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B.P. 47870, F21078 DIJON-Cedex FRANCE

e-mail:{barjl,pallo}@u-bourgogne.fr

August 26, 2013

Abstract

The Tamari lattice of order n can be defined by the set Dn of Dyck
words endowed with the partial order relation induced by the well-known
rotation transformation. In this paper, we study this rotation on the
restricted set of Motzkin words. An upper semimodular join semilattice
is obtained and a shortest path metric can be defined. We compute the
corresponding distance between two Motzkin words in this structure. This
distance can also be interpreted as the length of a geodesic between these
Motzkin words in a Tamari lattice. So, a new upper bound is obtained
for the classical rotation distance between two Motzkin words in a Tamari
lattice. For some specific pairs of Motzkin words, this bound is exactly the
value of the rotation distance in a Tamari lattice. Finally, enumerating
results are given for join and meet irreducible elements, minimal elements
and coverings.

Keywords: Lattices; Dyck words; Motzkin words; Tamari lattice; Metric;
Geodesic.

1 Introduction and notations

The set D of Dyck words over {(, )} is the language defined by the grammar
S  λ|(S)|SS where λ is the empty word, i.e. the set of well-formed parentheses
strings. Let Dn be the set of Dyck words of length 2n, i.e. with n open
and n close parentheses. The cardinality of Dn is the nth Catalan number
cn = (2n)!/(n!(n + 1)!) (see A000108 in [23]). For instance, D3 consists of the
five words ()()(), (())(), ()(()), (()()) and ((())). A large number of various
classes of combinatorial objects are enumerated by the Catalan sequence. This
is the case, among others, for ballot sequences, planar trees, binary rooted
trees, nonassociative products, stack sortable permutations, triangulations of
polygons, and Dyck paths. See [24] for a compilation of such Catalan sets.
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Some of them are endowed with a partial ordering relation [1, 2, 3, 10, 20, 21].
For instance, the coverings of the so-called Tamari lattices [11, 13, 14, 16, 18,
22, 25] can be defined by different elementary transformations depending on the
Catalan set considered. The most known is the semi-associative law x(yz) −→
(xy)z for well-formed parenthesized expressions involving n variables. Also, the
Tamari lattice of order n can be defined on the set Tn of binary rooted trees
with n + 1 leaves. Indeed, from a well-formed parenthesized expression on n
variables, we consider the bijection that recursively constructs the binary rooted
tree where the left (resp. right) subtree is defined by the left (resp. right) part
of the expression. For example, the binary rooted trees associated to the two
expressions x(yz) and (xy)z are illustrated in Figure 1. Moreover, the semi-
associative law on parenthesized expressions is equivalent to the well-known
left-rotation on binary trees showed in Figure 1.

zx

y z x y

Figure 1: The left-rotation transformation on binary trees.

Now, let T ∈ Tn be a binary tree with n+1 leaves. Reading T in prefix order
and replacing each internal node (resp. each leaf except the last) with an open
(resp. a close) parenthesis, we obtain a bijection from Tn to Dn that translates
the left-rotation transformation into the elementary transformation (u)(−→ ((u)
where u is a Dyck word. This transformation will be also called left-rotation.
More precisely, we say that d′ ∈ Dn is obtained from d ∈ Dn by a left-rotation
if d = α(u)(β and d′ = α((u)β where u is a Dyck word and α (resp.β) is some
prefix (resp. suffix) of some Dyck word. The inverse transformation is called
right-rotation. For instance, (())((()(())())()) is obtained from (())(()(())())(())
by a left-rotation.

We define the rotation distance between two Dyck words as the minimum
number of left- and right-rotations necessary to transform one word into the
other. There remains today an open problem whether the rotation distance
can be computed in polynomial time. Previous works on rotation distance have
focused on approximation algorithms [4, 7, 18, 19].

In this paper, we study this rotation on the restricted set M of Motzkin
words defined by the grammar S  λ|(SS). In Section 2, an upper semimodu-
lar join semilattice is constructed. In this structure, we compute the length of a
shortest path between two Motzkin words. This distance can also be interpreted
as the length of a geodesic between these two Motzkin words in a Tamari lattice,
i.e. the length of a shortest path between them by browsing through Motzkin
words only. So, a new upper bound is obtained for the classical rotation dis-
tance between two Motzkin words in a Tamari lattice. For some specific pairs
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of Motzkin words, this bound is exactly the value of the well-known rotation
distance in a Tamari lattice. In Section 3, enumerating results are given for join
and meet irreducible elements, minimal elements and coverings.

2 Motzkin geodesics

Let M be the set of Motzkin words, i.e the language over {(, )} defined by
the grammar S  λ|(SS). Let Mn be the set of Motzkin words of length
2n, i.e. with n open and n close parentheses. The cardinality of Mn is
the nth term of the Motzkin sequence A001006 in [23]. For example, M4 =
{(((()))), ((()())), (()(())), ((())())}. Obviously we haveMn ⊆ Dn for n ≥ 1. We
refer to [8] and [24] for several combinatorial classes enumerated by the Motzkin
numbers.

The following lemma shows how the left-rotation between two Motzkin words
can be expressed by a natural transformation −→ inMn.

Lemma 1 Let m,m′ ∈ Mn. Then, the word m′ is obtained from m by a left-
rotation if and only if m′ is obtained from m by a left-transformation u(v) −→
(uv) where u and v are two Motzkin words, i.e. m = αu(v)β and m′ = α(uv)β
where u, v ∈ M and α (resp. β) is some prefix (resp. suffix) of some Motzkin
word.

Proof. Let m and m′ be two Motzkin words such that m′ is obtained from m
by a left-rotation. Thus, there is a Dyck word u such that m = α(u)(β and
m′ = α((u)β where α and β are some prefix and some suffix of m and m′.
Since m′ is a Motzkin word, it necessarily is of the form m′ = α((u)v)β′ where
(u) and v are Motzkin words with β = v)β′. We deduce that m = α(u)(v)β′.
Furthermore, the fact that (v) and (u) are Motzkin words necessarily implies
that m is of the form m = α′((u)(v))β′′ and thus, m′ = α′(((u)v))β′′ for some
α′ and β′′. Thus the left-rotation between two Motzkin words is equivalent to
the transformation w(v) −→ (wv) where w = (u) ̸= λ and v are two Motzkin
words. Conversely, let us assume thatm′ is obtained fromm by a transformation
u(v) −→ (uv) where u and v are two Motzkin words. Since, a Motzkin word is
obtained by the grammar S  λ|(SS), we necessarily have m = α(u(v))β and
m′ = α((uv))β for some prefix and some suffix α and β which directly induces
that m′ is obtained from m by a left-rotation. 2

In the remainder of the paper, given m,m′ ∈Mn, we write m −→ m′ if m′ is
obtained from m by the left-rotation defined in the previous lemma. The right-
rotation will be the inverse of −→. Let

∗−→ denote the reflexive and transitive
closure of the rotation transformation −→ inMn.

In order to characterize this left-rotation −→, we exhibit a bijection between
Motzkin words and Motzkin paths. A Motzkin path of length n is a lattice path
starting at (0, 0), ending at (n, 0), and never going below the x-axis, consisting
of up steps U = (1, 1), horizontal steps H = (1, 0), and down steps D = (1,−1).
Let Pn be the set of Motzkin path of length n−1. It is well-known that Motzkin
paths are enumerated by the Motzkin numbers (A001006 in [23]).
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Let ϕ be the bijection between Mn and the set Pn of Motzkin paths of
length n− 1 defined as follows:

- if m = () then ϕ(m) = λ;

- if m = (uv) where u, v are two non-empty Motzkin words, then ϕ(m) =
Uϕ(v)Dϕ(u);

- if m = (u) where u is a non-empty Motzkin word, then ϕ(m) = Hϕ(u).

For instance, if m = (()((()()))) then ϕ(m) = UHUDD.

Proposition 1 Let m and m′ be two Motzkin words in Mn. Then m −→ m′

if and only if ϕ(m′) is obtained from ϕ(m) by applying one of the two following
transformations: UH −→ HU and UD −→ HH.

Proof. Let m and m′ be two Motzkin words where m′ is obtained from m by
a left-rotation in the Tamari lattice of order n. By Lemma 1, we deduce that
m = α(u(v))β and m′ = α((uv))β where α and β are some prefix and some suf-
fix of m and m′. Therefore ϕ(m′) is obtained from ϕ(m) by replacing the factor
ϕ((u(v))) with ϕ(((uv))). If v is empty, then we have ϕ((u(v))) = UDϕ(u),
ϕ(((uv))) = HHϕ(u) and ϕ(m′) is obtained from ϕ(m) by a transformation
UD −→ HH. If v is not empty, then we have ϕ((u(v))) = UHϕ(v)Dϕ(u),
ϕ(((uv))) = HUϕ(v)Dϕ(u) and ϕ(m′) is obtained from ϕ(m) by a transfor-
mation UH −→ HU . This reasoning can also be considered for the converse.
2

A sequence of non-negative integers χ = χ(0)χ(1) . . . χ(n− 1) will be called
height sequence of length n if χ(0) = χ(n − 1) = 0 and |χ(i) − χ(i − 1)| ≤ 1
for 1 ≤ i ≤ n − 1. Obviously, there is a one-to-one correspondence between
Motzkin words in Mn and height sequences of length n: if m ∈ Mn, then
we associate the height sequence χm defined by χm(0) = 0 and for i ≥ 1,
χm(i) − χm(i − 1) = 1 (resp. −1, 0) if the ith step is U (resp. D and H) in
the Motzkin path ϕ(m). For instance, if m = (()(()(()))) ∈ M6, then ϕ(m) =
UUHDD and χm = 012210. Notice that the height sequence of a Motzkin word
m corresponds to the ordinates of the different steps in the path ϕ(m).

Proposition 2 Let m and m′ be two Motzkin words inMn. Then m −→ m′ if
and only if there exists i, 1 ≤ i ≤ n−1, such that χm′(i−1) = χm′(i) = χm(i)−1
and for all j ̸= i, χm′(j) = χm(j).

Proof. Using Proposition 1, m −→ m′ if and only if ϕ(m′) is obtained from ϕ(m)
by one of the two transformations UH −→ HU and UD −→ HH. Considering
the height sequences χm and χm′ , this implies the existence of some i such
that χm(j) = χm′(j) for j ̸= i, and χm′(i − 1) = χm′(i) = χm(i) − 1. For
the converse, let us assume that the height sequences χm and χm′ satisfy for
some i, χm′(j) = χm(j) for j ̸= i, and χm′(i − 1) = χm′(i) = χm(i) − 1. Since
χm is a height sequence, we have |χm(i + 1) − χm(i)| ≤ 1. This implies that
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|χm′(i + 1) − χm′(i) − 1| ≤ 1 and thus χm′(i + 1) − χm′(i) ≥ 0. Finally, if
χm′(i+1) = χm′(i) (resp. χm′(i+1) = χm′(i)+1) then ϕ(m′) is obtained from
ϕ(m) by the transformation UD −→ HH (resp. UH −→ HU). 2

Proposition 3 The poset (Mn,
∗−→) is graded by the rank function r(m) =

ρ−
n−1∑
i=0

χm(i) where ρ = ⌊ (n−1)2

4 ⌋.

Proof. The poset (Mn,
∗−→) is graded by the rank function r wheneverm

∗−→ m′

and r(m′) = r(m) + 1 if and only if m −→ m′. So, Proposition 2 induces that

(Mn,
∗−→) is graded by the rank function r(m) = ρ −

n−1∑
i=0

χm(i) where the

parameter ρ = ⌊ (n−1)2

4 ⌋ is the maximal value of
n−1∑
i=0

χm(i) among all Motzkin

words m. That is, we have ρ =
n−1∑
i=0

χm(i) with m = 0123 . . . n−1
2 . . . 3210 if n is

odd, and m = 0123 . . . n
2 −1n

2 −1 . . . 3210 otherwise. For the two cases, a simple

calculation provides ρ = ⌊ (n−1)2

4 ⌋. 2

Remark 1 In the previous proposition, we use the definition of a graded poset
given by Grätzer (see [12], p. 233). Notice that other authors like Stanley do not
use the same definition (see [24], p. 99). Indeed they require that the minimal
elements need to have the same rank (see Figure 2).

Proposition 4 For m, m′ ∈ Mn, we have m
∗−→ m′ if and only if the se-

quences χm and χm′ satisfy the two conditions:
(a) χm′(i) ≤ χm(i) for all 0 ≤ i ≤ n− 1, and
(b) there does not exist i, 1 ≤ i ≤ n − 1, such that χm′(i − 1) > χm′(i) <

χm(i).

Proof. Let m and m′, m ̸= m′, such that their corresponding height sequences
χm and χm′ satisfy the conditions (a) and (b). Since m ̸= m′, there exists some
i such that χm′(i) < χm(i). We choose the rightmost i with this property. We
necessarily have χm′(i+1)−χm′(i) = χm(i+1)−χm′(i) > χm(i+1)−χm(i) ≥ −1
and thus χm′(i + 1) ≥ χm′(i). Now, there exists some j, j ≤ i, such that
χm′(j) ≤ χm′(j − 1). By contradiction, if there does not exist such a j then
χm′(j) > χm′(j − 1) for j ≤ i. With χm′(0) = 0, we obtain χm′(i) = i and
χm(i) > χm′(i) = i gives a contradiction. So, we have χm′(k) + 1 = χm′(k + 1)
for j ≤ k ≤ i − 1, which implies χm′(j) = χm′(i) − (i − j). On the other
hand, we necessarily have χm(j) ≥ χm(i) − (i − j). Using χm′(i) < χm(i), we
deduce that χm′(j) < χm(j) with the condition χm′(j) ≤ χm′(j − 1). Using
Proposition 2, there exists a Motzkin word m1 satisfying m1 −→ m′ and such
that χm1(k) = χm′(k) for k ̸= j and χm1(j) = χm′(j) + 1. By construction, the
two sequences χm1 and χm′ also satisfy (a) and (b). Repeating iteratively this
process for m and mi, i ≥ 1, there is a positive integer r so that m −→ mr −→
· · · −→ m2 −→ m1 −→ m′.
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000000

(((((())))))

001000

((((()))()))

010000

((((())))())

000100

((((())())))

000010

((((()()))))

001100

(((())(())))(((())())())

010100010010

(((()()))())

000110

(((()(()))))

001010

(((()())()))

011000

(((()))(()))

011010

((()())(()))

001110

((()((()))))

010110

((()(()))())

011100

((())((())))

012100

((())(()()))

011110

(()(((()))))

001210

((()(()())))

012110

(()((())()))

011210

(()((()())))

012210

(()(()(())))

Figure 2: The Motzkin semilattice M6. Each Motzkin word m is associated
with its Motzkin path ϕ(m) and its height sequence χm.

Conversely, let us assume that m
∗−→ m′. Using Proposition 2, it is straight-

forward to see that the height sequences χm and χm′ satisfy (a). Moreover,
if we have the path m −→ m1 −→ · · · −→ mr = m′ for some integer r ≥ 1,
Proposition 2 ensures that the height sequence of m1 is obtained from χm by
decreasing by one an entry χm(i) such that χm(i + 1) ≤ χm(i) > χm(i − 1).
Therefore, m and m1 satisfy also (b), and a simple induction proves that m and
mr = m′ satisfy (b). 2

By construction, the poset (Mn,
∗−→) is included in the Tamari lattice of

order n (see Figure 3). Moreover the previous result proves that it is contained
into the Motzkin lattice defined by Ferrari and Munarini in [9]. More precisely,
the elements are the same, the partial order is dual but our poset has less
covering relations.

Theorem 1 The poset (Mn,
∗−→) is a join semilattice with 1 = (((. . .))) as

maximum element.

Proof. Obviously, Proposition 4 induces that 1 = (((. . .))) is the maximum
element (its height sequence is 0 . . . 0). In order to prove that the poset is a join
semilattice, we show that any two elements of Mn have a least upper bound.
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(())()()

()()()()

()()(())

(()())()

((()))()

(()()())

(())(()) ()(()())

()((()))

()(())()

(()(()))((())())

((()()))

(((())))

Figure 3: The Motzkin semilatticeM4 included into the Tamari lattice of order
4.

Let m and m′ be two different Motzkin words and χm and χm′ their height
sequences. Now, we construct algorithmically a Motzkin word m′′ ∈ Mn (or
equivalently its height sequence χm′′) that is a candidate to be the join element
of m and m′, and we will show that this element really is the join.
Join algorithm The inputs are the height sequences of m and m′ and the
output is the height sequence of the join m ∨m′.

For example, if we perform Algorithm 1 for χm = 0121112110 and χm′ =
0101111010, Part I gives χm′′ = 0101111010, and Part II modifies χm′′ into
χm′′ = 0000000010.

Part I of Algorithm 1 computes for all i, 0 ≤ i ≤ n−1, χm′′(i) = min{χm(i), χm′(i)}.
Since the statements of Part II do not increase any value χm′′(i), the two fol-
lowing conditions χm′′(i) ≤ χm(i) and χm′′(i) ≤ χm′(i), 0 ≤ i ≤ n− 1, remain
true throughout Algorithm 1.

Statements of Part II modifies χm′′ so that there does not exist i such that
χm′′(i − 1) > χm′′(i) and (χm′′(i) < χm(i) or χm′′(i) < χm′(i)). For this, we
traverse χm′′ from right to left and for each i such that χm′′(i − 1) > χm′′(i)
and (χm′′(i) < χm(i) or χm′′(i) < χm′(i)), we replace χm′′(j) with χm′′(i) from
j = i − 1 down to j0 + 1 where j0 is the rightmost index j ≤ i − 1 satisfying
χm′′(j) = χm′′(i).

At the end of Algorithm 1, Proposition 4 ensures that χm′′ is a height se-
quence of a Motzkin word m′′ so that m

∗−→ m′′ and m′ ∗−→ m′′.
Now, we will prove that m′′ really is the least upper bound of m and m′.

Let s be a Motzkin word in Mn such that m
∗−→ s and m′ ∗−→ s and let us

prove that m′′ ∗−→ s. Proposition 4 implies that we have (a) χs(i) ≤ χm(i) and
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Algorithm 1 Join algorithm.

procedure Join(χm, χm′)
// Part I
for i← 0 to n− 1 do
χm′′(i)← min{χm(i), χm′(i)}

end for
// Part II
i← n− 1
while i > 0 do
if χm′′(i) < χm′′(i− 1) and (χm′′(i) < χm(i) or χm′′(i) < χm′(i)) then

x← χm′′(i)
i← i− 1
while χm′′(i) > x do
χm′′(i)← x
i← i− 1

end while
else

i← i− 1
end if

end while
return χm′′

χs(i) ≤ χm′(i) for i ≥ 0, and (b) there does not exist i such that χs(i−1) > χs(i)
and (χs(i) < χm(i) or χs(i) < χm′(i)).

We distinguish two cases,

- χs(i) ≤ χm′′(i) for all i, 0 ≤ i ≤ n − 1; then for all j satisfying χs(j) <
χm′′(j) ≤ min{χm(j), χm′(j)}, there is a Motzkin word w (w = m or

w = m′) such that χs(j) < χw(j). Since we have w
∗−→ s, Proposition 4

implies that χs(j−1) ≤ χs(j) < χm′′(j). Proposition 4 allows to conclude

that m′′ ∗−→ s.

- There exists i such that χs(i) > χm′′(i). Let us recall that χs(i) ≤
min{χm(i), χm′(i)}. Then we have χm′′(i) < min{χm(i), χm′(i)} which
means that χm′′(i) was obtained from min{χm(i), χm′(i)} using Part II of
Algorithm 1. More precisely, there is i1 > i such that χm′′(i1) = χm′′(j) <
min{χm(j), χm′(j)} for i ≤ j ≤ i1−1, and χm′′(i1) = min{χm(i1), χm′(i1)},
and χm′′(i1−1) > χm′′(i1), and (χm′′(i1) < χm(i1) or χm′′(i1) < χm′(i1)).

Thus, since χs(i) > χm′′(i), χs(j) ≤ min{χm(j), χm′(j)} for all j, χm′′(i1) =
min{χm(i1), χm′(i1)} and χm′′(i1) = χm′′(j) for i ≤ j ≤ i1 − 1, there ex-
ists i2, i < i2 ≤ i1 such that χs(i2) = χm′′(i) with χs(i2− 1) > χs(i2) and
(χs(i2) < χm(i2) or χs(i2) < χm′(i2)) which is a contradiction with the

fact that m
∗−→ s and m′ ∗−→ s. Therefore, this case does not occur.

Finally, we obtain m′′ ∗−→ s and m′′ is really the least upper bound of m and
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m′. 2

Proposition 5 The semilattice (Mn,
∗−→) is upper semimodular, i.e. for all

m1,m2,m3 ∈ Mn with m1 ̸= m2, m3 −→ m1 and m3 −→ m2, there exists
m4 ∈Mn such that m1 −→ m4 and m2 −→ m4.

Proof. Let χmi be the height sequences of mi, 1 ≤ i ≤ 4. With Proposition
2, the sequence χm1 (resp. χm2) is obtained from χm3 by decreasing by one
the value χm3(j) (resp. χm3(k)) with j < k, χm3(j) − 1 ≥ χm3(j − 1) and
χm3(k)−1 ≥ χm3(k−1). In the case where k ≥ j+2, the sequence χm4 obtained
from m1 by decreasing by one χm1(k) is clearly a height sequence of a Motzkin
word m4 satisfying m1 −→ m4 and m2 −→ m4. The case k = j + 1 does not
occur. Indeed, we necessarily have the two conditions χm3(j)− 1 ≥ χm3(j − 1)
and χm3(j+1)−1 ≥ χm3(j) that imply χm1(j) = χm3(j)−1 ≤ χm3(j+1)−2 =
χm1(j +1)− 2 which contradicts the fact that χm1 is an height sequence of the
Motzkin word m1. 2

Letm andm′ be two Motzkin words inMn. A geodesic betweenm andm′ in
the Tamari lattice of order n is a shortest path between them browsing through
only some Motzkin words, i.e. lying inMn only. Let d(m,m′) be the length of
a geodesic between m and m′. Equivalently, d(m,m′) is the minimum of left-

and right-rotations needed to transform m into m′ in (Mn,
∗−→). Obviously,

d(m,m′) is an upper bound of the classical rotation distance between m and m′

in the Tamari lattice of order n.

Theorem 2 Let m and m′ be two Motzkin words in Mn. Then, we have

d(m,m′) =
n−1∑
i=0

(χm(i) + χm′(i)− 2χm∨m′(i)).

Proof. (Mn,
∗−→) is an upper semimodular join-semilattice, with a maximal

element and graded by the rank function r(m) = ⌊ (n−1)2

4 ⌋ −
n−1∑
i=0

χm(i) (see

Proposition 3, Theorem 1 and Proposition 5). Then, from [5, 6, 15] we have:

d(m,m′) = 2r(m∨m′)−r(m)−r(m′) and thus d(m,m′) =
n−1∑
i=0

(χm(i)+χm′(i)−

2χm∨m′(i)). 2

Remark 2 A consequence of Theorem 2 is that the classical rotation distance (in
a Tamari lattice) between two Motzkin words m and m′ is less than or equal to

d(m,m′) =
n−1∑
i=0

(χm(i)+χm′(i)−2χm∨m′(i)) (see [4, 7, 17, 19] for bounds of the

rotation distance). Moreover, this bound can give the exact value of the classic
rotation distance for some particular pairs of Motzkin words. Let us define
m = (()(()(() . . . (()) . . .))) = αnβn and m′ = ((()(() . . . (()()) . . .))) = (αn−1()βn

where α = (() and β =). A simple calculation proves that d(m,m′) = n−1 which
also is the classic rotation distance between m and m′ in a Tamari lattice. For
instance, if n = 3 then we havem = (()(()(()))), m′ = ((()(()()))), χm = 012210,
χm′ = 001210 and d(m,m′) = 2; which is exactly the rotation distance in a
Tamari lattice between m and m′ (see [4]).
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3 Some properties of (Mn,
∗−→)

In this part, we present several enumerating results for some characteristic ele-
ments of the semilattice (Mn,

∗−→).

Proposition 6 The generating function for the number of minimal elements

in (Mn,
∗−→) is given by 1−

√
1−4x2−4x3

2x2 (see A007477, [23]).

Proof. A minimal element in (Mn,
∗−→) is a Motzkin word m such that its

associated path ϕ(m) satisfies the property that each horizontal step H is either
followed by a down step D or ends the path. We distinguish three cases: (i)
ϕ(m) is empty; (ii) ϕ(m) = H; and (iii) ϕ(m) = Uϕ(m1)Dϕ(m2) where m1

and m2 are two minimal Motzkin words. Thus, the generating function for
the number of minimal Motzkin paths is A(x) = 1 + x + x2A(x)2 which gives

A(x) = 1−
√
1−4x2−4x3

2x2 . 2

Recall that m ∈ Mn is a join (resp. meet) irreducible element if m = a ∨ b
(resp. m = a∧ b) implies m = a or m = b. Since the setMn is finite, join (resp.
meet) irreducible elements are elements that have a unique lower (resp. upper)
cover.

Proposition 7 The generating function for the number of meet-irreducible el-
ements in (Mn,

∗−→) is given by x
(1−x−x2)(1−x)2 (see A001924, [23]).

Proof. A meet-irreducible element in (Mn,
∗−→) is a Motzkin word m ∈ Mn

such that its associated Motzkin path ϕ(m) contains only one occurrence of
UH or UD. Let an (resp. bn) be the cardinality of the set of meet-irreducible
elements (resp. starting with U) in Mn. Moreover, if ϕ(m) starts with U
then it can be written ϕ(m) = UkM where 1 ≤ k ≤ ⌊n2 ⌋ and M is a word of
length n− k consisting of k down steps and n− 2k horizontal steps. Thus, we

obtain bn =
⌊n

2 ⌋∑
k=1

(
n−k
k

)
that is the sequence A000071 in [23]. Notice that this

sequence are Fibonacci numbers minus 1. Finally, since an = an−1+ bn we have
a recurrence which gives precisely sequence A001924 in [23]. 2

Proposition 8 The generating function for the number of join-irreducible ele-

ments in (Mn,
∗−→) is given by 1−2x2−

√
1−4x2−4x3

2x
√
1−4x2−4x3

.

Proof. A join-irreducible element in (Mn,
∗−→) is a Motzkin word m ∈Mn such

that its associated Motzkin path ϕ(m) contains only one occurrence of HU or
HH. Let A(x) (resp. B(x)) be the generating function for the join-irreducible
elements inMn (resp. for the minimal elements inMn). An element m ∈Mn

is join-irreducible if and only if ϕ(m) can be written in one of the three follow-
ing forms: (i) Uϕ(m′)Dϕ(m′′) where m′ is join-irreducible and m′′ is a minimal
element; (ii) Uϕ(m′)Dϕ(m′′) where m′ is a minimal element and m′′ is join-
irreducible; and (iii) Hϕ(m′) where m′ is a non-empty minimal element. We
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deduce A(x) = 2x2A(x)B(x) + x(B(x) − 1) and since B(x) = 1−
√
1−4x2−4x3

2x2 ,

we obtain A(x) = 1−2x2−
√
1−4x2−4x3

2x
√
1−4x2−4x3

. The first values of this sequence are

0, 0, 1, 1, 4, 7, 18, 39, 90, 206, 470, 1085, 2492, 5762 for 1 ≤ n ≤ 14. 2

Proposition 9 The generating function for the number of coverings in (Mn,
∗−→

) is given by (1−x)(1−x−2x2−
√
1−2x−3x2)

2x(1−2x−x2) .

Proof. Let C(x) =
∑
n≥0

cnx
n be the generating function for the number of

coverings of (Mn,
∗−→). In order to enumerate the coverings m −→ m′ in

(Mn,
∗−→), we count the possible elementary transformations UH −→ HU and

UD −→ HH for Motzkin paths M = ϕ(m). So, we distinguish two cases: (i)
M = HM1 where M1 is a Motzkin path; and (ii) M = UM1DM2 where M1

and M2 are two Motzkin paths.
For the case (i), the generating function for coverings whose lower path M

has the form M = HM1 is clearly xC(x).
Now let us consider the case (ii) M = UM1DM2 where M1 and M2 are two

Motzkin paths. A covering derived from M can be of three different forms:

- it can be derived from a covering of M1 or M2; thus there are
n−2∑
i=0

(ci +

cn−2−i) possible coverings of this form, and the corresponding generating func-

tion is 2x2C(x)
1−x ;

- it can be of the form M = UHM ′
1DM2 −→ M ′ = HUM ′

1DM2 where M ′
1

and M2 are two Motzkin paths; thus the generating function is x3M(x)2 where

M(x) = 1−x−
√
1−2x−3x2

2x2 is the generating function for Motzkin numbers;
- it can be of the form M = UDM2 −→ M ′ = HHM2 where M2 is a

Motzkin path. Thus the generating function is x2M(x).
Putting this together, the generating function C(x) satisfies the equation:

C(x) = xC(x) + x3M(x)2 + 2
x2C(x)

1− x
+ x2M(x)

and we obtain C(x) = (1−x)(1−x−2x2−
√
1−2x−3x2)

2x(1−2x−x2) .

The first values of this sequence are 0, 0, 1, 3, 9, 26, 73, 202, 553, 1504, 4073, 11003, 29689, 80094
for 1 ≤ n ≤ 14. 2
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2012.

[17] J.M. Pallo: On the rotation distance in the lattice of binary trees, Inform.
Process. Lett., 25(1987), 369-373.

[18] J.M. Pallo: An efficient upper bound of the rotation distance of binary
trees, Inform. Process. Lett., 73(2000), 87-92.

[19] J.M. Pallo: Right-arm rotation distance between binary trees, Inform. Pro-
cess. Lett., 87(2003), 173-177.

[20] R. Simion, D. Ullman: On the structure of lattice of noncrossing partitions,
Discrete Math., 98(1991), 193-206.

[21] R. Simion: Noncrossing partitions, Discrete Math., 217(2000), 367-409.

[22] D.D. Sleator, R.E. Tarjan, W.P. Thurston: Rotation distance, triangula-
tions and hyperbolic geometry, J. Am. Math. Soc., 1(1988), 647-681.

[23] N.J.A. Sloane: The On-line Encyclopedia of Integer Sequences, available
electronically at http://oeis.org.

[24] R.P. Stanley: Enumerative Combinatorics, vol. 2. Cambridge University
Press, 1999.

[25] D. Tamari: The algebra of bracketings and their enumeration, Nieuw
Archief voor Wiskunde, 10 (1962), 131-146.

13


