A Case for Developing with a PDE Language

Andy R Terrel Advisors: L Ridgway Scott and Robert C Kirby

Department of Computer Science University of Chicago

Conference on Computational Science and Engineering, 2007

Outline

Why Domain Specific Languages?

- FEM Software is Complicated
- Automated FEM Software

2 Case Study on Stokes Equations

- Many Methods of Stokes
- Numerical and User Results

EM Software is Complicated Automated FEM Software

What Do You Mean Language?

Natural Languages

Business Interactions Philosophy

- Epistemology
- Ethics
- Mathematics
 - Analysis
 - Geometry
 - Algebra

EM Software is Complicated Automated FEM Software

What Do You Mean Language?

Natural Languages

Business Interactions Philosophy

- Epistemology
- Ethics
- Mathematics
 - Analysis
 - Geometry
 - Algebra

Computer Languages

Turing Machine

- C like languages
- Matlab
- Church Lambda Calculus

伺き くきき くき

- LISP
- Prolog

FEM Software is Complicated Automated FEM Software

How Do You Want to Write Code?

Simple Mesh

Points: 1,2,3 Edges: (1,2),(1,3),(2,3) Face: (1,2,3)

Sieve Mesh

Points: 1,2,3 Edges: cone(Points) Face: cone(Edges)

Summary

FEM Software is Complicated Automated FEM Software

How Do You Want to Write Code?

Simple Mesh

Points: 1,2,3,4 Edges: (1,2),(1,3), (1,4),(2,3),(2,4),(3,4) Face: (1,2,3),(1,2,4), (1,3,4),(2,3,4)

Sieve Mesh

Points: 1,2,3,4 Edges: cone(Points) Faces: cone(Edges)

FEM Software is Complicated Automated FEM Software

How Do You Want to Write Code?

$\begin{aligned} -\Delta \mathbf{u} + \nabla \mathbf{p} &= f \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$

for element in start ... finish
for node in start ... finish
 a = integrate(ux*dx * vx*dx + uy*dy *vy*dy) ...
 L = integrate(v * f)

FEM Software is Complicated Automated FEM Software

How Do You Want to Write Code?

$$-\Delta \mathbf{u} + \nabla \mathbf{p} = f$$
$$\nabla \cdot \mathbf{u} = 0$$

a = dot(grad(v), grad(U)) * dx - div(v) * P * dx L = dot(v, f) * dx

イロト イポト イヨト イヨ

FEM Software is Complicated Automated FEM Software

How Do You Want to Write Code?

$$\begin{aligned} -\Delta \mathbf{u} + \nabla \mathbf{p} &= f \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$$

Nice GUI strong form.

프 🖌 🖌 프

FEM Software is Complicated Automated FEM Software

How Do You Want to Write Code?

Different Elements

FIAT

Look up in book

Lagrange(triangle,k) CrouzeixRaviart(triangle)

FEM Software is Complicated Automated FEM Software

Separate Coding from Science

- courtesy Peter Brune.

FEM Software is Complicated Automated FEM Software

Separate Coding from Science

Stokes Equation

- Taylor-Hood
- Crouzeix-Raviart
- Iterated Penalty

 $\begin{aligned} -\Delta \mathbf{u} + \nabla \mathbf{p} &= f \\ \nabla \cdot \mathbf{u} &= 0 \end{aligned}$

FEM Software is Complicated Automated FEM Software

Separate Coding from Science

Stokes Equation

Taylor-Hood Crouzeix-Raviart Iterated Penalty

Navier-Stokes

- Stokes Solver
- Nonlinear Solver
- Time Stepping

 $\frac{du}{dt} + u \cdot \nabla u = \\ -\frac{\nabla \mathbf{p}}{\rho} + \nu \Delta \mathbf{u}$

ъ

FEM Software is Complicated Automated FEM Software

Separate Coding from Science

Stokes Equation

Taylor-Hood Crouzeix-Raviart Iterated Penalty

Navier-Stokes

Stokes Solver Nonlinear Solver Time Stepping

Non-Newtonian Flow

э

- Oldroyd-B
- Grade 2

FEM Software is Complicated Automated FEM Software

Separate Coding from Science

Stokes Solver Nonlinear Solver Time Stepping

Stokes Equation Taylor-Hood Crouzeix-Raviart Iterated Penalty

Non-Newtonian Odroyd-B

Grade 2

. . .

Fluid Solid Interfaces

- Free Boundary Problems
- Couple to legacy Codes

ъ

FEM Software is Complicated Automated FEM Software

What Are the Parts Needed for FEM Software?

- Mesh Generation
- Function Spaces
- Equation Description
- Discrete Equation Solver
- Parallel Computing Support

FEM Software is Complicated Automated FEM Software

What Are the Parts Needed for FEM Software?

Mesh Generation

- Function Spaces
- Equation Description
- Discrete Equation Solver
- Parallel Computing Support

- uniform meshes,
- general geometry,
- adaptive meshes,

▲ 御 ▶ ▲ 臣 ▶ ▲

 unstructured meshes

FEM Software is Complicated Automated FEM Software

What Are the Parts Needed for FEM Software?

- Mesh Generation
- Function Spaces
- Equation Description
- Discrete Equation Solver
- Parallel Computing Support

- linears,
- menu of options,
- arbitrary order,
- tabulator

FEM Software is Complicated Automated FEM Software

What Are the Parts Needed for FEM Software?

- Mesh Generation
- Function Spaces
- Equation Description
- Discrete Equation Solver
- Parallel Computing Support

- menu,
- Ianguage,
- derived forms,
- error estimators

▲ 御 ▶ ▲ 臣 ▶ ▲

FEM Software is Complicated Automated FEM Software

What Are the Parts Needed for FEM Software?

Andy R Terrel

- Mesh Generation
- Function Spaces
- Equation Description
- Discrete Equation Solver
- Parallel Computing Support

- menu,
- Ianguage

FEM Software is Complicated Automated FEM Software

What Are the Parts Needed for FEM Software?

- Mesh Generation
- Function Spaces
- Equation Description
- Discrete Equation
 Solver
- Parallel Computing Support

- parallel linear solve,
- parallel assembly,
- load balancing

FEM Software is Complicated Automated FEM Software

Why Automate FEM?

• Ensure Correctness:

Complicated error prone mathematical process Complicated error prone programming process

• Reduce Programming Hours:

Gives ability to quickly change models Gives ability to quickly change elements Gives ability to quickly change methods

• Optimize Computation:

Allow a non-expert programmer to make efficent calculations

FEM Software is Complicated Automated FEM Software

Why Automate FEM?

Ensure Correctness:

Complicated error prone mathematical process Complicated error prone programming process

• Reduce Programming Hours: Gives ability to quickly change models Gives ability to quickly change elements Gives ability to quickly change methods

Optimize Computation:

Allow a non-expert programmer to make efficent calculations

FEM Software is Complicated Automated FEM Software

Why Automate FEM?

• Ensure Correctness:

Complicated error prone mathematical process Complicated error prone programming process

Reduce Programming Hours:

Gives ability to quickly change models Gives ability to quickly change elements Gives ability to quickly change methods

Optimize Computation:

Allow a non-expert programmer to make efficent calculations

・ 同 ト ・ 三 ト ・

FEM Software is Complicated Automated FEM Software

The Software and Mathematics.

"Mathematical Software should be Mathematical"

but

- Directly mapping mathematics to code is flawed.
- Automation requires more mathematical understanding
 - Global local interactions

•

FEM Software is Complicated Automated FEM Software

Some Major Projects

Simulation Engines

- Sundance
- FFC/Dolfin
- Deal.II
- Analysa
- FreeFEM
- GetDP

Tabulators

- FIAT
- SyFi
- Linear Solvers
 - UMFPack

▲御▶ ▲臣▶ ▲臣

- PETSc
- Trilinos

FEM Software is Complicated Automated FEM Software

Why are we NOT Using Automated?

- Different mathematical and algorithmic abstractions
- Hand coding is very attractive ("If you want it done right...")
- Quite difficult to switch between elements, solvers, and methods.

Many Methods of Stokes Numerical and User Results

The Stokes Equation.

The Stokes equations are a model for steady incompressible flow:

$$-\Delta \mathbf{u} + \nabla \mathbf{p} = f$$
$$\nabla \cdot \mathbf{u} = 0$$

- Coupling of pressure and velocity
- Numerous methods for solving

Many Methods of Stokes Numerical and User Results

Taylor - Hood Elements

- Available using any *P_k* elements,
- Built from standard Lagrange elements,
- Easily extendable to arbitrary order

Many Methods of Stokes Numerical and User Results

Crouzeix - Raviart Elements

- Non Conforming
- Low Order
- Divergence-free Pressure Space

Many Methods of Stokes Numerical and User Results

$C^0 P_i C^{-1} P_{i-1}$ Elements

Use a Continuous Lagrange element P_i for V and a Discontinuous Lagrange element P_{i-1} for Π

- May not satisfy inf sup condition
- Divergence-free Pressure Space
- Still use Lagrange elements

Many Methods of Stokes Numerical and User Results

Iterated Penalty

Let $r \in \mathbb{R}$ and $\rho > 0$ define u^n and $p = w^n$ by

$$\begin{aligned} a(\mathbf{u}^{\mathbf{n}},\mathbf{v}) + r(\nabla\cdot\mathbf{u}^{\mathbf{n}},\nabla\cdot\mathbf{v}) &= F(\mathbf{v}) - (\nabla\cdot\mathbf{v},\nabla\cdot\mathbf{w}^{\mathbf{n}}) \\ \mathbf{w}^{n+1} &= \mathbf{w}^{n} + \rho \mathbf{u}^{n} \end{aligned}$$

- One discrete spaces, V,
- Similar to $C^0 P_i C^{-1} P_{i-1}$ Elements but different implementation

Many Methods of Stokes Numerical and User Results

Problem statement

ъ

$$\mathbf{u} = \begin{bmatrix} \sin(3\pi x)\cos(3\pi y) \\ -\cos(3\pi x)\sin(3\pi y) \end{bmatrix}$$

 $p = \sin(3\pi x)\sin(3\pi y)$

Many Methods of Stokes Numerical and User Results

The Numbers.

Comparison of Fourth Order

Andy R Terrel

A Case for Developing with a PDE Language

Many Methods of Stokes Numerical and User Results

User Experience of Testing

- Debugging is entirely different
- Getting something working is easy, getting it right ...
- Everyone can read your code

Comparisons between Software Packages

- Sundance and FEniCS program very similarly
- FIAT a common interface for defining elements
- Coding time almost identical
- Both still very active development

Summary

- Domain Specific Languages separate Science from Programming
- Mathematics ⇔ Software Abstractions
- Meaningful test simulations (not just Poisson)
- Outlook
 - Explore mathematical abstractions for global-local interactions
 - Compare Grade 2 and Oldroyd-B fluid model

Andy R Terrel

Do It Yourself

Where to get the code:

Sundance - http://software.sandia.gov/sundance/ FEniCS Project (FIAT, FFC, DOLFIN) - www.fenics.org Masters Thesis - email me

Any Questions

aterrel@uchicago.edu

Andy R Terrel A Case for Developing with a PDE Language