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Abstract
A permutation is an arrangement of n objects. Sets of permutations classified by
the avoidance of classical permutation patterns capture many interesting properties,
such as stack-sortability, and have links to many different combinatorial objects.
Mesh patterns are an extension of classical patterns that allow additional restrictions
to be placed on occurrences of the pattern. Two mesh patterns are coincident if they
are avoided by the same set of permutations. We provide sufficient conditions for
coincidence among mesh patterns, whilst also avoiding a longer classical pattern.
These conditions, along with two special cases, are used to completely classify
coincidence amongst families containing a mesh pattern of length 2 and a classical
pattern of length 3.
Two patterns are Wilf-equivalent if they have the same number of avoiders at
every length, we completely Wilf-classify mesh patterns of length 2 when avoid-
ing the classical pattern 231. Finally we attempt to show some non-trivial Wilf-
equivalences between avoiders of sets of the form 231,m1 and 321,m2, as well as
discussing possible future work that could be derived from this work.
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Jafngildisflokkar möskvamynstra með ríkjandi
mynstri

Murray Tannock

maí 2016

Útdráttur
Umröðun er endurröðun á n hlutum. Mengi umraðana sem forðast klassísk umr-
aðanamynstur geta lýst mörgum áhugaverðum eiginleikum, s.s. staflaraðanlegum
umröðunum, og tengjast mörgum fléttufræðilegum hugtökum. Möskvamynstur eru
útvíkkun á klassískummynsturum sem leyfa auka skorður á tilvik mynstursins. Tvö
möskvamynstur eru samtilfallandi ef sömu umraðanir forðast hvert um sig. Við
finnum nægjanleg skilyrði fyrir því að tvö möskvamynstur séu samtilfallandi, þegar
umraðanir forðast einnig lengra klassískt mynstur. Þessi skilyrði, ásamt tveimur
sértilfellum, eru notuð til að gera greiningu á hvaða pör af möskvamynstri af lengd
2 og klassísku mynstri af lengd 3 eru samtilfallandi.
Tvömynstur eruWilf-jafngild ef jafn margar umraðanir af hverri lengd forðast hvert
mynstur um sig. Við Wilf-flokkum öll pör sem innihalda möskvamynstur af lengd
2 og klassíska mynstrið 231. Að lokum finnum við ófáfengileg Wilf-jafngildi milli
pars 231,m1 og 321,m2, ásamt því fjalla um vinnu sem má byggja á þessari ritgerð.



x



Equivalence classes of mesh patterns with a dominating
pattern

Murray Tannock

Thesis of 60 ECTS credits submitted to the School of Science and Engineering
at Reykjavík University in partial fulfillment of

the requirements for the degree of
Master of Science (M.Sc.) in Computer Science

May 2016

Student:

Murray Tannock

Supervisor:

Henning Ulfarsson

Examiner:

Michael H. Albert

Anders Claesson



xii



The undersigned hereby grants permission to the Reykjavík University Library to reproduce
single copies of this Thesis entitled Equivalence classes of mesh patterns with a domi-
nating pattern and to lend or sell such copies for private, scholarly or scientific research
purposes only.
The author reserves all other publication and other rights in association with the copyright
in the Thesis, and except as herein before provided, neither the Thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatsoever
without the author’s prior written permission.

date

Murray Tannock
Master of Science



xiv



Acknowledgements

So long, and thanks for all the fish.
Douglas Adams[1]

I would like to thank my advisor, Henning Ulfarsson, for his time, support, guidance and
introducing me to a research topic that I greatly enjoy.

I would like to thank Michael Albert and Anders Claesson for the discussions that
prompted the topic of this thesis, as well as their valuable input and suggestions.

I would like to thank Christian Bean for proofreading my thesis, providing useful feed-
back, and for the time spent staring at a whiteboard while I tried to check my mathematical
reasoning.

I would like to thank Stefanía Andersen Aradóttir for company and sanity checks during
long working weekends and for making sure I didn’t look like a fool in my attempt at an
Icelandic title.



xvi



xvii

Contents

Acknowledgements xv

Contents xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 What is a Permutation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classical Permutation Patterns . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Mesh Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Coincidence Classification 5
2.1 Coincidence classes of Av({321, (21, R)}). . . . . . . . . . . . . . . . . . . 8
2.2 Equivalence classes of Av({231, (21, R)}). . . . . . . . . . . . . . . . . . . 8
2.3 Equivalence classes of Av({231, (12, R)}). . . . . . . . . . . . . . . . . . . 10
2.4 Equivalence classes of Av({321, (12, R)}). . . . . . . . . . . . . . . . . . . 11

3 Wilf-Classification 15
3.1 Wilf-classes with patterns of length 1. . . . . . . . . . . . . . . . . . . . . 16
3.2 Wilf-classes with patterns of length 2 . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Conclusions and Future work 31

Bibliography 33

A Equivalence classes of mesh patterns 35
A.1 Coincidence classes with no dominating pattern . . . . . . . . . . . . . . . 35



xviii

A.2 Consolidation of classes by Dominating Pattern rules . . . . . . . . . . . . 42
A.2.1 First Dominating Rule . . . . . . . . . . . . . . . . . . . . . . . . 42

A.2.1.1 Dominating pattern 321 . . . . . . . . . . . . . . . . . . 42
A.2.1.2 Dominating pattern 231 . . . . . . . . . . . . . . . . . . 43

A.2.2 Second Dominating Rule . . . . . . . . . . . . . . . . . . . . . . . 45
A.2.2.1 Dominating pattern 321 . . . . . . . . . . . . . . . . . . 45
A.2.2.2 Dominating pattern 231 . . . . . . . . . . . . . . . . . . 45

B Wilf-equivalence data 47
B.1 Sequences with underlying pattern 231 . . . . . . . . . . . . . . . . . . . . 47
B.2 Sequences with underlying pattern 321 . . . . . . . . . . . . . . . . . . . . 47

C Code 51



xix

List of Figures

2.1 Visual depiction of first dominating pattern rule. . . . . . . . . . . . . . . . . . 8
2.1 If the conditions of Proposition 2.2.2 are satisfied the box (a, b) can be shaded. 10

3.1 The operations reverse, complement and inverse for the pattern 231 . . . . . . . 15
3.2 Structural decomposition of a non-empty avoider of 231 . . . . . . . . . . . . . 16



xx



xxi

List of Tables

2.1 Coincidence class number reduction by application of Dominating Rules . . . . 7



xxii



1

Chapter 1

Introduction

1.1 What is a Permutation?
In The Art of Computer Programming [11, p. 45] Knuth states, “A permutation of n objects
is an arrangement of n distinct objects in a row”. When considering permutations we can
consider them as occurring on the set ~n� = {1, . . . , n}, therefore a permutation is a bijection
π : ~n� 7→ ~n� . This notation is called one-line notation. In this form we write the entries
of the permutation in order, and get

π = π(1)π(2) . . . π(n)

Example 1.1.1. The 6 permutations on ~3� , in one-line notation, are

123, 132, 213, 231, 312, 321

We can display a permutation in a plot in order to give a graphical representation of the
permutation. In such a plot we display the points (i, π(i)) in a Cartesian coordinate system.
The plot of the permutation π = 231 is shown below

It is convenient to call the elements of the permutation points when referring to these plots.
The set of all permutations of length n isSn and has size n!. The set of all permutations is

S =
⋃∞

i=0Si. Note thatS0 has exactly one element, the empty permutation ε. As a function
this is equivalent to the unique bijection ∅ 7→ ∅, and it’s one-line representation is the empty
string.

1.2 Classical Permutation Patterns
Classical permutation patterns began to be studied as a result of Knuth’s statements about
stack-sorting in The Art of Computer Programming [11, p. 243, Ex. 5,6].

Definition 1.2.1. (Order isomorphism.) Two substrings α1α2 · · · αn and β1 β2 · · · βn are
said to be order isomorphic if they share the same relative order, i.e., αr < αs if and only if
βr < βs.
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A permutation π is said to contain the permutation σ of length k as a pattern (denoted
σ � π) if there is some subsequence i1i2 · · · ik such that the sequence π(i1)π(i2) · · · π(ik ) is
order isomorphic to σ(1)σ(2) · · ·σ(k). If π does not contain σ, we say that π avoids σ.

For example the permutation π = 24153 contains the pattern σ = 231, since the second,
fourth and fifth elements (453) are order isomorphic to 231. This can be seen graphically
below, the subsequence order isomorphic to σ is highlighted.

We denote the set of permutations of length n avoiding a pattern σ as Avn(σ) and
Av(σ) =

⋃∞
i=0 Avi (σ).

Knuth’s statements were exercises in showing that the permutations avoiding the pattern
231 are precisely the permutations that are sortable to the identity permutation using a single
stack, and that permutations avoiding the pattern 321 are precisely the permutations that are
sortable to the identity permutation using a single queue with bypass.

1.3 Mesh Patterns
When looking at a classical pattern, for example 231, any occurrences can be arbitrarily
placed. However it may be interesting to consider occurrences where the elements corre-
sponding to the 2 and 3 are adjacent in the permutation. In the past these sort of questions
have lead to a variety of definitions. Babson and Steingrímsson [2] considered vincular
patterns (also known as generalised or dashed patterns), those where two adjacent entries
in the pattern must be adjacent in the permutation. Bousquet-Mélou, Claesson, Dukes, et
al. [4] look at classes of pattern where both columns and rows can be shaded, these are called
bivincular patterns. Bruhat-restricted patterns were studied by Woo and Yong [13] in order
to establish necessary conditions for a Schubert variety to be Gorenstein. Mesh patterns also
encompass a subset of barred patterns introduced by West [12], those with only one barred
letter.

All of these definitions are subsumed under the definition of mesh patterns, introduced
by Brändén and Claesson [5] to capture explicit expansions for certain permutation statistics.
They are a natural extension of classical permutation patterns. A mesh pattern is a pair

p = (τ, R) with τ ∈ Sk and R ⊆ [0, k] × [0, k].

The set R is called the mesh set of the mesh pattern p. The plot for a mesh pattern looks
similar to that of a classical pattern with the addition that we shade the unit square with
bottom left corner (i, j) for each (i, j) ∈ R:

The example of an occurrence of 231 with adjacent elements 23 can be represented as a
mesh pattern by
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Wedefine containment (denoted p � π), and avoidance, of the pattern p in the permutation
τ on mesh patterns analogously to classical containment, and avoidance, of π in τ with the
additional restrictions on the relative position of the occurrence of π in τ. These restrictions
say that no elements of τ are allowed in the regions of the plot corresponding to shaded boxes
in the mesh.

Formally defined by Brändén and Claesson [5], an occurrence of p in τ is a subset ω
of the plot of τ,G(τ) = {(i, τ(i) | i ∈ [1, n]} such that there are order-preserving injections
α, β : [1, k] 7→ [1, n] satisfying the following two conditions.
Firstly, ω is an occurrence of π in the classical sense

i. ω = {(α(i), β( j)) : (i, j) ∈ G(π)}

Define Ri j = [α(i) + 1, α(i + 1) − 1] × [β( j) + 1, β( j + 1) − 1] for i, j ∈ [0, k] where
α(0) = β(0) = 0 and α(k + 1) = β(k + 1) = n + 1. Then the second condition is

ii. if (i, j) ∈ R then Ri j ∩ G(τ) = ∅

We call Ri j the region corresponding to (i, j). We define containment of a mesh pattern p in
another mesh κ as above, with the additional condition that if (i, j) ∈ R then Ri j is contained
in the mesh set of κ, in this case we call p a subpattern of κ.

Example 1.3.1. The pattern p = (213, {(0, 1), (0, 2), (1, 0), (1, 1), (2, 1), (2, 2)}) = is
contained in π = 34215 but is not contained in σ = 42315.

Let us consider the plot for the permutation π. The subsequence 325 is an occurrence
of 213 in the classical sense and the remaining points of π are not contained in the regions
corresponding to the shaded boxes in p.

The subsequence 325 is therefore an occurrence of the pattern p in π and π contains p.
Now we consider the plot for the permutation σ. This permutation avoids p since for

every occurrence of the classical pattern 213 there is at least one point in one of the shaded
boxes. For example, consider the subsequence 315 in σ, this is an occurrence of 213 but not
the mesh pattern since the points with values 4 and 2 are in the regions corresponding to the
boxes (0, 1) and (0, 2), which are shaded in p. This is shown in the figure below.

This is true for all occurrences of 213 in σ and therefore σ avoids p.
We denote the avoidance sets for mesh patterns in the same way as for classical patterns.

Given a mesh pattern p = (σ, R) we say that σ is the underlying classical pattern of p.

Note 1.3.2. Classical patterns can be thought of as a subset of mesh patterns: the classical
pattern π can be represented by a mesh pattern as (π, ∅).
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Note 1.3.3. Permutations can also be thought of as a special case of mesh patterns with the
mesh set being [0, k] × [0, k]

Two patterns are said to be coincident if they are avoided by the same set of permutations
andWilf-equivalent if they are avoided by the same number of permutations at every length.

Avoiding pairs of patterns of the same length with certain properties has also been
studied in the past, Claesson and Mansour [7] considered avoiding a pair of vincular patterns
of length 3. Bean, Claesson, and Ulfarsson [3] study avoiding a vincular and a covincular
pattern simultaneously in order to achieve some interesting counting results. However, very
little work has been done on avoiding a mesh pattern and a classical pattern simultaneously.
In this work we aim to establish some ground in this field by computing coincidences and
Wilf-classes and calculating some of the enumerations of avoiders of a mesh pattern of length
2 and a classical pattern of length 3.
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Chapter 2

Coincidences amongst families of mesh
patterns and classical patterns

One interesting question to ask about permutation patterns is to consider when a pattern may
be avoided by, or contained in, arbitrary permutations. Two patterns π and σ are said to be
coincident if the set of permutations that avoid π is the same as the set of permutations that
avoid σ, i.e. Av(π) = Av(σ). This extends to sets of patterns as well as single patterns.

We consider the avoidance sets, Av
(
{π, q}

)
where π is a classical pattern of length 3 and

q is a mesh pattern of length 2 in order to establish some rules about when these two sets
give the same avoidance set. We fix π in order to define the coincidence and say that π is the
dominating pattern.

It is useful to be able to modify a mesh pattern by adding points to an already existing
mesh pattern. First adding a single point into a pattern.

Definition 2.0.1. Given a mesh pattern p = (π, R) add_point
(
p, (a, b), D

)
gives a mesh

pattern p′ = (π′, R′) with length |π | + 1 defined by

π′(i) =




π(i) if i , a + 1 and π(i) < b
π(i) + 1 if i , a + 1 and π(i) > b
b + 1 if i = a + 1

and
R′ =

⋃
(i, j)∈R

r ((i, j)),

where r ((i, j)) is defined by

r ((i, j)) =




{(i, j)} if i < a, j < b
{(i, j), (i, j + 1)} if i < a, j = b
{(i, j + 1)} if i < a, j > b
{(i, j), (i + 1, j)} if i = a, j < b
{(i, j + 1), (i + 1, j + 1)} if i = a, j > b
{(i + 1, j)} if i > a, j < b
{(i + 1, j), (i + 1, j + 1)} if i > a, j = b
{(i + 1, j + 1)} if i > a, j > b
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If the shading set D is non-empty we can modify the definition of the directions slightly

N = {(a, b + 1), (a + 1, b + 1)}
E = {(a + 1, b), (a + 1, b + 1)}
S = {(a, b), (a + 1, b)}

W = {(a, b), (a, b + 1)}

And we add the union of the sets in D into the mesh set R′.

Given a mesh pattern p, add_point
(
p, (a, b), D

)
is the operation that returns a mesh

pattern equivalent to placing a point in the center of box (a, b), where (a, b) is not in the
mesh set of p , with shading defined by D ⊆ {N, E, S,W }. The set D defines the shading
by indicating that the boxes in the cardinal directions in D next to the point are shaded in
the resulting pattern. Since there is no ambiguity we let add_point (ε, D) be equivalent to
add_point (ε, (0, 0), D).

Example 2.0.2. The result of adding a single point to the empty permutation for each cardinal
direction.

add_point (ε, {N }) = add_point (ε, {E}) =
add_point (ε, {S}) = add_point (ε, {W }) =

A more complex example for add_point could be

add_point *.
,

, (2, 3), {N, E}+/
-
=

It is also useful to think about adding an ascent, or descent, into a pattern

Definition 2.0.3. Considering only adding the ascent, as adding a descent is very similar.
Given a mesh pattern p = (π, R), add_ascent

(
p, (a, b)

)
gives a mesh pattern p′ = (π′, R′)

with length |π | + 2 defined by

π′(i) =




π(i) if i , a + 1, a + 2 and π(i) < b
π(i) + 2 if i , a + 1, a + 2 and π(i) > b
b + j, b + j if i = a + j, j ∈ {1, 2}

and

R′ = {(a + 1, b), (a, b), (a + 1, b), (a + 2, b), (a + 1, b + 2)} ∪
⋃

(i, j)∈R

r ((i, j)),

where r ((i, j)) is defined by

r ((i, j)) =




{(i, j)} if i < a, j < b
{(i, j), (i, j + 1), (i, j + 2)} if i < a, j = b
{(i, j + 2)} if i < a, j > b
{(i, j), (i + 1, j), (i + 2, j)} if i = a, j < b
{(i, j + 2), (i + 1, j + 2), (i + 2, j + 2)} if i = a, j > b
{(i + 2, j)} if i > a, j < b
{(i + 2, j), (i + 2, j + 1), (i + 2, j + 2)} if i > a, j = b
{(i + 2, j + 2)} if i > a, j > b
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Given a pattern p, add_descent
(
p, (a, b)

)
, and

add_ascent
(
p, (a, b)

)
, are the operations that return a mesh pattern equivalent to placing a

decrease, or increase, in the center of box (a, b), where (a, b) is not in the mesh set of p, in
p.

Example 2.0.4.

add_ascent (ε) =

add_descent (ε) =

A more complex example is

add_ascent *.
,

, (1, 1)+/
-
=

We now attempt to fully classify coincidences in families characterised by avoidance of
a classical pattern of length 3 and a mesh pattern of length 2, that is finding and explaining
all coincidences where Av

(
{p,m}

)
= Av

(
{p,m′}

)
.

It can be easily seen that in order to classify coincidences one need only consider
coincidences within the family of mesh patterns with the same underlying classical pattern,
this is due to the fact that 21 ∈ Av((12, R)) and 12 ∈ Av((21, R)) for all mesh-sets R.

We know that there are a total of 512 mesh-sets for each underlying classical pattern. By
use of the previous results of Claesson, Tenner, and Ulfarsson [8]1 the number of coincidence
classes can be reduced to 220.

By discussion of a number of rules we will show that the number of coincidence classes
follows the values shown in Table 2.1. The experimental data in the last row of the table is
calculated on permutations up to length 11.

Dominating Pattern
231 321

12 21 12 21
No Dominating rule 220 220 220 220

First Dominating rule 85 43 220 29
Second Dominating rule 59 39 220 29
Third Dominating rule 56 39 220 29
Experimental class size 56 39 213 29

Table 2.1: Coincidence class number reduction by application of Dominating Rules

From the table it can be seen that the rules established capture almost all coincidences.
However, there are still some coincidences that are not able to be explained by the rules. This
shows that complete coincidence classification of mesh patterns is a very difficult task, even
when we have additional tools available.

1 The authors use the Simultaneous Shading Lemma, a closure result and one worked out special case.
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2.1 Coincidence classes of Av({321, (21, R)}).
Through experimentation, up to permutations of length 11, we discover that there are at least
29 coincidence classes of mesh patterns with underlying classical pattern 21.

Proposition 2.1.1 (First Dominating Pattern Rule). Given two mesh patterns m1 = (σ, R1)
and m2 = (σ, R2), and a dominating classical pattern π = (π, ∅) such that |π | ≤ |σ | + 1, the
sets Av({π,m1}) and Av({π,m2}) are coincident if

1. R14R2 = {(a, b)}

2. π � add_point (σ, (a, b), ∅)

In order to prove this proposition we must first make the following note.

Note 2.1.2. Let R′ ⊆ R. Then any occurrence of (τ, R) in a permutation is an occurrence of
(τ, R′).

Proof of Proposition 2.1.1. We need to prove that Av({π,m1}) = Av({π,m2}).
Assume without meaningful loss of generality that R2 = R1 ∪ {(a, b)}. Since R1 is a subset
of R2, Note 2.1.2 states that Av({π,m1}) ⊆ Av({π,m2})

Now we consider a permutation ω′ ∈ Av(π), containing an occurrence of m1. Consider
placing a point in the region corresponding to the box (a, b), regardless of where in this
region we place the point by condition 2 of the Proposition we create an occurrence of π,
therefore there can be no points in this region, which could have been represented in the
mesh set R1 by adding the box (a, b). Hence every occurrence of m1 is in fact an occurrence
of m2, and we have that Av({π,m2}) ⊆ Av({π,m1}).

Taking both directions of the containment we can therefore draw the conclusion that
Av({π,m1}) = Av({π,m2}). �

All coincidence classes of Av({321, (21, R)}) can be explained by application of Propo-
sition 2.1.1. By experimentation we see that there are at least 29 coincidence classes, and all
of these coincidences are explained by this Proposition.

This rule can be understood very in graphical form. In the pattern in Figure 2.1 we can
gain shading in two boxes since if there is a point in any of these boxes we would get an
occurrence of the dominating pattern 321.

7→

Figure 2.1: Visual depiction of first dominating pattern rule.

There are two natural extensions of this rule. We can replace π with a set of classical
patterns, or we can consider π to be a mesh pattern.

2.2 Equivalence classes of Av({231, (21, R)}).
By application of Proposition 2.1.1 we obtain 43 coincidence classes. Experimentation
shows that there are in fact at least 39 coincidence classes, for example the following two
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patterns are coincident in Av(231) but this is not explained by Proposition 2.1.1.

m1 = and m2 =

Consider an occurrence of m1 in a permutation in Av(231), consisting of elements x
and y. If the region corresponding to the box (1, 1) is empty we have an occurrence of m2.
Otherwise, if there is any increase in this box then we would have an occurrence of 231,
however, since we are in Av(231) this is not possible. This box must therefore contain a
(non-empty) decreasing subsequence. This gives rise to the following lemma:

Lemma 2.2.1. Given a mesh pattern m = (σ, R), where the box (a, b) is not in R, and a
dominating classical pattern π = (π, ∅) if π � add_ascent (σ, (a, b))
(π � add_descent (σ, (a, b))) ,then in any occurrence of m in a permutation %, the region
corresponding to the box (a, b) can only contain an decreasing (increasing) subsequence of
%.

The proof is analogous to the proof of Proposition 2.1.1.
Going back to our example mesh patterns

We know that the region corresponding to the box (1, 1) contains a decreasing subsequence.
If we let z be the topmost point in this decreasing subsequence, then xz is an occurrence of
m2. This shows that our two example patterns are coincident.

This result generalises into the following rule for categorising coincidences of mesh
patterns in cases where there is a dominating classical pattern.

Proposition 2.2.2 (SecondDominating Pattern Rule). Given twomesh patternsm1 = (σ, R1)
and m2 = (σ, R2), and a dominating classical pattern π = (π, ∅) such that |π | ≤ |σ | + 2, the
sets Av({π,m1}) and Av({π,m2}) are coincident if

1. R14R2 = {(a, b)}

2. a) π � add_ascent (σ, (a, b)) and
i. (a + 1, b) ∈ σ and (a + 1, b − 1) < R and

(x, b − 1) ∈ R =⇒ (x, b) ∈ R (where x , a, a + 1) and
(a + 1, y) ∈ R =⇒ (a, y) ∈ R (where y , b − 1, b).

ii. (a, b + 1) ∈ σ and (a − 1, b + 1) < R and
(x, b + 1) ∈ R =⇒ (x, b) ∈ R (where x , a − 1, a) and
(a − 1, y) ∈ R =⇒ (a, y) ∈ R (where y , b, b + 1).

b) π � add_descent (σ, (a, b)) and
i. (a + 1, b + 1) ∈ σ and (a + 1, b + 1) < R and

(x, b + 1) ∈ R =⇒ (x, b) ∈ R (where x , a, a + 1) and
(a + 1, y) ∈ R =⇒ (a, y) ∈ R (where y , b, b + 1).

ii. (a, b) ∈ σ and (a − 1, b − 1) < R and
(x, b + 1) ∈ R =⇒ (x, b) ∈ R (where x , a − 1, a) and
(a − 1, y) ∈ R =⇒ (a, y) ∈ R (where y , b − 1, b).
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Proof. We need to prove that Av({π,m1}) = Av({π,m2}).
Assume without meaningful loss of generality that R2 = R1 ∪ {(a, b)}.

Consider a permutation ω that contains an occurrence of m2. By Note 2.1.2 any of these
occurrences is also an occurrence of m1. This proves that every occurrence of m2 is also an
occurrence of m1 and therefore Av({π,m1}) ⊆ Av({π,m2}).

We will consider taking the first branch of every choice. Now consider a permutation
ω′ ∈ Av(π). Suppose ω′ contains m1 and consider the region corresponding to (a, b) in R1.

If the region is empty, the occurrence of m1 is trivially an occurrence of m2.
Now consider if the region is non-empty, by Lemma 2.2.1 and condition 2a of the

proposition this region must contain a decreasing subsequence. We can choose the topmost
point in the region to replace the corresponding point in the mesh pattern and the points from
the subsequence are now in the box southeast of the point. The other conditions allow this to
be done without points being present in regions that were shaded. Hence there are no points
in the region corresponding to the box (a, b) in the mesh pattern, and therefore we can shade
this region. This implies that every occurrence of m1 in Av(π) is in fact an occurrence of m2
so Av({π,m2}) ⊆ Av({π,m1}).

Similar arguments satisfy the remainder of the branches. �

b

a

Figure 2.1: If the conditions of Proposition 2.2.2 are satisfied the box (a, b) can be shaded.

This proposition essentially states that we slide all of the points in the box we desire to
shade diagonally, and chose the topmost/bottommost point to replace the original point in
the mesh pattern.

By taking the First Dominating Pattern Rule and the Second Dominating Pattern Rule
together coincidences of classes of the form Av({231, (21, R)}) are fully explained, obtaining
39 coincidence classes of mesh patterns.

2.3 Equivalence classes of Av({231, (12, R)}).
When considering the coincidence classes of Av(231, (12, R)) we first apply the two Dom-
inating Pattern rules previously established. Starting from 220 classes, application of the
first Dominating Pattern rule gives 85 classes. Following this with the second Dominating
Pattern rule reduces the number of classes to 59. However we know that there are patterns
where the coincidences are not explained by the rules given above.

For example the patterns

m1 = and m2 =
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are experimentally coincident. This coincidence is not explained by our rules, it is necessary
to attempt to capture these coincidences by establishing more rules.

Consider an occurrence of m1 in a permutation, if the region corresponding to the box
(1, 0) is empty then we have an occurrence of m2. Now look at the case when this region is
not empty. Consider choosing the rightmost point in region. This gives us an occurrence of
the following mesh pattern.

By application of Proposition 2.1.1 we then achieve the following mesh pattern

If we look at the highlighted points we see that the subpattern is an occurrence of the mesh
pattern that we originally desired. This gives rise to the following rule:

Proposition 2.3.1 (Third Dominating Pattern Rule). Given two mesh patterns m1 = (σ, R1)
and m2 = (σ, R2), and a dominating classical pattern π = (π, ∅), the sets Av({π,m1}) and
Av({π,m2}) are coincident if

1. R14R2 = {(a, b)}

2. add_point ((σ, R1) , (a, b), D) where D ∈ {N, E, S,W } is coincident with a mesh
pattern containing an occurrence of (σ, R2) as a subpattern.

Proof. We need to prove that Av({π,m1}) = Av({π,m2}).
Assume without meaningful loss of generality that R2 = R1 ∪ {(a, b)}.

Consider a permutationω that contains an occurrence ofm2. ByNote 2.1.2, Av({π,m1}) ⊆
Av({π,m2}) as before.

Now consider a permutation % in Av(π) that contains an occurrence of m1. If the region
corresponding to the box (a, b) is empty then we have an occurrence of m2. If the region is
non-empty then by condition 2 of the proposition there exists a direction such that there exists
an occurrence of a mesh pattern of length one longer than m1 in this position. This mesh
pattern is coincident with another mesh pattern that contains an occurrence of m2. Hence,
every occurrence of m1 leads to an occurrence of m2. Thus Av({π,m2}) ⊆ Av({π,m1}) and
the two patterns are coincident. �

By application of this rule we can reduce the number of classes in Av({231, (12, R)}) to
56.

2.4 Equivalence classes of Av({321, (12, R)}).
When considering coincidences of mesh patterns with underlying classical pattern 12 in
Av(321) application of the previously established rules give no coincidences. Through
experimentation we discover that there are 7 non-trivial coincidence classes (all others are
singletons) which can be explained through the use of two different lines of reasoning.
Since the number of coincidences is so small we will reason for these coincidences without
attempting to generalise into concrete rules.
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Intuitively it is easy to see why our previous rules have no power here. There is nowhere
that it is possible to add a single point to gain an occurrence of π = 321. It is also impossible
to have a position where addition of an increase, or decrease, provides extra shading power.

The patterns

m1 = and m2

are equivalent in Av(321). (There are 3 symmetries of these patterns that are also equivalent
to each other by the same reasoning.)

Consider the region corresponding to the box (0, 1) in any occurrence of m1, in a
permutation. By Lemma 2.2.1 it must contain an increasing subsequence. If the region is
empty then we have an occurrence of m2. If there is only one point in the region we can
choose this to replace the 1 in the mesh pattern to get the required shading. If there is more
than one point then choosing the two leftmost points gives us the following mesh pattern.

Where the two highlighted points are the original two points. Now if we take the other
two points as the points in our mesh pattern then we get an occurrence of the pattern we
originally desired, and hence the two patterns are coincident. It is also possible to calculate
this coincidence by an extension of the Third Dominating rule, where we allow a sequence
of add_point operations, this is discussed further in the future work section.

The other reasoning applies to the patterns

m1 = and m2 =

which are coincident by experimentation.
In order to prove this coincidence we will proceed by mathematical induction on the

number of points in region corresponding to the middle box. We call this number n.

Base Case (n = 0): The base case holds since we can freely shade the box if it contains no
points.

Inductive Hypothesis (n = k): Suppose thatwe canfind an occurrence of the second pattern
if we have an occurrence of the first with k points in the middle box.

Inductive Step (n = k + 1) Suppose that we have (k + 1) points in the middle box. Choose
the bottom most point in the middle box, this gives the mesh pattern

X

Now we need to consider the box labelled X . If this box is empty then we have an
occurrence of m2 and are done. If this box contains any points then we gain some extra
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shading on the mesh pattern due to the dominating pattern

The two highlighted points form an occurrence of m1 with k points in the middle box,
and thus by the Inductive Hypothesis we are done.

By induction we have that every occurrence of m1 leads to an occurrence of m2 and by
Note 2.1.2 every occurrence of m2 is an occurrence of m1 so the two patterns are coincident.
This argument applies to another two pairs of classes. Therefore in total in Av(321, (12, R))
there are 213 coincidence classes.
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Chapter 3

Wilf-equivalences under dominating
patterns

One question often asked in the field of permutation patterns is that of Wilf-equivalence.
Two patterns π and σ are said to be Wilf-equivalent if their avoidance sets have the same
size at each length. More formally:

Definition 3.0.1 (Wilf-equivalence). Two patterns π and σ are said to be Wilf-equivalent
if for all k ≥ 0, |Avk (π) | = |Avk (σ) |. Two sets of permutation patterns R and S are are
Wilf-equivalent if for all k ≥ 0, |Avk (R) | = |Avk (S) |.

Wilf-equivalence is of interest since if two permutation classes are enumerated in the same
way then there should exist a bijection between them, and therefore any other combinatorial
object that they represent.

Coincident pattern classes are also Wilf-equivalent. This is due to the fact that if
Avk (S) = Avk (R) then obviously |Avk (R) | = |Avk (S) |. Coincidence is therefore a stronger
equivalence condition than Wilf-equivalence.

There are a number of symmetries we can use when examining Wilf-equivalences to
reduce the amount of work. It can be easily seen that the reverse, complement and inverse
operations (see Figure 3.1) preserve enumeration, and therefore these classes are trivially
Wilf-equivalent.

reverse
( )

=

complement
( )

=

inverse
( )

=

Figure 3.1: The operations reverse, complement and inverse for the pattern 231

The group of symmetries on permutations is isomorphic to the dihedral group of order 8,
the group of symmetries of a square. Reverse-inverse and reverse correspond to generators
of the dihedral group.

Since we are always considering Wilf-equivalences in the set Av(S) we must only use
these symmetries when they preserve the dominating pattern, if we were to allow other
symmetries, then the equivalences calculated in the previous section do not necessarily hold.
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Throughout this section we will consider Wilf-equivalences of patterns whilst avoiding
the dominating pattern 231. We will use C to denote Av(231) and C(x) will be the usual
Catalan generating function satisfying C(x) = 1 + xC(x)2. This is easy to see by structural
decomposition around the maximum, as shown in Figure 3.2.

A

B

Figure 3.2: Structural decomposition of a non-empty avoider of 231

The elements to the left of the maximum, A, have the structure of a 231 avoiding
permutation, and the elements to the right of the maximum, B, have the structure of a 231
avoiding permutation. Furthermore, all the elements in A lie below all of the elements in B.
We call A the lower-left section and B the upper-right section.

We can also decompose a permutation avoiding 231 around the leftmost point, giving a
similar figure.

3.1 Wilf-classes with patterns of length 1.
When considering themesh patterns of length 2 it will be useful to know theWilf-equivalence
classes of the mesh patterns of length 1 inside Av(231), this means that we are considering
the set Av

(
231, p

)
where p is a mesh-pattern of length 1.

The patterns in the following set are coincident,{
, , , , ,
, , ,

}
due to the fact that every permutation, except the empty permutation, must contain an
occurrence of all of these patterns.

The pattern is in its own Wilf-class since the only permutation containing this
pattern is the permutation 1. The avoiders of this pattern therefore have generating function
E(x) = C(x) − x.

The pattern p = is one of the quadrant marked mesh patterns studied by Kitaev,
Remmel, and Tiefenbruck [10]. Alternatively we can enumerate avoiders of p by decompos-
ing a non-empty avoider of p around the maximum element in order to give the following
structural decomposition.

F = ε t

F

C \ ε

If the upper-right section was empty the maximumwould create an occurrence of the pattern,
however no points in this section can create an occurrence since the maximum lies in a region
corresponding to the shading in p, so we can use any avoider of 231. The lower-left section
however can create occurrences of p and therefore must also avoid p, as well as 231. This
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gives the generating function of avoiders to be the function F (x) satisfying.

F (x) = 1 + xF (x)(C(x) − 1)
Solving for F gives

F (x) =
1

1 + x − xC(x)

F (x) =
C(x)

1 + xC(x)

Calculating coefficients given by this generating function gives the Fine numbers.

1, 0, 1, 2, 6, 18, 57, 186, 622, 2120, 7338, . . . (OEIS: A000957)

It can be shown by use of Proposition 2.2.2 that the patterns and q1 = are
coincident. Consider the decomposition of a non-empty avoider of q1 in Av(231) around the
maximum:

G1 = ε t

C \ ε

C

This can be explained succinctly by the fact that a permutation containing q1 starts with it’s
maximum, by not allowing the lower-left section of the 231 avoider to be empty we prevent
an occurrence from ever happening.

Consider q2 = , avoiding this pattern means that a permutation does not end with it’s
maximum. We can perform a similar decomposition as before to get

G2 = ε t

C

C \ ε

Now consider q3 = , the avoiders of this pattern are permutations that do not start
with their minimum. In this case we perform the decomposition around the leftmost element

G3 = ε t
C

C \ ε

All of these classes have the same generating function, namely

G(x) = 1 + xC(x)(C(x) − 1). (3.1.1)

The coefficients of this generating function are

1, 0, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, . . . (OEIS: A000245 with offset 1)

There is one pattern of length 1 still to consider. The pattern r = is avoided by all
permutations that do not end in their minimum. Considering the standard decomposition of

https://oeis.org/A000957
https://oeis.org/A000245
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a 231 avoider around the maximum we can see that an avoider of r must fit into precisely
one of the following two forms.

H = ε t

C \ ε

C

︸         ︷︷         ︸
Minimum comes before the maximum.

t H\ε

︸        ︷︷        ︸
Minimum is after the maximum, minimum cannot be last.

Therefore this particular class has generating function H (x) satisfying

H (x) = 1 + xC(x)(C(x) − 1) + x(H (x) − 1)

Computing coefficients of this generating function gives

1, 0, 1, 4, 13, 41, 131, 428, 1429, 4861, 16795, . . . (OEIS: A141364)

3.2 Wilf-classes with patterns of length 2
By use of the set equivalences from Chapter 2 we know there are at most 95Wilf-equivalence
classes.

In order to consider symmetries we must only take the symmetries that preserve the
pattern 231. The only symmetry that preserves the pattern 231 is reverse-complement-
inverse. Using this symmetry to reduces the number of Wilf-classes gives us 61 classes
of trivial Wilf-equivalences, these Wilf-equivalences are explained by patterns being either
coincident, or being the reverse-complement-inverse of a pattern.

Computing avoiders up to length 10 suggest that there are at least 23 Wilf-classes, of
which 13 are non-trivial, this means that there are Wilf-equivalences between patterns that
are not explained by coincidences.

When considering explanations of Wilf-equivalences we consider how the permutations
correspond to set-partitions.

Note 3.2.1. The avoiders of the pattern q = (231, {(1, 0), (1, 1), (1, 2), (1, 3)}), , inSn

are in one-to-one correspondence with partitions of ~n� . (Claesson [6, Prop. 2])

The idea of the bijection is as follows. Let π be a permutation in Avn
(
q
)
in one-line

notation and insert a dash between each ascent in π. This corresponds to set partitions where
the blocks are the elements between the dashes, the blocks are listed in increasing order of
their least element, with the elements written in each block in descending order.

Example 3.2.2. Given the permutation π = 542139687 this corresponds to the partition
{{5, 4, 2, 1}, {3}, {9, 6}, {8, 7}}.

We call the least element in each block the block bottom.
We are looking at permutations in Av(231), all of these permutations also avoid the mesh

pattern in Note 3.2.1, i.e. Av(231) ⊂ Av
(
q
)
.

The classes containing the following patterns are experimentally Wilf-equivalent up to
length 10 in Av(231)

and

https://oeis.org/A141364
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This is true since the only avoiders of these patterns are the decreasing sequence and the
increasing sequence respectively, and both of these avoid 231 in all cases. There is therefore
1 avoider at every length.

The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = and m2 =

It is obvious that these two areWilf-equivalent since the only permutations that contain these
patterns are 12 and 21 respectively, therefore the avoiders of these patterns are counted by
the Catalan numbers at all lengths except for length 2 where there is precisely 1 avoider.
Therefore the generating function is

I (x) = C(x) − x2

3.2.1
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

, , , , ,

Consider containers of these patterns in Av(231). For each of these patterns there is precisely
one occurrence in any permutation containing the pattern. Now consider the points in the
region corresponding to the unshaded box in each case. Each must contain an avoider of
231 that is of length n− 2. Therefore these classes are all Wilf-equivalent and the number of
length n avoiders is

Jn = Cn − Cn−2

for n ≥ 2 where Cn is the nth Catalan number, the number of 231 avoiders of length n. This
gives the sequence

1, 1, 1, 4, 12, 37, 118, 387, 1298, 4433, 15366, . . . (Cn−A001453 offset 2)

3.2.2
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

, ,

Consider containers of these patterns. Each of these patterns again occurs precisely once in
any containing permutation. However this time when considering the region corresponding
to the unshaded box we need to take into consideration Lemma 2.2.1 and so the empty box
can only contain a decreasing subsequence. There is precisely one decreasing subsequence
at every length, and so there is exactly one container of each pattern at each length. The
three patterns are Wilf-equivalent and have Cn − 1 avoiders of length n for all n ≥ 2. This
gives the sequence

1, 1, 1, 4, 13, 41, 131, 428, 1429, 4861, 16795, . . . (OEIS: A001453 offset 2)

https://oeis.org/A001453
https://oeis.org/A001453
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3.2.3
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

The containers of the patterns have exactly one occurrence. Once again we consider the
regions corresponding to the unshaded regions, For each pattern, except the first the two,
these regions are independent, and one contains any avoider of 231 and the other must
contain a decreasing sequence by Lemma 2.2.1. Let us consider the first pattern separately.
In order to avoid 231 across the regions corresponding to the unshaded boxes we can add
some additional restrictions, i.e. all elements in the top region must be to the right of all
elements in the bottom region.

(3.2.1)

Now we can see that the region corresponding to the top free box must contain a decreasing
sequence, and the bottom must contain an avoider of 231 and these two do not interact in
any manner. The containers of this pattern are counted the same as the other patterns, and
due to this they are Wilf-equivalent in Av(231). The containers have generating function
x2C(x)/(1 − x). Enumerating avoiders therefore gives us

1, 1, 1, 3, 10, 33, 109, 364, 1233, 4236, 14740, . . . (Cn− A014137 offset 2)

3.2.4
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = and m2 =

In this case it is better to consider the containers of the patterns instead of the avoiders due
to the amount of shadings in the mesh.

We look at the containers of the pattern m1, there can only ever be one occurrence of this
pattern in a permutation corresponding to the last point in the permutation and the minimum.
Consider an occurrence of m1, the points in the two regions corresponding to the the two
boxesmust form decreasing subsequences. For a permutation of length k if we fix the number
of points in one of the boxes the number of points in the other box is determined. Therefore
we can have any number of points from {0, . . . , k − 2} in the bottom box. Therefore there are
k −1 containers of length k. These permutations correspond to set partitions of k points into
exactly two non-overlapping parts, such that the first part is the decreasing sequence from
the first element to the minumum, and the second part is the elements in the sequence from
the maximum to the last element.

Now consider the containers of m2. We know that the unshaded region must contain a
decreasing subsequence, with the point corresponding to the 1 in the mesh pattern. This
decreasing subsequence has k − 1 points. We can put the point corresponding to the 2 above
any of these points and therefore there are k − 1 containers of length k.

https://oeis.org/A014137
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Therefore these two patterns have been shown to have the same number of avoiders of
length k for all k and are Wilf-equivalent. The number of avoiders of length k is given by

Kk = Ck − (k − 1), K0 = 1

and have enumeration

1, 1, 1, 3, 11, 38, 127, 423, 1423, 4854, 16787, . . . (Cn− A000027 offset 2)

3.2.5
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = ,m2 = , (3.2.2)

m3 = , and m4 = (3.2.3)

First we prove the Wilf-equivalence between m1 and m2 shown in (3.2.2). The easiest
way to show that these are equinumerous is to consider the containers as set partitions.

Considering an occurrence of either of these patterns in a permutation we know the
following about the points corresponding to the points in the patterns.

• The point corresponding to the first point in both patterns must lie in the first block of
the set partition (there are no points southwest from it in the permutation).

• The point corresponding to the second point in both patterns is a block bottom (there
are no points southeast of it in the permutation).

• If the region corresponding to box (2, 2) in an occurrence of m1 is empty, then the
point corresponding to the second point is precisely the last block bottom. If the
region corresponding to box (0, 1) in an occurrence of m2 is empty, then the point
corresponding to the second point is precisely the first block bottom. If these regions
are non-empty then the block containing the point corresponding to the second point
in both patterns contains only the point (it is a singleton block).

This tells us that an occurrence of the patterns must happen when there is a singleton block
occurring after the first block. The difference between the patterns is in the underlying
classical pattern. This means that permutations containing m1 correspond to set partitions
with a singleton block with value one higher than some element in the block containing 1.
The permutations containing m2 correspond to the set partitions containing a block with
block bottom having value one lower than some element in the block containing 1 and if this
block is not the block containing 1 then it is a singleton block. This proves that the containers
of both of these patterns in Av(231) are equinumerous, and therefore so are their avoiders.

Consider an avoider of 231 and m3. We can perform the decomposition around the
maximum

L1 = ε t

L1

G1

https://oeis.org/A000027
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Only the first point in the top right region can create an occurrence of m3 if and only if it is
the element with largest value in this region, therefore the partial permutation in this region
must avoid starting with the maximum.

Looking at avoiders of 231 and m4 we can perform a similar decomposition around the
maximum to get

L2 = ε t

L2

G3

Any occurrence of m4 can never occur in the top right region. It could only occur between
the maximum and the first point in the region, if and only if this first point is the lowest
valued element in this region. Since both G1 and G3 have the same enumeration, L1 and L2
must also have the same enumeration and are therefore Wilf-equivalent.

Now we must consolidate these two subclasses. In order to do this we must consider
the decomposition around the leftmost point of a permutation in Av(231,m1). We have the
following

L3 = ε t
G3

L3

It is therefore obvious that avoiders of m1 and avoiders of m4 have the same enumeration, and
therefore all four patterns are Wilf-equivalent in Av(231) with generating function satisfying

L(x) = 1 + xL(x)G(x)

Where G(x) is the generating function given in equation (3.1.1). This can be enumerated to
give the sequence

1, 1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918, . . . (OEIS: A035929 offset 1)

3.2.6
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = and m2 =

First consider the structure of an avoider of m1 in Av(231). We can perform the usual
structural decomposition of an avoider of 231 where we consider decomposition around the
maximum. If M1 is the set Av(231,m1) then any permutation in M1 either starts with a
maximum or does not, giving us the decomposition

M1 = ε t

C \ ε

C t F

https://oeis.org/A035929
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Where F = Av(231, ). Now consider the decomposition around the maximum of a
permutation in M2 = Av(231,m2), the permutation either ends with the maximum, or it
does not, so we get

M2 = ε t

C

C \ ε t

F

Therefore both of these sets of avoiders are enumerated in the samemanner having generating
function satisfying

M (x) = 1 + xC(x)(C(x) − 1) + xF (x)

This generating function gives

1, 1, 1, 4, 11, 34, 108, 354, 1187, 4054, 14054, . . . (Cn−A000958 offset 2)

3.2.7
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = ,m2 = ,

m3 = , and m4 =

First consider the decomposition of avoiders of m1 in Av(231) around the maximum. We
have different conditions if we start with the maximum or not.

N1 = ε t

G1\ε

C t N1

Where G1 = Av(231, ). Nowwe decompose the avoiders of m2 around the leftmost point,
we have similar conditions for starting with the maximum

N2 = ε t
C \ ε

C \ ε

t

N2

This gives us two generating functions satisfying the following pair of equations

N1(x) = 1 + xC(x)(G(x) − 1) + xN1(x) (3.2.4)
and N2(x) = 1 + x(C(x) − 1)2 + xN2(x) (3.2.5)

https://oeis.org/A000958
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In order for these two functions to give the same value it is necessary to show that (3.2.4)
and (3.2.5) are equal, this occurs if C(x)(G(x) − 1) = (C(x) − 1)2.

(C(x) − 1)2 = C(x)(G(x) − 1)

⇔ x2C4(x) = xC(x)(C(x) − 1)C(x) By definition of G and C

⇔ x2C4(x) = xC3(x) − xC2(x)

⇔ xC2(x) = C(x) − 1 Divide by xC2(x)

⇔ C(x) = 1 + xC2(x)

The final line is always satisfied since it is the form of C(x), and therefore the two generating
functions are equal.

Now we look at the other patterns. In particular note that any container of these patterns
can contain the pattern precisely once, m2 specifies the minimum and last point, m3 and m4
both use the last point and the previous block bottom (in the set partition context).

Consider an occurrence of m3 in Av(231)

b1

b2

b3

The regions b2 and b3 must contain a decreasing sequence by Lemma 2.2.1. The box
labelled b1 must contain an avoider of 231. However note that the points in this box can have
interaction with any points in box b2. If there is a point in b2 then any points in b1 to the
left of this point must be lower than any points to the right of this point. By extension, if b2
contains a decreasing sequence with k points, there are k + 1 non-interacting avoiders of 231
in b1.

Now in m2 and m4 containers we can use the same method as in (3.2.1) to separate the
two decreasing sequences in the free regions in the top row, and the mixing happens in the
same manner as in a container of m3. We now have that m2,m3 and m4 have the same number
of containers so are Wilf-equivalent, and that m1 and m2 have the same generating function
so all four classes are Wilf-equivalent.

Evaluating the generating function N (x) gives us the enumeration

1, 1, 1, 2, 6, 20, 68, 233, 805, 2807, 9879, . . . (Cn− A014138 offset 1)

3.2.8
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

, , , , and

If O1 is the set of avoiders of , then by the structural decomposition around the
maximum we have

O1 = ε t C

https://oeis.org/A014138
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The lower-left section is empty because the minimum must occur after the maximum. These
are counted by O(x) = 1 + xC(x)

The pattern occurs if the last element is higher than the penultimate element. This
can only occur if the last element is in a single block in the set partition context. In order to
construct an avoider of length n we can take any avoider of 231 of length n− 1 and insert the
new maximum into the last block. This ensures that the last block is never a singleton. This
means that these permutations are also counted by O(x).

Considering the last pattern, the only way we can construct an avoider is to take any 231
avoider and add a new minimum at the start of the permutation. Adding a new leftmost point
with any other value would either create an occurrence of 231 or the mesh pattern. Therefore
these permutations are also counted by O(x) = 1 + xC(x).

The avoiders of the third pattern can be decomposed by the maximum to give

O3 = ε t

F

O3

Where F = Av((231, )). The generating function derived satisfies O3(x) = 1 +
xF (x)O3(x). The fourth pattern can be decomposed around the maximum in a similar
manner.

O4 = ε t

O4

F

So clearly O4(x) = O3(x). We need to show that the generating function O3(x) is the
same as O(x)

O3(x) = 1 + xF (x)O3(x)

=
1

1 − xF (x)
Solving for O3(x)

=
1

1 − xC
1+xC(x)

Substituting for F (x)

=
1 + xC(x)

1 + xC(x) − xC(x)
= 1 + xC(x)

We have that O3(x) = 1 + xC(x) = O(x) so all four patterns are Wilf-equivalent and have
enumeration sequence

1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . . (OEIS: A000108 offset 1)

This is an offset of the Catalan numbers.

https://oeis.org/A000108
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3.2.9
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = ,m2 = ,

m3 = , and m4 =

First we consider an occurrence of m2 in a permutation in Av(231)

b1

b2

b3

We can choose the lowest occurrence of m2 in the sense that the region corresponding to b1
must avoid the pattern as well as 231. The regions corresponding to b2 and b3 must now
contain avoiders of 231, all points in the region corresponding to b2 must be to the left of
those in the region corresponding to b3 since we are in Av(231). Since we already have an
occurrence of m2 we do not need to care about creating more occurrences so there are no
other conditions on these boxes.

Now looking at an occurrence of m3 in π ∈ Av(231)

b1

b2

b3

We consider the leftmost occurrence of m3 in the sense that the region corresponding to b1
must avoid the pattern as well as 231 once more. The regions corresponding to b2 and
b3 must avoid 231 and as in a container of m2 the points in the region corresponding to the
box containing b2 must be lower in value than all of those in the region corresponding to the
box containing b3, as doing so would lead to an occurrence of 231. Therefore both of these
sets of containers are enumerated in the same way.

Now we find a structural decomposition for an avoider of m2. Decomposing around the
maximum we see the set of avoiders of m2 have the form

P2 = ε t

P2\ε

C t F

We can decompose an avoider of m1 in Av(231) around the leftmost point in a similar
manner:

P1 = ε t
C

P1\ε

t
F
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These two decompositions tell us that these two patterns are Wilf-equivalent and have
generating function

P1 = 1 + x(P1(x) − 1)C(x) + xF (x) (3.2.6)
Now consider an avoider of m4 decomposed around the maximum

P4 = ε t

C

Q

HereQ is the permutations avoiding 231,m4 and p = , since if the subsequence in this box
were to start with the maximum then this point and the maximumwould create an occurrence
of m4. Now consider decomposition of a permutation in Q around its leftmost point.

Q = ε t
P4\ε

C

This gives us the generating function

Q(x) = 1 + xC(x)(P4(x) − 1)

Now we get the following for P4

P4(x) = 1 + xC(x)(xC(x)(P4(x) − 1) + 1) (3.2.7)

All that remains to show Wilf-equivalence is to show that equation (3.2.6) and equa-
tion (3.2.7) are the same generating function. First solve equation (3.2.7) for P4(x)

P4(x) = 1 + xC(x)(xC(x)(P4(x) − 1) + 1)

= 1 + x2C2(x)P4(x) − x2C2(x) + xC(x)

= 1 +
xC(x)

1 − x2C2(x)

= 1 +
xC(x)

(1 − xC(x))(1 + xC(x))
Difference of squares

P4(x) = 1 +
xC2(x)

1 + xC(x)
C(x) =

1
1 − xC(x)

(3.2.8)

Now we solve equation (3.2.6) for P1(x)

P1(x) = 1 + x(P1(x) − 1)C(x) + xF (x)
= 1 + xP1(x)C(x) − xC(x) + xF (x)

P1(x) = 1 + xC(x)F (x)

P1(x) = 1 +
xC2(x)

1 + xC(x)
Substitution of F (x)

(3.2.9)

We have shown that P1 and P4 are indeed the same generating function, and we have that
the classes containing these four patterns are Wilf-equivalent. Evaluating the generating
function P(x) gives

1, 1, 1, 3, 8, 24, 75, 243, 808, 2742, 9458, . . . (OEIS: A001453)

https://oeis.org/A001453
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3.2.10
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

m1 = and m2 =

Let R1 be the set of avoiders of m1 in Av(231). By structural decomposition around the
leftmost point we have

R1 = ε t
R′1

R1

Where R′1 is a permutation avoiding 231,m1 and . Now consider the decomposition of a
permutation in R′1. It can once again be decomposed around the leftmost point

R′1 = ε t
R′1

R1\ε

This is a complete decomposition of avoiders of m1. Now we look at an avoider of m2, this
time decomposition is around the leftmost point

R2 = ε t
R2

R′2

Where R′2 is a permutation avoiding 231,m2 and . Again we use the same method of
decomposition of a permutation in R′2

R′2 = ε t
R2\ε

R′2

This gives us a generating function R(x) satisfying

R(x) = 1 + xR(x)R′(x) (3.2.10)
R′(x) = 1 + x(R(x) − 1)R′(x) (3.2.11)

Solving equation (3.2.11) for R′(x) and substituting into equation (3.2.10) gives us that the
generating function for R(x) satisfies

R(x) = xR2(x) − x(R(x) − 1) + 1 (3.2.12)

Evaluating R(x) gives us the sequence

1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835, . . . (OEIS: A001006 with offset 1)

This is an offset of the Motzkin numbers.

https://oeis.org/A001006
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3.2.11
The following patterns are experimentally Wilf-equivalent up to length 10 in Av(231)

, , , , ,

, , ,

In order to gain enumeration, consider decomposition of avoiders of first pattern, ,
around the maximum.

S1 = ε t t

C \ ε

C

This gives us the following generating function

S(x) = 1 + x + xC(x)(C(x) − 1) (3.2.13)

Now we consider decomposition of an avoider of the second pattern, , in Av(231)
around the maximum. This avoider has form

S2 = ε t

G2

C

Where G2 = Av(231, ). This gives us the generating function
S2(x) = 1 + xC(x)G(x)

= 1 + xC(x)(1 + xC(x)(C(x) − 1))

= 1 + xC(x)(C(x) − xC(x)) C(x) = 1 + xC2(x)

= 1 + x + xC2(x) − xC(x)
= 1 + x + xC(x)(C(x) − 1)

Therefore this generating function is the same as equation (3.2.13). We can decompose
, , , , and around the leftmost point into an avoider of one of the patterns
with generating function G(x) and an avoider of 231.

Now decompose an avoider of around the leftmost point.

S3 = ε t
C

S3\ε

t
G3

Where G3 = Av(231, ). This gives generating function S3(x) satisfying
S3(x) = 1 + xC(x)(S3(x) − 1) + xG(x)

= C(x) − xC2(x) + xC(x) + x2C3(x) − x2C2 Solving for S3(x)

= 1 + xC(x) + x2C3(x) − xC2(x) C = 1 + xC2(x)

= 1 + x + x2C3(x) xC2(x) = C(x) − 1
= 1 + x + xC(x)(C(x) − 1)
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This is equivalent to equation (3.2.13), and therefore these patterns are Wilf-equivalent. The
classes have enumeration

1, 1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934, . . . (OEIS: A071724 with offset)

https://oeis.org/A071724
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Chapter 4

Conclusions and Future work

If we consider a similar system for dominating patterns of length 4 and mesh patterns of
length 2, it can be seen that the number of cases required to establish rules increases to a
number that is infeasible to compute manually. For an extension of the First Dominating rule
alone, we would have to consider placement of points in any pair of unshaded regions. The
fact that the rules established do not completely cover the coincidences with a dominating
pattern of length 3 (see Table 2.1) shows that this is a difficult task.

It is interesting to consider the application of the Third Dominating rule, as well as the
simple extension of allowing a sequence of add_point operations, to mesh patterns without
any dominating pattern in order to try to capture some of the coincidences described in
Hilmarsson, Jónsdóttir, Sigurðardóttir, et al. [9] and Claesson, Tenner, and Ulfarsson [8].

Example 4.0.1. We can establish the coincidence between the patterns

m1 = , and m2 =

That is not explained by the methods presented by Claesson, Tenner, and Ulfarsson [8].
Consider a permutation containing m1,

Y
X

If the regions corresponding to both X and Y are empty then we have an occurrence of
m2. Consider if the region corresponding to X is non-empty, we can then choose the lowest
valued point in this region

Y

If the region corresponding toY is empty then we have an occurrence of m2 with the indicated
points. Now if the region corresponding to Y is non-empty, we can choose the rightmost
point in this region.
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And now the two indicated points form an occurrence of m2. We have therefore shown
that any occurrence of m1 is an occurrence of m2 and we can easily show the converse by
the same reasoning, so m1 and m2 are coincident. This is captured by an extension of the
Third Dominating rule where we allow multiple steps of adding points before we check for
subpattern containment.

It is not possible to apply the first and second Dominating Rules to the pattern itself,
since when applying the rules we consider containers of the pattern inside the avoiders of the
dominating pattern. For example if we were to attempt to apply the first rule to the pattern
12 then we would have to consider containers of 12 inside Av(12), and obviously this can
never occur.

It is also possible to take sets of mesh patterns instead of a single mesh pattern when
considering dominating rules, and expressing coincidence between these sets. Doing this
may give nice results. Coincidences between sets with multiple dominating patterns can also
be considered, as this provides even more power to the rules discussed, these methods may
be useful for classifying coincidence in large sets of pattern. It is also possible to apply these
rules to sets where the dominating pattern is a mesh pattern.

It would be interesting to consider a systematic explanation ofWilf-equivalences amongst
classes where 321 is the dominating pattern, possible using the construction presented in [3,
Sec. 12], in order to directly reach enumeration and hopefully establish some of the non-
trivial Wilf-equivalences between classes with different dominating patterns. For example,
it is possible to show that the sets T = Av

(
, 231

)
and U = Av

(
, 321

)
, are Wilf-

equivalent. This can be seen by considering an occurrence of the mesh pattern, p = in
a permutation

b1

b2 b3

If we are inside Av(231) then any points in the region corresponding to the box b1
must be to the right of the points in the region corresponding to box b2, and must also
form a decreasing subsequence by Lemma 2.2.1. Furthermore, the points in the regions
corresponding to b2 and b3 must form an avoider of 231 with the indicated point. Therefore
the containers of p in Av(231) have generating function T (x) = x(C(x) − 1)/(1 − x). Now,
if we are in Av(321) then any points in the region corresponding to the box b1 must be to
the left of the points in the region corresponding to box b2, and must also form a increasing
subsequence by Lemma 2.2.1. Furthermore, the points in the regions corresponding to b2
and b3 must form an avoider of 321 with the indicated point. Hence, the containers of p in
Av(321) have generating function U (x) = x(C(x) − 1)/(1 − x) and both of these classes
have the same enumeration.
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Appendix A

Equivalence classes of mesh patterns

A.1 Coincidence classes with no dominating pattern

(A.1.1)

(A.1.2)

(A.1.3) (A.1.4)

(A.1.5) (A.1.6)

(A.1.7) (A.1.8) (A.1.9)



36 APPENDIX A. EQUIVALENCE CLASSES OF MESH PATTERNS

(A.1.10)

(A.1.11)

(A.1.12)

(A.1.13) (A.1.14)

(A.1.15)

(A.1.16)

(A.1.17)

(A.1.18) (A.1.19) (A.1.20)

(A.1.21)
(A.1.22)

(A.1.23)

(A.1.24) (A.1.25) (A.1.26)
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(A.1.27) (A.1.28)

(A.1.29) (A.1.30) (A.1.31)

(A.1.32) (A.1.33) (A.1.34)

(A.1.35) (A.1.36) (A.1.37)

(A.1.38) (A.1.39) (A.1.40)

(A.1.41) (A.1.42) (A.1.43)

(A.1.44) (A.1.45)

(A.1.46)

(A.1.47) (A.1.48) (A.1.49)

(A.1.50) (A.1.51) (A.1.52)

(A.1.53) (A.1.54) (A.1.55)

(A.1.56) (A.1.57) (A.1.58)

(A.1.59) (A.1.60) (A.1.61)

(A.1.62) (A.1.63) (A.1.64)

(A.1.65)

(A.1.66)

(A.1.67)
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(A.1.68) (A.1.69)

(A.1.70)

(A.1.71) (A.1.72) (A.1.73)

(A.1.74)

(A.1.75) (A.1.76) (A.1.77)

(A.1.78) (A.1.79) (A.1.80)

(A.1.81) (A.1.82) (A.1.83)

(A.1.84) (A.1.85) (A.1.86)

(A.1.87) (A.1.88) (A.1.89)

(A.1.90) (A.1.91) (A.1.92)

(A.1.93) (A.1.94) (A.1.95)

(A.1.96) (A.1.97) (A.1.98)

(A.1.99) (A.1.100) (A.1.101)

(A.1.102) (A.1.103) (A.1.104)

(A.1.105) (A.1.106) (A.1.107)
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(A.1.108) (A.1.109) (A.1.110)

(A.1.111) (A.1.112) (A.1.113)

(A.1.114)
(A.1.115) (A.1.116)

(A.1.117) (A.1.118) (A.1.119)

(A.1.120) (A.1.121) (A.1.122)

(A.1.123) (A.1.124) (A.1.125)

(A.1.126) (A.1.127) (A.1.128)

(A.1.129) (A.1.130) (A.1.131)

(A.1.132) (A.1.133)
(A.1.134)

(A.1.135) (A.1.136) (A.1.137)

(A.1.138)
(A.1.139) (A.1.140)

(A.1.141) (A.1.142) (A.1.143)

(A.1.144) (A.1.145) (A.1.146)

(A.1.147) (A.1.148) (A.1.149)
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(A.1.150) (A.1.151) (A.1.152)

(A.1.153) (A.1.154) (A.1.155)

(A.1.156)
(A.1.157) (A.1.158)

(A.1.159) (A.1.160) (A.1.161)

(A.1.162) (A.1.163) (A.1.164)

(A.1.165)
(A.1.166)

(A.1.167)

(A.1.168)
(A.1.169)

(A.1.170)

(A.1.171) (A.1.172)
(A.1.173)

(A.1.174) (A.1.175)
(A.1.176)

(A.1.177) (A.1.178) (A.1.179)

(A.1.180) (A.1.181) (A.1.182)

(A.1.183) (A.1.184) (A.1.185)

(A.1.186) (A.1.187) (A.1.188)
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(A.1.189) (A.1.190) (A.1.191)

(A.1.192)
(A.1.193) (A.1.194)

(A.1.195) (A.1.196) (A.1.197)

(A.1.198) (A.1.199) (A.1.200)

(A.1.201)

(A.1.202)
(A.1.203)

(A.1.204) (A.1.205)

(A.1.206)

(A.1.207) (A.1.208) (A.1.209)

(A.1.210) (A.1.211) (A.1.212)

(A.1.213) (A.1.214) (A.1.215)

(A.1.216) (A.1.217) (A.1.218)

(A.1.219) (A.1.220)

The classes obtained with underlying pattern 21 are obtained by calculating the reverse of
each pattern in a class.
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A.2 Consolidation of classes by Dominating Pattern rules
Each of the lines in the following tables are the sets of classes that are obtained by successive
application of each of the Dominating Rules, only those coincidences that are not already
calculated are shown.

A.2.1 First Dominating Rule
A.2.1.1 Dominating pattern 321

Mesh pattern family
12 21

1, 93, 94, 97, 105, 106, 109, 154, 155, 159
2, 7, 95, 96, 100, 107, 108, 112, 156, 157, 158
3, 4, 89, 90, 98, 99
5, 6, 91, 92, 101, 102, 113, 114
8, 9, 103, 104, 110, 111
10, 18, 117, 118, 123, 134, 135, 142, 190, 191, 195
11, 19, 20, 119, 120
12, 21, 22, 67, 121, 122, 192, 193, 194
13, 14, 115, 116, 124, 125, 196, 197
15, 23, 24, 32, 126, 127, 138, 139, 145
16, 17, 128, 129, 146, 147, 200, 201
25, 26, 30, 31, 130, 131, 136, 137
27, 33, 66, 68, 69, 140, 141, 198, 199
28, 29, 132, 133, 143, 144
34, 35, 148, 149, 160, 161
36, 37, 40, 41, 150, 151, 162, 163
38, 39, 152, 153, 164, 165
42, 43, 56, 166, 167, 180
44, 45, 57, 168, 169, 181
46, 47, 58, 59, 170, 171, 182, 183
48, 49, 60, 172, 173, 184
50, 51, 61, 62, 174, 175, 185, 186
52, 53, 63, 176, 177, 187
54, 55, 64, 65, 178, 179, 188, 189
70, 71, 79, 83, 202, 203, 211, 215
72, 73, 80, 204, 205, 212
74, 81, 82, 86, 206, 213, 214, 218
75, 76, 84, 85, 207, 208, 216, 217
77, 78, 87, 88, 209, 210, 219, 220
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A.2.1.2 Dominating pattern 231

Mesh pattern family
12 21

0, 9, 17, 24, 25, 29, 30, 129, 130, 133, 135 0, 41, 42, 43, 44, 47, 48, 55, 56, 59, 165,
166, 167, 168, 171, 172

1, 10, 11, 14, 18, 19, 20, 21, 22, 26, 31, 32,
39, 66, 67, 118, 120, 125, 137, 139

1, 35, 36, 39, 45, 46, 51, 52, 57, 58, 149,
150, 155, 161, 169, 170, 175, 176

2, 12, 33 2, 7, 33, 49, 60
3, 13, 34 3, 8, 34, 50, 61
4, 15, 37, 90, 151 4, 37, 53, 63
5, 16, 38, 91, 152 5, 38, 54, 64
6, 23 6, 40, 62
7, 27 9, 24, 25, 29, 69, 70, 71, 72, 78, 82, 129,

130, 133, 135, 201, 202, 203, 204
8, 28 10, 11, 14, 18, 20, 22, 26, 65, 67, 73, 118,

120, 125, 137, 139, 191, 197, 205
35, 36, 65, 149, 150 12, 27, 74, 83
40, 68 13, 28, 75, 84
41, 47, 69 15, 76, 86, 208
42, 48, 70 16, 77, 87, 209
43, 71 17, 30, 79
44, 72 19, 31, 66, 80
45, 46, 51, 52, 73 21, 32, 81
49, 74 23, 68, 85
50, 75 88, 102, 147, 173
53, 76 89, 103, 148, 174
54, 77 90, 151, 177
55, 78 91, 152, 178
56, 79 92, 104, 153, 179
57, 80 93, 105, 154, 180
58, 81 94, 106, 156, 181
59, 82 95, 107, 157, 182
60, 83 96, 108, 158, 183
61, 84 97, 109, 159, 184
62, 85 98, 110, 160, 185
63, 86 99, 111, 162, 186
64, 87 100, 112, 163, 187
88, 114, 147 101, 113, 164, 188
89, 115, 148 114, 131, 206
92, 116 115, 132, 207
93, 117 116, 134, 189, 210
94, 119 117, 136, 190, 211
95, 121 119, 138, 192, 212
96, 122 121, 140, 193, 213
97, 123 122, 141, 194, 214
98, 124 123, 142, 195, 215
99, 126 124, 143, 196, 216
100, 127 126, 144, 198, 217
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101, 128 127, 145, 199, 218
102, 131 128, 146, 200, 219
103, 132
104, 134
105, 136
106, 138
107, 140
108, 141
109, 142
110, 143
111, 144
112, 145
113, 146
153, 189
154, 190
155, 191
156, 192
157, 193
158, 194
159, 195
160, 196
161, 197
162, 198
163, 199
164, 200
165, 171, 201
166, 172, 202
167, 203
168, 204
169, 170, 175, 176, 205
173, 206
174, 207
177, 208
178, 209
179, 210
180, 211
181, 212
182, 213
183, 214
184, 215
185, 216
186, 217
187, 218
188, 219
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A.2.2 Second Dominating Rule
A.2.2.1 Dominating pattern 321

There are no new coincidences when the dominating pattern is 321 when applying the second
dominating rule.

A.2.2.2 Dominating pattern 231

Mesh pattern family
12 21

2, 7 1, 6, 155
3, 8 9, 17, 133
12, 27 10, 18, 19, 118
13, 28 11, 20, 21, 66, 120, 191
41, 43 14, 22, 23, 31, 125, 137
42, 44 15, 127, 145, 199
55, 56 25, 30
57, 58 26, 32, 65, 67, 68, 139, 197
69, 71 36, 40
70, 72 52, 62
78, 79 72, 79
80, 81 73, 80, 81, 85, 205
88, 102 76, 86, 208, 218
89, 103 88, 97, 102, 109, 147, 159
92, 93, 104, 105 90, 100, 112, 151, 163
94, 95, 106, 107 114, 123, 131, 142, 195
96, 108 173, 184
97, 109 177, 187
98, 110 206, 215
99, 111
100, 112
101, 113
114, 131
115, 132
122, 141
123, 142
124, 143
126, 144
127, 145
128, 146
153, 154
156, 157
165, 167
166, 168
179, 180
181, 182
189, 190
192, 193
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201, 203
202, 204
210, 211
212, 213
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Wilf-equivalence data

B.1 Sequences with underlying pattern 231

Sequence Related OEIS entry Number of patterns in class
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 A000012 210

1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835 A001006 32
1, 1, 1, 2, 5, 13, 35, 97, 275, 794, 2327 A086581 8

1, 1, 1, 3, 6, 17, 43, 123, 343, 1004, 2938 A143363 2
1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862 A000108 314
1, 1, 1, 3, 7, 19, 53, 153, 453, 1367, 4191 A078481 2
1, 1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918 A035929 32
1, 1, 1, 2, 6, 20, 68, 233, 805, 2807, 9879 A014138 36
1, 1, 1, 3, 8, 24, 75, 243, 808, 2742, 9458 A000958 64

1, 1, 1, 2, 7, 25, 85, 285, 964, 3310, 11527 4
1, 1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934 A000245 176

1, 1, 1, 4, 10, 31, 97, 316, 1054, 3586, 12394 2
1, 1, 1, 3, 9, 29, 95, 317, 1075, 3699, 12891 4

1, 1, 1, 3, 10, 31, 98, 321, 1078, 3686, 12789 A114487 4
1, 1, 1, 2, 7, 26, 93, 325, 1129, 3935, 13813 A014140 8

1, 1, 1, 4, 11, 33, 105, 343, 1148, 3916, 13563 A127154 2
1, 1, 1, 4, 11, 34, 108, 354, 1187, 4054, 14054 A000958 8
1, 1, 1, 3, 10, 33, 109, 364, 1233, 4236, 14740 A014137 38
1, 1, 1, 4, 12, 37, 118, 387, 1298, 4433, 15366 A00108 46
1, 1, 1, 2, 8, 32, 117, 408, 1402, 4826, 16751 A000217 2

1, 1, 1, 3, 11, 38, 127, 423, 1423, 4854, 16787 A000027 6
1, 1, 1, 4, 13, 41, 131, 428, 1429, 4861, 16795 A001453 18
1, 1, 1, 5, 14, 42, 132, 429, 1430, 4862, 16796 A000108 6

B.2 Sequences with underlying pattern 321

Sequence Related OEIS entry Number of patterns in class
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 63
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 A000012 180
1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9 A000027 5

http://oeis.org/A000012
http://oeis.org/A001006
http://oeis.org/A086581
http://oeis.org/A143363
http://oeis.org/A000108
http://oeis.org/A078481
http://oeis.org/A035929
http://oeis.org/A014138
http://oeis.org/A000958
http://oeis.org/A000245
http://oeis.org/A114487
http://oeis.org/A014140
http://oeis.org/A127154
http://oeis.org/A000958
http://oeis.org/A014137
http://oeis.org/A00108
http://oeis.org/A000217
http://oeis.org/A000027
http://oeis.org/A001453
http://oeis.org/A000108
http://oeis.org/A000012
http://oeis.org/A000027
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1, 1, 1, 1, 2, 3, 6, 11, 22, 44, 90 A007477 8
1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256 A000079 30
1, 1, 1, 1, 3, 6, 13, 28, 60, 129, 277 A002478 2

1, 1, 1, 2, 3, 9, 16, 48, 102, 289, 693 1
1, 1, 1, 2, 4, 9, 21, 51, 127, 323, 835 A001006 17
1, 1, 1, 1, 3, 8, 21, 55, 144, 377, 987 A001906 4

1, 1, 1, 1, 3, 7, 19, 53, 153, 453, 1367 A078481 2
1, 1, 1, 1, 2, 5, 14, 42, 132, 429, 1430 A000108 12

1, 1, 1, 1, 3, 10, 30, 84, 227, 603, 1589 2
1, 1, 1, 2, 5, 13, 34, 89, 233, 610, 1597 A001519 8
1, 1, 1, 2, 3, 7, 19, 56, 174, 561, 1859 A167422 2

1, 1, 1, 2, 5, 13, 36, 103, 303, 910, 2779 8
1, 1, 1, 1, 3, 9, 28, 90, 297, 1001, 3432 A000245 8

1, 1, 1, 3, 6, 18, 47, 139, 405, 1225, 3740 2
1, 1, 1, 3, 7, 19, 53, 153, 453, 1367, 4191 A078481 2
1, 1, 1, 2, 4, 11, 34, 110, 365, 1234, 4237 4
1, 1, 1, 1, 3, 10, 33, 111, 379, 1312, 4596 A001558 2
1, 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862 A000108 170
1, 1, 1, 1, 4, 12, 39, 129, 436, 1498, 5218 A122920 4
1, 1, 1, 2, 5, 15, 48, 159, 538, 1850, 6446 8
1, 1, 1, 1, 4, 14, 48, 165, 572, 2002, 7072 A002057 6
1, 1, 1, 2, 6, 18, 57, 186, 622, 2120, 7338 A000957 4
1, 1, 1, 2, 6, 19, 61, 200, 670, 2286, 7918 A035929 32
1, 1, 1, 1, 5, 17, 57, 193, 662, 2299, 8073 4
1, 1, 1, 2, 6, 19, 61, 202, 683, 2349, 8191 2
1, 1, 1, 2, 6, 19, 62, 207, 704, 2431, 8502 A026012 8
1, 1, 1, 3, 8, 24, 75, 243, 808, 2742, 9458 A000958 18
1, 1, 1, 2, 7, 22, 71, 235, 794, 2728, 9503 2
1, 1, 1, 2, 6, 20, 68, 233, 805, 2807, 9879 A014138 12

1, 1, 1, 3, 8, 25, 80, 264, 890, 3053, 10622 4
1, 1, 1, 1, 4, 16, 63, 239, 880, 3184, 11431 2
1, 1, 1, 2, 8, 26, 85, 283, 959, 3300, 11505 4
1, 1, 1, 1, 5, 20, 74, 265, 937, 3304, 11678 4
1, 1, 1, 2, 6, 21, 75, 266, 938, 3305, 11679 8
1, 1, 1, 2, 7, 25, 86, 292, 995, 3425, 11926 4

1, 1, 1, 3, 9, 28, 90, 297, 1001, 3432, 11934 A000245 86
1, 1, 1, 4, 10, 31, 97, 316, 1054, 3586, 12394 1
1, 1, 1, 3, 10, 31, 98, 321, 1078, 3686, 12789 A114487 8

1, 1, 1, 4, 11, 33, 105, 343, 1148, 3916, 13563 A127154 1
1, 1, 1, 2, 7, 26, 93, 325, 1129, 3935, 13813 A014140 16

1, 1, 1, 4, 11, 34, 108, 354, 1187, 4054, 14054 A000958 2
1, 1, 1, 3, 9, 31, 105, 355, 1210, 4171, 14543 2

1, 1, 1, 3, 10, 33, 109, 364, 1233, 4236, 14740 A014137 36
1, 1, 1, 2, 9, 33, 113, 381, 1291, 4425, 15357 A192480 1

1, 1, 1, 3, 10, 34, 114, 382, 1292, 4426, 15358 2
1, 1, 1, 4, 12, 37, 118, 387, 1298, 4433, 15366 A000108 19
1, 1, 1, 3, 9, 30, 104, 365, 1286, 4542, 16092 A045623 8
1, 1, 1, 1, 6, 22, 91, 349, 1277, 4570, 16235 1

http://oeis.org/A007477
http://oeis.org/A000079
http://oeis.org/A002478
http://oeis.org/A001006
http://oeis.org/A001906
http://oeis.org/A078481
http://oeis.org/A000108
http://oeis.org/A001519
http://oeis.org/A167422
http://oeis.org/A000245
http://oeis.org/A078481
http://oeis.org/A001558
http://oeis.org/A000108
http://oeis.org/A122920
http://oeis.org/A002057
http://oeis.org/A000957
http://oeis.org/A035929
http://oeis.org/A026012
http://oeis.org/A000958
http://oeis.org/A014138
http://oeis.org/A000245
http://oeis.org/A114487
http://oeis.org/A127154
http://oeis.org/A014140
http://oeis.org/A000958
http://oeis.org/A014137
http://oeis.org/A192480
http://oeis.org/A000108
http://oeis.org/A045623
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1, 1, 1, 2, 6, 25, 96, 357, 1289, 4587, 16258 2
1, 1, 1, 3, 7, 28, 101, 365, 1301, 4604, 16281 1
1, 1, 1, 1, 7, 25, 102, 377, 1339, 4699, 16496 4
1, 1, 1, 2, 7, 28, 106, 382, 1345, 4706, 16504 A132109 4
1, 1, 1, 1, 8, 28, 108, 387, 1354, 4720, 16524 2
1, 1, 1, 2, 7, 29, 109, 388, 1355, 4721, 16525 A081494 4
1, 1, 1, 2, 8, 31, 112, 392, 1360, 4727, 16532 A006127 4
1, 1, 1, 3, 9, 32, 113, 393, 1361, 4728, 16533 A132736 4

1, 1, 1, 3, 10, 34, 116, 397, 1366, 4734, 16540 A000079 50
1, 1, 1, 1, 8, 31, 116, 407, 1401, 4825, 16750 2
1, 1, 1, 2, 8, 32, 117, 408, 1402, 4826, 16751 A000217 2
1, 1, 1, 2, 9, 34, 122, 417, 1416, 4846, 16778 A003265 2

1, 1, 1, 2, 10, 37, 126, 422, 1422, 4853, 16786 2
1, 1, 1, 3, 10, 37, 126, 422, 1422, 4853, 16786 4
1, 1, 1, 2, 11, 37, 126, 422, 1422, 4853, 16786 4
1, 1, 1, 3, 11, 38, 127, 423, 1423, 4854, 16787 A000027 22
1, 1, 1, 3, 12, 40, 130, 427, 1428, 4860, 16794 4
1, 1, 1, 4, 12, 40, 130, 427, 1428, 4860, 16794 2
1, 1, 1, 3, 13, 40, 130, 427, 1428, 4860, 16794 1
1, 1, 1, 4, 13, 41, 131, 428, 1429, 4861, 16795 A001453 54
1, 1, 1, 5, 14, 42, 132, 429, 1430, 4862, 16796 A000108 9

http://oeis.org/A132109
http://oeis.org/A081494
http://oeis.org/A006127
http://oeis.org/A132736
http://oeis.org/A000079
http://oeis.org/A000217
http://oeis.org/A003265
http://oeis.org/A000027
http://oeis.org/A001453
http://oeis.org/A000108
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Appendix C

Code

The exploratory work for this project was done mostly in the python programming lan-
guage. The code can be obtained from https://github.com/MurrayT/PRule-MSc-
work/tree/master/src and is split into the following files.

classes.py

Contains the 220 equivalence classes of mesh patterns of length 2 shown in

helper_funcs.py

Contains functions to convert between different classes used in experimentation as well as a
class that functions as an accumulator.

p_rule.py

Contains functions that compute equivalences by the first and second dominating rules, and
functions that return coincidences not explained by the rules.

wilf.py

Contains a class that functions as a counter for Wilf-equivalences based on a dictionary,
functions to calculate trivial Wilf classes and functions that calculate Wilf-equivalences
experimentally

main.py

The main file to import that automatically runs all of the experimental setup and calculations
for coincidences and Wilf-equivalences.

scratchpad.py

A collection of anonymous functions and utilities that do not fit into other files.
The code relies on the the permuta python package available at https://github.com/

PermutaTriangle/Permuta

https://github.com/MurrayT/PRule-MSc-work/tree/master/src
https://github.com/MurrayT/PRule-MSc-work/tree/master/src
https://github.com/PermutaTriangle/Permuta
https://github.com/PermutaTriangle/Permuta
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