Topology Optimizations with applications in Microfluidics a comparison of level set methods

Andy R Terrel¹ Kevin Long²

¹Department of Computer Science University of Chicago

²Computational Sciences and Mathematics Deptartment Sandia Livermore National Lab

September 18, 2006

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images

Summary

Appendix

・ロト・西・・田・・田・・日・

Outline

1 Motivating Problem

Topology Optimization

- Level Set Method
- Slope Penalty Method
- Slope Barrier Method

- Boolean Images
- Non-Boolean Images

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images

Summary

Appendix

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The Microfluidics Device Model.

- Flow is electrokinetically driven
 - Charge confined to a thin Debye layer near walls
 - High viscosity → velocity proportional to electric field
 → potential flow
 - Travel time to a point computable from advection equation
- Important constraints are imposed by acid-etch manufacturing process
 - Channel depth can vary stepwise only
 - Features have minimum radius of curvature equal to channel depth
 - Curvature of bottom near walls is important when width is comparable to depth

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Optimizing the Microfluidics Device.

To optimize flow, change channel geometry

- Varying channel walls has little effect by itself
- Options: islands or depth
- Islands require topology optimization

Top Opt w/ Microfluidics

A Terrel, K Long

Problem

- For narrow channels: use shape of etch mask as design variable
 - Design automatically satisfies manufacturability constraint
 - Requires simulation of etching more expensive than electrokinetic flow simulation!
 - Includes depth variation near walls

Goal of Topology Optimization

Given some domain, Ω , we wish to partition it into two subsets:

- The interior, *I*, which will be the domain of some PDE,
- The exterior, \mathcal{E} , everything else.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images

Summary

Appendix

・ロト・西ト・山田・山田・山下

Using Parametric Curves

One idea is to use a parametric curve. But ...

- Small feasible region
- Mesh dependent
 - Causes mesh deformation
 - Topology changes require remeshing

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images

Summary

Appendix

・ロト・西・・田・・田・・日・

Using a Level Set Method

Let the interface between \mathcal{E} and \mathcal{I} be defined by the zero contour of a level set function ϕ .

 $\phi: \mathbf{X} \in \Omega \to \mathbb{R}$

A level set function defines a geometric shape one dimension higher than $\boldsymbol{\Omega}$

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images

Summary

Advantages of Level Set Method

By using a Level Set Method we gain several advantages.

- Only need to manipulate ϕ not the mesh.
- Dimensionality of ϕ allows *topology* changes effortlessly.
- Much richer design space.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Defining \mathcal{E} and \mathcal{I} .

Now we can define \mathcal{E} and \mathcal{I} by a χ distribution:

$$\chi(\phi) = \left\{ egin{array}{cc} 0 & ext{if}\phi < 0 \ 1 & ext{otherwise} \end{array}
ight.$$

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

But this makes a large boolean optimization problem, which is very hard so we relax χ to the reals by the use of a sigmoid function.

The Sigmoid Function.

We use the sigmoid function: $\sigma : \mathbb{R} \to \mathbb{R} | [0, 1]$

$$\sigma(\phi) = \frac{1}{2}(1 + \tanh\left(\frac{\phi}{\Delta}\right))$$

where Δ is a given parameter.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

The problem as it stands is ill posed.

- We only use the zero contour of φ, but there are infinitely many choices.
- Without a smoothness condition, φ could be very perverse.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Regularization.

To guide the optimization algorithm to a "nice" answer, we use a Tikhonov and total variation diminishing regularization terms.

Tikhonov

$$\frac{\alpha_1}{2}\int_{\Omega}|\nabla\phi|^2d\Omega$$

TVD

$$\alpha_2 \int_{\Omega} (\nabla \sigma^2)^{\frac{1}{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

The interface between \mathcal{E} and \mathcal{I} .

To promote boolean shapes, we require the transition of σ from 0 to 1 to be small.

This transition is controlled by:

- The parameter, Δ , something we control at runtime.
- The slope of ϕ , a design variable.

By controlling the slope of ϕ , we are able to pick the length of this transition.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization Level Set Method Slope Penalty Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Slope Penalty Method.

Proposed by A. Cunha.

- Impose the approximate constraint that $|\nabla \phi| \approx 1$
- Don't use strict constraint because ∇φ is also controlled by Tikhonov regularization
- Use penalties to determine the dominant feature in the objective function.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization Level Set Method

Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Slope Barrier Method.

The slope penalty method defined the slope of ϕ over the entire domain.

A more desirable solution would be to only control the slope around the transition region of σ . So instead we use the inequality constraint:

$$\left(\left(\frac{\phi}{\Delta}\right)^2 + (\nabla\phi)^2\right) \ge 1 - \epsilon$$

This will allow the slope of ϕ vary freely outside our transition region.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Quality Measure of the Shape

In our application we used a PDE to determine the quality of the shape

For testing purposes we are only going to look at matching a specified target shape, \mathcal{E}^* , and thus we will use a Heaviside Distance function to compare our shape with the target shape, that is:

$$d(\mathcal{E},\mathcal{E}^*) = rac{1}{2}\int_{\Omega}(\sigma-\sigma^*)^2d\Omega$$

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

Appendix

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Formal Definition of the Problem.

minimize function \mathcal{F} where: the $\mathcal{F} = \frac{1}{2} \int_{\Omega} (\sigma - \sigma^*)^2 d\Omega + \frac{\alpha_1}{2} \int_{\Omega} |\nabla \phi|^2 d\Omega +$ + $\alpha_2 \int_{\Omega} (\nabla \sigma^2)^{\frac{1}{2}} d\Omega +$ + $\frac{\beta}{4}\int_{\Omega}(1.0-\nabla\phi^2)^2d\Omega$ the inequality constraint: augmented to $(\nabla \phi^2 + \left(\frac{\phi}{\Delta}\right)^2) \ge (1 - \epsilon)$

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

Appendix

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Optimization Strategy.

For opimization we require a local an global strategy.

- Local Optimization
 - Use an adaptive limited-memory BFGS algorithm¹
- Global Optimization
 - Use a Tunneling Method
 - Pick a new random direction to find a lower point.
 - Use method to catch perturbations at low spacial frequency.

$$\phi \leftarrow \phi + \sum_{m=-M,n=-N}^{M,N} A_{m,n} e^{-i\left(\frac{\pi m}{L} x + \frac{\pi n}{L} y\right)}.$$

 For better results use simulated annealing to allow for a few uphill steps.

¹Byrd and Boggs, publication in process → (→ (→ (→ (→)

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

Interpreting Results.

Reminder of what we what good results are:

- Match shape closely. (Heaviside distance small)
- Results should be boolean.
- Easy objective function to minimize.
 - Low number of iterations to reduce objective function.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

- Invariant to initial guess
- Low number of artificial minimizers.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

General Boolean Results

Figure: The target images.

Microfluidics A Terrel, K Long

Top Opt w/

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

- Tikhonov regularization and Slope barrier did well all around but slope barrier did beter in iteration count.
- Slope penalty method correctly reproduced the images but had a less boolean shape and had a larger number of local minimizers.

Iteration Count.

Figure: Sample convergence speed comparison

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Top Opt w/ Microfluidics

A Terrel, K Long

Target Shape and Tikhonov Regularization.

Figure: Sample Target and baseline configuration

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

Appendix

・ロト・日本・日本・日本・日本・日本

Slope Penalty Method.

Figure: Sample slope penalty configurations

(a)
$$\beta = 1.0e - 3$$
 (b) $\beta = 1.0e - 4$ (c) $\beta = 1.0e - 5$

(d) $\beta = 1.0e - 6$ (e) $\beta = 1.0e - 7$

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

Appendix

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Slope Barrier Method.

Figure: Sample slope barrier configurations

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Boolean Images Non-Boolean Images

Summary

Using Non-Boolean Images.

When using non-boolean targets to find a boolean approximation several features changed:

- The Slope Penalty method
 - matched the shape quickly
 - fewer minimizers
 - resulting image non-boolean
- The Slope Barrier method
 - large Heaviside distance
 - Iots of minimizers
 - resulting image boolean

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results

Non-Boolean Images

Summary

Appendix

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Shape to Match.

For illustration we use the non-boolean solution to one of the microflow devices.

The next few slides will show resulting images from these tests.

Figure: Smooth target and boolean solution

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Large Slope Penalty.

Figure: Larger slope penalty ($\beta = 1.0e - 4$) Final Global iteration

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

・ロト・日本・日本・日本・日本・日本

Small Slope penalty.

Figure: Smaller slope penalty $\beta = 1.0e - 6$, First and Final Global iteration

(a) 4 circles, (b) 9 circles, (c) 16 circles, (d) 25 circles, first first first first first

(e) 4 circles, fi- (f) 9 circles, fi- (g) 16 circles, (h) 25 circles, nal nal final final

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Slope Barrier Method.

Figure: Slope Barrier $\gamma = 0.001$, Final Global iteration

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendix

・ロト・四ト・ヨト・ヨー もくの

Compromising Boolean Image for a Better Shape

- In this scenario, neither method has produce satisfactory results.
- There seems to be a tradeoff between the boolean-ness and shape.

To help alleviate this problem, we try a large Δ and reduce it after a number of iterations. This should have no affect on the Slope Penalty Method but gives better results for the Slope Barrier Method.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Using a Variable Δ .

Figure: Slope Barrier Reduction Method ($\gamma = 0.001$, reduces = 20, opts = 5, reduction = 0.9)

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Appendi

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Summary

- Controlling the slope of a Level Set Function provides a natural way to embed a topology optimization in a PDE constrained problem.
- For boolean targets, the methods are closely comparable in effectiveness.
- Non-boolean targets provide challenges that depend highly on the necessary conditions. In our application the boolean condition was as important as the shape and thus the Slope Barrier wins.
- Outlook
 - Test out different slope controlling mechanisms for the level set function.
 - Work out some solid theory behind these types of methods.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary

Questions

Any Questions?

aterrel@uchicago.edu

Acknowledgements:

- Kevin Long original simulations and frameworks.
- Paul Boggs development of opimization schemes we used.
- Sandia National Labs funding and work environment.

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images

Summary

The Sundance Simulation Environment

- High-level, symbolic components simplify simulator development
 - Write an entire multiphysics simulator in a few dozen lines (Python or C++)
- Symbolic representation allowing efficient derivative evaluation
- Performance is superb
 - Abstract representation allows automated performance optimizations
 - User interface dedicated to human readibility, computational core dedicated to performance
- Fully parallel
 - Uses Trilinos parallel solver components

Top Opt w/ Microfluidics

A Terrel, K Long

Motivating Problem

Topology Optimization

Level Set Method Slope Penalty Method Slope Barrier Method

Testing and Results Boolean Images Non-Boolean Images

Summary