
The University of Chicago

FEM Software Automation,
with a case study on the Stokes Equations [1]

A Masters Paper submitted to
The Faculty of the Computer Science Department

In Candidacy for the degree of
Masters of Science

by

Andy R. Terrel

Advisors:

L. Ridgway Scott and Robert C. Kirby

Additional Committee Members:

Todd Dupont and Matt Knepley

Chicago, Illinois
March 1, 2007

Abstract

Finite Element Methods are a popular method for solving Partial Differen-
tial Equations. Unlike Ordinary Differential Equations, there has not been
a complete solution to automating any simulation. Here we provide a dis-
cussion on the trends in automation of FEM methods, some challenges to
automation, and a novel computational study of different methods solving
Stokes Equations made possible through automation.

Contents

1 Introduction 1

2 Mathematics and Software of FEM 4
2.1 A Mathematical Definition of FEM 5
2.2 An Algorithmic Viewpoint of FEM 6
2.3 Input and Output . 8

3 Automation of the Finite Element Method 10
3.1 The Simulation Engine . 10

3.1.1 DEAL.II [3] . 11
3.1.2 Sundance [19] . 11
3.1.3 FFC/Dolfin [18] . 11

3.2 Finite Element Tabulators . 11
3.2.1 FIAT [18] . 12
3.2.2 SyFi [18] . 12

3.3 Equation Description . 12
3.3.1 The Use of Symbolics 13

3.4 The Problem Domain . 14
3.5 Solving the Matrix Equation 14

3.5.1 Linear Solvers . 15
3.6 Why are we NOT Automated? 15

3.6.1 What hasn’t been done? 17

4 The Stokes Equation 18
4.1 Mixed method Formulation 18

4.1.1 Taylor - Hood Elements 19
4.1.2 Crouzeix - Raviart Elements 19
4.1.3 C0PiC

−1Pi−1 Elements 21

i

CONTENTS

4.2 Iterated Penalty Method . 21

5 Tests and Results 22
5.1 Numerical Results . 24
5.2 User Experience Results . 31

6 Conclusion 33

Bibliography 35

FEM Software Automation ii March 1, 2007

List of Figures

4.1 Taylor-Hood Elements . 20
4.2 Crouzeix-Raviart Elements . 20

5.1 Velocity Degrees of Freedom versus Order and Mesh Size . . . 23
5.2 The uniform mesh with n× n rectangles used in the tests. . . 24
5.3 Taylor Hood Results . 25
5.4 Iterated Penalty Results . 26
5.5 Crouzeix-Raviart and C0PiC

−1Pi−1 Results 27
5.6 Comparison for Case 2, computed with FEniCS code, ordered

by mesh size and order . 28
5.7 Comparison for Case 2, computed with FEniCS code, ordered

by mesh size and order . 29
5.8 Comparison of 4th Order methods on Case 2 (* with Crouzeix-

Raviart on a finer mesh to have equivalent number of DOFs) . 30

iii

List of Tables

2.1 Mathematical and Algorithmic concerns of FEM 7

3.1 Some important linear solvers used by FEM software. 16

5.1 The different simulation engines used for each method 24

iv

Chapter 1

Introduction

State-of-the-art software projects usually implement new original features
needed by the respective field. For example, state-of-the-art games use the
fastest machines with better rendering and more life-like play, graphics edi-
tors do ray tracing and batch processing or any number of features that were
impossible two to five years ago. In the same way, state-of-the-art scientific
software must push the envelope in several ways. While not inclusive, a few
items on that list would include:

1. Ability to solve large problems

2. Ability to solve interesting problems

3. Incorporate the best theoretical methods

To solve the largest problems, simulation software is tuned to the top
computers, which today means the code must be massively parallel. Not
only does it need to be parallel but the computations must also be efficient,
which typically involves a large amount of hand coding and a dedicated
team of workers. Features required for for efficient parallel support might
include load balancing or automated mesh refinement, both challenging fields
of research.

Solving interesting problems means the researcher must be able to char-
acterize real world scenarios as best as possible. This includes incorporat-
ing hard-to-characterize boundary conditions, multiphysics and multiscale
interactions, complicated domains, and more depending on the exact appli-
cations. This broad stroke of possible complications demands code that is

1

CHAPTER 1. INTRODUCTION

robust enough to switch working assumptions quickly or else the code is pi-
geonholed to a few applications. Since each of these features can be in and
of themselves large fields of research, most simulation codes are content with
fine tuning to one application.

And finally, the software needs to incorporate cutting-edge methods. It
could be argued that the methods will be included just because they pro-
duce better results, but this is not in general true. In Finite Element Meth-
ods (FEM), many elements which would provide much better convergence
rates are not used because of the complexity to generate appropriate basis
functions or handle the appropriate data. Different methods will often be
overlooked because the simulation software just does not support it, maybe
because of assumptions made to accommodate the other goals..

One aspect left off this list is the ability to automate this process and
reduce the number of coding hours required to produce a simulation. This
idea of creating an environment that is competitive with state-of-the-art soft-
ware and automatic is often criticized as too lofty of a goal, but it is exactly
the goal of many research groups throughout the world such as the FEniCS
Project [18], Sundance [19], Deal.II [3], and FreeFEM [9].

Automation promises to be an ideal solution to providing each of these
goals. Often a software package might achieve one or two, but due to the
limited scope of the design is not able to fulfill all. By automating FEM, we
are able to make new innovations in the field, and incorporate techniques used
in state-of-the-art specialized codes. Adding new features, such as splines for
the boundary conditions or adaptive mesh refinement, becomes modular thus
allowing for a separation of concerns between the user and developer code.
Such a separation allows the scientist or engineer to focus on results and not
necessarily the implementations. Finally, automation is the only paradigm to
provide quick plug-in-play style for many different methods, such as switching
from a Generalized Galerkin method to a Discontinuous Galerkin method or
changing element descriptions.

The next question to arise, is which parts should be automated. The scope
of this paper is interested in the automation of solving PDEs, while often
simulations include many other parts. For many scientists and engineers this
scope may seem limited because solving the PDE is only one part of the
actual simulation. Additional parts may include hooking up different legacy
codes, coupling with non-PDE simulations, and many other possibilities. In
particular, there have been attempts to implement these different issues by
the Sierra and Cactus frameworks [21, 11]. While important issues, they hard

FEM Software Automation 2 March 1, 2007

CHAPTER 1. INTRODUCTION

to abstract and often very particular to the specific application; whereas, the
PDE is a mathematically abstract object which can be used in all simulation
software.

Throughout this analysis of FEM in an automated software context, we
put forward three claims. First, there are interesting or missing the mathe-
matical understandings for the complete automation of FEM. This is most
notable in the data structures used to transition from local elements to the
global domain. Second, automation of FEM can serve as a tool to aid the-
ory. For example, we found a problem with the formulation of the iterated
penalty method for the Stokes equation in a common textbook [6]. Finally
by giving a case study of the Stokes equation, we present that automation
leverages faster prototyping of scientific models which will immediately affect
science researchers, engineers, educators, and many other fields.

FEM Software Automation 3 March 1, 2007

Chapter 2

Mathematics and Software of
FEM

Finite element methods (FEM) are widely used methods in scientific and en-
gineering simulations for solving PDEs [6]. These methods have been widely
studied and appear in both mathematics and engineering textbooks [6, 13].
Like many computational methods, there is a large gap between the mathe-
matical analysis and the software algorithms of FEM. Often for the sake of
faster results the software is implemented to work for particular cases, rather
than a general abstract application.

The natural question to ask is what is inherent in FEM that is not imme-
diately expressible in an elegant and algorithmic way. Certainly one answer
is there are just too many algorithms to accomplish the same basic tasks,
and not enough understanding about the effects of these algorithms. While
this is certainly the case and even visible in different software package, if
this were the only reason we could build fully automated codes that piece
together a plethora of different algorithms. Rather, this disconnect between
mathematics and software is due to lacking of mathematical insight to both
the data structures and interweaving of the different aspects of FEM. To
demonstrate this claim, we look at how mathematics and software approach
FEM.

4

CHAPTER 2. MATHEMATICS AND SOFTWARE OF FEM

2.1 A Mathematical Definition of FEM

Here we present a basic outline of the Galerkin method for an analysis of the
algorithms that FEM software must implement. We include more specifics
about the finite element in Chapter 4 when we discuss different methods for
solving the Stokes equations.

FEM software is designed to numerically solve Partial Differential Equa-
tions (PDEs). One simple example of a PDE is the Poisson Equation with
Dirichlet boundary conditions: Find a function u such that:

−∆u = f
u = 0 on ∂Ω

(2.1)

Another equivalent formulation of the same problem for sufficiently smooth
f is the weak formulation. Find a function u ∈ V , such that:

a(u, v) = (f, v) ∀v ∈ V (2.2)

where,
V = {v ∈ L2(0, 1) : a(v, v) < ∞ and v(0) = 0}

a(u, v) =
∫

u′v′dx
(f, v) =

∫
fvdx

Since the space of function, V , is quite large, one will restrict our solution
to a finite dimensional subspace, S ⊂ V , then we have the Ritz-Galerkin
Approximation

uS ∈ S such that a(uS, v) = (f, v) ∀v ∈ S (2.3)

To solve this formulation, one must use some finite element space to
approximate S. The approximation of V with S provides the mechanism for
evaluating the convergence of the method. Approximation of the domain of
the PDE is done with the finite element, which one popular definition [8] is:

A reference element, K
A space of shape functions, P
A basis, N

(2.4)

The shape functions are interpolated on the basis in the reference element.
Then the reference element is transformed to each element in the domain to
generate the linear system:

AU = F (2.5)

FEM Software Automation 5 March 1, 2007

CHAPTER 2. MATHEMATICS AND SOFTWARE OF FEM

By solving this matrix equation, we determine the coefficients for our basis
on each element. This leads to our solution of the approximated problem.

This mathematical formulation is very simple and quite elegant, but it
does avoid many issues that have been major areas of research for more
difficult problems. None the less by understanding each part of this process
on a mathematical level, one would hope that its abstractions could be used
in building smarter software.

2.2 An Algorithmic Viewpoint of FEM

Our mathematical formulation of FEM is completely lacking in algorithmic
details. This becomes clear when one starts to implement the simplest parts
of the methods such as how to evaluate f in equation 2.1 or input different
bilinear forms in equation 2.2. Moreover, these issues are not orthogonal,
evaluating f outside our finite element space requires algorithms that must
be reformulated for each form.

In Chapter 3, we will discuss more fully how some software the automates
these algorithms that are not specified by the mathematical formulation. To
get a sense of the differences between the math and software processes, we ask
how does each address different concerns of the simulation, see Table 2.2. In
the algorithmic column, we give a list of ways to implement each of different
concerns, roughly in order of complexity. The different codes we compare
have varying implementations as well, see Table 2.2. We give more details
about the comparisons, but largely the linear solver and the mesh is are given
to these packages and thus are not compare in the table.

This table questions the full mathematical understanding of automating
FEM. One glaring example is the lack of element types that are implemented.
A response to this sparsity, was general finite element tabulators which au-
tomated the tabulations of the functions for the finite element as described
in Equation 2.4, for more details see Section 3.2. Tabulators did not solve
this sparsity, automation software still only includes a small number of finite
elements. This begs the question is there a problem with this definition?
The problem is not in the mathematical formulation but rather the data
structure used to communicate the between the local element and the global
space. Many elements need to know exactly what other elements are doing.
For example, Nédélec elements need to have an idea of element orientation
in order to maintain the continuity of the trace between elements. Argyris

FEM Software Automation 6 March 1, 2007

CHAPTER 2. MATHEMATICS AND SOFTWARE OF FEM

Concern Mathematical Algorithmic

The Problem
Domain

• Allows for as much gener-
ality as needed

• Define complex relation-
ships between parti-
tions

• Described by a mesh

• Different simulation for
different meshes

• Implementations:
– uniform mesh,
– arbitrary geometries,
– adaptive mesh,
– unstructured mesh

Function
Spaces

• The space where solution
lies

• Global and local implica-
tions

• No global data description

• Only described locally

• Implementations:
– linears,
– menu of options,
– arbitrary order,
– tabulator

Equation
Statements

• Independent of function
spaces

• Symbolic equation

• Many equivalent forms

• Given in variational form
or as a routine

• Implementations:
– menu
– language
– derived forms

Assembly of
the Matrix
Equations

• Process determined by
method

• Gives AU = F system

• Construction of equations
to hand to linear solver

• Implementations:
– Single methods
– Menu of methods
– Matrix data structure
– Action (matrix-free)

Table 2.1: Mathematical and Algorithmic concerns of FEM

FEM Software Automation 7 March 1, 2007

CHAPTER 2. MATHEMATICS AND SOFTWARE OF FEM

Software Functions Equations Assembly

Deal.II arbitrary order numerical functions Not implemented
FEniCS tabulator numerical language Matrix or Action

Sundance tabulator semi-symbolic language Matrix

elements require knowledge of the gradient between elements and thus must
know what links it has with other elements. Because of these challenges,
the Lagrange element, which requires no knowledge of the other elements, is
very attractive, but at the cost of a lower rate of convergence or lacking to
preserve essential qualities in the function space.

2.3 Input and Output

One issue that is less mathematical and formal in nature is how to input or
output the problem. A scientist or engineer rarely desires only a solution
to a PDE but rather prefers to have some sort of feature about the solution
reported. For example in the tests of the Stoke’s equations, we report the
error of the solution rather that giving the reader the computed solution.

For inputting the problem, often there are parameters that are set in
the PDE, such as a material density, or maybe are features of the boundary
conditions of the supplied mesh. While these parameters are necessary for
solving the PDE, they depend on the particular situation and are not included
in our discussion of automating the FEM software. It is often the case that
FEM software gives an interface for defining how one inputs such parameters.

The output of the problem can be in many different formats. It could
be the result of doing some matrix-vector operations, such as taking a norm,
or one might desire a visualization the solution. Much like inputting the
problem, it is specific to the needs of the developer, but common operations
such as taking the norm or producing a graphics format are typically included
in the software. If one wants more for an output, the data structures resulting
from the linear solver are available for the user to manipulate.

Just as any mathematical algorithm, there are a host of ways to accom-
plish the different parts of FEM. Sometimes these different algorithms are
using different mathematical assumptions and other times they are optimized
for complexity. This makes any analysis of the system as a whole a challeng-
ing project, but one certain fact is that the implementations of the separate

FEM Software Automation 8 March 1, 2007

CHAPTER 2. MATHEMATICS AND SOFTWARE OF FEM

parts of FEM are not independent of other parts. Which leads to the next
chapter with a discussion of how software implements the different parts of
FEM from Table 2.2.

FEM Software Automation 9 March 1, 2007

Chapter 3

Automation of the Finite
Element Method

Even though the mathematical definition of FEM does not give all the de-
tails needed for the simulations, many projects are making major accomplish-
ments. These accomplishments produced the software which allowed our case
study of the Stokes equation possible. Many mathematical and algorithmic
insights have been made and are implemented in these software packages.
For our purposes we studied the FEniCS project and Sundance in detail. We
also refer to Deal.II; whereas, it does not automate the entire FEM process,
it is a well-designed code that gives the programmer access to libraries that
have automated different parts.

These three projects are by no means the only attempts of automating
FEM, but do provide a base that covers most of the software and mathe-
matical ideas that are involved in the process. Here we describe some of the
abstractions used in the software.

3.1 The Simulation Engine

The simulation engine is the piece of software that holds all the pieces of the
process together. Although which pieces to hold together vary widely from
one software project to another. The important aspect is that it somehow
describes a domain, discretizes that domain, builds a finite element space,
constructs the matrix equations, and finally solve the discrete equations with
a linear solver.

10

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

3.1.1 DEAL.II [3]

This project is a library of functions for a programmer to use and less of
a project that looked to automated the entire FEM process. For example,
it gives no abstractions for the variational form. While it does not provide
much interface for the programming aspects of the automation, it does bun-
dle important data types and operations as simple routines. Probably the
most notable feature of Deal.II is its ability to do many more elements and
methods, but at the cost of user coding more.

3.1.2 Sundance [19]

This project is largely the result of needing a code that could be rapidly
developed and used for optimization problems. Because of this, it separates
the user interface and implementation features. Much like Matlab, a user
does not need to know how a process is implemented in the developer space
to get very accurate answers with an efficiency that rivals hand tweaked
special purpose codes.

3.1.3 FFC/Dolfin [18]

These projects are part of the FEniCS project, which was designed to develop
simple methods that allow for research with automation. FFC auto-generates
optimized code for precomputing much of the discrete equations from the
finite element space and Dolfin provides the glue for pulling the rest of the
simulation together. This project lies between the previous two projects in
that it provides a simpler interface than Deal.II but requires more coding to
get the robustness of Sundance. Whereas the previous two projects were built
to solve engineering problems, this project focuses much more on researching
the automation of FEM.

3.2 Finite Element Tabulators

A finite element tabulator is a middleware product that has been developed
to give simulation engines access to basis descriptions of hard to form finite
elements. Tabulating the finite element space is not a new idea, since every
simulation engine must do it in some way, but by using some more mathemat-
ical operations a tabulator can easily make a large number of elements with

FEM Software Automation 11 March 1, 2007

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

arbitrary order. This is a case where there are two codes that accomplish
the same results but with a different computing model.

3.2.1 FIAT [18]

This code develops a mathematical paradigm where arbitrary order is based
upon recurrence relations between the orders. The evaluation of function
in the space is generated numerically by first constructing a matrix of inner
products between basis functions and an orthogonal set of polynomials. To
extract the basis of the finite element it only needs to find the span of the
null space of this matrix. The process is a combination between higher
order functions and a higher order programming language to handle the
implementation. This code can be used by both Sundance and FFC/Dolfin.

3.2.2 SyFi [18]

This code has recently become part of the FEniCS project and effectively
does the same work of FIAT and FFC. It uses the symbolic engine GiNaC [4]
to compute the basis functions symbolically as opposed to FIAT, which uses
numerical quadrature rules to integrate. SyFi also generates precomputed
forms originally introduced by FFC to hand the simulation engine rules for
evaluation for the assembly of the global matrix.

3.3 Equation Description

Possibly one of the largest factors in code expressivity and ability is how
one can describe the problems to be solved. If it is the case that one can
only solve a list of equations, the software immediately becomes useless as
soon as a different equation is needed. On the other hand if one uses a sym-
bolic system that will allow for any equation that can be written down, one
risks a very slow implementation that will not be able to handle large prob-
lems. Additionally, if one has an optimization or control problem, without
differentiation of the solutions methods are limited.

Mathematically there are a large number of ways to describe the PDE.
We have shown a strong form and a weak form. The weak form is a nice
description because it describes the equations in the manner FEM uses. The

FEM Software Automation 12 March 1, 2007

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

problem is able to be split, block solve, reformulate, or any number of tech-
niques to facilitate a solution. Finally one can pose any well formed formula
without worries of mixing data types or poorly implemented routines.

Current FEM software completely disagree with one another on how to
describe the problem. For example, Sundance allows for virtually any weak
form and uses a symbolics engine to evaluate the equations. FFC takes
in a weak form, but has limits in the types of operators available. FFC
then precompiles parts of the transformation on the reference element and
generates efficient routines for Dolfin to use in assembly. Finally Deal.II
leaves the user to input the problem as part of the assembly loop, thus it
becomes the users responsibility to control how the problem is entered into
the simulation.

3.3.1 The Use of Symbolics

Typically in scientific codes, symbolics is seen as requiring huge amounts
of resources that can be used to solve larger problems. But when looking
at automated simulation software, symbolics are a way to add additional
functionality and optimize calculations. Both Sundance and Syfi are built
on top of two very different styles of symbolic engines.

The use of the weak form can be motivation for supporting a larger sym-
bolics engine that can then be used for differentiation. Both Sundance and
SyFi are built on top of a symbolics engine and are able to easily extend
to optimization or error estimation problems. This allows simulations to
take advantage of optimization immediately as oppose to using an automatic
differentiation tool to put derivatives into the code.

SyFi is a middleware project that does not do the heavy matrix solves
or assembly, and is able to use a symbolics that preserves variables like the
popular Mathematica code [14]. This type of symbolic engine is slow because
it must keep the different symbols around and be able to operate on them
appropriately.

Sundance does not let symbolics be the bottleneck as one might see in
codes but rather it uses it to optimize the computations. For example, if
an integral has a one in it, a different routine is used to make use of that
information. Sundance does not keep the symbols around in a fashion as
SyFi but does use relations between equations and implement the chain rule.
Thus the code has all the ability to do optimization loops but not return a
symbolic equation at the end of a computation.

FEM Software Automation 13 March 1, 2007

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

3.4 The Problem Domain

One significant challenge for almost any real world problem is specifying the
problem domain. Not only do problem have complicated geometries but also
can have highly sensitive areas.

In our simple example, the domain does nothing more than give integra-
tion bounds. But we should be able to effortlessly hook up with different
domain or refine and only solve explicitly on certain parts of the domain.
In simulation this the domain is more or less just a mesh with boundary
conditions. Thus one would except a simulation engine to do these kinds of
operations on a mesh, thus requiring some sort of mesh generation.

Mesh generation is an aspect of scientific computing that has been widely
studied and implemented. Unfortunately, most of the codes are proprietary
and highly secretive so many industry standards are just accepted. This
standardization has the effect of many finite element codes expecting to be
given a mesh rather than generating the mesh, with the exception of highly
regular meshes such as partitioning a rectangle. Simulations do give good
ways of picking out parts of the domain, but this is necessary to develop
iterators for the operators in the assembly process.

Even still there are some impressive projects that are undertaking the
challenge of mesh generation incorporated with finite element methods. With
this ability, it becomes feasible to automatically do hard to implement meth-
ods such as unstructured multigrid or adaptive mesh refinement.

3.5 Solving the Matrix Equation

To solve the matrix equations most engines will assemble the matrix to hand
it to a linear solver package. The assembly of the matrices is equivalent to
building the global function space and evaluating the weak form at the same
time. The mathematical operation is merely a rote application of simple
algebra operations. This lack of mathematical insight persists in the lack
of automation for many elements. For simulation software it is the heart of
implementing the method and often the most computationally demanding
with the exception of the linear solve.

While the problem description varied with software packages, the assem-
bly is pretty similar. Sundance and Dolfin use a declarative style where
the user declares a linear problem and the assembly is automatic. Deal.II

FEM Software Automation 14 March 1, 2007

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

requires the user to iterate over the mesh to manually assemble but the pro-
cess is largely the same. A major difference between these routines is the
underlying data structures. Accessing the matrix to experiment with is very
easy in Deal.II, it is completely assembled by the user, but there are more
layers of abstraction in Dolfin and Sundance, which do not prevent access to
the matrix but are there to provide services which are implemented. This
process does vary the length of code and scripting style that facilitates rapid
development.

3.5.1 Linear Solvers

Our mathematical definition only formulates the problem and can be ex-
tended to give properties of the solution, thus we typically give the matrix
equation to a linear solver. Linear solvers are a very widely studied field,
and numerous codes have been developed to handle large matrix equations
efficiently. More or less one chooses whether to use a direct or iterative solver
and serial or parallel implementation upon the needs of the simulation. For
smaller problems, a direct solver often give better accuracy but usually will
not scale to large problems and parallel implementations. Thus for larger
problems, one uses an iterative solver with parallel support. Then comes the
choice of preconditioners and other decisions on how to solve the equations.

Because of this large design space and the fact that there are some very
good packages already developed, most simulation engines hand this job off
some library to handle. This either means the engine will give some sort of
interface to this library or the user is responsible for calling it. Unfortunately,
this puts the additional burden on the user to determine how to solve the
matrix equations but at the same time allows the fine tuning of their problem.
See Table 3.1 for a small table of some solvers that we use frequently, largely
which one is used is based on the developers biases or needs. Each library is
also used in many different ways such as Trilinos provides for major services
such as memory management and UMFPack can be used directly or through
other libraries.

3.6 Why are we NOT Automated?

While from a computer science perspective automation seems to be very
natural and valuable, one must ask why things have not been automated

FEM Software Automation 15 March 1, 2007

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

parallel direct iterative
uBlas [24] X

UMFPack [10] X
PETSc [2] X X X

Trilinos [12] X X X

Table 3.1: Some important linear solvers used by FEM software.

already. A cynical answer that one often encounters is the limited scope of
the researchers and engineers who use the methods. While there is certainly
varying abilities among FEM code writers, there has not emerged a single
automated code for some very important reasons. Perhaps the most fun-
damental reasoning for the lack of automation is the lack of mathematical
understanding of the global data structures needed

Additionally there is a healthy sense of skepticism of outside code in
the scientific community. Hand-coding FEM provides with assurance that
things are done right, and to a certain degree this is quite true, if that is
the expertise of the coder. When using automated software, it is hard to
know what routine is being used to take a norm or parallelize parts of the
code. This is precisely the reason this project was used with open source
codes, but as with anything a certain amount of checking to see that things
work is necessary. The complexity of FEM and the trade off in coding time
far outweigh the challenge of this type of debugging. Imagine a researcher
who finds twenty computational models of some natural phenomenon. If
this researcher is required to hand code twenty different models, the research
becomes more about coding rather than researching the phenomenon. By
giving the researcher the tools to develop all these models very quickly, the
impetus of the project is no longer on coding but the original intention.

The final reason we give for not yet achieving automation is that there
is a large number of ways to solve a problem. New elements are continually
being developed, alternate methods are explored, and even how to solve the
matrix equations is challenged daily. How is someone suppose to know what
element works with which method and then how to precondition the matrix?
The difficulty of making all these ideas work together can become daunting,
but ultimately by creating such automated software we will be better able
to understand the pieces of FEM computationally.

FEM Software Automation 16 March 1, 2007

CHAPTER 3. AUTOMATION OF THE FINITE ELEMENT METHOD

3.6.1 What hasn’t been done?

With this long analysis of the steps of automated simulation software, it
begs the question what hasn’t been done. It seems that in any one area
there seems to be some piece of software that has it implemented. But in
general a list of pieces that are not implemented include:

Arbitrary Elements Usually only Lagrange elements are implemented
and fully supported. Although more support is available in Deal.II
than the other codes presented.

Parallel/Partial assembly This is one of the most computationally de-
manding parts of the process, but yet only a few codes even try to do
assemble in parallel or only assemble parts of the domain. Sundance
stands out allowing the programmer to do both.

Adaptive/unstructured grids This really stems from the lack of mesh
controls in most simulation software. Although there are other codes
that specifically address this challenge, but are not automated in other
ways.

Error estimators or optimization loops Usually out of the scope of
most projects.

Boundary Condition calculus or embedded geometries Also lack of
support for hard boundary conditions.

FEM Software Automation 17 March 1, 2007

Chapter 4

The Stokes Equation

The Stokes equation is a standard equilibrium equation for incompressible
flow. In the strong form it is:

−∆u +∇p = f
∇ · u = 0

(4.1)

The problem has been well studied and is documented in several books [6,
7]. It is a challenging problem due to the coupling between the velocity and
pressure resulting in a saddle point problem. The matrix equations will be
indefinite which proves to be quite taxing on linear solvers.

This case was chosen for our study because there are many stable methods
but very few numerical studies including multiple methods. Often this is
because it is so difficult to code one method that the cost outweighs the
value of coding another method, especially if a large legacy simulation is
already using one method. With automated codes, we can make meaningful
comparisons quite easily.

Here we provide a brief explanation of the different methods that were
included in our study. In the following section, we provide numbers for both
evaluation of the different methods and the software we used.

4.1 Mixed method Formulation

Because of the coupling of the velocity and pressure, we are essentially solving
two PDE’s at once. One natural way to solve the system is to create a mixed
system, where the blocks of the matrix are aligned so the solution to one

18

CHAPTER 4. THE STOKES EQUATION

variable affect the other. The variational form of this mixed system is as
such:

Let V = H1(Ω)n and Π = {q ∈ L2(Ω) :
∫

Ω
qdx = 0}. Given

F ∈ V ′, find functions u ∈ V and p ∈ Π such that

a(u,v) + b(v, p) = F (v) ∀c ∈ V
b(u, q) = 0 ∀q ∈ Π

(4.2)

Where,

a(u,v) :=

∫
Ω

∇u · ∇vdx,

b(v, q) :=

∫
Ω

(∇ · v)qdx

This mixed method formulation gives two discrete spaces V and Π to
be solved. Developing different finite element spaces for this system is quite
challenging. Using the same continuous elements for both the pressure and
velocity often cause an over-determined problem. Also it is very attractive to
use a discontinuous pressure space because this will provide a better solution
for the divergence of the velocity, but can lead to singular points dependent
on mesh. We present elements that have both continuous and discontinuous
pressure spaces, and look at the consequences of both.

4.1.1 Taylor - Hood Elements

The Taylor-Hood element [22] is one of the most widely used elements for
solving Stokes flow. It consists of a Pk element for the velocity space and Pl

where l < k for the pressure space, see Figure 4.1. Because of the simplicity
of using Lagrangian elements, it can be extended to higher order easily. This
element give a continuous pressure space but with the condition that the
order of the pressure finite element is lower than the velocity space. This
requirement avoids the problem of an over-determined system.

4.1.2 Crouzeix - Raviart Elements

The Crouzeix-Raviart Element is a non-conforming element that is uses the
integral of the element edges as a basis in the pressure space and a discontin-
uous pressure space (P0), see Figure 4.2. For the low order case the velocity

FEM Software Automation 19 March 1, 2007

CHAPTER 4. THE STOKES EQUATION

(a) P3 for V (b) P2 for Π

Figure 4.1: Taylor-Hood Elements

(a) Crouzeix-Raviart
for V

(b) P0 for Π

Figure 4.2: Crouzeix-Raviart Elements

FEM Software Automation 20 March 1, 2007

CHAPTER 4. THE STOKES EQUATION

space element is equivalent to evaluating the basis functions at the center of
the edge.

4.1.3 C0PiC
−1Pi−1 Elements

Another possibility is just to use the arbitrary Lagrange element for velocity
but use a discontinuous element (of a lower order) in the pressure space. It is
important to note that stable convergence of this element is highly dependent
upon the mesh of the domain. It may not satisfy the inf sup condition due
to singular points in the pressure spaces [23]. But if one is able to limit these
points the method becomes useful.

4.2 Iterated Penalty Method

In order to avoid the problems with a discontinuous pressure space, the
Uzawa iteration method and penalty methods were developed. A compilation
of these two elements results in the iterated penalty method.

Let r ∈ R and ρ > 0 define un and p = wn by

a(un,v) + r(∇ · un,∇ · v) = F (v)− (∇ · v,∇ ·wn)

wn+1 = wn + ρun

This method give only one space to be discretized but requires a higher
order continuous element. We use Lagrangian elements with degree greater
than four. The stopping criteria is the size of the incompressibility term,
||∇ · un||V < ε. The iteration count and accuracy is highly dependent upon
the penalties coefficients ρ and r. For our experiments we use ρ = −r = 1.0e3.

The Iterated Penalty method give a formulation of the C0PiC
−1Pi−1 el-

ement using only one space. Thus we have two models that are doing the
same mathematical process but the algorithms are very different.

FEM Software Automation 21 March 1, 2007

Chapter 5

Tests and Results

To evaluate these methods we want to compare mesh sizes and orders in a
series of increasingly difficult problems. The degrees of freedom is a good
measure of how much work the method will require, and as of now we are
not setting these to be equal. For reference to the variance of the degrees of
freedoms, see Figure 5.1

For our tests we use a n × n uniform mesh for a domain [0,1]×[0,1] and
the aforementioned methods, solve the following three problems and compare
with analytic solutions.

• Case 0:

f =

[
−2y + 1
2x + 1

]
,

u =

[
x2y
−xy2

]
, and

p = x + y − 1.0

• Case 1:

f =

[
8π2 sin(2πx) cos(2πy)
−8π2 cos(2πx) sin(2πy)

]
,

u =

[
sin(2πx) cos(2πy)
− cos(2πx) sin(2πy)

]
, and

p = sin(2πx) sin(2πy)

22

CHAPTER 5. TESTS AND RESULTS

Figure 5.1: Velocity Degrees of Freedom versus Order and Mesh Size

• Case 2:

f =

[
18π2 sin(3πx) cos(3πy)
−18π2 cos(3πx) sin(3πy)

]
,

u =

[
sin(3πx) cos(3πy)
− cos(3πx) sin(3πy)

]
, and

p = sin(3πx) sin(3πy)

Case 0 gives us a low order polynomial that will be in most of the ap-
proximating spaces. Thus many of our methods should give an exact answer
to machine precision. The next two are harder functions to approximate and
are both used to give better testing on the convergence rates of the methods.

The simulation for each method uses a basis tabulated from FIAT. A
handwritten code for generating the n × n uniform mesh, see Figure 5.2.
The code to generate a uniform mesh was quite simple addition and required
because in each code the default mesh had boundary elements that caused
singular points in the pressure space. For each linear solve, we used the
UMFPACK LU direct solver either with the Trilinos Amesos Package in
Sundance or directly with FFC/Dolfin of the FEniCS package. At the time
of the study, Sundance was not supporting discontinuous elements in its
Python environment and thus reduced our methods tested in that system
to only Taylor-Hood and Iterated Penalty, see Table 5.1. Other iterative

FEM Software Automation 23 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.2: The uniform mesh with n× n rectangles used in the tests.

Sundance FEniCS
Taylor-Hood X X

Crouzeix-Raviart - X
C0P iC−1P i−1 - X

Iterated Penalty X X

Table 5.1: The different simulation engines used for each method

solvers from the Trilinos or PETSc Toolkits would also work and make the
code parallel, but this was not done since it was not the focus of this work.

5.1 Numerical Results

To judge how well the software and methods preform, it is important to
compare a few features. The error should correspond to the increased ordered
and refined meshes. These trends in the error should be shifted by a constant
but have the same slope when changing from case 1 to case 2. Runtimes
should be dependent on the number of DOFs although it is also expected to
be affect by the ability of the computer to make effective use of a cache. And
finally, the features of divergence free elements versus continuous elements
should be reflected in the error of the methods.

FEM Software Automation 24 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.3: Taylor Hood Results

FEM Software Automation 25 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.4: Iterated Penalty Results

FEM Software Automation 26 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.5: Crouzeix-Raviart and C0PiC
−1Pi−1 Results

FEM Software Automation 27 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.6: Comparison for Case 2, computed with FEniCS code, ordered by
mesh size and order

FEM Software Automation 28 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.7: Comparison for Case 2, computed with FEniCS code, ordered by
mesh size and order

FEM Software Automation 29 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

Figure 5.8: Comparison of 4th Order methods on Case 2 (* with Crouzeix-
Raviart on a finer mesh to have equivalent number of DOFs)

FEM Software Automation 30 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

The different numbers in Figures 5.3, 5.4, and 5.5 show how both Sun-
dance and FEniCS compare, but also the trends of the methods with the
Case 1 and Case 2. We do not include Case 0, simply because the numbers
show no real variances. These figures show that the trends are as expected
up to a certain precision which is dependent on the software package. For
example in Figure 5.3, Sundance is able to achieve errors of 10−12 while the
trends with FEniCS stop at 10−8.

Figure 5.6 and 5.7, show how the methods compare depending on the
mesh and order. Here we show the numbers from the FEniCS project because
more methods were compared using this software. An interesting feature
displayed in these charts is the comparison between Iterated Penalty and the
CPCP element. Both of these methods are achieving the same results, which
is expected since they are both implementing similar features, but these two
methods have quite different algorithms used to implement them.

Figure 5.8, gives a slice of the data on the 4th order methods with the
different software packages. Crouziex-Raviart, with an equivalent number
of DOFs, is included to show the differences in a low order method for our
case problem. Interestingly, Taylor Hood persists as the most accurate in
pressure and velocity but as theory suggests is much worse for divergence.
Since our case study only includes very smooth functions, this is expected
but it should be noted that such results could be different in a non-smooth
context. The runtimes are not a rigorous study, because there are many
more optimizations one could use which were not the focus of this study.
Rather, these runtimes show some data about the amount of work need for
each method, thus these time correspond the the DOFs from Figure 5.1

The most notable information presented is that the theory behind using
either a continuous element or a discontinuous element can be seen with the
difference in pressure and velocity errors. Also shown is some problems with
the different software packages such as FEniCS with pressure error of the
iterated penalty method and Sundance seems to have a large initialization
cost with the implementation of the iterated penalty method.

5.2 User Experience Results

Possibly a more interesting but unquantifiable evaluation is the user expe-
rience between implementing the method in the different codes. The first
immediate evaluation is that both of these codes treat the assembly and

FEM Software Automation 31 March 1, 2007

CHAPTER 5. TESTS AND RESULTS

solution process very much the same. Both take a problem description, as-
semble a matrix and pass it to one of a number of linear solvers. Then one
is able to evaluate the solution by writing it to a VTK format or doing some
operations on it such as taking the L2 norm of the error. Furthermore, each
has an interface to FIAT to define elements, and include both a C++ or
Python (provided through the SWIG [5] package) interface. So at a first
glance of the code everything except function names seem almost identical.

It is not until one starts pushing some of the limits of these codes do you
really feel the differences. One should also realize that both of these codes
are under active development.

The FEniCS code provides a smaller more self contained package, whereas
Sundance depends heavily on Trilinos and the services it provides. The
interface to FEniCS is less of a scripting style because one must include
many precompiled header files that define the element spaces with FFC.
This makes the process require both FFC and Dolfin compilations, but can
be combined into one file in the Python interface. Sundance on the other
hand has a much more seamless scripting style in both C++ and Python.
Because of FEniCS smaller code base it has been easier to spot bugs and
add new elements as we needed them. Sundance has provided a more robust
system that is harder to break, both in the sense of memory management
and floating point arithmetic. This lack of memory management can lead
to problems with the solver which is the reason for the high error in 32x32
mesh for the 6th order C0P iC−1P−1 case.

The experience of the different methods varied for each software package.
For example, when the study was started FEniCS did not have mixed method
formulations implemented and Sundance did not have higher order methods.
Both of these features were easy extensions, but required some implementa-
tion. As the project continued on, there were other hurdles such as learning
the mesh structures and redefining them in a way to minimize singular points.
Perhaps the largest bottleneck in the study was the implementation of the
Iterated Penalty method. It so happens that the formulation we initially
used was wrong and the software was giving was show large errors in the
solutions. It was not until the proper penalties (ρ = −r) were discovered
that the software gave consistent results.

FEM Software Automation 32 March 1, 2007

Chapter 6

Conclusion

Automation of FEM is a process that has been motivated both by mathe-
matical insight and utility in engineering and science. Although the process
of building the discrete equations based on the function space and mesh is
a rote application of calculus and algebra, the complexity of choosing the
different implementations and knowing their affects gives rise to the need for
this automation. As more research and implementations of automation is
completed, the separation from the scientific models and low level coding of
algorithms grows allowing for more evaluation and development of different
models.

The lack of full automation is a call to further this growing field. One
highlight we would especially like to see formalized is the missing link between
global and local finite element spaces. While it is easy to do simple elements
with nothing more than a consistent ordering of the degrees of freedom,
more complicated elements are left out due to their interactions with other
elements.

Our study on the Stokes equations shows the value of such automated
FEM software, by highlighting the features predicted of different elements.
It also shows how a researcher can compare their methods quickly with those
that are predicted in literature. While this study is certainly meaningful and
interesting to numerical analysts, it is still not at the level of the applica-
tion scientist. We are currently looking at comparing some grade two fluid
models that will both provide more novel studies numerically rather than
theoretically and push the simulation engines in more intense computations.

Finally, the software that is currently being produced has already enabled
the study of many different systems that were not done before. Possibly the

33

CHAPTER 6. CONCLUSION

most interesting differences between the Sundance and FEniCS projects is
how the goals of the developers affected the software’s capabilities. As the
field moves onward, software must look to incorporating symbolic differen-
tiation to aid in new areas of automation include optimization, error cor-
rection, and control. These projects currently lack ability to interface with
legacy codes, which would be valuable for scientists before they are able to
completely switch to an automated system. Nonetheless, automated FEM
software is growing in its popularity and is a valuable tool for scientists,
engineers, and educators.

FEM Software Automation 34 March 1, 2007

Bibliography

[1] The code and current copy of this paper is availble online at
http://people.cs.uchicago.edu/˜aterrel/Masters.

[2] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C.
McInnes, B. F. Smith, and H. Zhang, PETSc Web page, 2001. Available from:
http://www.mcs.anl.gov/petsc.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, Deal.ii. Available from: http:
//www.dealii.org.

[4] C. Bauer and et al, Ginac is not a cas. Available from: http://www.ginac.de/.

[5] D. Beazley and et al, Simplified wrapper and interface generator (swig). Available
from: http://www.swig.org.

[6] S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Meth-
ods, Springer-Verlag, New York, 2nd ed., 2002.

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15 of
Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991.

[8] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland,
Amsterdam, New York, Oxford, 1978.

[9] I. Danaila, F. Hecht, and O. Pironneau, Freefem. Available from: http:
//www.freefem.org.

[10] T. A. Davis, Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method,
ACM Transactions on Mathematical Software, 30 (2004), pp. 196 – 199. Available
from: http://www.cise.ufl.edu/research/sparse/umfpack/.

[11] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Sei-
del, and J. Shalf, The cactus framework and toolkit: Design and applications,
in Vector and Parallel Processing - VECPAR ’2002, 5th International Conference,
Springer, 2003. Available from: http://www.cactuscode.org/Articles/Cactus_
Goodale03a.pre.pdf.

[12] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,

35

http://www.mcs.anl.gov/petsc
http://www.dealii.org
http://www.dealii.org
http://www.ginac.de/
http://www.swig.org
http://www.freefem.org
http://www.freefem.org
http://www.cise.ufl.edu/research/sparse/umfpack/
http://www.cactuscode.org/Articles/Cactus_Goodale03a.pre.pdf
http://www.cactuscode.org/Articles/Cactus_Goodale03a.pre.pdf

BIBLIOGRAPHY

A. Williams, and K. S. Stanley, An overview of the trilinos project, ACM Trans.
Math. Softw., 31 (2005), pp. 397–423. Available from: http://software.sandia.
gov/trilinos/TrilinosACMTOMS2004.pdf.

[13] T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite Element
Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[14] W. R. INC, Mathematica. Available from: http://www.wolfram.com.

[15] R. C. Kirby, Algorithm 839: Fiat, a new paradigm for computing finite element basis
functions, ACM Transactins on Mathematical Software, 30 (2004). Available from:
http://www.fenics.org/pub/documents/fiat/papers/fiat-toms-2004.pdf.

[16] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Transactions on
Mathematical Software, 32 (2006). Available from: http://www.fenics.org/pub/
documents/ffc/papers/ffc-toms-2005.pdf.

[17] A. Logg, Automating the finite element method. Preprint from The Finite El-
ement Center, January 2006. Available from: http://www.femcenter.org/pub/
preprints/phiprint-2006-01.pdf.

[18] A. Logg, J. Hoffman, J. Jansson, R. C. Kirby, and G. N. Wells, The fenics
project. Available from: http://www.fenics.org.

[19] K. R. Long, Sundance. Available from: http://software.sandia.gov/sundance/.

[20] K. Mardal, SyFi Tutorial, June 2006. Available from: http://www.fenics.org/
pub/documents/syfi/syfi-user-manual/syfi-user-manual.pdf.

[21] J. R. Stewart and H. C. Edwards, A framework approach for developing parallel
adaptive multiphysics applications, Finite Elem. Anal. Des., 40 (2004), pp. 1599–1617.

[22] C. Taylor and P. Hood, A numerical solution of the navier-stokes equations using
the finite element technique, Computers and Fluids, 1 (1973).

[23] M. Vogelius and L. R. Scott, Conforming finite element methods for incom-
pressible and nearly incompressible continua, Large Scale Computations in Fluid Me-
chanics,, 22 (1985).

[24] J. Walter and M. Koch, ublas. Available from: http://www.boost.org/libs/
numeric/ublas/doc/index.htm.

FEM Software Automation 36 March 1, 2007

http://software.sandia.gov/trilinos/TrilinosACMTOMS2004.pdf
http://software.sandia.gov/trilinos/TrilinosACMTOMS2004.pdf
http://www.wolfram.com
http://www.fenics.org/pub/documents/fiat/papers/fiat-toms-2004.pdf
http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf
http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf
http://www.femcenter.org/pub/preprints/phiprint-2006-01.pdf
http://www.femcenter.org/pub/preprints/phiprint-2006-01.pdf
http://www.fenics.org
http://software.sandia.gov/sundance/
http://www.fenics.org/pub/documents/syfi/syfi-user-manual/syfi-user-manual.pdf
http://www.fenics.org/pub/documents/syfi/syfi-user-manual/syfi-user-manual.pdf
http://www.boost.org/libs/numeric/ublas/doc/index.htm
http://www.boost.org/libs/numeric/ublas/doc/index.htm

	Introduction
	Mathematics and Software of FEM
	A Mathematical Definition of FEM
	An Algorithmic Viewpoint of FEM
	Input and Output

	Automation of the Finite Element Method
	The Simulation Engine
	DEAL.II Deal.II
	Sundance Sundance
	FFC/Dolfin FEniCS

	Finite Element Tabulators
	FIAT FEniCS
	SyFi FEniCS

	Equation Description
	The Use of Symbolics

	The Problem Domain
	Solving the Matrix Equation
	Linear Solvers

	Why are we NOT Automated?
	What hasn't been done?

	The Stokes Equation
	Mixed method Formulation
	Taylor - Hood Elements
	Crouzeix - Raviart Elements
	 C0PiC-1Pi-1 Elements

	Iterated Penalty Method

	Tests and Results
	Numerical Results
	User Experience Results

	Conclusion
	Bibliography

