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Motives
I celebrate mathematics with sculpture and sculp-
ture with mathematics. Eons-old stone strikes me
as a perfect medium through which to celebrate
timeless mathematics.

I used to simplify life by putting science in one

room and art in another. This avoided exposing
my entangled soul, lest someone think me not
sufficientlydedicated toone discipline or the other.
Keep science and art separated, my generation was
informed. “You can’t do both.” Parents advised, “If
you can do science and have a lick of sense, you’d
better. Artists starve.”

Now we live in a golden age of both art and
science. More career choices. I am grateful that I
have had the opportunity to combine and do both
[22].

Mathematicians have their own aesthetic, a
sense of beauty and elegance difficult to communi-
cate [2]. My design process starts with some inspir-
ing mathematics. My sculpture convolves math-
ematical abstractions and fundamental forms
shared by everybody.

Humans are toroidal. This feature links our
anatomy and abstract topology. For example, the
abstract mathematical idea could be a quotient
space. An easy example is a torus. The shared
form could be a handshake, a less easy example of
a triply punctured torus. My convolution includes

geometry, topology, and humanity in forms I can
express in paper, computer, clay, bronze, and
stone.

Helaman Ferguson is a sculptor and mathematician work-

ing in Baltimore, Maryland. His email address is

helamanf@helasculpt.com. Claire Ferguson is an artist

and author. Her email address is claire@

claireferguson.com.

I design sculpture to be touchable. Art mu-
seum curators warn us to “Look, don’t touch.” My

sculpture succeeds when touched, held, fingered,
crawled through, and then thought about.

Although I do not make models, I do make
the invisible visible, touchable, and occasionally

knowable. Each of my sculptures involves a circle
of beautiful mathematical theorems. I love math-

ematics for reasons difficult for me to articulate
in words, but which I can articulate in sculpture.

I want some wonders of our beautiful art and
science to have a life in a larger world [4].

Theorems in Bronze
Lost-Wax Bronze

Like most sculptors, early on I cast my own

bronzes. This process involves complex steps of
positive primary, negative mold, positive wax, neg-

ative ceramic, and positive bronze. These precede
chasing, patina, or polish of the final surface. Some

pieces I cast solid, then carved, and then polished
[4].

Bronze is very like cast iron and usually comes
in ingots. Many industrial copper alloys go by the

name of bronze, and bronzes throughout the world
can differ in many respects. Manganese bronze is

typically found in faucets. Fine art bronze in
North America is an alloy of copper with silicon

specialized for pour consistency and polishability.
A typical “molecule” of silicon bronze is

9438Cu + 430Si + 126Mn + 4Fe+ Zn+ Pb .

Division of the coefficients of this “molecule” by
10000 gives a partition-of-unity recipe for fine art

silicon bronze. Bronze has had industrial and mil-
itary value through the ages; bronze artifacts have

always been vulnerable, because we humans dream
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Figure 1. Umbilic Torus NC.

Figure 2. Umbilic toroid in Deseret limestone.

of peace but engage in war. Nonetheless, polished

bronze collects light like no other medium, and it

makes dazzling awards, e.g., [11], [20], [14], [18],

[19].

Umbilic Torus NC

Some twenty years ago, I created Umbilic Torus

NC in an elegant faience antique verde bronze [4].

I had already carved in stone a number of these

twisted tori, for example, the umbilic toroid in

Figure 3.

a polishable Deseret limestone I pulled out of

the Rocky Mountains. The NC refers to numerical
control, at a time when milling machines were

served by paper tape.
The “Umbilic Torus NC” form intrigues me

most among all twisted toroids because of its

explicit connection with the representation theory
of GL(2, R), the 2 × 2 invertible real matrices.
This group acts on homogeneous binary quadratic

forms (two variables, three coefficients) to give
the familiar stratification of ellipses, hyperbolas,
and parabolas. This group also acts on homo-

geneous binary cubic forms (two variables, four
coefficients) to give the stratification by elliptic

umbilics, hyperbolic umbilics, parabolic umbilics,
and pure cubes [5].

I wanted to carve the
1

3
twisted torus with

radial cross-section deltoid (hypocycloid with
three cusps) and sagittal cross-section cardioid

(epicycloid with one cusp) with some numerical
accuracy. I also wanted to articulate the surface
with a surface-filling Peano-Hilbert curve. The

three-axis milling machine presented a rapidly
rotating carbide ball cutter to the material and
received its point-to-point movements from paper

tape. I solved the tool-path problem by discovering
that the choice of a surface-filling curve for the
tool path was more efficient and more aesthetic.

The offsets and tool moves all had to be prepro-
grammed. At the time all this data in the G-code of

the milling machine would generate enough paper
tape to fill the manufacturing lab. Fortunately, the
lab people found a hard disk drive to interface

with the milling machine in lieu of the paper tapes.
In Figure 3 we see the tool path curve in three-

space as a ghost trajectory of the path for the

physical cutter to follow. This machine carving
only gives the first primary positive curvilinear
waffle form cut into a dense Styrofoam. To create

the primary form for the Umbilic Torus NC, I used
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Figure 4.

Figure 5.

applied mathematics, computer science, and engi-

neering. After the many positive-negative steps of

the lost-wax bronze casting process I finished the

Umbilic Tori NC with antique verde patinas.

The umbilic torus image and others like it

have appeared on the covers of calculus books. I

encounter students who tell me they have spent

a lot of time looking at those covers and the

description of the image. One young woman told

me she thought her calculus instructor awful and

that the umbilic torus image and its description

were what got her through the class.

Theorems in Stone
On Carving Stone

Stone is one of my favorite media. Maybe I choose

stone because I was raised by a stone mason who

saw beauty in common field stones. My aesthetic

choices include geological age, provenance, and

subtraction. We learn addition and then we learn

subtraction. Subtraction is harder, isn’t it?

Traditionally, one originates sculptures by ei-

ther addition or subtraction. Addition is popular:

model clay, add clay to an armature, or weld pieces

of metal together. These are operations with mod-

ules. Most art schools do not teach subtraction in

the form of carving stone. To begin with a block of

stone and take away what is not desired, to leave

the desired, is considered really old-fashioned. It

is difficult to do and even more difficult to teach.

But I think subtraction is more interesting than

addition, especially if I subtract from stone myself.

Mathematicians are notorious for wanting to do

things themselves, prove their own theorems, or

prove other people’s theorems without looking at

the known proofs. Sculptors tend to the opposite.

Most stone carving today is like a glamorous rock-

music recording production; artists with enough

money job it out—outsource. The question for me

is “job out what?” How do I job out C∞ functions?

Negative Gaussian curvature? More important,

having done so, what have I learned?

But there may be no practical reason to out-

source simply because we live in amazing times. I

can go almost anywhere and put together a modest

stone carving studio from the inventory of a lo-

cal hardware store, complete with diamond saws.

That would have been impossible when I began

pulling my own studio together some forty years

ago. Most of the credit for this goes to the recent

development of diamond-cutting technology [8].

Because of synthetic diamond production, sawn

and polished stone can be found everywhere now,

while even a short time ago it was prohibitively

expensive.

Usually my sculpture goes into colleges or

universities. I can expect my work to be there

for generations of faculty, colleagues, students,

employees, and their families to enjoy. My work

may well perturb their preconceptions about why

creative math and creative art possess the unique

and inspiring vitality that they do possess.

If a stone has been around for millions of years,

it will probably last another few thousand years,

especially after I carve it into something of no

obvious military or industrial value. I start with

a relatively worthless piece of stone, and when I

get done with it, from a functional point of view,

it is even more worthless. This suits me because

my stone sculpture will probably last longer as a

result.
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If someone digs up my theorems in stone in a

few thousand years, I expect that the excavator

can decode what I have encoded and continue cel-

ebrating mathematics. I’d like my sculpture to be

big and strong enough for a few beautiful math-

ematical theorems to survive outside of books,

classrooms, and the here and now, e.g., [12], [13],

[10], [16], [9], [17].

Next I give a mathematical discussion of sub-

traction and relate that to a block of stone. Then

I conclude with a discussion of two of my large

stone sculptures.

Subtraction

One of our oldest mathematical algorithms is the

Euclidean algorithm as found in Euclid’s Book VII

for pairs of integers and Book XI for pairs of

real numbers. The algorithm is described in Euclid

as continually subtracting in turn. In 1977 Rodney

Forcade and I discovered, with proofs, uncount-

ably many generalizations of Euclid’s algorithm

to n-tuples of reals, complexes, or quaternions

[6]. Now known as PSLQ, these are subtraction

algorithms. I begin with a list of real numbers

x ∈ Rn and construct a list of integers m ∈ Zn,
relating them in a linear combination, x ·m = 0,

if such a relation m exists. If no such relation is

constructed, then at least PSLQ constructs a lower

bound on the size of any possible relation. PSLQ

will discover an underlying relation of dimension

n in time that is a polynomial function in n and

the logarithm of the Euclidean norm of the co-

efficients; I consider my algorithm a subtraction

process with GL(n,Z) matrix inverse operations.

This subtraction algorithm has led to many new

discoveries [1].

I give an example of one of these discoveries:

a new formula for π was discovered with PSLQ

[3]. This formula has the remarkable feature that

permits binary digits of π beginning at some

arbitrary position to be computed directly, without

any need to compute any of the preceding digits.

Figure 6 looks like subtraction: the large positive

black area is a disk with three smaller disks

subtracted so that the figure has area π . This

partially deleted disk is reasonably accurate as

printed here, like the one I cut from black acrylic

to 1000th of an inch with a Cartesian laser robot.

The area π of this disk is given by an inner

product of a real vector x = (x1, x4, x5, x6) ∈ R4

and an integer lattice point m = (4,−2,−1,−1) ∈
Z4. The three negatives correspond to the three

deleted disks. In the theorem,

π = x ·m,
where

xj =
∑

k≥0

1

16k
· 1

8k + j ,

Figure 6.

we only need j = 1,4,5,6 to express π . These

xj are real numbers, given by the geometrically

convergent series above; we can compute them to

arbitrary precision.

The discovery of this new π formula [3] was

made by taking the input for PSLQ to be

y = (−π, x1, x2, x3, x4, x5, x6, x7, x8) ∈ R9.

Let a basis for y⊥ be given by 9× 9 rank 8 matrix

H, so that y H = 0. Then PSLQ iterates on the

pair y,H presented as sufficiently long decimal

strings. Each iteration constructs an integer matrix

A ∈ GL(9,Z), where A−1H becomes small. In

the process y A becomes small, too, but more

important, a coordinate of y A may become 0 so

that a column of A is a relation for y .

For this example, taking 32-place decimal pre-

sentations of y and H, after 50 iterations PSLQ

constructed the GL(9,Z) matrix A =
















1 0 0 0 0 0 0 0 0
4 −11 −36 −68 0 61 −68 −175 −3
0 −3 4 2 1 −4 −6 −2 0
0 11 32 69 0 −58 73 177 3
−2 17 75 134 −4 −110 127 348 6
−1 21 42 86 1 −80 93 234 4
−1 −3 −40 −64 3 56 −52 −170 −3

0 12 22 40 3 −46 52 118 2
0 −8 −6 −21 −5 15 −27 −61 −1

















which has determinant ±1. The first column of

this 9×9 matrix A is a relation for y , a fairly small

lattice point. The rows of the inverse matrix A−1

actually give good rational approximations to the

vector y ∈ R9. Note that some of the coordinates

of this first column of A are 0. Hence the formula

for π needs only four of the xj ’s.

Where is the block of stone in all this? The

block is in nine dimensions and is very tiny. In

this example the block has volume on the order of

10−288.

The vector y ∈ R9 is presented for this exper-

iment by thirty-two decimals in each of the nine

coordinates, not as real numbers. In any computer
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Figure 7. Fibonacci Fountain.

we know of, all the arithmetic is in terms of trun-
cated rational numbers, bit strings most likely.
The PSLQ experiment does all these subtractions
and in the end only reveals that in this tiny block
there is a real vector with that relation. That is the
discovery, and it is as empirical as carving stone.

PSLQ gives no proof. The proof, as for all
the discoveries made by PSLQ , must be found
elsewhere. Of course, the form once discovered
may suggest a proof. Once we see this formula for
π we can easily imagine that it could have been
discovered by Newton or Euler, but evidently it
was not. There are many more PSLQ discoveries
than we have proofs for at this time, and I suppose
that is as it should be.

Fibonacci Fountain, Essential Singularity II

A rainbow occasionally appears in my Fibonacci
Fountain (Figures 7, 8, 9, 12). I completed this
sculpture, quite coincidentally, eight centuries

after Leonardo of Pisa introduced addition and
subtraction with Arabic numerals on paper instead
of operating with Roman numerals or an abacus (it
should be noted that decimal positional arithmetic
was discovered in India at least seven centuries
before Leonardo and was later developed by the
Arabs). We remember him for giving us that rabbit
problem, leading to the Fibonacci numbers

0,1,1,2,3,5,8,13,21,34,55, . . . ,

from which descended linearly recurrent se-
quences [21]. It would seem that linear recurrent
sequences are even more ubiquitous than rabbits.

As I walk about the 2/3-mile circumference of
the 15/2-acre Lake Fibonacci at the Maryland Sci-
ence and Technology Center in Bowie, Maryland,
I see an amazing assortment of plants and trees.
The area is a shrunken plantation; only 500 acres
remain. If I nose about a bit, I observe Fibonacci
phyllotaxis in scale, seed, cone, sprout, leaf, and

Figure 8.

Figure 9.

twig of these ratios (where the subscript de-

notes the relevant ratio): elm1/2, balsam2/3, oak2/5,

cherry2/5, hemlock3/8, poplar3/8, pear3/8, pine5/8,

willow5/13, daisy8/13, sunflower34/55. The plantation

owners collected and planted every sort of flower,

bush, and tree available over at least two centuries.

The collection is now neglected, and the collectors

and their slaves lie buried on a forested hill near

the Fibonacci Fountain.

My Fibonacci Fountain contains over 45 tons

of billion-year-old Texas granite. It stands 18

feet above the water, supported underwater by

concrete and steel to a depth of 14 feet, which is

supported in turn by 28 pilings in 40 feet of mud.

When the test cores were drilled no bedrock was

found.

Fourteen water cannons spurt a mathematical

profile over thirty-six feet into the air, recycling

Lake Fibonacci with freshly oxygenated water. The

view is especially refulgent with the interplay

of stone, water, sunlight, and fog. The profile

of the fountain in the usual x, y, z coordinates

approximates

z = z(x, y) =| τ
1

x+y
√
−1 |, τ = 1+

√
5

2
≈ (fn

√
5)

1
n
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for the usual Fibonacci two-term recursion se-
quence, fn = fn−1 + fn−2, n > 1, f0 = 0, f1 = 1. I
located water cannons at Fibonacci number inter-
vals along the x-axis in the y = 0 vertical plane.
Restricted to that plane, the profile gives an essen-
tial singularity curve which tends to infinity and
zero as x tends to zero from right and left respec-
tively: a smooth, infinitely differentiable, C∞, but
not analytic at x = 0, function [4].

This distinction between smooth and analytic,
allowing C∞ functions of compact support, is
worth celebration by itself.

To do architectural-size sculpture, I find friends
with huge cranes. Assembling the fountain re-
quired a 75-ton crane. The 75 tons does not refer
to the weight being lifted nor the weight of the
crane. The 75 tons refers to the lift capacity of the
crane as determined by the angle and length. The
angle is that which the stick (extendable boom)
makes relative to the crane platform; the length
is how much stick is out. The crane had to stand
on solid ground 100 feet from the fountain. This
arrangement created a balance problem: A 1500-
pound granite slab hanging from 140 feet of stick,
at a low angle, could have tipped the crane into
the squishy mud of the lake bed. We avoided this
disaster by loading a 2-ton block of quartz diorite
(which I happened to have in my studio) onto the
back of the crane. There were dicey moments;
fortunately, no one was injured.

Pigeonholes and Gauss

I composed the fountain of layers of 1500-pound
slabs, each nominally 4 inches thick.

In Figure 10 are side and plan drawings of the
fountain, the x-z plane section and the projection
on the x-y plane, respectively. The nominal 4
inches meant that the slabs came out of the quarry
mill no thinner than 4 inches and no thicker than
4-1/2 inches, so any two slabs could differ in
thickness by as much as a half inch. Stacking up
half-inch differentials could have been disastrous.
What to do? Use the powerful pigeonhole principle
from number theory, of course.

I had eighty slabs of two colors of billion-
year-old Texas granite, forty of each color from
which to choose. I knew that at least two of these
1500-pound “pigeons” were within 1/64 of an
inch difference. I calipered all these “pigeons” and
found the usual normal distribution, from which
I could select compatible subsets of “pigeons” for
each layer.

Figure 11 gives a comparison and a conflict. On
the bottom, the sheet records the tally marks for
the distribution of the eighty slabs within the half
inch. There are two, one for the forty red slabs
and the other for the forty beige slabs. You can
see each has the expected normal bulge in the
middle. On the top we have the lovely abstraction,
a Gaussian distribution, the familiar bell-shaped,

Figure 10.

unimodal curve and probability measure on the
real numbers,

t ֏ e
−t2
,

1√
π

∫∞

−∞
e
−t2
dt = 1 .

In the bottom image we see messy discrete reality.
In the top image we see clean continuous theory
with the transcendental π thrown in for good
measure. I created this sculpture as I create all
my sculptures, by balancing the tension between
these two, ugly or beautiful, truth or ideal, or
sometimes the other way round.

Note that I have not drawn the normal curve as
a narrow inky line on a blank background. In fact,
I have not drawn the curve at all. Instead I painted
a red region and a blue region. This is more like
a sculpture for me. It reminds me of the stone
and air interface I create when I make a sculpture,
where I spend so much time and energy to get it
just right.

Lightning Strikes!

I spent three years working on this Fibonacci
Fountain. Then, three years after it was installed,
a lightning bolt obliterated several of the granite-
enclosed water cannons. I was close enough to
hear the monster thunderclap and to see the
flash. Such an event might have struck me in
particular as ill-fated or portentous, for, at the age
of three, I had seen my natural mother killed by
lightning. Fortunately, I have grown out of feeling
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Figure 11.

superstitious about threes. I in fact consider three

a very helpful first odd prime number.

This lightning bolt reminded me that even if I

work in billion-year-old granite as a hedge against

the future, I only fob off nature for a little while.

She moves on indifferent to our little interruptions.

After the strike, a scuba-diver/mathematician

friend brought up three hundred pounds of granite

shards, very sharp, like broken glass, which had

been blown off the fountain. To prevent future

strikes, I put a charge diffuser on the fountain of

the sort engineers put on antennae to protect them

from environmental high voltages and currents.

The reconstructed fountain once again rejuvenates

the lake with fresh oxygen and gathers geese under

its mists.

Invisible Handshake I

For this negative Gaussian curvature carving, I

started with a twenty-four-ton block of two-billion-

year-old black quartz diorite from South Africa.

Figure 12.

Figure 13. Ferguson and Invisible Handshake I.

Minimal vs. Negative Gaussian Curvature

Geometer Alfred Gray inspired this negative curva-
ture direction in my sculpture when he introduced

me to Celso Costa’s minimal surfaces with torus
topology [7].

About each point (x, y, z) on a smooth surface
S in R3, there is a little circle image on the surface.

Each point of the circle has a plane through the
normal to the (x, y, z) point. The plane intersects
the surface S in a curve. Each curve has its own

signed curvature. This mapping from the little
circle to curvatures is bounded, so there will be

a maximum and minimum curvature at the point
(x, y, z), the two principal curvatures κmax(x, y, z)

andκmin(x, y, z), respectively.The product of these

846 Notices of the AMS Volume 57, Number 7



two curvatures

κ = κ(x, y, z) = κmax(x, y, z) · κmin(x, y, z)

is the Gaussian curvature at the point (x, y, z).
Gauss proved that this product curvature is an
intrinsic invariant of the surface S. Isometric
deformations of the surface S will have the same

product curvature.
A surface S is a minimal surface if the two

principal curvatures are equal in absolute value
and opposite in sign at every point (x, y, z),

κmax = −κmin, κ = −κ2
max.

Weierstrass parametric representations [7] of min-
imal surfaces are given by the real or imaginary
part of the mapping

z ֏

∫ z

z0

f (w)
(

1− g(w)2,
√
−1(1+ g(w)2),

2g(w)
)

dw ,

where f and g are suitable meromorphic functions

of w , and z, z0 are in a suitable region of the
complex plane.

These Weierstrass parametric representations
provide uncountably many immersions of minimal
surfaces in three dimensions. What can I do with
uncountably many virtual sculptures? I can at least
sample them with stereo-pair computer graphics
and pick ones I particularly like. It is possible to

compute images from integrals with modern tools
such as Mathematica.

What does Gaussian curvature mean to me
sculpturally? The robust physical idea is not the
equalityof the twoprincipal curvatures. The robust
sculptural idea is that the Gaussian curvature must
satisfy an inequality and be negative,

κ(x, y, z) < 0.

This observation has far-reaching consequences
for my sculpture: every point on a negative Gauss-
ian curvature surface has a saddle neighborhood.
Translated into stone, the idea means that locally

every point is the keystone of a fabric of arches
with the warp bending one way and the weft
bending the opposite way. Such stone carvings
should have great structural strength, and they
do. Translated to anatomy, the idea lets us rec-
ognize many epithelial saddle forms on our skin
surface. For instance, in the common handshake

two people press together their matching negative
Gaussian-curvature parts between the thumb and
palm.

For me, the consequences of negative Gaussian
curvature became solid in sculptures of Costa’s
embeddings and Weierstrass’s immersions of
triply punctured tori in R3. I related this to elliptic
curves y2 = x3 + ax+ b and a Kepler law (Jupiter

shaking hands with the Sun).
I carved my early negative Gaussian curvature

sculptures in Carrara marble using virtual-image

Figure 14.

projection systems. These were based on Stewart
platform and cable metrology ideas. The old con-

cept is subtraction again: carve away what is not
supposed to be there. New technology allows me

to virtually project the image given by parametric
equations into a block of stone. Most importantly,

in the midst of all this technology, I have been able
to learn new negative Gaussian curvature forms

and carve them directly [4]. Mathematics can be
my invisible model.

Carving Quartz Diorite

The Invisible Handshake block of quartz diorite
was unusually large as quarry blocks go. Upright,

this block stood nine feet high, six feet wide, and
five feet thick. My block came by boat into the port

of New Orleans from South Africa, was barged
up the Mississippi River to Minnesota, and then

trucked to my studio. At twenty-four tons, this

block was a single semi-trailer truckload barely
below the limit for a legal load on the highway. I

used a seventy-ton crane to lift my block off the
truck and ease it down into my studio, where I

could finally sink my diamonds into it.
I cored the first hole and changed forever the

topology, transforming the block from simple
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Figure 15.

Figure 16.

connectivity into a torus. I built and rebuilt scaf-

folding to carve the torus further into a triply

punctured torus.

I do not suggest that such a carving project is

easy, even with new diamond cutting technology.

Carving uses many tools, my diamond chainsaw

principal among them.

In Figure 15 you are looking at a sixteen-

horsepower motor powered by a hydraulic pump

circulating 2500 psi fluid through hoses connected

to the saw unit. High-pressure water continually

blows through the chainsaw bar, clearing detritus

and cooling the diamonds. The diamonds act as

tiny industrial grits embedded in the little steel

blocks on the chain. The granite wears away the

steel and exposes the diamonds, thereby effecting

the cutting. Exposed to the air, diamonds will burn

with little heat. They are just carbon, and the water

keeps them cool. With this high-pressure fluid and

water tool I can do an eighteen-inch plunge cut

directly into granite. I needed that tool to carve out

the six tunnels these kids are exploring (Figure 16).

They are getting a seat-of-the-pants understanding

of negative Gaussian curvature.

Final Setting and Footprint

A ten-foot-diameter granite disk provides the

setting for my Invisible Handshake I, tiled by hy-

perbolic pentagons. The footprint of the sculpture

is the center right-angled pentagon of 2-1/2-foot

radius.

I created a computer-graphics color image of

the hyperbolic checkerboard of right-angled pen-

tagons in the Poincaré hyperbolic disk (Figure

17, left), with the figure five moving, tense, but

heeded through the hyperbolic plane. This was my

response to the imagist poem “The Figure Five”

Figure 17.

Figure 18.

by William Carlos Williams and the subsequent
painting by his friend Charles Demuth.

On the right side of Figure 17 I’ve transferred

these right-angled hyperbolic pentagons into a
fabric sculpture quilt, a negative Gaussian-curved
checkerboard of identical panel pentagons. This

quilt adapts itself well to the human form and,
like the human form, it can be flattened locally

but not globally.
The finished stone carving Invisible Handshake

weighs 7-1/2 tons and has a precisely carved

pentagonal footprint. This corresponds to the
central pentagon of a Poincaré disk ten feet in
diameter hyperbolically tiled in two colors of

granite.
Figure 18 on the left is a small bronze analog of

this setting with a hyperbolic pentagon footprint.
The sculpture fits into the space of this cen-

tral tiling of a conformal Poincaré disk. The closed

necklace of corner-connected pentagons is in num-
ber 5 times every other Fibonacci number (those
ubiquitous rabbits) [15].

Figure 19 turns out to be an unintentional
nine-ton bell.

The Nine-Ton Bell Reveals Itself

I had carved the twenty-four-ton block down to a
little over nine tons. To prepare to carve the right-

angled pentagon footprint, as shown with attached
water-jet precision-cut template (Figure 18 on

right), I laid the block on one side. To do this simple
move, I hired a sixty-ton crane, a crane operator,
and a rigger man. We had everything rigged up for

the tricky rotation. The nine-ton sculpture hung
horizontally about four feet off the concrete floor.
While I was changing the timber cribbing, I heard

a crackle. The sculpture had slipped about an
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Figure 19.

inch, which created enough friction to melt the
thick six-inch-wide nylon rigging strap. The nine
tons struck the floor, with one corner crushing a
six-inch hole in the concrete. It rang like a bell!
No evidence of this mishap showed on the piece,
which was not what I would have expected given a
big block. I would have assumed that such a force
on a point would split the block.

I learned later that the velocity of sound in
this quartz diorite is greater than the velocity of
sound in steel, even though the density of steel
is much greater than any stone. The negative
Gaussian curvature form has saddle (double-arch)
forms everywhere. An upright arch is quite strong
in relation to gravity. Because a negative Gaussian
curvature form presents a web of arches, every
point is a keystone with a double arch regardless
of the orientation relative to gravity. This gives the
sculpture great strength even though the curved
form is practically hollow compared to its original
solid form. Evidently the energy from the force of
impact is radiated almost instantly and uniformly
throughout the sculpture.

I should not have been too surprised about
this, because I had been carving negative Gaussian
curvature forms in stone and had noted their bell-
like aspects. I had also noted the peculiar strength
of the negative Gaussian curvature form in a large
snow (not ice) carving I did that softened in the
sun but did not collapse.

Negative Gaussian curvature surfaces, espe-
cially minimal surfaces, must have infinite extent
in R

3. To create a sculpture I have to terminate
the surface. Rather than follow the quarry faces
of the raw block, I now choose to compute an
appropriate wave front boundary by solving the
Gauss-Christoffel equations for geodesics on a
surface in R3 [7]. The primary pressure wave will
radiate along geodesics.

Future
My current sculpture studio is in an industrial park
in Baltimore, Maryland. My studio volume is 45,500

Figure 20.

Helaman and Claire Ferguson.

cubic feet. My “tool box” is a shipping container,

which when filled with hand tools weighs 14,000

pounds. As I sit here, I feel in my mind my thirteen-

ton block of beautiful billion-year-old Texas red

granite, and my fingers sweat. This raw granite

block compels me to think of the right timeless

theorems. Its time is now.

The Authors
Claire and Helaman Ferguson received the 2002

Joint Policy Board Communications Award.
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About the Cover

This month’s cover shows one of Hela-
man Ferguson’s works (not mentioned in 
this month’s article by him on the preceding 
pages). In the words of Claire Ferguson (in 
HELAMAN FERGUSON: Mathematics in Stone 

and Bronze):
“‘Double Torus Stonehenge’ is a gradu-

ated linking to unlinking of two handles on 
a double torus, without tearing or breaking. 
Close your hands, then link the thumb and 
forefinger of each hand with the other. Now, 
without opening the fingers, try to separate 
them. The challenge is to find a deformation 
that unlinks a pair of linked handles.”

The pieces are placed on a wooden disk 
roughly the size of a table top. Helaman com-
ments, “I would like to carve some big stones 
in a circle like this, big enough for people to 
climb on and crawl through. Two hundred 
eighty tons would be about right.”

Two copies of this work are held by the 
Maryland Science Center. The photograph 
was taken by Jonathan Ferguson.

—Bill Casselman

Graphic Editor

(notices-covers@ams.org) 
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