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Editor’s Note. Part I of this article appeared in the February 1999 Notices. The article discusses Mikhael Gromov’s extraordinary math-
ematics and its impact from the point of view of the author, Marcel Berger. It is partially based on three interviews of Gromov by
Berger, and it first appeared in French in the Gazette des Mathématiciens in 1998, issues 76 and 77. It was translated into English by
Ilan Vardi and adapted by the author. The resulting article is reproduced here with the permission of the Gazette and the author.

Mikhael Gromov is professor of mathematics at the Institut des Hautes Etudes Scientifiques and, in addition, is the Jay Gould
Professor of Mathematics at the Courant Institute of Mathematical Sciences, spending three months a year at Courant.

As the author said at the beginning of Part I, “The aim of this article is to communicate the work of Mikhael Gromov (MG) and its
influence in almost all branches of contemporary mathematics and, with a leap of faith, of future mathematics. It is not meant to be
a technical report, and, in order to make it accessible to a wide audience, I have made some difficult choices by highlighting only a
few of the many subjects studied by MG. In this way, I can be more leisurely in my exposition and give full definitions, results, and
even occasional hints of proofs.”

The author’s warning in Part I about bibliographical matters applies equally to Part 1I: “In order to shorten the text, I have omit-
ted essential intermediate results of varying importance, and have therefore neglected to include numerous names and references.

Although this practice might lead to some controversy, I hope to be forgiven for the choices.”
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Riemannian Geometry

Starting in the late 1970s, MG completely revolu-
tionized Riemannian geometry. I mention in this
section some results that reflect my taste. This ar-
ticle contains only a small bibliography; further ref-
erences may be found in my 1998 survey article in
Jahresbericht der Deutschen Mathematiker-Vereini-
gung.! Except for obvious cases, every Riemannian
manifold will be compact; in any case it will always
be assumed complete. In (M, g) the letter M stands
for the manifold and the letter g its Riemannian
metric. This by definition means that at every point
m of M there is an inner-product structure g( -, - )
on the tangent space T,y M at this point. We begin by
describing the various notions of “curvature”.

Marcel Berger is emeritus director of research at the Cen-
tre National de la Recherche Scientifique (CNRS) and was
director of the Institut des Hautes Etudes Scientifiques
(IHES) from 1985 to 1994. His e-mail address is
berger@ihes.fr.

The author expresses his immense debt to llan Vardi and
Anthony Knapp—to Vardi for translating the article into
English and for improving the clarity of the mathemati-
cal exposition, and to Knapp for editing the article into its
current form.
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twentieth century, Jahresbericht 100 (1998), 45-208;
reprinted with the same title as volume 17 of the University
Lecture Series, Amer. Math. Soc., Providence, RI, 2000,
ISBN 0-8218-2052-4.

NOTICES OF THE AMS

The curvature tensor is the basic invariant of a
Riemannian manifold. Some of its power comes
from the fact it has three equivalent definitions.
Two of these are in terms of the associated “Levi-
Civita connection”.

Informally a “connection” on a smooth manifold
is a way of computing directional derivatives of vec-
tor fields. These directional derivatives, which do
not exist in general, will be called “covariant”. More
precisely, a connection is an operator D that assigns
to each pair of vector fields x and y on M a vec-
tor field Dyy on M, the covariant derivative of y
with respect to x, in a fashion that is R linear in
y, is C®(M) linear in x, and satisfies
Dx(fy)=x()Y + fDyxy for all f € C*®(M). The vec-
tor (DxY)m at a point m € M depends only on x;,
and the values of y on any curve whose velocity
vector at m equals x;;. Consequently it is mean-
ingful to speak of a vector field on a curve that is
“parallel” along the curve: If o is the curve and u
is its tangent, then a vector field y on o is paral-
lelalong o if D,y = 0 on 0. If 0 has domain [a, b],
one knows that for each y € My, there is a unique
vector field Y(t) on o such that y(a) =y and the
field y(t) is parallel along o. The passage from
Mg a) to My in this way is called parallel trans-
port. Thus a connection yields a notion of parallel
transport along curves. It yields also a notion of
absolute (intrinsic) derivatives of all orders for all
tensors on the manifold, in particular for functions.
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Such intrinsic derivatives, apart from those of first
order, do not exist on differentiable manifolds
without additional structures.

A Riemannian manifold (M, g) has a unique con-
nection D such that Dxy — Dyx =[x, y] and

z(g(x,y)) = g(Dzx,y) +g(x,Dzy)

for all vector fields x, y, and z. This is called the
Levi-Civita connection and will be understood
throughout. Atevery m € M the curvature tensor, for
every pair x,y of tangent vectors, is denoted by
R(x, y) and is an endomorphism of T,,, M. There are
three equivalent definitions of curvature; the first two
are given in terms of the Levi-Civita connection D:

= The curvature can be computed explicitly
using the two first derivatives of the metric g,
namely,

R(x,y)z = (DyDxz — DxDyz — Djy x12).

= Geometrically, the value of R(x, y) is the de-
fect from the identity of the parallel transport
around an infinitesimal parallelogram with sides
generated by x and y. To this tensor of type (3, 1),
it is useful to associate the 4-linear differential form
R(x,y,z,t)=g(R(x,y)z,t). For numerical functions
f, the absolute second derivatives are still sym-
metric; a special case is the commutativity of par-
tial derivatives in classical differential calculus.
The third derivatives are no longer symmetric 3-
forms, and the defect is represented exactly by the
curvature tensor:

D3f(x,y,z) — D3f(x,z,¥) = R(y, z,x, grad f).

< One looks at the defect of (M, g) from being
locally Euclidean. This can be achieved, for exam-
ple, by computing the length of an arc of a small
circle I'(¢) as in Figure 6. This arc, say of angle «,
is obtained from & and from a pair (x,y) of unit
vectors in T;;M by going a length ¢ along all geo-
desics whose initial tangent vector is contained in
the angular sector of angle & determined by x and
v. The truncated expansion of this length is given
by the formula

R(x,y,x,y)

length(I'(¢)) = ae(l — —
3 sin“ x

&+ 0(62)>.
The symmetries of R show that the second term
depends only on the tangent plane P in T,,M that
is determined by x and y; its name is the sectional
curvature of P and is denoted by K(P). Knowledge
of K(P) on the complete Grassmannian manifold
of tangent planes is equivalent to knowing the
curvature tensor.

The real power of the curvature tensor R and
the sectional curvature K is that they measure
how (M, g) fails to be locally Euclidean. That is,
(M, g) is locally Euclidean (i.e., locally isometric to
Euclidean space of equal dimension; one says flat)
if and only if R (or K) vanishes identically.
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X I(¢)

Figure 6. Curvature measures the defect of the
manifold from being locally Euclidean. Sectional
curvature operates at the two-dimensional level,
appearing in the second term of the formula for the
length of an arc of a small circle I'(¢).

m dw ¢

Figure 7. Ricci curvature operates directionally at the
d-dimensional level in measuring the defect of the
manifold from being locally Euclidean in various
tangent directions. Specifically, it appears in the
second term of the formula for the (d — 1)-volume
Q(¢) generated within a solid angle.

Moreover, if K is constant everywhere and equal
to k, then (M, g) is locally isometric to the standard
simply connected space of constant sectional cur-
vature k, namely, a sphere (of radius 1/vk) ifk > 0
and a hyperbolic space if k < 0 (the canonical hy-
perbolic space has curvature —1).

Something that is not emphasized in the Rie-
mannian geometry literature is that despite its
power, the curvature tensor does not in general de-
termine the metric up to local isomorphism. There
is room for strange examples, the reason being that,
because of its symmetries, R depends only on
d?(d? — 1)/12 parameters, where d is the dimen-
sion of M. At present, knowledge of g requires
knowing all its second derivatives, but these de-
pend on more parameters, namely, d2(d + 1)2 /4 pa-
rameters.

However, since g depends only on d(d + 1)/2 pa-
rameters, one could expect strong results with an
invariant weaker than R. The natural one is the
“Ricci curvature” Ricci, which is a quadratic form
that assigns a real number Ricci(v) to every unit
tangent vector v. This time it measures the defect
from Euclidian at the level of a solid angle dw in
the direction of v, as in Figure 7. For this one looks
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a+B+y>T x+B+y=m

a’<b?2+c?2-2bc cosx a’=b2+c2-2bc cos«x a’<b2+c?2-2bc cosx

K<0

x+p+y<m

Figure 8. The manifolds with identically zero sectional curvature K are the locally Euclidean ones, and the ones with
positive sectional curvature are those for which the sum of the three angles of any triangle is always larger than T,
as in spherical geometry. In the negative case the sum of the angles of every sufficiently small triangle is less than

at the (d — 1)-volume Q(¢) generated by the geo-
desics of length ¢ starting in dw. The formula for
the volume is

Vol(Q(e)) = dew - 971 (1 - Ri%i(v) 2 +o(52)).

Algebraically, as a function of R or K, Ricci(v) is
nothing but the trace of the sectional curvatures
of all planes containing v. This expresses the fact
that volumes are determinants and that derivatives
of determinants are traces. One also has

d d
Ricci(v) = Z K(v,x;) = Z RV, Xxi, Vv, Xi)
i=2 i=2

for any collection of x; completing v to an ortho-
normal basis.

Finally, the scalar curvature scal(m) is the mean
of the numbers Ricci(v) as v runs through the unit
tangent vectors at m. To interpret it geometrically,
we look at the limiting expansion of the volumes
of small balls of radius ¢ centered at m. Since we
have only to integrate over the unit ball of the v’s,
the expansion will clearly start with the volume of
the Euclidean ball of radius ¢; the next order term
will be the scalar curvature, multiplied by a suit-
able coefficient.

When the metric g is multiplied by a scaling fac-
tor k, the curvatures are multiplied by k1. Scal-
ing can thus make the curvature as small as desired.
To block this effect of scaling, we can bound the
diameter, which is scaled by vk.

Sectional Curvatures of Constant Sign

From the work of Elie Cartan, a Riemannian man-
ifold has negative sectional curvature everywhere
if and only if the sum of the angles of every suf-
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1T, as in hyperbolic geometry.

ficiently small triangle is smaller than 7r. This is
true for any triangle when the manifold is simply
connected. Similarly, it is not hard to see, via Car-
tan’s argument, that there is positive curvature
everywhere if and only if the sum of the angles of
every sufficiently small triangle is larger than r.
The surprising and basic point in many Riemann-
ian geometry results is that this result about the
angles in the positive case holds for any triangle
without any extra assumption on the manifold. This
was discovered by Alexandrov for surfaces and ex-
tended by Toponogov to all abstract Riemannian
manifolds. The inequality between the sum of the
angles and 71 translates into an inequality for the
sides, as in Figure 8.

We say that a manifold is negatively curved if
the sectional curvature of every tangent plane is
negative, positively curved if the sectional curva-
ture of every tangent plane is positive. It is there-
fore natural to ask the global question: Which com-
pact manifolds enjoy such a property?

For positive sign, the striking fact is that the only
examples known today are spheres; projective
spaces KP" over the real numbers R, the complex
numbers C, the quaternions H, and the Cayley
numbers O (only OP! and QP2 exist); and some
sporadic examples in dimensions 6, 7, and 13.
These last examples are also homogeneous spaces,
or almost.

Apart from the very weak topological restriction
coming from the positivity of scalar curvature,
which is just the nullity of a single topological in-
variant, there was not a single restriction known
for positively curved manifolds before MG’s paper
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[6], “Curvature, diameter and Betti numbers”. In [6]
MG showed that positive curvature forces the sum
of the Betti numbers over any field to be univer-
sally bounded for all dimensions. In fact the proof
works also for nonnegative sectional curvature.
The proof is a marvelous juxtaposition of subtle
algebraic topology and a type of Morse theory for
the distance function. Grove and Shiohama in 1977
succeeded in extending the notion of a critical
point to the distance function even though it is not
smooth. MG showed for positively curved mani-
folds that if a sequence of critical points for the
distance to a given point has its distances in geo-
metric progression, then the sequence has to be
finite and its length depends only on the dimen-
sion. This follows from the Toponogov compari-
son theorem for triangles. The result about the Betti
numbers follows by using various initial points and
using Mayer-Vietoris sequences. As MG remarks in
[6], the proof works without much change when
the condition K > 0 is replaced by

Diame'[er(g)2 -infK > k,

for any k < 0. Consequently a lower bound for the
sectional curvature and an upper bound for the di-
ameter are enough to control the Betti numbers of
the manifold under consideration.

The case of negatively curved manifolds was also
completely mysterious before the publication by
MG in 1978 of [3], “Manifolds of negative curva-
ture”. The content of this paper and more are in
book form in [1], Manifolds of Nonpositive Curva-
ture, which is a detailed account of a series of lec-
tures given by MG at the Collége de France.

From the work of Hadamard (1898) and Cartan
(1926), one knew that if (Md,g) is negatively
curved, then its (simply connected) universal cover
has to be diffeomorphic to R4. This cover can be
constructed by considering the geodesics origi-
nating at any given point (by means of the expo-
nential map). For a naive person, such as I, one con-
siders the classification as finished, since
“everything is in 1 (M9).” So the question is re-
duced to an algebraic problem. Before [1] one did
not know much concerning the algebraic struc-
ture of such a 1 (M9), seen as a group. This takes
us back to the first section of Part I and the no-
tion of hyperbolic group invented by MG to solve
this negative curvature problem. Although [1] is a
basic advance, one still does not know if the fun-
damental group of a manifold of negative curva-
ture is any more special than an arbitrary hyper-
bolic group.

Before quoting results of [1], let me explain why
it is so important to study manifolds of negative
curvature. I quote MG on a philosophical point: “Al-
most all geometries are of negative curvature.”
Negatively curved geometries (either Riemannian
or more general) are the kind that one is most
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likely to encounter in nature. For the moment this
affirmation is only heuristic. Except in dimension
two! In fact, the most natural way to construct
geometries in dimension two is to glue Euclidean
regular polygons (the simplest geometric objects
we know) along their sides. Then the result is not
a smooth surface but a locally Euclidean object with
distributional curvatures at the vertices equal to
271t minus the sum of the angles of the polygons
that meet there, hence negative as soon as most
polygons have more than six sides. By contrast, in
larger dimensions, when we glue polyhedra along
their faces, we run into difficulty in knowing how
to recognize at the vertices whether the distribu-
tion curvature can truly be said to be negative. De-
spite a number of papers on this subject, this
question remains mysterious.

In [3] appears the important result of topolog-
ical finiteness when the total volume of the nega-
tively curved manifold (normalized by the condi-
tion K < —1)is bounded. There is also a finiteness
result in the real analytic case. The latter result is
obviously false in general: just take larger and
larger connected sums. Results in Riemannian
geometry using real analyticity are extremely
scarce.

In [1], besides the negative case, the nonposi-
tive situation is treated at length. For those man-
ifolds MG introduces on the sphere at infinity the
notion of Tits metric. This is a basic tool for study-
ing the fine structure of negativity versus non-
positivity. To visualize the situation, the reader
should think of space forms as basic examples.
These were defined in Part I as any compact quo-
tient of a Riemannian globally symmetric space of
noncompact type. One has negativity if the rank
is 1, but only nonpositivity if the rank is 2 or larger.
We will return later to MG’s work in the negative-
curvature realm and why he thinks this study is
so important. For the moment one can reduce
things to what he calls a vague conjecture: “In high
dimensions every hyperbolic manifold is arith-
metic.”

We now consider the positive case, but this time
for scalar curvature. At present the only classifi-
cation that geometers have been able to solve in
Riemannian geometry is that of manifolds with pos-
itive scalar curvature. Apart from a few remaining
questions when the manifold is not simply con-
nected, one has a complete classification of com-
pact manifolds that can admit a metric with pos-
itive scalar curvature. As was mentioned at the end
of Part I, a basic result in the field is a 1980 joint
paper of MG with Lawson, “The classification of
simply connected manifolds of positive curva-
ture”. Its basic tool is a geometrically controlled
surgery.

MG wanted to find the right conceptual tools to
explain existing results concerning positive scalar
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curvature. He managed to find one and called it
“K-area”. Its definition is bafflingly simple. Take
all nontrivial vector bundles over M, and look for
the minimum of the inverse of their largest cur-
vature. More precisely, consider all complex vec-
tor bundles over M, put on them Riemannian bun-
dle metrics, and endow them with a connection
preserving this metric. They then have a sectional
curvature. As soon as such a bundle has a nonzero
Chern class, its curvatures cannot all vanish. If
[IR(X)|| is the supremum of this curvature over all
tangent planes, then the K-area of M is the mini-
mum of ||R(X)||~!, the minimum taken over all
nontrivial bundles and all possible Riemannian
bundle metrics on them.

In MG’s 1996 paper [12], “Positive curvature,
macroscopic dimension, spectral gaps and higher
signatures”, the central statement is the following
relation between K-area and the scalar curvature
Scal of a Riemannian manifold: there is a univer-
sal constant c(d) such that, for every complete
spin manifold M9, ScalM9) > e 2 implies
K-areast(Md) < c(d)e?. The index “st” means one
works on vector bundles stabilized by products
with trivial ones. Its importance should not be un-
derestimated; it captures the essence of MG’s joint
work with Lawson. It has a beautiful corollary: on
a torus a Riemannian metric with nonnegative
scalar curvature must be flat. This result is very
strong because scalar curvature is a very weak in-
variant, just a numerical function on the mani-
fold. Moreover, this sheds geometric light on scalar
curvature; such a light was missing before. In fact,
we have seen that one can completely classify the
compact manifolds admitting a metric with posi-
tive scalar curvature, but the proof is completely
nongeometric. In particular, there has not yet been
given a single local interpretation of the positivity
of scalar curvature.

Finally, we are still far from a complete classi-
fication of manifolds with positive sectional cur-
vature, negative sectional curvature, positive Ricci
curvature, and similarly for nonnegative and non-
positive curvature.

The Space of All Riemannian Structures: dg-g

and Collapsing

In his ICM address [4], MG launched a whole pro-
gram of synthetic Riemannian geometry. His aim
was nothing less than the study of the space of all
Riemannian structures in order to give some struc-
ture to this space and to study completeness, pos-
sible convergences, compact subspaces, compact-
ification, etc. MG says he was inspired by the
history text of Klein, Development of Mathematics
in the 19th Century. The questions as they stand
are too general, so it was necessary to look at the
subsets consisting of manifolds satisfying vari-
ous conditions on their curvature, diameter, vol-
ume, injectivity radius, etc. The need was to un-
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derstand in depth the 1969 paper of Cheeger,
“Finiteness theorems for Riemannian manifolds”,
in which it is proved that, apart from d = 4, there
are only finitely many diffeomorphism types for
d-manifolds satisfying the following three condi-
tions: the sectional curvature stays in [—1, 1], the
diameter is bounded above, and the volume is
bounded below and has a positive lower bound.

MG's starting point is completely elementary: He
defines a metric on the set of all complete sepa-
rable metric spaces. More precisely, there are two
possible definitions: one for the set Z of all com-
pact metric spaces and a variant for the set of all
complete separable metric spaces with base point
specified. The latter is what was needed for Gro-
mov's proof of Milnor's conjecture about groups
of finite type, which was discussed in Part I. In Part
II we stick to the metric on the set Z of all com-
pact metric spaces, since interest will be in only
that. The definition begins from the “Hausdorff
distance” between compact subsets X and Y of a
metric space Z, namely,

dz(X,Y)=

max { sup inf d(x,y), sup inf d(x, y)}.
xeXx YeY yeYy XeX

If X and Y are now no longer subsets of the same
space, consider all possible pairs {f,g} of iso-
metric embeddings f: X — Z, g:Y — Z of them
into a third metric space Z. Compactness ensures
that f(X) and g(Y) are closed. Then define
dg-g(X,Y) as the infimum of the dz(f(X), g(Y))
over all possible Z, f, and g. In effect this distance
measures the best possible simultaneous approx-
imation of X by Y and of Y by X. This (Z,dg-g) is
a complete metric space. In this space, compact Rie-
mannian manifolds can be approximated as well
as desired by finite (metric) subsets. This approx-
imation property will be basic in the next subsec-
tion, on Ricci curvature. The metric dg-g is called
the Gromov-Hausdorff metric.

The main question now is to look for compact,
or precompact, or even finite, subsets of Z. In this
direction Cheeger’s finiteness result looks promis-
ing. Page 74 of [9], “Volume and bounded coho-
mology”, already written in 1978, implicitly uses
a compactness result in order to prove an existence
result for extremal metrics under the simplicial vol-
ume, as discussed in Part I. This existence result,
as well as page 63 of the Filling paper [8], were
never to my knowledge written up in detail. About
the compactness result, MG says:

I always took it for granted, but since
people asked for more, I wrote it in the
1981 paper Structures Métriques pour
les Variétés Riemanniennes. [This is [7]
in the present article.]

This compactness result has its germ in Cheeger’s
work, but stating it explicitly had to wait until
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1978. The convergence can be only C1:*. To see that
one cannot do better, just consider a cylinder
closed by two hemispheres. The compactness re-
sult holds under Cheeger’s conditions stated above
(K bounded above and below, diameter bounded
above, and volume bounded below), so the natural
question is whether one can suppress some of
these hypotheses. The least natural is the positive
lower bound for the volume, but many examples
show that, if K is kept inside [-1,1] and the diam-
eter is bounded, a manifold can “collapse” on man-
ifolds (or more general objects) of smaller dimen-
sion. The simplest case to visualize is that of flat
tori, which can collapse on tori of any dimension,
and also to a point. This matter is related to the
vanishing of minimal volume, which was defined
in Part L.

What we have here is a whole program, sketched
out in the ICM 1978 address “Synthetic Riemann-
ian geometry”: consider the limit of collapsing and
also study the collapsing itself by looking at the
inverse images of the collapsed points. This pro-
gram was essentially completed in 1992 with
Cheeger and Fukaya in “Nilpotent structures and
invariant metrics on collapsed manifolds”, the pre-
cise details being too involved to quote here. This
work has the following interesting corollary: any
Riemannian manifold admits a canonical decom-
position into two sets, one where large balls remain
diffeomorphic to R4 and the other where balls
admit generalized circle fibrations, i.e., nilpotent
structures.

I owe the reader a technical but extremely im-
portant notion, that of the injectivity radius. It is
the largest number r such that all balls of radius
r are diffeomorphic to R4 under the exponential
map, namely, the spray made up of geodesics is-
suing from the center of this ball and of length r.
Roughly speaking, collapsing can happen only
when the local injectivity radius is small. A key
lemma in Cheeger’s dissertation was how to pre-
vent collapsing by giving a lower bound for the in-
jectivity radius as a function of the volume, the di-
ameter, and the supremum and infimum of the
sectional curvature.

Universality of Ricci Curvature Bounded Below

The most spectacular result of [7], Structures
Meétriques pour les Variétés Riemanniennes, is one
that asserts that the two hypothesis Ricci > k and
diameter bounded above imply precompactness in
Z. Roughly put, in this class of Riemannian man-
ifolds there are only finitely many “metric types”.
The proof is not too hard once one has the right
framework, because, from the work of Bishop in
1963, one knows that in dimension d the condi-
tion Ricci > (d — 1)k gives complete control over
the volume of balls of a given radius: for any point

x the function % is nonincreasing in the

radius r, where Vol(Bi(r)) denotes the volume of
a ball of radius r in the simply connnected refer-
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ence space of constant sectional curvature equal
to k.2 One has only to use a counting argument and
a classical metric trick: when disjoint balls of a
given radius r are packed as tightly as possible,
then the set of balls with the same centers and with
radius 2r is a covering. In the metric on Z, the fi-
nite subset of the manifold made up of the cen-
ters of these balls is a good approximation to the
manifold as the common radius r goes to zero.
With such a result in hand what can we now
hope for? Not everything, as examples show that
Ricci > 0 permits an infinite number of homology
types. However, in this program one now has many
strong results, typically from work of Cheeger and
Colding; an informative text is Gallot’s lecture at
the Séminaire Bourbaki in November 1997. Let us
mention one result: in every dimension d there ex-
ists an n(d) > 0 such that if a manifold satisfies

Diameterz(g) - Inf Ricci(g) > —n(d),

then its fundamental group is nilpotent up to a sub-
group of finite index. Besides many new ideas of
“Ricci-synthetic geometry”, essential use is made
of the basic technique introduced in [5], “Groups
of polynomial growth and expanding maps”: extract
a suitable limit from the sequence (M4, -1 . g) as
€ goes to zero. One step consists in showing that
this limit, which captures the structure at infinity
of (M, g), is pleasant—in fact, a cone. By contrast,
for general Riemannian manifolds this limit can be
awful. An essential idea of [7] for studying 7r1 (M)
is to use geometrically chosen generators with ad
hoc loops. MG used this technique in [3] and also
in a 1978 paper for his main theorem on almost-
flat manifolds; a detailed exposition appears in
the 1981 book Gromov’s Almost Flat Manifolds by
Buser and Karcher. This result answered the long-
standing question: Which manifolds have almost
zero curvature? The first fact is that such manifolds
need not be tori, because nilpotent manifolds can
be collapsed to a point, or equivalently are the
manifolds obtained by successive circle fibrations
starting from a point. But there are essentially no
more such manifolds, and this is MG’s result: man-
ifolds with almost zero curvature have to be almost-
nilpotent, i.e., the quotient, up to a subgroup of fi-
nite index, of a nilpotent Lie group. The appropriate
hypothesis is

Diameterz(g) - sup(|K|) < &(d)

for a universal positive &(d).

MG’s work, “Paul Lévy’s isoperimetric inequal-
ity”, published in 1980, also deals with a lower
bound for the Ricci curvature and is just as spec-
tacular; this text, only an IHES preprint, appears
now as one of the appendices to [13]. It shows that
a lower bound on Ricci curvature is enough to
completely control the “isoperimetric profile” of

2The volume of the balls in the reference space does not
depend on the point, as the space is a homogeneous space.
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a manifold. In (M4, g) the isoperimetric profile is
the function of T given by the lower bound of the
(d — 1)-volume of the boundary oD over all do-
mains D whose volume is equal to 7. The proof
uses in an essential way geometric measure the-
ory, which has been available to mathematicians
since the end of the 1960s. This theory provides
absolute minimal objects—here a domain of given
volume whose boundary has smallest possible vol-
ume—having reasonable singularities; the set of
singularities is of codimension at most 8. This
control is needed in order to study PDEs on a Rie-
mannian manifold from a geometric point of view.

The Spectrum of Riemannian Manifolds
A Riemannian manifold has a Laplacian, which is
the canonical elliptic linear second-order operator
given by Af = —Tracey D2f. For compact manifolds
this operator has a discrete spectral decomposi-
tion: the equation A¢ = A¢ has nonzero solutions
for a discrete unbounded set {A;} of eigenvalues
in R*, including 0. This set is called the spectrum
of the manifold. Moreover, the A; always have fi-
nite multiplicity, and every eigenfunction is C*. Let
us list each A; as often as its multiplicity and de-
note by {¢;} a corresponding orthonormal set of
eigenfunctions. Then every L? function can be writ-
ten uniquely as the sum of an L2-convergent se-
ries > ; ajpi, where a; = [y, f $pi. For smooth func-
tions f, the series converges in the C* topology.
Consequently, in terms of this expansion one can
solve various differential equations on the mani-
fold, such as the heat equation, the wave equation,
the Schrodinger equation, etc.

The main problem is to try to analyze the spec-
trum as a subset of R*. One introduces the count-

ing function N(A) =#{A; < A}. Its asymptotic be-
havior was found in 1949 by Minakshisundaram
and Pleijel:
B(d)
N@y, =, (2m)d
In this formula S(d) is the volume of the unit ball
in R4 , and thus Vol(g) and the dimension d are the
only Riemannian invariants that play a role. This
is the Riemannian generalization of Weyl’s famous
asymptotic formula for bounded domains of the
plane. One wants to control the gaps, and this
amounts to finding the next term in the asymptotic
expansion of N(A). In 1968 Hormander showed that

B(d) _
N = Vol(g)A?/2 + 0(Ad-1)/2)
as A — co. The exponent (d — 1)/2 is optimal, as is
shown by the standard sphere, where the gaps are
huge, expressing the fact that the eigenfunctions,
which are the spherical harmonics, have large mul-
tiplicity.

Vol(g)A4/2,

However, this estimate is somewhat unsatis-
factory for a Riemannian geometer, since the con-
stant in the O term is not explicit. One would
prefer an error term controlled by Riemannian in-
variants such as curvature, diameter, injectivity ra-
dius, etc. Moreover, one would like to control the
gaps from the beginning and not only asymptoti-
cally. These two questions were settled in [12],
“Positive curvature, macroscopic dimension, spec-
tral gaps and higher signatures”.

The control is given by the supremum and in-
fimum of the sectional curvature and by the in-
jectivity radius, which was defined
above. The proof is very involved

and has the striking feature that it
is opposite to standard spectral ar-
guments. Normally, when working
with elliptic operators, one uses
control of the spectrum for nu-
merical functions on the manifold
to control the spectrum for sec-
tions of various fiber bundles over
the manifold by means of the “Kac-
Kato-Feynman inequality”. Here MG
controls the low eigenvalues by
controlling the spectrum of suit-
able bundles via the topology, the
Atiyah-Singer index theorem, and
techniques of Vafa-Witten and
Bochner-Lichnerowicz. Then he ap-
plies the Kac-Kato-Feynmann in-
equality in reverse.

The second major contribution

to the spectrum came much earlier,

Figure 9. The diagrams on the left show how to unwrap carefully a many-times- in the above-mentioned 1980
twisted rope around a dumbbell without increasing its length too much. The Preprint “Paul Lévy’s isoperimet-
diagram on the right indicates how to deduce from a triangulation of the Tic inequality”; it was made more
manifold an efficient triangulation of its loop space. Precise by Bérard, Besson, and
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Gallot in 1985. In the spirit of the preceding sub-
section, a control of the isoperimetric profile en-
abled MG to completely squeeze the ith eigenvalue
within universal bounds. For every i one has:

univ(Inf Ricci, d, Diam(g)) i2/d < Aj

< univ(Inf Ricci, d, Volume(g)) i 2/d ,

where “univ” refers to some function that depends
only on the specified arguments. This estimate
agrees with the exponent in the Minakshisun-
daram-Pleijel asymptotic.

Periodic Geodesics

Having obtained a nice distribution for the spec-
tral counting function N(A), one can hope that
there is also a nice distribution for the length of
periodic geodesics. We have in mind the following
analogy: The Laplacian controls the quantum me-
chanics of the manifold via Schrodinger’s equation,
whereas the geodesic flow controls its classical
Hamiltonian mechanics. One draws a parallel be-
tween ¢; as eigenfunction—in terms of stationary
modes and pure vibrations—and the periodic ge-
odesics y, which are stationary motions. One is
therefore tempted to draw a parallel between the
eigenvalues A;, giving the frequencies of the vi-
brations, and the lengths L(y) of the periodic
geodesics y. In that case the geodesic flow will be
completely described by the set of periodic geo-
desics and their lengths. In particular, it is rea-
sonable to hope for an infinite number of such pe-
riodic geodesics, their lengths making up a discrete
subset of R*, and to have an asymptotic expansion
for the counting function CF(L) defined by

CF(L) = {numbel“ of periodic geodesms}

of length smaller than L

Under this analogy the growth corresponding to
A4/2 for the spectrum would be exponential in L.

One can take a suitable surface of revolution to
see that the set of lengths need not be discrete.
These examples show also that there are continu-
ous bands of periodic geodesics. On the other
hand, one still does not know whether, for any com-
pact manifold and any Riemannian metric on it,
there exist infinitely many periodic geodesics. One
does know the existence of infinitely many peri-
odic geodesics in dimension two; the first unset-
tled case is the three-dimensional sphere. In the
counting process, running two or more times along
a given periodic geodesic is not to be considered
as different from going once; this phenomenon is
the major difficulty in getting an infinite number
of truly geometrically different periodic geodesics.
Let us now examine MG’s contributions to the
subject.

We begin by briefly describing the extreme case
of negatively curved manifolds. In this case there
always exists at least one periodic geodesic in any
free homotopy class of curves: just take the
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minimum length curve in the given class. Thus
huge fundamental groups yield many periodic ge-
odesics, and one gets almost trivially an expo-
nential growth for the counting function CF. Op-
timal results are obtained if the manifold is the
underlying one of a space form as defined earlier;
in this case the factor in the exponential is no less
than the one in the constant curvature case, with
equality only for isometry with the space-form
structure. This was proved by Katok in 1982 for
surfaces and for all dimensions by Besson, Cour-
tois, and Gallot in 1996; we quote this result be-
cause MG’s notion of simplicial volume enters in
a fundamental way in the proof.

Let us consider the opposite situation—simply
connected manifolds. Before [2], “Homotopical ef-
fects of dilatation”, there was an almost complete
paralysis. Why was this? Morse theory started with
Birkhoff’s 1913 result yielding at least one periodic
geodesic on any convex surface. The basic idea ap-
plies to any compact manifold: One considers the
set Q(M) of all closed curves on the manifold that
are homotopic to zero, together with the function
on this space given by length. The critical point will
be exactly the periodic geodesics. So Morse theory
apparently yields as many periodic geodesics as the
Betti numbers of this space of curves. There are
three difficulties: The first is that this space is in-
finite dimensional, a difficulty that is overcome by
taking a finite-dimensional approximation (Birkhoff
already knew how to do this by using the injectivity
radius) and by replacing every curve by an
approximating one made up of geodesic pieces, a
so-called broken geodesic. The second difficulty is
the computation of the Betti numbers of Q(M). The
fact that we take curves without a fixed base point
makes things quite difficult, but this algebraic-
topology difficulty was overcome quite successfully
by various topologists. There remains the third dif-
ficulty: Morse theory gives only the existence of
(many) critical points, but does not say anything
about the value of the function—here the length
of periodic geodesics. A typical example: If we
have an infinite number of critical points (as when
the Betti numbers are nonzero for an infinite se-
quence of dimensions of Q(M)) and if all the
lengths are multiples of a given one, then the ge-
odesics so obtained could be only the covering of
a single one.

So the aim is to quantize Morse theory at the
level of the values at critical points. Trivial exam-
ples show that one cannot expect any results for
general functions. But in the Riemannian case and
the space Q(M) of [2], MG managed to quantify
things as in Figure 9. Two ideas were used. The first
pertains to the left-hand diagrams in Figure 9,
where one has a curve homotopic to zero turning
many times around a “thin” part; one contracts it
very carefully to a point by contracting each “turn”
along the big part of the manifold. Doing this for
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every turn yields a nice control over the length. If
all turns pass through the big part at once, the
length will become too large. The subtle part of [2]
consists in deducing from a triangulation of M a
triangulation of Q(M); it is indicated in the right-
hand diagram of Figure 9. The dimension of this
triangulation equals the sum of the dimensions of
the simplices of the triangulation of M that are
crossed by a given broken geodesic. The final trick
is to use the simple connectivity in order to con-
tract the whole 1-skeleton to a point so that the
pieces of broken geodesics running through edges
no longer count.

The conclusion is this: For any compact (M, g),
there exist two positive constants a and b such that
for every length L one has

CE(L)=a Y, BrQ(M),
k<bL

where Sx denotes the Betti numbers. The proof con-
sists in contracting the curves of (M) to a point
while permanently controlling, with an eye on the
length, the topology in degree i of Q(M). This re-
sult applies only in the case where all periodic ge-
odesics are nondegenerate; nondegeneracy is es-
sential in order to apply Morse theory.

The above inequality solves the problem of pe-
riodic geodesics for “doubly generic” Riemannian
manifolds: their counting function CF(L) grows ex-
ponentially with L. To explain this statement, we
need some algebraic topology. Compact manifolds
fall into two classes: those called rationally ellip-
tic, and those called rationally hyperbolic, most
manifolds being rationally hyperbolic. The elliptic
ones are those having all their homotopy groups
M (M4) finite for every k > 2d — 1. On the other
hand, from work of Felix and Halperin in 1982
one knows that rationally hyperbolic manifolds
have Betti numbers S;(Q2(M)) that grow exponen-
tially with i. There remain two difficulties. The
first was noted above: how to get periodic geodesics
geometrically, i.e., how to eliminate the ones that
are multiples of others. But the iterates of a peri-
odic geodesic have their lengths in arithmetic pro-
gression, so this difficulty goes away under the ex-
ponential. The second is that Morse theory applies
only when all the critical points are nondegener-
ate. Here we will have the notion of nondegener-
ate periodic geodesic. In full generality a Rie-
mannian manifold might have degenerate periodic
geodesics, but not for a “generic metric”. One
knows by results of Klingenberg, Takens, Anosov,
and Rademacher that “bumpy” metrics—those for
which all periodic geodesics are nondegenerate—
are generic; this genericity is made precise in the
Baire category sense. MG's result is that for generic
metrics on most manifolds one has exponential
growth for the counting function of periodic geo-
desics. This result addresses the problem stated
at the beginning of this subsection.
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Which Spaces for Geometry? Gromov’s
Program

We now summarize Chapter 3% of [13], Metric
Structures for Riemannian and Non-Riemannian
Spaces. This chapter ends with: “We humbly hope
that the general ambiance of X can provide a
friendly environment for treating asymptotics of
many interesting spaces of configurations and
maps.” Present models of geometry, even if quite
numerous, are not able to answer various essen-
tial questions. For example: among all possible
configurations of a living organism, describe its tra-
jectory (life) in time; give as a function of time the
mean diameter of planar self-avoiding Brownian
motion; improve results of statistical mechanics;
create a geometric theory of probability, say by
quantifying geometrically the law of large numbers.
Some of what we come to now is more or less
known in probability theory and in statistical me-
chanics either formally or heuristically. The aim
here is to lay a foundation, an axiomatic theory
powerful enough to handle the above problems,
solved or unsolved.

We now sketch the answer given in Chapter 3 1
referring the reader to the book [13] for details and
many more results. One thing to realize is that in
geometry the notion of measure is ultimately more
important than that of metric. Measure arises first
in probability theory, since it is needed to make any
statistical assertion. In the Riemannian case the
measure comes automatically from the metric.
This order of events does not preclude the Rie-
mannian measure from being basic. In Riemann-
ian geometry the innovation of Riemann’s was to
dissociate the metric from the vector-space struc-
ture in Euclidean geometry and to replace the vec-
tor space by a differentiable manifold. Here MG dis-
sociates the metric and the measure in a
Riemannian manifold by introducing the notion of
mm-space. This is a triple (X, d, u) in which (X, d)
is any complete separable metric space and u is
initially a finite measure on the o-algebra of Borel
sets, i.e., the smallest og-algebra containing the
open sets. Then the measure space is completed
by adjoining to the o-algebra all subsets of Borel
sets of measure 0. It is assumed that every one-
point set has measure 0. Let m = u(M) > 0. It is
known3 that any mm-space with m = u(M) always
admits a measure-preserving parametrization
¢ : [0, m) — X, i.e., aone-one onto function ¢ from
the complement of a set of measure O to the com-
plement of a set of measure 0 such that ¢ preserves
measurable sets and the measure.

3As a result of (§43, IX) in Hausdorff’s Set Theory, Theo-
rem 2 of the 1942 Annals paper by Halmos and von Neu-
mann, and an easy supplementary argument. For an ex-
position, see §2 of V. A. Rohlin, On the fundamental ideas
of measure theory, Translations Amer. Math. Soc. (1) 10
(1962), 1-54.
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Figure 10. The limiting space of a sequence of spheres equipped with caps that are converging to a
“hair” is a sphere with this hair in the metric dg.y but is only the sphere (with no hair) in d;. The

distinction arises because a hair has zero measure.

The first thing MG does is to consider the set X
of all mm-spaces and to endow it with various
structures. It seems that no reasonable measure can
exist on X, but MG defines a metric on X, denoted
here by dg. For the sake of simplicity, we define
dg(X, X") only when u(X) = u(X’) = m. Unlike the
Gromov-Hausdorff metric dg.g on Z defined in
the section on Riemannian geometry, the metric dg
is not very geometric and is very hard to visualize
since already a measure-preserving bijection be-
tween the interval [0, 1] and the square [0, 1]? is
hard to visualize. We first consider measure-
preserving parametrizations of (X,d, u) and
(X',d' ,u"),say ¢ : [0,m) — X and ¢’ : [0, m) — X".
We pull back d and d’ to real-valued functions on
the square [0, m)?, namely, do (¢ X ¢p) and
d’' o (¢’ x ¢p"). We introduce the & almost-distance
&(¢p, ¢p’) between d and d’ as the smallest € such
that the set of t € [0, m)? with

ld(( x p)(1) —d' (" x PN = €

is of measure smaller than . Then dg(X, X’) is de-
fined as the infimum of &(¢, ¢’) over all possible
parametrizations ¢ and ¢’ of X and X’ of the
above type. It is easy to check that this dg is > 0
and is symmetric and transitive, but it is hard to
show that dg(X, X’) = 0 implies that X and X' are
suitably isomorphic; we return to this point in a
moment. The metric space (X, dg) so constructed
is complete. Heuristically speaking, the Gromov dis-
tance dg is similar to the Gromov-Hausdorff dis-
tance dg.g in the purely metric case, but this time
we are asking questions whose answers apply only
almost everywhere.
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One can compare the nature of dg.y and dg
somewhat by using a picture (Figure 10). We take
a sequence of spheres with hats, the hats con-
verging toward a segment (a hair). For dg-f the limit
will be a sphere with a hair, but for dg it will be
only a sphere. This is satisfactory, since hairs have
measure zero and thus can be neglected.

We return to comment on the proof that
dg(X, X') = 0 implies that X and X’ are suitably iso-
morphic. There are two things to say. One is that
the proof uses MG’s notion generalizing sectional
curvature to mm-spaces. The other is that the proof
gives a typical example of how control of the vol-
ume (measure) of metric balls can have strong met-
ric applications. This technique captures some of
the essence of MG’s precompactness in the section
above. The notion of curvature used here for a given
(X,d, ) is a collection uX?k of measures, k being
any natural number. The measure pXk is defined
on the space My of all symmetric k X k real matrices:
this is the measure pushed forward fromp x - - - X u
on XX---xXxX by the mnatural map
X X - - - X X — My that assigns to k-tuples of points
in X the set of their mutual distances. For example,

J fau =
M,
J f d(x, x)
xxx' \dx,y)
It turns out that knowledge of all these measures,

as k varies, allows one to reconstruct the metric
d up to isomorphism of metric spaces.

dix,y)

dly. y)> dux)du(y).
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Figure 11. The complement of the ¢-
neighborhood of an equator of an n-
dimensional unit-volume sphere has a volume
that, for ¢ fixed, goes exponentially to zero as
the dimension goes to infinity. More precisely,
this volume is smaller than 2 exp(—nsZ/Z)).
Applying the isoperimetric inequality to
domains of the sphere, one deduces from this
that, as the dimension goes to infinity, any
function tends to its central value on a set of
measure arbitrarily close to 1.

Next in Chapter 3%, the author introduces the
notion of observable diameter—more precisely,
the notion of k-observable diameter with magni-
fication A. We normalize the magnification A to be
1, since the asymptotic behavior of observable di-
ameter as the dimension goes to infinity does not
depend much on A. The idea is to introduce no-
tions corresponding to physical reality and phys-
ical experiments. Physical reality is taken to be a
metric space (X,d). An object can be observed
only by signals we perceive from it. The signals are
Lipschitz functions, and we restrict ourselves to
Lipschitz functions with Lipschitz constant 1, i.e.,
those satisfying |f(x) — f(¥)| < d(x, y) for all x and
y. What we perceive, due to the lack of accuracy
of our instruments, holds up only to a small error,
and observable diameter is intended to capture this
variability. The notion of observable diameter can
be defined for any geometric concept such as the
central radius (the minimal radius of a ball cover-
ing the whole metric space), the center of mass, etc.
A metric and a measure are enough to define such
notions.

The k-observable diameter of (X, d, u), denoted
by ObsDiam(X, k), is the smallest real number &
such that, for every Lipschitz numerical-valued
function f on X with Lipschitz constant 1, there ex-
ists an A C R of R-diameter smaller than 6 such
that

p(f~HA) = p(X) - k.
From the observer’s point of view, this says that

if py = p o 1 is the pushed-forward measure by
f, then

Hx(A) = px(f(X)) — K.
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In what follows one will see that ObsDiam(X, k) is
not very sensitive to the parameter k, so MG sug-
gests taking k = 10710 once and for all; then we can
write simply ObsDiam(X). The geometric law of
large numbers consists in studying in various con-
texts the asymptotic behavior of ObsDiam as the
dimension goes to infinity. Here are some results
about ObsDiam illustrating the subtlety of this
notion. In particular, the topology of the space is
not the important feature; its metric and its mea-
sure are the determining factors.

Historically, the first estimation of observable
diameter was for standard spheres. As early as
1919 Paul Lévy studied the so-called concentration
phenomenon of spheres S™: most of the measure
of the sphere is concentrated around an equator,
and this effect becomes more pronounced as the
dimension gets large. This is because jéT 12 sin" ¢ dt
is concentrated at 7T/2 as n — . In other words,
consider the tubular neigborhood U¢(D) of a hemi-
sphere D, namely, the set of points whose dis-
tance to D is < ¢&; then Paul Lévy proved that

Vol(S™ \ Ug(D)) < 2 exp(—ne?/?2).

The isoperimetric inequality for spheres can be
seen at the level of tubular neighborhoods, and we
will use it shortly for domains whose measure is,
as with the hemisphere, half of the total volume.
For now, consider any function f on the sphere, and
look at it close to its central value c. If the isoperi-
metric inequality is applied to the domain where
f takes values smaller than its central value, then
the above two facts yield: the set of values of f that
are outside the interval [c — &, ¢ + €] has measure
< 2 exp(—ne?/2). In the language of observable di-
ameter,

ObsDiam(S™) = O(1/+/n).

Of course, the exact diameter of S" equals 1T for
every dimension.

In the preceding section we discussed the con-
trol that MG obtains over the isoperimetric inequality
for manifolds with positive Ricci curvature. MG’s re-
sult can be immediately translated to the estimate
ObsDiam = O(1/+/n) for any such manifold. But this
condition is necessary, as examples show that even
nonnegative Ricci curvature will lead to manifolds
with ObsDiam = O(1) butnot= o(1). Topologyis not
the factor producing these larger estimates; other ex-
amples lead to metrics on S™ close to the standard
one and whose observable diameter can be as large
as desired. The hardest result on observable diam-
eter given in Chapter 3% is the following: for com-
plex algebraic submanifolds X ¢ CP" of degree d
and codimension k, one has

ObsDiam(X) = 0 (1282)!"** a5 1 - o with k and d
fixed. One can say that algebraicity takes the place
of positive Ricci curvature (strictly speaking, there
is no such relation). The metric we are considering

on X is the one induced in the Riemannian sense,
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not just the distance on CP" restricted to X in the triv-
ial sense. This means the distance between two points
is the infimum of the length in CP" of all curves join-
ing them. Metric length structures on algebraic man-
ifolds are an extremely difficult subject which is
very rarely tackled. MG likes to call this topic “the
muddy waters of metric algebraic geometry.” This
is reflected by the fact that the behavior of the (in-
trinsic) diameter is still not understood. For a given
degree (in a fixed CP", of course) the diameter is
bounded using general machinery, but does the di-
ameter become infinite as the degree gets large?
This is known only for curves in CP? and only since
Bogomolov’s work in 1994. But the question remains
open starting with surfaces in CP3. The proof of the
above estimate for the observable diameter of al-
gebraic manifolds needs more than twenty pages
and is very involved.

A geometric law of large numbers consists in
studying observable geometric quantities on the
products X=X x ---x X as n — o. First, we
have to specify which mm-structure we are con-
sidering on X", given a fixed mm-space (X, d, u).
For the measure one always takes the product
measure, but for the metric there is a choice ac-
cording to the situation. The extension of the Rie-
mannian case consists in taking the I>-product
metric. This is a special case of the I-product
metric, given by (3; dist!)!/P. For general mm-
spaces one cannot do better than
ObsDiam(X") = O(nl/2P), but this is better than
the real diameter, namely, O(n!/?). One more ex-
ample due to MG is the discrete cube {0, 1}", for
which ObsDiam ~ nl/4, whereas the full diameter
of the cube is O(1). For the case of the regular sim-
plex, the observable diameter is O(1/n).

Now we turn to the spectrum. MG succeeds in
defining a spectrum {A;} for any mm-space. We will
work with only the first eigenvalue A1, defining it
below. Of course, in general we do not have a dif-
ferential operator like the Laplacian. In the special
case of Riemannian manifolds, A;(X) is charac-
terized as the minimum of

Ix lgrad f11* dp
Ixf?du
over all functions with [yfdu=0. On an mm-
space all of the above ingredients are defined ex-

cept for the gradient. But one has only to define
[|(grad f)(p)|| for a function f on a metric space

(X, d) as lim sup,_. %f;}f’)l for x and y in the ball

of center p and radius €. MG proves an inequality
valid for any mm-space connecting A1 and the ob-
servable diameter:

ObsDiam(X, k) < log k1 /2+/A1(X).
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Glances at Other Important Results

We present here, even more briefly than above, a
series of results whose omission would not do
justice to our geometer.

Space Forms

There is nothing more natural for a geometer than
to look for geometries that generalize Euclidean
geometry. Some names associated to this quest are
Clifford, Klein, and Killing. One starts with space
forms in the strict sense, namely, the geometries
that enjoy the basic property of Euclidean space:
two triangles with corresponding sides equal are
congruent, which means that there is an isometry
of the space (a local one in general) sending one
onto the other. One can also speak of 3-point tran-
sitivity. If one imposes this condition as well as sim-
ple connectivity, only three geometries are possi-
ble: Euclidean, spherical, and hyperbolic. This class
coincides with simply connected Riemannian man-
ifolds of constant sectional curvature.

We shall take the spaces in question to be com-
pact manifolds that are quotients of the three stan-
dard ones. We stick to the compact case and to
manifolds for simplicity. In the Euclidean and
spherical cases, examples are easy to construct;
moreover, one had a complete classification by
the end of the 1960s. The hyperbolic case is a
completely different story. In dimension two, ex-
amples are easy, but a classification is much harder
and in fact is the basic content of Teichmiiller the-
ory for Riemann surfaces. But starting in dimen-
sion three, one had to wait until 1931 to have
some examples, and in higher dimensions until Ar-
mand Borel in 1963. Borel’s construction is based
in an essential way on number theory, the corre-
sponding space forms being called arithmetic; his
construction is valid for all symmetric spaces of
arbitrary rank. In a joint 1988 paper with Piatet-
ski-Shapiro, “Nonarithmetic groups in Lobachevsky
spaces”, MG managed to construct some nonar-
ithmetic examples in all dimensions (even if num-
ber theory was always present at the start).

It remains open whether arithmetic examples are
more numerous or less numerous than nonarith-
metic ones. MG has a program to try to solve this.
His idea is to mix suitably the notion of hyperbolic
polyhedron with number theory. Part of the diffi-
culty is that the known construction of Riemann
surfaces by taking triangles or other polygons in
the hyperbolic plane and reflecting them about
their sides—this kind of construction was shown
by Vinberg in 1984 to be impossible in large di-
mensions (around 40). The construction works in
dimension three, but which dimensions permit
such constructions by reflections is an open prob-
lem.

One next looks at space forms of rank one, the
simply connected ones being the symmetric spaces
of rank one. The compact simply connected ones
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are the generalized projective spaces KP" met in
the Riemannian geometry section. For K # R, there
is no classification problem for manifolds that are
compact quotients of these because even dimen-
sion and positive curvature force simple connec-
tivity up to a two-element group by a theorem of
Synge.

The analogous simply connected negative cur-
vature spaces, denoted here by Hyp™(K), offer
more of a challenge. (For K =R one has the stan-
dard hyperbolic geometry.) The geometric char-
acterization of these simply connected spaces is
that they are 2-point transitive in the sense that
pairs of points with the same mutual distance can
be carried to each other by a global isometry. We
again look for compact quotient manifolds of these
spaces; they will be the locally 2-point transitive
geometries. Such quotients exist, as shown by
Borel, but their classification is not finished: For
K = C one knows only the existence of some nonar-
ithmetic examples. For H and O, it is shown in a
1992 joint work of MG and Schoen, “Harmonic
maps into singular spaces and p-adic superrigid-
ity for lattices in groups of rank one”, that all such
quotients must be arithmetic. Of this result, MG
says that the most important thing about the paper
is not this corollary, but the introduction and use
of “harmonic maps” with values in singular spaces
(Tits buildings in this case). This technique is now
widely used.

In this area the work of [11], “Foliated Plateau
problem”, has not received much attention. How-
ever, MG believes that this pair of papers is im-
portant. He says:

One of the essential ideas of this text
is that, in treating the solutions of el-
liptic equations, the right framework is
that of foliations. But, if one excepts the
trivial case where the tangent bundle is
enough, in general one has to go to in-
finite dimensions to get the space of so-
lutions. There are some holes in this
text, but it does several things: it fur-
nishes this general framework and
therefore serves to make the problems
well posed, and afterward it contains
also some things in the spirit of Nevan-
linna theory.

Kéhlerian Manifolds

In much of his work MG examines Kahler manifolds
with a vengeance. He absolutely wants to find ro-
bustresults. For example, integrability of an almost-
complex structure—the condition that the struc-
ture come from a complex structure—is fragile. On
the other hand, invariants such as the fundamen-
tal group and the spectrum are robust. In the 1989
paper by MG, “Sur le groupe fondamental d'une var-
iété kahlérienne”, one finds the first known strong
restriction for the algebraic structure of possible
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fundamental groups of Kahler manifolds. The final
theorem has not yet been obtained. Classical meth-
ods are useless for this result. MG used transcen-
dental methods, namely, L?-cohomology and the
index theorem. He used L2-cohomology also in
other instances, such as in his 1991 paper “Kah-
ler hyperbolicity and L2-Hodge theory”, in which
he showed that the two conditions “negative sec-
tional curvature” and “Kédhler” determine the ex-
pected sign of the Euler-Poincaré characteristic.
This is a conjecture of H. Hopf from the 1930s,
stated for the general Riemannian case and sec-
tional curvature of constant sign. The case of di-
mension two follows immediately from the Gauss-
Bonnet theorem. The case of dimension four is
proved. The conjecture is open starting in dimen-
sion six, and examples indicate that the proof can-
not follow directly from the higher-dimensional
generalization by Allendoerfer and Weil of the
Gauss-Bonnet theorem.

Building Examples in Riemannian Geometry

The construction of subtle examples is an impor-
tant aspect of mathematics. MG has produced a
number of these.

In the section on Riemannian geometry, we saw
results going beyond the condition “sectional cur-
vature is positive, or nonnegative”. It is natural to
ask the same kind of question for negative sectional
curvature. This cannot be done, as MG constructs
for every € > 0 on the sphere S3 a Riemannian met-
ric whose diameter is equal to 1 while the curva-
ture satisfies K < ¢.

In Part I we met the notion of systolic softness.
The basic example furnished by MG is incredibly
simple: consider S! x $3, as obtained from
[0,1] x S$3 by gluing the two copies {0} x §3 and
{1} x §3 with a Clifford translation (i.e., along
Hopf fibers) of greater and greater length.

According to MG, his most subtle and important
constructions are in the realm of negative sec-
tional curvature. Recall from the beginning of Part
II that it is difficult to construct compact manifolds
of negative curvature. Borel’s examples of space
forms have sectional curvature in [—-1, — }1] . Of
course, one can just deform (not too much) those
examples, and sectional curvature will remain neg-
ative. However, this approach leaves untouched the
question of finding a classification of the set of neg-
atively curved manifolds. The class of these man-
ifolds is very interesting, as it supplies us with ob-
jects worthy of study for themselves but also very
subtle to deal with, since products automatically
yield many vanishing curvatures. Even the case of
polyhedra is not simple (except as we saw in di-
mension two). Finally, these manifolds are linked
with the hyperbolic groups seen at the beginning
of Part I.
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In a 1987 joint paper with Thurston, “Pinching
constants for hyperbolic manifolds”, one finds
two essential constructions for negative curvature
that work in every dimension > 4. In both con-
structions one starts with a compact space form
M of hyperbolic type, i.e., the sectional curvature
is constant and is equal to —1. Consider in M a to-
tally geodesic submanifold of codimension 2 (i.e.,
a submanifold N in which geodesics starting in M
and tangent to N remain in N). Look now at cyclic
coverings of M ramified along N. It is not too hard
to endow such a covering with negative curvature,
and one can even control the pinching, the ratio
sup K/ inf K. MG studies the volumes of these ob-
jects. A major result of the book [1], Manifolds of
Nonpositive Curvature, furnishes bounds for the
volume as a function of the pinching. This con-
struction yields manifolds whose topology can dif-
fer strongly from that of a space form. In the first
type of example one can show that the pinching
can be as close as desired to 1. Hence the conclu-
sion: for any ¢ there exist manifolds with curva-
turein[-1 — &, —1 + &], of bounded diameter, that
do not admit a metric of constant negative curva-
ture.

A second construction enables MG to obtain
examples of a complementary type: for every € with
0 < &€ < 1, there exist manifolds of negative cur-
vature that do not admit a metric with curvature
in the range [-1,—1 + &]. This result is hard to
prove but essential to the understanding of nega-
tive curvature. The proof uses the technique of dif-
fusion of cycles discussed in Part 1.

Conclusion

If MG has amuse, it is not the axiomatic one of Eu-
clid. MG is instead guided by concepts such as
softness versus rigidity, computability, physical re-
ality of objects, etc. In particular, when talking
about results, he is concerned with the robust-
ness of the invariants used. His other principle is
to avoid empty generalization: “Many theorems
are not interesting if one cannot produce examples
where the result is not already there”. From this
point of view the Filling paper [8] is exemplary. In
case some of his results do not meet the above cri-
terion, he adds, “Then put them in what is now
called foundations.”

We have seen time and again that MG’s papers
are like icebergs: most of the results lie under the
surface and are accessible only to exceptional
mathematicians who are willing to devote their
time to them. So why does MG not write his results
in detail? We think that the best way to answer this
and other questions is to let MG speak for himself:
“Checking in full detail the proof in my head was
already so painful that I was left with no energy
for more.” Let us also quote what he says in a ex-
pository paper of 1992, “Stability and pinching”:
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Mikhael Gromov

The results we present are, for the most
part, not new and we do not provide de-
tailed proofs (these can be found in the
papers cited in our list of references).
What may be new and interesting for
non-experts is an exposition of the sta-
bility/pinching philosophy which lies
behind the basic results and methods
in the field and which is rarely (if ever)
presented in print (this common and
unfortunate fact of the lack of an ade-
quate presentation of basic ideas and
motivations of almost any mathemati-
cal theory is, probably, due to the binary
nature of mathematical perception: ei-
ther you have no inkling of an idea or,
once you have understood it, this very
idea appears so embarrassingly obvious
that you feel reluctant to say it aloud;
moreover, once your mind switches
from the state of darkness to the light,
all memory of the dark state is erased
and it becomes impossible to conceive
the existence of another mind for which
the idea appears nonobvious).

Finally, for those who want to know more about
MG’s process of discovery, we end with the fol-
lowing quotation of his response to his being
awarded the AMS Steele Prize in 1997 (Notices,
March 1997). The response analyzes the results of
[10], “Pseudo-holomorphic curves in symplectic
manifolds”, a paper that was discussed in Part I:

I saw the light when struggling with
Pogorelov’s proof of rigidity of convex
surfaces where he appeals to the
Bers-Vekua theory of quasi-analytic
functions. There was nothing seemingly
complex-analytic in the linearized sys-
tem written down by Pogorelov, and
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then it struck me that every first order
elliptic equation or quasilinear system
of two equations in two variables has
the same principal symbol as Cauchy-
Riemann and then the solutions appear
as (pseudo) holomorphic curves for the
almost complex structure defined by
the field of the principal symbols. Now
the surface rigidity trivially followed
from positivity of the intersections of
holomorphic curves. What fascinated
me even more was the familiar web of
algebraic curves in a surface emerging
in its full beauty in the softish environ-
ment of general (nonintegrable!) almost
complex structures. (Integrability had
always made me feel claustrophobic.)
And my mind was ready for the mira-
cle; Donaldson’s ideas were in the air.
So I tried to replay Yang-Mills on my
holomorphic curves (strings?) and re-
luctantly abandoned the idea, being
convinced by Pierre Deligne that the
area of curves cannot be controlled
without a symplectic structure. Every-
thing went smoothly with the sym-
plectic structure, and I even came to un-
derstand the definition of quasianalytic
functions and of the nonlinear Rie-
mann-mapping theorem of Schapiro-
Lavrentiev (albeit I am still unable to
read a single line of this style of analy-
sis).

I was happy to see my friends using
holomorphic curves immediately after
birth: Eliashberg, Floer, McDuff. Eliash-
berg came across them independently
in the contact framework but was un-
able to publish (staying in the USSR).
Floer has morsified them by breaking
the symmetry, and I still cannot for-
give him for this. (Alas, prejudice does
not pay in science.) McDuff started the
systematic hunt for them which goes on
till present day. And what goes on today
goes beyond these lines and the pen be-
hind them.
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About the Cover

While in Euclidean 3-space there is only one
regular dodecahedron and its dihedral angle
is approximately 116°, in hyperbolic 3-space
there exists a continuous family with varying
dihedral angle.

In the limiting case for small distances, hy-
perbolic 3-space looks like Euclidean 3-space,
and small hyperbolic dodecahedra therefore
have dihedral angles close to 116°. On the
other hand, for the largest possible dodeca-
hedron with the vertices on the sphere at in-
finity, the dihedral angle is precisely 60°.

Of special interest are the three dodecahe-
dra with the intermediate dihedral angles 60°,
72°, and 90°, because they tessellate hyper-
bolic 3-space. These dodecahedra are shown
on the front cover, each at the center of its own
Poincaré ball model of hyperbolic space.

Examples of tessellations of hyperbolic
3-space by a bounded region were unknown
before 1931.

—Matthias Weber
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