
 1

A walk with Shannon
Walkthrough of a pwn2own baseband exploit.

@amatcama

 2

Introduction

Amat Cama

● Independant Security Researcher.
● CTF player @ Shellphish.
● Exploitation and Reverse Engineering.

● Currently interested in Hypervisors and Baseband security reseach.

Previously

● Security Consultant - Virtual Security Research.
● Research Assistant - UCSB Seclab.
● Product Security Engineer – Qualcomm Inc.
● Senior Security Researcher - Beijing Chaitin Tech Co., Ltd.

 3

Agenda

● Prior Work.

● Motivation.

● Cellular Networks ? Baseband ?

● The Shannon Baseband.

● Hunting for Bugs.

● Demo.

● Conclusions.

Agenda

 4

Prior Work

 5

Prior Work

● “Breaking Band – reverse engineering and exploiting the shannon
baseband” - Nico Golde and Daniel Komaromy.

● Very useful talk if you want to do research on the shannon baseband.
Lots of scripts and information that will definitely be of help.

 6

Motivation

 7

Motivation

● Because it is fun.
● Unexplored area of research; great opportunity to learn.
● Many bugs.
● Big impact.
● Pwning a phone just by having it connect to a cellular network
sounds pretty cool.

 8

Cellular Networks ?
Baseband ?

 9

Cellular Networks ? Baseband ?

What is a Cellular Network ?
● Mobile communication network.
● “Cells” are land areas covered by a base transciever station (BTS).
● To cover a large area, the cells are used in junction: A Cellular
Network.

● Technically could be any kind of network, today mostly Mobile Phone
Network.

 10

Cellular Networks ? Baseband ?

The technologies and standards (I)
● A number of technologies and standards developped.
● Different generations with improving speeds and capacity.
● Competing technologies for different generations.

 11

Cellular Networks ? Baseband ?

The technologies and standards (II)
● Mainly two branches: GSM branch and CDMA branch

GSM

GPRS

EDGE

UMTS

cdmaOne

IS-95 A/B

CDMA2000

LTE

2G

3G

4G

2.5G

2.75G

 12

Cellular Networks ? Baseband ?

The technologies and standards (III)
● 3GPP is a collaboration agreement with a number of telecommunication standard
bodies.

● Provides maintenance and development of the GSM Technical Specifications (TS)
➔ GSM
➔ GPRS / EDGE
➔ UMTS
➔ LTE

● Is Comprised of bodies such as the European Telecommunications Standards
Institute (ETSI).

● The technical standards provide detailed information on the structure of
messages exchanged.

 13

Cellular Networks ? Baseband ?

The Protocol Stack

 RR – Radio
Resource

 Management

LAPDm

Physical Layer

Network Layer

Data Link Layer

MM – Mobility
Management

CM – Connection
Management

 RR – Radio
Resource

 Management

MM – Mobility
Management

CM – Connection
Management

MM – Mobility
Management

CM – Connection
Management

MM – Mobility
Management

CM – Connection
Management

 MAC – Media
Access Control

RLC/LLC –
Radio/Logical Link

Control

SNDCP – Subnetwork
Dependent

Convergence Protcol

 MAC – Media
Access Control

RLC/LLC –
Radio/Logical Link

Control

PDCP – Packet Data
Convergence Protcol

 RRC – Radio
Resource
 Control

IP – Internet
Protocol

 NAS – Non-
Access Spectrum

GMM – GPRS Mobility
Management

SM – Session
Management

GSM GPRS/EDGE LTE

 GRR – GPRS
Radio Resource
 Management

 14

Cellular Networks ? Baseband ?

The Baseband (I)
● Component of the phone in charge of handling communication with the mobile
network.

● Deals with low level radio signal processing.
● Supports a number of standards (GSM, 3G, 4G, 5G, cdmaOne, CDMA2000, ...).
● Basically the main “interface” to the mobile network.

 15

Cellular Networks ? Baseband ?

The Baseband (II)
● A number of different implementations.
● Qualcomm owns most of the market.
● Qualcomm: Galaxy, iPhone, OnePlus, Pixel, Xperia, HTC, LG, ASUS,
Motorola, ...

● Huawei: Mate 10, P20, Honor 9, ...
● Samsung: Galaxy S6, S7, S8, S9, ...
● Intel: iphone X, iphone 8, ...

 16

Cellular Networks ? Baseband ?

The Baseband (III)
● The most common architecture today: baseband firmware runs on a dedicated
chip; the cellular processor (CP).

● This chip is tasked with all of the radio processing.
● The code is generally written in low level languages such as C/C++.
● A communication interface between CP and AP (Application Processor) such as
shared memory, serial or interrupts.

RAM

AP

CP

 17

Cellular Networks ? Baseband ?

The Baseband (IV)
● Getting code execution on the CP doesn’t necessarily result in owning the
whole device.

● A number of attacks can be performed:
➔ Redirect/Intercept phone calls.
➔ Redirect/Intercept SMS.
➔ Modify Internet traffic.
➔ ...

● A step further; attack the AP through the IPC mechanisms and gain full
control of the device.

APCP

 18

The Shannon Baseband

 19

The Shannon Baseband

About Shannon
● Samsung’s Baseband implementation.
● Typically ships with phones featuring the Exynos SoC.
● e.g: most non-US Galaxy phones.
● A RTOS running on an ARM Cortex R7.

 20

The Shannon Baseband

Obtaining the code (I)
● The modem firmware can be obtained from the phone’s firmware images.
● However it is encrypted and doesn’t seem to be an easy way to decrypt it.
● Luckily it is possible to make the phone generate modem RAM dumps.
● Dialing the code *#9900# brings up the SYSDUMP menu.

 21

The Shannon Baseband

Obtaining the code (II)

Page 1 Page 2

1

3

2

4

 22

The Shannon Baseband

Obtaining the code (III)
● Tap on the `DEBUG LEVEL ENABLED/` option and set it to `High`. The phone will
reboot.

● Reopen the SYSDUMP menu, scroll down and tap on the `CP RAM LOGGING` option
and set it to `On`. The phone will reboot.

● Reopen the SYSDUMP menu and scroll all the way down, tap the `RUN FORCED CP
CRASH DUMP` option. The phone will reboot and go into the ram upload mode.
Hold the power and volume down button for 10 seconds to turn the phone off
and then power it back on.

● Reopen the SYSMDUMP menu and tap the `COPY TO SDCARD(INCLUDE CP RAMDUMP)`
option.

● Now in the folder `/sdcard/log` of the device, we have the log files
including the ram dump. Largest file in the folder and has a name of the
following format `cpcrash_dump_YYYYMMDD_HHSS.log`

 23

The Shannon Baseband

Obtaining the code (IV)

 24

The Shannon Baseband

Loading Code in IDA
● The CP Boot Daemon (/sbin/cbd) handles powering on the modem and processing
RAM dumps amongst other things.

● Boot code can be found at the start of the encrypted modem image in the
firmware packages.

● By reversing the cbd and boot, we can translate the file offsets of the RAM
dump to virtual addresses:

0x40000000

0x8000000

0x4000000

0x20000

0x4800000

0x4000

0x3E00

0x200

 25

The Shannon Baseband

Identifying Tasks
● We need to identify the different tasks run by the RTOS.
● Start reversing from RESET Exception Vector Handler…
● Look at the start of the different memory regions and you recognize the
Exception Vector Table in one of them.

● A linked list contains all the different tasks’ entry points, corresponding
stack frames and task names (very useful).

● Traverse the list and identify all the tasks.

 26

The Shannon Baseband

The Tasks (I)
● We end up with a list of tasks with different names, some of them self-
explanatory, some of them misleading, some of them hard to understand.

● MM (Mobility Management ?)
● LLC
● SMS_SAP
● GRR
● SS
● SAEL3
● SNDCP
● CC (Call Control ?)
● SM (Session Management ?)
● LLC
● ...

 27

Cellular Networks ? Baseband ?

● The Tasks (II)

 RR – Radio
Resource

 Management

LAPDm

Physical Layer

Network Layer

Data Link Layer

MM – Mobility
Management

CM – Connection
Management

 RR – Radio
Resource

 Management

MM – Mobility
Management

CM – Connection
Management

MM – Mobility
Management

CM – Connection
Management

MM – Mobility
Management

CM – Connection
Management

 MAC – Media
Access Control

RLC/LLC –
Radio/Logical Link

Control

SNDCP – Subnetwork
Dependent

Convergence Protcol

 MAC – Media
Access Control

RLC/LLC –
Radio/Logical Link

Control

PDCP – Packet Data
Convergence Protcol

 RRC – Radio
Resource
 Control

IP – Internet
Protocol

 NAS – Non-
Access Spectrum

GMM – GPRS Mobility
Management

SM – Session
Management

GSM GPRS/EDGE LTE

 GRR – GPRS
Radio Resource
 Management

 28

The Shannon Baseband

The Tasks (III)
● Different tasks are used for different components and layers of the protocol
stacks.

● Tasks communicate with each other using a mailbox system.
● Tasks are pretty much while loops waiting to process messages (from other
tasks).

Task Entry

Check Mailbox

Process

Post Message in Mailbox’

 29

The Shannon Baseband

The Tasks (IV)
● Pick a task and start reversing.
● The Code is pretty generous in that it contains a lot of strings.

 30

Hunting for Bugs

 31

Hunting for Bugs

Setting up an environment (I)
● The goal is to be able to send arbitrary data the the baseband.
● Need to operate our own cellular network.
● Can be achieved with a Software Defined Radio (SDR).
● The Mobile Network Stack / Standard is implemented in software that runs on
our computers.

● The SDR (device) is a general purpose transciever that supports different
frequencies.

 32

Hunting for Bugs

Setting up an environment (II)
● A number of different options for the SDRs.

➔ BladeRF x40: $420.00
➔ BladeRF x115: $650.00
➔ USRP B200: $675.00
➔ LimeSDR: $300.00
➔ UmTRX: $950.00 - $1300.00

 33

Hunting for Bugs

Setting up an environment (III)
● A number of different options for software implementation of the standards.
● YateBTS:

➔ Clean code, easy to modify.
➔ Good support for bladeRF.
➔ GSM and GPRS.
➔ Easy to compile and run.

● OpenBTS (OpenBTS-UMTS):
➔ Clean code, easy to modify.
➔ Good support for USRP and UmTRX.
➔ GSM, GPRS, 3G.
➔ Easy to compile and run.

 34

Hunting for Bugs

Setting up an environment (IV)
● OpenBSC (OsmoNITB, OsmBTS, …):

➔ Good support for USRP, LimeSDR and UmTRX.
➔ Compiling wasn’t easy.
➔ Clean code, easy to modify.
➔ GSM + GPRS.

● OpenAirInterface:
➔ Hard to compile and run.
➔ Good support for USRP.
➔ 4G.

● OpenLTE:
➔ Hard to compile and run.
➔ 4G.
➔ Good support for USRP.
➔ Clean code, easy to modify.

 35

Hunting for Bugs

Setting up an environment (V)
● Provisionned or programmable SIM Cards because 3G and 4G do not support open
authentication.

● Faraday Cage / RF Enclosure because in most countries, operating a cell
network without permission is Illegal!

 36

Hunting for Bugs

Debugging The Phone
● Everytime the modem crashes we get a RAM dump.
● Luckily the dump contains the state of the registers at the time of the
crash, therefore we have pretty decent post-mortem debugging capabilities.

● Write a script to process the dumps and do useful stuff (registers, peeking
at memory).

 37

Hunting for Bugs

Digging into the code (I)
● Back to picking a task to have a closer look at.
● An interesting approach is the following:

➔ Layer 3 Messages are comprised of Information Elements (IEs).
➔ IEs are V, LV, TLV.
➔ What are the different messages that can be sent to different components?
➔ Cross Reference the Technical Standards to know the different message types
sent to different components.

➔ Read the description of the different messages and the content of the
Information Elements. Are there (T)LVs ? Then reverse the corresponding
task and try to find the code processing that particular IE.

➔ A number of trivial bugs can be found this way...

 38

Hunting for Bugs

Digging into the code (II)
● Let’s clarify with an example.
● The CC task most likely stands for Call Control.
● Call control is a part of Connection Management in the GSM protocol stack.
● What are the different CC messages ?

 39

Hunting for Bugs

Digging into the code (III)

 40

Hunting for Bugs

Digging into the code (IV)

 41

Hunting for Bugs

Digging into the code (V)
● Using this approach it is possible to find a number of trivial
vulnerabilities.

● A previous bad experience competing at P2O taught me that trivial bugs are
bad.

● Dig a bit deeper in order to find something less trivial and reduce the
chance for collisions.

 42

Hunting for Bugs

The Mobile Pwn2Own Bug (I)
● Decided to look at GPRS since it seems complicated?
● Start by reading the standards and looking at the GPRS Session Management
Messages.

GMM – GPRS Mobility Management

SM – Session Management

GPRS/EDGE

 GRR – GPRS Radio Resource
 Management

 43

Hunting for Bugs

The Mobile Pwn2Own Bug (II)
● The ACTIVATE PDP CONTEXT ACCEPT message looks good.

 44

Hunting for Bugs

The Mobile Pwn2Own Bug (III)
● By reversing the SM task, we find the handlers for the different messages.
● One of these messages is the ACTIVATE PDP CONTEXT ACCEPT message.
● One part of it that seems to be interesting is the Protocol Configuration
Options, the function processing that IE seems complicated.

 45

Hunting for Bugs

The Mobile Pwn2Own Bug (IV)

 46

Hunting for Bugs

The Mobile Pwn2Own Bug (V)
● Processes Protocol Configuration Options which are sent by the Network in a
`ACTIVATE PDP CONTEXT ACCEPT`.

● PDP stands for Packet Data Protocol
● The purpose of the protocol confiuration options information element is to:

➔ transfer external network protocol options associated with a PDP context activation, and
➔ transfer additional (protocol) data (e.i. confiuration parameters, error codes or

messaies/events) associated with an external protocol or an application.

 47

Hunting for Bugs

The Mobile Pwn2Own Bug (VI)
● One of the supported protocols is IPCP (Internet Protocol Control Protocol).

 48

Hunting for Bugs

The Mobile Pwn2Own Bug (VII)

 49

Hunting for Bugs

The Mobile Pwn2Own Bug (VIII)
● The plan looks like this:

ACTIVATE PDP
CONTEXT ACCEPT

 50

Hunting for Bugs

The Mobile Pwn2Own Bug (IX)
● Not so easy...
● Problem is the phone will only process this message if it is in the correct
state.

● This happens when the phone sends a `ACTIVATE PDP CONTEXT REQUEST` message.
● Which in turn happens if the phone is manually configured to include an APN
in the connection settings.

● However this is a problem for the P2O...

 51

Hunting for Bugs

The Mobile Pwn2Own Bug (X)
● Read more of the technical standards...
● We can force the MS get in the correct state (i.e perform PDP activation
procedure) by sending a `REQUEST PDP CONTEXT ACTIVATION`.

 52

Hunting for Bugs

The Mobile Pwn2Own Bug (XI)
● The actual plan looks like this:

ACTIVATE PDP CONTEXT
REQUEST

REQUEST PDP
CONTEXT ACTIVATION

ACTIVATE PDP
CONTEXT ACCEPT

 53

Hunting for Bugs

The Mobile Pwn2Own Bug (XII)
● In order to actually implement the attack we need to modify the source code
of YateBTS.

● Add code to send the `REQUEST PDP CONTEXT ACTIVATION` message to the phone.
● Modify the `ACTIVATE PDP CONTEXT ACCEPT` messages to trigger the bug.
● As said earlier the code is pretty clean and actually reading it will help
you better understand the GSM protocol stack.

● For this attack, the file to modify is: mbts/SGSNGGSN/Ggsn.cpp

 54

Hunting for Bugs

The Mobile Pwn2Own Bug (XIII)
● ROP is needed for the first stage of your payload due to ARM cache-fu.
● Copy shellcode to some arbitrary RWX address and invalidate/flush the i-
cache/d-cache.

● Jump to win.
● Payload can do any number of things, for P2O I chose to write to the Android
filesystem by leveraging the RFS (Remote? File System), a mechanism which
allows the baseband to store data such as NV Items to the android filesystem.

● Payload can even be a custom “debugger” that can be used to find other bugs
and write more involved exploits (e.g heap memory corruption).

 55

Demo

 56

Conclusions

 57

Conclusions

● Baseband exploitation isn’t as hard as it is percieved to be.
● You don’t need to know much about cellular networks in order to exploit them.
● When will we see the first full remote compromise through baseband ?
● Many targets out there, Huawei, Intel, Qualcomm...

 58

?’s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

