A R Terrel

Motivation and Goals

Experiences and Observations

Juliook

Appendix

Abstractions in FEM Software

Andy R Terrel aterrel@uchicago.edu

Department of Computer Science University of Chicago

November 8-9, 2006 FEniCS'06 Delft University of Technology

Motivation and Goals

Experiences and Observations

ullook

opendix

Motivation and Goals

2 Experiences and Observations

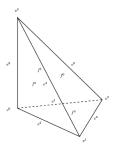
Outlook

- Success of the Finite Element Method(FEM) has led to a proliferation of FEM simulation software.
 - The FEniCS Project, Sundance, DEAL
 - Others: FreeFEM. FEMLab. ...
- No single package meets everyone's needs ... yet.
 - Sundance handles optimization well, but is limited in kinds of elements.
 - FEniCS gives a good smaller bundle that effeciently generates code.
 - DEAL handles a more elements and has a larger user community,
 - Both Sundance and FEniCS use easily readable code for user input.

Jutlook

Appendix

 There seem to still be disjunctions between the math and the software.


- Domains and meshes are not always identical.
- Small variations of methods are hard or not possible.
- ... other issues
- Some goals for this talk
 - Point out some rough spots in current software through my experiences.
 - Get feedback on validity and feasibility of ideas.
 - Challenge the next generation of FEM software to be more mathematically rigorous
 - Rigorous in code correctness.
 - Rigorous in correct mathematical abstractions from problems.

Mathematically a finite element method is simply:

- A reference element, K
- A space of shape functions, \mathcal{P}
- A basis, N

But it seems there is something missing:

- Links between elements,
- How the elements affect the solvers.

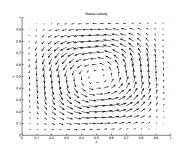
Experiences and Observations

Dutlook

Appendix

- It seems there is always someone who wants to do something different.
- How much control of you software to give the user, to play with new methods?
- Example: Mixed methods, do we just put the formulation in the software or give the user the matrices.

Experiences and Observations

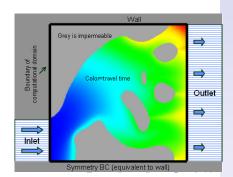

Outlook

Appendix

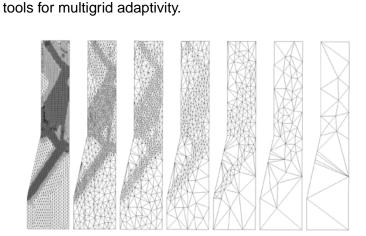
$-\Delta u + \nabla p = f$		$\begin{bmatrix} \sin(\pi x)\cos(\pi y) \\ -\cos(\pi x)\sin(\pi y) \end{bmatrix}$
$\nabla \cdot u = 0$,	<i>u</i> –	$-\cos(\pi x)\sin(\pi y)$

Using Taylor-Hood elements with mixed formulation,

Number of Iterations			
mesh	P1/P2	P2/P3	
4x4	14	22	
8x8	24	54	
16x16	83	283	
32x32	328	1319	



Appendix


- Use Automatic Differentiation tools on produced code - expensive on user side
- Create a symbolics engine that can give derivatives expensive on developer side

Example Problem in Microfluidic Devices

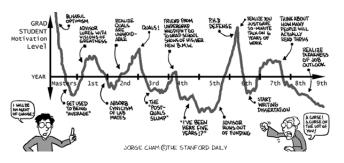
- To optimize flow, change channel geometry
- Most effective methods, use level set methods

ppendix

None of these software packages are giving us great

- courtesy Peter Brune.

The design space for mathematical software is multi-dimensional and not orthogonal.


- Mesh: uniform meshes, general geometry, adaptive meshes, unstructured meshes
- Function Space: linears, menu of options, arbitrary order, FIAT, exterior calculus
- Equation Description: menu, language, derived forms, error estimators
- Solver algorithms: menu, language
- Parallel Computing Support
- Boundary Conditions and embedded geometries.

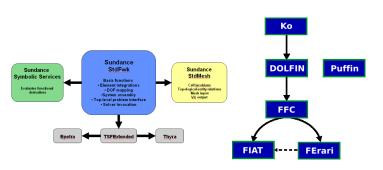
Outlook

Appendix

 Good mathematical abstractions have gotten us this far, where else can we go?

- How do these issues play well with software design principles?
- Is there a single solution to automated mathematical modelling?

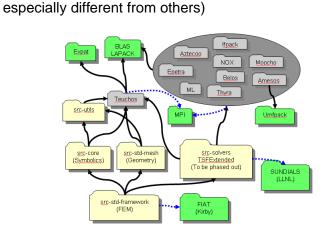
Questions or Comments? aterrel@uchicago.edu


Dutlook

Appendix

One bad estimate is lines of code:

- Dolfin + FFC \sim 50K lines
- ullet Sundance \sim 100K lines
- DEAL ~ 400K lines


Some Organization Charts

experiences and Observations

Outlook

Appendix

An example of Dependencies for Sundance (not