
On logic programming representations of lambda
terms: de Bruijn indices, compression, type

inference, combinatorial generation,
normalization

Paul Tarau

Department of Computer Science and Engineering
University of North Texas

tarau@cse.unt.edu

Abstract. We introduce a compressed de Bruijn representation of lambda
terms and define its bijections to standard representations. Compact
combinatorial generation algorithms are given for several families of
lambda terms, including open, closed, simply typed and linear terms as
well as type inference and normal order reduction algorithms. We specify
our algorithms as a literate Prolog program. In the process, we rely in
creative ways on unification of logic variables, cyclic terms, backtracking
and definite clause grammars.

Keywords: lambda calculus, de Bruijn indices, lambda term compres-
sion, type inference, normalization, combinatorics of lambda terms.

1 Introduction

Lambda terms [1] provide a foundation to modern functional languages, type
theory and proof assistants and have been lately incorporated into mainstream
programming languages including Java 8, C# and Apple’s Swift. Generation of
lambda terms has practical applications to testing compilers that rely on lambda
calculus as an intermediate language, as well as in generation of random tests
for user-level programs and data types. At the same time, several instances of
lambda calculus are of significant theoretical interest given their correspondence
with logic and proofs.

Prolog’s underlying backtracking and unification make it an ideal tool for
defining compact combinatorial generation algorithms for various families of
lambda terms. Of particular interest are representations that are canonical up to
alpha-conversion (variable renamings) among which the most well-known ones
are de Bruijn’s indices [2], representing bound variables as the number of binders
to traverse to the lambda abstraction binding them.

However, a sequence of binders in de Bruijn notation, can be seen as a natu-
ral number expressed in unary notation. This suggests introducing a compressed
representation of the binders that puts in a new light the underlying combina-
torial structure of lambda terms and highlights their connection to the Catalan

family of combinatorial objects [3], among which binary trees are the most well
known. The proposed compressed de Bruijn notation also simplifies generation
of some families of lambda terms.

At the same time, the use of Prolog’s unification of logic variables is in-
strumental in designing compact algorithms for inferring simple types or for
generating linear, linear affine or lambda terms with bounded unary height as
well as in implementing normalization algorithms.

To be able to use the most natural representation for each of the proposed
algorithms, we implement bijective transformations between lambda terms in
standard as well as de Bruijn and compressed de Bruijn representation.

The paper is organized as follows. Section 2 introduces the compressed de
Bruijn terms and bijective transformations from them to standard lambda terms.
Section 3 describes generation of binary trees and mappings from lambda terms
to binary trees representing their inferred types and and their applicative skele-
tons. Section 4 describes generators for several classes of lambda terms, including
closed, simply typed, linear, affine as well as terms with bounded unary height
and terms in the binary lambda calculus encoding. Section 5 describes a normal
order reduction algorithm for lambda terms relaying on their de Bruijn repre-
sentation. Section 6 discusses related work and section 7 concludes the paper.

The paper is structured as a literate Prolog program. The code has been
tested with SWI-Prolog 6.6.6 and YAP 6.3.4. It is also available as a separate
file at http://www.cse.unt.edu/~tarau/research/2015/dbx.pro.

2 A compressed de Bruijn representation of lambda
terms

.
We represent standard lambda terms [1] in Prolog using the constructors

a/2 for applications and l/2 for lambda abstractions. Variables bound by the
lambdas as well as their occurrences are represented as logic variables. As an
example, the lambda term λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))) will be
represented as l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))).

2.1 De Bruijn Indices

De Bruijn indices [2] provide a name-free representation of lambda terms. All
terms that can be transformed by a renaming of variables (α-conversion) will
share a unique representation. Variables following lambda abstractions are omit-
ted and their occurrences are marked with positive integers counting the number
of lambdas until the one binding them is found on the way up to the root of
the term. We represent them using the constructor a/2 for application, l/1 for
lambda abstractions (that we will call shortly binders) and v/1 for marking the
integers corresponding to the de Bruijn indices.

For instance, the term l(A,a(l(B,a(A,a(B,B))),l(C,a(A,a(C,C))))) is
represented as l(a(l(a(v(1),a(v(0),v(0)))),l(a(v(1),a(v(0),v(0)))))),

corresponding to the fact that v(1) is bound by the outermost lambda (two
steps away, counting from 0) and the occurrences of v(0) are bound each by the
closest lambda, represented by the constructor l/1.

From de Bruijn to lambda terms with canonical names The predicate
b2l converts from the de Bruijn representation to lambda terms whose canoni-
cal names are provided by logic variables. We will call them terms in standard
notation.

b2l(DeBruijnTerm,LambdaTerm):-b2l(DeBruijnTerm,LambdaTerm,_Vs).

b2l(v(I),V,Vs):-nth0(I,Vs,V).

b2l(a(A,B),a(X,Y),Vs):-b2l(A,X,Vs),b2l(B,Y,Vs).

b2l(l(A),l(V,Y),Vs):-b2l(A,Y,[V|Vs]).

Note the use of the built-in nth0/3 that associates to an index I a variable
V on the list Vs. As we initialize in b2l/2 the list of logic variables as a free
variable Vs, free variables in open terms, represented with indices larger than the
number of available binders will also be consistently mapped to logic variables.
By replacing Vs with [] in the definition of b2l/2, one could enforce that only
closed terms (having no free variables) are accepted.

From lambda terms with canonical names to de Bruijn terms Logic
variables provide canonical names for lambda variables. An easy way to manipu-
late them at meta-language level is to turn them into special “$VAR/1” terms -
a mechanism provided by Prolog’s built-in numbervars/3 predicate. Given that
“$VAR/1” is distinct from the constructors lambda terms are built from (l/2
and a/2), this is a safe (and invertible) transformation. To avoid any side effect
on the original term, in the predicate l2b/2 that inverts b2l/2, we will uniformly
rename its variables to fresh ones with Prolog’s copy term/2 built-in. We will
adopt this technique through the paper each time our operations would mutate
an input argument otherwise.

l2b(StandardTerm,DeBruijnTerm):-

copy_term(StandardTerm,Copy),

numbervars(Copy,0,_),

l2b(Copy,DeBruijnTerm,_Vs).

l2b(’$VAR’(V),v(I),Vs):-once(nth0(I,Vs,’$VAR’(V))).

l2b(a(X,Y),a(A,B),Vs):-l2b(X,A,Vs),l2b(Y,B,Vs).

l2b(l(V,Y),l(A),Vs):-l2b(Y,A,[V|Vs]).

Note the use of nth0/3, this time to locate the index I on the (open) list of
variables Vs. By replacing Vs with [] in the call to l2b/3, one can enforce
that only closed terms are accepted.

Example 1 illustrates the bijection defined by predicates l2b and b2l.

?- LT=l(A,l(B,l(C,a(a(A,C),a(B,C))))),l2b(LT,BT),b2l(BT,LT1),LT=LT1.

LT = LT1, LT1 = l(A, l(B, l(C, a(a(A, C), a(B, C))))),

BT = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))).

2.2 Going one step further: compressing the blocks of lambdas

Iterated lambdas (represented as a block of constructors l/1 in the de Bruijn
notation) can be seen as a successor arithmetic representation of a number that
counts them. So it makes sense to represent that number more efficiently in
the usual binary notation. Note that in de Bruijn notation blocks of lambdas
can wrap either applications or variable occurrences represented as indices. This
suggests using just two constructors: v/2 indicating in a term v(K,N) that we
have K lambdas wrapped around variable v(N) and a/3, indicating in a term
a(K,X,Y) that K lambdas are wrapped around the application a(X,Y).

We call the terms built this way with the constructors v/2 and a/3 com-
pressed de Bruijn terms.

2.3 Converting between representations

We can make precise the definition of compressed deBruijn terms by providing
a bijective transformation between them and the usual de Bruijn terms.

From de Bruijn to compressed The predicate b2c converts from the usual
de Bruijn representation to the compressed one. It proceeds by case analysis
on v/1, a/2, l/1 and counts the binders l/1 as it descends toward the leaves
of the tree. Its steps are controlled by the predicate up/2 that increments the
counts when crossing a binder.

b2c(v(X),v(0,X)).

b2c(a(X,Y),a(0,A,B)):-b2c(X,A),b2c(Y,B).

b2c(l(X),R):-b2c1(0,X,R).

b2c1(K,a(X,Y),a(K1,A,B)):-up(K,K1),b2c(X,A),b2c(Y,B).

b2c1(K, v(X),v(K1,X)):-up(K,K1).

b2c1(K,l(X),R):-up(K,K1),b2c1(K1,X,R).

up(From,To):-From>=0,To is From+1.

From compressed to de Bruijn The predicate c2b converts from the com-
pressed to the usual de Bruijn representation. It reverses the effect of b2c by ex-
panding the K in v(K,N) and a(K,X,Y) into K l/1 binders (no binders when K=0).
The predicate iterLam/3 performs this operation in both cases, and the predi-
cate down/2 computes the decrements at each step. We will reuse the predicates
up/2 and down/2 that can be seen as abstracting away the successor/predecessor
operation.

c2b(v(K,X),R):-X>=0,iterLam(K,v(X),R).

c2b(a(K,X,Y),R):-c2b(X,A),c2b(Y,B),iterLam(K,a(A,B),R).

iterLam(0,X,X).

iterLam(K,X,l(R)):-down(K,K1),iterLam(K1,X,R).

down(From,To):-From>0,To is From-1.

Example 2 illustrates the bijection defined by the predicates b2c and c2b.

?- BT=l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),b2c(BT,CT),c2b(CT,BT1).

BT = BT1, BT1 = l(l(l(a(a(v(2), v(0)), a(v(1), v(0)))))),

CT = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))) .

A convenient way to simplify defining chains of such conversions is by using
Prolog’s DCG transformation. For instance, the predicate c2l/2 (which expands
to something like c2l(X,Z):-c2b(X,Y),b2l(Y,Z)), converts from compressed
de Bruijn terms and standard lambda terms using de Bruijn terms as an inter-
mediate step, while l2c/2 works the other way around.

c2l --> c2b,b2l.

l2c --> l2b,b2c.

2.4 Open and closed terms

Lambda terms might contain free variables not associated to any binders. Such
terms are called open. A closed term is such that each variable occurrence is
associated to a binder.

Closed terms can be easily identified by ensuring that the lambda binders
on a given path from the root outnumber the de Bruijn index of a variable
occurrence ending the path. The predicate isClosed does that for compressed
de Bruijn terms.

isClosed(T):-isClosed(T,0).

isClosed(v(K,N),S):-N<S+K.

isClosed(a(K,X,Y),S1):-S2 is S1+K,isClosed(X,S2),isClosed(Y,S2).

3 Binary trees, lambda terms and and types

We can see our compressed de Bruijn terms as binary trees decorated with
integer labels. The binary trees provide a skeleton that describes the applicative
structure of the underlying lambda terms. At the same time, types in the simple
typed lambda calculus [4] share a similar binary tree structure.

Binary trees are among the most well-known members of the Catalan family
of combinatorial objects [3], that has at least 58 structurally distinct members,
covering several data structures, geometric objects and formal languages.

Generating binary trees We will build binary trees with the constructor ->/2
for branches and the constant o for its leaves. This will match the usual notation
for simple types [4] of lambda terms that can be represented as binary trees.

A generator / recognizer of binary trees of a fixed size (seen as the number
of internal nodes, counted by entry A000108 in [5]) is defined by the predicate
scat/2.

scat(N,T):-scat(T,N,0).

scat(o)-->[].

scat((X->Y))-->down,scat(X),scat(Y).

Note the creative use of Prolog’s DCG-grammar transformation. After the DCG
expansion, the code for scat/3 becomes something like:

scat(o,K,K).

scat((X->Y),K1,K3):-down(K1,K2),scat(X,K2,K3),scat(K3,K4).

Given that down(K1,K2) unfolds to K1>0,K2 is K1-1 it is clear that this code
ensures that the total number of nodes N passed by scat/2 to scat/3 controls
the size of the generated trees. We will reuse this pattern through the paper, as
it simplifies the writing of generators for various combinatorial objects. It is also
convenient to standardize on the number of internal nodes as defining the size
of our terms.

Example 3 illustrates trees with 3 internal nodes (built with the constructor
“->/2”) generated by scat/2.

?- scat(3,BT).

BT = (o->o->o->o) ;

BT = (o-> (o->o)->o) ;

BT = ((o->o)->o->o) ;

BT = ((o->o->o)->o) ;

BT = (((o->o)->o)->o) .

Note the right associative constructor “->” reducing the use of parentheses.

3.1 Type Inference with logic variables

Simple types, represented as binary trees built with the constructor “->/2” with
empty leaves representing the unique primitive type “o”, can be seen as a “Cata-
lan approximation” of lambda terms, centered around ensuring their safe and
terminating evaluation (strong normalization).

While in a functional language inferring types requires implementing unifi-
cation with occur check, as shown for instance in [6], this operation is available
in Prolog as a built-in. Also a “post-mortem” verification that unification has
not introduced any cycles is provided by the built-in acyclic term/1.

The predicate extractType/2 works by turning each logical variable X into
a pair :TX, where TX is a fresh variable denoting its type. As logic variable
bindings propagate between binders and occurrences, this ensures that types are
consistently inferred.

extractType(_:TX,TX):-!. % this matches all variables

extractType(l(_:TX,A),(TX->TA)):-extractType(A,TA).

extractType(a(A,B),TY):-extractType(A,(TX->TY)),extractType(B,TX).

Instead of (inefficiently) using unification with occur-check at each step, we en-
sure that at the end, our term is still acyclic, by using the built-in ISO-Prolog
predicate acyclic term/1.

hasType(CTerm,Type):-

c2l(CTerm,LTerm),

extractType(LTerm,Type),

acyclic_term(LTerm),

bindType(Type).

At this point, most general types are inferred by extractType as fresh variables,
somewhat similar to multi-parameter polymorphic types in functional languages,
if one interprets logic variables as universally quantified. However, as we are only
interested in simple types, we will bind uniformly the leaves of our type tree to
the constant “o” representing our only primitive type, by using the predicate
bindType/1.

bindType(o):-!.

bindType((A->B)):-bindType(A),bindType(B).

We can also define the predicate typeable/1 that checks if a lambda term is
well typed, by trying to infer and then ignoring its inferred type.

typeable(Term):-hasType(Term,_Type).

Example 4 illustrates typability of the term corresponding to the S combinator
λx0. λx1. λx2.((x0 x2) (x1 x2)) and untypabilty of the term corresponding to
the Y combinator λx0.(λx1.(x0 (x1 x1)) λx2.(x0 (x2 x2))), in de Bruijn form.

?- hasType(a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),T).

T = ((o->o->o)-> (o->o)->o->o).

?- hasType(

a(1,a(1,v(0,1),a(0,v(0,0),v(0,0))),a(1,v(0,1),a(0,v(0,0),v(0,0)))),T).

false.

4 Generating special classes of lambda terms

To generate lambda terms of a given size, we can write generators similar to the
ones for binary trees in section 3. Moreover, we have the choice to use generators
for standard, de Bruijn or compressed de Bruijn terms and then bijectively morph
the resulting terms in the desired representation, as outlined is section 2.

Generating Motzkin trees Motzkin-trees (also called binary-unary trees)
have internal nodes of arities 1 or 2. Thus they can be seen as an abstraction
of lambda terms that ignores de Bruijn indices at the leaves. The predicate
motzkinTree/2 generates Motzkin trees with L internal and leaf nodes.

motzkinTree(L,T):-motzkinTree(T,L,0).

motzkinTree(u)-->down.

motzkinTree(l(A))-->down,motzkinTree(A).

motzkinTree(a(A,B))-->down,motzkinTree(A),motzkinTree(B).

Motzkin-trees are counted by the sequence A001006 in [5]. If we replace the
first clause of motzkinTree/2 with motzkinTree(u)-->[], we obtain binary-
unary trees with L internal nodes, counted by the entry A006318 (Large Schröder
Numbers) of [5].

4.1 Generation of de Bruijn terms

We can derive a generator for closed lambda terms in de Bruijn form by extending
the Motzkin-tree generator to keep track of the lambda binders. When reaching
a leaf v/1, one of the available binders (expressed as a de Bruijn index) will be
assigned to it nondeterministically.

The predicate genDB/4 generates closed de Bruijn terms with a fixed number
of internal (non-index) nodes, as counted by entry A220894 in [5].

genDB(v(X),V)-->{down(V,V0),between(0,V0,X)}.

genDB(l(A),V)-->down,{up(V,NewV)},genDB(A,NewV).

genDB(a(A,B),V)-->down,genDB(A,V),genDB(B,V).

The range of possible indices is provided by Prolog’s built-in integer range gen-
erator between/3 that provides values from 0 to V0.

Our generator of deBruijn terms is exposed through two interfaces: genDB/2
that generates closed de Bruijn terms with exactly L non-index nodes and
genDBs/2 that generates terms with up to L non-index nodes, by not enforc-
ing that exactly L internal nodes must be used.

genDB(L,T):-genDB(T,0,L,0).

genDBs(L,T):-genDB(T,0,L,_).

Like in the case of Motzkin trees, a slight modification of the first clause of
genDB/4 will enumerate terms counted by sequence A135501 in [5].

Example 5 illustrates the generation of terms with up to 2 internal nodes.

?- genDBs(2,T).

T = l(v(0)) ;

T = l(l(v(0))) ;

T = l(l(v(1))) ;

T = l(a(v(0), v(0))) ;

4.2 Generators for closed terms in compressed de Bruijn form

A generator for compressed de Bruijn terms can be derived by using DCG syntax
to compose a generator for closed de Bruijn terms genDB and genDBs and a
transformer to compressed terms b2c/2.

genCompressed --> genDB,b2c.

genCompresseds--> genDBs,b2c.

4.3 Generators for closed terms in standard notation

genStandard-->genDB,b2l.

genStandards-->genDBs,b2l.

Example 6 illustrates generators for closed terms in compressed de Bruijn and
standard notation with logic variables providing lambda variable names.

?- genCompressed(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)).

?- genStandard(2,T).

T = l(_G3434, l(_G3440, _G3440)) ;

T = l(_G3434, l(_G3440, _G3434)) ;

T = l(_G3437, a(_G3437, _G3437)).

4.4 Generating closed lambda terms in standard notation

With logic variables representing binders and their occurrences, one can also gen-
erate lambda terms in standard notation directly. The predicate genLambda/2

equivalent to genStandard/2, builds a list of logic variables as it generates
binders. When generating a leaf, it picks nondeterministically one of the binders
among the list of binders available, Vs. As usual, the predicate down/2 controls
the number of internal nodes.

genLambda(L,T):-genLambda(T,[],L,0).

genLambda(X,Vs)-->{member(X,Vs)}.

genLambda(l(X,A),Vs)-->down,genLambda(A,[X|Vs]).

genLambda(a(A,B),Vs)-->down,genLambda(A,Vs),genLambda(B,Vs).

4.5 Generating typeable terms

The predicate genTypeable/2 generates closed typeable terms of size L. These
are counted by entry A220471 in [5].

genTypeable(L,T):-genCompressed(L,T),typeable(T).

genTypeables(L,T):-genCompresseds(L,T),typeable(T).

Example 7 illustrates a generator for closed typeable terms.

?- genCompressed(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)).

4.6 Generating normal forms

Normal forms are lambda terms that cannot be further reduced. A normal form
should not be an application with a lambda as its left branch and, recursively,
its subterms should also be normal forms. The predicate nf/4 defines this in-
ductively and generates all normal forms with L internal nodes in de Bruijn
form.

nf(v(X),V)-->{down(V,V0),between(0,V0,X)}.

nf(l(A),V)-->down,{up(V,NewV)},nf(A,NewV).

nf(a(v(X),B),V)-->down,nf(v(X),V),nf(B,V).

nf(a(a(X,Y),B),V)-->down,nf(a(X,Y),V),nf(B,V).

As we standardize our generators to produce compressed de Bruijn terms, we
combine nf/4 and the converter b2c/2 to produce normal forms of size exactly
L (predicate nf/2) and with size up to L (predicate nfs/2).

nf(L,T):-nf(B,0,L,0),b2c(B,T).

nfs(L,T):-nf(B,0,L,_),b2c(B,T).

Example 8 illustrates normal forms with exactly 2 non-index nodes.

?- nf(2,T).

T = v(2, 0) ;

T = v(2, 1) ;

T = a(1, v(0, 0), v(0, 0)) .

The number of solutions of our generator replicates entry A224345 in [5] that
counts closed normal forms of various sizes.

4.7 Generation of linear lambda terms

Linear lambda terms [7] restrict binders to exactly one occurrence.
The predicate linLamb/4 uses logic variables both as leaves and as lambda

binders and generates terms in standard form. In the process, binders accumu-
lated on the way down from the root, must be split between the two branches of
an application node. The predicate subset and complement of/3 achieves this
by generating all such possible splits of the set of binders.

linLamb(X,[X])-->[].

linLamb(l(X,A),Vs)-->down,linLamb(A,[X|Vs]).

linLamb(a(A,B),Vs)-->down,

{subset_and_complement_of(Vs,As,Bs)},

linLamb(A,As),linLamb(B,Bs).

At each step of subset and complement of/3, place element/5 is called to
distribute each element of a set to exactly one of two disjoint subsets.

subset_and_complement_of([],[],[]).

subset_and_complement_of([X|Xs],NewYs,NewZs):-

subset_and_complement_of(Xs,Ys,Zs),

place_element(X,Ys,Zs,NewYs,NewZs).

place_element(X,Ys,Zs,[X|Ys],Zs).

place_element(X,Ys,Zs,Ys,[X|Zs]).

As usual, we standardize the generated terms by converting them with l2c to
compressed de Bruijn terms.

linLamb(L,CT):-linLamb(T,[],L,0),l2c(T,CT).

Example 9 illustrates linear lambda terms for L=3.

?- linLamb(3,T).

T = a(2, v(0, 1), v(0, 0)) ;

T = a(2, v(0, 0), v(0, 1)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = a(1, v(1, 0), v(0, 0)) ;

T = a(0, v(1, 0), v(1, 0)) .

4.8 Generation of affine linear lambda terms

Linear affine lambda terms [7] restrict binders to at most one occurrence.

afLinLamb(L,CT):-afLinLamb(T,[],L,0),l2c(T,CT).

afLinLamb(X,[X|_])-->[].

afLinLamb(l(X,A),Vs)-->down,afLinLamb(A,[X|Vs]).

afLinLamb(a(A,B),Vs)-->down,

{subset_and_complement_of(Vs,As,Bs)},

afLinLamb(A,As),afLinLamb(B,Bs).

Example 10 illustrates generation of affine linear lambda terms in compressed
de Bruijn form.

?- afLinLamb(3,T).

T = v(3, 0) ;

T = a(2, v(0, 1), v(0, 0)) ;

T = a(2, v(0, 0), v(0, 1)) ;

T = a(1, v(0, 0), v(1, 0)) ;

T = a(1, v(1, 0), v(0, 0)) ;

T = a(0, v(1, 0), v(1, 0)) ;

Clearly all linear terms are affine. It is also known that all affine terms are
typeable.

4.9 Generating lambda terms of bounded unary height

Lambda terms of bounded unary height are introduced in [8] where it is argued
that such terms are naturally occurring in programs and it is shown that their
asymptotic behavior is easier to study.

They are specified by giving a bound on the number of lambda binders from
a de Bruijn index to the root of the term.

boundedUnary(v(X),V,_D)-->{down(V,V0),between(0,V0,X)}.

boundedUnary(l(A),V,D1)-->down,

{down(D1,D2),up(V,NewV)},

boundedUnary(A,NewV,D2).

boundedUnary(a(A,B),V,D)-->down,

boundedUnary(A,V,D),boundedUnary(B,V,D).

The predicate boundedUnary/5 generates lambda terms of size L in com-
pressed de Bruijn form with unary hight D.

boundedUnary(D,L,T):-boundedUnary(B,0,D,L,0),b2c(B,T).

boundedUnarys(D,L,T):-boundedUnary(B,0,D,L,_),b2c(B,T).

Example 11 illustrates terms of unary height 1 with size up to 3.

?- boundedUnarys(1,3,R).

R = v(1, 0) ;

R = a(1, v(0, 0), v(0, 0)) ;

R = a(1, v(0, 0), a(0, v(0, 0), v(0, 0))) ;

R = a(1, a(0, v(0, 0), v(0, 0)), v(0, 0)) ;

R = a(0, v(1, 0), v(1, 0)) .

4.10 Generating terms in binary lambda calculus encoding

Generating de Bruijn terms based on the size of their binary lambda calculus
encoding [9] works by using a DCG mechanism to build the actual code as a list
Cs of 0 and 1 digits and specifying the size of the code in advance.

blc(L,T,Cs):-length(Cs,L),blc(B,0,Cs,[]),b2c(B,T).

blc(v(X),V)-->{between(1,V,X)},encvar(X).

blc(l(A),V)-->[0,0],{NewV is V+1},blc(A,NewV).

blc(a(A,B),V)-->[0,1],blc(A,V),blc(B,V).

Note that de Bruijn binders are encoded as 00, applications as 01 and de Bruijn
indices in unary notation are encoded as 00. . .01. This operation is preformed
by the predicate encvar/3, that, in DCG notation, uses down/2 at each step to
generate the sequence of 1 terminated 0 digits.

encvar(0)-->[0].

encvar(N)-->{down(N,N1)},[1],encvar(N1).

Example 12 illustrates generation of 8-bit binary lambda terms (Cs) together
with their compressed de Bruijn form (T).

?- blc(8,T,Cs).

T = v(3, 1),

Cs = [0, 0, 0, 0, 0, 0, 1, 0] ;

T = a(1, v(0, 1), v(0, 1)),

Cs = [0, 0, 0, 1, 1, 0, 1, 0] .

Note that while not bijective, the binary encoding has the advantage of being a
self-delimiting code. This facilitates its use in an unusually compact interpreter.

5 Normalization of lambda terms

Evaluation of lambda terms involves β-reduction, a transformation of a term like
a(l(X,A),B) by replacing every occurrence of X in A by B, under the assumption
that X does not occur in B and η-conversion, the transformation of an application
term a(l(X,A),X) into A, under the assumption that X does not occur in A.

The first tool we need to implement normalization of lambda terms is a
safe substitution operation. In lambda-calculus based functional languages this
can be achieved through a HOAS (Higher-Order Abstract Syntax) mechanism,
that borrows the substitution operation from the underlying “meta-language”.
To this end, lambdas are implemented as functions which get executed (usually
lazily) when substitutions occur. We refer to [10] for the original description
of this mechanism, widely used these days for implementing embedded domain
specific languages and proof assistants in languages like Haskell or ML.

While logic variables offer a fast and easy way to perform substitutions, they
do not offer any elegant mechanism to ensure that substitutions are capture-free.
Moreover, no HOAS-like mechanism exists in Prolog for borrowing anything
close to normal order reduction from the underlying system, as Prolog would
provide, through meta-programming, only a call-by-value model.

We will devise here a simple and safe interpreter for lambda terms supporting
normal order β-reduction by using de Bruijn terms, which also ensures that terms
are unique up to α-equivalence. As usual, we will omit η-conversion, known to
interfere with things like type inference, as the redundant argument(s) that it
removes might carry useful type information.

The predicate beta/3 implements the β-conversion operation corresponding
to the binder l(A). It calls subst/4 that replaces in A occurrences corresponding
the the binder l/1.

beta(l(A),B,R):-subst(A,0,B,R).

The predicate subst/4 counts, starting from 0 the lambda binders down to an
occurrence v(N). Replacement occurs at at level I when I=N.

subst(a(A1,A2),I,B,a(R1,R2)):-I>=0,

subst(A1,I,B,R1),

subst(A2,I,B,R2).

subst(l(A),I,B,l(R)):-I>=0,I1 is I+1,subst(A,I1,B,R).

subst(v(N),I,_B,v(N1)):-I>=0,N>I,N1 is N-1.

subst(v(N),I,_B,v(N)):-I>=0,N<I.

subst(v(N),I,B,R):-I>=0,N=:=I,shift_var(I,0,B,R).

When the right occurrence v(N) is reached, the term substituted for it is shifted
such that its variables are marked with the new, incremented distance to their
binders. The predicate shift var/4 implements this operation.

shift_var(I,K,a(A,B),a(RA,RB)):-K>=0,I>=0,

shift_var(I,K,A,RA),

shift_var(I,K,B,RB).

shift_var(I,K,l(A),l(R)):-K>=0,I>=0,K1 is K+1,shift_var(I,K1,A,R).

shift_var(I,K,v(N),v(M)):-K>=0,I>=0,N>=K,M is N+I.

shift_var(I,K,v(N),v(N)):-K>=0,I>=0,N<K.

Normal order evaluation of a lambda term, if it terminates, leads to a unique
normal form, as a consequence of the Church-Rosser theorem, elegantly proven
in [2] using de Bruijn terms. Termination holds, for instance, in the case of simply
typed lambda terms. Its implementation is well known; we will follow here the
algorithm described in [11]. We first compute the weak head normal form using
wh nf/2.

wh_nf(v(X),v(X)).

wh_nf(l(E),l(E)).

wh_nf(a(X,Y),Z):-wh_nf(X,X1),wh_nf1(X1,Y,Z).

The predicate wh nf1/3 does the case analysis of application terms a/2. The
key step is the β-reduction in its second clause, when it detects an “eliminator”
lambda expression as its left argument, in which case it performs the substitution
of its binder, with its right argument.

wh_nf1(v(X),Y,a(v(X),Y)).

wh_nf1(l(E),Y,Z):-beta(l(E),Y,NewE),wh_nf(NewE,Z).

wh_nf1(a(X1,X2),Y,a(a(X1,X2),Y)).

The predicate to nf implements normal order reduction. It follows the same
skeleton as wh nf, which is called in the third clause to perform reduction to
weak head normal form, starting from the outermost lambda binder.

to_nf(v(X),v(X)).

to_nf(l(E),l(NE)):-to_nf(E,NE).

to_nf(a(E1,E2),R):-wh_nf(E1,NE),to_nf1(NE,E2,R).

Case analysis of application terms for possible β-reduction is performed by
to nf1/3, where the second clause calls beta/3 and recurses on its result.

to_nf1(v(E1),E2,a(v(E1),NE2)):-to_nf(E2,NE2).

to_nf1(l(E),E2,R):-beta(l(E),E2,NewE),to_nf(NewE,R).

to_nf1(a(A,B),E2,a(NE1,NE2)):-to_nf(a(A,B),NE1),to_nf(E2,NE2).

The predicates to nf provides a Turing-complete lambda calculus interpreter
working on de Bruijn terms. It is guaranteed to compute a normal form, if it
exists. The predicate evalStandard/2 works on standard lambda terms, that
in converts to de Bruijn terms and then back after evaluation. The predicate
evalCompressed/2 works in a similar way on compressed de Bruijn terms. We
express them as a composition of functions (first argument in, second out) using
Prolog’s DCG notation.

evalStandard-->l2b,to_nf,b2l.

evalCompressed-->c2b,to_nf,b2c.

Example 13 illustrates evaluation of the lambda term SKK =
((λx0. λx1. λx2.((x0 x2) (x1 x2)) λx3. λx4.x3) λx5. λx6.x5) in compressed
de Brijn form, resulting in the definition of the identity combinator I = λx0.x0.

?- S=a(3,a(0,v(0,2),v(0,0)),a(0,v(0,1),v(0,0))),K=v(2,1),

evalCompressed(a(0,a(0,S,K),K),R).

S = a(3, a(0, v(0, 2), v(0, 0)), a(0, v(0, 1), v(0, 0))),

K = v(2, 1),

R = v(1, 0).

6 Related work

The classic reference for lambda calculus is [1]. Various instances of typed lambda
calculi are overviewed in [4]. De Bruijn’s notation for lambda terms is introduced
in [2]. The compressed de Bruijn representation of lambda terms proposed in this
paper is novel, to our best knowledge.

The combinatorics and asymptotic behavior of various classes of lambda
terms are extensively studied in [6, 7, 12]. Distribution and density properties
of random lambda terms are described in [13].

Lambda terms of bounded unary height are introduced in [8]. John Tromp’s
binary lambda calculus is only described through online code and the Wikipedia
entry at [9].

Generators for closed and well-typed lambda terms, as well as their normal
forms, expressed as functional programming algorithms, are given in [6], derived
from combinatorial recurrences. However, they are significantly more complex
than the ones described here in Prolog. On the other hand, we have not found
in the literature generators for linear, linear affine terms and lambda terms
of bounded unary height. Normalization of lambda terms and its confluence
properties are described in [1] and [14] with functional programming algorithms
given in [11] and HOAS-based evaluation first described in [10].

In a logic programming context, unification of simply typed lambda terms
has been used in as the foundation of the programming language λProlog [15,
16] and applied to higher order logic programming [17].

7 Conclusion

We have described compact (and arguably elegant) combinatorial generation
algorithms for several important families of lambda terms. Besides the newly in-
troduced a compressed form of de Bruijn terms we have used ordinary de Bruijn
terms as well as a canonical representation of lambda terms relying on Prolog’s
logic variables. In each case, we have selected the representation that was more
appropriate for tasks like combinatorial generation, type inference or normaliza-
tion. We have switched representation as needed, though bijective transformers
working in time proportional to the size of the terms. Our combinatorial gen-
eration algorithms match the corresponding sequence of counts by size, given
in [5] as an empirical validation of their correctness. Our techniques, combining
unification of logic variables with Prolog’s backtracking mechanism and DCG
grammar notation, recommend logic programming as an unusually convenient
meta-language for the manipulation of various families of lambda terms and the
study of their combinatorial and computational properties.

Acknowledgement

This research has been supported by NSF grant 1423324.

References

1. Barendregt, H.P.: The Lambda Calculus Its Syntax and Semantics. Revised edn.
Volume 103. North Holland (1984)

2. Bruijn, N.G.D.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser Theorem.
Indagationes Mathematicae 34 (1972) 381–392

3. Stanley, R.P.: Enumerative Combinatorics. Wadsworth Publ. Co., Belmont, CA,
USA (1986)

4. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science. Volume 2. Oxford University Press (1991)

5. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. (2014) Published
electronically at https://oeis.org/.

6. Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct.
Program. 23(5) (2013) 594–628

7. Grygiel, K., Idziak, P.M., Zaionc, M.: How big is BCI fragment of BCK logic. J.
Log. Comput. 23(3) (2013) 673–691

8. Bodini, O., Gardy, D., Gittenberger, B.: Lambda-terms of bounded unary height.
In: ANALCO, SIAM (2011) 23–32

9. Wikipedia: Binary lambda calculus — wikipedia, the free encyclopedia (2015)
[Online; accessed 20-February-2015].

10. Pfenning, F., Elliot, C.: Higher-order abstract syntax. In: Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language Design and Implementa-
tion. PLDI ’88, New York, NY, USA, ACM (1988) 199–208

11. Sestoft, P.: Demonstrating lambda calculus reduction. In Mogensen, T.A.,
Schmidt, D.A., Sudborough, I.H., eds.: The Essence of Computation. Springer-
Verlag New York, Inc., New York, NY, USA (2002) 420–435

12. David, R., Grygiel, K., Kozik, J., Raffalli, C., Theyssier, G., Zaionc, M.: Asymp-
totically almost all λ-terms are strongly normalizing. Preprint: arXiv: math.
LO/0903.5505 v3 (2010)

13. David, R., Raffalli, C., Theyssier, G., Grygiel, K., Kozik, J., Zaionc, M.: Some
properties of random lambda terms. Logical Methods in Computer Science 9(1)
(2009)

14. Kamareddine, F.: Reviewing the Classical and the de Bruijn Notation for calculus
and Pure Type Systems. Journal of Logic and Computation 11(3) (2001) 363–394

15. Miller, D.: Unification of simply typed lambda-terms as logic programming. In:
Proc. Int. Conference on Logic Programming (Paris), MIT Press (1991) 255–269

16. Nadathur, G., Mitchell, D.: System Description: Teyjus A Compiler and Abstract
Machine Based Implementation of λProlog. In: Automated Deduction CADE-16.
Volume 1632 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(1999) 287–291

17. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge
University Press, New York, NY, USA (2012)

