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A system of Class Q q is a polygonal system consisting of one central ^-gon circumscribed by q 
other polygons, which may possess different sizes. As chemical graphs, these systems represent 
polycyclic conjugated hydrocarbons, which include homologous series of C 2 0 H 1 0 corannulene and 
C 2 4 H 1 2 coronene along with many other molecules of interest in organic chemistry. The problem 
of isomer enumeration for the Qq systems is solved completely in terms of generating functions by 
means of Pölya's theorem. 

Introduction 

A polycyclic conjugated hydroca rbon is repre-
sented as a chemical graph [1] by a system P of simply 
connected polygons, a polygonal system. By defini-
tion, any two polygons in P should either share ex-
actly one edge or be disjoint. In consequence, only 
vertices of degree two and three will be present, corre-
sponding to secondary and ter t iary carbon a toms, re-
spectively. Certain classes of P systems have recently 
been enumera ted [2 -5 ] , Specifically, twenty-three 
classes of polygonal systems ( I - X X I I I ) were defined, 
and we shall refer to some of these classes below by the 
Roman numerals; for a full definit ion of the different 
forms, the article [3] may be consulted. 

In general, the enumerat ion of isomers is a well-es-
tablished branch of chemistry. In this connect ion, the 
famous Pölya theorem [6, 7] has found very m a n y 
applications; only a small extract of the relevant liter-
ature can be cited here [6 -16] , Also several of the 
classes of polygonal systems referred to above can be 
enumerated by simple applicat ions of the Pölya theo-
rem. In the following, the appl icat ions to the classes 
V I and X I V are demonst ra ted . The main par t of the 
present work represents addi t ional novel appl icat ions 
of Pölya 's theorem: the enumera t ions for classes V 
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and X I a long with extensions of these cases. The re-
sults are supposed to be of considerable interest in 
organic chemistry since several impor tan t molecules 
are represented by the pert inent chemical graphs; 
C20H10 corannulene and C 2 4 H 1 2 coronene are 
among them. 

Polya 's Theorem 

In the formulat ion of Hara ry et al. [11]: The gener-
ating function C(x) which enumerates equivalence 
classes of functions determined by the pe rmuta t ion 
group A is obtained by substi tut ing the figure count -
ing series c(x) in the cycle index Z(A) as follows. Each 
variable sr in Z(A) is replaced by c(x r). Symbolically 
we write: C(x) = Z(A, c(x)). 

Here is not the place to expand fully the contents of 
Pölya's theorem. It seems more appropr ia te to de-
scribe the special applications with a few necessary 
explanations. 

In all cases of the present work, the figure count ing 
series reflects the variable polygon sizes. Specifically, 
the powers of x, say i, indicate the number of vertices 
of degree two in a part icular polygon, corresponding 
to the number of hydrogen a toms at the pert inent 
ring. Hence i = 0, 1, 2, 3 , . . . , and 

1 
c(x) — = 1 + x + x 2 + x 3 + . . . . (1) 

0932-0784 / 97 / 1200-877 $ 06.00 © - Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen 



868 S. J. Cyvin et al. • Polygonal Systems Including the Corannulene and Coronene Homologs 

Pre l iminary Examples 

Consider the polygonal systems of class V I [3,4], 
viz. the tetracyclic (pyrene-like) systems with two in-
ternal vertices each. In this case the permuta t ion 
g roup (A ) i somorphic with the symmetry group D 2 is 
appropr ia te , and the cycle index reads 

Z ( D 2 ) = i ( s ? + s 2 + 2 s 2 s2). 

Here one has to insert 

1 
Sj =c (x ) -

1 — X 
s2 = c(x2) = 

1 — X'' 

(2) 

(3) 

which yields 

Z(D2,c(X)) = 
1 

( l - x ) 4 

1 

+ 
1 

+ 
(1 — x2)2 ( l - x ) 2 ( l - x 2 ) 

= l + 2 x + 5 x 2 + 8 x 3 (4) 
(1 — x)2 (1 — x 2 ) 2 

+ 1 4 x 4 + 2 0 x 5 + 3 0 x 6 + 4 0 x 7 + 5 5 x 8 + . . . . 

This means, for instance, that there are 14 distinct 
systems of class VI with h = 4, 20 with h = 5, etc. The 
result is consistent with the generating functions 
derived previously [3, 4] in a different and more com-
plicated way. 

Consider now the pentacyclic systems XIV [3, 4] 
with three internal vertices each. With respect to 
A = C2 one finds 

Z(C2)=1-(s5
l+s1s2) 

and, after inserting f rom (3), 

1 + x 2 

Z(C2,c(x)) = 

(5) 

(6) 
( l - x ) 3 ( l - x 2 ) 2 

= 14- 3 x + 9 x 2 + 1 9 x 3 + 3 8 x 4 

+ 66X5 + 110X6 + 170X7 + 2 5 5 X 8 + . . . , 

in consistency with the previous result [4]. 

Classes of Circulenes 

Definitions 

Consider a system P which consists of a central 
q-gon circumscribed by q polygons of arbi t rary sizes. 
Denote the class of such systems by Q q . Here q = 3, 4, 

5, . . . , cor responding to triangle, tetragon, pentagon, 
etc. A member of Qq cor responds to a polycyclic con-
jugated hydroca rbon with the formula C2q + hHh, 
where h is the hydrogen content . Both the closed-shell 
molecules and unstable (open-shell) radicals are in-
cluded; in part icular , all odd-ca rbon c o m p o u n d s of 
the considered category are radicals. The numbers of 
nonisomorphic systems in Q q are counted by the gen-
erating funct ion Cq(x) — Z(Dq, c(x)). In the expansion 
of C9(x) into its count ing series, the powers of x indi-
cate the hydrogen content , h , in each of the members 
of Qq. F o r every q, the expansion of Cq(x) starts obvi-
ously with 1 + x for h = 0, 1. The appropr ia te figure 
counting series is given in (1). 

Central Triangle or Tetragon 

The classes Q 3 and Q 4 are identical with V and XI, 
respectively. The cor responding generating funct ions 
have been derived previously [4, 5] according to some-
what complicated combinatorial analyses. Polya's the-
orem gives the same results s traightforwardly in the 
following way: 

C 3 (x ) = 
1 1 

+ 
( i - x ) 3 ( i - x ) d - x 2 : 

i 

+ 
l - x 2 

(1 —x) (1 —x2) (1 —x3) 

= l + x + 2 x 2 + 3 x 3 + 4 x 4 + 5 x 5 

+ 7 x 6 + 8 x 7 + 1 0 x 8 + .. . , (7) 

C 4 ( X ) = 4 

1 
+ + + 

.(l-x) (l-x)2 (l-x2) (l-x2)2 l - x 

1 - x + x 2 

( l - x ) 2 ( l - x 2 ) ( l - x 4 ) 

= 1 + x + 3 x 2 + 4 x 3 + 8 x 4 + 1 0 x 5 

+ 1 6 x 6 + 2 0 x 7 + 2 9 x 8 + . . . . (8) 

Central Pentagon 

The smallest system of the class Q 5 is depicted in 
Fig. 1; it cor responds to a cluster with ten ca rbon 
atoms. The five sites of the polygons, which are to be 
subjected to variat ions in sizes, are indicated by in-
scribed numerals . Heref rom the cycle index Z(D5) is 
derived as shown in Table 1. In this table, the symme-
try opera t ions of D 5 are correlated with the permuta-
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Firstly, P(x) = ( l - x 5 ) " 1 and 

x ( l + 3 x + x 2 ) 
M(x) = (11) 

Fig. 1. The smallest system of the class Q5 (/i —0). 

Table 1. Cycle index for the class Q 5 under the permutation 
group isomorphic with Ds. 

Permutations Contribution 
to cycle index 

E (1) (2) (3) (4) (5) 
2 C5 (12345), (54321) 
2 C \ (13524), (42531) 
5C2 (1) (25) (34), (2) (13) (45), 

(3) (24) (15), (4) (35) (12), 
(5) (14) (23) 

si 
2 s 5 

2S5 

5 Sj s2 

tions of the sites and expressed in terms of cycles. In the 
contr ibut ions to the cycle index, a subscript to s indi-
cates the length of a cycle, while the superscript gives 
the number of the cycles in quest ion for a given per-
muta t ion . The contr ibut ions should be added and di-
vided by the group order, which here is ten. In conclu-
sion, 

Z(D5)=-(s5
l+5s1s2

2+4s5) (9) 

O n inserting s r = (l — x r) 1 according to the prescrip-
tion in Pölya's theorem, one obta ins 

1 
C 5 ( x ) = — 

5 ' 10 
1 

( 1 - x ) 5 

1 —x + 2 x 3 

+ 
( l - x ) ( l 

-x 5 + x 6 

-x2)2 + l 
(10) 

= l + x + 3 x 2 + 5 x 3 

( 1 - x ) 2 ( 1 - x 2 ) 2 ( 1 - x 5 ) 

+ 10x 4 + 16x 5 + 2 6 x 6 + 3 8 x 7 + 5 7 x 8 + . . . . 

The distr ibution into symmetry groups for the Q 5 

systems was also worked out. Let the pen tagona l 
(D5h), mirror-symmetrical ( C 2 v ) and unsymmetr ical 
(Cs) system be counted by the generating funct ions 
P(x), M(x) and A ( x ) , respectively. Here the sym-
metries refer to planar chemical graphs. The crucial 
results are given in the following, but the details of 
their derivation are omit ted for the sake of brevity. 

(1 —x ) (1 —x ) 

= x + 3 x 2 + 3 x 3 + 6 x 4 + 5 x 5 + 10x 6 + . . . . 

Secondly, A(x) may be determined by means of 
J(x), the generating function for crude totals with re-
spect to four degrees of f reedom [5]; 

1 
J(x) = P(x) + 5M(x) + l0A(x)= r . (12) 

(1 - x y 

F r o m (11) and (12), all the numbers of Table 2 are 
accessible. The total numbers of nonisomorphic sys-
tems in class Q 5 are given by P(x) + M(x) + A{x), a 
generating function equal to C 5 (x) of (10). These totals 
are found in Table 3 under the column q = 5 a long 

Table 2. Numbers of isomers of polycyclic conjugated hy-
drocarbons with six rings and five internal carbons in one 
ring (class Q5). 

h Formula D5h c2v 

0 C 1 0 
1 0 0 

1 C N H 0 1 0 
2 C12H2 0 3 0 
3 C 1 3 H 3 0 3 2 
4 C1 4H4 0 6 4 
5 C l 5 H 5 1 5 10 
6 C I 6 H 6 0 10 16 
7 C1 7H7 0 10 28 
8 0 15 4 2 
9 C1 9H9 0 15 6 4 

10 C20PI10 1 2 0 9 0 
11 C 2 1 H U 0 21 126 
12 C 2 2 H 1 2 0 28 168 

Table 3. Total numbers of isomers of polycyclic conjugated 
hydrocarbons with q +1 rings and q internal carbons in one 
ring (class QX 

h 3 4 5 6 7 8 

0 1 1 1 1 1 1 
1 1 1 1 1 1 1 
2 2 3 3 4 4 5 
3 3 4 5 7 8 10 
4 4 8 10 16 20 29 
5 5 10 16 26 38 57 
6 7 16 26 50 76 126 
7 8 20 38 76 133 232 
8 10 29 57 126 232 440 
9 12 35 79 185 375 750 

10 14 47 111 280 600 1282 
11 16 56 147 392 912 2052 
12 19 72 196 561 1368 3260 



870 S. J. Cyvin et al. • Polygonal Systems Including the Corannulene and Coronene Homologs 

asterisk in the C s systems. The sizes of the other polygons, when larger than four, are indicated by inscribed numerals. 

with the numerical results for other Q q classes. For the ^ ^ 1 7 3 

sake of illustration, the ten nonisomorphic Q 5 systems Z(D 7 )— ^ ( s i + 7 s t s 2 + s 7 ) , 
with /? = 4 are depicted in Fig. 2; they are distributed I 
according to 6C2v + 4Cs. Notice the agreement be- Z(DS)= — (s^ + 4 s 2 s^ + 5s^ + 2s^ + 4 s 8 ) . (15) 

4-tween 6C 2 t , and the term 6 x in (11). 
16 

After inserting the figure count ing series (1) according 
„ , , , , , ~ to the prescribed rules, one obta ins Central Hexagon, Heptagon or Octagon r 

Pölya's theorem was also applied to the classes Q 6 , „ , . _ 1 — x + x 2 + x 3 + 2 x 4 — x 5 + 2 x 6 + x 8 

Q 7 and Q 8 . The cycle indices are 6 ( X , _ ( 1 - x ) 2 ( 1 - x 2 ) 2 ( 1 - x 3 ) ( 1 - x 6 ) ' 

1
 fi . 7 7 „ 1 „ 2 „ x 1 — 2 x 4 - x 2 + 4 x 3 — 2 x 4 — 2 x 5 + 4 x 6 

Z(D6)=~(s6
1+3s2

ls2
2 + 4sl + 2sl + 2s6), (13) C 7 ( x ) = _ _ ^ 2 ) 3 , (17) 

1 — 3 x + 5 x 2 — 2 x 3 + 2 x 4 — 2 x 5 + 7 x 6 — 6 x 7 + 7 x 8 — 3 x 9 + 2 x 1 0 

( l - x ) 4 ( l - x 2 ) 2 ( l - x 4 ) ( l - x 8 ) 

1 J A T J A Z-AT^X-A L, A -p / A U A [ / A J A T Z. A 
C 8 ( x ) = 7 . — — I 2 T 2 7 . — — Z s i • 

Expressions for the expanded forms of the functions 
occurring on the r ight-hand sides of (16)-(18) are 
readily obtained f rom the da ta given in Table 3. 



871 S. J. Cyvin et al. • Polygonal Systems Including the Corannulene and Coronene Homologs 

Chemical Relevance 

The Qq systems for h = 0 correspond to carbon clus-
ters void of hydrogens (formula C2q). Although the 
polygonal systems usually are drawn as geometrically 
planar, these clusters may be associated with cage 
structures, specifically g-gonal prisms. In particular, 
the C 8 cluster for q = 4 corresponds to a cube. Several 
of the polygonal prism structures of elemental carbon 
have been considered [17] in connection with the 
fullerene studies, where C 6 0 buckminsterfullerene 
[18, 19] is the outstanding representative, but not be-
longing to the class Qq itself. 

Also for h > 0 many Qq systems correspond to inter-
esting molecules in organic chemistry. First of all, one 
has the celebrated set of circulenes: [5]circulene or 
C 2 0 H 1 0 corannulene; [6]circulene or C 2 4 H 1 2 coro-
nene; [7] circulene, C 2 8 H 1 4 . In this set of homologs, a 
[g] circulene as a member of Qq consists of a q-gon 
circumscribed exclusively by hexagons. Corannulene 
(q = 5) was synthesized for the first time by Barth and 
Lawton [20]. More recently, the same molecule has 
attracted new interest and two new syntheses of it 
have been reported [21,22]. Additional references to 
corannulene are found elsewhere [23,24], Coronene 
(g = 6) is well known [25]. Also [7] circulene has been 
synthesized [26], while a synthesis of [8] circulene has 
been attempted [27], but has remained unsuccessful. 
On the other hand, another member belonging to the 
Q 8 class (formula C 2 8 H 1 2) has been prepared under 
the name tetrametheno-tetraphenylene [28,29]. In 
this connection, Hellwinkel [29] has proposed the 
corannulene concept to structures which nicely fit into 
our definition of Qq. He has depicted not less than 
thirty-two hypothetic molecules of this category with 
good prospects for possible syntheses; they span from 
q = 3 to q =16. A representative of the Q 4 class 
(C 2 0 H 1 2 ) is known chemically [30], From the present 
work it is inferred that there are, for instance, 111 
Q.-type isomers of C 2 0 H 10 (including corannulene), 
561 C 2 4 H 1 2 (including coronene) and 3260 C 2 8 H 1 2 ; 
cf. Table 3. Notice that both h and q are determined 
uniquely when the chemical formula is given. The 
numbers of isomers increase rapidly with q for [q] cir-
culenes. For q = 7 and q = 8 they are 2828 (C 2 8 H 1 4 ) 
and 15581 (C 3 2 H 1 6 ) , respectively (outside the range of 
Table 3). Agranat et al. [31] depicted seven systems of 
the class Qq, ranging from q = 5 to q= 10 and called 
them corannulenes like Hellwinkel [29]. However, the 
authors [31] extended the corannulene concept to sys-

tems which include primitive coronoids [23] and do 
not belong to Q^; those systems are represented by 
C 4 8 H 2 4 kekulene [32, 33] and other cycloarenes [33-
35]. For the sake of clarity one should mention that 
most of the chemical compounds representing Qq are 
structurally nonplanar. However, this does not imply 
any controversy inasmuch as they are represented by 
planar graphs. 

General ization 

The solution for the numbers of nonisomorphic sys-
tems in Qq was generalized to arbitrary q. It is suffi-
cient here to specify the cycle index in the general case, 
viz.: 

Z(Dq) = 
1 

2q 

qSi (q odd) . 

(j=\,2,...,q), 

: { S l , S l ) { s f ] {q even). ( 1 9 ) 

Here the Euler (p function has been employed: For t 
being a positive integer, cp(t) is the number of positive 
integers smaller than f, no divisor of which (greater 
than unity) is a divisor of t ; (p (t) = 1,1, 2, 2,4, 2, 6 ,4 , . . . 
for t = 1, 2 , . . . , 8 , . . . . The summation is taken over the 
integers j whenever q is divisible by j. 

Let Chq be the numbers of isomers in Qq with h 
hydrogens; in other words, 

(20) 

cq(x)= £ chq torn o-x"'rj+cq(x)], 
h = 0 

\ q { \ - x ) - l ( \ - x 2 y ( q - l ) ' 2 (q odd). (21) U ( l - x ) " 1 ( l - x 2 ) " ( " " 1 ) / 2 (q 
Cq U g [ ( l - x ) - 2 ( l - x 2 ) - < ^ + 1 + d - x 2 n / 2 ] 

(q even). 

Now the general relations (19) can be applied to the 
degenerate systems with q = 2. One obtains 

Ch2=[h/2 J + l , (22) 

where the floor function is employed: [/i/2] = /i/2 
(h even); [h/2\ = (h— l)/2 (h odd). But we have also 

C2q=[q/2J + 1, (23) 

at least for q > 3 (cf. Table 3), as is obtained from a 
simple combinatorial analysis. It is natural to define 
C 2 1 = 1, C 2 2 = 2. Hence Ch2 = C2q for h = q {h,q> 1). 
Similarly, when (19) is applied to q= 1, one obtains 
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Chl = 1 (for all h). Also Clq = 1 (q> 3), and we define 
C n = C 1 2 = 1; hence C h l = C1(J for /i = g (/?, g > l ) . In 
conclusion, the Ch(J (h, q> 1) numbers define an infinite 
matrix, C, of which the first elements are listed below 
(compare with Table 3): 

1 1 1 1 1 
1 2 2 3 3 
1 2 3 4 5 
1 3 4 8 10 
1 3 5 10 16 

Theorem 

Chq = Cqh; the matr ix C is symmetrical. 

After the above analysis and definitions it is suffi-
cient to prove the theorem for h, q> 3 when the num-
bers count nondegenerate systems. Consider the sys-
tems counted by Chq, where h hydrogens are distrib-
uted a m o n g the q edges of the central g-gon. Produce 
the corresponding systems counted by Cqh (central 
h-gon and q hydrogens) in the following way: Take the 
same distr ibution of the radial edges f rom the central 
h-gon among the spaces in-between the q hydrogens. 
In this way a one- to-one correspondence is estab-

ft 
4 

/ o A . 1 

\ o \ / o 

3 

3 
Fig. 3. Two pairs of corresponding systems. Left column: 
class Q 5 ; the numerals indicate numbers of vertices of degree 
two (symbolized by black dots) as distributed between con-
secutive vertices of degree three. Right column: class Q 4 ; the 
numerals indicate numbers of vertices of degree three as 
distributed between consecutive vertices of degree two (black 
dots). 

lished between the two sets of systems, and it is also 
clear that the dis tr ibut ions into symmetry groups for 
these two sets are the same. 

As an example, consider the ten (6 C2[ .-t-4C s) sys-
tems with a central pentagon and four hydrogens 
each. According to the theorem, there should exist 
exactly ten non i somorph ic systems with a central te-
t ragon and five hydrogens each, and they should be 
distributed according to 6 C2v + 4CS. In Fig. 3 the cor-
relations between two pairs of systems f rom Q 5 and 
Q 4 are explained, where the Q 5 systems are taken as 
the two first ones in Figure 2. A formal proof of the 
present theorem is presented in the Appendix. 

Supplementary Remarks 

The results presented here can be related to an ear-
lier publication of Fuji ta [36] on cage-shaped molecules. 
This au thor considered the number of isomers of cer-
tain classes by subst i tut ion of methylene units into the 
edges of a parent skeleton. F o r example, he derived all 
a d a m a n t a n e isomers using the edges of the tetrahe-
drane skeleton for the appropr ia te insertion of methy-
lene units. Consequent ly , on invoking M a r k tables 
[37] and coset representat ion theory Fuj i ta derived all 
the 32 a d a m a n t a n e isomers in agreement with previ-
ous results of Balaban [38]. Fuj i ta ' s approach is appli-
cable to the present problem. For instance, if we con-
sider the outer edges of the graph shown in Fig. 1, then 
by appropr ia te insertions of methylene units all the 
isomers of Fig. 2 are derived. 

Appendix: Formal Proof of the Theorem 

Let G be the graph of a system in Qq with h hydro-
gens and C its boundary . G is completely determined 
by the a r rangement of the vertices of degree two (say 
black vertices) and vertices of degree three (say white) 
on C. In fact G is obtained f rom C by inserting a q-gon 
in the internal area of C and connect ing the white 
vertices on C with the corresponding vertices of the 
q-gon. If we now change the colours of the vertices on 
C in G, we obta in a new cycle C', f rom which a graph 
G ' is constructed as described above. Clearly, the 
graph G ' represents a Qh system with q hydrogens. 
Thus a one- to-one correspondence is established be-
tween-the Qq systems with h hydrogens and Qh sys-
tems with q hydrogens. Hence Ch =Cqh. 

4 
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