Finite Element Assembly on Arbitrary Meshes

Matthew G Knepley 1 and Andy R Terrel 2

¹Mathematics and Computer Science Division Argonne National Laboratory ²Department of Computer Science University of Chicago

March 12, 2008 SIAM Conference on Parallel Processing for Scientific Computing Atlanta, Georgia

Outline

[Parallelism](#page-21-0)

э \rightarrow

4 日下

×

 299

э

Hierarchy Abstractions

- Generalize to a set of linear spaces
	- Spaces interact through an Overlap
	- Sieve provides topology, can also model Mat
	- Section generalizes Vec
- **•** Basic operations
	- Restriction to finer subspaces, $\text{restrict}()$ /update $()$
	- Assembly to the subdomain, complete()
- Allow reuse of geometric and multilevel algorithms

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, *covering*, on *points*

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (for cell complexes)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, *covering*, on *points*

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (for cell complexes)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, *covering*, on *points*
	- Points can represent any mesh element
	- Covering can be thought of as adjacency
	- Relation can be expressed in a DAG (for cell complexes)
- Simple query set:
	- provides a general API for geometric algorithms
	- leads to simpler implementations
	- can be more easily optimized

Unstructured Interface (after)

• NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent $(d+1)$ -elements
- **•** Transitive closure
	- closure(cell): The computational unit for FEM

• Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology

Unstructured Interface (after)

• NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent $(d+1)$ -elements
- **•** Transitive closure
	- closure(cell): The computational unit for FEM

• Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology

Unstructured Interface (after)

• NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent $(d+1)$ -elements
- **•** Transitive closure
	- closure(cell): The computational unit for FEM
- Algorithms independent of mesh
	- **o** dimension
	- shape (even hybrid)
	- global topology

- \bullet Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$
- support(7) = $\{2,3\}$

4 D F

- \bullet Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

• support(7) = $\{2,3\}$

∢ ⊡

- \bullet Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$
- support(7) = $\{2, 3\}$

 \Box

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$ • star(7) = { $7, 2, 3, 0$ }

 \Box

 QQ

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$
- star(7) = {7, 2, 3, 0}

 \Box

• Map interface

- restrict(0) = ${f_1}$
- restrict(7) = ${v_1}$
- restrict(4) = ${7, 8}$

4 D F

 299

э

• Map interface

- restrict(0) = ${f_1}$
- restrict(7) = $\{v_1\}$
- restrict(4) = ${7, 8}$

4 D F

 QQ

э

• Map interface

- restrict(0) = ${f_1}$
- restrict(7) = ${v_1}$
- restrict(4) = ${7, 8}$

4 D F

 QQ

• Map interface

- restrict(0) = ${f_1}$
- restrict(7) = ${v_1}$
- restrict(4) = ${7, 8}$

4 D F

 QQ

э

• Topological traversals: follow connectivity

- restrictClosure $(0) = \{f_1v_1e_1e_2v_2e_8e_7v_4e_9e_0\}$
- restrictStar(7) = { $v_1e_1e_2f_1e_0e_9$ }

4 D F

• Topological traversals: follow connectivity

- restrictClosure $(0) = \{f_1v_1e_1e_2v_2e_8e_7v_4e_9e_0\}$
- restrictStar(7) = { $v_1e_1e_2f_1e_0e_9$ }

4 D F

• Topological traversals: follow connectivity

- restrictClosure $(0) = \{f_1v_1e_1e_2v_2e_8e_7v_4e_9e_0\}$
- restrictStar(7) = ${v_1e_1e_2f_1e_0e_9}$

4 D F

Outline

[Rethinking the Mesh](#page-1-0)

. p 活

4 0 8

∢母 ×

Restriction

• Localization

- Restrict to patches (here an edge closure)
- Compute locally

4 0 8

 QQ

Delta

o Delta

- Restrict further to the overlap
- **.** Overlap now carries twice the data

4 0 8

Fusion

- Merge/reconcile data on the overlap
	- Addition (FEM)
	- Replacement (FD)
	- Coordinate transform (Sphere)
	- Linear transform (MG)

4 D F

Update

Update

- Update local patch data
- Completion = restrict \longrightarrow fuse \longrightarrow update, in parallel

4 D F

 QQ

Completion

- A ubiquitous parallel form of restrict \longrightarrow fuse \longrightarrow update
- Operates on Sections
	- Sieves can be "downcast" to Sections
- Based on two operations
	- Data exchange through overlap
	- **Fusion of shared data**

4 D F

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
	- distributing mesh entities after partition \bullet
	- redistributing mesh entities and data for load balance
	- accumlating matvec for a partially assembled matrix

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices

- distributing mesh entities after partition \bullet
- redistributing mesh entities and data for load balance
- accumlating matvec for a partially assembled matrix

FEM accumulating integrals on shared faces FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices

distributing mesh entities after partition \bullet

- redistributing mesh entities and data for load balance
- accumlating matvec for a partially assembled matrix

- FEM accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
	- **•** distributing mesh entities after partition
	- redistributing mesh entities and data for load balance
	- accumlating matvec for a partially assembled matrix

- FEM accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
	- **•** distributing mesh entities after partition
	- redistributing mesh entities and data for load balance
	- accumlating matvec for a partially assembled matrix

- FEM accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
	- **•** distributing mesh entities after partition
	- redistributing mesh entities and data for load balance
	- accumlating matvec for a partially assembled matrix

- FEM accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
	- **•** distributing mesh entities after partition
	- redistributing mesh entities and data for load balance
	- accumlating matvec for a partially assembled matrix

Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone ()s!

Mesh Distribution

Distributing a mesh means

• distributing the topology (Sieve)

• distributing data (Section)

However, a Sieve can be interpreted as a Section of cone ()s!
Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- o distributing data (Section)

However, a Sieve can be interpreted as a Section of cone ()s!

Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- o distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!

[Rethinking the Mesh](#page-1-0)

[Parallelism](#page-21-0)

FEM

4 0 8

4 同 下

 298

活

- Section definition
- Integration
- Boundary conditions

 \leftarrow

FEM

 200

Finite Element Integrator And Tabulator by Rob Kirby

<http://www.fenics.org/fiat>

FEM

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- **•** Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project, as is the PETSc Sieve module

 200

Finite Element Integrator And Tabulator by Rob Kirby

<http://www.fenics.org/fiat>

FEM

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- **•** Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project, as is the PETSc Sieve module

FIAT Integration

The quadrature.fiat file contains:

An element (usually a family and degree) defined by FIAT

FEM

A quadrature rule

It is run

- automatically by make, or
- independently by the user

It can take arguments

- --element family and --element order, or
- make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:

- Quadrature points and weights
- Basis function and derivative evaluations at the quadrature points
- **•** Integration against dual basis functions over the cell
- **Local dofs for Section allocation**

M. Knepley A. Terrel (ANL, UofC) [FEM Assem. Arb. Meshes](#page-0-0) PP08, March 2008, Atlanta 16 / 24

FEM

• Determined by discretization

- By symmetry, only depend on point depth \bullet
- Obtained from FIAT \sim
- Modified by BC
- Decouples storage and parallelism from discretization $\qquad \qquad \bullet$

FEM

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization $\qquad \qquad \bullet$

FEM

- Determined by discretization
- By symmetry, only depend on point depth
- **Obtained from FIAT**
- Modified by BC
- Decouples storage and parallelism from discretization $\qquad \qquad \bullet$

FEM

- Determined by discretization
- By symmetry, only depend on point depth
- **Obtained from FIAT**
- Modified by BC
- Decouples storage and parallelism from discretization $\qquad \qquad \bullet$

FEM

- Determined by discretization
- By symmetry, only depend on point depth
- **Obtained from FIAT**
- Modified by BC
- Decouples storage and parallelism from discretization

We must map local unknowns to the global basis

FEM

• FIAT reports the kind of unknown

- Scalars are invariant
	- Lagrange
- Vectors transform as J^{-7}
	- Hermite
- Normal vectors require Piola transform and a choice of orientation
	- Raviart-Thomas
- Moments transform as $|J^{-1}|$
	- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-47-0)[yt](#page-49-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- **•** Scalars are invariant
	- **•** Lagrange
- Vectors transform as J^{-7}
	- Hermite
- Normal vectors require Piola transform and a choice of orientation
	- Raviart-Thomas
- Moments transform as $|J^{-1}|$
	- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-48-0)[yt](#page-50-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

We must map local unknowns to the global basis

FEM

• FIAT reports the kind of unknown

- Scalars are invariant
	- Lagrange
- Vectors transform as $J^{-\,}$
	- **o** Hermite
- Normal vectors require Piola transform and a choice of orientation
	- Raviart-Thomas
- Moments transform as $|J^{-1}|$
	- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-49-0)[yt](#page-51-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

We must map local unknowns to the global basis

FEM

• FIAT reports the kind of unknown

- Scalars are invariant
	- Lagrange
- Vectors transform as J^{-7}
	- **•** Hermite

Normal vectors require Piola transform and a choice of orientation

- Raviart-Thomas
- Moments transform as $|J^{-1}|$
	- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-50-0)[yt](#page-52-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

We must map local unknowns to the global basis

FEM

• FIAT reports the kind of unknown

- Scalars are invariant
	- Lagrange
- Vectors transform as J^{-7}
	- Hermite
- Normal vectors require Piola transform and a choice of orientation Raviart-Thomas

Moments transform as $|J^{-1}|$

- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-51-0)[yt](#page-53-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

We must map local unknowns to the global basis

FEM

• FIAT reports the kind of unknown

- Scalars are invariant
	- Lagrange
- Vectors transform as J^{-7}
	- Hermite
- Normal vectors require Piola transform and a choice of orientation
	- Raviart-Thomas
- Moments transform as $|J^{-1}|$
	- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-52-0)[yt](#page-54-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- **•** Scalars are invariant
	- **•** Lagrange
- Vectors transform as $J^{-\,}$
	- Hermite
- Normal vectors require Piola transform and a choice of orientation
	- Raviart-Thomas
- Moments transform as $|J^{-1}|$
	- Nedelec
- May involve a transformation over the entire closure
	- **•** Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC[, M](#page-53-0)[yt](#page-55-0)[h](#page-47-0)[o](#page-48-0)[n\)](#page-55-0)

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```


```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)coords = mesh->restrict(coordinates, c);
  v0, J, invJ, detJ = computeGeometry(coords);
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
```
FEM

그 그는 그녀

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  inputVec = mesh->restrict(U, c);
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c != cells \rightarrow end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    realCoords = J*refCords[q] + v0;for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      elemVec[f] += basis[q,f]*rhsFunc(realCoords);
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                 KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      for(d = 0; d < dim; ++d)for(e) testDerReal[d] += invJ[e,d]*basisDer[q,f,e];for(g = 0; g < numBasisFuncs; ++g) {
        for(d = 0; d < dim; ++d)for(e) basisDerReal[d] += invJ[e,d]*basisDer[q,g,e]
          elemMat[f,g] += testDerReal[d]*basisDerReal[d]
        elemVec[f] += elemMat[f,g]*inputVec[g];
      }
                                        KOD KARD KED KED ORA
```
FEM

M. Knepley A. Terrel (ANL, UofC) [FEM Assem. Arb. Meshes](#page-0-0) PP08, March 2008, Atlanta 19 / 24

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      elemVec[f] += basis[q, f]*lambda*exp(inputVec[f]);
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                                 KENKEN E MAG
                                         4 ED
FEM Assem. Arb. Meshes PP08, March 2008, Atlanta 19 / 24
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  mesh->updateAdd(F, c, elemVec);
}
<Aggregate updates>
                                                 KERKER E MAG
```

```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
<Aggregate updates>
                                          4 D F
                                                  KERKER E MAG
```


```
cells = mesh->heightStratum(0);
for(c = cells \rightarrow begin(); c := cells \rightarrow end(); ++c)<Compute cell geometry>
  <Retrieve values from input vector>
  for(q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  }
  <Update output vector>
}
Distribution<Mesh>::completeSection(mesh, F);
```
Boundary Conditions

Dirichlet conditions may be expressed as

Neumann conditions may be expressed as

FEM

4 D F

 QQ
Dirichlet conditions may be expressed as

$$
u|_{\Gamma}=g
$$

FEM

Neumann conditions may be expressed as

4 D F

 QQ

Dirichlet conditions may be expressed as

 $|u|_{\Gamma} = g$

FEM

and implemented by constraints on dofs in a Section

Neumann conditions may be expressed as

Dirichlet conditions may be expressed as

$$
u|_{\Gamma}=g
$$

FEM

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

Dirichlet conditions may be expressed as

$$
u|_{\Gamma}=g
$$

FEM

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

 $\nabla u \cdot \hat{n}|_{\Gamma} = h$

Dirichlet conditions may be expressed as

$$
u|_{\Gamma}=g
$$

FEM

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

 $\nabla u \cdot \hat{n}|_{\Gamma} = h$

and implemented by explicit integration along the boundary

Dirichlet conditions may be expressed as

$$
u|_{\Gamma}=g
$$

FEM

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

$$
\nabla u \cdot \hat{n}|_{\Gamma} = h
$$

and implemented by explicit integration along the boundary

• The user provides a weak form.

- Topological boundary is marked during generation
- Cells bordering boundary are marked using markBoundaryCells()

FEM

- To set values:
	- **1** Loop over boundary cells
	- ² Loop over the element closure
	- \bullet For each boundary point *i*, apply the functional N_i to the function g
- The functionals are generated with the quadrature information
- Section allocation applies Dirichlet conditions automatically
	- Values are stored in the Section
	- restrict() behaves normally, update() ignores constraints

 200

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
	- Operate directly at the equation and discretization level
	- Automatic generation of integration/assembly routines
	- **•** Dimension independent code
- **•** Expansion of capabilities
	- **Parametric models**
	- Optimized implementations of integration
	- Multigrid on arbitrary meshes

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
	- Operate directly at the equation and discretization level
	- Automatic generation of integration/assembly routines
	- **•** Dimension independent code

• Expansion of capabilities

- **Parametric models**
- Optimized implementations of integration
- Multigrid on arbitrary meshes

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
	- Operate directly at the equation and discretization level
	- Automatic generation of integration/assembly routines
	- **•** Dimension independent code
- **•** Expansion of capabilities
	- **Parametric models**
	- Optimized implementations of integration
	- Multigrid on arbitrary meshes

Conclusions

References

• FEniCS Documentation:

[http://www.fenics.org/wiki/FEniCS](http://www.fenics.org/wiki/FEniCS_Project)_Project

- **•** Project documentation
- Users manuals
- Repositories, bug tracking
- Image gallery

Publications:

[http://www.fenics.org/wiki/Related](http://www.fenics.org/wiki/Related_presentations_and_publications)_presentations_and_publications

Research and publications that make use of FEniCS

PETSc Documentation:

<http://www.mcs.anl.gov/petsc/docs>

- **PETSc Users manual**
- Manual pages
- Many hyperlinked examples
- FAQ, Troubleshooting info, installation info, etc.
- Publication using PETSc

Proof is not currrently enough to examine solvers

- N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13, pp.778–795, 1992.
- Anne Greenbaum, Vlastimil Ptak, and Zdenek Strakos, Any Nonincreasing Convergence Curve is Possible for GMRES, SIAM J. Matrix Anal. Appl., 17 (3), pp.465–469, 1996.