
Optimizing Local Matrix
Computation for Finite Element

Methods
Robert C. Kirby and Andy R. Terrel

with Anders Logg and L. Ridgway Scott

University of Chicago, Chicago, IL

Annual SIAM Meeting 2005 – p.

Introduction

Several ongoing projects have led to the development of tools for automating important
aspects of the finite element method, with the potential for increasing code reliability and
decreased development time. While these tools are effective at exploiting modern software
engineering to produce workable systems, we believe that additional mathematical insight
will lead to even more powerful codes with more general approximating spaces and more
powerful algorithms.

One such optimization is how to efficiently (in the sense of operation count) evaluate local
stiffness matrices for finite element methods. All entries of the local stiffness matrix for an
element e may be expressed as the contraction of some reference element tensor with a
"geometric" tensor. To build the n× n stiffness matrix for one element, one must contract
this tensor with n

2 reference element tensors. There are relations between many of these
tensors (equality, colinearity, small Hamming distance) that, if exploited, lead to an algorithm
with significantly fewer floating point operations.

Annual SIAM Meeting 2005 – p.

Finite Element Method

The finite element method is a general methodology for the
discretization of differential equations. A discrete version of
the variational problem: Find U ∈ V such that

a(v, U) = L(v) ∀v ∈ V̂ , (1)

or a multilinear form:

Ai = a(ϕ1
i1, ϕ

2
i2 , . . . , ϕ

r
ir). (2)

The element tensor:

Ae
i = ae(ϕ

e,1
i1

, ϕ
e,2
i2

, . . . , ϕ
e,r
ir

). (3)

where {ϕ1
i }

M1

i=1
, {ϕ2

i }
M2

i=1
, . . . , {ϕr

i}
Mr

i=1
are bases of

V1, V2, . . . , Vr and i = (i1, i2, . . . , ir) is a multiindex.
Annual SIAM Meeting 2005 – p.

Building Stiffness Matrix

After some work, we can phrase parts of the Local Stiffness
Matrix to a tensor contraction:

Ae
i = A

0,k
iα Gα

e,k, (4)

For example, Poisson’s equation −∆u(x) = f(x) with
homogeneous Dirichlet boundary conditions on a domain
Ω. Here E is the reference element.

A0
iα =

∫

E

∂Φ1
i1

(X)

∂Xα1

∂Φ2
i2

(X)

∂Xα2

dX , Gα
e = det F ′

e

∂Xα1

∂xβ

∂Xα2

∂xβ

(5)

We want to know how to speed this operation up.

Annual SIAM Meeting 2005 – p.

Abstract Optimization

We consider tensors as vectors and contraction as the
Euclidean inner product.

We let Y = {yi}n
i=1 be a collection of n vectors in R

m,
allowing for some of the items in Y to be identical.

Corresponding to Y , we must find a process of computing
for arbitrary g ∈ R

m the collection of items {
(

yi
)t

g}n
i=1.

We will measure the cost of this as the total number of
multiply-add pairs required to complete all the dot products.
This cost is always bounded by nm, but we hope to improve
on that.

Annual SIAM Meeting 2005 – p.

Complexity Reducing Relations

Dependencies such as equality, colinearity, and Hamming
distance often occur between the different vectors.

Let ρ : Y × Y → [0,m]. We say that ρ is complexity-reducing
if for every y, z ∈ Y and arbitrary vector g with
ρ(y, z) ≤ k < m, ytg may be computed using the result ztg in
no more than k multiply-add pairs.

Using these complexity reducing relations between vectors
will allow us to reduce the time spent multiplying our
matrices to build the stiffness matrix.

Annual SIAM Meeting 2005 – p.

Some Relations

Example 1 Let c(y, z) = {0, if y = z; 1, if y = αzfor some α ∈
R, α 6= 0, 1;m, otherwise .
Then c is complexity-reducing, for ytg = (αz)tg = α(ztg), so
ytg may be computed with one additional floating point
operation once ztg is known.
Example 2 Let H+(y, z) be the Hamming distance, the
number entries in which y and z differ. If y and z differ at k

entries, so the difference y − z has only k nonzero entries.
Hence, (y − z)tg costs k multiply-add pairs to compute, and
we may write ytg = (y − z)tg + ztg. By the same argument,
we can let H−(y, z) = H+(y,−z).

Annual SIAM Meeting 2005 – p.

Complexity Reducing Relations

Theorem 1 Let ρ1 and ρ2 be complexity-reducing relations.
Define

ρ(y, z) = min(ρ1(y, z), ρ2(y, z)). (6)

Then ρ is a complexity-reducing relation.
Proof. Pick y, z ∈ Y , let 1 ≤ i ≤ 2 be such that
ρ(y, z) = ρi(y, z) and let ρi(y, z) ≡ k. But ρi is a
complexity-reducing relation, so for any g ∈m, ytg may be
computed in no more than k = ρ(y, z) multiply-add pairs.
Hence ρ is complexity-reducing.

Annual SIAM Meeting 2005 – p.

Laplacian Example

index vector index vector index vector

(0, 0) 3 3 3 3 (2, 0) 0 0 1 1 (4, 0) 0 0 -4 -4

(0, 1) 1 0 1 0 (2, 1) 0 0 -1 0 (4, 1) 0 0 0 0

(0, 2) 0 1 0 1 (2, 2) 0 0 0 3 (4, 2) 0 -4 0 -4

(0, 3) 0 0 0 0 (2, 3) 0 0 4 0 (4, 3) -8 -4 -4 0

(0, 4) 0 -4 0 -4 (2, 4) 0 0 -4 -4 (4, 4) 8 4 4 8

(0, 5) -4 0 -4 0 (2, 5) 0 0 0 0 (4, 5) 0 4 4 0

(1, 0) 1 1 0 0 (3, 0) 0 0 0 0 (5, 0) -4 -4 0 0

(1, 1) 3 0 0 0 (3, 1) 0 0 4 0 (5, 1) -4 0 -4 0

(1, 2) 0 -1 0 0 (3, 2) 0 4 0 0 (5, 2) 0 0 0 0

(1, 3) 0 4 0 0 (3, 3) 8 4 4 8 (5, 3) 0 -4 -4 -8

(1, 4) 0 0 0 0 (3, 4) -8 -4 -4 0 (5, 4) 0 4 4 0

(1, 5) -4 -4 0 0 (3, 5) 0 -4 -4 -8 (5, 5) 8 4 4 8

Element matrix indices and associated tensors displayed as vectors for the Laplacian.

Annual SIAM Meeting 2005 – p.

Using symmetry

Because the element stiffness matrix is symmetric, we only
need to build the triangular part. And for every element e,
Ge is symmetric. Thus a contraction can be performed in
(

m+1

2

)

rather than m2 entries. In the two-dimensional case,
we contract a symmetric 2 × 2 tensor G with an arbitrary
2 × 2 tensor K:

G : K =

(

G11 G12

G12 G22

)

:

(

K11 K12

K21 K22

)

= G11K11 + G12(K12 + K21) + G22K22

= G̃tK̂

(7)

Annual SIAM Meeting 2005 – p. 10

Laplacian Example using symmetry

index vector index vector

(0, 0) 3 6 3 (2, 2) 0 0 3

(0, 1) 1 1 0 (2, 3) 0 4 0

(0, 2) 0 1 1 (2, 4) 0 -4 -4

(0, 3) 0 0 0 (2, 5) 0 0 0

(0, 4) 0 -4 -4 (3, 3) 8 8 8

(0, 5) -4 -4 0 (3, 4) -8 -8 0

(1, 1) 3 0 0 (3, 5) 0 -8 -8

(1, 2) 0 -1 0 (4, 4) 8 8 8

(1, 3) 0 4 0 (4, 5) 0 8 0

(1, 4) 0 0 0 (5, 5) 8 8 8

(1, 5) -4 -4 0

This transformation of the
reference tensor will not
destroy any dependencies.
Moreover, the transfor-
mation may introduce
additional dependencies.

For example, before apply-
ing the transformation, en-
tries (0,1) and (1,5) are not
closely related by Hamming
distance or colinearity, after-
wards they are colinear.

Annual SIAM Meeting 2005 – p. 11

Graph Optimizations

After obtaining the relationships, optimization becomes
important to achieve the minimum multiply-add cost. We
create an undirected, weighted graph G(V,E) in order to
optimize and employ the relationships.

The vertices (v ∈ V) are indexes of the vectors in Y . There
is an edge ({v1, v2} ∈ E) between two vertices if there is a
dependency between those two vectors. We associate a
weight with each edge equal to the multiply-add cost of
dotting one vector based on the result from the other.

Annual SIAM Meeting 2005 – p. 12

Minimum Spanning Tree

To minimize the multiply-add pairs, we find a minimum
spanning tree. The minimum spanning tree is a graph
T = (V,E′) such that T is has n − 1 edges where n is the
number of vertices, and the sum of edge weights in E′ is
minimal over all spanning trees.

Here we pick any vertex (v0 ∈ V) and follow the edges in E′

to trace to all the vertices in our original graph. It is
minimum because it picks the path of minimum weights that
visits every vertex of the graph, or in our case the minimum
multiply-add pairs from one vector’s dot product to any
other vector’s dot product.

Annual SIAM Meeting 2005 – p. 13

Laplacian Example

Here is the minimum spanning tree of the Laplacian
example above computed using the standard Prim’s
algorithm.

Annual SIAM Meeting 2005 – p. 14

Using relationships of higher arity

If we can utilize relationships between two vectors, we
should also be able to do the same with 3 or more vectors.
Two factors complicate this use:

1. They are more expensive to search for. Best case
scenario is quadratic.

2. Finding an optimized computation becomes more
difficult, G(Y,E) is now a hypergaph.

Annual SIAM Meeting 2005 – p. 15

Planar Search

After the previous search, Y is our set of vectors such that
no two elements are colinear. From Y we want to locate the
set of all planes P such that:

1. If for any distinct x, y, z ∈ Y with dim (span{x, y, z}) = 2,
then there must exist a unique P ∈ P with {x, y, z} ⊂ P .

2. For each P ∈ P, the dimension of span(P) must be
exactly 2.

3. The planes are maximal in the sense that for all distinct
P,Q ∈ P, |P ∩Q| ≤ 1. If |P ∩Q| ≥ 2, then they define the
same plane.

We can form this in O(n3) by enumerating the triples of Y .

Annual SIAM Meeting 2005 – p. 16

Improved Algorithm

The algorithm can be taken to O(n2) by reducing the
problem to the search above.

Let Π : R
m → R

3 be a random projection

If (yi, yj) and (yi′, yj′) are coplanar, then (Πyi,Πyj) and
(Πyi′,Πyj′) are as well

But if (Πyi,Πyj) and (Πyi′,Πyj′) are coplanar, then
Πyi × Πyj and Πyi′ × Πyj′ are colinear

Search for colinearity among O(n2) pairs –> O(n2)
complexity by hashing

Generalizes to kth order dependencies

Annual SIAM Meeting 2005 – p. 17

Exploiting Dependencies

In order to minimize cost, we want to find the smallest set of
vectors whose dependencies will compute the largest
number of vectors in Y based on P.

We let Y k ⊆ Y be elements of Y that lie in at least one
hyperplanar relations of degree k − 1.
Let S ⊂ Y k. We define the k-hyperplanar closure of S,
denoted Y k

S , as the closure of S under kth order linear
combinations. That is,

1. If y ∈ S, then y ∈ Y k
S .

2. For any y ∈ Y k, if ∃Z = {zi}
k
i=1 ⊂ Y k

S such that
y ∈ span(Z), then y ∈ Y k

S .

Thus we need to acheive Y k
S = Y k, while minimizing |S|.

Annual SIAM Meeting 2005 – p. 18

Hypergraph structure

Abstractly, we can think of the vectors in a k-hypergraph
H(V,E) where v ∈ V are vector from Y that are in
hyperplanar relations and vi

k
i=1 ∈ E are sets of vectors in

the hyper planar relation.

Below is an example from the Laplacian we have been
using picking out all the planar relations k = 3. The edge
sets are circled, with the indexes as the vertices. Here is
one possible S: S = {(0, 0), (0, 2), (1, 2)}

Annual SIAM Meeting 2005 – p. 19

Hypergraph example

(0,2)

(0,0)

(1,1)

(3,3)

(2,2)

(0,1)

(1,2)

Annual SIAM Meeting 2005 – p. 20

Geometric Algorithm

Our algorithm builds up S, Y k
S by:

1. Selecting the ‘most connected’ member to add to S,

2. adding any vectors in newly completed planes to Y k
S

3. Repeat until Y k
S = Y k.

To pick the ‘most connected’ member we are using a
heuristic that selects an unprocessed vector that has the
most unprocessed neighbors.

Annual SIAM Meeting 2005 – p. 21

Results

The results here are on optimizing the Laplacian on
tetrahedra using symmetry.

degree n m nm binary geometric
1 10 6 60 27 54
2 55 6 330 101 128
3 210 6 1260 370 352

n the number of vectors, m the length of vectors, nm the
multiply-add pairs without optimization, binary and
geometric are the multiply-add pairs using our
optimizations.

Annual SIAM Meeting 2005 – p. 22

Conclusions

Here we have two approaches for optimizing the building of
the stiffness matrix for finite element methods, one based
on generating a minimum spanning tree of an appropriately
weighted graph, and the other based on exploiting linear
dependences of increasing degrees.

In ongoing work, we are considering how to get better
performance in terms of speed and maximum problem size
by either parallelizing our Python code or else developing a
C++ version. Moreover, we are studying ways of bringing
the binary relations together with the linear dependence
relations through generalizations of Prim’s algorithm.

Annual SIAM Meeting 2005 – p. 23

	Introduction
	Finite Element Method
	Building Stiffness Matrix
	Abstract Optimization
	Complexity Reducing Relations
	Some Relations
	Complexity Reducing Relations
	Laplacian Example
	Using symmetry
	Laplacian Example using symmetry
	Graph Optimizations
	Minimum Spanning Tree
	Laplacian Example
	Using relationships of higher arity
	Planar Search
	Improved Algorithm
	Exploiting Dependencies
	Hypergraph structure
	Hypergraph example
	Geometric Algorithm
	Results
	Conclusions

