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The Sum of Digits Function of Polynomial Sequences

Michael Drmota, Christian Mauduit and Joël Rivat

Abstract

Let q ≥ 2 be an integer and sq(n) denote the sum of the digits in base q of the positive integer
n. The goal of this work is to study a problem of Gelfond concerning the repartition of the
sequence (sq(P (n)))n∈N in arithmetic progressions when P ∈ Z[X] is such that P (N) ⊂ N. We
answer Gelfond’s question and we show the uniform distribution modulo 1 of the sequence
(αsq(P (n)))n∈N for α ∈ R \Q provided that q is a large enough prime number coprime with the
leading coefficient of P .

1. Introduction

Let sq(n) denote the sum of digits function, defined for any non negative integer n by

sq(n) =
∑
j≥0

εj(n),

where, for any non negative integer j, εj(n) ∈ {0, 1, . . . , q − 1} are the digits in the q-ary digital
expansion

n =
∑
j≥0

εj(n)qj .

For x ∈ R we set e(x) = exp(2πix) and if ` = max{j : εj(n) 6= 0} we denote by repq(n) =
ε`(n) . . . ε0(n) the q-adic representation of the integer n.

The sum of digits function appears in many different mathematical questions (see [1] and
[14] for a survey on this aspect). Mahler introduced in [13] the sequence

(
(−1)s2(n)

)
n∈N in

order to illustrate several results of spectral analysis obtained by Wiener in [26]. In particular,
Mahler showed the convergence, for any non negative integer k, of the sequence (γk(N))N≥1

defined for any positive integer N by

γk(N) =
1
N

∑
n<N

(−1)s2(n)(−1)s2(n+k),

and moreover that this limit is non zero for infinitely many integers k.
Nowadays we know (see [12]) that for any non-negative integer k this limit is equal to the

k-th Fourier coefficient of the correlation measure associated to the symbolic dynamical system
generated by the sequence

(
(−1)s2(n)

)
n∈N and that this convergence can be understood as a

consequence of the unique ergodicity of this symbolic dynamical system (see [23] or [24]).
Only few results are known concerning the q-adic representation of the sequence (P (n))n∈N

when P is an integer valued polynomial. Davenport and Erdős proved in [5] the normality of
the real number whose q-adic representation is

0. repq(P (1)) . . . repq(P (n)) . . .
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when P is an integer valued polynomial. A consequence of their theorem is that in this case
we have ∑

n≤x

sq(P (n)) ∼ q − 1
2

d x logq x (x→ +∞),

where d is the degree of P .
Peter generalized in [21] a result obtained by Delange [6] in the case P (X) = X and proved

the following more precise estimate in the case P (X) = Xd:

Theorem A. There exist c ∈ R, ε > 0, and Φq,d a continuous function on R, 1-periodic
and nowhere differentiable such that for all x ≥ 1,∑

n≤x

sq(nd) =
q − 1

2
d x logq x+ cx+ xΦq,d(d logq x) +O(x1−ε).

Furthermore Bassily and Katai showed in [2] that there is a central limit theorem for the
sum of digits function on polynomial sequences:

Theorem B. Let P ∈ Z[X] such that P (N) ⊂ N then

1
x

card

{
n ≤ x, sq(P (n)) ≤ q − 1

2
d x logq x+ y

√
q2 − 1

12
d x logq x

}
= Φ(y) + o(1),

where Φ(y) denotes the normal distribution function.

In 1967 Gelfond studied in [10] the distribution in arithmetic progressions of the sequence
(sq(P (n)))n∈N when P is an integer valued polynomial of degree 1 and proposed the case of
higher degree as an open problem:

Problem 1 Gelfond’s problem for integer valued polynomials. For any integer valued
polynomial P and any fixed integers a ∈ Z and m ≥ 1, give the number of integers n ≤ x
such that sq(P (n)) ≡ a mod m.

Following the ideas of Piatetski-Shapiro, who studied in [22] the distribution of prime
numbers in the sequence (bncc)n∈N for c > 1, a first approach to Gelfond’s problem was
developed by Mauduit and Rivat in [15, 16] and continued by Morgenbesser in [20] who
proved the following results:

Theorem C. If c ∈ [1, 7/5) and q ≥ 2 (by [16]) or if c ∈ R+ \ N and q ≥ q0(c) a sufficiently
large integer (by [20]) then

– for all (a,m) ∈ Z× N∗, we have

lim
N→+∞

1
N

card{n < N : sq([nc]) ≡ a mod m} =
1
m
,

– the sequence (α sq([nc]))n∈N is uniformly distributed modulo 1 if and only if α is an
irrational number.

A first answer to Gelfond’s original problem for integer valued polynomials was given by
Dartyge and Tenenbaum in [3, 4] where they obtained the following general lower bound:
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Theorem D. Let q and m be positive integers such that q ≥ 2 and gcd(m, q − 1) = 1 and
let P ∈ Z[X] be such that P (N) ⊂ N. Then there exist two constants C = C(P, q,m) > 0 and
N0 = N0(P, q,m) ≥ 1 such that for any a ∈ {0, 1, . . . ,m− 1} and for any integer N ≥ N0, we
have

card{n < N : sq(P (n)) ≡ a mod m} ≥ CNmin(1,2/d!),

where d is the degree of P .

Recently Mauduit and Rivat gave in [17] a precise answer to Gelfond’s problem in the case
where the polynomial P is of degree 2 (their paper presents only a proof for the polynomial
P (X) = X2 but it could be adapted for any integer valued polynomial P of degree 2 at the price
of dealing with a technical discussion concerning the arithmetic properties of the coefficients
of P ):

Theorem E. For any integers q ≥ 2 and m ≥ 2, there exists σq,m > 0 such that for any
a ∈ Z,

card{n ≤ x : sq(n2) ≡ a mod m} =
x

m
Q(a,D) +Oq,m(x1−σq,m), (1.1)

where D = gcd(q − 1,m) and

Q(a,D) = card{0 ≤ n < D : n2 ≡ a mod D}. (1.2)

2. Results

The main purpose of this paper is to analyze the distribution of the sum of digits function
sq(P (n)) for polynomials P ∈ Z[X] such that P (N) ⊂ N when the degree d of the polynomial
P is greater or equal to 3.

For d = 2 the method introduced by Mauduit and Rivat in order to establish Theorem E
lies on a carry lemma that allows them to concentrate the Fourier analysis on a very short
window of digits. Then the remaining exponential sums can be handle efficiently by estimates on
incomplete quadratic Gaussian sums. Two new difficulties arise when d ≥ 3. First the estimates
for the incomplete exponential sums are not as good as for d = 2. Secondly the carry lemma
permits only to remove a smaller proportion of digits (see remark 4). This leads to several
difficulties in the control of the Fourier transforms.

Using Vinogradov estimates on incomplete exponential sums and a more precise control of
the Fourier transforms, we will be able to give a partial answer to Gelfond’s problem valid for
integer polynomials of any degree.

The main result of this paper is the following one.

Theorem 1. Let d ≥ 2 be an integer, q ≥ q0(d) a sufficiently large prime number, and
P ∈ Z[X] of degree d such that P (N) ⊂ N for which the leading coefficient ad is co-prime to q.
If (q − 1)α ∈ R \ Z then there exists σ > 0 with∑

n<x

e(αsq(P (n)))� x1−σ (2.1)

where the implied constant depends on q, d and α.
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Remark 1. It follows from the proof of Theorem 1 that we can choose σ = c ‖(q − 1)α‖2
for some constant c > 0 depending only on q and d. Furthermore we will show that

q0(d) ≤ e67d
3(log d)2 . (2.2)

Remark 2. The assumptions that q is prime and that ad is co-prime to q are not really
necessary. The method we introduce to prove theorem 1 holds for general q ≥ q0(d) and ad >
0. However, the proof would be even much more technical. Therefore we decided to restrict
ourselves to this simplified case, since the main incompleteness of the theorem, namely that we
cannot say anything for small q < q0(d), remains being an open problem and it is questionable
whether the methods we use are sufficient to cover the cases of small q.

The following theorems can be easily deduced from Theorem 1.

Theorem 2. Let d ≥ 2 be an integer, q ≥ q0(d) a sufficiently large prime number, P ∈ Z[X]
of degree d such that P (N) ⊂ N for which the leading coefficient ad is co-prime to q, and m an
integer, m ≥ 1. Then there exists σq,m > 0 such that for all integers a

card{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a,D) +O(x1−σq,m),

where D = (q − 1,m) and

Q(a,D) = card{0 ≤ n < D : P (n) ≡ a mod D}.

Remark 3. There is no simple formula to express Q(a,D) in the general case, but for any
a and D fixed, we have

Q(a,D) =
∏
p |D

Q(a, pvp(D))

(see [25, chapitre 5.9]). In the special case where D = 1 we have Q(a,D) = 1.

Theorem 3. Let d ≥ 2 be an integer, q ≥ q0(d) a sufficiently large prime number, and
P ∈ Z[X] of degree d such that P (N) ⊂ N for which the leading coefficient ad is co-prime to
q. Then the sequence (αsq(P (n)))n∈N is uniformly distributed modulo 1 if and only if α is an
irrational number.

Let us consider the following question:

Problem 2. For any integer valued polynomial P of degree d and for any integer k is close
to q−1

2 dx logq x, give the number of integers n ≤ x such that sq(P (n)) = k}.

For P (X) = X2 the estimates obtained in [17] are uniform in α so that the methods we used
in [7] permit to answer Problem 2 when d = 2.

But, as the estimate (2.1) is not uniform in α Problem 2 remains open for d ≥ 3.

The structure of the paper is the following one: in section 3 we present some auxiliary results
concerning combinatorial lemmas and Fourier transforms estimates, in Section 4 we prove
Theorem 1 and then Theorems 2 and 3 are derived in Section 5.



THE SUM OF DIGITS FUNCTION OF POLYNOMIAL SEQUENCES Page 5 of 22

3. Auxiliary Results

We will need also the following variant of van der Corput’s inequality, which gives some
flexibility in the indexes:

Lemma 1. For all integers 1 ≤ A ≤ B ≤ N , all integers R ≥ 1 and all complex numbers
z1, z2, . . . , zN of modulus ≤ 1 we have∣∣∣∣∣

B∑
n=A

zn

∣∣∣∣∣ ≤
B −A+ 1

R

∑
|r|<R

(
1− |r|

R

) ∑
1≤n,n+r≤N

zn+rzn

1/2

+
R

2
.

Proof. This is Lemme 15 of [17, p. 123] .

3.1. A Carry-Lemma

Let s[<λ]
q denote the truncated sum-of-digits function

s[<λ]
q =

∑
j<λ

εj(n).

The truncated sum-of-digits function was introduced in [8] and the following property is a
generalization of [17, Lemme 16], where the polynomial P (X) = X2 is considered.

Lemma 2. Suppose that P ∈ Z[X] of degree d ≥ 2 is such yhat P (N) ⊂ N and that ν and ρ
are integers with ν ≥ 2 and 1 ≤ ρ ≤ ν/d. For every integer r with |r| < qρ let E(r, ν, ρ) denote
the number of integers n with qν−1 < n ≤ qν and

sq(P (n+ r))− sq(P (n)) 6= s[<(d−1)ν+2ρ]
q (P (n+ r))− s[<(d−1)ν+2ρ]

q (P (n)). (3.1)

Then we have

E(r, ν, ρ) ≤ C qν−ρ, (3.2)

where the constant C > 0 depends on the polynomial P .

Proof. First observe that |P (n+ r)− P (n)| ≤ c1q(d−1)ν+ρ ≤ q(d−1)ν+ρ+C1 for some con-
stants c1 > 0 and C1 > 0. If ρ ≤ C1 then (3.2) is certainly true (for a proper constant C > 0).
Thus we may assume that ρ > C1.

Assume that P (n+ r)− P (n) > 0. This means that if we add P (n+ r)− P (n) to P (n) then
this will affect certainly the first (d− 1)ν + ρ+ C1 digits. Furthermore, if n satisfies (3.1) then
the digits of aj = εj(P (n)) have to satisfy aj = q − 1 for (d− 1)ν + ρ+ C1 ≤ j < (d− 1)ν + 2ρ.
Hence, it is sufficient to estimate the number of n with this property. It is clear that this
property is equivalent to the statement that there exists a positive integer m ≤ qν−2ρ with
bP (n)/q(d−1)ν+ρ+C1c = qρ−C1m− 1. Equivalently this means that

qρ−C1m− 1 ≤ P (n)
q(d−1)ν+ρ+C1

< qρ−C1m. (3.3)

Hence, for given m ≤ qν−2ρ the number of n (with qν−1 < n ≤ qν) that satisfy (3.3) is bounded
by

1 + c2q
(d−1)ν+2ρ

d −ρm
1
d−1 + c3q

(d−1)ν+2ρ
d −νm

1
d
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for certain constants c2, c3 > 0. Consequently the total number of n with these restrictions if
bounded by

� qν−2ρ + q
(d−1)ν+2ρ

d −ρq
ν−2ρ
d + q

(d−1)ν+2ρ
d −νq

ν−2ρ
d +ν−2ρ

� qν−ρ.

A similar estimate holds for those n with P (n+ r)− P (n) ≤ 0. This proves the lemma.

Remark 4. Heuristically this lemma allows us, for most integers n, to get rid of the digits
of index between (d− 1)ν and dν. In the case d = 2 we can remove in this way almost half of
the digits and this was a crucial argument in the proof of Theorem E. When d ≥ 3, we remove
only a smaller proportion (1/d) of digits and this leads to a more difficult situation.

3.2. Exponential Sum Estimates

In what follows we will use several estimates of exponential sums. The first one is the following
version of Vinogradov’s estimate that is due to Montgomery [19].

Lemma 3. Suppose that P is a polynomial of degree d ≥ 2 with real coefficients whose
leading coefficient αd satisfies ∣∣∣αd − a

b

∣∣∣ ≤ 1
b2

with (a, b) = 1 and N ≤ b ≤ Nd−1. Then

N∑
n=1

e(P (n))� N
1− 1

11d2 log d , (3.4)

where the constant implied by � depends on the degree d.

Note that the condition N ≤ b ≤ Nd−1 can be weakened but then the exponential saving
gets worse. For example, if b = Nd−τ for some τ ∈ [0, 1] then we have

N∑
n=1

e(P (n))� N
1− τ

11d2 log d . (3.5)

For example, in the proof of Theorem 1 we will need estimates for exponential sums of the
form

S =
∑
n<qν

e(P (n)),

where P is of the form P (x) = a
qλ
xd + · · · , λ = (d− 1)ν + 2ρ > (d− 1)ν, and (a, qλ) = 1. By

splitting up the sum according to n = q2ρn′ + ` with 0 ≤ ` < q2ρ and 0 ≤ n′ < qν−2ρ we obtain
(since λ− 2ρd = (d− 1)(ν − 2ρ))

S =
∑

0≤`<q2ρ

∑
n′<qν−2ρ

e

(
a

q(d−1)(ν−2ρ)
(n′)d + · · ·

)
� q2ρq

(ν−2ρ)
“
1− 1

11d2 log d

”

= q
ν

“
1−(1− 2ρ

ν ) 1
11d2 log d

”
.

This is in accordance with (3.5).
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Finally we formulate a lemma that applies also in the range that is not covered by Lemma 3,
see [11, Proposition 8.2].

Lemma 4. Suppose that d ≥ 2 and P (x) = αdx
d + · · ·+ α0 is a polynomial with rational

leading coefficient αd 6= 0. Then∑
n<N

e(P (n))� N1−21−d

+N1−d 21−d

 ∑
1≤|s1|,...,|sd−1|<N

min
(
N,

1
|sin (παdd!s1 · · · sd−1)|

)21−d

,

where the implied constant depends on d.

3.3. Fourier-Analytic Tools

A major ingredient of the proof of Theorem 1 is the discrete Fourier analysis of the function

n 7→ e(fλ(n)),

where fλ(n) denotes the function

fλ(n) = α
∑
j<λ

εj(n) = α s[<λ]
q (n). (3.6)

Observe that fλ is periodic with period qλ.
We set

Fλ(h, α) = q−λ
∑

0≤u<qλ
e
(
fλ(u)− huq−λ

)
. (3.7)

Furthermore set

ϕq(t) =
| sin(πqt)|
| sin(πt)|

,

ψq(t) =
1
q

∑
0≤r<q

ϕq

(
t+

r

q

)
,

ηq =
logψq

(
1
2q

)
log q

.

Then the following properties hold.

Lemma 5. Let q ≥ 2 and λ ≥ 1 be integers and Fλ(h, α) and ηq be defined as above.

(i) Set cq = π2

12 log q

(
1− 2

q+1

)
. Then we have uniformly for all real α

|Fλ(h, α)| ≤ eπ
2/48q−cq‖(q−1)α‖2λ.

(ii) Suppose that 0 ≤ δ ≤ λ . Then for all integers a∑
0≤h<qλ

h≡a mod qδ

|Fλ(h, α)|2 = |Fδ(a, α)|2.
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(iii) Suppose that 0 ≤ δ ≤ λ . Then for all integers a∑
0≤h<qλ

h≡a mod qδ

|Fλ(h, α)| ≤ qηq(λ−δ)|Fδ(a, α)|.

(iv) Suppose that 0 ≤ δ1 ≤ δ ≤ λ. Then∑
0≤h1,h2<q

λ

h1+h2≡0 mod qδ

h1≡0 mod qδ1

|Fλ(h1, α)Fλ(−h2, α)| ≤ q2ηq(λ−δ)|Fδ1(0, α)|2.

Proof. These are slight and direct extensions of corresponding estimates from [17, 18].

Note that ηq can be estimated by

ηq ≤
log
(

2
q sin π

2q
+ 2

π log 2q
π

)
log q

which ensures that ηq → 0 as q →∞. (The upper bound is asymptotically equivalent to
log log q

log q .) For example, we have η2 = 0.5 and η3 ≈ 0.4649, see [18].
In the proof of Theorem 1 we will need the assumption

2(d− 1)ηq <
1

11d2 log d

which is implied by (2.2). Note that (2.2) also implies q > d!.
The next lemma extends a property of [18] and will be crucial in the proof of Theorem 1.

Lemma 6. Suppose that d ≥ 2, that q is a prime number, and that (a, q) = 1 Furthermore,
let λ, ν, and δ non-negative integers with λ ≥ (d− 2)ν + δ. Then for every ε > 0 we have∑

1≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2
∑

1≤|s1|,...,|sd−2|<qν

1∣∣∣sin(π ahs1···sd−2
qλ

)∣∣∣
� ν qλ−δ+νε q−cq (λ−(d−2)ν)‖(q−1)α‖2 , (3.8)

where cq is defined in Lemma 5 and the implied constant depends on d and on ε.

Proof. We proceed by induction and start with λ = (d− 2)ν + δ. Note that if 1 ≤
|s1|, . . . , |sd−2| < qν and then we certainly have

1 ≤ |s1 · · · sd−2| < q(d−2)ν = qλ−δ.

Furthermore, the divisor functions τ(n) = card{d ≤ n : d|n} satisfies τ(n)� nε for every ε > 0.
Hence, it follows that for every ε > 0 we have uniformly for all residue classes 1 ≤ ` < qλ−δ

card{(s1, . . . , sd−2) : 1 ≤ |s1|, . . . , |sd−2| < qν , s1 · · · sd−2 ≡ ` mod qλ−δ} � qνε.

We recall that (a, q) = 1 and that (h, qλ) = qδ. Hence, if we write H = hq−δ it also follows that
for every residue classes 1 ≤ ` < qλ−δ

card{(s1, . . . , sd−2) : 1 ≤ |s1|, . . . , |sd−2| < qν , aHs1 · · · sd−2 ≡ ` mod qλ−δ} � qνε. (3.9)
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Hence, (3.9) implies ∑
1≤|s1|,...,|sd−2|<qν

1∣∣∣sin(π aHs1···sd−2
qλ−δ

)∣∣∣ � qλ−δ+νε log(qλ−δ)

� ν qλ−δ+νε.

Furthermore, by Lemma 5 ∑
1≤h<qλ

(h,qλ)=qδ

|Fλ(h, α)|2 ≤ |Fδ(0, α)|2

� q−2cq‖(q−1)α‖2δ.

Consequently we obtain (3.8) for λ = (d− 2)ν + δ.
Similarly we can check (3.8) for λ = (d− 2)ν + δ + 1.
Finally we show inductively that if (3.8) is valid for λ then (3.8) is still valid when λ is

replaced by λ+ 2. For this purpose we consider the property that

∑
0≤h<qλ+2

(h,qλ+2)=qδ

|Fλ+2(h, α)|2∣∣∣sin(π Ah
qλ+2

)∣∣∣ ≤ q2−2cq‖(q−1)α‖2
∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(πAhqλ )∣∣∣ (3.10)

holds for all integers 0 ≤ δ ≤ λ and for all A with (A, qλ) < qλ−δ.
It is clear that (3.10) implies the induction step. One only has to replace A by as1 · · · sd−2

and take the sum over all s1, · · · sd−2.
Hence, it remains to check (3.10). Set

Φ1(A, x) =
1
q2

∑
0≤j<q

ϕ2
q

(
α− x+ j

q

)
ϕq

(
A(x+ j)

q

)

and

Φ2(A, x) =
1
q2

∑
0≤j<q

ϕ2
q

(
α− x+ j

q

)
ϕq

(
A(x+ j)

q

)
Φ1

(
x+ j

q

)
.

First suppose that (A, q) = 1. Then it follows as in [18, Lemme 21] that

∑
0≤h<qλ+2

(h,qλ+2)=qδ

|Fλ+2(h, α)|2∣∣∣sin(π Ah
qλ+2

)∣∣∣ =
∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(πAhqλ )∣∣∣Φ2

(
A,

h

qλ

)
. (3.11)

Since ∣∣Fλ+1(h′ + `qλ, α)
∣∣ = |Fλ(h′, α)| 1

q
ϕq

(
α− h′

qλ+1
− `

q

)
and

1∣∣∣sin(πA(h′+`qλ)
qλ+1

)∣∣∣ =
1∣∣∣sin(πAh′qλ )∣∣∣ ϕq

(
A(h′ + `qλ)

qλ+1

)
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it follows that

∑
0≤h<qλ+1

(h,qλ+1)=qδ

|Fλ+1(h, α)|2∣∣∣sin(π Ah
qλ+1

)∣∣∣ =
∑

0≤h′<qλ
(h′,qλ)=qδ

∑
0≤`<q

∣∣Fλ+1(h′ + `qλ, α)
∣∣2∣∣∣sin(πA(h′+`qλ)

qλ+1

)∣∣∣
=

∑
0≤h′<qλ

(h′,qλ)=qδ

|Fλ(h′, α)|2∣∣∣sin(πAh′qλ )∣∣∣
∑

0≤`<q

1
q2
ϕ2
q

(
α− h′

qλ+1
− `

q

)
ϕq

(
A(h′ + `qλ)

qλ+1

)

=
∑

0≤h′<qλ
(h′,qλ)=qδ

|Fλ(h′, α)|2∣∣∣sin(πAh′qλ )∣∣∣ Φ1

(
a,
h′

qλ

)
.

In completely the same way one obtains (3.11).
Moreover it follows from the proof of Lemme 21 of [18] that one has uniformly in x and for

all A with (A, q) = 1

Φ2(a, x) ≤ q2γq(α)

with γq(α) defined by

qγq(α) = max
t∈R

√
φq(α+ t)φq(α+ qt).

It follows from Lemme 7 of [17] that

γq(α) ≤ 1− cq‖(q − 1)α‖2

where cq is defined in Lemma 5, so that we have

Φ2(a, x) ≤ q2−2cq‖(q−1)α‖2 .

Of course, this proves (3.10) in this case.
Now suppose that (A, qλ) = qµ with λ− µ > δ. We also set A1 = Aq−µ. Then it follows from

Lemma 5 that ∑
0≤h<qλ

(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(πAhqλ )∣∣∣ =
∑

0≤h<qλ
(h,qλ)=qδ

|Fλ(h, α)|2∣∣∣sin(π A1h
qλ−µ

)∣∣∣
=

∑
0≤h′<qλ−µ

(h′,qλ−µ)=qδ

1∣∣∣sin(π A1h′

qλ−µ

)∣∣∣
∑

0≤h<qλ
h≡h′ mod qλ−µ

|Fλ(h, α)|2

=
∑

0≤h′<qλ−µ
(h′,qλ−µ)=qδ

|Fλ−µ(h′, α)|2∣∣∣sin(π A1h′

qλ−µ

)∣∣∣ .
This means that we can reduce the general case µ > 1 to the case µ = 0 and, thus, (3.10) holds
in all cases.

This completes the proof of the lemma.
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4. Proof of Theorem 1

4.1. Reduction of the Problem

In order to simplify notation we set f(n) = αsq(n). The major aim is to estimate the
exponential sum

S =
∑
n≤x

e(f(P (n))).

We also make the general assumption d ≥ 3 since the case of quadratic polynomials is
completely covered in the analysis of [17].

As usual we will only consider sums of the following form.

Proposition 1. Let d ≥ 3 be an integer, q ≥ q0(d) be a prime number, and P ∈ Z[X] of
degree d such that P (N) ⊂ N for which the leading coefficient ad is co-prime to q. Then

S1 =
∑

qν−1<n≤x

e(f(P (n)))� qν−c‖(q−1)α‖2ν

uniformly for qν−1 < x ≤ qν , where ν ≥ ν1 = ν1(q, α) is sufficiently large, c > 0 depends on q
and d and the implied constant depends on q, d and α.

It is an easy task to derive Theorem 1 from Proposition 1. From the obvious decomposition∑
1≤n≤x

e(f(P (n))) = e(f(P (1)) +
∑

1≤i≤ν1−1

∑
qi−1<n≤qi

e(f(P (n)))

+
∑

ν1≤i≤ν−1

∑
qi−1<n≤qi

e(f(P (n))) +
∑

qν−1<n≤x

e(f(P (n)))

we obtain immediately∣∣∣∣∣∣
∑

1≤n≤x

e(f(P (n)))

∣∣∣∣∣∣� qν1−1 +
∑

ν1≤i≤ν

qi−c‖(q−1)α‖2i

� qν−c‖(q−1)α‖2ν

� x1−c‖(q−1)α‖2

which is precisely the statement of Theorem 1.
The first step is to use van der Corput’s inequality (Lemma 1). With A = 1, B = bxc − qν−1,

N = qν − qν−1, zn = e(f(P (qν−1 + n)) and R = qρ we obtain

|S1| � q(ν−ρ)/2

∣∣∣∣∣∣
∑
|r|<qρ

(
1− |r|

qρ

) ∑
qν−1<n,n+r≤qν

e(f(P (n+ r))− f(P (n)))

∣∣∣∣∣∣
1/2

+
qρ

2
.

By separating the case r = 0 and by suppressing the condition qν−1 < n+ r ≤ qν (by adding
proper error terms) we get the upper bound

|S1| � qν−
ρ
2 + q

ν+ρ
2 + qρ + q

ν
2 max

1≤|r|<qρ

∣∣∣∣∣∣
∑

qν−1<n≤qν
e(f(P (n+ r))− f(P (n)))

∣∣∣∣∣∣
1/2

.

In order to simplify our estimates we will assume (without loss of generality) that ν ≥ 10 and

1 ≤ ρ ≤ ν

10
(4.1)
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which ensures that

qν−
ρ
2 + q

ν+ρ
2 + qρ � qν−

ρ
2 .

The next step is to replace the difference f(P (n+ r))− f(P (n)) by f(d−1)ν+2ρ(P (n+ r))−
f(d−1)ν+2ρ(P (n)) where f(d−1)ν+2ρ is defined by (3.6). By setting

S2(r, ν, ρ) =
∑

qν−1<n≤qν
e(f(d−1)ν+2ρ(P (n+ r))− f(d−1)ν+2ρ(P (n)))

we obtain (with the help of Lemma 2)

|S1| � qν−
ρ
2 + q

ν
2 max

1≤|r|<qρ
(|S2(r, ν, ρ)|+ E(r, ν, ρ))1/2

� qν−
ρ
2 + q

ν
2 max

1≤|r|<qρ
|S2(r, ν, ρ)|1/2 .

Therefore we only have to discuss the sums S2(r, ν, ρ).

4.2. Fourier Analysis of S2(r, ν, ρ)

By using the orthogonality relation for of the exponential function it follows with

λ = (d− 1)ν + 2ρ

that

S2(r, ν, ρ) =
∑

qν−1<n≤qν
e (fλ(P (n+ r))− fλ(P (n)))

=
1
q2λ

∑
0≤u1<qλ

∑
0≤u2<qλ

e(fλ(u1)− fλ(u2))

×
∑

qµ−1≤n<qν

∑
0≤h1<qλ

e

(
h1(P (n+ r)− u1)

qλ

) ∑
0≤h2<qλ

e

(
h2(P (n)− u2)

qλ

)
=

∑
0≤h1<qλ

∑
0≤h2<qλ

Fλ(h1, α)Fλ(−h2, α)
∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
,

where Fλ is defined by (3.7). In order to estimate S2(r, ν, ρ) we will have a close look to the
exponential sum

S3(r, ν, ρ, h1, h2) =
∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
.

Suppose that aj , 0 ≤ j ≤ d, are the coefficients of P . Then we have

h1P (x+ r) + h2P (x) = (h1 + h2)adxd + (h1dadr + (h1 + h2)ad−1)xd−1 + · · ·

and consequently

h1P (x+ r) + h2P (x)
qλ

=
ad(h1 + h2)

qλ
xd +

h1dadr + (h1 + h2)ad−1

qλ
xd−1 + · · · .

We now use the assumption that q is prime and that ad is co-prime to q. In order to apply
Lemma 3 we have to assume that the leading coefficient of the polynomial is close or equal to a
number in Q \ Z. This means that we have to distinguish between the cases (h1 + h2, q

λ) = qδ,
where 0 ≤ δ ≤ λ. In particular we have to cut this range into three pieces. For this purpose we
introduce an additional parameter µ that satisfies (d− 2)ν + 2ρ < µ ≤ λ (and in fact it will be
chosen very close to λ, see Section 4.6) and we consider the three following cases:

(1) 0 ≤ δ ≤ (d− 2)ν + 2ρ. In this case we will apply Lemma 3.
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(2) (d− 2)ν + 2ρ < δ ≤ µ. In this case we will also work directly with Lemma 3 but in a
slightly different way.

(3) µ < δ ≤ λ. This is the most difficult case. Here we will apply Lemma 4 and proper
estimates for the Fourier terms Fλ(h, α).

The next three sections deal with these cases separately.

4.3. Small δ

Set

S4(r, ν, ρ) =
∑

0≤δ≤(d−2)ν+2ρ

∑
0≤h1,h2<q

λ

(h1+h2,q
λ)=qδ

Fλ(h1, α)Fλ(−h2, λ)

×
∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
.

If (h1 + h2, q
λ) = qδ we have

h1P (x+ r) + h2P (x)
qλ

=
adH

qλ−δ
xd + · · ·

for some integer H with (H, q) = 1. Note also that δ ≤ (d− 2)ν + 2ρ implies λ− δ ≥ ν. Hence,
by Lemma 3 (and its extension (3.5)) we have∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
� qν(1−(1− 2ρ

ν )Cd),

where Cd abbreviates

Cd =
1

11d2 log d
.

Furthermore, by Lemma 5 we have∑
0≤h1,h2<q

λ

(h1+h2,q
λ)=qδ

Fλ(h1, α)Fλ(−h2, λ)� q2ηq(λ−δ).

Consequently

S4(r, ν, ρ)�
∑

0≤δ≤(d−2)ν+2ρ

q2ηq(λ−δ)qν(1−(1− 2ρ
ν )Cd)

� qν+2ρ(2ηq+Cd)−ν(Cd−2(d−1)ηq).

If q ≥ q0(d) is sufficiently large then 2(d− 1)ηq < Cd. Furthermore if we suppose that

0 < ρ ≤ Cd − 2(d− 1)ηq
4(2ηq + Cd)

ν (4.2)

then

S4(r, ν, ρ)� qν(1−κ) (4.3)

with κ = 1
2 (Cd − 2(d− 1)ηq) > 0 that is independent from r and α (provided that q ≥ q0(d)).
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4.4. Medium δ

Next set

S5(r, ν, ρ, µ) =
∑

(d−2)ν+2ρ<δ≤µ

∑
0≤h1,h2<q

λ

(h1+h2,q
λ)=qδ

Fλ(h1, α)Fλ(−h2, λ)

×
∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
,

where (d− 2)ν + 2ρ < µ ≤ λ. Again if (h1 + h2, q
λ) = qδ we have

h1P (x+ r) + h2P (x)
qλ

=
adH

qλ−δ
xd + · · ·

for some integer H with (H, q) = 1. However, if δ > (d− 2)ν + 2ρ then we have λ− δ < ν.
Thus we subdivide the interval [qν−1, qν) into qν−λ+δ−1 sub-intervals of length qλ−δ and apply
then Lemma 3. Hence we have∑

qν−1≤n<qν
e

(
h1P (n+ r) + h2P (n)

qλ

)
� qν−λ+δq(λ−δ)(1−Cd)

= qν−(λ−δ)Cd .

Consequently we obtain by Lemma 5

S5(r, ν, ρ, µ)�
∑

(d−2)ν+2ρ<δ≤µ

q2ηq(λ−δ)qν−(λ−δ)Cd

� qν−(Cd−2ηq)(λ−µ). (4.4)

4.5. Large δ

Set

S6(r, ν, ρ, µ) =
∑

µ<δ≤λ

∑
0≤h1,h2<q

λ

(h1+h2,q
λ)=qδ

Fλ(h1, α)Fλ(−h2, λ)

×
∑

qν−1≤n<ν

e

(
h1P (n+ r) + h2P (n)

qλ

)
.

This case of large δ is the most difficult one. The reason is that the denominator qλ−δ gets
too small so that Lemma 3 gives no proper error term. In fact by considering proper residue
classes we will omit the leading term ad(h1 + h2)q−λnd completely.

Set τ = dλ−δd−1 e and write n = qτn′ + ` with 0 ≤ ` < qτ . Then, with H = (h1 + h2)q−δ ∈ Z
we have

h1P (n+ r) + h2P (n)
qλ

= Hadq
dτ−(λ−δ)(n′)d + dH`adq

(d−1)τ−(λ−δ)(n′)d−1

+Had−1q
(d−1)τ−(λ−δ)(n′)d−1 +

dadh1r

qλ−(d−1)τ
(n′)d−1 + · · ·

and as it follows from the definition of τ that (d− 1)τ − (λ− δ) ≥ 0, we have

e

(
h1P (n+ r) + h2P (n)

qλ

)
= e

(
dadh1r

qλ−(d−1)τ
(n′)d−1 + · · ·

)
.

This means that the polynomial f(x) = (h1P (x+ r) + h2P (x))q−λ of degree d is replaced by
a polynomial of degree d− 1.
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Suppose that (r, qλ) = qρ1 for some 0 ≤ ρ1 ≤ ρ and (h1, q
λ) = qδ1 for some 0 ≤ δ1 < λ. We

will distinguish again between several ranges of δ1:

S6(r, ν, ρ, µ) = S′6(r, ν, ρ, µ) + S′′6 (r, ν, ρ, µ) + S′′′6 (r, ν, ρ, µ)

with

S′6(r, ν, ρ, µ) =
∑

µ<δ≤λ

∑
0≤δ1≤ν+τ−ρ1

S7(r, ν, ρ, µ, δ, δ1),

S′′6 (r, ν, ρ, µ) =
∑

µ<δ≤λ

∑
ν+τ−ρ1<δ1≤µ−2ρ

S7(r, ν, ρ, µ, δ, δ1),

S′′′6 (r, ν, ρ, µ) =
∑

µ<δ≤λ

∑
µ−2ρ<δ1≤λ

S7(r, ν, ρ, µ, δ, δ1),

where

S7(r, ν, ρ, µ, δ, δ1) =
∑

0≤h1,h2<q
λ

(h1+h2,q
λ)=qδ

(h1,q
λ)=qδ1

Fλ(h1, α)Fλ(−h2, λ)

∑
qν−1≤n<ν

e

(
h1P (n+ r) + h2P (n)

qλ

)
is estimated by

S7(r, ν, ρ, µ, δ, δ1)�
∑

0≤h1,h2<q
λ

(h1+h2,q
λ)=qδ

(h1,q
λ)=qδ1

|Fλ(h1, α)Fλ(−h2, λ)|

× qτ max
0≤`<qτ

∣∣∣∣∣∣
∑

qν−τ−1≤n′<qν−τ
e

(
dadh1r

qλ−(d−1)τ
(n′)d−1 + · · ·

)∣∣∣∣∣∣ .
(4.5)

4.5.1. Large δ1 First let us consider the sum S′′′6 (r, ν, ρ, µ). In this case we have δ1 > µ− 2ρ
which assures that the case where ρ1 + δ1 is larger than λ− (d− 1)τ or almost as large as
λ− (d− 1)τ . In particular we have λ− δ1 ≤ λ− µ+ 2ρ. Consequently the number of pairs
(h1, h2) with the properties 0 ≤ h1, h2 < qλ, (h1, q

λ) = qδ1 , (h1 + h2, q
λ) = qδ is bounded by

q2(λ−µ+ρ). Furthermore, we have by Lemma 5 |Fλ(h, α)| � q−cq‖(q−1)α‖2λ.
Hence we have

S7(r, ν, ρ, µ, δ, δ1) ≤ qν+2(λ−µ+ρ)q−2cq‖(q−1)α‖2λ

and consequently

S′′′6 (r, ν, ρ, µ) ≤ λ2 qν+2(λ−µ+ρ)−2cq‖(q−1)α‖2λ. (4.6)

In what follows we will choose ρ and µ appropriately so that the term 2cq‖(q − 1)α‖2λ
dominates 2(λ− µ+ ρ) and S′′′6 (r, ν, ρ, µ) is small enough.

Next let us consider the sum S′′6 (r, ν, ρ, µ). Here we will use Lemma 3 to estimate the
exponential sum

S8 =
∑

qν−τ−1≤n′<qν−τ
e

(
dadH1r1

qλ−(d−1)τ−δ1−ρ1
(n′)d−1 + · · ·

)
,

where H1 = h1q
−δ1 and r1 = rq−ρ1 . Note that (dadH1r1, q) = 1. Note also that in this case

δ1 < δ.
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Suppose first that

ν − τ − ρ1 ≤ δ1 ≤ (d− 2)ν + 2ρ− ρ1 − (d− 2)τ, (4.7)

which is equivalent to

qν−τ ≤ qλ−(d−1)τ−δ1−ρ1 ≤ q(d−2)(ν−τ)+2ρ.

Hence we can apply Lemma 3 (and its extension (3.5)) to obtain the bound

S8 � q(ν−τ)(1−(1− 2ρ
ν−τ )Cd−1)

� q−τqν(1−
1
2Cd−1),

provided that

(ν − τ)
(

1− 2ρ
ν − τ

)
≥ ν

2
. (4.8)

It will be an easy task to choose the constants ρ and µ such that (4.8) is satisfied. Furthermore
we have from Lemma 5 ∑

0≤h1,h2<q
λ

h1+h2≡0 mod qδ

h1≡0 mod qδ1

|Fλ(h1, α)Fλ(−h2, α)| ≤ q2ηq(λ−δ). (4.9)

This leads to the estimate∑
µ<δ≤λ

∑
ν+τ−ρ1<δ1≤(d−2)ν+2ρ−ρ1−(d−1)τ

S7(r, ν, ρ, µ, δ, δ1)

�
∑

µ<δ≤λ

∑
ν+τ−ρ1<δ1≤(d−2)ν+2ρ−ρ1−(d−1)τ

q2ηq(λ−δ)qν(1−
1
2Cd−1)

� λ q2ηq(λ−µ)qν(1−
1
2Cd−1)

� λqν(1−
1
4Cd−1)

provided that

2ηq(λ− µ) ≤ ν

4
Cd−1. (4.10)

Again it will be easy to choose µ sufficiently close to λ such that (4.10) holds.

4.5.2. Medium δ1 Next suppose that

(d− 2)ν + 2ρ− ρ1 − (d− 2)τ < δ1 ≤ µ− 2ρ (4.11)

which is equivalent to

qλ−µ−(d−1)τ+2ρ−ρ1 ≤ qλ−(d−1)τ−δ1−ρ1 < qν−τ .

Hence, by subdividing the interval [qν−τ−1, qν−τ ) and applying Lemma 3 it follows that

S8 � qν−τ−(λ−(d−1)τ−δ1−ρ1)q(λ−(d−1)τ−δ1−ρ1)(1−Cd−1)

� q−τqν−ρCd−1 .

Here we have used that

λ− (d− 1)τ − δ1 − ρ1 ≥ λ− µ− (λ− δ)− 1 + 2ρ− ρ1 ≥ ρ− 1.

Furthermore, we can assume that

(d− 2)ν + 2ρ− ρ1 − (d− 1)τ ≥ (d− 5/2)ν. (4.12)
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Consequently δ1 ≥ (d− 5/2)ν and we get∑
0≤h1,h2<q

λ h1+h2≡0 mod qδ

h1≡0 mod qδ1

|Fλ(h1, α)Fλ(−h2, α)|

� q2ηq(λ−δ)q−2(d−5/2)cq‖(q−1)α‖2ν

and thus∑
µ<δ≤λ

∑
(d−2)ν+2ρ−ρ1−(d−1)τ<δ1≤µ−2ρ

S7(r, ν, ρ, µ, δ, δ1)

�
∑

µ<δ≤λ

∑
(d−2)ν+2ρ−ρ1−(d−1)τ<δ1≤µ−2ρ

q2ηq(λ−δ)q−2(d−5/2)cq‖(q−1)α‖2νqν−ρCd−1

� λ q2ηq(λ−µ)qν−ρCd−1−(2d−5)cq‖(q−1)α‖2ν .

Putting these two estimates together we obtain an upper bound for S′′6 (r, ν, ρ, µ) of the form

S′′6 (r, ν, ρ, µ)� λqν(1−
1
4Cd−1) + λ q2ηq(λ−µ)qν−ρCd−1−(2d−5)cq‖(q−1)α‖2ν (4.13)

provided that (4.8), (4.10), and (4.12) hold.

4.5.3. Small δ1 Finally we deal with S′6(r, ν, ρ, µ). For notational convenience we set λ′ =
λ− (d− 1)τ and ν′ = ν − τ (where τ = dλ−δd−1 e). As above we also use the abbreviations H1 =
h1q
−δ1 and r1 = rq−ρ1 . Furthermore we define

H(λ, δ, δ1) = {(h1, h2) ∈ Z2 : 0 ≤ h1, h2 < qλ, h1 + h2 ≡ 0 mod qδ, h1 ≡ 0 mod qδ1}.

It now follows from Lemma 4 that∑
qν′−1≤n′<qν′

e

(
dadH1r1
qλ′−δ1−ρ1

(n′)d−1 + · · ·
)
� qν

′(1−22−d)

+ qν
′(1−(d−1) 22−d)

 ∑
1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣
2d−2

, (4.14)

provided that

λ′ − ρ1 ≥ (d− 2)ν′ + δ1,

or equivalently if

δ1 ≤ ν + 2ρ− τ − ρ1. (4.15)

However, by assumption we have 0 ≤ δ1 ≤ ν + τ − ρ1. Hence, (4.15) is satisfied if

τ ≤ ρ. (4.16)

It follows from (4.5) and (4.14) that S7(r, ν, ρ, µ, δ, δ1)� T1 + T2, where

T1 =
∑

(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)| qτ qν
′(1−22−d)

can be estimated with the help of (4.9) by

T1 ≤ q2ηq(λ−δ)qν−22−dν′
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and

T2 = qν
′(1−(d−1) 22−d)

∑
(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)|

×

 ∑
1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣
2d−2

can be estimated with the help of Hölder’s inequality by

T2 ≤ qν
′(1−(d−1) 22−d) T 1−22−d

3 T 22−d

4 ,

where

T3 =
∑

(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)|

and

T4 =
∑

(h1,h2)∈H(λ,δ,δ1)

|Fλ(h1, α)Fλ(−h2, α)|
∑

1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣ .
By (4.9) the term T3 can be bounded by

T3 ≤ q2ηq(λ−δ).

In order to handle T4 we have to be more careful. Since∑
h2≡h1 mod qδ

|Fλ(−h2, α)| ≤ qηq(λ−δ)|Fδ(h1, α)|

and |Fλ(h1, α)| ≤ |Fδ(h1, α)| it follows that

T4 ≤ qηq(λ−δ)
∑

0≤h1<q
λ

(h1,q
λ)=qδ1

|Fδ(h1, α)|2

×
∑

1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adH1r1
qλ
′−δ1−ρ1

s1 · · · sd−2

)∣∣∣ .
Observe that λ′ = λ− (d− 1)τ ≤ δ. Hence, due to periodicity and the (already used) inequality
|Fδ(h1, α)| ≤ |Fλ′−ρ1(h1, α)| we obtain the upper bound

T4 ≤ qηq(λ−δ)q(d−1)τ+ρ1
∑

0≤h′<qλ
′−ρ1

(h′,qλ
′−ρ1 )=qδ1

|Fλ′−ρ1(h′, α)|2

×
∑

1≤|s1|,...,|sd−2|≤qν′

1∣∣∣sin(π d!adr1h′
qλ
′−ρ1

s1 · · · sd−2

)∣∣∣ .
Finally we apply Lemma 6 and obtain

T4 � ν qηq(λ−δ)q(d−1)τ+ρ1qλ
′−ρ1−δ1+ν′εq−cq (λ′−ρ1−(d−2)ν′)‖(q−1)α‖2

� qλ−δ1+νε+ηq(λ−δ)q−cq (ν+2ρ−ρ1−τ)‖(q−1)α‖2 .



THE SUM OF DIGITS FUNCTION OF POLYNOMIAL SEQUENCES Page 19 of 22

Consequently

T2 ≤ qν
′(1−(d−1) 22−d) T 1−22−d

3 T 22−d

4

� qν
′(1−(d−1) 22−d)+2ηq(λ−δ)(1−22−d)+(λ−δ1+νε+ηq(λ−δ))22−d

q−cq 22−d(ν+2ρ−ρ1−τ)‖(q−1)α‖2

= qν+(2ρ+νε−δ1)22−d−τ(1−(d−1)22−d)+2ηq(λ−δ)q−cq 22−d(ν+2ρ−ρ1−τ)‖(q−1)α‖2

� qν+(2ρ+νε−δ1)22−d
q−cq 22−d(ν+2ρ)‖(q−1)α‖2 .

This proves that

S′6(r, ν, ρ, µ)�
∑

µ<δ≤λ

∑
0≤δ1≤ν+τ−ρ1

(T1 + T2)

� νqν(1−22−d)+(2ηq+22−d/(d−1))(λ−µ) (4.17)

+ qν+(2ρ+νε)22−d
q−cq 22−d(ν+2ρ)‖(q−1)α‖2 .

4.6. Completion of the proof of Theorem 1

We recall that
S1 � qν−

ρ
2 + q

ν
2 max

1≤|r|<qρ
|S2(r, ν, ρ)|1/2

and
S2(r, ν, ρ) = S4(r, ν, ρ) + S5(r, ν, ρ, µ) + S6(r, ν, ρ, µ),

where
S6(r, ν, ρ, µ) = S′6(r, ν, ρ, µ) + S′′6 (r, ν, ρ, µ) + S′′′6 (r, ν, ρ, µ)

and (d− 2)ν + 2ρ < µ ≤ λ = (d− 1)ν + 2ρ. Hence, by (4.3), (4.4), (4.6), (4.13), and (4.17) we
obtain:

S2(r, ν, ρ)� qν−
1
2 (Cd−2(d−1)ηq)ν + qν−(Cd−2ηq)(λ−µ)

+ νqν(1−22−d)+(2ηq+22−d/(d−1))(λ−µ) + qν+(2ρ+νε)22−d−cq 22−d‖(q−1)α‖2ν

+ λqν(1−
1
4Cd−1) + λ qν−ρCd−1+2ηq(λ−µ)−(2d−5)cq‖(q−1)α‖2ν

+ λ2 qν+2(λ−µ+ρ)−2cq(d−1)‖(q−1)α‖2ν ,

provided that (4.1), (4.2), (4.8), (4.10), (4.12), and (4.16) are satisfied. Recall also that τ =
dλ−δd−1 e ≤

λ−µ
d−1 + 1.

We now choose

ρ = min
(
cq
8
,
d− 1

2
cq,

1
10
,
Cd − 2(d− 1)ηq

4(2ηq + Cd)

)
‖(q − 1)α‖2ν,

λ− µ = min
(
ρ,

(2d− 5)cq
4ηq

‖(q − 1)α‖2ν, 21−d

2ηq + 22−d/(d− 1)
ν,
Cd−1

8ηq
ν

)
,

ε =
cq
4
‖(q − 1)α‖2.

This assures that (4.1), (4.2), and (4.10) are automatically satisfied. Since

τ <
λ− µ
d− 1

+ 1 ≤ ρ

d− 1
+ 1 ≤ ρ

we also have (4.16). Since ρ ≤ ν/10 this also implies and (4.8) and (4.12).
Furthermore this choice of parameters assures that there exist a constant c > 0 depending

only on q and d such that uniformly for 1 ≤ |r| ≤ qρ

S2(r, ν, ρ)� qν−2c‖(q−1)α‖2ν , (4.18)
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where the implied constant depends on q, d and α (and without loss of generality we can
assume that 2c‖(q − 1)α‖2ν ≤ ρ). Hence

S1 � qν−c‖(q−1)α‖2ν . (4.19)

This completes the proof of Proposition 1 and consequently the proof of Theorem 1.

5. Proofs of Theorems 2 and 3

5.1. Proof of Theorem 2

By a simple discrete Fourier analysis we have

card{n ≤ x : sq(P (n)) ≡ a mod m} =
∑
n≤x

1
m

∑
0≤j<m

e

(
j

m
(sq(P (n))− a)

)
.

Set t = (m, q − 1),m′ = m/t, J = {km′ : 0 ≤ k < t}, J ′ = {0, . . . ,m− 1} \ J = {km′ + r : 0 ≤
k < t, 1 ≤ r < m′}.

Now observe that sq(n) ≡ n mod t for all divisors t|q − 1. Hence, if j = km′ ∈ J then

e

(
j

m
sq(P (n))

)
= e

(
km′

tm′
sq(P (n))

)
= e

(
k

t
sq(P (n))

)
= e

(
k

t
P (n)

)
and consequently∑

n≤x

1
m

∑
j∈J

e

(
j

m
(sq(P (n))− a)

)
=
∑
n≤x

1
m

t∑
k=1

e

(
k

t
(P (n)− a)

)
=

t

m

∑
n≤x, P (n)≡a mod t

1

=
t

m

(x
t

+O(1)
)
Q(a, t)

=
( x
m

+O(1)
)
Q(a, t).

Thus,

card{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a, t) +O(t)

+
1
m

∑
j∈J′

e

(
−aj
m

)∑
n≤x

e

(
j

m
sq(P (n))

)
.

If J ′ = ∅ which corresponds to the degenerate case m|q − 1 then we are done. If J ′ 6= ∅ then
we set q′ = (q − 1)/t so that (q′,m) = 1. Furthermore for j = km′ + r ∈ J ′ we have

(q − 1)j
m

=
tq′(km′ + r)

tm′
= q′k +

q′r

m′
6∈ Z.

Hence, by Theorem 1 there exists σm,j > 0 with∑
n≤x

e

(
j

m
sq(P (n))

)
� x1−σm,j .

This finally implies

card{n ≤ x : sq(P (n)) ≡ a mod m} =
x

m
Q(a, t) +O

(
x1−σ)
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with
σ = min

j∈J′
σm,j

and completes the proof of Theorem 3.

5.2. Proof of Theorem 3

If α ∈ Q then (αsq(P (n)))n∈N attains only finitely many values modulo 1. Hence, the
sequence (αsq(P (n)))n∈N is definitely not uniformly distributed modulo 1.

Conversely, if α 6∈ Q then (q − 1)hα 6∈ Z. Thus, we can apply Theorem 1 where we formally
replace α by hα and observe that there exists σ > 0 with∑

n≤x

e(hαsq(P (n)))� x1−σ.

Hence, by Weyl’s criterion (see [9]) the sequence (αsq(P (n)))n∈N is uniformly distributed
modulo 1.
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