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ABSTRACT. We classify k-Stirling permutations avoiding a set of ordered patterns of length three
according to Wilf-equivalence. Moreover, we derive enumeration formulæ for all of the classes using
a variety of techniques such as the kernel method, a bijection related to a classical result of Simion
and Schmidt, and also structural decompositions of k-Stirling permutations via the so-called block
decomposition, or via bijections with families of trees.

1. INTRODUCTION

A Stirling permutation is a permutation of the multiset {1, 1, 2, 2, . . . , n, n} such that, for each i,
1 ≤ i ≤ n, the elements occurring between the two occurrences of i are larger than i. E.g., 1122,
1221 and 2211 are Stirling permutations, whereas the permutations 1212 and 2112 of {1, 1, 2, 2} are
not. These combinatorial objects have been introduced by Gessel and Stanley [8] in the context of
finding combinatorial interpretations of the coefficients of certain polynomials, where the Stirling
numbers appear.

The notion of Stirling permutations has been generalized by Park [14] to permutations of the mul-
tiset {1k, 2k, . . . , nk}, with an integer k ≥ 1 (here and throughout this work we use in this context
jl := j, . . . , j︸ ︷︷ ︸

l

, for l ≥ 1). As in [12] we call a permutation of the multiset {1k, 2k, . . . , nk} a

k-Stirling permutation of order n (Park [14] used for these objects the name k-multipermutations), if
for each i, 1 ≤ i ≤ n, the elements occurring between two occurrences of i are at least i. (Alterna-
tively, one might say that the elements occurring between two consecutive occurrences of i are larger
than i.) We denote the combinatorial family of k-Stirling permutations of order n by Qn,k; note that
k = 2 yields exactly Stirling permutations as defined by Gessel and Stanley [8], whereas k = 1 gives
just ordinary permutations.

The previous definition can be extended further in a straightforward way to permutations of a
general multiset {1k1 , 2k2 , . . . , nkn}, with ki ∈ N for 1 ≤ i ≤ n. The permutations of the multiset
{1k1 , 2k2 , . . . , nkn} which satisfy, for each i, 1 ≤ i ≤ n, that the elements occurring between two
occurrences of i are at least i, are, as in [12], called generalized Stirling permutations; these objects
have been considered previously by Brenti [5, 6].

The focus of recent studies [4, 11, 12] on (generalized) Stirling permutations has been given to
an analysis of various permutation statistics as the number of ascents, descents and plateaux or the
number of left-to-right maxima and minima. One interest in studying these combinatorial objects
arises from the fact that there are close connections to various important so-called increasing tree
families, see, e.g., [12].

In this work we are dealing with enumerative questions arising in the context of the avoidance of
patterns in generalized Stirling permutations, where we mainly focus on the most interesting case of
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k-Stirling permutations. Starting with the work [17] of Simion and Schmidt the enumerative study of
permutations, which avoid certain ordered patterns, has obtained a lot of attention in combinatorics
and lead to remarkable results as, e.g., a proof of the Stanley-Wilf conjecture (see, e.g., [3]). If
α = (α1, . . . , αm) and β = (β1, . . . , βn) are two sequences of numbers, then the sequence α is said
to be contained in β as a pattern if there is a subsequence βi1 , . . . , βim of β, with 1 ≤ i1 < i2 < · · · <
im ≤ n, which is order isomorphic to α, i.e., it holds αp ≤ αq if and only if βip ≤ βiq . If β does not
contain α one says that β avoids the pattern α. In contrast to the many studies treating questions for
pattern avoiding permutations of a set there has been done relatively little work for permutations of a
multiset; such exceptions are the papers [1] and [10], both dealing with the avoidance of patterns of
length three.

Using the notion of pattern avoidance generalized Stirling permutations can simply be character-
ized as permutations of a multiset, which avoid the pattern 212; in particular, k-Stirling permutations
of order n are exactly the 212-avoiding permutations of {1k, 2k, . . . , nk}. Of course, for k = 1 this
gives no restriction and one gets all permutations of {1, 2, . . . , n}. The problem of enumerating per-
mutations of order n that avoid a set of permutation patterns of length 3 has been fully solved (see,
e.g., [1, 17]) and leads to simple enumeration formulæ. In particular, the number of permutations
of order n that avoid a single permutation pattern of length three is the same for all of the 6 possi-
ble patterns and is given by the Catalan numbers 1

n+1

(
2n
n

)
. It is now quite natural to ask, whether

the problem of enumerating k-Stirling permutations of order n, which avoid a certain permutation
pattern (or a set of patterns) of length three, also leads to “nice” enumeration formulæ. That this is
indeed the case will be shown in this paper, where the avoidance of all possible sets of permutation
patterns of length three is treated. A further aspect is that these formulæ allow to observe the influence
of the multiplicities k of the labels to the growth of the number of restricted k-Stirling permutations
subject to the specific patterns. E.g., we could show that for k-Stirling permutations there are two
classes of single permutation patterns of length three, namely the class 312 = (312, 213) and the
class 231 = (231, 132, 123, 321), leading (for general k) even to asymptotically different enumera-
tion formulæ. Whereas avoiding a pattern of the former class leads to generalized Catalan numbers
as enumeration formulæ, yield patterns of the latter class formulæ that appeared, for the special case
k = 2, i.e., Stirling permutations, already in the context of enumerating certain labelled trees [9]; of
course, for k = 1 both formulæ will specialize to the Catalan numbers leading to only one so-called
Wilf-equivalent class (see, e.g., [16]). By extending this standard notion used in that context, we
call two patterns k-Wilf-equivalent if the cardinalities of the k-Stirling permutations of order n that
avoid the one or the other pattern, respectively, are, for all n, always equal; if two patterns are k-Wilf-
equivalent, for all k ≥ 1, we call them N-Wilf-equivalent. Thus all single permutation patterns of
length three are 1-Wilf-equivalent, but there are two different N-Wilf-equivalent classes.

Besides methods that have been applied previously in the study of pattern avoiding permutations (as
treating recurrences with the kernel method and generalizing a classical bijection due to Simion and
Schmidt) to show our findings we use results that rely more specifically on the structure of k-Stirling
permutations as close relations to increasing tree families and the so-called block decomposition of
generalized Stirling permutations. Thus in Section 2 we collect basic facts about generalized Stirling
permutations. A summary of our results is given in Section 3. Proofs concerning the avoidance
of single patterns of length three are given in Section 4, whereas Section 5-6 are dedicated to the
avoidance of multiple patterns of length three.

2. GENERALIZED STIRLING PERMUTATIONS

It is not difficult to see and already stated in [12] that there are exactly
∏n
j=1

(
1 +

∑j−1
i=1 ki

)
different generalized Stirling permutations of the multiset {1k1 , 2k2 , . . . , nkn} (note that it is here
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convenient to allow also n = 0, i.e., the empty sequence). This result can be shown by induction,
since the kn copies of n have to form a substring and thus each such generalized Stirling permutation
can be obtained uniquely by inserting the string nkn into a generalized Stirling permutation of the
multiset {1k1 , 2k2 , . . . , (n− 1)kn−1} at one of the 1 +

∑n−1
i=1 ki possible positions (viz., anywhere in

the string, including first or last). Of course, this also gives a simple recursive algorithm to generate
all generalized Stirling permutations, or to generate a random generalized Stirling permutation, of
an arbitrary multiset. We remark that this enumeration result has also been obtained in [10]. When
specializing to the family of k-Stirling permutationsQn,k we obtain that the numbers Qn,k := |Qn,k|
of different k-Stirling permutations of order n are given by

Qn,k =
n−1∏
i=1

(
ki+ 1

)
= n!kn

(
n− 1 + 1

k

n

)
. (1)

As mentioned before there exist close connections between generalized Stirling permutations and
various increasing trees families; see, e.g., [13]. Increasing trees are rooted labelled trees, where the
nodes of a tree with n nodes (i.e., of order n) are labelled with distinct integers from a given label
set L in such a way that each child node has a larger label than its parent node. In this work we
only describe and later apply the connection to so-called d-ary increasing trees. A d-ary tree is an
ordered tree (i.e., the left-to-right order of the children is important), where each node has exactly
d positions, where a child might be attached or not (thus there are exactly

(
d
l

)
different possibilities

that the sequence of 0 ≤ l ≤ d nodes v1, v2, . . . , vl is attached to a node v in this left-to-right order).
A d-ary increasing tree is then an increasingly labelled d-ary tree, where we always assume that the
label set L = {1, 2, . . . , n} will be used to label a tree of order n. Often it is appropriate to add at
each position in a d-ary increasing tree, where no child has been attached, a so-called “external node”
(which does not get any label), whereas the original nodes are now called “internal nodes”; then it
holds that at each (internal) node there are attached exactly d nodes (internal or external).

Let us denote by Tn,d the family of d-ary increasing trees of order n and by Tn,d := |Tn,d| its
cardinality. It has been shown in [12, 14] that there exists a bijection between the family Qn,k of
k-Stirling permutations of order n and the family Tn,k+1 of (k + 1)-ary increasing trees of order n,
and thus that Qn,k = Tn,k+1. To keep the paper self-contained we briefly describe this bijection here.
Let σ = σ1σ2 . . . σkn be a k-Stirling permutation of order n. We construct then the corresponding
(k + 1)-ary increasing tree T via the following recursive procedure. If σ is the empty sequence then
we obtain the tree T containing only an external node as the root node; otherwise we decompose the
sequence σ into substrings according to the k occurrences of the smallest label ` (of course, ` = 1
in the first step) in the sequence, i.e., σ = S1 ` S2 ` . . . ` Sk ` Sk+1, where each Si could be possibly
empty; it holds that (after order-preserving relabellings) each Si is itself a k-Stirling permutation.
Thus we can apply recursively this procedure to each of the substrings S1, . . . , Sk+1 leading to k+ 1
increasingly labelled trees T1, . . . , Tk+1. We construct then the (k + 1)-ary increasing tree T by
attaching the root nodes of T1, . . . , Tk+1 in this left-to-right order as subtrees to the node `, which
becomes the root node of T . It is not difficult to show that this procedure indeed gives a bijection; the
inverse bijection, which we omit to state here, can be described nicely by using a so-called depth-first
walk of the tree, see [12]. The bijection is illustrated in Figure 1. To end this paragraph on trees
we state the well-known fact that the number of (unlabelled) d-ary trees of order n are given by the
generalized Catalan numbers 1

(d−1)n+1

(
dn
n

)
, see, e.g., [7].

In our studies we will use the block structure of k-Stirling permutations. A block in a generalized
Stirling permutation σ = σ1σ2 . . . σs is a substring σp . . . σq, with σp = σq, that is maximal, i.e.,
which is not contained in any larger such substring. There is obviously at most one block for every
j ∈ {1, 2, . . . , n}, extending from the first occurrence of j to the last one; we say that j forms a
block if this substring is indeed a block, i.e., when it is not contained in a string j′ . . . j′, for some
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FIGURE 1. Three 2-Stirling permutations of order 3 and the corresponding ternary
increasing trees.

j′ < j. It can be shown easily by induction that any generalized Stirling permutation has a unique
decomposition into a sequence of its blocks. As an example we consider the 3-Stirling permutation
σ = 355777534443112888221666 of order 8, which can be decomposed into three blocks leading to
the block decomposition [355777534443][112888221][666].

3. RESULTS

We collect here our main results concerning the enumeration of pattern restricted k-Stirling per-
mutations. To do this we first give some notation, which is used throughout this paper. Let α be a
pattern; then we always denote by Qn,k(α) the combinatorial family of k-Stirling permutations of
order n that avoid the pattern α and Qn,k(α) := |Qn,k(α)| its cardinality, i.e., the number of such
restricted k-Stirling permutations of order n. The latter notion can be extended to k-Wilf-equivalent
classes of patterns; thus Qn,k(α) denotes the number of k-Stirling permutations of order n that avoid

a member of the class α. We also use α
(k)
≡ β or α

(N)
≡ β, for patterns α and β, to denote that they

are k-Wilf-equivalent or N-Wilf-equivalent, respectively. We also use the straightforward extensions
of all these terms to a set Λ of patterns. To avoid ambiguity, we enclose sets of patterns into braces,
whereas we use parentheses when collecting the members of a class of equivalent patterns.

When stating our results we use the obvious fact that avoiding a pattern α = α1 . . . αm and avoid-
ing the reversal α′ = αmαm−1 . . . α1 leads, for all generalized Stirling permutations of a multiset
{1k1 , . . . , nkn}, to the same enumeration formulæ. Thus we can always restrict ourselves to enumer-
ate patterns, which are not obtained by applying the reversal to another pattern, i.e., we can consider
classes of reversal-equivalent patterns.

3.1. Avoiding a single pattern of length three.

Theorem 1. The numbers Qn,k(α) of k-Stirling permutations of order n that avoid a single permu-
tation pattern α of length three are given by the following enumeration formulæ, where we added for
k = 2, i.e., Stirling permutations, the classification numbers of the sequences in the on-line encyclo-
pedia of integer sequences [18].

Class name Representative α Enumeration formula Qn,k(α) Qn,1(α) Qn,2(α)

A1 312 1
kn+1

(
(k+1)n
n

)
∼ γ1 n−

3
2κn1

1
n+1

(
2n
n

)
A001764

A2 231
n∑
j=0

(nj)(
n+(k−1)j−1

n−j )
n+1−j ∼ γ2 n−

3
2κn2

1
n+1

(
2n
n

)
A109081

A3 123
n∑
j=0

(nj)(
n+(k−1)j−1

n−j )
n+1−j ∼ γ2 n−

3
2κn2

1
n+1

(
2n
n

)
A109081
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Class name Representative Λ Enumeration formula Qn,k(Λ) Qn,1(Λ) Qn,2(Λ)

B1 {312, 213} (k + 1)n−1 2n−1 A000244
B2 {312, 231} 1

2

(√
k + 1

)n
+ 1

2

(
1−
√
k
)n

2n−1 A001333

B3 {312, 132}
n∑
j=0

(
n−1+(k−1)j

n−j
)

2n−1 A001906

B4 {312, 123} 1 + k
(
n
2

)
1 +

(
n
2

)
A002061

B5 {312, 321}
n∑
j=0

(
n−1+(k−1)j

n−j
)

2n−1 A001906

B6 {231, 132} (k + 1)2n−2, for n ≥ 2 2n−1 A003945
B7 {231, 123} 1 +

(
n
2

)
− n+

(
n−1+k

k

)
1 +

(
n
2

)
A002061

B8 {231, 321} 1
2

(√
k + 1

)n
+ 1

2

(
1−
√
k
)n

2n−1 A001333
B9 {123, 321} 0, for n > 4 0, for n > 4

TABLE 1. Avoiding a set of two permutation patterns. For k = 2, i.e., Stirling
permutations, we added, if available, the classification number of the sequence in the
on-line encyclopedia of integer sequences [18]. To compare the results easily we also
stated explicitly the well-known formulæ for k = 1, i.e., ordinary permutations.

It follows that there are two N-Wilf-equivalent classes of such patterns, namely 312 = (312, 231) and
231 = (231, 132, 123, 321). The values of the constants appearing in the asymptotic expansions are
given as follows:

γ1 =

√
k + 1

2πk3
, κ1 =

(k + 1)k+1

kk
,

γ2 =

√
(1 + (k − 1)τ)3(1− τ)

2πk3τ3(2 + (k − 1)τ)
, κ2 =

1 + (k − 1)τ

kτ2
,

where τ is the smallest positive real root of the equation (1− τ)k+1 = kτ2.

For the particular instance k = 2, i.e., Stirling permutations, this leads to the following asymptotic
formulæ:

Qn,2(312) ∼ (0.24430125 . . . ) · (6.75)n

n
3
2

, Qn,2(231) ∼ (0.53692389 . . . ) · (5.21913625 . . . )n

n
3
2

.

3.2. Avoiding two patterns of length three.

Theorem 2. The numbers Qn,k(Λ) of k-Stirling permutations of order n that avoid a set Λ = {α, β}
of two permutation patterns α and β of length three are, for n ≥ 1, given in Table 1. As a consequence
one obtains that there are seven N-Wilf-equivalent classes of such patterns.

3.3. Avoiding three or more patterns of length three.

Theorem 3. The numbers Qn,k(Λ) of k-Stirling permutations of order n that avoid a set Λ of three
permutation patterns of length three are, for n ≥ 1, given in Table 2. If follows that there are five
N-Wilf-equivalent classes of such patterns.

Theorem 4. The numbers Qn,k(Λ) of k-Stirling permutations of order n that avoid a set Λ of more
than three permutation patterns of length three are, for n ≥ 3, given in Table 3.
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Class name Representative Λ Enumeration formula Qn,k(Λ) Qn,1(Λ)

C1 {312, 231, 123} n+ k − 1, for n ≥ 2 n

1√
1+4k

(√
1+4k+1

2

)n+1 − 1√
1+4k

(
1−
√
1+4k
2

)n+1

C2 {312, 231, 321}
Qn,2(C2) = 1

3

(
2n+1 − (−1)n+1

)
; A001045

Fn+1

C3 {312, 132, 123} 1 + k(n− 1) n

C4 {312, 132, 321}
(
n−1+k

k

)
n

C5 {312, 213, 231} 1 + k(n− 1) n

C6 {312, 213, 123} 1 + k(n− 1) n

C7 {231, 132, 312} n+ k − 1, for n ≥ 2 n

C8 {231, 132, 123} n+ k − 1, for n ≥ 2 n

C9 {123, 321, 312} 0, for n > 4 0, for n > 4

C10 {123, 321, 231} 0, for n > 4 0, for n > 4

TABLE 2. Avoiding a set of three permutation patterns. Here Fn denote the Fi-
bonacci numbers, i.e., F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2.

Class name Representative Λ Enumeration formula Qn,k(Λ)

D1 {312, 213, 231, 132} 2

D2 {312, 213, 123, 321} 0, for n ≥ 4; Q3,k(D2) = 2

D3 {231, 132, 123, 321} 0, for n ≥ 4; Q3,k(D3) = 2

D4 {312, 213, 231, 123} k + 1

D5 {312, 213, 231, 321} k + 1

D6 {231, 132, 312, 123} 2

D7 {231, 132, 312, 321} k + 1

D8 {123, 321, 312, 231} 0, for n > 4; Q3,k(D8) = 2; Q4,k(D8) = 1

D9 {123, 321, 312, 132} 0, for n ≥ 4; Q3,k(D9) = k + 1

E1 {312, 213, 231, 132, 123} 1

E2 {312, 213, 123, 321, 231} 0, for n ≥ 4; Q3,k(E2) = 1

E3 {231, 132, 123, 321, 312} 0, for n ≥ 4; Q3,k(E3) = 1

TABLE 3. Avoiding a set of four or five permutation patterns.

4. AVOIDING A SINGLE PATTERN OF LENGTH THREE

The aim of this section is to provide enumeration formulæ of Qn,k(α), for all six permutation
patterns α of length three. As pointed out before, due to the reversal operation, it actually suffices
to study representatives of the three pattern classes A1 = (312, 213), A2 = (231, 132) and A3 =
(123, 321).

First we show the N-Wilf-equivalence of the patterns 123 and 132 by generalizing the bijection of
Simion and Schmidt given in [17] for permutations to k-Stirling permutations; this also implies that

A2
(N)
≡ A3.

Theorem 5. There is a bijection between the family Qn,k(123) of k-Stirling permutations of order n
that avoid the pattern 123 and the family Qn,k(132) of k-Stirling permutations of order n that avoid
the pattern 132. Thus it holds Qn,k(A2) = Qn,k(A3).
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Proof. Let us consider a 123-avoiding k-Stirling permutation σ = σ1σ2 . . . σkn of order n. We scan
now the elements of σ from left to right and distinguish, whether an element σi is a (weak) left-to-right
minimum or not:

• σi is a weak left-to-right minimum: this means that σi ≤ σ`, for all ` < i, or alternatively

σi = min
1≤`≤i

σ`.

• σi is not a weak left-to-right minimum: then, due to the avoidance of the pattern 123, it must
hold that there is no element larger than σi to the right of σi, i.e., σi is the largest element in
the multiset {1k, 2k, . . . , nk} \

⋃
1≤`<i σ`. Since σi is not a left-to-right minimum, we can

also characterize σi as follows (i.e., as the largest “available” element larger than the current
left-to-right minimum):

σi = max
(
{(mi + 1)k, (mi + 2)k, . . . , nk} \

⋃
1≤`<i

σ`
)
, with mi = min

1≤`<i
σ`.

Please note that in the preceeding equation we consider the expression as a multiset, not as a
set!

We obtain thus that each 123-avoiding k-Stirling permutation is determined completely by the loca-
tions and values of the weak left-to-right minima.

Now let us consider a 132-avoiding k-Stirling permutation σ′ = σ′1σ
′
2 . . . σ

′
kn of order n and

distinguish again, whether an element σ′i is a weak left-to-right minimum or not:

• σ′i is a weak left-to-right minimum: so

σ′i = min
1≤`≤i

σ′`.

• σ′i is not a weak left-to-right minimum: then, due to the avoidance of the pattern 132, it must
hold that there is no element larger than the actual left-to-right minimum, but smaller than σ′i,
to the right of σ′i. Thus σ′i can be characterized as follows (i.e., as the smallest “available”
element larger than the current left-to-right minimum):

σ′i = min
(
{(mi + 1)k, (mi + 2)k, . . . , nk} \

⋃
1≤`<i

σ′`
)
, with mi = min

1≤`<i
σ′`.

Thus also each 132-avoiding k-Stirling permutation is determined completely by the locations and
values of the weak left-to-right minima.

The bijection between the family of 123-avoiding k-Stirling permutations of order n and the family
of 231-avoiding k-Stirling permutations of order n is then straightforward, i.e., keep all weak left-
to-right minima and distribute all remaining elements in the unique possible way as described above
not violating the pattern avoidance condition. However, we also state the bijection formally by the
following algorithm, which, for each σ ∈ Qn,k(123) gives a σ′ ∈ Qn,k(132) (we omit the inverse
bijection).
Require: σ = σ1σ2 . . . σkn ∈ Qn,k(123)
Ensure: Returns σ′ = σ′1σ

′
2 . . . σ

′
kn ∈ Qn,k(132)

for i from 1 to kn do
if σi is a weak left-to-right minimum then

σ′i := σi
else

σ′i := min
(
{(mi + 1)k, (mi + 2)k, . . . , nk} \

⋃
1≤`<i σ

′
`

)
, with mi := min1≤`<i σ

′
`

end if
end for
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It is immediate to see that, when carrying out this algorithm, one never gets stuck, i.e., that we get a
sequence σ′ (the multiset {(mi+1)k, (mi+2)k, . . . , nk}\

⋃
1≤`<i σ

′
` will never be empty, since it has

the same cardinality as the multiset {(mi+1)k, (mi+2)k, . . . , nk}\
⋃

1≤`<i σ`), and that σ′ is a 132-
avoiding permutation of the multiset {1k, 2k, . . . , nk}. It remains to show that σ′ is indeed a k-Stirling
permutation, i.e., that it also avoids the pattern 212. To do this we consider the 123-avoiding k-Stirling
permutation σ and assume that σi1 = j1 and σi2 = j2 ≤ j1, with i1 < i2, are two consecutive weak
left-to-right minima. Since σ is 212-avoiding it holds that if an element x appears between σi1 and σi2
then all k occurrences of x must appear between σi1 and σi2 . Due to the characterization given above
this substring of σ will look as follows: j1 xkp x

k
p−1 . . . x

k
1 j2, with j1 < x1 < x2 < · · · < xp. In

particular we obtain that the number of elements between two consecutive weak left-to-right minima
is always a multiple of k. Thus when carrying out the above algorithm the corresponding substring
of σ′ will look as follows: j1 yk1 y

k
2 . . . y

k
p j2, with j1 < y1 < y2 < · · · < yp. Thus in σ′ the

212-avoidance condition will never be violated, i.e., σ′ is a k-Stirling permutation. �

Due to this theorem we obtain the following N-Wilf-equivalent pattern classes 312 = (312, 213)
and 231 = (231, 132, 123, 321). Later, when providing enumeration formulæ, we show that these
two classes are not k-Wilf-equivalent, for k > 1.

Before doing that we generalize the previous bijection further to show that even the number of
generalized Stirling permutations of an arbitrary multiset {1k1 , 2k2 , . . . , nkn} that avoid the pattern
123 and the pattern 132, respectively, are always equal.

Theorem 6. There is a bijection between the family Qn,(k1,k2,...,kn)(123) of generalized Stirling per-
mutations of {1k1 , 2k2 , . . . , nkn} that avoid the pattern 123 and the family Qn,(k1,k2,...,kn)(132) of
generalized Stirling permutations of {1k1 , 2k2 , . . . , nkn} that avoid the pattern 132. In particular this
implies that |Qn,(k1,k2,...,kn)(123)| = |Qn,(k1,k2,...,kn)(132)|.

Proof. Completely analogeous to the proof of Theorem 5 one obtains that each σ ∈
Qn,(k1,k2,...,kn)(123) and each σ′ ∈ Qn,(k1,k2,...,kn)(132) is completely determined by the positions
and values of its left-to-right minima. However, in order to provide a bijection between both families
one cannot use the algorithm presented in Theorem 5, but one has to move the position of the left-to-
right minima according to the number of occurrences kq of any non-left-to-right minimum q. Such an
algorithm, which, for each σ ∈ Qn,(k1,k2,...,kn)(123) gives a σ′ ∈ Qn,(k1,k2,...,kn)(132), is presented
in the following (again we omit the straightforward inverse bijection).
Require: σ = σ1σ2 . . . σk1+···+kn ∈ Qn,(k1,...,kn)(123)
Ensure: Returns σ′ = σ′1σ

′
2 . . . σ

′
k1+···+kn ∈ Qn,(k1,...,kn)(132)

i := 1; j := 1
while i ≤ k1 + · · ·+ kn do

if σi is a weak left-to-right minimum then
σ′j := σi
i := i+ 1; j := j + 1

else
p := σi; i := i+ kp
q := min

(
{(mj + 1)kmj+1 , (mj + 2)kmj+2 , . . . , nkn} \

⋃
1≤`<j σ

′
`

)
, with mj :=

min1≤`<j σ
′
`

σ′jσ
′
j+1 . . . σ

′
j+kq−1 := qkq ; j := j + kq

end if
end while
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We remark that if kr > 0, for all 1 ≤ r ≤ n, one can replace the corresponding part by the following
simpler expression: q := min

(
{(mj + 1), (mj + 2), . . . , n} \

⋃
1≤`<j σ

′
`

)
dealing with sets instead

of multisets. Following the argumentations as given in the proof of Theorem 5 one easily shows that
this algorithm is indeed correct. �

Now we return to the problem of providing enumeration formulæ for N-Wilf-equivalent pattern
classes and start with the pattern classA1 = 312 = (312, 213). It is here and later convenient to write
A ≺ B, for strings A and B, if each label contained in A is smaller than any label contained in B.

Theorem 7. There is a bijection between the family Qn,k(312) of k-Stirling permutations of order
n that avoid the pattern 312 and the family of (k + 1)-ary trees of order n. Thus the numbers
Qn,k(312) = Qn,k(A1) are given by the generalized Catalan numbers:

Qn,k(312) = Qn,k(A1) =
1

kn+ 1

(
(k + 1)n

n

)
∼
√

k+1
2πk3
·
( (k+1)k+1

kk

)n
n

3
2

.

Proof. We use the connection between k-Stirling permutations and (k + 1)-ary increasing trees de-
scribed in Section 2. Consider a k-Stirling permutation σ of order n ≥ 1 that avoids the pattern 312. If
we look at the decomposition according to the smallest element 1, i.e., σ = S1 1S2 1 . . . 1Sk 1Sk+1,
it must hold that Sp ≺ Sq, for all 1 ≤ p < q ≤ k + 1; otherwise a subsequence sp1sq would give the
pattern 312. Thus we can write

σ = S1 1S2 1 . . . 1Sk 1Sk+1, with 1 ≺ S1 ≺ S2 ≺ · · · ≺ Sk+1, (2)

where each substring Si, 1 ≤ i ≤ k + 1, is (after an order-preserving relabelling) itself a (possibly
empty) 312-avoiding k-Stirling permutation. Therefore the same argument can be applied recursively
to the substrings S1, . . . , Sk+1. If we consider the corresponding (k + 1)-ary increasing tree T it
holds thus that one can remove all of the labels of the tree and could still regain the restricted k-
Stirling permutation σ. In other words, for each (k + 1)-ary tree of order n, there exists exactly one
increasing labelling such that the corresponding k-Stirling permutation avoids the pattern 312; this
labelling can be described recursively as follows: the root gets the smallest label and all remaining
labels are distributed amongst the branches T1, T2, . . . , Tk+1 of the root, such that each label of the
branch Tp is smaller than any label of the branch Tq, if p < q. This, together with the well-known
enumeration formula of (k+1)-ary trees, shows the theorem. The given asymptotic expansion follows
from a direct application of Stirling’s formula for the factorials [7]. �

Now we enumerate the pattern class 231 = (231, 132, 123, 321) by providing a combinatorial
decomposition of the k-Stirling permutations avoiding the pattern 231 ∈ A2.

Theorem 8. The numbers Qn,k(231) = Qn,k(A2) of k-Stirling permutations of order n that avoid
the pattern 231 are given as follows:

Qn,k(231) = Qn,k(A2) =

n∑
j=0

(
n
j

)(
n+(k−1)j−1

n−j
)

n+ 1− j
∼

√
(1 + (k − 1)τ)3(1− τ)

2πk3τ3(2 + (k − 1)τ)
·
(1+(k−1)τ

kτ2

)n
n

3
2

,

where τ is the smallest positive real root of the equation (1− τ)k+1 = kτ2.

Proof. Consider a 231-avoiding k-Stirling permutation σ of order n ≥ 1. We consider now the
decomposition of σ according to the substring nk formed by the largest element, where we also
take into account the block decomposition of k-Stirling permutations described in Section 2. We
distinguish two cases.
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• The substring nk is forming a block. Thus when considering the decomposition σ = Ank B
one obtains that the elements ofA andB do not have common labels. Since σ is 231-avoiding
it must hold that A ≺ B (otherwise a subsequence anb would violate this condition). Fur-
thermore (after an order-preserving relabelling), the substrings A and B are itself (possibly
empty) 231-avoiding k-Stirling permutations. We write

σ = Ank B, with A ≺ B ≺ n. (3)

• The substring nk does not form a block. Then nk is contained in a block; let us assume this
block is formed by element j, with 1 ≤ j < n. Let us now consider the decomposition of σ
according to the first and last occurrence of j (i.e., the j-block): σ = Aj R j B. R contains
nk and, since j is forming a block, R contains only elements ≥ j. Furthermore, it must
hold that A contains only elements < j, since otherwise a subsequence anj would give a
231 pattern. On the other hand it must hold that B contains only elements > j; otherwise a
subsequence jnb would give a 231 pattern. Therefore, the substring A contains all elements
< j and is itself a (possibly empty) 231-avoiding k-Stirling permutation.

Consider now the decomposition of R according to nk, i.e., R = P nk R′. It must hold
that P does not contain elements 6= j; otherwise a subsequence pnj would violate the 231-
avoidance condition. In other words, P can be only a (possibly empty) substring formed
by consecutive j’s. Using all this information we obtain the following refinement of the
decomposition of σ according to the k occurrences of j, with 1 ≤ ` ≤ k − 1:

σ = Aj` nk Rk−` j Rk−`−1 j . . . j R1 j B.

We consider now the substrings Ri. For each Ri, 1 ≤ i ≤ k − `, it must hold that
the elements contained in Ri are forming a non-increasing sequence, since otherwise a sub-
sequence rir′ij would give a 231 pattern. Moreover, it must hold that Rp ≺ Rq, for all
1 ≤ p < q ≤ k − `; otherwise a subsequence rqrpj would violate the 231-avoidance condi-
tion. Therefore the substrings R1, R2, . . . , Rk−` are given as follows:

R1 = rkt1r
k
t1−1 . . . r

k
1 , R2 = rkt1+t2r

k
t1+t2−1 . . . r

k
t1+1, . . . ,

Rk−` = rkt1+···+tk−`
rkt1+···+tk−`−1 . . . r

k
t1+···+tk−`−1+1,

(4)

with j < r1 < r2 < · · · < rt1+···+tk−`
< n and t1, . . . , tk−` ≥ 0.

Finally we consider the substring B. Take an arbitrary element ri, with 1 ≤ i ≤ t1 +
· · · + tk−`, as defined before. Then it must hold that each element contained in B with
a label smaller than ri must preceed any element contained in B with a label larger than
ri; otherwise a substring ribb′ would occur that violates the 231-avoidance condition. This
implies the following decomposition ofB into substrings: B = C0C1 . . . Ct1+···+tk−`

, where
the substring Ci, 0 ≤ i ≤ t1 + · · · + tk−`, contains all elements with a label x satisfying
ri < x < ri+1; we set here r0 := j and rt1+···+tk−`+1 := n. Furthermore, each of the
substrings Ci, 0 ≤ i ≤ t1 + · · ·+ tk−`, is, after an order-preserving relabelling, itself a 231-
avoiding k-Stirling permutation. Thus in this case the decomposition of σ can be illustrated
as follows:

σ = Aj` nk Rk−` j Rk−`−1 j . . . j R1 j C0C1 . . . Ct1+···+tk−`
, (5)

1 ≤ ` ≤ k − 1, with A ≺ j ≺ C0 ≺ r1 ≺ C1 ≺ r2 ≺ C2 ≺ · · · ≺ rt1+···+tk−`
≺

Ct1+···+tk−`
≺ n and where R1, . . . , Rk−` are specified in (4).
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We denote now by Q the combinatorial family of (possibly empty) 231-avoiding k-Stirling permu-
tations (for notational convenience we suppress here the occurrence of k). The decompositions de-
scribed before can then be translated easily into the following formal equation for Q:

Q = {ε} ∪̇ Z ×Q×Q ∪̇
⋃̇k−1

`=1

(
Q×Z ×Z ×

((
Z ×Q

)∗)k−` ×Q) , (6)

where ε denotes the empty string, Z the family containing a generic string of k copies of a label, ∪̇
the disjoint union and × the cartesian product of combinatorial families, Ar the family of sequences
of length r of objects from a family A, and A∗ the family of (possibly empty) sequences of objects
from A; see, e.g., [7].

Now we introduce the generating function

Q(z) :=
∑
n≥0

Qn,k(231)zn

of the number Qn,k(231) of 231-avoiding k-Stirling permutations of order n. Using the so-called
symbolic method, again see [7], the formal equation (6) can be translated directly into the following
equation for Q = Q(z):

Q = 1 + zQ2 +
k−1∑
`=1

z2Q2

(1− zQ)k−`
,

which, after simple manipulations, gives

Q = 1 + zQ(Q− 1) +
zQ

(1− zQ)k−1
,

and eventually

Q = 1 +
zQ

(1− zQ)k
. (7)

Introducing Q̃(z) := zQ(z) equation (7) leads to the following equation for Q̃ = Q̃(z), which will
be advantageous when extracting coefficients:

Q̃ = z

(
1 +

Q̃

(1− Q̃)k

)
. (8)

To extract coefficients from Q̃ we apply the Lagrange inversion formula (see, e.g., [7, 19]) to (8) and
obtain:

Qn,k(231) = [zn]Q(z) = [zn+1]Q̃(z) =
1

n+ 1
[Q̃n]

(
1 +

Q̃

(1− Q̃)k

)n+1

=
1

n+ 1

n∑
j=0

(
n+ 1

j

)
[Q̃n−j ]

1

(1− Q̃)kj
=

1

n+ 1

n∑
j=0

(
n+ 1

j

)(
n− j + kj − 1

n− j

)

=

n∑
j=0

(
n
j

)(
n+(k−1)j−1

n−j
)

n+ 1− j
. (9)

To get an asymptotic expansion of these numbers it is advantagous not to deal with the exact
formula but applying singularity analysis [7] to the corresponding generating function. By using
singularity analysis in [7] a formula for the asymptotic expansion of the coefficients of generating
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functions of the form y(z) = zΦ
(
y(z)

)
has already been given. It holds (under certain conditions,

see [7, p. 452–454]):

[zn]y(z) =

√
φ(τ)

2φ′′(τ)

ρ−n√
πn3

(
1 +O

( 1

n

))
,

where τ is the smallest positive real root of the equation φ(t) − tφ′(t) = 0 and ρ = τ
φ(τ) . Due to

equation (8) for Q̃ = zQ a direct application of this formula with φ(t) = 1 + t
(1−t)k leads, after

easy computations, which are omitted here, to the asymptotic expansion given in Theorem 8. This
completes the proof of the theorem. �

Although we have shown in Theorem 5 via a bijection that Qn,k(123) = Qn,k(132) we give in the
following also a direct proof of the enumeration formulæ for Qn,k(123) = Qn,k(A3). To do this we
establish a recurrence, which will be treated by an application of the so-called kernel method (see,
e.g., [2, 15]).

Theorem 9. The numbers Qn,k(123) of 123-avoiding k-Stirling permutations of order n satisfy

Qn,k(123) = Qn,k(A3) =

n∑
j=0

(
n
j

)(
n+(k−1)j−1

n−j
)

n+ 1− j
.

Proof. Let σ be a k-Stirling permutation of order n = n(σ): σ = σ1σ2 . . . σkn. We denote by
m = m(σ) the number of elements σi, such that, when inserting the string (n(σ) + 1)k directly after
σi, the resulting k-Stirling permutation σ′ = σ1 . . . σi(n + 1)kσi+1 . . . σkn is still 123-avoiding. Of
course, m = m(σ) is the first index, where an ascent occurs, i.e., σm < σm+1 (if there is such one;
otherwise, m = kn).

We consider now all possible ways of inserting the string (n+1)k into σ leading to a 123-avoiding
k-Stirling permutation σ′ and determine m(σ′).

• Insert (n+ 1)k into σ before σ1, i.e., σ′ = (n+ 1)kσ1 . . . σkn. Then it holds:

m(σ′) = m(σ) + k.

• Insert (n + 1)k into σ after the `-th of the m(σ) possible elements, i.e., after σ`: σ′ =
σ1 . . . σ`(n+ 1)kσ`+1 . . . σkn. It holds then:

m(σ′) = `, with 1 ≤ ` ≤ m(σ).

Let us denote now by Fn,m the number of 123-avoiding k-Stirling permutations σ of order
n = n(σ) with m = m(σ). Using the previous considerations we obtain the following recursive
description of Fn,m:

Fn,m = Fn−1,m−k +

k(n−1)∑
`=m

Fn−1,`, for n ≥ 1 and 1 ≤ m ≤ kn, F0,0 = 0, (10)

where we assume that Fn,m = 0, otherwise. We introduce now the generating function

Q(z, u) :=
∑
n≥0

∑
0≤m≤n

Fn,mz
num.

Please note that evaluating Q(z, u) at u = 1 leads to the generating function of the required numbers
Qn,k(123), i.e., Q(z, 1) =

∑
n≥0Qn,k(123)zn. The recurrence (10) leads then, after straightforward

computations, to the following equation involving Q(z, u) and Q(z, 1):(
1− zuk +

zu

1− u

)
Q(z, u) = 1 +

zu

1− u
Q(z, 1). (11)
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Now let u(z) be the suitable root of the kernel (see [2]), i.e.,

1− zu(z)k +
zu(z)

1− u(z)
= 0. (12)

Plugging u(z) as given by (12) into (11) leads to

Q := Q(z, 1) =
u(z)− 1

zu(z)

or u(z) = 1
1−zQ . Plugging this into equation (12) shows, after simple manipulations, that Q =

Q(z, 1) satisfies the following equation:

Q = 1 +
zQ

(1− zQ)k
. (13)

But (13) is exactly equation (7), which is satisfied also by the generating function of the number
Qn,k(231) of 231-avoiding k-Stirling permutations of order n. Extracting coefficients as carried out
in Theorem 8 shows then the enumeration formula. �

We remark that a similar approach using the kernel method could be used also to obtain the enumer-
ation results forQn,k(A1) andQn,k(A2). However, it seems that the proofs presented in Theorem 5-8
have the advantage of revealing more information on the structure of these restricted k-Stirling per-
mutations and furthermore they are also useful in the next sections when considering sets of patterns.

5. AVOIDING A SET OF TWO PATTERNS OF LENGTH THREE

In this section we prove the enumeration formulæ ofQn,k(Λ), where Λ consists of two permutation
patterns of length three, given in Theorem 2. Due to the reversal operation it actually suffices to study
representatives of the nine pattern classes B1, . . . , B9 as given in Theorem 2. To show the results
we heavily use equations (2), (3) and (5), i.e., the decomposition of 312-avoiding k-Stirling permu-
tations according to the smallest element and of 231-avoiding k-Stirling permutations according to
the largest element as given in the proof of Theorem 7 and Theorem 8, respectively. Furthermore,
we use here and later the notation S↗ and S↘ to express that the substring S of a k-Stirling per-
mutation is forming a sequence of non-decreasing labels or non-increasing labels, respectively, i.e.,
S = rk1 r

k
2 . . . r

k
p or S = rkp r

k
p−1 . . . r

k
1 , with r1 < r2 < · · · < rp.

Theorem 10. The numbers Qn,k({312, 213}) = Qn,k(B1) are given as follows:

Qn,k(B1) = (k + 1)n−1, for n ≥ 1, Q0,k(B1) = 1.

Proof. We start with the decomposition of a non-empty 312-avoiding k-Stirling permutation σ into
σ = S1 1S2 1 . . . 1Sk 1Sk+1, with 1 ≺ S1 ≺ S2 ≺ · · · ≺ Sk+1, as given by (2). Since σ is also
213-avoiding it follows that at most one of the substrings Si, 1 ≤ i ≤ k + 1, is not the empty string ε
(otherwise a subsequence sp1sq would violate this condition). Thus only the following two cases can
occur:

• S1 = S2 = · · · = Sk+1 = ε, i.e., σ = 1k.
• There exists an `, 1 ≤ ` ≤ k+1, such that S` 6= ε, but Si = ε, for all i 6= `. Then S` is (after an

order-preserving relabelling) a non-empty {312, 213}-avoiding k-Stirling permutation, i.e., it
holds σ = 1`−1 S` 1k+1−`, 1 ≤ ` ≤ k + 1, with 1 ≺ (S` 6= ε).

Using this characterization one obtains that the generating function Q := Q(z) =∑
n≥0Qn,k({312, 213})zn satisfies the equation

Q = 1 + z + (k + 1)z(Q− 1),
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which implies

Q =
1− kz

1− (k + 1)z
. (14)

Extracting coefficients from (14) immediately shows Theorem 10. �

Theorem 11. The numbers Qn,k({312, 231}) = Qn,k(B2) are given as follows:

Qn,k(B2) =
1

2

(√
k + 1

)n
+

1

2

(
1−
√
k
)n
, for n ≥ 1, Q0,k(B2) = 1.

Proof. We consider the decomposition (2) of a non-empty 312-avoiding k-Stirling permutation σ.
Since σ is also 231-avoiding it follows that at most one of the substrings Si, 1 ≤ i ≤ k, is not the
empty string ε (otherwise a subsequence sp1sq would violate this condition). Thus only the following
two cases can occur:

• S1 = S2 = · · · = Sk = ε. Then Sk+1 is a possibly empty {312, 231}-avoiding k-Stirling
permutation, i.e., it holds σ = 1k Sk+1, with 1 ≺ Sk+1.
• There exists an `, 1 ≤ ` ≤ k, such that S` 6= ε, but Si = ε, for 1 ≤ i ≤ k and i 6= `.

In this case it must hold that S` is forming a (non-empty) non-increasing sequence of labels
(otherwise a subsequence s`s′`1 would give a 231 pattern), whereas Sk+1 is a possibly empty
{312, 231}-avoiding k-Stirling permutation, i.e., σ = 1`−1 S` 1k+1−` Sk+1, 1 ≤ ` ≤ k, with
1 ≺ (S` 6= ε)↘ ≺ Sk+1.

This implies that the generating function Q := Q(z) =
∑

n≥0Qn,k({312, 231})zn satisfies the
equation

Q = 1 + zQ+
kz2Q

1− z
,

and is thus given by

Q =
1− z

1− 2z − (k − 1)z2
. (15)

Since partial fraction expansion of (15) leads to

Q =
1

2
(
1− (k−1)z√

k−1

) +
1

2
(
1 + (k−1)z√

k+1

) , (16)

extracting coefficients from (16) easily shows Theorem 11. �

Of course, from (15) follows further that the numbers Qn,k(B2) satisfy, for n ≥ 2, the recurrence
Qn = 2Qn−1 + (k − 1)Qn−2.

Theorem 12. The numbers Qn,k({312, 132}) = Qn,k(B3) are given as follows:

Qn,k(B3) =

n∑
j=0

(
n− 1 + (k − 1)j

n− j

)
.

For the special case k = 2, i.e., Stirling permutations, one obtains that Qn,2(B3) = F2n, for n ≥ 1,
where Fn denote the Fibonacci-numbers, i.e., F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2, n ≥ 2.

Proof. The decomposition (2) of a non-empty 312-avoiding k-Stirling permutation σ implies that
each of the substrings S2, . . . , Sk+1 is forming a (possibly empty) non-decreasing sequence of
labels (otherwise the 132-avoidance condition would be violated by a sequence 1sis

′
i), whereas

the substring S1 is an arbitrary possibly empty {312, 132}-avoiding k-Stirling permutation, i.e.,
σ = S1 1S2 1 . . . 1Sk+1, with 1 ≺ S1 ≺ S2 ↗ ≺ S3 ↗ ≺ · · · ≺ Sk+1 ↗.
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Thus the generating function Q := Q(z) =
∑

n≥0Qn,k({312, 132})zn satisfies the equation

Q = 1 +
zQ

(1− z)k

and is therefore given by

Q =
1

1− z
(1−z)k

. (17)

Extracting coefficients from (17) easily shows the first part of Theorem 12.
For k = 2 one obtains Q = 1 + z

1−3z+z2 . The generating function F (z) =
∑

n≥0 Fnz
n of the

Fibonacci-numbers is given by F (z) = z
1−z−z2 , which implies that the generating function F̃ (z) =∑

n≥0 F2nz
n of the even-indexed Fibonacci numbers can be obtained by F̃ (z) = F (

√
z)+F (−

√
z)

2 ;
after simple manipulations one obtains F̃ (z) = z

1−3z+z2 . Since F̃ (z) = Q(z)− 1 this completes the
proof of the theorem. �

Theorem 13. The numbers Qn,k({312, 123}) = Qn,k(B4) are given as follows:

Qn,k(B4) = 1 + k

(
n

2

)
.

Proof. When considering the decomposition (2) of a non-empty 312-avoiding k-Stirling permutation
σ one obtains that at most one of the substrings Si, 2 ≤ i ≤ k + 1, is not the empty string ε, since
otherwise a substring 1spsq would violate the 123-avoidance condition. Thus only the following two
cases can occur:

• S2 = S3 = · · · = Sk+1 = ε. Then S1 is a possibly empty {312, 123}-avoiding k-Stirling
permutation, i.e., it holds σ = S1 1k, with 1 ≺ S1.
• There exists an `, 2 ≤ ` ≤ k+1, such that S` 6= ε, but Si = ε, for 2 ≤ i ≤ k+1 and i 6= `. In

this case it must hold that the substring S1 is forming a possibly empty – and the substring S`
is forming a non-empty – non-increasing sequence of labels (otherwise a subsequence s1s′1s`
or a subsequence 1s`s

′
` would give a 123 pattern), i.e., σ = S1 1`−1 S` 1k+1−`, 2 ≤ ` ≤ k+1,

with 1 ≺ S1 ↘ ≺ (S` 6= ε)↘.

Thus the generating function Q := Q(z) =
∑

n≥0Qn,k({312, 123})zn satisfies the equation

Q = 1 + zQ+
kz2

(1− z)2
,

which implies

Q =
1

1− z
+

kz2

(1− z)3
. (18)

Extracting coefficients from (18) immediately proves Theorem 13. �

Theorem 14. The numbers Qn,k({312, 321}) = Qn,k(B5) are given as follows:

Qn,k(B5) =

n∑
j=0

(
n− 1 + (k − 1)j

n− j

)
.

Proof. The decomposition (2) of a non-empty 312-avoiding k-Stirling permutation σ implies that
each of the substrings S1, . . . , Sk is forming a (possibly empty) non-decreasing sequence of la-
bels (otherwise the 321-avoidance condition would be violated by a sequence 1sis

′
i), whereas

the substring Sk+1 is an arbitrary possibly empty {312, 321}-avoiding k-Stirling permutation, i.e.,
σ = S1 1S2 1 . . . Sk+1, with 1 ≺ S1 ↗ ≺ S2 ↗ ≺ · · · ≺ Sk ↗ ≺ Sk+1.
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Therefore the generating function Q := Q(z) =
∑

n≥0Qn,k({312, 321})zn satisfies the equation

Q = 1 +
zQ

(1− z)k
,

which gives

Q =
1

1− z
(1−z)k

. (19)

Thus the generating functions (19) and (17) coincide, which proves Theorem 14. �

Theorem 15. The numbers Qn,k({231, 132}) = Qn,k(B6) are given as follows:

Qn,k(B6) = (k + 1)2n−2, for n ≥ 2, Q0,k(B6) = Q1,k(B6) = 1.

Proof. We start with the decomposition of a non-empty 231-avoiding k-Stirling permutation σ ac-
cording to the occurrence of the largest element n = n(σ) as given by (3) and (5), respectively.

• If nk is forming a block then (3) gives σ = Ank B, with A ≺ B ≺ n. Since σ is also
132-avoiding it must hold that A = ε or B = ε (otherwise a substring anb would violate this
condition). This leads to the following three possibilities: (i) : σ = 1k; (ii) : σ = Ank,
with (A 6= ε) ≺ n; (iii) : σ = nk B, with (B 6= ε) ≺ n, where A and B, respectively, are
non-empty {231, 132}-avoiding k-Stirling permutations.
• If nk is not forming a block then (5) and (4) lead to σ =
Aj` nk Rk−` j Rk−`−1 j . . . j R1 j C0C1 . . . Ct1+···+tk−`

, 1 ≤ ` ≤ k − 1, with
A ≺ j ≺ C0 ≺ r1 ≺ C1 ≺ r2 ≺ C2 ≺ · · · ≺ rt1+···+tk−`

≺ Ct1+···+tk−`
≺ n.

Since σ is also 132-avoiding it must hold that R1 = R2 = · · · = Rk−` = ε (which implies
that C1 = C2 = · · · = Ct1+···+tk−`

= ε), since otherwise a subsequence jnr would violate
this condition. Moreover, one gets C0 = ε (otherwise a subsequence jnc gives a 132-pattern)
and A = ε (otherwise a subsequence anj gives a 132-pattern). Therefore in this case one
obtains that σ = 1` 2k 1k−`, with 1 ≤ ` ≤ k − 1.

Using this characterization one obtains that the generating function Q := Q(z) =∑
n≥0Qn,k({231, 132})zn satisfies the equation

Q = 1 + z
(
1 + 2(Q− 1)

)
+ (k − 1)z2,

which implies

Q =
1− z + (k − 1)z2

1− 2z
. (20)

Extracting coefficients from (20) immediately shows Theorem 15. �

Theorem 16. The numbers Qn,k({231, 123}) = Qn,k(B7) are given as follows:

Qn,k(B7) = 1 +

(
n

2

)
− n+

(
n− 1 + k

k

)
.

Proof. We consider the decompositions (3) and (5), respectively, of a non-empty 231-avoiding k-
Stirling permutation σ.

• nk is forming a block. Since σ is also 123-avoiding one obtains from (3) that only the fol-
lowing two cases can occur: (i) : A = ε, then B is an arbitrary possibly empty {231, 123}-
avoiding k-Stirling permutation, i.e., σ = nkB, with B ≺ n; (ii) : A 6= ε, then it must
hold that the substring A is forming a non-empty – and the substring B is forming a possibly
empty – non-increasing sequence of labels (otherwise a subsequence aa′n or a subsequence
abb′ would give a 123 pattern), i.e., σ = Ank B, with (A 6= ε)↘ ≺ B↘ ≺ n.
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• nk is not forming a block. Since σ is also 123-avoiding we get from (5) and (4) that
A = ε (otherwise a subsequence ajn would violate this condition) and C1 = C2 = · · · =
Ct1+···+tk−`

= ε (otherwise a subsequence jrcwould violate this condition). Furthermore,C0

has to form a (possibly empty) non-increasing sequence of labels; otherwise a subsequence
jcc′ gives the pattern 123. Thus this case implies σ = 1` nk Rk−` 1Rk−`−1 1 . . . 1R1 1C0,
1 ≤ ` ≤ k − 1, with 1 ≺ C0 ↘ ≺ R1 ↘ ≺ · · · ≺ Rk−`↘.

Therefore the generating function Q := Q(z) =
∑

n≥0Qn,k({231, 123})zn satisfies the equation

Q = 1 + zQ+
z2

(1− z)2
+

z2

1− z

k−1∑
`=1

1

(1− z)k−`
,

which implies

Q =
1

1− z
+

z2

(1− z)3
− z

(1− z)2
+

z

(1− z)k+1
. (21)

Extracting coefficients from (21) immediately shows Theorem 16. �

We remark that, since Qn,2(B7) = Qn,2(B4) = 1 + 2
(
n
2

)
, it holds B7

(2)
≡ B4, but B7

(N)
6≡ B4.

Theorem 17. The numbers Qn,k({231, 321}) = Qn,k(B8) are given as follows:

Qn,k(B8) =
1

2

(√
k + 1

)n
+

1

2

(
1−
√
k
)n
, for n ≥ 1, Q0,k(B8) = 1.

Proof. Again we consider the decompositions (3) and (5), respectively, of a non-empty 231-avoiding
k-Stirling permutation σ.

• nk is forming a block. Since σ is also 321-avoiding we obtain from (3) that B has to form
a (possibly empty) non-decreasing sequence of labels (otherwise a subsequence nbb′ would
violate this condition), whereas A might be an arbitrary possibly empty {231, 321}-avoiding
k-Stirling permutation, i.e., σ = Ank B, with A ≺ B↗ ≺ n.
• nk is not forming a block. Since σ is also 321-avoiding one gets from (5) and (4) that
R1 = R2 = · · · = Rk−` = ε (which also implies C1 = C2 = · · · = Ct1+···+tk−`

= ε);
otherwise a subsequence nrj would give a 321 pattern. Furthermore, C0 has to form a (pos-
sibly empty) non-decreasing sequence of labels (otherwise a subsequence ncc′ would give a
321 pattern), whereas A is a possibly empty {231, 321}-avoiding k-Stirling permutation, i.e.,
σ = Aj` nk jn−`C0, with A ≺ j ≺ C0 ↗ ≺ n.

Thus the generating function Q := Q(z) =
∑

n≥0Qn,k({231, 321})zn satisfies the equation

Q = 1 +
zQ

1− z
+

(k − 1)z2Q

1− z
,

which gives

Q =
1− z

1− 2z − (k − 1)z2
. (22)

Thus the generating functions (22) and (15) coincide, which proves Theorem 17. �

Theorem 18. The numbers Qn,k({123, 321}) = Qn,k(B9) are given as follows:

Q0,k(B9) = Q1,k(B9) = 1, Q2,k(B9) = k + 1, Q3,k(B9) = Q4,k(B9) = 2k + 2,

Qn,k(B9) = 0, for n > 4.
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Proof. A special instance of the Erdős-Szekeres theorem (see, e.g, [20]) shows that any sequence
containing more than four distinct labels contains the pattern 123 or the pattern 321. Thus
Qn,k({123, 321}) = 0, for n > 4.

The results for the remaining cases follow easily by inspection: for n ≤ 2 the theorem is trivially
true; for n = 3 one obtains that either σ = 2k 1`−1 3k 1k+1−`, with 1 ≤ ` ≤ k + 1, or σ =
1`−1 3k 1k+1−` 2k, 1 ≤ ` ≤ k + 1; and for n = 4 one gets that either σ = 2k 1`−1 4k 1k+1−` 3k, with
1 ≤ ` ≤ k+ 1, or σ = 3k 1`−1 4k 1k+1−` 2k, with 1 ≤ ` ≤ k+ 1; thus the theorem also holds for the
two latter cases. �

6. AVOIDING A SET OF AT LEAST THREE PATTERNS OF LENGTH THREE

This section is devoted to a study of k-Stirling permutations avoiding a set of three or more patterns
of length three. The results for more than three patterns stated in Theorem 4 are just given for the
sake of completeness; since they can be obtained easily from the proof of Theorem (3) by further
inspection we omit here these straightforward considerations. But also when proving the enumeration
formulæ of Qn,k(Λ), where Λ consists of three permutation patterns of length three, which are given
in Theorem 3, we will be more brief than in the preceeding sections, since the results follow easily
by starting with the characterizations appearing in the proofs of Theorem 10-18 when avoiding a set
of two patterns and adapting them to the additional restrictions.

6.1. Proof of Theorem 3. Due to the reversal operation it fully suffices to study representatives of
the ten pattern classes C1, . . . , C10 as given in Theorem 3. During the proofs we use the generic
generating function Q := Q(z) =

∑
n≥0Qn,k(C)zn, where C is the pattern class considered.

Pattern {312, 231, 123} ∈ C1: Adapting the characterization given in the proof of Theorem 11 to
satisfy also the additional 123-avoidance shows that each non-empty restricted k-Stirling permutation
σ is described by one of the following three cases:

• σ = 1k Sk+1, with 1 ≺ Sk+1 ↘.
• σ = S1 1k Sk+1, with 1 ≺ (S1 6= ε)↘ ≺ Sk+1 ↘.
• σ = 1`−1 S` 1k+1−`, 2 ≤ ` ≤ k, with 1 ≺ (S` 6= ε)↘.

This implies that

Q = 1 +
z

1− z
+

z2

(1− z)2
+

(k − 1)z2

1− z
,

and extracting coefficients gives

Qn,k(C1) = n+ k − 1, for n ≥ 2, Q0,k(C1) = Q1,k(C1) = 1.

Pattern {312, 231, 321} ∈ C2: The proof of Theorem 11 together with the additional 321-avoidance
shows that each non-empty restricted k-Stirling permutation σ is described by one of the following
two cases:

• σ = 1k Sk+1, with 1 ≺ Sk+1.
• σ = 1`−1 2k 1k+1−` Sk+1, 1 ≤ ` ≤ k, with 1 ≺ 2 ≺ Sk+1.

This leads to the equation Q = 1 + zQ+ kz2Q, which gives

Q =
1

1− z − kz2
.

Applying the partial fraction expansion and extracting coefficients easily shows that

Qn,k(C2) =
1√

1 + 4k

(√1 + 4k + 1

2

)n+1
− 1√

1 + 4k

(1−
√

1 + 4k

2

)n+1
.
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Of course, from the generating function Q follows immediately that the numbers Qn,k(C2) satisfy,
for n ≥ 2, the recurrence Qn = Qn−1 + kQn−2. For the special instance k = 2, i.e., Stirling
permutations, we obtain Qn,2(C2) = 1

3

(
2n+1 − (−1)n+1

)
, the so-called Jacobsthal numbers.

Pattern {312, 132, 123} ∈ C3: Adapting the characterization given in the proof of Theorem 12 to
satisfy also the additional 123-avoidance shows that each non-empty restricted k-Stirling permutation
σ is described by one of the following two cases:

• σ = S1 1k, with 1 ≺ S1.
• σ = S1 1`−1 nk 1k+1−`, 2 ≤ ` ≤ k + 1, with 1 ≺ S1 ↘ ≺ n.

Thus we obtain the equation Q = 1 + zQ+ kz2

1−z , and further

Q =
1

1− z
+

kz2

(1− z)2
.

Extracting coefficients immediately gives

Qn,k(C3) = 1 + k(n− 1), for n ≥ 1, Q0,k(C3) = 1.

Pattern {312, 132, 321} ∈ C4: The proof of Theorem 12 together with the additional 321-avoidance
shows that each non-empty restricted k-Stirling permutation σ can be described as follows:

• σ = S1 1S2 1 . . . 1Sk+1, with 1 ≺ S1 ↗ ≺ S2 ↗ ≺ · · · ≺ Sk+1 ↗.

This implies
Q = 1 +

z

(1− z)k+1
,

and extracting coefficients leads to

Qn,k(C4) =

(
n− 1 + k

k

)
, for n ≥ 1, Q0,k(C4) = 1.

Pattern {312, 213, 231} ∈ C5: Adapting the characterization given in the proof of Theorem 10 to
satisfy also the additional 231-avoidance shows that each non-empty restricted k-Stirling permutation
σ is described by one of the following two cases:

• σ = 1k Sk+1, with 1 ≺ Sk+1.
• σ = 1`−1 S` 1k+1−`, 1 ≤ ` ≤ k, with 1 ≺ (S` 6= ε)↘.

This leads to the equation Q = 1 + zQ+ kz2

1−z , and further

Q =
1

1− z
+

kz2

(1− z)2
.

Thus we obtain the same result as for the pattern class C3.

Pattern {312, 213, 123} ∈ C6: The proof of Theorem 10 together with the additional 123-avoidance
shows that each non-empty restricted k-Stirling permutation σ is described by one of the following
two cases:

• σ = S1 1k, with 1 ≺ S1.
• σ = 1`−1 S` 1k+1−`, 2 ≤ ` ≤ k + 1, with 1 ≺ (S` 6= ε)↘.

This implies the equation Q = 1 + zQ+ kz2

1−z , and thus

Q =
1

1− z
+

kz2

(1− z)2
.

Therefore we also obtain the same result as for the pattern class C3.
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Pattern {231, 132, 312} ∈ C7: Adapting the characterization given in the proof of Theorem 15 to
satisfy also the additional 312-avoidance shows that each non-empty restricted k-Stirling permutation
σ is described by one of the following three cases:

• σ = Ank, with A ≺ n.
• σ = nk B, with (B 6= ε)↘ ≺ n.
• σ = 1` 2k 1k−`, 1 ≤ ` ≤ k − 1.

Thus we obtain the equation Q = 1 + zQ+ z2

1−z + (k − 1)z2, and further

Q =
1

1− z
+

z2

(1− z)2
+

(k − 1)z2

1− z
.

Therefore we obtain the same result as for the pattern class C1.

Pattern {231, 132, 123} ∈ C8: The proof of Theorem 15 together with the additional 123-avoidance
shows that each non-empty restricted k-Stirling permutation σ is described by one of the following
three cases:

• σ = nk B, with B ≺ n.
• σ = Ank, with (A 6= ε)↘ ≺ n.
• σ = 1` 2k 1k−`, 1 ≤ ` ≤ k − 1.

This gives the equation Q = 1 + zQ+ z2

1−z + (k − 1)z2, and further

Q =
1

1− z
+

z2

(1− z)2
+

(k − 1)z2

1− z
.

Thus we also obtain the same result as for the pattern class C1.

Pattern {123, 321, 312} ∈ C9: From Theorem 18 it already follows that Qn,k(C9) = 0, for n > 4.
For n ≤ 4 one gets the following:

Q0,k(C9) = Q1,k(C9) = 1, Q2,k(C9) = k + 1, Q3,k(C9) = k + 2, Q4,k(C9) = 1.

This can be shown easily by inspection. For n = 3 one obtains that σ is given by one of the following
two cases:

(i) : σ = 2k 1`−1 3k 1k+1−`, 1 ≤ ` ≤ k + 1; (ii) : σ = 1k 3k 2k,

whereas for n = 4 the only possible case is σ = 2k 1k 4k 3k.

Pattern {123, 321, 231} ∈ C10: Again it follows from Theorem 18 that Qn,k(C10) = 0, for n > 4.
But also for n ≤ 4 one obtains the same enumeration results as for the pattern class C9, i.e.,

Q0,k(C10) = Q1,k(C10) = 1, Q2,k(C10) = k + 1, Q3,k(C10) = k + 2, Q4,k(C10) = 1.

Here one obtains for n = 3 that σ is given by one of the following two cases:

(i) : σ = 1`−1 3k 1k+1−` 2k, 1 ≤ ` ≤ k + 1; (ii) : σ = 2k 1k 3k,

whereas for n = 4 the only possible case is σ = 2k 1k 4k 3k.
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