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Rethinking the Mesh

Hierarchy Abstractions

Generalize to a set of linear spaces

Spaces interact through an Overlap
Sieve provides topology, can also model Mat
Section generalizes Vec

Basic operations

Restriction to finer subspaces, restrict()/update()
Assembly to the subdomain, complete()

Allow reuse of geometric and multilevel algorithms
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Rethinking the Mesh

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

Abstract to a relation, covering, on points

Points can represent any mesh element
Covering can be thought of as adjacency
Relation can be expressed in a DAG (for cell complexes)

Simple query set:

provides a general API for geometric algorithms
leads to simpler implementations
can be more easily optimized
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Rethinking the Mesh

Unstructured Interface (after)

NO explicit references to element type

A point may be any mesh element
getCone(point): adjacent (d-1)-elements
getSupport(point): adjacent (d+1)-elements

Transitive closure

closure(cell): The computational unit for FEM

Algorithms independent of mesh

dimension
shape (even hybrid)
global topology
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Rethinking the Mesh
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Rethinking the Mesh

Doublet Section
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Topological traversals: follow connectivity

restrictClosure(0) = {f 1v1e1e2v2e8e7v4e9e0}
restrictStar(7) = {v1e1e2f 1e0e9}
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Parallelism

Restriction
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Localization

Restrict to patches (here an edge closure)
Compute locally
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Parallelism

Delta
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Delta
Restrict further to the overlap
Overlap now carries twice the data
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Parallelism

Fusion
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Merge/reconcile data on the overlap

Addition (FEM)
Replacement (FD)
Coordinate transform (Sphere)
Linear transform (MG)
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Parallelism

Update
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Update
Update local patch data
Completion = restrict −→ fuse −→ update, in parallel
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Parallelism

Completion
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A ubiquitous parallel form of restrict −→ fuse −→ update

Operates on Sections
Sieves can be ”downcast” to Sections

Based on two operations
Data exchange through overlap
Fusion of shared data
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Parallelism

Uses

Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices

distributing mesh entities after partition

redistributing mesh entities and data for load balance

accumlating matvec for a partially assembled matrix
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Parallelism

Mesh Distribution

Distributing a mesh means

distributing the topology (Sieve)

distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!
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FEM

FEM Components

Section definition

Integration

Boundary conditions
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FEM

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands

Reference element shapes (line, triangle, tetrahedron)

Quadrature rules

Polynomial spaces

Functionals over polynomials (dual spaces)

Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project, as is the PETSc Sieve module
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FEM

FIAT Integration

The quadrature.fiat file contains:

An element (usually a family and degree) defined by FIAT

A quadrature rule

It is run

automatically by make, or

independently by the user

It can take arguments

--element family and --element order, or

make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:

Quadrature points and weights

Basis function and derivative evaluations at the quadrature points

Integration against dual basis functions over the cell

Local dofs for Section allocation
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FEM

Section Allocation

We only need the fiber dimensions of each point

Determined by discretization

By symmetry, only depend on point depth

Obtained from FIAT

Modified by BC

Decouples storage and parallelism from discretization
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FEM

Kinds of Unknowns

We must map local unknowns to the global basis

FIAT reports the kind of unknown

Scalars are invariant
Lagrange

Vectors transform as J−T

Hermite

Normal vectors require Piola transform and a choice of orientation
Raviart-Thomas

Moments transform as |J−1|
Nedelec

May involve a transformation over the entire closure
Argyris

Conjecture by Kirby relates transformation to affine equivalence

We have not yet automated this step (FFC, Mython)
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FEM

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>
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elemMat[f,g] += testDerReal[d]*basisDerReal[d]
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<Transform coordinates>
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<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
mesh->updateAdd(F, c, elemVec);
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Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
Distribution<Mesh>::completeSection(mesh, F);
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FEM

Boundary Conditions

Dirichlet conditions may be expressed as

u|Γ = g

and implemented by constraints on dofs in a Section

The user provides a function.

Neumann conditions may be expressed as

∇u · n̂|Γ = h

and implemented by explicit integration along the boundary

The user provides a weak form.
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FEM

Dirichlet Values

Topological boundary is marked during generation

Cells bordering boundary are marked using markBoundaryCells()

To set values:
1 Loop over boundary cells
2 Loop over the element closure
3 For each boundary point i , apply the functional Ni to the function g

The functionals are generated with the quadrature information

Section allocation applies Dirichlet conditions automatically

Values are stored in the Section
restrict() behaves normally, update() ignores constraints
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Conclusions

Conclusions

Better mathematical abstractions bring concrete benefits
Vast reduction in complexity

Operate directly at the equation and discretization level
Automatic generation of integration/assembly routines
Dimension independent code

Expansion of capabilities

Parametric models
Optimized implementations of integration
Multigrid on arbitrary meshes
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Conclusions
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