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 Let  denote the set of the first  positive integers. Since the number of size Ò8Ó 8 5

subsets of  is , the number of subsets of  of at most size is Ò8Ó Ò8Ó 5 Þ   8 8
5 5
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 These

numbers form sequence  in the E!!)*%* On-Line Encyclopedia of Integer Sequence
(available at http:oeis.org/A008949). 
 We will provide an alternative formula for the number of subsets of XÐ8ß 5Ñß Ò8Ó
of at most size .  We first note that  is also equal to the number of subsets of 5 XÐ8ß 5Ñ Ò8Ó
of at least size  since every subset of size  has a unique complement of sizeÐ8  5Ñ 4
Ð8  4ÑÞ
 Now note that any subset of at least size  must contain  smallestÐ8  5Ñ Ð8  5Ñ
elements. Let  denote the largest of those  smallest elements, and thus  takes7 Ð8  5Ñ 7
on any value from  to   The remaining elements larger than  may orÐ8  5Ñ 8Þ Ð8 7Ñ 7
may not be in any particular subset.  Hence, to construct a subset of size at least Ð8  5Ñ
when given a specific , we first select  elements from , and then we7 8 5  " Ò7  "Ó
decide if any of the remaining elements from ( ) to  will be in the subset. The7 " 8

number of ways to perform such a construction is thus  7"
85"

87# Þ

 Therefore, summing over the possible values for , we obtain7
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Letting  we obtain the equivalent formula4 œ 7 8  5ß

       XÐ8ß 5Ñ œ # Ð#ÑÞ 
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The following combinatorial identity is proven

       (3).    
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Example. Let  and  Then 8 œ & 5 œ $Þ          
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 We note that if one removes the factor ( ) from the right side sum in identity#54

(3) above,  the "hockey-stick" formula for binomial coefficients comes into play, namely,
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For example, with  and , we obtain8 œ & 5 œ $
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