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The Microfluidics Device Model.

@ Flow is electrokinetically driven
e Charge confined to a thin Debye layer near walls
e High viscosity — velocity proportional to electric field

— potential flow
e Travel time to a point computable from advection

equation
@ Important constraints are imposed by acid-etch
manufacturing process

e Channel depth can vary stepwise only

e Features have minimum radius of curvature equal to
channel depth

e Curvature of bottom near walls is important when
width is comparable to depth
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Optimizing the Microfluidics Device. R

Microfluidics
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Motivating
Problem

@ To optimize flow, change
channel geometry
e Varying channel walls
has little effect by itself
o Options: islands or depth
@ Islands require topology
optimization

Level Set Method
Slope Penalty Method
Slope Barrier Method

Boolean Images
Non-Boolean Images

@ For narrow channels: use shape of etch mask as
design variable

e Design automatically satisfies manufacturability
constraint

e Requires simulation of etching - more expensive than
electrokinetic flow simulation!

e Includes depth variation near walls
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Given some domain, 2, we wish to partition it into two

subsets: Sriion
@ The interior, Z, which will be the domain of some
PDE,

@ The exterior, £, everything else.




Using Parametric Curves Migrofdis
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One idea is to use a parametric curve. But ...
@ Small feasible region Topology

(] MeSh dependent Optimization

e Causes mesh deformation
e Topology changes require remeshing
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Using a Level Set Method Migrofdis

Let the interface between &£ and 7 be defined by the zero S

contour of a level set function ¢.

p:xeQ—-R

A level set function defines a geometric shape one
dimension higher than Q

Boolean Images

Non-Boolean Images



Advantages of Level Set Method

By using a Level Set Method we gain several advantages.

@ Only need to manipulate ¢ not the mesh.

@ Dimensionality of ¢ allows topology changes
effortlessly.

@ Much richer design space.
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Defining £ and 7. Migrofdis
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X
ol I=u! Level Set Method
Now we can define £ and Sasas R
T by a y distribution: £l 40|
. .- = N 1 N i i Boolean Images
X(d)) _ o |f¢ < O ]!:1 Non-Boolean Images
1 otherwise 0 P NP P 2 P 1 N P N S
N S S A‘,,T,f+,.,,,, NS
o =0
1 3 SV

But this makes a large boolean optimization problem,
which is very hard so we relax y to the reals by the use of
a sigmoid function.



The Sigmoid Function.

We use the sigmoid function: o : R — R|[0, 1]

o(¢) = ( + tanh (2))

where A is a given parameter.
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Il posed. Migofidcs
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Level Set Method
The problem as it stands is ill posed.

@ We only use the zero contour of ¢, but there are
infinitely many choices.

@ Without a smoothness condition, ¢ could be very
perverse.
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To guide the optimization algorithm to a “nice” answer, we
use a Tikhonov and total variation diminishing
regularization terms.

@ Tikhonov

Level Set Method
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The interface between &£ and 7. B A
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To promote boolean shapes, we require the transition of o
from 0 to 1 to be small. Sope Fealy ithod

This transition is controlled by:
@ The parameter, A, something we control at runtime.
@ The slope of ¢, a design variable.

By controlling the slope of ¢, we are able to pick the
length of this transition.



Slope Penalty Method.

Proposed by A. Cunha.
@ Impose the approximate constraint that |V¢| ~ 1

@ Don'’t use strict constraint because V¢ is also
controlled by Tikhonov regularization

@ Use penalties to determine the dominant feature in
the objective function.
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Slope Barrier Method.

The slope penalty method defined the slope of ¢ over the
entire domain.

A more desirable solution would be to only control the
slope around the transition region of . So instead we
use the inequality constraint:

((2)2+(v¢)2> S

This will allow the slope of ¢ vary freely outside our
transition region.
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Quality Measure of the Shape

In our application we used a PDE to determine the quality
of the shape

For testing purposes we are only going to look at
matching a specified target shape, £*, and thus we will
use a Heaviside Distance function to compare our shape
with the target shape, that is:

d(E, &%) = ;/Q(a ~ 6")2dQ
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Formal Definition of the Problem.

minimize the function F where:

F o= 1/(0—0*)2d9+0“/|v¢|2d9+
2 Ja 2 Jo

+ ag/(vaz)édﬂ+
Q

B 2,2
+ 4/Q(mws 2dQ

augmented to the inequality constraint:

v+ (2))z0-9
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Optimization Strategy.

For opimization we require a local an global strategy.

@ Local Optimization

e Use an adaptive limited-memory BFGS algorithm’
@ Global Optimization

e Use a Tunneling Method

@ Pick a new random direction to find a lower point.
@ Use method to catch perturbations at low spacial

frequency.
M,N )
bot S Anne (P
m=—M,n=—N

e For better results use simulated annealing to allow
for a few uphill steps.

'Byrd and Boggs, publication in process
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Interpreting Results. Migofidcs
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Reminder of what we what good results are:
@ Match shape closely. (Heaviside distance small)
@ Results should be boolean. S

@ Easy objective function to minimize.

e Low number of iterations to reduce objective function.
e Invariant to initial guess
e Low number of artificial minimizers.



General Boolean Results

Figure: The target images.

[
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(a) Simple (b)  Complex
boolean image boolean image

@ Tikhonov regularization and Slope barrier did well all
around but slope barrier did beter in iteration count.

@ Slope penalty method correctly reproduced the
images but had a less boolean shape and had a
larger number of local minimizers.
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Iteration Count.

Figure: Sample convergence speed comparison
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Target Shape and Tikhonov Regularization. Migrofidies
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Figure: Sample Target and baseline configuration

(a) target (b) baseline



Slope Penalty Method.

Figure: Sample slope penalty configurations

(d) 6=1.0e—6 (e) B=1.0e—-7
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Slope Barrier Method.

Figure: Sample slope barrier configurations

(d) v = 0.01

(€) v = 0.001
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Using Non-Boolean Images.

When using non-boolean targets to find a boolean
approximation several features changed:
@ The Slope Penalty method

e matched the shape quickly
o fewer minimizers
e resulting image — non-boolean

@ The Slope Barrier method

e large Heaviside distance
o lots of minimizers
e resulting image — boolean
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For illustration we use the non-boolean solution to one of

the microflow devices.
The next few slides will show resulting images from these

tests.

Figure: Smooth target and boolean solution RS IEsEs

(a) target (b) solution



Large Slope Penalty. Migrofidies

A Terrel, K Long

Figure: Larger slope penalty (8 = 1.0e — 4) Final Global
iteration
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Small Slope penalty. Migrofdis
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Figure: Smaller slope penalty 5 = 1.0e — 6, First and Final
Global iteration
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Slope Barrier Method. Migrofdis
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Figure: Slope Barrier v = 0.001, Final Global iteration

Non-Boolean Images
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Compromising Boolean Image for a Better
Shape

@ In this scenario, neither method has produce
satisfactory results.

@ There seems to be a tradeoff between the
boolean-ness and shape.

To help alleviate this problem, we try a large A and
reduce it after a number of iterations. This should have no
affect on the Slope Penalty Method but gives better
results for the Slope Barrier Method.
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Using a Variable A. Migrofidies
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Figure: Slope Barrier Reduction Method (v = 0.001, reduces =

Non-Boolean Images
» s

20, opts = 5, reduction = 0.9)
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@ Controlling the slope of a Level Set Function
provides a natural way to embed a topology
optimization in a PDE constrained problem.

@ For boolean targets, the methods are closely
comparable in effectiveness.

@ Non-boolean targets provide challenges that depend
highly on the necessary conditions. In our
application the boolean condition was as important
as the shape and thus the Slope Barrier wins.

Summary

@ Outlook

e Test out different slope controlling mechanisms for
the level set function.

e Work out some solid theory behind these types of
methods.



Questions B A
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Any Questions?

aterrel@uchicago.edu
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The Sundance Simulation Environment B A
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@ High-level, symbolic components simplify simulator
development
o Write an entire multiphysics simulator in a few dozen
lines (Python or C++)
@ Symbolic representation allowing efficient derivative
evaluation
@ Performance is superb
o Abstract representation allows automated A

performance optimizations
e User interface dedicated to human readibility,
computational core dedicated to performance

@ Fully parallel
e Uses Trilinos parallel solver components
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