2

위키백과, 우리 모두의 백과사전.

1 ← 2 → 3
0 1 2 3 4 5 6 7 8 9
읽는 법
세는 법
한자二,
소인수 분해소수
로마 숫자II
2진수102
3진수23
4진수24
5진수25
6진수26
8진수28
12진수212
16진수216
20진수220
36진수236
φ(2)1
σ*(2)3
d(2)2
σ(2)3
μ(2)-1
M(2)0
수 목록 · 정수

2(이, two)는 1보다 크고 3보다 작은 자연수이다.

수학[편집]

  • 이 자연수일 때, 짝수이다.
  • 2를 초과하는 짝수들을 소인수분해할 때는 2가 반드시 들어간다.
  • 1번째 소수로, 유일한 짝수 소수이다. 두 번째 소수는 3이며, 다음 자연수도 소수인 유일한 소수이다. 서로 연속하는 두 자연수 중 반드시 하나는 짝수, 하나는 홀수이므로 2를 포함하는 경우여야 하는데, (1, 2)는 1이 소수가 아니므로 (2, 3)만 이를 만족한다.
  • 2는 3번째 피보나치 수이다. 앞의 피보나치 수는 1이고, 다음은 3이다.
  • 2는 2번째 카탈랑 수이다. 앞의 카탈랑 수는 1이고, 다음은 5이다.
  • 2의 제곱근은 처음으로 알려진 무리수이다.
  • 2의 제곱은 4이다.
  • 2차원평면이다.
  • 2로 나누어떨어지는 정수짝수이다.
  • 을 가로지르는 직선은 오직 2개의 점에서 만난다.
  • 일치하지 않는 2개의 은 한 직선을 결정한다.
  • 일치하지 않고 꼬인 위치에 있지도 않은 2개의 직선은 한 평면을 결정한다.
  • 이진법은 숫자 2개로 나타내는 기수법이다.
  • 2개의 직선이 만나면 을 이룬다.
  • 2는 삼진법에서 마지막 수이다. 삼진법에서는 0,1,2,3 (이것은 사진법부터 해당한다.)과 같이 세지 않고 0,1,2,10,11,12,20,21,22,100,101 … 라는 식으로 센다.
  • 정수와 유리수의 부호는 +, -의 두 개이다.
  • 2를 약수로 가지는 수를 짝수라고 한다.
  • 2는 부족수이며, 소인수가 2뿐인 모든 수는 부족수이다.
  • 십진법에서 1이 2개 늘어선 수 R2는 소수이다. 그리고 그 외에도 1이 19개, 23개, 317개, 1031개 늘어선 경우에도 소수가 되는데, 이러한 소수를 단위 반복 소수라고 한다. 또한 2, 19, 23, 317, 1031 역시 모두 소수인데, 1이 늘어선 개수가 합성수인 경우 해당 수를 동일한 길이로 끊을 수 있는 수가 약수가 되기 때문에 무조건 합성수이다. (예: 111111=11×10101=111×1001, 11111111=11×1010101=1111×10001) 다음은 1이 19개 늘어선 [[R19|1111111111111111111]]이다.

과학[편집]

철학[편집]

  • 역학에서 2는 1의 움직임에서 생기는 수인데, 2로부터 모든 현상이 시작된다. 1을 변화의 체(體)라 하면 2는 용사(用事)가 되고, 1이 한 생의 원기라하면 2는 그의 분립이 되며, 1을 마음에 있어서의 성(性)이라고 하면 2는 그의 정(情)이된다. 1이 태극이라면 2는 음양이 된다. 2는 변화의 전제 혹은 대립이라고 보고, 정(靜)이라고도 보며, 형상이라고도 보고, 불완전이라고도 본다.[1]

기타[편집]

각주[편집]

  1. 한규성, 역학원리강화, 3판, 1997년, 예문지, 191쪽

외부 링크[편집]

  • 위키미디어 공용에 2 관련 미디어 분류가 있습니다.