
web-mode.el

Heterogeneous recursive code parsing with Emacs Lisp
François-Xavier Bois

Kernix Lab
15 rue Cels

75014 Paris - France
+33 (1) 53 98 73 43

fxbois@kernix.com

ABSTRACT

web-mode.el is an Emacs module for editing HTML templates.

Unlike other “source codes”, web templates can include various

language components (heterogeneous dimension) that may embed

themselves into each other (recursive dimension).

Indeed, an HTML document may contain a JavaScript that

embeds a PHP block.

<div>
 <h1>title</h1>
 <script>var x = <?=$x?>;</script>
</div>

This recursive aspect invalidates standard ways of lexing

(syntactic tokens), highlighting (colorizing) and indenting.

All the power of Emacs is necessary to enable contextual

indentation and highlighting.

This paper describes web-mode.el features and some of its

internal processes.

Categories and Subject Descriptors

Coding Tools and Techniques, Document and Text Editing, User

Interfaces, Programming Environments, Reusable Software

General Terms

Algorithms, Languages.

Keywords

Emacs, Lisp, Web, HTML, templates, engines.

1. OVERVIEW
Emacs owes a big part of its success to two strengths that

characterize it: its extensibility through modules (modes) and its

“Lisp Machine” dimension.

Though compatible with the vast majority of programming

languages, Emacs has suffered in the past years of its relative

weakness in the field of web template editing. Those HTML

documents which embed parts written in different languages

(JavaScript, CSS, PHP, Java, Ruby, etc) are at the core of web

development, a very dynamic domain of computer science.

1.1 Multi modes approach
HTML template editing under Emacs has long been the

prerogative of “multi modes” like mumamo.el, mmm-mode.el or

multi-web-mode.el. Those modes rely on the “available”

dedicated modules to handle their corresponding “parts” in the

template.

A template with HTML, JavaScript, CSS and PHP content may

for example use

 nxml.el for HTML

 js2-mode.el for JavaScript code (located between

<script> and </script> tags)

 css-mode.el for styles (between <style> and </style>)

 php-mode.el for PHP statements delimited by <?php and
?>

In order to explain how this “multi modes” approach works, one

should keep in mind that Emacs modes are divided in two

families: the major and minor modes.

A major mode handles the responsibility of buffer highlighting

and indentation; only one major mode may be running for a

buffer at a given time.

To let many major modes “coexist”, a “multi mode” (which is a

minor mode) loads a specific major mode according to the cursor

position (point). If the cursor is between the delimiters

<?php and ?>, the “multi mode” activates the major mode php-

mode.el. The narrowing mechanism helps the “multi-mode” to

restrict the working space to the region between the delimiters

(<?php and ?>).

This “Unix-like” approach is very appealing:

 Each mode has one role that it tries to achieve the best it

can.

 By combining those modes one may achieve a larger

ambition.

Alas it can be very frustrating for the users:

 Going back and forth between modes triggers visual

artifacts and slows down the workflow.

 Incompatibilities between modes result conflicts and errors.

 Customization is difficult and inconsistent (indeed, each

major mode has its own parameters).

 The lack of common ground prevents advanced features (no

context is shared between the major modes).

1.2 web-mode.el
Aware that no satisfactory results would ever happen with this

approach, I started in 2011 the development of the major mode

web-mode.el. The main features of this mode are

 Autonomous (no other major mode is required)

 Fast

 Simple (no configuration required)

 Effective (auto-closing, code folding, tag navigation)

 Aware of all the HTML format specificities

 Compatible with more than twenty engines (erb, jsp, php,

asp, razor, django, mason, etc.)

2. IMPLEMENTATION NOTES

2.1 Terminology
As was said previously, a template may embed various code

components. Two kinds will be considered here:

 A part is interpreted by the navigator (e.g. a JavaScript part

or a CSS part).

 A block is processed (client-side or server-side) before

being rendered by the navigator e.g. a PHP block, an Erb

block, a dustjs block etc.

This terminology is not a standard but is useful for

function/variable naming and for the documentation.

2.2 The main loop
Two tasks are executed as soon as the buffer is loaded and

altered:

 Lexing: to detect the various entities (blocks, parts, nodes)

and for each one, identify their tokens: block/part

strings/comments, node attributes, block delimiters.

 Highlighting: to colorize the code.

2.3 Lexing phase
Three steps are necessary for parsing the code

1. Block identification and scanning.

2. HTML scanning (HTML tags / attributes /

comments, doctype declaration)

3. Parts scanning (JavaScript, CSS).

When a file is opened, web-mode.el scans the entire buffer.

Subsequent scans are performed on smaller zones “around” the

altered zone: it is called the invalidation phase and is described

below.

The order of the steps is very important: indeed, nodes/parts:

identification must be done outside the blocks.

<div>
 <?php /* <script>var x = 1</script> */ ?>
</div>

Part scan is done during a specific step because web-mode.el can

be used to edit files whose content-type is not HTML but

JavaScript or CSS. For example *.js.erb is a Ruby on Rails

JavaScript template.

Given the large variety of tokens (specific to languages) and the

recursive dimension of code, web-mode.el can’t rely on Emacs

internal functions to tokenize and highlight.

Parameters are associated to each engine family and are used for

tokenizing, indenting, highlighting, auto-pairing and auto-

closing.

With each engine are associated

 Delimiters (e.g. <?php ?>)

 Control blocks (e.g. <?php if(): ?>)

 Syntactic tokens regular expressions

 Auto-pairs, snippets

In order to parse the code, web-mode.el must know which is the

engine associated with the template. This association is

automatic as soon as the file extension is obvious (e.g. *.erb).

Association must be forced when the extension is too common.

(require 'web-mode)

(add-to-list 'auto-mode-alist
 '("\\.html\\'" . web-mode))

(setq web-mode-engines-alist
 '(("erb" . "/rails/.*\\.html\\'")
 ("php" . "/zend/.*\\.html\\'"))
)

2.4 Custom text properties
The scanning/lexing phase will help store information that will

be used to implement interactive features like indentation,

folding, or tag navigation.

This process is achieved with the “text-properties” which are

plists attached to every single character in the buffer.

web-mode.el adds to the common properties (e.g. 'face,

'visibility) new ones that describe the following states

 'block-side is set to t throughout blocks characters

 'block-(beg|end) mark the blocks boundaries

 'block-token
1 is 'string, 'comment or

'delimiter on block tokens

 'block-controls is the current block a control block?

(e.g. {% for %} … {% endfor %})

 'tag-type tells if the tag is a 'start, 'end or 'void

tag ('tag-name store the tag name).

Bitmask on '*-beg properties is an additional way to store

information useful for the highlighting phase.

2.5 Indentation
As the main purpose of web-mode.el is to remain autonomous, a

generic indentation engine was developed.

web-mode.el deals with three kinds of indentations

1/ HTML indentation relies on finding the first previous line

beginning with a start tag. Deciding if the current line should be

indented is done by counting start / end tags and see if a start tag

remains unclosed.

1 All the 'block-* properties are available as 'part-* equivalents.

2/ Bracket based indentation. It relies on counting the number of

unclosed brackets. Inline calls are also handled by looking at the

first unclosed bracket. This kind of indentation is used by

languages like PHP, JavaScript, CSS, etc.

3/ With stack based indentation, each indentation line depends

directly on the current and previous lines. For instance, if the

previous line is a control statement (if) the current line is

indented.

It is important to remember that templates are at the core of the

MVC design pattern. The developer must separate the various

logical components of its application: Model, View (templates)

and Controller. The more code is placed in the Model or

Controller components, the better.

More generally, a good habit in web development is to put

foreign code in specific files (e.g. *.css for styles, *.js for

javascripts, *.php for engine statements). Thus the indentation

engine should not have to deal with complex and large parts or

blocks.

2.6 Consistency
Being able to consider the whole buffer state is very useful to

implement advanced features. The markup indentation engine

can for example evaluate HTML elements and control blocks

when calculating the indentation offset.

<div>
 <?php if ($x): ?>

 <?php endif; ?>
<div>

2.7 Highlighting
Highlighting a buffer in Emacs involves the font-locking

mechanism. The recursive dimension of templates and some

complex parsing rules (e.g. for HTML attributes) prevents the

use of standards font-lock keywords.

As for the scanning phase, the highlighting phase involves three

steps:

1. node highlighting

2. part highlighting

3. block highlighting

Ending with block highlighting reflects a logical situation: a

block can be included in a part or a node, block highlighting is

thus priority.

Two techniques are used for highlighting

 Direct setting of the 'font-lock-face text-property for

HTML nodes (brackets, tags, attributes)

 Font-locking keywords for parts and blocks.

2.8 Decoration
After the highlighting phase, web-mode.el may “decorate” some

of the tokens:

 String: variable interpolation (for erb and php, in double

quoted string), css colorization (background refects the css

color).

 Comment: keyword highlighting (ex. TODO, FIX).

2.9 Invalidation
Most major modes delegate “region invalidation” to Emacs. This

process is the responsibility of font-locking; it automatically

detects syntactic tokens and refreshes the colors of the altered

zone.

As web-mode.el scans the buffer by itself, it has to trigger a new

scan as soon as the user alters the buffer. The 'after-

change-function hook is used for this purpose. To ensure

that parts and blocks are properly scanned, the following rule has

been set: the region should begin and end with an HTML tag.

For the highlighting phase, the same region should be

considered. web-mode.el can influence font-lock by associating a

custom function to the 'font-lock-extend-region-

functions.

One should note that the lexical invalidation must be done before

the highlighting; indeed highlighting uses some of the text-

properties set by the lexical process ('tag-attr, 'block-

token, 'part-token, etc.)

3. CONCLUSION
Thanks to the power of Lisp and to the advanced Emacs

mechanisms, web-mode.el is able to provide a very robust and

rich experience to its users.

Invalidation of a zone located in a part or a block is still a flaw

that needs to be addressed. Indeed when such a part or block is

huge, re scanning and re highlighting it entirely can be pricy.

Identifying a narrower zone inside the block (or the part) is a

very difficult task whenever this process must work with many

languages/engines.

4. ACKNOWLEDGMENTS
A special thanks to Stefan Monnier a great Emacs maintainer

and a wonderful guide to the Emacs internals.

5. REFERENCES
[1] François-Xavier Bois. web-mode.el presentation and

documentation.

http://web-mode.org.

[2] François-Xavier Bois. web-mode.el code repository.

https://github.com/fxbois/web-mode.

[3] James Clark. nXML mode, powerful mode for editing XML

documents.

http://www.thaiopensource.com/nxml-mode.

[4] Multi Modes. Introduction to multi modes.

http://www.emacswiki.org/emacs/MultipleModes.

http://web-mode.org/
https://github.com/fxbois/web-mode
http://www.thaiopensource.com/nxml-mode
http://www.emacswiki.org/emacs/MultipleModes

