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Abstract

The question, “What does a typical Fibonacci number look like?” leads to interesting (and
impossible) mathematics and many a tale about Ron Graham.

I have talked to Ron Graham every day, more or less, for the past 47 years. Some days we
miss a call but some days it’s three or four calls; so “once a day” seems about right. There are
many reasons: he tells bad jokes, solves my math problems, teaches me things, and is my pal. The
following tries to capture a few minutes with Ron.

1 A Fibonacci morning

This term I'm teaching undergraduate number theory at Stanford’s Department of Mathematics.
It’s a course for beginning math majors and the start is pretty dry (I'm in Week One): every integer
is divisible by a prime; if p divides ab then either p divides a or p divides b; unique factorization.
I'm using Bill LeVeque’s fine Fundamentals of Number Theory. It’s clear, correct, and cheap (a
Dover paperback). He mentions the Fibonacci numbers and I decide to spend some time there to
liven things up.

Fibonacci numbers have a “crank math” aspect but they are also serious stuff-from sunflower
seeds through Hilbert’s tenth problem. My way of understanding anything is to ask, ““What does
a typical one look like?” Okay, what does a typical Fibonacci number look like? How many are
even? What about the decomposition into prime powers? Are there infinitely many prime Fibonacci
numbers? I realize that I don’t know and, it turns out, for most of these questions, nobody knows.
This is two hours before class and I do what I always do: call Ron.

“Hey, do we know what proportion of Fibonacci numbers are even?”

“Sure,” he says without missing a beat. “It’s 1/3, and it’s easy: let me explain. If you write
them out,

0,1,1,2,3,5,8,13,21, 34, 55,89, 144, 233, 377, . . .,

you see that every third one is even, and it’s easy to see from the recurrence.” Similarly, every
fourth one is a multiple of three, so 1/4 are divisible by 3. I note that the period for five is 5, ruining
my guess at the pattern. He tells me that after five, the period for the prime p is a divisor of p+ 1;
so 1/8 of all the F;, are divisible by seven. Actually, things are a bit more subtle. For any prime p,
the sequence of Fibonacci numbers (mod p) is periodic. Let’s start them at Fy = 0, when p = 3:

0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,. ...

The length of the period is called the Pisano period (with its own Wikipedia page). The period of
three is 8 and there are two zeros, so 1/4 are divisible by 3; 3/s are 1 (mod 3) and 3/8 are 2 (mod



3). These periods turn out to be pretty chaotic and much is conjectural. The rest of my questions,
e.g., is F,, prime infinitely often, are worse: “not in our lifetimes,” (Ron says) Erdos said.
Going back to my phone conversation with Ron, he says:

Here’s something your kids can do: You know the Fibonacci numbers grow pretty
fast. This means that ) > ,1/Fy» converges to its limiting value very fast. It turns out
to be a quadratic irrational (!) and you can show that if a number has a more rapidly
converging rational approximation, it’s transcendental. (!)

And then he says, “Here’s an easier one for your kids: ask them to add up F, /10", 1 < n < 00.”
Answer: 10/g9 (1)

It turns out that Ron had worked on my questions before. A 1964 paper [7] starts, “Let
S(Lo, L1) = Lo, L1, La, . .. be the sequence of integers which satisfy the recurrence L, 19 = Ly4+1 +
L,,n=0,1,2,.... It is clear that the values Ly and L determine S(Lg, L), e.g., L(0,1) is just
the sequence of Fibonacci numbers. It is not known whether or not infinitely many primes occur
in S(0,1) ....” He goes on to find an opposite: a pair Lg, L1 so that no primes occur in S(Lg, L1).
His best solution was

Lo = 1786772701928802632268715130455793
L1 = 1059683225053915111058165141686995

This was subsequently improved by Knuth and then Wilf. The problem itself now has its own
Wikipedia page; search for “primefree sequence”. The current record is

Lo = 106276436867
Ly = 35256392432

due to Vesemirsov.

Finding such sequences is related to problems such as “Is every odd number the sum of a prime
plus a power of two?” The answer is no; indeed Erdds [6] found arithmetic progressions with no
numbers of this form. For this, he created the topic/tool of “covering congruences”: a sequence {a;
(mod ny),...,ar (mod ng)} of finitely many residue classes {a; + n;x,z € Z} whose union covers
Z. For example, {0 (mod 2),0 (mod 3),1 (mod 4),5 (mod 6),7 (mod 12)} is a covering set where
all moduli are distinct. Erdos asked if there were such distinct covering systems where the smallest
modulus — two in the example — is arbitrarily large. A variety of number theory hackers found
examples. For instance, Nicesend found a set of more than 10°° distinct congruences with minimum
modulus 40. One of Ron’s favorite negative results is a theorem of Hough [9]: there is an absolute
upper bound to the minimum modulus of a system of distinct covering congruences. The Wikipedia
phrase is “covering sequences”.

The preceding paragraphs are amplified from sentences of this same phone conversation. Ron
has worked on math problems where Fibonacci facts form a crucial part of the argument “from
then to now.” For example, in joint work with Fan Chung [2] they solved an old conjecture of D.J.
Newman: for a sequence of numbers (mod 1), z = (xg, x1,x2, ... ), define the strong discrepancy

D(z) = infinf n||x,;, — Tppm]|.
n m
They found the following;:

Theorem.




The reader who looks will find Fibonacci numbers throughout the proofs; > >° ;1/F5, makes an
appearance.

As a parting shot in our conversation, Ron moved back to the periods of Fibonacci and Lucus
sequences SL(Lg, L1) above. “You know, we had a pretty good trick in our book [4] using Fibonacci
periods. You should perform it for your kids.” Let me perform it for you. To understand the
connection, see Diaconis and Graham [4, p. 187].

The performer draws a 4 x 4 square on a sheet of paper. A prediction is written on the back
(to own up, it’s 49).

The patter goes as follows: “They teach kids the craziest things in school nowadays. The other
day my daughter came home talking about ‘adding mod seven’. That means you add and take
away anything over 7, so 5+ 5 = 10 = 3 (mod 7). Here, let’s try it out.” Pick any two small
numbers; say 5 and 6 are chosen. Write them down in positions (1,1) and (1,2). Then sum mod 7
in position (1,3):

5|64 5161413 5161413
0[3]|3|6 0[3]3]|6

— —
211134
014141

Continue as shown, adding successive pairs row by row until all squares are filled. You can
ask spectators to help along the way. At the end, have someone (carefully) add up all 16 numbers
in the usual way. The sum will match your prediction, 49. Our write-up gives pointers to the
mathematical literature on Fibonacci periods.

In a follow-up call, I mentioned a charming fact pointed out by Susan Holmes. If you want to
convert from miles to kilometers (and back) take the next Fibonacci number (or the one before, to
go back). Thus 5 miles is close to 8 kilometers, 13 miles is close to 21 kilometers, 144 kilometers
is close to 89 miles, and so on. To do general numbers, use Zeckendorf’s theorem: any positive
integer can be represented as a sum of distinct Fibonacci numbers: uniquely, if you never use two
consecutive F,. So 100 = 89 4+ 8+ 3, and 100 miles is about 144 + 13+ 5 = 162 kilometers. (Really,
100 miles = 160.934 kilometers; it’s only an approximation.) The Zeckendorf representation is easy
to find, just subtract off the largest possible F,, each time. For much more Fibonacciana, see [8].

2 A second try

Here is a more successful approach to the question of what a typical F;, looks like. Take one of the
many codings of Fibonacci numbers and answer the question there. For example, F),, counts the
number of binary strings of length n — 2 with no two consecutive ones:

F5 =5 <— {000,001, 010,100,101}



Let F,, be the Fibonacci strings of length n. So |F,| = F,+2. This mismatch in notation is
unfortunate but keeping the classical notation for F),, makes the literature easier to use.
For this coding, it is natural to ask, “What does a typical element of F;, look like?” Throughout,
use the uniform distribution
Pn(x) = 1/Fn+2

on F,,. This distribution is well known in statistical physics as the “hardcore model in 1-D”. Let
Xi(z) be the ith bit of x. Natural questions are:

e What is the chance that X; = 17

e What is the distribution of X7 4+ --- 4+ X,,?7

e How long is the longest zero run of X1, Xo, ..., X,,?

e What is the waiting time distribution for the first one?

Indeed, any question asked for coin tossing can be asked for F,,. In [5], a simple, efficient algorithm is
given for exact generation of a uniformly chosen element of F,, (using the Fibonacci number system).
Of course, there is literature on the mixing time of the natural Markov chain for generating from
the uniform distribution on F,, — pick a coordinate at random; try to change to its opposite —
see [10].

The main results developed below: as a process, X1, Xo,..., X, is close to a binary Markov
chain Xl, Xg, e ,f(n, where, with

5—1
0= V5 = 0.6180
2
sof+6%=1,
S . . . 0 6?
(2.1) P{X; =0} =0, with transition matrix P = 1 o)
The closeness is in total variation for Xi,..., X with &k = n — f(n), f(n) — oo. This is strong

enough to give useful answers to the previous four questions and many others. Let us turn now to
mathematics.

Proposition 1. For any i, 1 < i < n,

_ FiFnga

Fiy1Fpio—
Pn(XiZO)ZM Po(X;=1) o
n+

Fn+2 ’

Proof. Sequences with X; = 0 may begin with any Fibonacci sequence of length ¢ — 1 (Fj41 choices)
and end with any Fibonacci sequence of length n — ¢ (Fj,_;42 choices). Dividing by the total
number of Fibonacci sequences of length n (F,2) gives the first result. The second is similar; a
one in position ¢ forces zeros at ¢ — 1, i + 1. After this, the start and end are arbitrary Fibonacci
sequences. [

For subsequent use, recall that, with

1++5 _1-45

o= 5,




(2.2) F,= O
V5
and F,, is the closest integer to ¢™/v/5. Recall § = (v/5—1)/2. Combining (2.2) and Proposition 1,

standard asymptotics gives

Proposition 2.

(a> Pn(Xi = 0) - Pn(Xn—i—‘rl = 0)7 I1<i<n. (SymmetYY)

(b) Pu(X1=0)=0[1+0(¢"")].
(c) P(X;=0)= \9/25 [1 +0( ) +0(¢ 20| . O

Remark. Part (c) shows, if i and n — i are large,

62 62
P(X;=0) ~ —, PX;=1)~1—-—.
( ) ) \/5 ( 1 ) \/5
This of course is the stationary distribution of the transition matrix in (2.1) above. It is useful to
collect together properties of the Markov chain.

Proposition 3. For # = (v/5 — 1)/2, let a Markov chain {X,,} on {0,1} have transition matrix

6 62
r=(1 %),
starting distribution P(X; = 0) = #, P(X; = 1) = 6. Then P has stationary distribution
62 62
= 7T(l) e~
V5 V5

and P is reversible. The eigenvalues are §y = 1, 81 = # — 1. The right eigenvectors are

w=() o= ()

If the chain is denoted X}, 1 <i<oo,forallnande,..., e, € {0,1} an allowable sequence,

m(0) =

P(Xl261,X2=€27-~-,Xn=en):9"+51(8n), ]

The main result of this section gives an explicit bound between the probability distribution fi, j
of X1,..., X} from the Fibonacci chain and fix the probability distribution of the Markov chain
X1,..., X} as in Proposition 3. The total variation distance is

ik — fixl|Tv = max |, 1 (A) — fir(A)|.
ACCY

Proposition 4. With notation as above, for all n and 1 < k < n,

it = firl| = O(6°C=H).



Proof. As usual,

_ 1 -
lpnr = Arllrv = 5 > ‘P(Xl=$1,---,Xk=l‘k)*P(X1=$17~--,Xk=l‘k) :

xEC’éC
For any zy,..., 2,
Foio k_ - N
Pn(Xl =x1,..., X = $k> — M7 P{Xl =21,..., X, = xn} _ 9/64-51(901-)'
Fn+2

It follows that

1 (| Fhgo- Foyi-

tnk — fllTv = 5 { T2k gkl g 4 | R gkt Fk} .

2 Frio n+2

The claimed result now follows from (2.2) in a straightforward manner. O]

Some of the preceding questions have been previously answered. Let S, = X; 4+ --- + X,,.
Diaconis, Graham and Holmes [5] prove

Proposition 5.

o (n+1_k) n+1
_ vh-1 1 =2 gyl
(b) En(Sn)—(nH)T\/5 +5¢+O( "), V (Sn)_?\/g +O(1).
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The longest zero run can be determined by solving the problem for the Markov chain and then
transferring it to X7, Xo, ..., X, using Proposition 4.

Proposition 6. Let M,, be the longest zero run for a uniform element of F,,. Then M,,/log; pn — 1
in probability.

Proof. Proposition 6 follows by first proving the parallel result for the Markov chain X; and then
tranferring to X; using Proposition 4. Let [ = I(n) = |logy g n]. From Proposition 3, the transition
matrix P is explicitly diagonalized as P = VDV ™! with V the matrix with column vectors the
right eigenvectors of P, and D a diagonal matrix of eigenvalues

(1 1 (1 0 0 (e 1
V=) 26 ) e (V)

Here 6 + 0 = 1 and the stationary distribution is 7(0) = 1/(1 + 62), n(1) = 6%/(1 + 6?). Thus

Py{X; =0} = PY(0,0) = (VDV )0 = 7(0) + O(6%),
P {X; =0} = 7(0) + O(6%).

Since Pa{f(i =Xip1 == Xip1 = 1} = Pa{f(i = 0} P=1(0,0), for either starting state a, for
any starting distribution o,

(2.3) Py(X;=-=X;_1 =1 =7(0)P~0,0)+ 0 (eziPl—l(o, 0)) .

6



From this,
Pa{Mn > (1+€)l} =

n—l
P, { |J [0-run from i > (1+ 6)1]} < (n—Dr(0)PUO+9](0,0) + O (PU<1+6>J (0, 0)) :
i=0
From the choice of [, PL+9](0,0) = O(1/n'*¢) so the right-hand side tends to zero.
To show that M, /l > (1 — €) with high probability, split [n] into disjoint blocks of length
[I(1 —€)]. Let Y; be 1 or 0 as the ith block is all 0’s or not. Let W = Z?:/ll(lfe) Y;. The second
moment method will be used to show P{W > 0} — 1. From (2.3), with [ replaced by |I(1 —¢€)],

ncm(0)
I(1—¢)

=~ n

(2.4) EUV):luﬁ_dwmﬂﬂm*dkaoy+0<PUO*”@JD)N

(2.5) Var(W ZVar + QZ Cov(Y;,Y;).

1<J
Since Y; are binary, the asymptotics of the first sum in (2.5) are as in (2.4). Using the Markov
property, P, (Y; = Y; = 1) = P,(Y; = 1)Py(Yj_; = 1). The terms may be bounded using (2.3) and
the second sum is of order n/n*1=9). It follows that the variance of W is of the same order as the
mean so a Chebychev bound shows
M,
P{ln>le}~el

This proves Proposition 6 with M, replaced by M,,. The transfer of the limit theorem back to M,
is routine from Proposition 4. O

Remark. More refined limiting behavior of M,, will surely be colored by the non-existence of limiting
behavior associated with the maximum of discrete random variables. See [3, 13].

I cannot leave this topic without remarking on some amazing formulas communicated to me by
Richard Stanley. Throughout, let X;(x) be the ith binary digit of a uniformly chosen point in F,.
Define a random variable

[T

1<i<n
Stanley (in personal correspondence) shows

> FA E(W7) =

Friz (& +1

(2.6) BE(W, (n+ 1)\

Fn+2
In (2.6), f()) is the dimension of the irreducible representation of the symmetric group S,, corre-
sponding to the partition A. It is well known [11, pp. 62-64] that > f()\) equals the number of
involutions in S,41 and Y f2(A\) = (n + 1).

The formulas (2.6) are sufficiently surprising that a numerical check seems called for. Consider
n = 3; Sy has 10 involutions and 24 elements. For W), (z) the product over the empty set is 1:

x ‘000 100 010 001 101‘ Sum

Ws(z) | 1 1 2 3 3 | 10
W2(z) | 1 1 4 9 9| 24




The asymptotics of ) f(\) are well known [11, p. 64]. This gives

(n+ 1" exp {—(vD/2+ V/n T - 1/2} (41! (n 1) et

E(W,) ~ , Var(W,,) ~

Fn+2 V2mn Fn+2

From this, we see that W), is concentrated around its mean. Proposition 3 and easier calculations
show that L, = log(W,,) has a limiting normal distribution, so W, is log normal in the limit.

A somewhat contrived set of steps leading to consideration of W,, may be constructed as follows.
Suppose one wanted to consider a random square-free number with factors at most z. One natural
way to do this considers the uniform distribution. Another natural approach is to consider €1, ..., €,
independent, 0/1 random variables with P(e; = 1) = P(¢; = 0) = 1/2 and define

Wn: H p?

1<i<n

V2 F, 0

with 2 = p; < py < --- < p,, the distinct primes. An easier (but quite similar) problem considers

This has

B(W) -2 (i) -

So again Wn is concentrated about its mean and log Wn is asymptotically normal. The random

variable W, is the Fibonacci version of W,. (Okay, okay; I said it was contrived.)

Stanley’s motivation comes from his theory of differential posets. In Stanley [14, Problem
8] he constructed a sequence of semi-simple algebras A,, of dimension (n + 1)! whose irreducible
representations have degree Wy, (z) for z € F,,. Thus the number of irreducible representations is
F,+2. The existence of Ay C As C A3 C ... (with nice restriction properties) is not hard to show
by “general nonsense”. A useful set of generators and relations was found by Okada [12]. This
has spawned a host of interesting developments which may be found by following the citations to
Okada’s paper.

The tension between recreational math and “real math” is evident throughout the Fibonacci
world. As a parting shot, I offer the following: 144 is a Fibonacci number and it’s also a perfect
square (uh-oh). Also, 8 is a Fibonacci number which is a cube (uh-oh). Are there any others?
No! Bugeaud et al. [1] proved that 1,8, 144 are the only Fibonacci numbers that are powers. Their
proof makes real use of the full machine of modern number theory.

There are other codings of F},; see https://oeis.org/A000045 at the On-Line Encyclopedia
of Integer Sequences. Also, in [16], parts b, ¢, and d of Exercise 1.35 are about compositions with
specified parts. In [15], part a of Exercise 7.66 has a cute proof. There are also Lucas numbers; I
don’t know any codings for them. Some of these suggest fresh questions. Fortunately, I can call

Ron.
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