login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000124 Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts.
(Formerly M1041 N0391)
385
1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232, 254, 277, 301, 326, 352, 379, 407, 436, 466, 497, 529, 562, 596, 631, 667, 704, 742, 781, 821, 862, 904, 947, 991, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

These are Hogben's central polygonal numbers with the (two-dimensional) symbol

2

.P

1 n

The first line cuts the pancake into 2 pieces. For n > 1, the n-th line crosses every earlier line (avoids parallelism) and also avoids every previous line intersection, thus increasing the number of pieces by n. For 16 lines, for example, the number of pieces is 2 + 2 + 3 + 4 + 5 + ... + 16 = 137. These are the triangular numbers plus 1 (cf. A000217).

m = (n-1)(n-2)/2 + 1 is also the smallest number of edges such that all graphs with n nodes and m edges are connected. - Keith Briggs, May 14 2004

Also maximal number of grandchildren of a binary vector of length n+2. E.g., a binary vector of length 6 can produce at most 11 different vectors when 2 bits are deleted.

This is also the order dimension of the (strong) Bruhat order on the finite Coxeter group B_{n+1}. - Nathan Reading (reading(AT)math.umn.edu), Mar 07 2002

Number of 132- and 321-avoiding permutations of {1,2,...,n+1}. - Emeric Deutsch, Mar 14 2002

For n >= 1 a(n) is the number of terms in the expansion of (x+y)*(x^2+y^2)*(x^3+y^3)*...*(x^n+y^n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 28 2003

Also the number of terms in (1)(x+1)(x^2+x+1)...(x^n+...+x+1); see A000140.

Narayana transform (analog of the binomial transform) of vector [1, 1, 0, 0, 0, ...] = A000124; using the infinite lower Narayana triangle of A001263 (as a matrix), N; then N * [1, 1, 0, 0, 0, ...] = A000124. - Gary W. Adamson, Apr 28 2005

Number of interval subsets of {1, 2, 3, ..., n} (cf. A002662). - Jose Luis Arregui (arregui(AT)unizar.es), Jun 27 2006

Define a number of straight lines in the plane to be in general arrangement when (1) no two lines are parallel, (2) there is no point common to three lines. Then these are the maximal numbers of regions defined by n straight lines in general arrangement in the plane. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006

Note that a(n) = a(n-1) + A000027(n-1). This has the following geometrical interpretation: Suppose there are already n-1 lines in general arrangement, thus defining the maximal number of regions in the plane obtainable by n-1 lines and now one more line is added in general arrangement. Then it will cut each of the n-1 lines and acquire intersection points which are in general arrangement. (See the comments on A000027 for general arrangement with points.) These points on the new line define the maximal number of regions in 1-space definable by n-1 points, hence this is A000027(n-1), where for A000027 an offset of 0 is assumed, that is, A000027(n-1) = (n+1)-1 = n. Each of these regions acts as a dividing wall, thereby creating as many new regions in addition to the a(n-1) regions already there, hence a(n) = a(n-1) + A000027(n-1). Cf. the comments on A000125 for an analogous interpretation. - Peter C. Heinig (algorithms(AT)gmx.de), Oct 19 2006

When constructing a zonohedron, one zone at a time, out of (up to) 3-d non-intersecting parallelepipeds, the n-th element of this sequence is the number of edges in the n-th zone added with the n-th "layer" of parallelepipeds. (Verified up to 10-zone zonohedron, the enneacontahedron.) E.g., adding the 10th zone to the enneacontahedron requires 46 parallel edges (edges in the 10th zone) by looking directly at a 5-valence vertex and counting visible vertices. - Shel Kaphan, Feb 16 2006

Binomial transform of (1, 1, 1, 0, 0, 0, ...) and inverse binomial transform of A072863: (1, 3, 9, 26, 72, 192, ...). - Gary W. Adamson, Oct 15 2007

If Y is a 2-subset of an n-set X then, for n >= 3, a(n-3) is the number of (n-2)-subsets of X which do not have exactly one element in common with Y. - Milan Janjic, Dec 28 2007

Equals row sums of triangle A144328. - Gary W. Adamson, Sep 18 2008

It appears that a(n) is the number of distinct values among the fractions F(i+1)/F(j+1) as j ranges from 1 to n and, for each fixed j, i ranges from 1 to j, where F(i) denotes the i-th Fibonacci number. - John W. Layman, Dec 02 2008

a(n) is the number of subsets of {1,2,...,n} that contain at most two elements. - Geoffrey Critzer, Mar 10 2009

For n >= 2, a(n) gives the number of sets of subsets A_1, A_2, ..., A_n of n = {1, 2, ..., n} such that Meet_{i = 1..n} A_i is empty and Sum_{j in [n]} (|Meet{i = 1..n, i != j} A_i|) is a maximum. - Srikanth K S, Oct 22 2009

The numbers along the left edge of Floyd's triangle. - Paul Muljadi, Jan 25 2010

Let A be the Hessenberg matrix of order n, defined by: A[1,j] = A[i,i]:=1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n-1) = (-1)^(n-1)*coeff(charpoly(A,x),x). - Milan Janjic, Jan 24 2010

Also the number of deck entries of Euler's ship. See the Meijer-Nepveu link. - Johannes W. Meijer, Jun 21 2010

(1 + x^2 + x^3 + x^4 + x^5 + ...)*(1 + 2x + 3x^2 + 4x^3 + 5x^4 + ...) = (1 + 2x + 4x^2 + 7x^3 + 11x^4 + ...). - Gary W. Adamson, Jul 27 2010

The number of length n binary words that have no 0-digits between any pair of consecutive 1-digits. - Jeffrey Liese, Dec 23 2010

Let b(0) = b(1) = 1; b(n) = max(b(n-1)+n-1, b(n-2)+n-2) then a(n) = b(n+1). - Yalcin Aktar, Jul 28 2011

Also number of triangular numbers so far, for n > 0: a(n) = a(n-1) + Sum(A010054(a(k)): 0 <= k < n), see also A097602, A131073. - Reinhard Zumkeller, Nov 15 2012

Also number of distinct sums of 1 through n where each of those can be + or -. E.g., {1+2,1-2,-1+2,-1-2} = {3,-1,1,-3} and a(2) = 4. - Toby Gottfried, Nov 17 2011

This sequence is complete because the sum of the first n terms is always greater than or equal to a(n+1)-1. Consequently, any nonnegative number can be written as a sum of distinct terms of this sequence. See A204009, A072638. - Frank M Jackson, Jan 09 2012

The sequence is the number of distinct sums of subsets of the nonnegative integers, and its first differences are the positive integers. See A208531 for similar results for the squares. - John W. Layman, Feb 28 2012

Apparently the number of Dyck paths of semilength n+1 in which the sum of the first and second ascents add to n+1. - David Scambler, Apr 22 2013

Without 1 and 2, a(n) equals the terminus of the n-th partial sum of sequence 1, 1, 2. Explanation: 1st partial sums of 1, 1, 2 are 1, 2, 4; 2nd partial sums are 1, 3, 7; 3rd partial sums are 1, 4, 11; 4th partial sums are 1, 5, 16, etc. - Bob Selcoe, Jul 04 2013

Equivalently, numbers of the form 2*m^2+m+1, where m = 0, -1, 1, -2, 2, -3, 3, ... . - Bruno Berselli, Apr 08 2014

For n >= 2: quasi-triangular numbers; the almost-triangular numbers being A000096(n), n >= 2. Note that 2 is simultaneously almost-triangular and quasi-triangular. - Daniel Forgues, Apr 21 2015

n points in general position determine "n choose 2" lines, so A055503(n) <= a(n(n-1)/2). If n > 3, the lines are not in general position and so A055503(n) < a(n(n-1)/2). - Jonathan Sondow, Dec 01 2015

The digital root is period 9 (1, 2, 4, 7, 2, 7, 4, 2, 1), also the digital roots of centered 10-gonal numbers (A062786), for n > 0, A133292. - Peter M. Chema, Sep 15 2016

Partial sums of A028310. - J. Conrad, Oct 31 2016

For n >= 0, a(n) is the number of weakly unimodal sequences of length n over the alphabet {1, 2}. - Armend Shabani, Mar 10 2017

From Eric M. Schmidt, Jul 17 2017: (Start)

Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) != e(k). [Martinez and Savage, 2.4]

Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) < e(j) and e(i) < e(k). [Martinez and Savage, 2.4]

Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) >= e(j) != e(k). [Martinez and Savage, 2.4]

(End)

Numbers m such that 8m - 7 is a square. - Bruce J. Nicholson, Jul 24 2017

From Klaus Purath, Jan 29 2020: (Start)

The odd prime factors != 7 occur in an interval of p successive terms either never or exactly twice, while 7 always occurs only once. If a prime factor p appears in a(n) and a(m) within such an interval, then n + m == -1 (mod p). When 7 divides a(n), then 2*n == -1 (mod 7). a(n) is never divisible by the prime numbers given in A003625.

While all prime factors p != 7 can occur to any power, a(n) is never divisible by 7^2. The prime factors are given in A045373. The prime terms of this sequence are given in A055469.

(End)

From Roger Ford, May 10 2021: (Start)

a(n-1) is the greatest sum of arch lengths for the top arches of a semi-meander with n arches. An arch length is the number of arches covered + 1.

      /\   The top arch has a length of 3.  /\   The top arch has a length of 3.

     /  \  Both bottom arches have a       //\\  The middle arch has a length of 2.

    //\/\\ length of 1.                   ///\\\ The bottom arch has a length of 1.

Example: for n = 4, a(4-1) = a(3) = 7     /\

                                         //\\

                                     /\ ///\\\   1 + 3 + 2 + 1 = 7.  (End)

a(n+1) is the a(n)-th smallest positive integer that has not yet appeared in the sequence. - Matthew Malone, Aug 26 2021

For n> 0, let the n-dimensional cube {0,1}^n be, provided with the Hamming distance, d. Given an element x in {0,1}^n, a(n) is the number of elements y in {0,1}^n such that d(x, y) <= 2. Example: n = 4. (0,0,0,0), (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0) are at distance <= 2 from (0,0,0,0), so a(4) = 11. - Yosu Yurramendi, Dec 10 2021

a(n) is the sum of the first three entries of row n of Pascal's triangle. - Daniel T. Martin, Apr 13 2022

a(n-1) is the number of Grassmannian permutations that avoid a pattern, sigma, where sigma is a pattern of size 3 with exactly one descent. For example, sigma is one of the patterns, {132, 213, 231, 312}. - Jessica A. Tomasko, Sep 14 2022

REFERENCES

Robert B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 24.

Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 72, Problem 2.

Henry Ernest Dudeney, Amusements in Mathematics, Nelson, London, 1917, page 177.

Derrick Niederman, Number Freak, From 1 to 200 The Hidden Language of Numbers Revealed, A Perigee Book, NY, 2009, p. 83.

Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane, On single-deletion-correcting codes, in Codes and Designs (Columbus, OH, 2000), 273-291, Ohio State Univ. Math. Res. Inst. Publ., 10, de Gruyter, Berlin, 2002.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

William Allen Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 30.

Akiva M. Yaglom and Isaak M. Yaglom, Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #44 (First published: San Francisco: Holden-Day, Inc., 1964).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..1000

David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.

Jean-Luc Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.

Jean-Luc Baril and Céline Moreira Dos Santos, Pizza-cutter's problem and Hamiltonian path, Mathematics Magazine (2019) Vol. 88, No. 1, 1-9.

Jean-Luc Baril, Sergey Kirgizov and Vincent Vajnovszki, Descent distribution on Catalan words avoiding a pattern of length at most three, arXiv:1803.06706 [math.CO], 2018.

Jean-Luc Baril, Toufik Mansour and Armen Petrossian, Equivalence classes of permutations modulo excedances, preprint, Journal of Combinatorics, Volume 5 (2014) Number 4.

Jean-Luc Baril and Armen Petrossian, Equivalence classes of permutations modulo descents and left-to-right maxima, preprint, Pure Mathematics and Applications, Volume 25, Issue 1 (Sep 2015).

Andrew M. Baxter and Lara K. Pudwell, Ascent sequences avoiding pairs of patterns, preprint, The Electronic Journal of Combinatorics, Volume 22, Issue 1 (2015) Paper #P1.58.

Christian Bean, Anders Claesson and Henning Ulfarsson, Simultaneous Avoidance of a Vincular and a Covincular Pattern of Length 3, arXiv preprint arXiv:1512.03226 [math.CO], 2017.

Henry Bottomley, Illustration of initial terms

Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, arXiv:math/0112281 [math.CO], 2001.

Alexander Burstein and Toufik Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14.

Peter M. Chema, Illustration of first 22 terms as corners of a double square spiral with digital root.

David Coles, Triangle Puzzle.

M. L. Cornelius, Variations on a geometric progression, Mathematics in School, 4 (No. 3, May 1975), p. 32. (Annotated scanned copy)

Tom Crawford, 22 Slices of Pizza with Six Cuts, Tom Rocks Maths video (2022)

Robert Dawson, On Some Sequences Related to Sums of Powers, J. Int. Seq., Vol. 21 (2018), Article 18.7.6.

Karl Dilcher and Kenneth B. Stolarsky, Nonlinear recurrences related to Chebyshev polynomials, The Ramanujan Journal, 2014, Online Oct. 2014, pp. 1-23. See Cor. 5.

Igor Dolinka, James East and Robert D. Gray, Motzkin monoids and partial Brauer monoids, Journal of Algebra, volume 471, February 2017, pages 251-298. Also preprint arXiv:1512.02279 [math.GR], 2015. See Table 5.

Matthew England, Russell Bradford and James H. Davenport, Cylindrical algebraic decomposition with equational constraints, Journal of Symbolic Computation, Vol. 100 (2020), pp. 38-71; arXiv preprint, arXiv:1903.08999 [cs.SC], 2019.

J. B. Gil and J. Tomasko, Restricted Grassmannian permutations<\a>, ECA 2:4 (2022) Article S4PP6.

Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.

Richard K. Guy, Letter to N. J. A. Sloane

Guo-Niu Han, Enumeration of Standard Puzzles [Cached copy]

M. F. Hasler, Interactive illustration of A000124. [Sep 06 2017: The user can choose the slices to make, but the program can suggest a set of n slices which should yield the maximum number of pieces. For n slices this obviously requires 2n endpoints, or 2n+1 if they are equally spaced, so if there are not enough "blobs", their number is accordingly increased. This is the distinction between "draw" (done when you change the slices or number of blobs by hand) and "suggest" (propose a new set of slices).]

Phillip Tomas Heikoop, Dimensions of Matrix Subalgebras, Bachelor's Thesis, Worcester Polytechnic Institute, Massachusetts, 2019.

Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.

Cheyne Homberger and Vincent Vatter, On the effective and automatic enumeration of polynomial permutation classes, Journal of Symbolic Computation, Vol. 76 (2016), pp. 84-96; arXiv preprint, arXiv:1308.4946 [math.CO], 2013-2015.

Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 22.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 386

Milan Janjic, Two Enumerative Functions

Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.

Myrto Kallipoliti, Robin Sulzgruber, and Eleni Tzanaki, Patterns in Shi tableaux and Dyck paths, arXiv:2006.06949 [math.CO], 2020.

Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.

Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.

Thomas Langley, Jeffrey Liese and Jeffrey Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order , J. Int. Seq. 14 (2011) # 11.4.2.

Kyu-Hwan Lee and Se-jin Oh, Catalan triangle numbers and binomial coefficients, arXiv:1601.06685 [math.CO], 2016-2017.

Derek Levin, Lara Pudwell, Manda Riehl and Andrew Sandberg, Pattern Avoidance on k-ary Heaps, Slides of Talk, 2014.

D. A. Lind, On a class of nonlinear binomial sums, Fib. Quart., 3 (1965), 292-298.

Jim Loy, Triangle Puzzle

Toufik Mansour, Permutations avoiding a set of patterns from S_3 and a pattern from S_4, arXiv:math/9909019 [math.CO], 1999.

Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016-2018.

Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187.

Markus Moll, On a family of random noble means substitutions, Dr. Math. Dissertation, Universität Bielefeld, 2013, arXiv:1312.5136 [math.DS], 2013.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992

Derek J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., Vol. 30, No. 290 (1946), pp. 149-150.

Lara Pudwell and Andrew Baxter, Ascent sequences avoiding pairs of patterns, 2014.

Franck Ramaharo, Enumerating the states of the twist knot, arXiv:1712.06543 [math.CO], 2017.

Franck Ramaharo and Fanja Rakotondrajao, A state enumeration of the foil knot, arXiv:1712.04026 [math.CO], 2017.

Franck Ramaharo, A generating polynomial for the two-bridge knot with Conway's notation C(n,r), arXiv:1902.08989 [math.CO], 2019.

Nathan Reading, On the structure of Bruhat Order, Ph.D. dissertation, University of Minnesota, April 2002.

Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets

Nathan Reading, Order Dimension, Strong Bruhat Order and Lattice Properties for Posets, Order, Vol. 19, no. 1 (2002), 73-100.

Herman P. Robinson, Letter to N. J. A. Sloane, Aug 16 1971, with attachments

Rodica Simion and Frank W. Schmidt, Restricted permutations, European J. Combin., 6, 383-406, 1985; see Example 3.5.

N. J. A. Sloane, On single-deletion-correcting codes, 2002.

Andrew James Turner and Julian Francis Miller, Recurrent Cartesian Genetic Programming Applied to Famous Mathematical Sequences, 2014.

Eric Weisstein's World of Mathematics, Circle Division by Lines.

Eric Weisstein's World of Mathematics, Plane Division by Lines.

Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, Vol. 8 (2008), pp. 45-52.

Wikipedia, Floyd's triangle.

Index entries for "core" sequences

Index entries for sequences related to centered polygonal numbers

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

G.f.: (1 - x + x^2)/(1 - x)^3. Simon Plouffe in his 1992 dissertation

a(n) = A108561(n+3, 2). - Reinhard Zumkeller, Jun 10 2005

G.f.: (1 - x^6)/((1 - x)^2*(1 - x^2)*(1 - x^3)). a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 04 2006

Euler transform of length 6 sequence [ 2, 1, 1, 0, 0, -1]. - Michael Somos, Sep 04 2006

a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 2, a(3) = 4. - Artur Jasinski, Oct 21 2008

a(n) = A000217(n) + 1.

a(n) = a(n-1) + n. E.g.f.:(1 + x + x^2/2)*exp(x). - Geoffrey Critzer, Mar 10 2009

a(n) = Sum_{k = 0..n + 1} binomial(n+1, 2(k - n)). - Paul Barry, Aug 29 2004

a(n) = binomial(n+2, 1) - 2*binomial(n+1, 1) + binomial(n+2, 2). - Zerinvary Lajos, May 12 2006

From Thomas Wieder, Feb 25 2009: (Start)

a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i != l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. (End)

a(n) = A034856(n+1) - A005843(n) = A000217(n) + A005408(n) - A005843(n). - Jaroslav Krizek, Sep 05 2009

a(n) = 2*a(n-1) - a(n-2) + 1. - Eric Werley, Jun 27 2011

E.g.f.: exp(x)*(1+x+(x^2)/2) = Q(0); Q(k) = 1+x/(1-x/(2+x-4/(2+x*(k+1)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2011

a(n) = A014132(n, 1) for n > 0. - Reinhard Zumkeller, Dec 12 2012

a(n) = 1 + floor(n/2) + ceiling(n^2/2) = 1 + A004526(n) + A000982(n). - Wesley Ivan Hurt, Jun 14 2013

a(n) = A228074(n+1, n). - Reinhard Zumkeller, Aug 15 2013

For n > 0: A228446(a(n)) = 3. - Reinhard Zumkeller, Mar 12 2014

a(n) >= A263883(n) and a(n(n-1)/2) >= A055503(n). - Jonathan Sondow, Dec 01 2015

From Ilya Gutkovskiy, Jun 29 2016: (Start)

Dirichlet g.f.: (zeta(s-2) + zeta(s-1) + 2*zeta(s))/2.

Sum_{n >= 0} 1/a(n) = 2*Pi*tanh(sqrt(7)*Pi/2)/sqrt(7) = A226985. (End)

a(n) = (n+1)^2 - A000096(n). - Anton Zakharov, Jun 29 2016

a(n) = A101321(1, n). - R. J. Mathar, Jul 28 2016

a(n) = 2*a(n-1) - binomial(n-1, 2) and a(0) = 1. - Armend Shabani, Mar 10 2017

a(n) = A002620(n+2) + A002620(n-1). - Anton Zakharov, May 11 2017

From Klaus Purath, Jan 29 2020: (Start)

a(n) = (Sum_{i=n-2..n+2} A000217(i))/5.

a(n) = (Sum_{i=n-2..n+2} A002378(i))/10.

a(n) = (Sum_{i=n..n+2} A002061(i)+1)/6.

a(n) = (Sum_{i=n-1..n+2} A000290(i)+2)/8.

a(n) = A060533(n-1) + 10, n > 5.

a(n) = (A002378(n) + 2)/2.

a(n) = A152948(n+2) - 1.

a(n) = A152950(n+1) - 2.

a(n) = (A002061(n) + A002061(n+2))/4.

(End)

Sum_{n>=0} (-1)^n/a(n) = A228918. - Amiram Eldar, Nov 20 2020

From Amiram Eldar, Feb 17 2021: (Start)

Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(15)*Pi/2)*sech(sqrt(7)*Pi/2).

Product_{n>=1} (1 - 1/a(n)) = 2*Pi*sech(sqrt(7)*Pi/2). (End)

EXAMPLE

a(3) = 7 because the 132- and 321-avoiding permutations of {1, 2, 3, 4} are 1234, 2134, 3124, 2314, 4123, 3412, 2341.

G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 11*x^4 + 16*x^5 + 22*x^6 + 29*x^7 + ...

MAPLE

A000124 := n-> n*(n+1)/2+1;

MATHEMATICA

FoldList[#1 + #2 &, 1, Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)

Accumulate[Range[0, 60]] + 1 (* Harvey P. Dale, Mar 12 2013 *)

Select[Range[2000], IntegerQ[Sqrt[8 # - 7]] &] (* Vincenzo Librandi, Apr 16 2014 *)

Table[PolygonalNumber[n] + 1, {n, 0, 52}] (* Michael De Vlieger, Jun 30 2016, Version 10.4 *)

LinearRecurrence[{3, -3, 1}, {1, 2, 4}, 53] (* Jean-François Alcover, Sep 23 2017 *)

PROG

(PARI) {a(n) = (n^2 + n) / 2 + 1}; /* Michael Somos, Sep 04 2006 */

(Haskell)

a000124 = (+ 1) . a000217

-- Reinhard Zumkeller, Oct 04 2012, Nov 15 2011

(Magma) [n: n in [0..1500] | IsSquare(8*n-7)]; // Vincenzo Librandi, Apr 16 2014

(GAP) List([0..60], n->n*(n+1)/2+1); # Muniru A Asiru, Apr 11 2018

(Scala) (1 to 52).scanLeft(1)(_ + _) // Alonso del Arte, Feb 24 2019

(Python)

def a(n): return n*(n+1)//2 + 1

print([a(n) for n in range(53)]) # Michael S. Branicky, Aug 26 2021

CROSSREFS

Cf. A000096 (Maximal number of pieces that can be obtained by cutting an annulus with n cuts, for n >= 1).

Slicing a cake: A000125, a bagel: A003600.

Partial sums =(A033547)/2, (A014206)/2.

The first 20 terms are also found in A025732 and A025739.

Cf. A002061, A002522, A016028, A055503, A072863, A144328, A177862, A263883, A000127, A005408, A006261, A016813, A058331, A080856, A086514, A161701, A161702, A161703, A161704, A161706, A161707, A161708, A161710, A161711, A161712, A161713, A161715, A051601, A228918.

Cf. A055469 Quasi-triangular primes.

Cf. A002620.

Cf. A000217

Sequence in context: A025725 A025732 A025739 * A152947 A212369 A212368

Adjacent sequences:  A000121 A000122 A000123 * A000125 A000126 A000127

KEYWORD

nonn,core,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 9 10:01 EST 2022. Contains 358002 sequences. (Running on oeis4.)