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Abstract

In this paper, we study values of the Euler function ϕ(n) taken on
binary palindromes of even length. In particular, if B2ℓ denotes the
set of binary palindromes with precisely 2ℓ binary digits, we derive an
asymptotic formula for the average value of the Euler function on B2ℓ.

1 Introduction

Consider the binary representation of an arbitrary positive integer n:

n =

L−1∑

k=0

βk · 2
k, (1)

∗Corresponding author
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where βk ∈ {0, 1} for k = 0, 1, . . . , L−1, and βL−1 = 1. The integer n is said
to be a binary palindrome if its digits satisfy the symmetry relation:

βk = βL−1−k for k = 0, 1, . . . , L− 1.

The number L in (1) is called the length of n. Let BL denote the set of all
binary palindromes of length L.

In this paper, we obtain an asymptotic formula for the average value of
the Euler function ϕ(n) taken on binary palindromes of even length L = 2ℓ;
that is, we estimate sums of the form

S(ℓ) =
1

#B2ℓ

∑

n∈B2ℓ

ϕ(n). (2)

Our main result (Theorem 5) is obtained from estimates for sums of the form

T (ℓ, r, s) =
1

#B2ℓ

∑

n∈B2ℓ

ϕ(rn + s)

rn + s
, (3)

which are given in Theorem 3 below; this result may be of independent
interest.

It has been shown in [1] that almost all palindromes (with respect to a
fixed base b ≥ 2) are composite, and several additional arithmetic properties
of palindromes have been established in [3]. Our estimates for the sums S(ℓ)
and T (ℓ, r, s) rely on asymptotic formulas and upper bounds from [1, 3] for
the number of palindromes lying in a fixed arithmetic progression.

Throughout the paper, implied constants in the symbols O and ≪ are
absolute. We recall that the notations U = O(V ) and U ≪ V are equivalent
to the assertion that the inequality |U | ≤ cV holds for some constant c > 0.

2 Congruences with Palindromes

Let us denote
BL(a, q) =

{
n ∈ BL : n ≡ a (mod q)

}
.

Lemma 1. Let q ≥ 1 be squarefree and ℓ ≥ 5 + q2 log q. If q and a are both

even, or if 3 | q and 3 ∤ a, then #B2ℓ(a, q) = 0; in all other cases, we have

#B2ℓ(a, q) =
#B2ℓ · gcd(q, 6)

q

{
1 + O

(
exp(−ℓ/q2)

)}
.
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Proof. Since every palindrome n ∈ B2ℓ is odd and divisible by 3, it is clear
that B2ℓ(a, q) = ∅ if q and a are both even, or if 3 | q and 3 ∤ a; in all
other cases, we have B2ℓ(a, q) = B2ℓ(a, q/ gcd(q, 6)), and the result follows
immediately from [1, Proposition 4.2].

We also need a nontrivial bound for #B2ℓ(a, q) without any restrictions
on the size or the arithmetic structure of q. For a = 0 the following bound
has been obtained in [3]; the proof, however, extends to the general case
without any modifications.

Lemma 2. Uniformly for integers L ≥ 1, q ≥ 1 and a, we have

#BL(a, q)≪
#BL

q1/2
.

3 Main Results

We begin by deriving an asymptotic formula for the sum T (ℓ, r, s) given
by (3). To state the formula, we define the following constants:

α(r, s) =






3/4 if 2 | r and 2 | s;
3/2 if 2 | r and 2 ∤ s;
1 if 2 ∤ r,

β(r, s) =






4/3 if 3 | r and 3 | s;
8/9 if 3 | r and 3 ∤ s;
1 if 3 ∤ r,

γ(s) =






1 if s ≡ 0 (mod 6);
3/4 if s ≡ ±1 (mod 6);
3/2 if s ≡ ±2 (mod 6);
1/2 if s ≡ 3 (mod 6),

and

ζ(2, r) =
∏

p | r

(
1−

1

p2

)−1

.
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Theorem 3. Uniformly for integers r ≥ 1 and s ≥ 0, we have

T (ℓ, r, s) =
ϕ(t)

t
α(r, s) β(r, s) γ(s) ζ(2, r) ·

6

π2
+ O

(
(ℓ/ log ℓ)−1/4

)
,

where t = gcd(r, s).

Proof. We can assume that ℓ is large since the result is trivial if ℓ is bounded.
For every positive integer k, we have

ϕ(k)

k
=
∑

δ | k

µ(δ)

δ
, (4)

where µ(δ) is the Möbius function; see (5.1) in [4, Chapter 1]. Therefore,

T (ℓ, r, s) =
1

#B2ℓ

∑

n∈B2ℓ

∑

δ | (rn+s)

µ(δ)

δ

=
1

#B2ℓ

∑

δ≥1

µ(δ)

δ
#{n ∈ B2ℓ : δ | (rn + s)}.

Recall that t = gcd(r, s). Every squarefree integer δ ≥ 1 can be expressed
uniquely in the form δ = cd, where c | t and gcd(d, t) = 1. The following
statements are equivalent:

(i) δ | (rn + s);

(ii) d | (rn + s);

(iii) gcd(d, r) = 1 and n ≡ −r−1s (mod d).

Indeed, (i) ⇔ (ii) since c | (rn + s) and gcd(c, d) = 1. Next, suppose (ii)
holds. If a prime p divides gcd(d, r), then p also divides s, which contradicts
the fact that gcd(d, t) = 1; therefore, gcd(d, r) = 1, and the implication
(ii)⇒ (iii) is clear. The implication (iii)⇒ (ii) is obvious.

Since µ(δ)/δ is multiplicative, we therefore have

T (ℓ, r, s) =
1

#B2ℓ

∑

c | t

µ(c)

c

∑

d≥1
gcd(d,t)=1

µ(d)

d
#{n ∈ B2ℓ : δ | (rn + s)}

=
ϕ(t)

t

1

#B2ℓ

∑

d≥1
gcd(d,r)=1

µ(d)

d
#B2ℓ(ad, d),
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where each ad satisfies the congruence ad ≡ −r−1s (mod d). Now put

D =

⌊√
ℓ

2 log ℓ

⌋

, (5)

and write

T (ℓ, r, s) =
ϕ(t)

t
(Σ1 + Σ2),

where

Σ1 =
∑

1≤d≤D
gcd(d,r)=1

µ(d)

d

#B2ℓ(ad, d)

#B2ℓ
,

Σ2 =
∑

d>D
gcd(d,r)=1

µ(d)

d

#B2ℓ(ad, d)

#B2ℓ

.

Since ℓ ≥ 5 + D2 log D once ℓ is sufficiently large, we can apply Lemma 1 to
the sum Σ1. Defining

θs(d) =

{
0 if d and s are both even, or 3 | d and 3 ∤ s;
1 otherwise,

we obtain

Σ1 =
∑

1≤d≤D
gcd(d,r)=1

µ(d) θs(d) gcd(d, 6)

d2
+ O

(
∑

1≤d≤D

exp(−ℓ/d2)

d2

)

=
∑

d≥1
gcd(d,r)=1

µ(d) θs(d) gcd(d, 6)

d2
+ O

(
D−1 + exp

(
−ℓ/D2

))
.

Since θs(d) is multiplicative for every integer s, it follows that

∑

d≥1
gcd(d,r)=1

µ(d) θs(d) gcd(d, 6)

d2
=
∏

p ∤r

(
1−

θs(p) gcd(p, 6)

p2

)

=
∏

p | r

(
1−

θs(p) gcd(p, 6)

p2

)−1∏

p

(
1−

θs(p) gcd(p, 6)

p2

)
.
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It is easily verified on a case-by-case basis that

∏

p | r

(
1−

θs(p) gcd(p, 6)

p2

)−1

= α(r, s) β(r, s) ζ(2, r),

and ∏

p

(
1−

θs(p) gcd(p, 6)

p2

)
= γ(s)

∏

p

(
1−

1

p2

)
= γ(s)

6

π2
.

Therefore,

Σ1 = α(r, s) β(r, s) γ(s) ζ(2, r) ·
6

π2
+ O

(
D−1 + exp(−ℓ/D2)

)
. (6)

Using Lemma 2 to bound the sum Σ2, we also have

Σ2 ≪

∞∑

d>D

d−3/2 ≪ D−1/2.

Combining this bound with the estimate (6), it follows that

T (ℓ, r, s) =
ϕ(t)

t
α(r, s) β(r, s) γ(s) ζ(2, r) ·

6

π2
+ O

(
D−1/2 + exp(−ℓ/D2)

)
.

Recalling the choice of D given by (5), we obtain the stated result.

As the special case r = 1 and s = 0 of Theorem 3, we have:

Corollary 4. The following estimate holds as ℓ→∞:

1

#B2ℓ

∑

n∈B2ℓ

ϕ(n)

n
=

6

π2
+ O

(
(ℓ/ log ℓ)−1/4

)
.

Using Theorem 3, we now derive an asymptotic formula for the sum S(ℓ)
defined by (2).

Theorem 5. The following estimate holds as ℓ→∞:

S(ℓ) = 3 · 22ℓ−2

{
6

π2
+ O

(
(ℓ/ log ℓ)−1/4

)}
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Proof. Let k be an integer such that 1 ≤ k ≤ ℓ− 1. Observe the digits of an
arbitrary palindrome n ∈ B2ℓ follow the basic pattern:

← a→ 0 · · ·0 ← b→ 0 · · ·0 ← â→

k digits j digits 2i digits j digits k digits

with i + j + k = ℓ. That is, every n ∈ B2ℓ can be expressed in the form

n = 22ℓ−ka + 2ℓ−ib + â, (7)

where the integers a, â, b, i satisfy the following properties:

(i) 2k−1 ≤ a < 2k;

(ii) â is uniquely determined by the condition that 22ℓ−ka + â ∈ B2ℓ;

(iii) 0 ≤ i ≤ ℓ− k;

(iv) b = 0 if i = 0, and b ∈ B2i otherwise.

For convenience, let us define B0 = {0}. Then, using (7), we have

S(ℓ) =
1

#B2ℓ

2k−1∑

a=2k−1

ℓ−k∑

i=0

∑

b∈B2i

ϕ
(
22ℓ−ka + 2ℓ−ib + â

)
.

Clearly,
22ℓ−ka + 2ℓ−ib + â = 22ℓ−k(a + O(1)),

and thus

S(ℓ) =
22ℓ−k

#B2ℓ

2k−1∑

a=2k−1

(a + O(1))
ℓ−k∑

i=0

∑

b∈B2i

ϕ
(
22ℓ−ka + 2ℓ−ib + â

)

22ℓ−ka + 2ℓ−ib + â
. (8)

To each inner sum, we apply Theorem 3 with r = 2ℓ−i and s = 22ℓ−ka + â .
Since r ≥ 2 is a power of two, and s ≡ 3 (mod 6), we have

α(r, s) = 3/2, β(r, s) = 1, γ(s) = 1/2, and ζ(2, r) = 4/3.
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Therefore, taking into account the fact that #B0 = 1 and #B2i = 2i−1 for
all i ≥ 1, and choosing k = ⌊ℓ/2⌋, Theorem 3 implies that

ℓ−k∑

i=0

∑

b∈B2i

ϕ
(
22ℓ−ka + 2ℓ−ib + â

)

22ℓ−ka + 2ℓ−ib + â
=

ℓ−k∑

i=0

#B2i

{
6

π2
+ O

((
log(i + 2)

i + 1

)1/4
)}

= 2ℓ−k

{
6

π2
+ O

(
(ℓ/ log ℓ)−1/4

)}
.

Substituting this estimate into (8), and noting that #B2ℓ = 2ℓ−1, it follows
that

S(ℓ) = 22ℓ−2k+1

{
6

π2
+ O

(
(ℓ/ log ℓ)−1/4

)} 2k−1∑

a=2k−1

(a + O(1)).

Computing the sum over a, and taking into account our choice k = ⌊ℓ/2⌋,
the result follows.

4 Remarks

The statement of Theorem 3 holds for all integers r, s provided that rn+s ≥ 1
for all n ∈ B2ℓ; this condition is needed to insure that the sum (3) is defined.

It is easy to see that the average value of the palindromes in B2ℓ is

1

#B2ℓ

∑

n∈B2ℓ

n = 3 · 22ℓ−2,

hence Theorem 5 suggests that ϕ(n) has the expected value 6n/π2 for a
“random” binary palindrome n of even length.

It would be interesting to extend the results of this paper to palindromes
of odd length, and also to have a “continuous” version of our results, that is,
to estimate sums of the form

1

#B(x)

∑

n∈B(x)

ϕ(n) and
1

#B(x)

∑

n∈B(x)

ϕ(rn + s)

rn + s
,

where B(x) denotes the set of all binary palindromes n ≤ x. One can also
consider such questions for palindromes in other bases.
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It seems likely that the methods of this paper can be extended to obtain
similar results for the sum of divisors function and for other functions that
satisfy an appropriate analogue of (4). Nevertheless, we expect that for many
other arithmetical functions, the problem of computing the average value of
the function over a set of palindromes is notoriously difficult.

For a given set A of positive integers, if the average value of the Euler
function on A ∩ [1, x] can be determined, it is often possible to evaluate
the asymptotic probability that two random elements in A are coprime, as
well as the asymptotic probability that a random element in A is squarefree.
For example, in [2] all three questions are treated in similar ways for sets of
integers whose g-ary representations in base g ≥ 2 are restricted in various
ways. However, in the case of palindromes, the last two questions appear
to be much more difficult than the first; the problems of finding asymptotic
formulas for the sums

1

(#B2ℓ)2

∑

n,m∈B2ℓ

gcd(n,m)=1

1 and
1

#B2ℓ

∑

n∈B2ℓ

n squarefree

1

remain open (with getting an improvement of Lemma 2 as the bottleneck).
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