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1. Introduction

A constitutive expression is employed to define the response of a material
when 1t is subjected to one or more fields. If the material possesses symmetry
properties, restrictions are imposed on the form of the constitutive express-
ion. This leads to consideration of the problem of determining the general
form of scalar-valued polynomial functions W (B, C,...) and tensor-valued
polynomial functions H(B, C, ...) of the tensors B, C, ... which are invariant
under a group I.

We indicate the manner in which restrictions are imposed on the form
of a constitutive expression by the material symmetry. Let .o/;, /5, ...
denote the set of symmetry transformations which carry the material {rom its
initial configuration into a final configuration which is indistinguishable from
the original. Let x be a rectangular Cartesian coordinate system whose
orientation relative to the preferred directions in the malterial is specified. Let
A; x, A, x, ... denote the rectangular Cartesian coordinate system into which
x is carried by the symmetry transformations .«/;, .</,, ... respectively. The
matrices A;, A,, ... associated with .o/, «/;, ... form a matrix group I
which is referred to as the symmetry group of the material. The reference
frames A4, x, A, x, ... are referred to as the set of equivalent coordinate
systems associated with the material under consideration.

Consider the constitutive expression given by

(1.1) | F=H(B.C,..)

where F, B, C, ... are tensors of orders n, p, q, .... The components of F, ...
when referred to the reference frames x and Ax respectively are given by

(1.2) Fll'll’ (AF)lllfl = All-’l ...AIHJ"F"IJ", s
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If the expression (1.1) is to describe the response of a material whose
symmetry is specified by the group I' of matrices A,, 4,, ..., then (1.1) must
have the same form when referred to each of the equivalent coordinate
systems A, x, A, x, ... Thus, we require that
(1.3) AH(B, C, ..) = H(AB, AC, ..)
must hold for each A belonging to I'. The equation (1.3) may be written as
(14y A A H (Bi)..i,n C )
=H; i (A Ay B,

We say that the tensor-valued function H(B, C, ...) is invariant under I' if
(1.3) holds for all 4 in I'. The problem of concern is to determine the general
expression for H(B, C....) consistent with the restriction (1.3) imposed by
the requirement that the constitutive expression be form-invariant under the
group I' defining the material symmetry. An appropriate solution is given by
listing a set of tensor-valued functions H;(B, C,...), each of which is
invariant under I, such that any polynomial tensor-valued function
H(B, C, ..) which is invariant under I' is expressible as a linear combination
of the H;(B, C, ...) with coefficients ¢;(B, C,...) which are scalar-valued
polynomial functions invariant under I.

Special cases of this problem are of interest. The classical theories of
crystal physics employ constitutive expressions of the form

(1.5 T

iy J1Jn ipige s

A A ; C

iljl... iqfq J'l._.jq, )

‘ 1 in = c"l"'jm Ejl"'jm'

The tensors T and E are field tensors such as the stress tensor, the strain
tensor,... The tensor ¢ is relerred to as a property tensor or a material
tensor. The restrictions of the form (1.3) imposed by material symmetry are
satisfied iIf the property tensor ¢ is invariant under the group I' defining the

material symmetry, ic., if

(1.6) ¢ A; . A

irizim = Aivey Aizpr -+ Ajmam Cp172tm

holds for all 4 belonging to I'. If I' is a finite group which defines the
symmetry properties of a crystal, the tensor ¢ satisfying (1.6) is referred to as
an anisotropic tensor. In Section 2, we discuss some problems concerning
anisotropic tensors. In Section 3, we discuss tensors which are invariant
under the f[ull orthogonal group and the proper orthogonal group, ie.
isotropic tensors and rotation tensors respectively. In Section 4, we consider
the problem of determining the form of a constitutive expresion consistent
with the restrictions imposed by the effect of a superposed rotation of the
physical system. In Section 5, we discuss the manner in which (1.5) may be
solved upon application of Schur’s lemma. In Section 6, we consider the
problem of generating an integrity basis for scalar-valued functions

W(B, C, ...) which are invariant under a group I'. In Section 7, the concept
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of a set of invariants of symmetry type (n, n,...) is considered. In Section 8 it
is shown how this notion aids in the determination of an integrity basis for
functions of second-order tensors which are invariant under the orthogonal
group. In Section 9, we employ methods from the theory of group represen-
tations to assist with the generation ol integrity bases for [unctions of an
arbitrary number of tensors of any order which are invariant under a given
crystallographic group.

2. Anisotropic tensors

Let I' denote the group of symmetry transformations which defines the
symmetry properties of the material under consideration. Then, a property
tensor ¢ appearing in a constitutive expression with describes the response of
this material is required to satisfy

(2.1) C; A 4. . C

iyip iy i i dn

for all A belonging to I'. A tensor ¢ which satisfies (2.1) for all A belonging to
I’ is said to be invariant under I’ The number of linearly independent nth-
order tensors which are invariant under a finite group I' comprised of
Ay, ..., Ay 1s given by

R
22 Pl=_— tr 4,)".
(2.2) n M;;( i)
Let ¢, ..., cp (P = Pl) be a set of P} linearly independent nth-order tensors
which are invariant under I'. Then any nth-order tensor ¢ which is invariant
under I' is expressible as a linear combination of the ¢, ..., ¢p, 1e.,

(23) c=a‘c1+ "'+aPcP‘

If I' 1s a crystallographic point group, we refer to the tensors invariant under
I' as the anisotropic tensors associated with the group I'. A set of P} linearly
independent nth-order tensors ¢, ..., ¢p which are invariant under I' will be
referred to as a complete set of nth-order anisotropic tensors associated with
the group I.

A constitutive expression of the form (1.5) appropriate for a given crystal
class may then be written as

(2.4) T ip=(ayc + . Fapel ) E,

where the tensors ¢,, ..., ¢p In (2.4) are those comprising a complete set of
anisotropic tensors associated with the group I' considered. If any of the
physical tensors T E in (24) possess symmetry properties, e.g., if

(25) 'I;ll'z = ’Ti‘zil’ Ei1i2i3 = Eil.l'3l'2’
then a number of the terms in (2.4) will be redundant and these must be

eliminated. If » is large, this may be difficult.
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The nth-order anisotropic tensors ¢y, ..., ¢p are comprised of the
linearly independent isomers of a number of tensors w,...,v. Let
Wy, ..., Uy, --., Uy, ..., Uy denote the linearly independent isomers of u, ..., v.
We proceed by eliminating the redundant terms in each of the expressions
™., =(a u}; + .. +ayui ;) E

iy iy EP+1---in’ LR

(2.6)
Ti‘(llv-)..ip = (bl l’:” + .. +bM U(M'?".n) E

in i ipyyin

If we denote the expressions obtained from (2.6) upon eliminating the

redundant terms by T*(u). ..., T*(v). then the appropriate expression for T
is given by
(2.7) T=T(w+ ...+ T*(v).

The number of linearly independent terms in each of the expressions (2.6) is
an essential piece of information. If this information is lacking, it may be a
difficult matter to determine whether ail of the redundant terms have been
eliminated. Given this information, we may proceed by generating the
appropriate number of linearly independent terms rather than by eliminating
the redundant terms and this is frequently advantageous. We proceed by
investigating the manner in which the isomers of w; .; and T, ;. E
transform under interchange of the subscripts i,...1,.

Let S be the permutation of the numbers 1, 2, ..., n which carries 1
into a, 2 into f, ..., n into ;. Application of the permutation S to the tensor
u yields an isomer Su of u which is defined by

(28) Suil‘-Z"'in = uiz‘ﬂ"'iy'

With this definition, we see that the distinct isomers of a tensor u form the
carrier space for a representation of the group §, of permutations of the
numbers 1, 2, ..., n. This representation may be decomposed into the direct
sum of irreducible representations of S, given by

(2.9) Za,,l,__,,p(n, ...1y)

in ip+1in

where (n;...n,) denotes an irreducible representation of S,, the Xny ., ATE
positive integers or zero and Z denotes summation over the irreducible

n
representations of S,. We note that there is an irreducible representation of
S, corresponding to each partition n,...n, of n, ie, to each set of positive
integers ny = ny = ... = n, such that ny + ... +n, = n. Thus, for n =4, the
expression (2.9) is given by

(2.10) oy (B) 423, B 1) +235(22) 405, (21 ) +ayy (11 11),.

A set of tensors which forms the carrier space for an irreducible represen-
tation (n, ...n,) is referred to as a set of tensors of symmetry type (n,...n,).
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A set of tensors which forms the carrier space for the representation given by
(2.9) is referred to as a set of tensors of symmetry type Za,,,._.,,p (ny...n,).

The number of tensors comprising a set of tensors of symmetry type (n;...n,)
1s given by f,,l...,,p where f, .., 1s the degree of irreducible representation and
may be found in the first cofumn of the character tables for the symmetric
group S, (n =1, ..., 10) given by Littlewood ([5]). '

We now give a procedure which may be employed to determine the
decomposition of a representation whose carrier space is formed by a tensor
u and its distinct isomers. Suppose that there are N linearly independent
tensors which may be formed from the n! isomers of u. We denote these by
uy, ..., uy. With (2.8), we see that the tensor Su; is expressible as a linear
combination of the u,, ..., uy. The tensors u,. ..., uy form the carrier space
for a representation which we denote by (A4). We have

(211) ] Su,- = u'aﬁ(S) (l,] = l, ey IM)

J

The n! quantities
(2.12) x4(8) = a;;(S) = tr a(s)

are referred to as the components of the character of the representation (A4).
The number of times the irreducible representation (n,...n,) occurs in the
decomposition of the representation is then given by

|
(213) inl---np =EZ)(A(S)Zn1np(S)

where the summation is over the n! permutations of S, and where x,,l._,,,p(S)
are the components of the character of the irreducible representation
(ny...n,). If § and S’ are permutations belonging to the same class ¢ of
permutations, i.e, if they have the same cycle structure, then

x4(8) = 14(8) = y4(c),
(2.14)
XHl---nP(S) = an---np(Sl) = an---np(c)~
Thus, (2.13) may be rewritten as

1
(2.15) Oy omy = ;1—!; he X4 (€) Xny --.ny (€)

where the summation is over the classes of S, and h, is the number of
permutations belonging to the class c. Thus to determine the decomposition
of a representation (A), we need only determine the character y,(s) for one
permutation belonging to each class of §,. The quantities x,,l__.,,”(c) and h,
are given by Littlewood ([5]) for n < 10.

For example, consider the representation (4) whose carrier space is
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formed by the distinct isomers of T=T .;, =T, We employ the
notation

1-1 = ’Tl:]l'zl's = ’I—I:Iial'z’
(216) E = 7;2i3l'1 = Ti‘zillj’

15=7;3i1E2:’[l?3i2i1'

The tensors ST, and the characters y,(S) may be determined from (2.8), (2.12)
and (2.16). We list these quantities in tabular form below. With (2.13) or
(2.15), we see immediately that the decomposition of the representation (A4) is
given by (3)+(21). :

We are also concerned with determining the decomposition ol represen-
tations whose carrier spaces are formed by the isomers of tensors which are
the outer products ol vectors, second-order tensors,... If the isomers of
T igis and E; ;, for carrier spaces for the representations (A) and (B)
respectively, then the isomers of T ;;, E;;, form the carrier space for a
representation of S5 which is denoted by (A)-(B) and which is referred to as
the direct product of (4) and (B). The decomposition of the direct product of
irreducible representations into the sum of irreducible representations has
been considered by Murnaghan ([8], [9]). Let (A) and (B) be reducible
representations of S, and S, whose decompositions are given respectively by

(2.17) Zat,,,l,,,,,,p(ml .mp), Zﬁ,,l...,,q(nl...nq).
m n
Table 1

S ST ST ST Za(S) 13(3) %21 (8) X111 (S)

¢ T, T, T, 3 1 2 I
(123) L T, T 0 1 —1 !
(132 T T, [} 0 1 -1 |
(12) T, T, T, I I 0 —1
(13) T, T, T, I I 0 —1
(23) T, T T, 1 [ 0 1

Then the decomposition of (A4)-(B) is given by
(2.18) Y Z“m;---m,. Bryong My .omy) (g ...ng)

where the decomposition of (m, ...my) (n, ...n,) may be found in the work of
Murnaghan ([8], [9]).

If the isomers of tensor T, ;;, forms the carrier space for a represen-
tation (A4), then the isomers of the tensor T; ;,;, T;,, form the carrier space
for a reducible representation of S¢ which is denoted by (A)®(A4) and is

referred to as the symmetrized square of (4). The decomposition of such
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representations has been considered by Murnaghan ([10]) who lists most of
the results required for our purposes.

Suppose that the N linearly independent isomers of the nth order
property tensor :i=u,-l__..-" form a set of tensors of symmetry 1lype
Za,,l,_,,,p(nl...np). Further suppose that the isomers of the tensor
ivipEipy i, form a set of tensors of symmetry type Z/i,,l,__,,p(n,...np).
Then the number of linearly independent terms in the expression

(2.19) iyip T (a, “}':?--inJ‘_ N UY “ﬁf»’--.’,,) Ei,,+ {-ein
iIs given by
(2.20) 2%y n Bay -

Some examples are required to clarify the procedures. These will be given
below.
Let us employ the notation

e, =38; ... e =203,
(2.21) €1r = éli(sljs €12 = 51;“521’ R
€11 =51i51j51k- ellzzdliéljézk""’
Z"n = ey T e+ ei;, Zellll = €111t €327 T €3333.

More generally, Ze,u___3 denotes the sum of the three tensors obtained
upon cyclic permutation of the subscripts on e¢,,, ;. Complete sets of
tensors of degrees 2, 4, 6, 8 associated with the hexoctahedral crystal class
(highest symmetry cubic class) are given by

2) ) e, =0dy; 1; (2).

Y Yeus b @),
Y (er122+€3254); 3; @ +(22).

6) Derrrinss (1); (6).

(2.22) Y ez teiias) 15 (0)+(51)+(42).

Z(e112233+e“3322); 15; (6)+(42)+(222).

8 Y e 1: (8).
Y2z teni); 28 (8)+(71)+(62).
Z(e11“2222+e““3333); 35; (8)+(62)+(44).
Z(e11“2233+e|“13322); 210; @)+ (71)+2(62)+

+(53H+21)+(44)+(422).

The notation is as follows, Z(el 122 +€52,,) denotes an invariant tensor
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(invariant under the hexoctahedral group). The number 3 following denotes
the number of linearly independent isomers of this tensor. The notation
(4)+(22) indicates that these three isomers form a set of tensors of symmetry
type (4)+(22).

We consider the problem of determining the form of the constitutive
expression

(2.23) T;

ij = Cl'jkmnp Ekm an

appropriate for a hexoctahedral crystal where T; = T, E,, = E, and F,,
= —F,, 1e, T E and F are of symmetry types (2), (2) and (11) respectively.
With the aid of tables given by Murnaghan ([8], [9])., we see that the

isomers of T; Ky, F,, form a set of tensors of symmetry type
(2.24) B+ H+ME)+24 H+2B2D+B11DH)+2211).

Since the isomers of Y e;y11y1, 2 (ei11i22F€ri1133) and Y (€) 12233 +€;13322)
are sets of tensors of symmetry types (6), (6)+(51)+(42) and (6)+(42)
+(222) respectively, we see from (2.19) and (2.20) that we obtain 0, 2 and 1
linearly independent terms in (2.23) when we replace ¢;jy,m, by a linear
combination ol the 1. 15 and 15 i1somers respectively of the tensors
Ze“““, s 2(8112233 + e,11322)- The appropriate expression is then readily
obtained. For example, one of the three terms is given by substituting
Z(e,112,2+e1“3”) for ¢;jxmmp in (2.23) so as to yield

(2.25) 7;5'“ =01; 00 (Ej g Fia+ Eq3 Fia)+02;05(Eps Fos +Ey Fiyy)+
+03;03;(E3 F3, + Ej; Fyy).

Further details, examples and extensive tables concerning the procedure
described above arc given by Smith ([13]).

3. Isotropic tensors and rotation temsors
A tensor ¢ which satisfies the equations

(3.1) CllIHZAII-Il .A'h]’l(‘jl-’ﬂ

for all orthogonal A4 = |4, ie, for all A such that AA" =ATA =1, is
referred to as an isotropic tensor. If the tensor ¢ satisfies (3.1) for all proper
orthogonal A4, ie., orthogonal A’s such that det A = 1, then ¢ is referred to as
a rotation tensor. It is known that every three dimensional nth-order (n 1s
even) isotropic lensor is expressible as a linear combination of the

n!

(3.2) Pn = (2} 272
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distinct isomers of

3.3) bi:‘“zbfsu"' in—1in

where J,; denotes the Kronecker delta. Isotropic tensors are even ordered
tensors and are also rotation tensors. There are no odd-ordered isotropic

tensors. Every three-dimensional nth-order (n is odd) rotation tensor is
expressible as a linear combination of the

n .
34 = _
( ) qn (3)[)" 3
distinct isomers of
(3-5) EII‘Z'S 5,‘415 -..(Si"_ll‘"

where ¢;; denotes the alternating tensor.

The representation of the general three dimensional nth-order isotropic
tensor as a linear combination of the p, distinct isomers of & ;,...0; _; 1Is
objectionable since in general (for n > 8) these p, tensors are not linearly
independent. The g, tsomers of the tensor (3.5) are also not linearly indepen-
dent in general (for n > 5). Let P, and Q, denote the number of linearly
independent three dimensional nth-order isotropic and odd rotation tensors
respectively. The quantities P, and @, may be computed upon employing
group-theoretic considerations. We have, with (3.2) and (3.4),

pp=Py=1;, ps=Py=3; po=PFP,=15:

p8=1057 P8=91; p|0=945; Pl0=603;"‘

g3 =Qs=1; ¢qs=10, Qs=6; ¢,=105, @, =136;
go = 1260, Qo = 232; Q,, = 17325, g¢,, = 1585.

The problem of concern is to list a set P, linearly independent nth-order
isotropic tensors for n = 8, 10, ... Similarly we must be able to list sets of
linearly tndependent nth-order rotation tensors for n =5, 7, ... We restrict
consideration to the case of isotropic tensors. A detailed discussion of the
problem is given by Smith ([12]). We observe that the set of 3 isomers of the
isotropic tensor 9;,;, 0y, forms a set of three tensors of symmetry type
(4)4(22). There are 1 and 2 tensors respectively in sets of tensors of type (4)
and (22). We denote this information by writing

(3.6)

(3.7) OifiyOigigr s 35 (@422 1+2.

Similarly, we have
OiiiyOiyig disigr -+ 135 (6)H(42)+(222);  1+9+5.
Oiyiy Bigiy Bigic Oinig ---3 1055 (8)+(62)+(44)+(422)+(2222);

(3.8) 1+20+ 14+ 56+ 14.
TP N NP R 945;  (10)+(82)+(64)+(622)+

0 izig Cigiyo> =+

+(442)+(4222)+(22222); 1435+90+225+2524300+42.

f1i3 Yigig Yisig
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For the case n = 8, there are 91 linearly independent tensors which comprise
sets of symmetry type (8)+(62)+(44)+(422). There are 14 tensors forming
the set of type (2222) and these correspond to identities relating the
isotropic tensors. For the case n =10, there are 603 linearly independent
isotropic tensors belonging to the sets (10), (82), (64), (622), (442) and 342
=945—-603 null tensors corresponding to the sets (4222), (22222).

We may proceed by setting up a correspondence between isotropic
tensors of order n and the standard tableaux associated with irreducible
representations of the symmetric group S,. Let n,, n,, ..., n, be positive
integers such that

(3.9) n+n,+...+n =n, ng=n,2...2n.

Corresponding to each partition n, n,...n, of n is a frame which consists of r
rows of squares of lengths n,, n,, ..., n, where n;, 2 n, = ... = n,. A tableau
is obtained from a frame by inserting the numbers 1, 2, ..., n in any fashion
into the n squares. A standard tableau is one in which the integers increase
from left to right in any given row and from top to bottom in any given
column. Thus the standard tableaux corresponding to the frames 6, 42 and
222 are given by

123456
1234, 1235, 1236, 1245, 1246,
56 46 45 36 35

. 1256, 1345, 1346, 1356:

(3.10) 34 26 25 24

12, 12, 13, 13, 14.
34 35 24 25 25
56 46 56 46 36

Corresponding to each of these standard tableaux we may list an isotropic
tensor. Thus, we have

dili25i3i46i5f6;
(3.11) (S::;::Zai;i,;’ 6::;::25"5"6;
ORI it
where
- . . O o 5"1"2 5"1"4 5ili6
(3.12) 5:;:2 = 5:':2 (5I-Il-6 , 5i;:::: = 10i,i, 5_:'3.'4 ‘?i3i6 :
M2 s ‘5"552 ‘)f'sh ‘)l'sie
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The set of tensors (3.11) gives 15 linearly independent tensors of order six.
Proceeding in the same [ashion for n = 8, we would set up the 91 standard
tableaux corresponding to the partitions 8, 62, 44, 422 of 8§ and list a
tensor corresponding to each tableau in the same fashion as above. For

~-n=10,12, ..., the procedure is the same. For a more complete discussion
(see [12]).

4. Application. Rotation of the physical system

Let us assume that the stress g;; in a body 1s a function of the deformation
gradients, 1e.,

(4.1) G = 6;;(Fp4) or ¢ =a(F)

where F = [|F 4|l = |I6x,/¢X 4| denotes the deformation gradient matrix. If we
subject the body to a rigid body rotation, the stress when referred to a set of
coordinate axes fixed in the body will remain unaltered. This imposes
restrictions on the functional form of (4.1). Thus o¢(F) must satisfy

(4.2) o(QF) = Qa(F) Q"
for all proper orthogonal Q =||Q,|l, te., for all @ such that
(4.3) Q0" =Q"Q0=1, detQ=1.

This 1s a special case of the problem discussed in Section 1. Thus, we may
consider g;; to be a symmetric second-order tensor-valued function of three
vectors F,;, F;; and F,; which is invariant under the group of all proper
orthogonal transformations. This problem has been considered by Green and
Rivlin ([1]) who have shown that

(4.4) o(F)=Fy(F'F)F"

where ¥ is an arbitrary symmetric second-order tensor-valued function of the
finite strain tensor C = FT F. Let us consider the special case where o (F) is
expanded as a polynomial in the quantities F;;, F;,, F;3 (i=1, 2, 3). We
have

4.5) o j(Fi)=cuFotdyFotepFotepFog Fry+vdiyFo Fra+ ...
Upon substituting (4.5) into (4.2), we see that the ¢, ... must satisfy
(46) Cl’jk = Qip qu ri Cpqr’ LR dijkf = Qip qu ri le dpqrss s

for all proper orthogonal Q = ||Q;,ll. Thus, the ¢, ..., diju, ... are express-
ible as

(4.7) Cijk = Ao ks -+ dijkl =d, 5ij5k1+d1 5ik5ﬂ+dz iy 5jks
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Upon substituting (4.7) into (4.5) and observing that o;; is symmetric, we
obtain
(4.8) Gij(FkA) = (('0(5.'1 O+ O (sjl+('2 (Sil(sjk)Fkl Fy+
+(do 0Oy +dy 0y 0y +dy 04 05) Fyy Fra+ ...

We now employ the polar factorization which states that a nonsingular
matrix F is expressible as the product of an orthogonal matrix R and a
positive definite symmetric matrix U, 1.e, F = RU or

(4.9) Fi=R,U,., ..., Fia=R,U,;.
Upon substituting (4.9) into (4.8), we obtain

(4.10) U.'j(FkA) = Rim RjnUmn(UpA)
where

(4.11) amn(UpA) = (Cof)-m"('qu"'cl 6mp6nq+C2 (quénp) Upl Uql +
F(dg Omn Opg 1 Omp Ong + 3y drng 0,p) Uy Ugn + ..

Note that the coefficients of U,, U,,, ... in (4.11) are exactly the same as the
coefficients of the F,, F,,... in (4.8). Further observe that the tensors
appearing as coefficients of the U,, U,,, ... in (4.11) are isotropic tensors.
Consequently the expression for a(U) given by (4.11) will satisfy the relation
¢(QU) = Qa(U) Q" for all proper orthogonal Q.

It is observed that if (4.2) holds for all proper orthogonal Q, then (4.2)
clearly holds for Q@ = R” where R is the orthogonal matrix appearing in the
polar decomposition F = RU of F. Upon setting Q = R™ and QF = R" RU
= U in (4.2), we see that il ¢(F) satisfies (4.2), it ts expressible in the form

(4.12) o(F) = o(RU) = Rs(U)R".

The argument is then made (see [7], [17]) that a(F) is expressible in the form
(4.12) where o(U) is an arbitrary symmetric matrix-valued function of U. If
we expand a(U) as a polynomial in U, we obtain

(4.13) 0,;(Fia) =R, R;,0,,(U,,)
where
(414)  0pm(U,0) = Conp Ut +dianp Uy + 8y Upa +
+ Crnpg Upt Ugt + 8pnpg Upt Uz + ..

and where the &,,,, ... are arbitrary apart from the condition that ¢,,,
= Cpmp --- ‘Comparison of (4.11) and (4.14) show that the two expressions
differ substantially.

Consider the special case where F is positive definite symmetric. Then
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F=Uand R=1 Upon setting F= U in (4.2), we see that a(U) satisfies
o(QU) = Qa(U) Q" and hence a(U) is not an arbitrary function. The result
(4.12) with a(U) arbitrary proceeds on the basis that a(U) is an arbitrary
function of U. Thus there appears to be a conflict between the results given
in [1] and [7], [17]. We believe that the expression (4.4) due to Green and
Rivlin ([1]) is the appropriate result.

5. Application of Schur’s lemma
Let us consider the problem of determining the general form of

(5.1) Lii = Cijk...q €xim Cnpg- Lij = i Cijk = Cikj

which is invariant under the three-dimensional orthogonal group O,. The
general eighth order tensor which is invariant under O; iIs expressible as
(5.2) ¢ =%, 05 0 Oiais Oiciv Oioin ¥ 220, 00 O i &y 4+ o

1-i8 ijip Viyig Vistg “iqig ilip Vizig Visi7 Vigig

where the right hand side of (5.2) denotes a linear combination of the 105
distinct isomers of 6; ;,iy;, i, 0iriy- Only 91 of these isomers are linearly
independent. Explicit expressions for the 91 linearly independent 8th order
tensors invariant under O; are given by Kearsley and Fong ([2]). If we
employ these results und substitute the general expression for ¢; ;. in (5.1),
we obtain 91 terms. However, only 15 of these terms are linearly independent
and one must solve a tedious algebraic probiem in order to obtain the

appropriate expression. It is preferable to proceed as follows. We set

=040, ) =510y,
e = €0+ ... el
(5.3) 156‘},‘13 = € 5jk+(’j Oy + € 5ijs € = €ippt €pipt €ppis
6e(f) = 2¢; 05 —¢; Oy — ¢ 0y, Ci = €ipp~ €ppi
3eld) = 2, — e — e — 3elh,
6"53‘&’ = eijk+"jik+ekji+9ikj+€’jkf+¢’ku 6‘-’5}13
We may then write (5.1) as
(5.4) '+ = g (Chim+ o Hein) (et )
and consider the 20 separate problems
(5.5) 13 = iy, i el (x=1,2;B,7=1,....4; <.

We may compute the number of linearly independent terms in the express-
ions obtained from (5.5) by setting («, £, v} =(1, 1, 1), ..., (2, 4, 4). We find
that there is just one linearly independent term in 15 cases and none in the

42 — Banach Center Publications 15
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remaining 5 cases. Thus, we have reduced the complicated algebraic problem
of determining the general form of (5.1) which is invariant under O, to 15
trivial problems. The validity of this procedure is based on the fact that the
independent components of the six tensors )}, ..., el}} form carrier spaces
for irreducible representations of the group 0;. We now show how a variant
of this procedure may be employed to establish the general form of constitut-
ive expressions which are invariant under any given crystallographic group.
We now consider the problem of determining the form of

(5.6) Lijoip = Ciguiipn it im

which is invariant under the group I' =(A,, ..., Ay}. Let Tand E denote
the column matrices whose elements are the n and m independent compo-
nents of the tensors ¢ and e referred to the reference frame x. Let T and E,
denote the column matrices whose elements are the independent components
of the tensors ¢t and e when referred to the reference frame A4, x. The elements
of T, and E, are to be arranged in the same order as are the elements of T
and E. We may determine an n x n matrix S(A4,) which relates T, and T Thus

(5.7) T =S(A4)T.

The set of M nxn matrices $(A,),..., S(4y) lorms a matrix representation
of degree n of the group I' and defines the transformation properties of T
under the group [A,, ..., 4Ay}. We may also determine a set of N mxm
matrices which relate the E, and E. Thus

(5.8) Elt = R(Ak) E.
The R(4,) (k=1, ..., M) form a matrix representation of degree m of the
group T.
The equation (5.6) may be rewritten as
(5.9) T=CE.
The requirement of invariance under {A,, ..., 4y} becomes
(5.10) S(A,) T=CR(A)E

where C i1s an n xm matrix and where (5.10) holds for k =1, ..., M. We see
from (5.10) that the matrix C is subject to the restrictions that

(5.11) S(A4,) C = CR(A)
must hold for k=1, ..., M. Let
(5.12) Z=0T X=PE

where Q and P are constant non-singular n xn and m x m matrices respecti-
vely. With (5.7), (5.8) and (5.12) we see that the transformation properties of
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Z and X under the group {A,,..., Ay} are defined by the matrix
representations

(5.13) 0S(4,) 071, PR(A)P!

respectively. The matrix representations (5.13) are said to be equivalent to the
representations S§(A,) and R(A,). There are only a finite number r of
inequivalent irreducible representations associated with a given crystallo-

graphic group. We denote these representations by I'y, ..., I', and we assume
that the matrices

(5.14) ri(A), ..., Fi(Ay) i=1..7

defining the representations I'y, ..., I', are given. The representation T; is

said to be of degree p; if the matrices I';(A4,) are p; x p; matrices. We denote
the degree I'; by p,.
With (5.12), the equation (5.9) becomes

(5.15) Z=DX, D=QCP "

With (5.13), we seet that the restrictions on the form of D corresponding to
(5.11) are given by

(5.16) QS(A)Q 'D =DPR(A) P!

where (5.16) must hold for k=1, ..., M. We observe that it is always
possible to choose the matrices  and P so that the matrix representations
QS(A4,)Q ! and PR(A4,) P! are decomposed into the direct sum of irredu-
cible representations of I Thus, with the appropriate choice of Q and P, we
have

QS(A) Q' =n T (A)+ ... +n.T,(A),
(5.17) |
PR(AYP™ ' =m, I (A)+ ... +m,T,(A)

where the right hand side of (5.17), denotes a block diagonal matrix which

contains n, matrices I',(A4,), ..., n, matrices I',(A4,) along the diagonal. For
example,
_ r,4) o 0
(5.18) 2, (A)+T5(4,) = I 0 Iy4) ©
| 0 0 I,(4Y

Let us employ the notation

X

(5.19) Z= ? . z;= ? ., X= & v Xo=

z

—

Xix
X2

...
&
=

zl’ z_ju} Xr ka.
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where the z; are p; x1 matrices, the X;; are p, x1 matrices and where
(5.20) piiy+ ... +p.n =n, pymy+ ... +p.m.o=m.

With the notation (5.19). the equation (5.15); may be written as

Zy D'' D'* ... DV |(X,
z D*' D** ... D¥ || (|X
(5.21) H=1" . : .2
2, D D2 D X,

where the matrices DY are of the form

DYy ... Dy,
(5.22) DY/ = :

L i
ml o Dnim}-

The matrices DY,, D{,, ... are p,xp; matrices and the matrix D7 is a
pi 1 x p;m; matrix. With (5.17) and (5.21), we see that the restrictions imposed
on the matrix D by (5.16) may be written as

G (4) . . . p'*t p'* ... D
G,(A) . . D?*' Dp** ... D*
523 2 (A "D |
. G.(4,) D' D? ... D
D't p'? ... D" P, (A)
_||p* D** ... D* . Py(A) .
D' D ... DT . . . P,(A)
where
ri(A) . . I (4) .
(5.24) Gi{A,) = . . ) . Pi(A) = . i
. Ti(Ay) . . Ti(A)

In (5.24), G;(A,) and P;(A,) are block diagonal matrices where I';(A4,) appears
on the diagonal n; and m; times respectively. With (5.23), we obtain r? sets of
equations
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which must hold for k=1, ..., M. With (5.22), (5.24) and (5.25), we have
ry4y . . || ||DY¥, ... D",f,,,j
(5.26) . . . .
. T;(A) D, ... D‘;,{,,j
Dy, ... D",f,,,j Ii(4) .
e Dl N 1V
This yields the equations
(5.27) I'i(Ay) ;J,-u= ;Jbr'(Ak) (5‘21,---.”1';/3=1»---amj)
where (5.27) holds for k =1, ..., M. Schur’'s Lemma {6] tells that D% is the

zero matrix if i #j and that D} is a scalar multiple of the p; x p; identity
matrix if i =j. Thus, we see that the matrix D appearing tn (5.21) is of the

form

ptt . .
' D* .
(5.28)
. DT
where i i
{ | R Im;
(5.29) D = | : . D =
‘nlll e D';li"m"

and where I is the p, x p; indentity matrix. With (5.28) and (5.29), we may
immediately list the general form of the matrix D appearing in (5.15) and
(5.21).

Thus the determination of the form of the constitutive expression T
= CE which 1s invariant under I is trivial once we have decomposed the set
of n components of Tand the set of m components of E into n, + ... +n, and
m;+ ... +m, sets of quantities which form the carrier spaces for the irredu-
cible representations ol I' appearing in the decomposition of the represen-
tations S(A4,) and R(A4,). We consider the case where I' is the crystallo-
graphic group C,,. The set of matrices defining the material symmetry are

given by

(5.30)
1.l —-1/2 J32 . —-1/2 = /32 .

AL A Ay =1 UL = B2 =12 | (W32 =12 ]
1 1 . 1

1. 2 =32 . ’ 2 /32 .

Ag, As, Ag= || . 1 .l ’—\/3/2 -2 .| ’\6/2 ~1/2 .

1 . . I Lo o1
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There are three inequivalent irreducible representations associated with the
group C,,. These are denoted by I',(A,), ..., 3(4,) and are listed below.

r(A4,),...[ (4 =1, 1,1, 1, 1, 1,
Iy (A),....,T3(Ag)=1,1,1, -1, —

(5.31) —1/2 f/ZJ =12 =/32]
r;(Ay), ..., F(A3) = ’
3(4,) 3(A43) ” ! /2 __1/2’ J[ \/5/2 ~1/2 “
S IV IV YR V7 RN £ Y.
F3(Ay), ..., T3(4e) = 0 1," " /32 —1/2 “ 2 —1/2”'
Suppose that
1) a, b, c,...
(5.32) Ao by -
3) ‘yl R
I|Y2 2,

are quantities whose transformation properties under C,, are defined by the
matrix representations I'y, ..., I'; respectively. Typical products of the quan-
tities appearing in (5.32) taken two at a time are

(5.33) ab, aa, ay,, ay,, af, ay;, aya, Y1z, Y122, V221, Y222
With (5.32), we see that the 11 quantities (5.33) may be split into sets

1) ab, af, y;z,+y;2;,
2) ax, y,z;—Ya22y,
ayy ’ ays ‘

ay; |’ —ay, |’

whose transformation properties are defined by the representations
r,,..., I's. With (5.34), we may determine the decomposition of the compo-
nents EE; (i,j=1,....m), EEE, (jk=1,...,m),... into sets
X.: ..., X,; once we have determined the decomposition of the components
E, (i=1,..., m into such sets.

For example, the transformation properties of a vector v under C,, are
defined by the matrices (5.30). With (5.30) and (5.31), it is apparent that the
transformation properties of

(5.39
Y122+Y22

Y
Y12y — Y222

3

Dy |

(5.35) v; and

U2|,
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are defined by the representations I'y and I'; respectively. With (5.34), we see
that the six components v;v;(i, j = 1, 2, 3:i < j) may be split into the sets

2 2 2
l) V3, vl+vla

(5.36) U3 0y 20, v,

3)

b

Dy U,y U%—U%

whose transformation properties are defined by I’y and Iy respectively.
Consider now the constitutive equation

(537) u; = cijk Uj Uk
which is required to be invariant under C,,. We set
- _ fug 2 22
T, = u,, L, = " {a E,, =v;j, E,; = v7 +03,
2
(5.38)
Uy 0, 20, v,
Ey = , E,, =
31 U3 0y 32 %_Ug
We then have
E,
T D! D!t 0 O E
(5.39) 1y _ 11 12 i) . Ell
L, 0 0 Dji D13 31
E,,

where the D)) and D;j are multiples of 1x1 and 2x2 identity matrices
respectively. The equation (5.39) may be written as

v3
Us c;c; 0000 vf%:v%
(5.40) ull=10 0 ;0 co0] |™"
u; 0 0 0 ¢c30 ¢4 Pata
20, 0,
vi —v3

This section closely follows Smith and Kiral ([15]). Some further results on
the subject are given by Smith ([14]). '

6. The generation of integrity bases

We consider the problem of determining the elements of the integrity basis
for polynomial functions of N absolute vectors y;, y,, ..., y» which are
invariant under the group I associated with the crystal class D,. This crystal
class is characterized by the presence of three mutually orthogonal two-fold



664 G. F. SMITH

axes of rotation. If we take the x,, x, and x, axes to lie along these two-fold
axes of rotation, the symmetry transformations are the rotations through 180
degrees about each ol the coordinate axes. The set of matrices defining the
symmetry propertics of the material are then given by

(6.1) |
1. . | —1 . . I—l i
Ay Ay, Ay, Ag= (101 L =10 L =T
1 . =1 . =1 l 1

Let y; and (A4, y);, denote the components of the absolute vector y when
referred to the reference frames x and A, x respectively. These components
are related by the equations

(6.2) (A y): = TPy,
where the matrices T, = T(A,) = || TM)| are given by

(6.3)
.o, L T=|.1.1, I N .o =1

The restrictions
(6.6) Plxy,....a%,, By, ....8,0=Plty..... %, —Bis--os — B
may be written more explicitly as
(6.5 POA", vo ™ ¥8 o w7 0 ™)
= P(AD, —p 0, )
= P(=y{", y9 =y = =)
= P=yi" =9 40 = ).

In order to determine the integrity basis, we employ the following
" obvious theorem.

THEOREM 1. Let P be a polynomial function of the real quantities
Ayy oens Xy By .-y P which satisfies the relation

(6.6) Py, ooos 2 Brs oos B = Py ooy 2y —Buy ooy — B
Then P is expressible as a polynomial in the quantities
(6.7) a (i=1,....n) and BiB UG.k=1 ..., m.

With (6.5) and theorem 1, we then readily see that an integrity basis for
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polynomial functions of y,, ..., yy which are invariant under the group I
defined by (6.1) 1s formed by the quantities

(68) ¥ WP VO Y (LS k=12, N).

There are a number of theorems such as Theorem | above which enable
us in principle to determine the integrity basis for a wide variety of problems.
However, the integrity bases which are obtained upon application of such
theorems will generally contain a number of redundant terms which must be
eliminated. This may prove to be a matter of some difficulty. In order to
avoid such difticulties, we may employ an iterative procedure. We outline
below the application of this procedure to the generation of the multilinear
elements of the integrity basis for functions of N vectors y,, ..., yy which are
invariant under the group (6.1).

We first determine the number P, of linearly independent invariants
which are multilinear in » vectors y,, ..., y,. The translormation properties
of the 3" quantities y{*' 34> ... 3" (i, j. k = 1, 2, 3) under change of reference
frames are described by the Kronecker nth power T of the matrices T,. The
number P, is obtained by taking the mean value over the group I' of the
trace of the matrices T!™. Since the trace of the Kronecker nth power of a
matrix 7T, is equal to the nth power of tr T, we have

4
(6.9) Z ir T,)".

From (6.3), we see that

(6.10) (trfi,r L, trGtrT) =3, —1, =1, —1).
With (6.9) and (6.10), we then have
(6.11) P,=0,  P,=3, Py=6, P,=21....

We now proceed to generate the multilinear elements of the integrity
basis. From (6.11), we see that there are no invariants of degree 1 in y, and
three linearly independent invariants of degree 1, 1 in y,, y,. With (6.5), we
readily see that

d) (2 (1) (2 (1 2
(6.12) L R L R R

are invariant under I'. They are obviously linearly independent. The multi-
linear elements of the integrity basis of degree two are then comprised of the

(g’) sets of invariants obtained by replacing y,, y, in the set of invariants

(6.12) by all possible sets of two different vectors chosen from y,, ..., yn.
From (6.11), we se¢ there are six linearly independent invariants of degree 1,
I, 1 in y,, y,. y3- With (6.5), we readily see that these are given by

(6.13) D B (ijk = 123, 132, 213, 231, 312, 321).



666 G. F. SMITH

The multilinear elements of the integrity basis of degree three are then

N
3
(6.13) by all possible sets of three different vectors chosen from y,, y,, ..., yx.
From (6.11), we sce that there are 21 linearly independent invariants of
degree 1, 1, 1, 1, in y,, y,, ¥3, y4. However, we readily verify that there are
also 21 linearly independent invariants of this degree which may be obtained
as products of invariants of the form (6.12). Hence there are no invariants of
degree 1, 1, 1, 1 in y,, ¥, ¥3, ¥4 Which are required as elements of the
integrity basis.

This iteration process must be terminated at some stage and it is
necessary to determine by one means or another an upper bound on the
degree of the elements of the integrity basis. For the case under consider-
ation, we may employ a result which says that since the group I is
comprised of four transformations, the elements of the integrity basis must be
of degree four or less. This enables us to state that the typical multilinear
elements of the integrity basis for polynomial functions of N vectors invari-
ant under the group (6.1) are given by (6.12) and (6.13). The determination of
the non-linear elements of the integrity basis may be carried out in a similar
fashion.

In the iterative procedure described above, we know the number P, of
linearly independent invariants of degree n. We determine by inspection the
invariants of degree n which may be obtained as products of invariants of
degree less than n. Suppose there are R, such invariants. They are not
necessarily all linearly independent. Suppose then that @, of these R,
invariants are linearly independent. We must determine these Q, invariants
and then determine P,—Q, additional invariants I, I,, ... such that the
I,,1,, ... together with the @, invariants which are products of lower order
invariants form a set of P, linearly independent invariants. The I,, I,, ... are
then elements of the integrity basis. This can be a very formidable problem
when P, and Q, are large. In Sections 7 and 9, we discuss methods which
essentially reduce this problem to a number of smaller probiems which may
usually be solved much more readily.

comprised of the ( ) sets of invariants obtained by replacing y,, y,, y; In

7. Invariants of symmetry type (n, n,...n,)

Let I,,..., I, be a set of linearly independent invariants which are multi-

linear in the quantities A,, ..., Ay. We choose as an example the invariants
(6.13). Let

Ih=yPyP e L=yy9y@, 1 =)@y,
(7.1)

= yl2 1 3 — 3 1 2 3 2 1
L=y 008, L=y, 1 =990
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Let 5 be that permutation of the numbers 1, ..., M which carries 1 into
iy, ..., M into iy. The permutation s applied to the subscripts on the tensors

Ay, ..., Ay transforms the invariant I; (4,, ..., Ay) into the invariant
(7.2) sli(Ayg, ..., Ay) = 1;(4; 5 ..., 4;).

We assume that the space spanned by I, ..., I, is invariant under the group
Sy of all M! permutations of 1, ..., M, i.e, the invariants sI;(4,, ..., Ay) are
expressible as linear combinations of I, ..., I,. Thus,

(7.3) sl; = I, Dy;(s).

For example, consider the transformation properties of the quantities (7.1)
under permutation of the vectors y,, y,, y; among themselves. The sym-
metric group §, is comprised of six permutations

(7.4) e, (12), (13), (23), (123), (132).
In table 2 below, we list the quantities sI;(y,, y,, y3) for j=1,..., 6 and for

all permutations s belonging to the set (7.4).
The matrices D(s) appearing in (7.3) are then seen to be given by

1. . ... o1
| Sl
R T o1
D(e) = : D(12) = ;
R I |
R T | 1
..... 1 1
. o1
1. L.
R | N | S !
(7.5) D13 =| : , D(23) = Col
o1 1
11 SR 1
1 1. .
..... 1 1.
A I
Da23)=| | D(132) = ,
B B |
. 1

The matrices D(s) given by (7.5) which describe the transformation properties
of the invariants (7.1) under the permutations of S, are said to form a matrix
representation of degree 6 of the symmetric group S,. Thus, to every element
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Table 2

I, I, 1, I, I I

4 Il Iz ’3 ’4 ]_l, Iﬁ
(12 Iy Iy I, I Iq Is
(13) 1g Is 1y 13 I, I,
(23) i, I Iq I Iy I,
(123) i I, I I, I, 1
(132) I I I I 1, I,

s of §, there corresponds a matrix D(s} such that to the product u = ts of
two permutations corresponds the matrix

(7.6) D(u) = D(1) D(s).
For example,

(7.7 (13)(23)=(132)
and we sce from (7.5) that

(7.8) D(13)D(23)=D(132).

The invariants (7.1) are said to form the carrier space of the representation
(7.9) I ={D(¢), D(12), ..., D(132)}.
Consider now the invariants defincd by

Jl :II+IZ+IJ+I4+IS+IEH

Ja=1i+1,—15—1, Jy=1I+1l,—1,—1;,
(7.10)
J4:ll+’(,‘—13—14, J5=I4+15_11_12,

Jﬁ = Il +13+I5_12_I4_1h.
From Table 2, we readily obtain the transformation properties of the

invariants Jy, ..., J, under the permutations of y,, y, and y;. We list the
quantities sJ; in Table 3.

Table 3
J, J, Jy Ja Js Jo
¢ J Js Js Ja Js Je
(12) Iy J, =Jy=Jdal s J, —J
(13 J Js J, J, —J4—Js -Jq
(23) Y Py Sy (Y T Y Ry % e —J
(123) J, Jy =y =dy|=di-ds| I Je
(132) Jo |=Jy=dy| I, Jo |=d, = Je
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We thus have
(7.11) sdp=J,H,(5)

where the matrices H(s) form a matrix representation of §; which is said to
be equivalent to the representation D(s). From Table 3, we see that the
matrices H(s) are all of the form

K(s)

(7.12) H(s) = !7,_--__:___.__1

where K, L, M and N are 1 x1, 2x2, 2x2 and 1 x1 matrices respectively
and where all of the non-zero components ol H apear in the matrices K, L,
M and N. The sets of matrices K(s), ..., N(s) are listed in Table 4.

Table 4
s e (12) (13) 23) (123) | (132
K(s) i 1 1 I - 1
_ 10 -1 01 10 | 0—-11] —11
Lis) 01 0 —1 10 11 |1 -1 | -
10 01 1 =1} =10 | =11 -
M (s) 01 10 0 -1 | —11 - | -
N (s) 1 —1 -1 —1 1 1

The sets of matrices K(s), ..., N(s) also form representations of the sym-
metric group S,. The invariants J,, (J,, J3), (J4, Js) and J4 form the carrier
spaces for the representations

(7.13) T, ={K@), T,={L(s), Ty=1M(s)}, Ts={N©)}

respectively. We say that the representation I' = [D(s)! has been decom-.
posed into the direct sum of the representations I'y, ..., I',. If a matrix
representation can be decomposed in this fashion, it is said to be reducible. If
not, it 1s said to be irreducible. Each of the representations (7.13) are
irreducible representations of the symmetric group S;. The quantity

(7.14)  char {K(s)}

= [tr K(e), tr K(12), tr K(13), tr K(23), tr K(123), tr K(132)]
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is referred to as the character of the representation I'; = |K(s)}. There are
only three inequivalent irreducible representations associated with the sym-
metric group S;. These are denoted by

(7.15) (3), (1, (1.
The characters of these irreducible representations are given ([5]) by
char(3) =[1,1,1,1, 1, 1],
(7.16) char(21)=(2,0,0,0, —1, —1],
char(111)=[1, -1, —1, —1,1, 1].
We see from table 4 that
char {K(s)! = char(3),
(7.17) char {L(s)} = char |M(s)} =char(21),
char {N(s)} =char(111).
This reflects the fact that the character of any irreducible representation of
S; must equal either char (3), char (21) or char (111).

The invariant J; defined by (7.10) forms the carrier space for the
irreducible representation {K(S)} for which char {K(s)} is equal to char (3).
We then refer to J; as a set of invariants of symmetry type (3). The
invariants J, and J, defined by (7.10) form the carrier space for the
representation | L(s)}. Since char | L(s) = char(21), we refer to J, and J, as a
set of invariants of symmetry type (21). Similarly the invariants J,, Js and
J¢ defined by (7.10) are referred to as sets of invariants of symmetry types
(21) and (11 1) respectively.

The number of inequivalent irreducible representations of the symmetric

group S, is equal to the number of partitions of M, i, the number of
solutions in positive integers of the equation

(7.18) n+n,+...+n =M, n=n,>=...2n,.

For example, the partitions of 4 are given by 4, 31,22 211, 1111 and the
inequivalent irreducible representations of S, are denoted by

(7.19) @, (31), (22), (211, (1111).

Similarly, the partitions of 5 are given by 5, 41, 32, 311, 221, 2111,
11111 and the inequivalent irreducible representations of S5 are denoted by

(7.20) (5, 41, 32, (311, (221), 2111, (11111).

The characters of the various irreducible representations of S,, may be found
in the literature for M < 15 (see [5] for M =1, ..., 8). If a set of invariants
Ji, ..., J, lorms the carrier space for an irreducible representation I' of Sy
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for which char I' = char(n; n,...n,), we say that the invariants J,, ..., J,
form a set of invariants of symmetry type (n, n,...n,).

In the next section, we give an example to show how we may employ
the notion of a set of invariants of symmetry type (n,n,...n,) to ease the
burden of computation involved in determining the multilinear elements of
an integrity basis.

8. Integrity basis for N symmetric second-order traceless
tensors A, ..., Ay - the proper orthogonal group

We outline the computation yielding the multilinear elements of this integrity
basis. We borrow from the discussion of Spencer and Rivlin [16] the
following results.

(i) Every multilinear element of the integrity basis involves at most six
tensors and is of the form ‘

(8.1) tr A; A;... Ay

(i) The trace of a matrix product formed from symmetric 3 x3
matrices is unaltered by cyclic permutation of the factors in the product and
is also unaltered if the order of the factors in the product is reversed.

For example, we have
(82) tr A1A2A3 =tr A2A3 Al =1r A3Al Az
={r AJAzAl ={r Al A3A2 = trA2A1 A3.

We may readily compute (see [11]) the number p,,,,.., of sets of linearly

independent invariants of symmetry type (n, n,...n,). These quantities are
listed in Table 5.

Table §

(nyny.. ) ((2)N@] 22 |54 | (32 (22)A11L1)|(6)] (42) {(321)] 3111) [(222)

Pagmgs {1|1[0] 2 (0] 1 | 1 |1 1 2] 3 |1 1 2
S B I T S T O T A O A o |2 3 |1 0 2
1|tf1] 2 1] 4 5 1 1| 9 | 16 10 5

(uluz...)

In Table 5, N, ,,.., denotes the number of invariants comprising a set
of invartants of symmetry type (n, n,...) and D(nynz..) denotes the number of
sets of invariants which may be obtained as products of lower order
invariants. The computation then proceeds as follows.

(i) Invariants linear in A;. Since tr A, =0, there are no linearly
independent invariants of degree one in A,.
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(i) Invariants multilinear in A;, A,. There is only a single linearly
independent invariant of this degree which is given by
(8.3) tr A, A,
We see that
(8.4) etr A,A2=ll‘ AlAlﬁ (lz)tr A1A2=ll‘ AZI/ll =II'A1 Az.
Thus, tr A, 4, forms the carrier space for a matrix representation D(s) of
degree onc which is given by
8.5 D(e) =I1]l,  D(12) =]
From (8.5) and the character tables [or S, given in [5], we see that
char |D(s)] =[1, 1] =char(2). Hence the invariant tr A, A, [orms a set of
invariants of symmetry type (2).

(i) Irvariants multilinear in A,, A,, A;. There 1s only a single linearly
independent invariant of this degree which is given by
(8.6) tr A, A, A,.
With (8.2), we see that

etr Al Az A3 = 1r Al .42 A3.

(8.7) (12t A, A, Ay =tr A, A, Ay =tr A| A5 As, ...,

(132)tr 4, A, A3 =tr A3 A, A, =tr A} A, A,.
Thus, tr A, A, A, is readily seen to form the carrier space [or a represen-
tation |E(s)] of S; such that char |E(s)! = char(3). Hence, tr A, A, Ay forms
a set of invariants of symmetry type (3).

(iv) Invariants multilinear in A;, A;, A;, A,. From Table 5, we see
that there are five linearly independent invariants of this degree which form
one set of invariants of symmetry type (4) and two sets of invariants of
symmetry type (22). We may obtain three invariants as products of invari-
ants of the form (8.3). These are given by

(8.8) tr A, A, tr A3 A, tr A, Ay tr A; A,, tr A, A, tr A, A;.

We may upon investigating the manner in which the invariants (8.8) behave
under permutations of the tensors A, ..., 4, establish that the invariants
(8.8) may be split into a set of invariants of symmetry type (4) and a set of
invariants of symmetry type (22). Thus, q.4, = ¢z = 1. We then see that we
require one set of invariants of symmetry type (22) as elements ol the
integrity basis (since p;, = 2 and ¢, = 1). This set is given by

1 2
I11(A,, Ay, A3, Ay) = Y(3 4)“ Ay A3 Ay Ay,

(8.9)
13
12(‘419 Az, A3, A4)=Y(2 4)“‘ A1A2A3A4, (22)
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where Y(...) denotes a Young symmetry operator (see [11] for a discussion
of the properties of Y(...) and further references). For example, we have

(8.10) Y(; i) =le+(12) {e+(34){e—(13)} {e~(24)}.

(v) Invariants multilinear in A, ..., As. There are 10 invariants of this
degree which may be obtained as products of the invariants (8.3) and (8.6).
These are given by

(8.11) ' _
tr A; A, tr 45 A, As. tr Ay Ay tr A; A3 A5, ... tr A4 A5 tr A A; As.

The ten invariants (8.11) form the carrier space [or a representation which is
denoted by (2)-(3) and is referred to as the direct product of the represen-
tations (2) and (3). The decomposition of representations (n, n,...)-(mym;...)
has been considered by Murnaghan ([8]). We see from tables given in [8]
that

(8.12) 23 =0+@1+32
and hence
(8.13) disy = Gany =4y = 1.

Then from table 5 we see that one set of invariants of symmetry types
(11111) and (221) are required as elements of the integrity basis. These will
be given by

1
2
(8.14) Y{ 3 |tr A, A, A, A, A,
4
5
and -
1 2
(8.15) Y(3 4 Itr A, A, A3 A, A, ...
5

(vi) Invariants multilinear in A,, ..., A,. There arc 15+30+10 = 55
invariants of this degree which may be obtained as products of lower order
invariants. These are given by

(8.16) 1) tr A, A, tr A3 A, tr As Ag, ..., 15 invariants, (6)+(42) +(222);

2) tr A, Ay 1;(A;, Ay, As, Ag) (=1, 2), ..., 30 invariants,
42)+(321)+(222):

3) tr A, A, Ay tr A, As A,. ..., 10 invariants, (6)+(42).

43 — Banach Center Publications 15
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In (8.16), we have listed on the right the irreducible representations into
which the representations for which the invariants (8.16), ..., (8.16); form
the carrier spaces may be decomposed. We then see from (8.16) that

(8.17) Q) = 42220 = 2, quy = 3, 4321y = 1.

From Table 5. we see that

(8.18) Py = P22y = 2, Paz =3, Pazny = L, pauny=1.

With (8.17) and (8.18), we see that there must be a single set of 10 invariants
of symmetry type (3111) present in the integrity basis. This is given by

123
4

(8.19) I tr A, A, A; A, As Ag. ...

6

We thus see that the typical multilinear elements of the integrity basis
are given by the invariants (8.3), (8.6), (8.9), (8.14), (8.15) and (8.19). The non-
linear elements of the integrity basis are readily obtained once the multilinear
elements have been determined. Details of the procedure involved in obtain-
ing the non-linear elements from the multilinear are given by Smith [11].

9. Integrity bases for anisotropic materials

The decomposition procedure employed in Section 5 may be used eflectively
when we seek to determine the general form of the polynomial expression

9-1) ¢ = ‘15(3;1....",1 C.'l....'q» -os)

which 1s invariant under a crystallographic group I We note that the pro-
blem of determining the form of the function T, ; =¢;, ; (B, i, Ci, i)
which is invariant under I' may be reduced to the problem of determining
the form of a scalar-valued function ¢*(B; . .Ci . ... T i) which 1s
invariant under I' where ¢* is linear in T; ; . There is consequently no
loss in generality in restricting consideration to the case (9.1). Let S(A4,),
R(A,), ... denote the matrix representations of I' which define the transfor-
mation properties under I' of the column matrices B, C, ... whose entries are
the independent components B,, ..., B,, C,, ..., C,, ... of the tensors B,-l___,-p,
C .. We may then express (9.1) as

ip--dg® -
9.2 o=¢(B,C..)

where the polynomial function ¢ is subject to the restriction that

(9.3) $(B,C,..)=¢(S(A)B, R(A)C, ..)

Leri
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for all A, belonging to I’ We may choose matrices Q, P so that
0S(A)Q ' =n I (A)+ ... +n,T,(A),
PR(AJP ' =m I (A)+ ... +m, T, (A),
OB=p,,+...+Bu+ .. +B1+ ... + P
PC=Bi,s1+ - +Bimysm+ - FBmc1F o FBrnims

(9:4)

where the transformation properties under I' of the B,;, ..., B, are defined
by the irreducible representations Iy, ..., I', respectively. With (9.4), we see
that (9.2) is expressible in the form

(9.5) d=¢*PByr.. By (=12,..;j=12.)
where the function ¢* is subject to the restrictions that
(96) d)*(ﬁli’ cees ﬁrj) = ¢* (rl (Ak)ﬂlis veey rr(Ak) ﬂrj)

must hold for all A, belonging to I We observe that the problem of
determining the general form of ¢ (B, C) and of y (D, E, F), when translated
into the form (9.6), will differ only in the number of quantities 8,,, ..., ,;
appearing as arguments of the functions ¢* and y*. Thus, if we solve (9.6)
for the case where i=1, ..., k,,...,j=1,..., k, where k,, ..., k. are arbit-
rary, we have then solved the most general problem which may arise. Since
we are considering the case where ¢*(...) in (9.6) is a polynomial function,
we must determine an integrity basis for functions of g,;, ..., §,, which are
invariant under I'. An integrity basis for functions of B,;, ..., ,; invariant
under I' is comprised of a set of polynomial functions I,, I, ... of the
Bii> ---, B.j» each of which is invariant under I' such that any polynomial
function of the B,;, ..., §,; which is invariant under I' is expressible as a
polynomial in the elements I,, I,, ... of the integrity basis.

We consider the problem of determining an integrity basis for functions
of an arbitrary number of tensors of any order which are invariant under the
crystallographic group D,. The crystal class D, possesses three mutually
perpendicular two fold axes of rotation. The matrices defining the symmetry
group I' are given by

(9.7)

il i [ oli—1
A,,...,A4=” 1 ‘
1 —1 1
The irreducible representations I'y, ..., I', associated with the group (9.7) are
all of degree 1 and are listed below. The quantities which form the carrier
spaces for the irreducible representations I,,..., I, are denoted by
a,, a,, ..., d;, d,, ... respectively. :

-1

2

—1
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Table 6
Irreducible representations of D,
A, Ay As A,
r,(4) 1 l | 1 a, dz, ..., 4q,
r,(4, | I —1 -1 bio by, ..os by
r,(4,) 1 —1 1 -1 C1y Cayonny &
ri(A) 1 -1 —1 1 dy.dy. ... d

We readily see that every scalar-valued polynomial function
V{a;, b;, ¢, dy) of the quantities a;, ..., d, which is invariant under D, is
expressible as a polynomial in the quantities

) «,
(9.8) 2) by bj,, ci, Cuys dnqdrnz’
3}y bigd,

where i=1,....p; Jj.jy.j2=1,....,q; k ki, ky=1,...,r; m m, m,
=1,...,s

Every polynomial function V,(g. ..., d,) whose transformation prop-
erties under D, are defined by I', is expressible as a linear combination of
the quantities

l) bj' U=lv---aq)»

(9.9)
2) qd,k=1,....r:m=1,...,5%)

with coefficients which are polynomials in the quantities (9.8).

Every polynomial function V,(q, ..., d,) whose transformation prop-
erties under D, are defined by I'; is expressible as a linear combination of
the quantities

9.10) 1) ¢ (k=1,...,71), 2) bid, (j=1,...,g:m=1,...,5)

with coefficients which are polynomials in the quantities (9.8).

Every polynomial function Vj(a,. ..., d,) whose transformation prop-
erties under D, are defined by I', is expressible as a linear combination of
the quantities

©.A1) 1) dy(m=1,....,5, 2 b, =1, ....q:k=1,....7)

with coefficients which are polynomials in the quantities (9.8).

We consider the problem of determining the form of a symmetric
second-order tensor-valued function a(E) of a symmetric second-order tensor
E which is invariant under D,. We employ the notation

(61, ..., 0¢) = (0, 033, 033, 033, G531, Gy3),

(9.12)
(Els ey E6) = (Elli EZZ! E33! E23- E3lv E12)~
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We then have

(9.13) (A, 0) = T{Ado;, (AL E) = T;(A) E;
where
(9.14)
T(Al) =dlag(1, 19 ls 1, 1, l)) T(AZ) =dlag(l: l, l’ I, _1, —1)5

T(A;) =diag(1, 1,1, =1, 1, —1), T(4,) =diag(l, 1,1, =1, =1, 1).

With (9.14), we readily see that the quantities listed under 1, ..., 4 below
form carrier spaces for the irreducible representations I'y, ..., I'y of D,.

9.15) 1) 6,05, 05, E, E; By, 2) 04, E;, 3) o05.Es, 4) o6, E,.
With (9.8), ..., (9.11) and (9.15), we see that

o, = ¢y, 6, =¢ Es+¢s EsEg,
(9.16) 6, = ¢, 65 = ¢ Es+¢7 E, E,

03 = @3, 06 = ¢s Ec+ o EL Es
where ¢; are polynomials in the quantities

(917) Elv EZ.’ E3 Ei, ng E(zbs E4E5 Eb'

Let us now consider the problem of determining the form of the

constitutive expressions which are invariant under the group C,, which is
defined by the matrices

(9.18)
1

1 1

—-1

b

-1 —1 1
There are four inequivalent irreducible representations I'y, ..., I', associated
with the group C,, and they are the same as those listed above for the group
D,. The results (9.8), ..., (9.11) are again applicable and no further effort is
required. The same statement is also applicable for the crystallographic
group C,,. A more detailed discussion of this procedure and complete results
for most of the crystal classes are given by Kiral and Smith ({3]), and Kiral,
Smith and Smith ([4]).
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