ' Σ−n+1(Sn −X).
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(a) X = S0. Then Sn − S0 ' Sn−1, and so we find D(S0) ' Σ−n+1Sn−1 ' S0.
The 0-sphere is self-dual.

(b) Let X = Sn−1, embedded as the equator in Sn. The complement Sn−X is S0

(up to homotopy), so we have D(Sn−1) ' Σ−n+1S0 = S−(n−1). Again, this is
as expected.

For some classical references on Spanier-Whitehead duality, see [A4, Chapter
III.5] and [Swz, Chapter 14].

We can now state Atiyah’s main theorem. The proof is taken directly from [At2].
See Section 15.12 for a discussion of Thom spaces of virtual bundles.

Theorem 33.19 (Atiyah Duality). Let M be a compact, smooth manifold.
(a) If M has boundary then D(M/∂M) ' Th(−TM ) where TM →M is the tangent

bundle.
(b) Now assume that M is closed, and let E →M be a real vector bundle. Then

D(ThE) ' Th(−E − TM ).

Proof. For (a), embed M into In (nicely) in such a way that ∂M maps into In−1×
{0}. (See [At2] for details). Consider the join pt ∗ In, which is a pyramid; its
boundary is homeomorphic to Sn. Refer to the following picture for an example:

In
M

pt ∗ In ⊇ pt ∗M

Consider the subcomplex

X = M ∪ (pt ∗ ∂M) ⊆ ∂(pt ∗ In) ∼= Sn.

We have M/∂M 'M ∪ (pt ∗ ∂M), and so

D(M/∂M) ' D(X) ' Σ−n+1(Sn −X).

Projection away from pt gives a deformation retraction Sn −X ∼−→ In −M . Next
observe In−M ' In−U , where U is a tubular neighborhood of M in In. Finally,
notice that since In is contractible we have that In/(In−U) is a model for Σ(In−U)
(up to homotopy). Putting everything together, we have

D(M/∂M) ' Σ−n+1(In − U) ' Σ−n(In/(In − U)) = Σ−n Th(NIn/M )

' Th(NIn/M − n).

Now use that TM ⊕NIn/M
∼= n.

For (b) use that Th(E) ∼= Di(E)/S(E), whereDi(E) is the disk bundle and S(E)
is the sphere bundle of E. The disk bundle is a compact manifold with boundary
S(E), so by (a) one has

D(ThE) = D
(
Di(E)/S(E)

)
' Th(−TDi(E)).
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If π : Di(E)→M is the bundle map then it is easy to see that TDi(E)
∼= π∗(E⊕TM ).

Since π is a homotopy equivalence,

Th(−TDi(E)) = Th(−π∗(E ⊕ TM )) ' Th(−(E ⊕ TM )).

This finishes the proof. �

We next apply what we just learned to stunted projective spaces. Recall from
Example 15.9 that all stunted projective spaces are Thom spaces:

RPn−1/RPn−k−1 ∼= Th

(
(n−k)L
↓

RPk−1

)
.

Recall as well that the tangent bundle to RP k−1 satisfies T ⊕ 1 ∼= kL (Exam-
ple 23.10). Using these two facts, Atiyah Duality now gives that

D(RPn−1/RPn−k−1) ' Th

(
−(n−k)L−T

↓
RPk−1

)
= Th

(
−nL+1

↓
RPk−1

)
' Σ Th

(
−nL
↓

RPk−1

)
.

Let rk−1 be the additive order of [L] − 1 in K̃O(RP k−1). Then rk−1L ∼= rk−1

(stably), and hence for any s ∈ Z we have

Th

(
−nL
↓

RPk−1

)
' Σ−srk−1 Th

(
−nL+srk−1

↓
RPk−1

)
' Σ−srk−1 Th

(
−nL+srk−1L

↓
RPk−1

)

' Σ−srk−1 Th

(
(srk−1−n)L

↓
RPk−1

)
'Σ−srk−1

[
RP srk−1−n+k−1/RP srk−1−n−1

]
.

In the last line we imagine s chosen to be large enough so that srk−1 − n− 1 ≥ 0.
Putting everything together, we have proven the following:

Corollary 33.20. Let rk−1 be the additive order of [L]− 1 in K̃O(RP k−1). Then
there is a stable homotopy equivalence

D(RPn−1/RPn−k−1) ' Σ1−srk−1

[
RP srk−1−n+k−1/RP srk−1−n−1

]
where s is any integer such that srk−1 − n− 1 ≥ 0.

Example 33.21. Let us consider the Spanier-Whitehead dual of RP 9/RP 4, as in
the beginning of this section. Relative to our above discussion, n = 10 and k = 5.
By Theorem 32.14 we know K̃O(RP 4) ∼= Z/8, so the order of [L] − 1 is 8. The
above corollary gives

D(RP 9/RP 4) ' Σ1−8s
[
RP 8s−6/RP 8s−11

]
for any s where the right-hand-side makes sense. The smallest choice is s = 2,
giving D(RP 9/RP 4) ' Σ−15(RP 10/RP 5).
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34. The immersion problem for RPn

Let M be a compact, n-dimensional, real manifold. It is a classical theorem of
Whitney from the 1940s that M can be immersed in R2n−1 and embedded into R2n

[Wh1, Wh2]. A much more difficult result, proved by Cohen [C] in 1985, says that
M can be immersed in R2n−α(n) where α(n) is the number of ones in the binary
expansion of n. As a general result this is known to be the best possible, but
for specific choices of M one could conceivably do better. Define the immersion
dimension (resp. the embedding dimension) of M to be the smallest k such
that M immerses (resp., embeds) into Rk.

In general, determining the immersion and embedding dimensions of a given
manifold seem to be difficult problems. Over the last 60+ years they have been
extensively studied, particularly for the manifold RPn. The problem tends to
involve two distinct components. As one aspect, clever geometric constructions are
used to produce immersions (or embeddings) and therefore upper bounds on the
immersion dimension. For lower bounds one must prove non-immersion results, and
this is usually done by making use of some sort of homotopical invariants. Over
the years the problem for RPn has been used as a sort of testing ground for every
new homotopical technique to come along.

Our intent here is not to give a complete survey of this problem, as this would
take far too long. We will be content to give a small taste, entirely concentrating
our focus on some easily-obtained lower bounds in the case of RPn. The methods
involve Stiefel-Whitney classes (in singular cohomology) and some related charac-
teristic classes in KO-theory.

34.1. A short survey. Before jumping into our analysis, let us give some sense of
what is known about the problem. The following table shows the current knowledge
(as of January 2013) about the immersion and embedding dimensions for RPn when
n ≤ 24:

Table 34.2. Immersion and embedding dimensions for RPn

RPn 2 3 4 5 6 7 8 9 10 11 12 13
imm. dim. 3 4 7 7 7 8 15 15 16 16 18 22
emb. dim. 4 5 8 9 [9, 11] [9, 12] 16 17 17 18 [18, 21] [22, 23]

RPn 14 15 16 17 18 19 20 21 22 23 24
imm. 22 22 31 31 32 32 34 38 38 38 [38, 39]
emb. [22, 23] [23, 24] 32 33 33 [33, 34] [34, 37] 39 39 39 [39, 42]

In the table, entries in brackets are given when the exact answer is not known.
For example, the embedding dimension of RP 6 is only known to lie in the interval
[9, 11]. RP 6 definitely embeds into R11 and does not embed into R8—but it is not
known if RP 6 embeds into R9 or R10. In comparison, we know much more about
the immersion problem; the smallest unknown case is RP 24.

The above data on the immersion and embedding dimensions was taken from a
table compiled by Don Davis [Da]. Davis’s table contains substantially more data,
covering slightly past RP 100.
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One of the earliest results is due to Milnor: if n = 2r then the immersion
dimension of RPn equals 2n− 1 (showing that the Whitney upper bound is sharp
in this case). Peterson proved that if n = 2r then the embedding dimension equals
2n, again showing that the Whitney bound is sharp here. In general, if n = 2r + d
for 0 ≤ d < 2r and d is relatively small, then one can expect the immersion and
embedding dimensions to be 2r+1 + x where x is a known quantity or one that is
tightly constrained. The following theorem encompasses most of what is known for
d ≤ 10:

Theorem 34.3. Write n = 2i+d where 0 ≤ d < 2i. Then the immersion dimension
of RPn equals 2i+1 + e and the embedding dimension equals 2i+1 + f where the
following is known:

d 0 1 2 3 4 5 6 7 8 9 10
i ≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4
e −1 −1 0 0 2 6 6 6 [6, 7] 14 14
f 0 1 1 [1, 2] [2, 5] 7 7 7 [7, 10] [14, 15] [14, 16]

The above theorem is not credited because it represents the combined work over
many years of a dozen authors. Much credit should be given to Davis, who has
brought all the results together and given complete references. The above theorem
is just the first few lines of the table [Da].

34.4. Stiefel-Whitney techniques. Suppose that M is a compact manifold of
dimension n, and that M is immersed in Rn+k. The immersion has a normal
bundle ν, and there is an isomorphism of bundles TM ⊕ ν ∼= n+ k. Taking total
Stiefel-Whitney classes of both sides gives

w(TM ) · w(ν) = w(TM ⊕ ν) = w(n+ k) = 1.

Recall that the total Stiefel-Whitney class of a bundle E is w(E) = 1 + w1(E) +
w2(E)+· · · . Because the zero-coefficient is 1 we can formally invert this expression,
and because H∗(M) is zero in sufficiently large degrees this formal inverse actually
makes sense as an element of H∗(M). So we can feel free to write w(E)−1, and we
obtain

w(TM )−1 = w(ν).
We don’t know anything about ν except its rank, which is equal to k. This guar-
antees that w(ν) does not have any terms of degree larger than k, and so we obtain
the following simple result [MS, material preceding Theorem 4.8]:

Proposition 34.5. Let M be a compact manifold of dimension n. If M immerses
in Rn+k then w(TM )−1 vanishes in degrees larger than k.

Let us apply this proposition to RPn. Here we have the identity TRPn ⊕ 1 =
(n+ 1)L (Example 23.10) and so

w(TRPn) = w(TRPn ⊕ 1) = w((n+ 1)L) = w(L)n+1 = (1 + x)n+1,

where x denotes the generator for H1(RPn; Z/2). Taking inverses gives

w(TRPn)−1 = (1 + x)−(n+1) =
∞∑
i=0

(−(n+1)
i

)
xi.
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We can rewrite the coefficient of xi, since(−(n+1)
i

)
= (−1)i (n+1)·(n+2)···(n+i)

i! = (−1)i
(
n+i
i

)
.

Putting everything together we obtain the following:

Corollary 34.6. If RPn immerses into Rn+k then
(
n+i
i

)
is even for k < i ≤ n.

The above corollary yields very concrete non-immersion results, but to obtain
these we need to be good at checking when binomial coefficients are even. His-
torically, topologists got pretty good at this because of the presence of binomial
coefficients in the Adem relations. The important result is the following:

Lemma 34.7. Let njnj−1 . . . n0 be the base 2 representation for n; that is, each
nj ∈ {0, 1} and n =

∑
nj2j. Similarly, let kjkj−1 . . . k0 be the base 2 representation

for k. Then (
n
k

)
≡
∏
i

(
ni

ki

)
mod 2.

Proof. The result follows easily from three points: (i)
(
2n
i

)
is even if i is odd; (ii)(

2n
2k

)
≡
(
n
k

)
(mod 2); and (iii)

(
2n+1
2k

)
≡
(
2n
2k

)
(mod 2). For (i) and (ii), imagine a

column of the numbers 1 through n and a second “mirror” column containing the
same entries. If i is odd, the i-element subsets of the two columns together may
be partitioned into two classes: those which contain more elements from column
A than column B, and those which contain less elements from column A. The
operation of “switch entries between the two columns” gives a bijection between
these two classes, thereby showing that

(
2n
i

)
is even.

For (ii), note that the i-element subsets can be partitioned into groups deter-
mined by the number of elements from column A. This gives rise to the formula(

2n
2k

)
=
(
n
0

)(
n
k

)
+
(
n
1

)(
n
k−1

)
+ · · ·+

(
n
k−1

)(
n
1

)
+
(
n
k

)(
n
0

)
.

The terms on the right-hand-side are symmetric and so can be grouped in pairs,
except for the middle term which is

(
n
k

)2. So working mod 2 we have(
2n
2k

)
≡
(
n
k

)2 ≡ (nk).
For (iii) just use Pascal’s identity

(
2n+1
2k

)
=
(
2n
2k

)
+
(

2n
2k−1

)
together with (i). �

Example 34.8. To determine if
(
20
9

)
is even then we note that 20 is 10100 in base

2, and 9 is 1001. Using the above lemma we compute(
20
9

)
=
(

1 0 1 0 0
0 1 0 0 1

)
≡
(
1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
1

)
= 1 · 0 · 1 · 1 · 0 = 0.

So
(
20
9

)
is even.

Notice that
(
1
1

)
=
(
1
0

)
=
(
0
0

)
= 1, whereas

(
0
1

)
= 0. So in computations like the

one above, the fnal answer is even if and only if
(
0
1

)
appears at least once in the

product—that is, if n has a certain bit turned “off” and the corresponding bit of k
is “on”. In particular, the following three statements are now obvious:

(i) If n = 2r then
(
n
i

)
is even for all i in the range 0 < i < n.

(ii) If n = 2r − 1 then
(
n
i

)
is odd for all i ≤ n.

(iii)
(
2n
n

)
is always even.

The point for the first two is that 2r has all of its bits turned off except for the
rth, whereas 2r−1 has all of its bits turned on. For statement (iii) just consider the
smallest bit of n that is turned on, and note that the corresponding bit is off in 2n.
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Corollary 34.6 is most often used in the form below. The proof is immediate
from Corollary 34.6.

Corollary 34.9. Fix n ≥ 2, and let k be the largest integer such that k ≤ n and(
n+k
k

)
is odd. Then RPn does not immerse into Rn+k−1.

Note that k will be strictly less than n, as
(
2n
n

)
is always even; this conforms with

the Whitney immersion result. As an application of the above corollary, suppose
we want to immerse RP 10. We start with(

20
10

)
= 20·19·18·17·16·15·14·13·12·11

10·9·8·7·6·5·4·3·2·1

We have 210 dividing the numerator and 28 dividing the denominator. Start re-
moving factors from the left, one by one from the numerator and denominator
simultaneously, watching what happens to the number of 2’s in each. The fraction
does not become odd until we are looking at

(
15
5

)
. So the conclusion is that RP 10

does not immerse into RP 14.
The above process is cumbersome, and with a little investigation it is not hard

to produce a shortcut.

Proposition 34.10. Write n = 2i + d where 0 ≤ d < 2i. Then the largest k in the
range 0 ≤ k ≤ n such that

(
n+k
k

)
is odd is k = 2i − d− 1.

Proof. Note that if j = 2i−d−1 then n+j = 2i+1−1 and so
(
n+j
j

)
is certainly odd.

We must show that
(
n+j
j

)
is even for j in the range 2i−d ≤ j ≤ n. This is the kind

of analysis that is perhaps best left to the reader, but we will give a sketch. Suppose
to the contrary that j is in this range and

(
n+j
j

)
is odd. Let e = j − (2i − d − 1),

so that n + j = (2i + d) + e + (2i − d − 1) = e + (2i+1 − 1). Let the smallest bit
of e that is turned on be the rth bit; this is also the smallest bit of n + j that is
turned off. Since

(
n+j
n

)
is odd, this bit must be also off in n. If we write e = e′+2r,

then n+ j = e′ + (2r + 2i+1 − 1). The term in parentheses has all bits off from the
(r + 1)st through the ith, and so the bits of n+ j agree with the bits of e′ (and of
e) in this range. Since

(
n+j
n

)
is odd, every bit of n that is turned on in this range

must also be turned on in n+ j—and therefore also in e. We have thus shown that
• The rth bit is off in n but on in e, and
• All bits greater than the rth that are on in n are also on in e.

These two facts show that e > n, which is not allowed since e ≤ j ≤ n. �

Corollary 34.11. If n = 2i + d where 0 ≤ d ≤ 2i − 1 then RPn does not immerse
into R2i+1−2. In particular, if n = 2i then the immersion dimension of RPn equals
2n− 1.

Proof. The first line is immediate from Corollary 34.9 and Proposition 34.10. The
second statement follows from the first together with the Whitney theorem saying
that RPn immerses into R2n−1. �

Let us now change gears just a bit and consider embeddings. We can also use
characteristic classes to give obstructions in this setting. The key result is the
following:

Proposition 34.12. Suppose M is a compact n-manifold that is embedded in Rn+k.
Then wk(ν) = 0 where ν is the normal bundle.
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Proof. Choose a metric on ν and let S(ν) be the sphere bundle. If p : S(ν) → M
denotes the projection map, then clearly p∗ν splits off a trivial bundle: p∗ν = 1⊕E
for some rank k − 1 bundle E on S(ν). From this it immediately follows that
0 = wk(p∗ν) = p∗(wk(ν)).

The proof will be completed by showing that p∗ : H∗(M ; Z/2)→ H∗(S(ν); Z/2)
is injective. Let U be a tubular neighborhood of M in Rn+k, arranged so that its
closure U is homeomorphic to the disk bundle of ν. Write ∂U for the boundary,
which is isomorphic to S(ν). We have the long exact sequence

· · · → Hi(U, ∂U)→ Hi(U)→ Hi(∂U)→ · · ·
where all cohomology groups have Z/2-coefficients. The projection U → M is a
homotopy equivalence, so our map p∗ is isomorphic to Hi(U) → Hi(∂U). We can
verify that this is injective by checking that the previous map in the long exact
sequence is zero. We look only at i > 0, as the i = 0 case is trivial.

To this end, consider the diagram below:

Hi(Rn+k,Rn+k −M) //

∼=
��

Hi(Rn+k)

��
Hi(U, ∂U) // Hi(U)

The left vertical map is an isomorphism by excision, and the group in the upper
right corner is zero. So the bottom horizontal map is zero, as we desired. �

Compare the next result to Proposition 34.5:

Corollary 34.13. Let M be a compact n-manifold. If M embeds into Rn+k then
w(TM )−1 vanishes in degrees k and larger.

Proof. We saw in the proof of Proposition 34.5 that w(TM )−1 = w(ν). Since ν has
rank k, this forced the Stiefel-Whitney classes to vanish in degrees larger than k.
But now Proposition 34.12 also gives us the vanishing in degree k. �

Corollary 34.14. If RPn embeds into Rn+k then
(
n+j
j

)
is even for k ≤ j ≤ n.

Proof. Same as for Corollary 34.6. �

Corollary 34.15. Let n = 2i+d where 0 ≤ d ≤ 2i− 1. Then RPn does not embed
into R2i+1−1. In particular, if n = 2i then the embedding dimension of RPn equals
2n.

Proof. Let k be the largest integer in the range 0 ≤ k ≤ n such that
(
n+k
k

)
is

odd. Then Corollary 34.14 shows that RPn does not embed into Rn+k. But
Proposition 34.10 identifies k = 2i−d−1, and so n+k = 2i+1−1. This proves the
first statement. The second statement is then a consequence of the first together
with the Whitney theorem that RPn embeds into R2n. �

To gauge the relative strength of Corollaries 34.11 and 34.15, see the table below
and compare to Table 34.2. One gets a clear sense of how far algebraic topology
has progressed since the early days of Stiefel-Whitney classes!
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Table 34.16. Stiefel-Whitney lower bounds for the immersion
and embedding dimensions of RPn

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
imm≥ 3 3 7 7 7 7 15 15 15 15 15 15 15 15 15 15 15
emb≥ 4 4 8 8 8 8 16 16 16 16 16 16 16 16 16 16 16

34.17. K-theoretic techniques. One can readily imagine taking the basic ap-
proach from the last section and replacing the Stiefel-Whitney classes with charac-
teristic classes taking values in some other cohomology theory. Atiyah [At3] pursued
this idea using KO-theory, and certain constructions of Grothendieck provided the
appropriate theory of characteristic classes. In this way he obtained some new
non-immersion and non-embedding theorems. We describe this work next.

Earlier in these notes (????) we described the construction of the γ-operations in
complex K-theory. The same formulas work just as well for KO-theory. Explicitly,
for an element x ∈ K̃O (X) define

γt(x) = λ t
1−t

(x) = 1 + t
1−t [λ

1x] +
(

t
1−t
)2[λ2x] + · · ·

Note that γt(x + y) = γt(x)γt(y). Define γi(x) to be the coefficient of ti in γt(x).
So we have

γk(x+ y) =
∑
i+j=k

γi(x)γj(y).

Note also that γt(1) = 1 + t
1−t = 1

1−t = 1 + t+ t2 + · · ·
For a vector bundle E over X define

γ̃t(E) = γt(E − rankE) =
γt(E)

γt(rankE)
=

γt(E)
γt(1)rankE

= γt(E) · (1− t)rankE .

One should think of this as just being a renormalization of the γt construction; note
that γ̃t(E) = 1 if E is a trivial bundle. Observe that we still have the analog of the
Whitney formula:

γ̃t(E ⊕ F ) = γt(E ⊕ F − rank(E + F )) = γt
(
(E − rankE) + (F − rankF )

)
= γt(E − rankE)γt(F − rankF )

= γ̃t(E)γ̃t(F ).

If L is a line bundle then

γ̃t(L) = γt(L) · (1− t) =
[
1 + t

1−t [L]
]
· (1− t) = 1− t+ t[L] = 1 + t([L]− 1).

So γ̃1(L) = [L]− 1 and γ̃i(L) = 0 for i > 1.
Finally, we observe that if E is a rank k bundle then γ̃i(E) = 0 for all i > k.

This is because

γ̃t(E) = λ t
1−t

(E)(1− t)k =
∞∑
i=0

( t
1−t )

i[ΛiE] · (1− t)k =
k∑
i=0

ti(1− t)k−i[ΛiE].

Clearly the final expression is a polynomial in t of degree at most k.
Compare the following result to Proposition 34.5 and Corollary 34.13.

Proposition 34.18. Let M be a compact n-manifold. If M immerses into Rn+k

then the power series γ̃t(TM )−1 vanishes in degrees larger than k. If M embeds into
Rn+k then γ̃t(TM )−1 vanishes in degrees k and larger.
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Proof. The proofs are the same as before. If M immerses into Rn+k then TM ⊕ν ∼=
n+ k where ν is the normal bundle. So γ̃t(TM )γ̃t(ν) = γ̃t(TM⊕ν) = γ̃t(n+ k) = 1,
and so γ̃t(TM )−1 = γ̃t(ν). But since ν has rank k we have γ̃i(ν) = 0 for i > k.

For the second part of the proposition we need to prove that if M embeds into
Rn+k then γ̃k(ν) = 0. The proof is exactly the same as for Proposition 34.12. �

For the following proposition, recall that ϕ(n) denotes the number of integers s
such that 0 < s ≤ n and s is congruent to 0, 1, 2, or 4 modulo 8.

Corollary 34.19 (Atiyah).
(a) If RPn immerses into Rn+k then 2ϕ(n)−j+1 divides

(
n+j
j

)
for k < j ≤ ϕ(n).

(b) If RPn embeds into Rn+k then 2ϕ(n)−j+1 divides
(
n+j
j

)
for k ≤ j ≤ ϕ(n).

Proof. Recall that 1⊕ TRPn ∼= (n+ 1)L, as in Example 23.10. We get

γ̃t(TRPn) = γ̃t(TRPn ⊕ 1) = γ̃t((n+ 1)L) = γ̃t(L)n+1 =
(
1 + tλ

)n+1

where λ = [L]− 1 ∈ K̃O 0(RPn). So

γ̃t(TRPn)−1 = (1 + tλ)−(n+1) =
∞∑
j=0

(−(n+1)
j

)
λj · tj =

∞∑
j=0

(−1)j
(
n+j
j

)
λj · tj .

If RPn immerses into Rn+k then by Proposition 34.18
(
n+j
j

)
λj = 0 in K̃O 0(RPn)

for all k < j. If RPn embeds into Rn+k then
(
n+j
j

)
λj = 0 for all k ≤ j.

Now we recall from Theorem 32.14 that K̃O 0(RPn) ∼= Z/(2ϕ(n)) and that λ is a
generator. Also recall that λ2 = −2λ, or λj = (−2)j−1λ. The desired conclusions
follow immediately. �

Corollary 34.19 is best used in the following form. Let σ(n) denote the largest
value of j in the range 1 ≤ j ≤ ϕ(n) for which

(
n+j
j

)
is not divisible by 2ϕ(n)+1−j ;

if no such j exists then set σ(n) = 0 by default. Then RPn does not immerse into
Rn+σ(n)−1 and does not embed into Rn+σ(n).

For some values of n the result of Corollary 34.19 is stronger than what we
obtained from Corollaries 34.6 and 34.15, and for some values of n it is weaker. We
demonstrate some examples:

Example 34.20. For the question of immersions of RP 8, we have ϕ(8) = 4 and
σ(8) = 4. So Atiyah’s result (34.19) gives that RP 8 does not immerse into R11.
The Stiefel-Whitney classes, however, told us that RP 8 does not immerse into R14.

In contrast, for RP 15 we have ϕ(15) = 7 and σ(15) = 4. So Atiyah’s result tells
us that RP 15 does not immerse into R18. The method of Stiefel-Whitney classes
(34.6) gives no information in this case.

The table below shows the lower bounds for the immersion dimension of RPn
obtained from Stiefel-Whitney techniques versus the KO-theoretic techniques. The
reader will notice that the Stiefel-Whitney bounds are significantly better when
n = 2i+d and d is small, whereas the KO-theoretic bounds are better for n = 2i+d
when d is close to (but not exceeding) 2i − 1.
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Table 34.21. Lower bounds for the immersion dimension of RPn

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S-W 3 3 7 7 7 7 15 15 15 15 15 15 15 15 31 31 31
KO 3 3 7 7 7 7 12 13 15 15 17 17 19 19 24 25 27

n 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
S-W 31 31 31 31 31 31 31 31 31 31 31 31 31 63 63
KO 27 31 31 31 31 34 35 38 39 40 41 42 43 48 49

As an example when n is much larger, the Stiefel-Whitney classes give no infor-
mation on the immersion dimension of RP 255. By contrast, the Atiyah result gives
that the immersion dimension is at least 355. For n = 2i − 1 the improvement of
the Atiyah bound over the Hopf bound is on the order of n

2 .

34.22. Immersions and geometric dimension. So far we have used various
characteristic classes to give lower bounds on the immersion/embedding dimensions
for RPn. To close this section we will show how to produce upper bounds for the
immersion dimension, via a geometric result of Hirsch that translates this into a
bundle-theoretic problem. The central tool again ends up being KO-theory. Using
these methods we will completely determine the immersion dimension of RPn for
n ≤ 9.

Let E → X be a vector bundle. Define the virtual dimension of E by the
formula

v.dimE = min{k |E ∼= F ⊕ (rankE)− k for some bundle F of rank k}.
We might say that the virtual dimension is the smallest k such that E is isomorphic
to a stablized rank k bundle. If X is compact then we also have

v.dimE = rankE −max{j |E has j independent sections}.
Note that the virtual dimensions of E and E⊕1 might be different; the latter might
be smaller than the former. With this in mind we can also introduce the stable
virtual dimension:

sv.dimE = min{v.dim(E ⊕ r) | r ≥ 0}
= min{rankF |F is a bundle that is stably equivalent to E}.

Finally, we introduce the following related concept. For α ∈ K̃O 0(X), define the
geometric dimension of α to be

g.dimα = min{k
∣∣α+ k = [F ] for some vector bundle F on X}.

The above three concepts are related as follows:

Proposition 34.23. Let E → X be a vector bundle, where X is compact.
(a) g.dim(E − rankE) = sv.dim(E) ≤ v.dim(E).
(b) If X is compact and rankE > dimX then sv.dim(E) = v.dim(E).
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Proof. For (a) only the first equality requires proof. This equality is almost a
tautology: for any integer d ≥ 0 we have

sv.dim(E) ≤ d ⇐⇒ there exists an F of rank d such that E ∼=st F

⇐⇒ there exists an F of rank d such that [E]− rankE = [F ]− d
⇐⇒ there exists a bundle F such that [E]− rankE + d = [F ]

⇐⇒ g.dim(E − rankE) ≤ d.
The desired equality follows immediately.

For (b), let r = sv.dim(E), k = rank(E), and note that r ≤ k. Then there
exists a rank r bundle F such that E and F are stably isomorphic: E ⊕ N ∼=
F ⊕ (N + k − r) for some N > 0. Since rank(E) > dimX we can cancel the N
factors to get E ∼= F⊕(k − r), by Proposition 11.10. Hence v.dim(E) ≤ rank(F ) =
r = sv.dim(E). �

The following result of Hirsch [Hi], and its corollary, translate the immersion
problem into a purely homotopy-theoretic question. This is the key to why immer-
sions are better understood than embeddings.

Theorem 34.24 (Hirsch). Let M be a compact manifold of dimension n. For
k ≥ 1 the following statements are equivalent:
(a) M can be immersed in Rn+k

(b) There exists a bundle F of rank k such that TM ⊕ F is trivial.
(c) There exists an On-equivariant map Fr(TM )→ Vn(Rn+k), where Fr(TM ) is the

bundle of n-frames in TM .

Observe that (a) implies (b) by taking F to be the normal bundle of the im-
mersion. Also, if φ : TM ⊕ F → n+ k is an isomorphism then any n-frame in
TM yields an n-frame in Rn+k by applying φ; thus, one gets an equivariant map
Fr(TM )→ Vn(Rn+k). This shows (b) implies (c). So the content of the above theo-
rem is really in (c)⇒(a); this is what was proven by Hirsch, via geometric arguments
[Hi, Theorem 6.1 (taking r = 0 there)]. He actually showed much more, essentially
proving that homotopy classes of immersions from M to Rn+k are in bijective cor-
respondence with equivariant homotopy classes of maps Fr(TM )→ Vn(Rn+k). We
will not give Hirsch’s proof here, but we will use the following corollary of his result.
This corollary first appeared in [At3, Proposition 3.2] and in [Sa1, Theorem 2.1].

Corollary 34.25. Let k ≥ 1, and let M be a compact manifold of dimension n.
Then M immerses in Rn+k if and only if g.dim(n− TM ) ≤ k.

Proof. We have already seen the ‘only if’ direction when we obtained obstructions
to immersions: if an immersion exists then n+ k ∼= TM ⊕ ν where ν is the normal
bundle, therefore n− TM = ν − k and hence g.dim(n− TM ) = g.dim(ν − k) ≤ k.

For the other direction, assume g.dim(n − TM ) ≤ k. So there exists a rank k
vector bundle F such that n−TM +k = F in KO(M). This implies n+k = TM +F
in KO(M), which in turn yields that n+ k +N ∼= TM ⊕ F ⊕ N for some N ≥ 0.
Since the rank of TM ⊕F is larger than dimM , it follows by Proposition 11.10 that
we can cancel the N on both sides to get n+ k ∼= TM ⊕F . Then by Theorem 34.24
we know that M immerses into Rn+k. �

Remark 34.26. Note in particular that if M is parallelizable then M immerses
into Rn+1 (taking k = 1 in Corollary 34.25, since k = 0 is not allowed).
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We now specialize again to the case of M = RPn. Here we have

n− TRPn = (n+ 1)− (1⊕ TRPn) = (n+ 1)− (n+ 1)L = (n+ 1)(1− L).

Proposition 34.27. For n ≤ 8 the immersion dimension of RPn is as given in
Table 34.2.

Proof. Given the lower bounds given by Stiefel-Whitney classes (see Table 34.21),
we only have to demonstrate the required immersions. The fact that RP 8 immerses
in R15 is a special case of Whitney’s classical theorem. Both RP 3 and RP 7 have
trivial tangent bundles, and so by Remark 34.26 they immerse into R4 and R8,
respectively.

For RP 6 we must calculate the geometric dimension of 7(1−L) = −7(L−1). But
ϕ(6) = 3, and so K̃O (RP 6) ∼= Z/8. Hence 8(L− 1) = 0, and so −7(L− 1) = L− 1.
The geometric dimension of L − 1 is clearly at most 1, and so by Corollary 34.25
RP 6 immerses into R7.

A similar argument works to show that RP 2 immerses into R3 (or one can just
construct the immersion geometrically). �

The reader should note why the above result stopped with RP 8. For RP 9

one finds that the immersion problem boils down to determining the geomet-
ric dimension of −10(L − 1) = 22(L − 1) (here we used that ϕ(9) = 5 and so
K̃O 0(RP 9) = Z/32). The precise value of this geometric dimension is far from
clear. We will close this section by analyzing it completely, following Sanderson
[Sa1]. However, we take a short detour to illustrate some general principles.

Recall that for general n we have n− TRPn = (n+ 1)(1− L). We would like to
interpret the geometric dimension of this class as being a stable virtual dimension,
but for this we would need to be looking at a positive multiple of L− 1 rather than
1− L. There are two ways to get ourselves into this position. The first, which we
have already seen, proceeds by recalling that L − 1 has order 2ϕ(n) in K̃O (RPn).
So we can write

n− TRPn = −(n+ 1)(L− 1) =
(
2ϕ(n) − (n+ 1)

)
(L− 1)

and hence

g.dim(n− TRPn) = g.dim
([

2ϕ(n) − (n+ 1)
]
L−

[
2ϕ(n) − (n+ 1)

])
= sv.dim

([
2ϕ(n) − (n+ 1)

]
L
)
.

The second approach is from Sanderson [Sa2, Lemma 2.2]:

Proposition 34.28. For the bundle L→ RPn, the statement g.dim(a(L−1)) ≤ b
is equivalent to g.dim((b− a)(L− 1)) ≤ b, for any a, b ∈ Z with b ≥ 0.

Proof. It suffices to prove the implication in one direction, by symmetry. So suppose
g.dim(a(L− 1)) ≤ b. This implies that a(L− 1) + b = E in KO0(RPn), for some
rank b bundle E. Multiply by L to get a(1−L) + bL = E ⊗L, and then rearrange
to find (b− a)(L− 1) + b = E ⊗L. This yields that g.dim((b− a)(L− 1)) ≤ b. �

Corollary 34.29. Let L→ RPn be the tautological bundle. For k > 0 the following
statements are equivalent:
(1) RPn immerses into Rn+k,
(2) g.dim(−(n+ 1)(L− 1)) ≤ k,
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(3) g.dim((n+ k + 1)(L− 1)) ≤ k,
(4) g.dim

(
[2ϕ(n) − (n+ 1)] (L− 1)

)
≤ k.

Proof. The equivalence (1) ⇐⇒ (2) comes from Corollary 34.25, and (2) ⇐⇒ (3)
is by Proposition 34.28. Finally, (2) ⇐⇒ (4) is true because 2ϕ(n)(L − 1) = 0 in
K̃O 0(RPn). �

Part (3) of the above result, which is the part that comes from Proposition 34.28,
will not be needed in the remainder of this section. But we record it here for later
use.

We close this section by settling the immersion problem for RP 9:

Proposition 34.30 (Sanderson). The immersion dimension of RP 9 equals 15.

This result is from [Sa1, Theorem 5.3]. Sanderson proves much more than this,
for example that RPn immerses into R2n−3 whenever n is odd. He also proved that
RP 11 immerses into R16, which ends up being the best result for both RP 11 and
RP 10.

Proof. The lower bound of 15 is given by Stiefel-Whitney classes, as in Table 34.21.
So we only need to prove that RP 9 immerses into R15. By Corollary 34.29 this is
equivalent to g.dim(22(L−1)) ≤ 6, and is also equivalent to g.dim(16(L−1)) ≤ 16.
The proof below works for both statements, but for specificity we just prove the
former. Note that what we must prove is equivalent to sv.dim(22L) ≤ 6, by
Proposition 34.23. We will outline the steps for this, and then give more details
afterwards.
Step 1: There exists a rank 4 complex bundle E on RP 9 such that rRE is stably
equivalent to 22L (recall that rRE denotes the real bundle obtained from E by
forgetting the complex structure).
Step 2: The bundle E|RP 8 has a nonzero section s.
Step 3: The bundle rRE|RP 8 has a field of (real) 2-frames.
Step 4: For N � 0 the field of real (2 + N)-frames of (rRE ⊕ N)|RP 8 may be
extended over RP 9.
Step 5: sv.dim(22L) = sv.dim(rRE) ≤ 6, hence RP 9 can be immersed into R15.

We now justify each of these steps. For step 1 use that rR : K̃(RPn) →
K̃O (RPn) has image equal to 〈2(L − 1)〉, by Theorems 32.14 and 32.17. Since
22 is even, there is a complex bundle E on RP 9 such that rRE is stably equivalent
to 22L. The bundle E is represented by a map RP 9 → BU , and such a map nec-
essarily factors up to homotopy through BU(4): for this, use obstruction theory
and the homotopy fiber sequences S2n−1 → BU(n − 1) → BU(n). For a map
RP 9 → BU(n) to lift (up to homotopy) into BU(n − 1), one has obstructions in
the groups Hi(RP 9;πi−1S

2n−1) for 0 ≤ i ≤ 9. But as long as 5 ≤ n the homotopy
groups πi−1S

2n−1 vanish in this range, so all the obstruction groups are zero.
For step 2 we again proceed by obstruction theory. We have the sphere bundle

S(E|RP 8) → RP 8 with fiber S7, and all the obstruction groups vanish except for
the last one: H8(RP 8;π7S

7). The coefficents are untwisted because the complex
structure gives a canonical orientation to each fiber. This final obstruction class
is the same as the Euler class of rRE, or equivalently the top Chern class of E.
Since H8(RP 8; Z) = Z/2 it will be sufficient to compute the mod 2 reduction of
this class, which is the top Stiefel-Whitney class w8(rRE). Now we use that rRE is
stably isomorphic to 22L, so the total Stiefel-Whitney class is w(rRE) = w(22L) =
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w(L)22 = (1 + x)22. Hence w8(rRE) =
(
22
8

)
x8. Since

(
22
8

)
is even, the obstruction

class vanishes and we indeed have a nonzero section.
Step 3 is trivial: the sections s and is give the field of real 2-frames.
Step 4 is obstruction theory yet again. If F = rRE⊕N then we have a (partial)

section of VN+2(F ) → RP 9 defined over RP 8, and we must extend this to all of
RP 9. The obstruction lies in H9(RP 9;π8(VN+2(RN+8))). But the homotopy group
in the coefficients is known to be zero for large enough N , by ????.

Step 5 is now immediate: rRE ⊕N has rank 8 +N and has 2 +N independent
sections, hence v.dim(rRE ⊕ N) ≤ 6. So sv.dim(rRE) ≤ 6 as well. Since rRE is
stably equivalent to 22L, sv.dim(22L) = sv.dim(rRE) ≤ 6. �

The arguments in this section naturally suggest the following problem, which is
open:

Problem: Given n and k, compute the geometric dimension of k([L] − 1) ∈
K̃O (RPn).

Over the years this problem has been extensively studied by Adams, Davis, Gitler,
Lam, Mahowald, Randall, and many others. See Section 35.14 for a bit more
discussion.

34.31. Summary. In this section we obtained two sets of non-immersion/non-
embedding results, one using Stiefel-Whitney classes in mod 2 singular cohomology
and the other using the γ̃ classes in KO-theory. We also translated the immersion
problem into a question about geometric dimension of reduced bundles, and for
RPn we completely solved this question for n ≤ 9. As we have said before, this is
far from the whole story—in fact it is just the very tip of a large and interesting
iceberg. We refer the reader to the references cited in [Da] for other pieces of the
story.

35. The sums-of-squares problem and beyond

This section is in some ways an epilogue to the previous one. In the last section
we started with a geometric problem, that of immersing RPn into Euclidean space.
We then used cohomology theories and characteristic classes to obtain necessary
conditions for such an immersion to exist: we obtained two sets of conditions, one
from mod 2 singular cohomology and one fromKO-theory. In the present section we
start with an algebraic problem, one that at first glance seems completely unrelated
to immersions. It is the problem of finding sums-of-squares formulas in various
dimensions, which we encountered already back in Section 14 (we will review the
problem below). Once again we will use cohomology theories to obtain necessary
conditions for the existence of such formulas. The surprise is that these conditions
are basically the same as the ones that arose in the immersion problem! This is
because both problems lead to the same homotopy-theoretic situation involving
bundles over real projective space.

In theory the present section could be read completely independently of the last
one. But because the underlying homotopy-theoretic problem is the same, we refer
to the previous section for many details of its analysis.
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35.1. Review of the basic problem. Recall that a sums-of-squares formula
of type [r, s, n] (over R) is a bilinear map φ : Rr ⊗ Rs → Rn with the property
that

|φ(x, y)|2 = |φ(x)|2 · |φ(y)|2(35.2)

for all x ∈ Rr and y ∈ Rs. If we write x = (x1, . . . , xr) and y = (y1, . . . , ys)
then φ(x, y) = (z1, . . . , zn) where each zi is a bilinear expression in the x’s and y’s.
Formula (35.2) becomes

(x2
1 + · · ·+ x2

r) · (y2
1 + · · ·+ y2

s) = z2
1 + · · ·+ z2

n.

We will sometimes refer to an “[r, s, n]-formula” for short. Note that if an [r, s, n]-
formula exists then one trivially has [i, j, k]-formulas for any i ≤ r, j ≤ s, and
k ≥ n.

For what values of r, s, and n does an [r, s, n]-formula exist? This is the sums-
of-squares problem. Said differently, given a specific r and s what is the smallest
value of n for which an [r, s, n]-formula exists? Call this number r ∗ s. As with the
immersion problem, there are two aspects here. One is the problem of constructing
sums-of-squares formulas, thereby giving upper bounds for r ∗ s; the other is the
problem of finding necessary conditions for their existence, thereby giving lower
bounds. The latter is the part that involves topology.

The sums-of-squares formulas that everyone knows are the ones coming from the
multiplications on R, C, H, and O. These haves types [1, 1, 1], [2, 2, 2], [4, 4, 4], and
[8, 8, 8]. Hurwitz proved than an [n, n, n] formula only exists when n ∈ {1, 2, 4, 8},
and the Hurwitz-Radon theorem generalizes this:

Theorem 35.3 (Hurwitz-Radon). A sums-of-squares formula of type [r, n, n] exists
if and only if r ≤ ρ(n) + 1.

Proof. Write n = (odd) · 2a+4b with 0 ≤ a ≤ 3. Recall from Theorem 14.12 that
an [r, n, n]-formula exists if and only if there exists a Clr−1-module structure on
Rn. We saw in Section 14 that representations of Clr−1 only exist on vector spaces
whose dimension is a multiple of 2ϕ(r−1). Thus, we have the chain of equivalences

an [r, n, n]-formula exists ⇐⇒ there exists a Clr−1-module structure on Rn

⇐⇒ 2ϕ(r−1)
∣∣n

⇐⇒ ϕ(r − 1) ≤ a+ 4b

⇐⇒ r − 1 ≤ 2a + 8b− 1 = ρ(n).

For the last equivalence note that ϕ(2a + 8b− 1) = ϕ(2a − 1) + 4b = a+ 4b, where
the first equality is the 8-fold periodicity of ϕ and the second is just a calculation
for 0 ≤ a ≤ 3. Moreover, 2a + 8b− 1 is the largest number whose ϕ-value is a+ 4b;
by periodicity this can again be checked just for b = 0 and 0 ≤ a ≤ 3. So in general
we have ϕ(s) ≤ a+ 4b = ϕ(2a + 8b− 1) if and only if s ≤ 2a + 8b− 1; this is what
is used in the final equivalence. �

Remark 35.4. Note that if there exist formulas of type [r, s1, n1] and [r, s2, n2]
then there is also a formula of type [r, s1 + s2, n1 + n2] (by distribuitivity). This
says that

r ∗ (s1 + s2) ≤ r ∗ s1 + r ∗ s2.
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Also notice that r ∗ s ≤ (r + a) ∗ (s + b) whenever a, b ≥ 0, because a formula of
type [r + a, s + b, n] automatically yields one of type [r, s, n] by plugging in zeros
for a of the x’s and b of the y’s.

The classical identities show that 2 ∗ 2 = 2, 4 ∗ 4 = 4, and 8 ∗ 8 = 8, and it is
trival that n ∗ 1 = n. Using these together with the observations of the previous
paragraph, one can obtain upper bounds on r ∗ s. For example, 3∗10 ≤ 12 because

3 ∗ 10 ≤ 3 ∗ 8 + 3 ∗ 2 ≤ 8 ∗ 8 + 4 ∗ 4 = 8 + 4 = 12.

The following table shows what is known about r ∗ s for small values of r and
s. For r ≤ 8 the values completely agree with the upper bounds obtained by the
above methods.

Table 35.4. Values of r ∗ s

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18
3 4 4 7 8 8 8 11 12 12 12 15 16 16 16 19
4 4 8 8 8 8 12 12 12 12 16 16 16 16 20
5 8 8 8 8 13 14 15 16 16 16 16 16 21
6 8 8 8 14 14 16 16 16 16 16 16 22
7 8 8 15 16 16 16 16 16 16 16 23
8 8 16 16 16 16 16 16 16 16 24
9 16 16 [16,17] ??
10 16 [16,17]
11 17

To justify the numbers in the above table we have to produce lower bounds for
r ∗ s. For example, we have to explain why there do not exist formulas of type
[5, 10, 13]. Almost all the known lower bounds come from topological methods; we
will describe some of these next.

35.5. Lower bounds via topology. Here is the key result that shows how a
sums-of-squares formula gives rise to something homotopy-theoretic:

Proposition 35.6. If an [r, s, n]-formula exists then there exists a rank n−r bundle
E on RP s−1 such that rL⊕ E ∼= n (here rL is the direct sum of r copies of L).

Proof. Let φ : Rr ⊗ Rs → Rn be the map giving the sums-of-squares formula. If
u ∈ Rs is a unit vector, check that φ(e1, u), . . . , φ(er, u) is an orthonormal frame in
Rn. This is an easy consequence of the sums-of-squares identity; it is an exercise,
but see the proof of Corollary 14.9 if you get stuck. In this way we obtain a
map f : Ss−1 → Vr(Rn). Compose with the projection Vr(Rn) → Grr(Rn) and
then note that the map factors to give F : RP s−1 → Grr(Rn). Precisely, given
a line in Rs spanned by a vector u its image under F is the r-plane spanned by
φ(e1, u), . . . , φ(er, u).



A GEOMETRIC INTRODUCTION TO K-THEORY 277

Let η be the tautological r-plane bundle on Grr(Rn). We claim that F ∗η = rL.
This follows from the commutative diagram

rL

��

F̃ // η

��
RP s−1 F // Grr(Rn)

where the top map is described as follows. Given r points on the same line 〈u〉 we
write them as λ1u, . . . , λru and then send them to the element λ1φ(e1, u) + · · · +
λrφ(er, u) on the r-plane F (〈u〉). One readily checks that this does not depend
on the choice of u; in fact, we could just say that points z1, . . . , zr on a common
line ` are sent to the element φ(e1, z1) + · · · + φ(er, zr) on F (`). The fact that
φ(e1, u), . . . , φ(er, u) are orthonormal (hence independent) shows that F̃ is injective
on fibers, hence an isomorphism on fibers. This shows that F ∗η ∼= rL.

We have now done all the hard work. To finish, just recall that η sits inside
a short exact sequence 0 → η → n → Q → 0 where Q is the standard quotient
bundle. This sequence is split because Grr(Rn) is compact. Pulling back along F
now gives rL⊕ F ∗Q ∼= n, as desired. �

The following result was originally proven independently by Hopf [Ho] and Stiefel
[St]; Stiefel’s method is the one we follow here.

Corollary 35.7 (Hopf-Stiefel). If an [r, s, n]-formula exists then the following two
equivalent conditions hold:
(1)

(
r+i−1
i

)
is even for n− r < i < s;

(2)
(
n
i

)
is even for n− r < i < s.

Proof. By Proposition 35.6 we know that rL⊕ E ∼= n for some rank n− r bundle
on RP s−1. Applying total Stiefel-Whitney classes gives w(rL)w(E) = w(rL⊕E) =
w(n) = 1, or w(E) = w(rL)−1 = w(L)−r. So w(L)−r vanishes in degrees larger
than n−r. But w(L) = 1+x where x is the generator for H1(RP s−1; Z/2), and the
coefficient of xi in (1 + x)−r is

(−r
i

)
=
(
r+i−1
i

)
(recall that we are working modulo

2). So
(
r+i−1
i

)
is even for n− r < i < s.

The equivalence of the conditions in (1) and (2) follows at once from the lemma
below, taking k = n− r+ 1 and i = r+ s− n− 2 (note that conditions (1) and (2)
are both vacuous unless i ≥ 0). �

Lemma 35.8. For any non-negative integers n, k, and i, the following Z-linear
spans are the same inside of Q:

Z
〈(

n
k

)
,
(
n
k+1

)
, . . . ,

(
n
k+i

)〉
= Z

〈(
n
k

)
,
(
n+1
k+1

)
, . . . ,

(
n+i
k+i

)〉
.

Consequently, an integer is a common divisor of the first set of binomial coefficients
if and only if it is a common divisor of the second set.
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Proof. Taking first differences and using Pascal’s identity shows (via multiple iter-
ations) that

Z
〈(

n
k

)
,
(
n+1
k+1

)
, . . . ,

(
n+i
k+i

)〉
= Z

〈(
n
k

)
,
(
n
k+1

)
,
(
n+1
k+2

)
,
(
n+2
k+3

)
, . . . ,

(
n+i−1
k+i

)〉
= Z

〈(
n
k

)
,
(
n
k+1

)
,
(
n
k+2

)
,
(
n+1
k+3

)
, . . . ,

(
n+i−2
k+i

)〉
= · · ·

= Z
〈(

n
k

)
,
(
n
k+1

)
, . . . ,

(
n
k+i

)〉
.

�

Example 35.9. Does a formula of type [10, 10, 15] exist? If it did, statement (2)
of Corollary 35.7 would imply that

(
15
i

)
is even for 5 < i < 10. But

(
15
6

)
is odd.

The full power of the numerical conditions in Corollary 35.7 is subtle, and one
really needs a computer to thoroughly investigate them. But the following conse-
quence represents much of the information buried in those conditions:

Corollary 35.10. If r + s > 2k then r ∗ s ≥ 2k.

Proof. We must show that if r + s > 2k then formulas of type [r, s, 2k − 1] do not
exist. If they did, the Hopf-Stiefel conditions would imply that

(
2k−1
i

)
is even for i in

the range 2k−1−r < i < s. But
(
2k−1
i

)
is odd no matter what i is, so the conditions

are only consistent if the range is empty—or equivalently, if 2k−1− r ≥ s−1. The
hypothesis r + s > 2k guarantees that this is not the case. �

For example, sums-of-squares formulas of type [16, 17, n] must all have n ≥ 32.
For r ≤ 8 the Hopf-Stiefel lower bounds for r ∗ s turn out to exactly match

the upper bounds obtained via the constructive methods of Remark 35.4. So this
justifies the numbers in Table 35.4 for the range r ≤ 8.

35.11. K-theoretic techniques. We can also analyze the implications of Propo-
sition 35.6 using KO-theory. This was first done by Yuzvinsky [Y]. Note that one
could also use complex K-theory here, but KO-theory gives stronger results: the
point is that K̃0(RPm) and K̃O 0(RPm) are almost the same, but for certain values
of m the latter group is slightly bigger (by a factor of 2).

Corollary 35.12 (Yuzvinsky). If an [r, s, n]-formula exists then the following two
equivalent conditions hold:
(1) 2ϕ(s−1)−i+1 divides

(
r+i−1
i

)
for n− r < i ≤ ϕ(s− 1);

(2) 2ϕ(s−1)−i+1 divides
(
n
i

)
for n− r < i ≤ ϕ(s− 1).

Proof. Proposition 35.6 gives that rL ⊕ E ∼= n for some bundle E on RP s−1. We
again use characteristic classes, but this time the γ̃ classes in KO-theory. We find
that γ̃t(E) = γ̃t(L)−r, and so γ̃t(L)−r must vanish in degrees larger than n − r.
Recall that γ̃t(L) = 1− tλ where λ = 1− [L], and so the coefficient of ti in γ̃t(L)−r

is ±
(−r
i

)
λi = ±

(
r+i−1
i

)
2i−1λ. Here we have used λ2 = −2λ.

Recalling that K̃O 0(RP s−1) ∼= Z/(2ϕ(s−1)), we find that 2ϕ(s−1) divides
2i−1

(
r+i−1
i

)
for all i > n− r. This statement only has content for i ≤ ϕ(s− 1), and

thus we obtain the condition in (1).
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The equivalence of (1) and (2) is an instance of the following general observation:
the sequence of conditions

2N
∣∣(n
k

)
, 2N−1

∣∣( n
k+1

)
, 2N−2

∣∣( n
k+2

)
, . . . , 2N−j

∣∣( n
k+j

)
is equivalent to the sequence of conditions

2N
∣∣(n
k

)
, 2N−1

∣∣(n+1
k+1

)
, 2N−2

∣∣(n+2
k+2

)
, . . . , 2N−j

∣∣(n+j
k+j

)
.

This follows at once by applying Lemma 35.8 multiple times, with i = 1, i = 2, . . .,
i = j. �

The Hopf-Stiefel conditions are symmetric in r and s, but this is not true for
the KO-theoretic conditions in the above proposition. For example, applying the
conditions yields no information on [3, 6, n]-formulas except n ≥ 6, whereas applying
the conditions to [6, 3, n]-formulas yields n ≥ 8. One must therefore apply the
conditions to both [r, s, n] and [s, r, n] to get the best information.

Example 35.13. Like we saw for the immersion problem, in some dimensions the
KO-theoretic conditions are stronger than the Hopf-Stiefel conditions—and in some
dimensions they are weaker. Neither result is strictly stronger than the other.

For example, the Hopf-Stiefel conditions show that 4 ∗ 5 ≥ 8 whereas the KO-
conditions only show 4∗5 ≥ 7. The smallest dimension for which the KO-theoretic
conditions are stronger is when r = 10 and s = 15. The Hopf-Stiefel conditions rule
out the existence of [10, 15, 15]-formulas, but not [10, 15, 16]. The KO-conditions
rule out [15, 10, 16], however, and therefore also [10, 15, 16] by symmetry.

To pick a larger example, the Hopf-Stiefel conditions show that 127 ∗ 127 ≥ 128
but the KO-conditions show that 127 ∗ 127 ≥ 183. The KO-conditions seem to
give their greatest power when r and s are slightly less than a power of 2.

35.14. Other problems. A careful look at Proposition 35.6 shows that one can
make the argument work with something much weaker than a sums-of-squares for-
mula. Specifically, all we needed was a bilinear map f : Rr ⊗ Rs → Rn such that
f(x⊗y) = 0 only when x = 0 or y = 0. Such a bilinear map is usually called nonsin-
gular. Given such a map and a nonzero u ∈ Rr, the elements φ(u, e1), . . . , φ(u, er)
are necessarily linearly independent—and this is really all that was needed in the
proof of Proposition 35.6.

We can replace our sums-of-squares problem with the following: given r and s,
for what values of n does there exist a nonsingular bilinear map of type [r, s, n]?
The topological obstructions we found for sums-of-squares formula are of course
still valid in this new context.

The existence of nonsingular bilinear maps turns out to be related to the im-
mersion problem for real projective spaces. More than this, both problems are
connected to a number of similar questions that have been intently studied by al-
gebraic topologists since the 1940s. Many of these problems were originally raised
by Hopf [Ho]. This material takes us somewhat away from our main theme of K-
theory, but it seems worthwhile to tell a bit of this story since we have encountered
it.

To start with, let us introduce the following classes of statements:
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SS[r, s, n]: there exists a sums-of-squares formula of type [r, s, n]
NS[r, s, n]: there exists a nonsingular bilinear map Rr ⊗ Rs → Rn
RR[r, s, n]: there exist n×smatrices A1, . . . , Ar with the property that every

nonzero linear combination of them has rank s
T[r, s, n]: the tangent bundle TRPn has s independent sections when re-

stricted to RP r
IS[r, s, n]: the bundle nL→ RP r has s independent sections

GD[r, s, n]: over RP r one has g.dim(n(L− 1)) ≤ n− s
ES[r, s, n]: the ‘first-vector’ map p1 : Vs(Rn+1)→ Sn has a Z/2-equivariant

section over the subspace Sr ⊆ Sn. Here Z/2 acts antipodally
on Rn+1, and both Vs(Rn+1) and Sn get the induced action.

AX[r, s, n]: there exists an “axial map” RP r × RP s → RPn; this is a map
with the property that the restrictions RP r × {∗} → RPn and
{∗}×RP s → RPn are homotopic to linear embeddings, for some
choice of basepoints in RP r and RP s

IM[r, n]: RP r immerses into RPn
VF[k, n]: there exist k independent vector fields on Sn.

The acronyms are mostly self-evident, except for a few: RR stands for “rigid rank”,
IS for “independent sections”, and ES for “equivariant sections”.

The above statements are closely interrelated, as the next result demonstrates.
We should point out that very little from this result will be needed in our subsequent
discussion. We are including it because most of the claims are easy to prove, and
because the various statements get used almost interchangeably (often without
much explanation) in the literature on the immersion problem.

Proposition 35.15.
(a) GD[r, s, n] ⇐⇒ GD[r,−n,−s]
(b) IM[r, n] ⇐⇒ GD[r,−(n+ 1),−(r + 1)] ⇐⇒ GD[r, r + 1, n+ 1]
(c) T [n, k, n]⇒ VF[k, n]
(d) One has the following implications:

SS[r, s, n] 1 +3 NS[r, s, n] ks 2 +3 RR[r, s, n]

3

��

ES[r − 1, s, n− 1]

6

��
GD[r − 1, s, n] IS[r − 1, s, n]5ks T[r − 1, s− 1, n− 1]

qy

19kkkkkkkkkkkkk

kkkkkkkkkkkkk
4ks AX[r − 1, s− 1, n− 1]

(e) If r < n then implication 4 is reversible, and if r ≤ n then 5 is reversible.
(f) If r < n and r ≤ 2(n− s) then implication 6 in (d) is also reversible.

Proof. Part (a) is Proposition 34.28, and part (b) is Corollary 34.29; we have seen
these already. Part (c) follows from the fact that TSn = p∗TRPn where p : Sn →
RPn is the projection.

For part (d), the first implication is obvious. The others we treat one by one.
NS[r, s, n] ⇐⇒ RR[r, s, n]: The equivalence follows from adjointness, as bi-
linear maps f : Rr ⊗ Rs → Rn correspond bijectively to linear maps F : Rr →
Hom(Rs,Rn). The linear map F is specified by the n×s matrices F (e1), . . . , F (er).
It is easy to verify that f is nonsingular if and only if all nontrivial linear combi-
nations of these matrices have rank s.
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RR[r, s, n] ⇒ T[r−1, s−1, n−1]: First note that the tangent bundle of RPn is
the collection of pairs (x, v) such that x, v ∈ Rn, |x| = 1, and x · v = 0, modulo the
identifications (x, v) ∼ (−x,−v). Secondly, note that since NS[r, s, n] is symmetric
in r and s the same is true for RR[r, s, n]. The condition RR[s, r, n] says that we
have n × r matrices A1, . . . , As such that every nontrivial linear combination has
rank r. Multiplying these matrices on the left by a fixed element of GLn(R), we
can assume that the columns of A1 are the standard basis e1, . . . , er.

For every x ∈ Sr−1 ⊆ Rr ⊆ Rn consider the independent vectors
A1x,A2x,A3x, . . . , Asx. Note that A1x = x. Let ui(x) = Aix − (Aix · x)x. Then
u2(x), . . . , ur(x) are independent, and orthogonal to x. Since ui(−x) = −ui(x) for
each i, these give us s− 1 independent sections of TRPn−1 defined over RP r−1.
T[r−1, s−1, n−1] ⇒ IS[r−1, s, n]: This follows from the bundle isomorphism
TRPn−1 ⊕ 1 ∼= nL.
IS[r − 1, s, n] ⇒ GD[r − 1, s, n]: Trivial.
T[r − 1, s − 1, n − 1] ⇐⇒ ES[r − 1, s, n − 1]: First note that the frame
bundle Vs−1(TRPn−1) is homeomorphic to Vs(Rn)/ ± 1 in an evident way. Under
this homeomorphism the projection Vs−1(TRPn−1) → RPn−1 corresponds to the
first-vector map Vs(Rn)/± 1→ Sn−1/± 1. So T [r− 1, s− 1, n− 1] is equivalent to
the latter bundle having a section over Sr−1/± 1. But then consider the diagram

Vs(Rn) //

��

Vs(Rn)/± 1

��
Sn−1 // Sn−1/± 1

where the two horizontal maps are 2-fold covering spaces. This is a pullback square.
It is easy to see that the right vertical map has a section defined over Sr−1/± 1 if
and only if the left vertical map has a Z/2-equivariant section defined over Sr−1.
ES[r −1, s, n−1] ⇒ AX[r −1, s−1, n−1]: Note that there is an evident map
Vs(Rn)→ Top(Ss−1, Sn−1) that sends a frame v1, . . . , vs to the map (a1, . . . , as) 7→
a1v1 + · · · + asvs. So a section χ : Sr−1 → Vs(Rn) gives by composition a map
Sr−1 → Top(Ss−1, Sn−1), and then by adjointness a map g : Sr−1 × Ss−1 → Sn−1.
The fact that χ was a section of the first-vector map shows that g(x, e1) = x for
all x ∈ Sr−1. Also, it is clear that g(e1,−) is a linear inclusion Ss−1 ↪→ Sn−1

(there is nothing special about e1 here). The Z/2-equivariance of χ shows that
g(−x, y) = −g(x, y), and the similar identity g(x,−y) = −g(x, y) is trivial. So g
descends to give a map RP r−1 × RP s−1 → RPn−1, and this map is axial.

For (e), the reversibility of both implications is governed by stability theory
of vector bundles. For example, assume IS[r − 1, s, n]. Then nL ∼= s ⊕ E for
some bundle E of rank n − s, where we are working over RP r−1. Recall that
j∗TRPn−1⊕1 ∼= nL, where j : RP r−1 ↪→ RPn−1 is the inclusion. So j∗TRPn−1⊕1 ∼=
s⊕E ∼= 1⊕((s−1)⊕E). Since we are working over RP r−1 and r−1 < n−1, we can
cancel the 1 on both sides to get j∗TRPn−1 ∼= (s − 1) ⊕ E (see Proposition 11.10).
This says that T[r− 1, s− 1, n− 1] holds. The reversibility of implication 5 is very
similar, and is left to the reader.

Part (f), on the reversibility of implication 6, is the only part of the proposition
that is not elementary. Let TopZ/2(Ss−1, Sn−1) denote the space of Z/2-equivariant
maps, where the spheres have the antipodal action. This is a subspace of the usual
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function space Top(Ss−1, Sn−1). Note that the space of equivariant maps has a
Z/2-action, given by composing (or equivalently, precomposing) a given map with
the antipodal map. James [J1] shows that the evident map TopZ/2(Ss−1, Sn−1)→
Top(RP s−1,RPn−1) is a principal Z/2-bundle with respect to the above action.

We will also have need of the evaluation map ev : TopZ/2(Ss−1, Sn−1) → Sn−1

sending h 7→ h(e1). James [J1] shows that this is also a fibration.
Note that the Stiefel manifold Vs(Rn) is a subspace of TopZ/2(Ss−1, Sn−1) in the

evident way, and that the following diagram commutes:

Vs(Rn) //

p1
$$IIIIIIIII

TopZ/2(Ss−1, Sn−1)

ev
vvnnnnnnnnnnn

Sn−1.

James [J1, Theorem 6.5] proved that Vs(Rn) ↪→ TopZ/2(Ss−1, Sn−1) is [2(n−s)−1]-
connected, and this is the crucial point of the whole argument.

Suppose f : RP r−1 × RP s−1 → RPn−1 is an axial map. By the homotopy ex-
tension property we can assume that f(∗,−) and f(−, ∗) are both equal to the
canonical embeddings, where ∗ refers to some chosen basepoints in RP r−1 and
RP s−1. The axial map f gives a map F : RP r−1 → Top(RP s−1,RPn−1) by ad-
jointness. Regard the target as pointed by the canonical embedding j, and note
that F is a pointed map.

Covering space theory gives that there is a unique map F̃ : Sr−1 →
TopZ/2(Ss−1, Sn−1) such that F̃ (∗) is the canonical embedding Ss−1 ↪→ Sn−1 and
such that the diagram

Sr−1 F̃ //

��

TopZ/2(Ss−1, Sn−1)

��
RP r−1 F // Top(RP s−1,RPn−1)

commutes. We claim that F̃ is Z/2-equivariant, and that the composition ev ◦F̃ is
the standard inclusion Sr−1 ↪→ Sn−1. Both of these are easy exercises in covering
space theory. The latter statement depends on the so-far unused portion of the
axial map condition on f .

If r − 1 ≤ 2(n − s) − 1 then by James’s connectivity result the map F̃ can
be factored up to homotopy through Vs(Rn). Moreover, this can be done in the
category of Z/2-equivariant pointed spaces over Sn−1 (the only hard part here
is the Z/2-equivariance, and for this one uses that Sr−1 has an equivariant cell
decomposition made from free Z/2-cells). In this way one produces the relevant
equivariant section of the map Vs(Rn)→ Sn−1. �

Remark 35.16. We have included the above proposition because it is very useful
as a reference. However, it should be pointed out that there is something slightly
deceptive about part (d). Some of the implications are more obvious than the long
chains would suggest. For example, NS[r, s, n] ⇒ AX[r − 1, s − 1, n − 1] is a very
easy argument of one or two lines. Likewise, NS[r, s, n] ⇒ GD[r − 1, s, n] is just
the argument in Proposition 35.6. The picture in (d) is useful in showing all the
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relations at once, but it makes some of the statements seem more distant than they
really are.

The reader will have noticed that Proposition 35.15 encodes several things that
we have seen before. Some are transparently familiar, like parts (a) and (b). A less
transparent example is

SS[r, n, n] ⇐⇒ SS[n, r, n]⇒ T[n− 1, r − 1, n− 1]⇒ VF[r − 1, n− 1].

This was the content of Corollary 14.9. In constrast, here is a similarly-obtained
implication that we have not seen yet:

NS[r, r, n]⇒ GD[r − 1, r, n] ⇐⇒ IM[r − 1, n− 1].

From this we learn that immersion results for real projective space can be obtained
by demonstrating the existence of nonsingular bilinear maps. This approach was
successfully used by K.Y. Lam in [L1]. We briefly sketch his method simply to give
the basic idea; for details the reader may consult [L1] and similar papers.

Recall that O denotes the octonions. Consider the map f : O2 ×O2 → O3 given
by

f
(
(u1, u2), (x1, x2)

)
= (u1x1 − x2u2, x2u1 + u2x1, u2x2 − x2u2).

With a little work one can prove that this is nonsingular. Also, it is a general
fact about the octonions that for any a, b ∈ O the commutator [a, b] = ab − ba
is imaginary. So the image of f actually lies in the 23-dimensional subspace of
O3 where the real part of the third coordinate vanishes. So f gives a nonsingular
bilinear map of type [16, 16, 23]. This shows that RP 15 immerses into R22. By
restricting f to appropriate subspaces Lam also obtained nonsingular bilinear maps
of types [11, 11, 17], [13, 13, 19], and [10, 10, 16], thereby proving that RP 10 immerses
into R16, RP 12 immerses into R18, and RP 9 immerses into R15.

35.17. Summary. In this section we examined the sums-of-squares problem, and
saw how characteristic classes can be used to obtain lower bounds for the numbers
r∗s. Use of Stiefel-Whitney classes in singular cohomology yielded the Hopf-Stiefel
lower bounds on r ∗ s, whereas the use of the γ-classes in KO-theory gave the
Yuzvinsky lower bounds. This story is very similar to the one for immersions of
RPn discussed in Section 34, and in fact the sums-of-squares problem is closely
connected to this immersion problem. We closed the section by exploring the
relations between these and a host of similar problems.
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Part 6. Homological intersection theory

36. The theorem of Gillet-Soulé

???

Part 7. Appendices

Appendix A. Bernoulli numbers

There are different conventions for naming the Bernoulli numbers, especially
when one enters the topology literature. We adopt what seems to be the most
common definition, which is the following:

x

ex − 1
=

∞∑
k=0

Bk ·
xk

k!
.

Expanding the power series yields

x

ex − 1
= 1− x

2
+
x2

12
− x4

720
+

x6

30240
− x8

1209600
+ · · ·

= 1−
(1

2

)
x+

(1
6

)
· x

2

2
−
( 1

30

)
· x

4

4!
+
( 1

42

)
· x

6

6!
−
( 1

30

)
· x

8

8!
· · ·

So we have

k 0 1 2 3 4 5 6 7 8 9

Bk 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0

From the table one guesses that B2n+1 = 0 for n > 0. This is easy to prove: if we
set f(x) = x

ex−1 then we can isolate the odd powers of x by examining f(x)−f(−x).
But algebra yields ( x

ex − 1

)
−
( −x
e−x − 1

)
= −x.

Computing the coefficients of x
ex−1 is not the most efficient way of computing

Bernoulli numbers, as one can deduce from the large denominators in the above
formula. A better method is via a certain recursive formula, and this is best re-
membered by a “mnemonic”:

(B + 1)n = Bn.(A.1)

Do not take this formula literally! It is shorthand for the following procedure.
First expand the left-hand-side via the Binomial Formula, treating B as a formal
variable. Then rewrite the formula by “lowering all indices”, meaning changing
every Bi to a Bi. This gives the desired recursive formula.

For example: (B + 1)2 = B2 yields B2 + 2B + 1 = B2, which in turn gives
B2 + 2B1 + 1 = B2. Cancelling the B2’s we obtain 2B1 + 1 = 0, or B1 = − 1

2 .
Likewise, (B + 1)3 = B3 yields B3 + 3B2 + 3B1 + 1 = B3, thereby giving

B2 = − 1
3 (1 + 3B1) = − 1

3 · −
1
2 = 1

6 .

And so on. For the record here are a few more of the Bernoulli numbers, computed
in this way:
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k 0 1 2 4 6 8 10 12 14 16 18

Bk 1 − 1
2

1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6 − 3617

510
43867
798

Note that we have not yet justified the recursive formula (A.1). We will do this
after a short interlude.

A.2. Sums of powers. The Bernoulli numbers first arose in work of Jakob
Bernoulli on computing formulas for the power sums

1t + 2t + 3t + · · ·+ nt.

Most modern students have seen the formulas

1 + 2 + · · ·+ n = n(n+1)
2 and 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)

6 .

The Bernoulli formulas generalize these to give

1t + 2t + · · ·+ nt = Pt(n)

where Pt is a degree t+1 polynomial in n with rational coefficients. It is somewhat
surprising that the formulas for the Pt’s can be given using a single set of coefficients,
the Bernoulli numbers.

The Bernoulli formulas are most succinctly written using our mnemonic device
of lowering indices. We write

1t + 2t + · · ·+ nt = 1
t+1

[(
B + (n+ 1)

)t+1 −Bt+1
]
.(A.3)

Let us work through the first few examples of this. For t = 1 we have

1 + 2 + · · ·+ n = 1
2

[
(B + (n+ 1))2 −B2

]
= 1

2

[
B2 + 2B1(n+ 1) + (n+ 1)2 −B2

]
= 1

2

[
(n+ 1)2 − (n+ 1)]

= 1
2 (n+ 1)n.

For t = 2 we have

12 + 22 + · · ·+ n2 = 1
3

[
(B + (n+ 1))3 −B3

]
= 1

3

[
3B2(n+ 1) + 3B1(n+ 1)2 + (n+ 1)3

]
= 1

3 (n+ 1)
[

1
2 −

3
2 (n+ 1) + (n+ 1)2

]
= 1

3 (n+ 1)
[

1
2n+ n2

]
= 1

6 (n+ 1)n(2n+ 1).

We leave it to the reader to derive the t = 3 formula:

13 + 23 + · · ·+ n3 = 1
4n

2(n+ 1)2.

Proof of the Bernoulli formula (A.3). Start with the identity of power series

1 + ex + e2x + · · ·+ enx =
e(n+1)x − 1
ex − 1

=
( x

ex − 1

)
·
(e(n+1)x − 1

x

)
.

The coefficient of xt on the left-hand-side is
1
t!

(1t + 2t + · · ·+ nt).
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The coefficient of xt on the right-hand-side is
t∑

k=0

Bk
k!
· (n+ 1)t+1−k

(t+ 1− k)!
.

Equating coefficients and rearranging yields the Bernoulli formula immediately. �

Now let us return to our recursive formula (A.1) for computing the Bernoulli
numbers. Note that it is an immediate consequence of (A.3) by taking n = 0 to get
0 = (B + 1)t+1 −Bt+1.

A.4. Miscellaneous facts.

Theorem A.5 (Claussen/von Staudt).
(a) (−1)nB2n ≡

∑
p

1
p mod Z, where the sum is taken over all primes p such that

p− 1 divides 2n.
(b) When expressed as a fraction in lowest terms, B2n has square-free denominator

consisting of the product of all primes p such that p− 1 divides 2n.

For example, we can now immediately predict that the denominator of B20 will
be 2 · 3 · 5 · 11 = 330. Note that the primes 2 and 3 will always appear in the
denominators of Bernoulli numbers.

The following strange fact is relevant to the appearance of Bernoulli numbers in
topology:

Proposition A.6. For any even n and any k ∈ Z, kn(kn−1)Bn

n ∈ Z.

Proof. We follow Milnor and Stasheff here [MS]. Write

f(x) = 1 + ex + e2x + · · ·+ e(k−1)x =
ekx − 1
ex − 1

.

Note that
f (r)(0) = 1r + 2r + · · ·+ (k − 1)r.

In particular, the derivatives of f evaluated at 0 are all integers.
Next consider the logarithmic derivative

f ′(x)
f(x)

= D(log(f(x))) =
kekx

ekx − 1
− ex

ex − 1

= k
[ 1
1− e−kx

]
−
[ 1
1− e−x

]
=

1
x

[ −kx
e−kx − 1

− −x
e−x − 1

]
=

1
x

[∑
Bi

i! (−kx)i −
∑

Bi

i! (−x)i
]

=
∑
i

(−1)i Bi

i! (ki − 1)xi−1

= k−1
2 + B2

2! (k2 − 1)x+ B4
4! (k4 − 1)x3 + · · ·

The (2t− 1)st derivative of this expression, evaluated at 0, is B2t

2t (k2t − 1).
However, iterated use of the quotient rule shows that the (2t − 1)st derivative

of f ′(x)/f(x), evaluated at 0, can be written as an integral linear combination of
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f(0), f ′(0), f ′′(0), . . . divided by f(0)2t. Since f(0) = k and all the deriviates of f
have integral values at 0, this gives

B2t

2t
(k2t − 1) · k2t ∈ Z.

�

Appendix B. The algebra of symmetric functions

Let S = Z[x1, . . . , xn] be equipped with the evident Σn-action that permutes the
indices. It is a well-known theorem that the ring of invariants is a polynomial ring
on the elementary symmetric functions:

SΣn ∼= Z[σ1, . . . , σn].

Let sk = xk1 + xk2 + · · ·+ xkn, the kth power sum of the variables xi. Since sk is a
Σn-invariant we have

sk = Sk(σ1, . . . , σn)
for a unique polynomial Sk in n variables (with integer coefficients). The polynomial
Sk is called the kth Newton polynomial.

Let us calculate the simplest examples of the Newton polynomials. Clearly
s1 = σ1, and so S1(σ1, . . . , σn) = σ1. For s2 we compute that

s2 = x2
1 + · · ·+ x2

n = (x1 + · · ·+ xn)2 − 2(x1x2 + x1x3 + · · ·+ xn−1xn) = σ2
1 − 2σ2.

These calculations get more difficult as the exponents get larger.
It is useful to adopt the following notation when working with the ring of invari-

ants. If m is a monomial in the xi’s then [m] denotes the sum of all elements in the
Σn-orbit of m. For example,

[x1x2] = σ2, [xk1 ] = sk, and [x2
1x2] =

∑
i 6=j

x2
ixj .

If H ≤ Σn is the stabilizer of m then we can also write

[m] =
∑

g∈Σn/H

gm.

Let us use the above notation to help work out the third Newton polynomial.
Elementary algebra easily yields the equation

s3 = [x3
1] = [x1]3 − 3[x2

1x2]− 6[x1x2x3].

Here one considers the product (x1 + · · ·+ xn)3 and reasons that a term like x2
1x2

appears three times in the expansion, and terms like x1x2x3 appear six times. Via
a similar process we work out that

[x2
1x2] = [x1] · [x1x2]− 3[x1x2x3].

Putting everything together, we have found that

s3 = σ3
1 − 3(σ1σ2 − 3σ3)− 6σ3 = σ3

1 − 3σ1σ2 + 3σ3.

This final expression is the third Newton polynomial S3.
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Lemma B.1 (The Newton identities). For k ≥ 2 one has the identity

sk = σ1sk−1 − σ2sk−2 + · · ·+ (−1)kσk−1s1 + (−1)k+1kσk.

Consequently, there is analogous inductive formula for the Newton polynomials:

Sk = σ1Sk−1 − σ2Sk−2 + · · ·+ (−1)kσk−1S1 + (−1)k+1kσk.

Proof. The key is the formula

[x1x2 · · ·xj−1x
k
j ] = [x1 · · ·xj ] · [xk−1

1 ]− [x1 · · ·xjxk−1
j+1 ]

which holds for k > 2, whereas when k = 2 we have

[x1x2 · · ·xj−1x
2
j ] = [x1 · · ·xj ] · [x1]− (j + 1)[x1 · · ·xjxj+1].

In the latter case the point is that a term x1 . . . xj+1 appears j + 1 times in the
product [x1 . . . xj ] · [x1].

When k = 2 the identity from the statement of the lemma has already been
verified by direct computation. For k > 2 start with the simple formula

sk = [xk1 ] = [x1] · [xk−1
1 ]− [x1x

k−1
2 ] = σ1sk−1 − [x1x

k−1
2 ].

Next observe that

[x1x
k−1
2 ] =

{
[x1x2] · [xk−2

1 ]− [x1x2x
k−2
3 ] if k > 3,

[x1x2] · [xk−2
1 ]− 3[x1x2x3] if k = 3.

If k = 3 we are now done, otherwise repeat the above induction step. The details
are left to the reader. �

As an application of Lemma B.1 observe that we have

S3 = σ1S2 − σ2S1 + 3σ3 = σ1(σ2
1 − 2σ2)− σ2σ1 + 3σ3 = σ3

1 − 3σ1σ2 + 3σ3,

agreeing with our earlier calculation. Here is a table showing the first few Newton
polynomials:

Table 2.2. Newton polynomials

k Sk
1 σ1

2 σ2
1 − 2σ2

3 σ3
1 − 3σ1σ2 + 3σ3

4 σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

5 σ5
1 − 5σ3

1σ2 + 4σ2
1σ3 + 5σ1σ

2
2 − 3σ2σ3 − 5σ1σ4 + 5σ5

The Newton polynomials also show up in the following:

Proposition B.3. Let α = α1t + α2t
2 + · · · ∈ R[[t]], where R is a commutative

ring. Then
d
dt

(
log(1 + α)

)
= α′

1+α = µ1 + µ2t+ µ3t
2 + · · ·

where µk = (−1)kSk(α1, . . . , αk).

Proof. Equate coefficients in the identity

α1 + 2α2t+ 3α3t
3 + · · · = (1 + α1t+ α2t

2 + · · · ) · (1 + µ1t+ µ2t
2 + · · · ).

This gives a series of identities for each µk that parallel the Newton identities. The
result then follows by an easy induction. �
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Appendix C. Homotopically compact pairs

By a pair of topological spaces we mean an ordered pair (X,A) where A is
a subspace of A. A map of pairs (X,A) → (Y,B) is a map f : X → Y such that
f(A) ⊆ B, and such a map is said to be a weak equivalence if both f : X → Y and
f |A : A → B are weak equivalences. Two maps f, g : (X,A) → (Y,B) are said to
be homotopic if there is a map H : (X × I,A × I) → (Y,B) such that H|X×0 = f
and H|X×1 = g.

Define a topological space X to be homotopically compact if it is weakly
equivalent to a finite CW -complex. Likewise, define a pair of topological spaces
(X,A) to be homotopically compact if there exists a finite CW -pair (X ′, A′) and a
weak equivalence (X ′, A′) → (X,A). In this case we call (X ′, A′) a finite model
for (X,A).

Proposition C.1. A pair (X,A) is homotopically compact if and only if both X
and A are homotopically compact.

Proof. The “only if” direction is trivial, and the other direction is an immediate
consequence of the slightly more general lemma below. �

Lemma C.2. Let f : A → X be a map, where both A and X are homotopically
compact. Let Ã → A be any finite model for A. Then there exists a finite CW -
complex X̃ , containing Ã as a subcomplex, together with a weak equivalence X̃ → X
such that the square

Ã // //

��

X̃

��
A

f // X
commutes.

Proof. Let γX : X̃ → X be any finite model X. Since [Ã,X̃ ]→ [Ã,X] is a bijection,
there is a map f̃ : Ã → X̃ such that γX f̃ ' fγA. By cellular approximation, we may
assume that f̃ is cellular. Choose such a homotopy. Let CX denote the mapping
cylinder of f̃ , and let γC : CX → X be the evident map. Note that γC gives a finite
model for X, and that the diagram

Ã // //

'
��

CX

'
��

A
f // X

commutes. Here Ã ↪→ CX is the canonical inclusion into the top of the mapping
cylinder. Since (CX , Ã) is a finite CW -pair, the lemma is proven. �

Proposition C.3. Let (X,A) be homotopically compact. If f0 : (X0, A0)→ (X,A)
and f1 : (X1, A1) → (X,A) are finite models for (X,A), then there exists a map
(X0, A0)→ (X1, A1) such that the triangle

(X0, A0)
' //

'
��

(X,A)

(X1, A1)

'

99sssssssss
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commutes up to homotopy. Additionally, there exists a zig-zag of finite models

(Y0, B0) //

'
**UUUUUUUUUUUUUUUUUUU (Y1, B1)

'

%%KKKKKKKKK
(Y2, B2)

'
��

oo // · · · (Yr, Br)oo

'
uukkkkkkkkkkkkkkk

(X,A)

such that (Y0, B0)→ (X,A) equals (X0, A0)→ (X,A) and (Yr, Br)→ (X,A) equals
(X1, A1)→ (X,A). That is, the category of finite models of (X,A) is connected.

Proof. First use that [A0, A1]→ [A0, A] is a bijection to produce a map g : A0 → A1

whose image under the bijection is f0|A. We may assume that g is cellular. Choose
a homotopy from f0|A to f1|A ◦ g, and using the Homotopy Extension Property
extend this to a homotopy H : X0 × I → X such that H0 = f0. Let f ′ = H1. We
now have a commutative diagram

A0
//

��

��

X1

'
��

X0
f ′ // X

and so by the Relative Homotopy Lifting Property (???) there exists a map
h : X0 → X1 such that the upper triangle commutes and the lower triangle com-
mutes up to a homotopy relative to A0. And again, we map assume that h is cellular.
Putting our two homotopies together, we get the required homotopy-commutative
triangle.

For the final statement of the proposition we can use a four-step zig-zag as
follows:

(X0, A0)
i0 //

'
f0 ((PPPPPPPPPPP

(X0 × I,A0 × I)

'J

��

(X0, A0)
h //

'
f1hvvnnnnnnnnnnn

i1oo (X1, A1)

'
f1oo(X,A).

The map labelled J is a homotopy for the triangle in the first part of the proposition.
We leave the details for the reader. �

For us what is very useful about the class of homotopically compact spaces is
that it includes all algebraic varieties:

Theorem C.4. If X is an algebraic variety over C then X is homotopically com-
pact.

Proof. When X is a subvariety of some Cn this is a consequence of [Hir, Theorem
on page 170 and Remark 1.10]. For the general case we do an induction on the
size of an affine cover for X. Suppose that {U1, . . . , Un} is an affine cover, and let
A = U2 ∪ · · · ∪ Un. Then we have the pushout diagram

U1 ∩A //

��

A

��
U1

// X,
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which is also a homotopy pushout by [DI, Corollary 1.6]. By induction we know
that A is homotopically compact. Moreover, since U1 is affine it is a subvariety of
some Cn, and therefore the same is true of U1 ∩ A. So both U1 and U1 ∩ A are
homotopically compact by the base case. The result then follows by Lemma C.5
below. �

Lemma C.5. Let A, X, and Y be homotopically compact spaces. Then the homo-
topy pushout of any diagram X ← A→ Y is also homotopically compact.

Proof. Let f : A → X and g : A → Y denote the maps, and choose a finite model
Ã → A. By Lemma C.2 (applied twice) there exists a diagram

X̃

'
��

Ã //

'
��

oo Ỹ

'
��

X A //oo Y.

where (X̃ ,Ã) and (Ỹ ,Ã) are finite CW -pairs. The homotopy pushout of X ← A→
Y is therefore weakly equivalent to that of X̃ ← Ã → Ỹ , and the latter clearly has
the homotopy type of a finite CW -complex (in fact, in the latter case the pushout
is itself a model for the homotopy pushout). �

Corollary C.6. If (X,A) is a pair of algebraic varieties over C then (X,A) is
homotopically compact.

Proof. This follows from Theorem C.4 and Proposition C.1. �
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