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We apply machine learning to version control data to measure software development productivity.
Our models measure both the quantity and quality of produced code. Quantity is defined by a model
that predicts the labor hours supplied by the ‘standard coder’ to make any code change, and quality is
defined by a model that predicts the distribution of different kinds of problems identified by a static
code analysis tool.

1 Why measure software development productivity?

The productivity of an industrial process is the ratio of its outputs to inputs. Software developers supply
their time (inputs) to produce useful software applications (outputs). Can we measure the productivity of
software development? Such a measure would help us identify and propagate best practices by comparing
productivity across teams, projects, companies and sectors; we would avoid waste and reduce costs to
consumers; and we could verify whether new tools or methodologies actually increase productivity, etc.
Few enjoy the thought that their productivity may be tracked; and, indeed, such metrics may be abused.
But if we wish to transform software development from a craft to an engineering discipline, we have
to measure our productivity. The key challenge is to measure it well. Clearly, we cannot capture the
full richness of real life with a single metric, but we can measure important aspects of it, and therefore
contribute additional information to human decision makers.

2 Productivity: quantity and quality

Existing methods rely on subjective methodologies (e.g., function point analysis [1]) or models con-
structed from small datasets (e.g., COCOMO [5]) that often require manual data collection. Instead we
aim to automatically measure productivity leveraging big datasets produced as a side-effect of software
engineering (i.e., version control).

The main function of a software developer is to produce source code. Developers, of course, produce
other outputs (such as designs, plans, code reviews etc.), but these are typically produced as a side-
effect. We aim, therefore, to measure the coding productivity of developers who submit code changes
to a version control repository. The ‘amount of output’ produced by a coder has two aspects: highly
productive developers not only produce ‘more’ code change but also changes of ‘higher’ quality. So
we (somehow) must measure both the quantity and quality of coding output. We breakdown coding
productivity into coding output, which measures the ‘amount of effort’ required to produce code changes,
and code quality, which measures the ‘amount of quality’ embodied in source code. We therefore need
datasets of (i) code changes, and the effort required to make those changes, and (ii) the quality of source
code.
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Figure 1: The NN computes time dependent transition probabilities S and E for the HMM. The HMM’s
state probabilities are fitted to the observed sequence of commits with the forward-backward algorithm.
The NN and emission probability C are trained to maximize the likelihood of the sequence.

3 lgtm.com: a big dataset of the quantity and quality of coding output

Semmle’s LGTM (‘looks good to me’) analyses over 10M commits submitted by ≈ 300K developers to
≈ 56K open source projects (see lgtm.com). Each commit produces a new source code ‘snapshot’ that
LGTM analyzes using QL [2], a declarative, object-oriented logic programming language for querying
complex, potentially recursive data structures encoded in a relational data model. QL treats ‘code as
data’ and is particularly well suited for static code analysis and code queries.

LGTM executes hundreds of QL queries on each snapshot, where each query identifies a potential
problem in the source code – from simple mistakes such as uninitialized variables, to complex errors,
such as taint analysis via routes from data sources to sinks. The queries, developed over multiple years
by language experts, encode domain knowledge about code quality. Each query is a quality probe that
may generate one or more ‘alerts’. LGTM therefore supplies rich code quality data. In addition, every
commit is time-stamped. We now explain how we construct productivity metrics from this data.

4 Coding output

Two different code changes contain the same ‘amount of output’ if they typically take the same labor time
to produce. Consider two consecutive commits, A and B, by the same author. The commit interval is
the time difference between them (e.g., 10 minutes, or 3 days). In general, the labor time that produced
the code change from A to B is less than or equal to the commit interval. Short intervals (e.g., 15
minutes) may coincide with coding time but longer commit intervals (e.g., 8 days) include coding breaks
(especially in open source development). Can we extract coding time information from commit intervals?

4.1 Coding time: a Neural Hidden Markov model

We train a neural hidden Markov model1 to predict the probability an individual developer is currently
coding for each 1 minute of their recent history (e.g., ≈ 2 years). We then use the model to estimate the
expected actual coding time between two successive commits.

We assume two states: coding and non-coding. We observe the timestamped sequence of commit
events: a commit can only happen when coding (with a trained probability C per minute). Coding
developers end coding, within the next minute, with probability E(t), and non-coding developers start

https://lgtm.com
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(a) The HMM assigns a coding probability to each
minute. Short commit intervals often indicate uninter-
rupted coding, whereas longer intervals suggest coding
interruptions. We estimate time spent coding as the ex-
pectation value, which can be computed by taking the
area under the probability curve.

(b) Short intervals (e.g., < 1 hour) are often spent coding
nonstop. So, counter-intuitively, they provide evidence
for more coding time than medium intervals (e.g., 2 -
5 hours), which probably include coding breaks. This
model picks up that the developer has fewer interruptions
in the early morning.

Figure 2: Using the neural HMM to estimate coding times from commit intervals.

coding with probability S(t). In contrast to classical hidden Markov models, probabilities E and S vary
over time to account for habits (e.g., preponderance for evening coding) and schedule (e.g., only coding
on week days). A simple neural network (NN) with 5 inputs – the sine and cosine of the angle of an
imaginary dial on a day-long and week-long clock, and normed overall time – supplies the probability
values. These features can encode daily or weekly patterns that may shift over time. The NN is then
trained by back propagating likelihood gradients through the HMM part (see Figure 1).

The neural HMM is a flexible solution to a general problem: for any process that alternates between
active and inactive phases, it infers the probability of being active at any time from an observed rhythm of
potentially infrequent ‘life signs’ (in this case commit events). The neural HMM can discover night-time
coders, or developers that code only on weekdays, or weekends etc. The upshot is a model that maps
commit intervals to estimates of coding time (see Figure 2).

4.2 The standard coder: a Deep Mixture Density Network

We use the coding time models, described in the previous section, to create datasets that associate code
changes with estimated coding times. Next, we train a model that, given any code change, predicts the
coding time typically required to produce it. Such a model would then represent the coding time profile
of the ‘average’ or representative ‘standard coder’.

How do we represent code changes, and what kind of regression model should we apply? On our
datasets, a variant of bag-of-words features plus a deep mixture density network (MDN) yields the best
performance.

A single commit may affect multiple files. For each language we construct a ‘token dictionary’
consisting of separators (e.g., ., (, ), +, *, etc.), keywords (e.g., if, return, while, class, etc.) and
top n most frequent words (e.g., popular variable names). For each touched file we compute the diff
(lines either deleted and inserted) as per standard utilities (e.g., Unix’s diff command). We assume
code deletion also requires coding effort. So we concatenate all diffs, both insertions and deletions,
to form a composite change string. We compute a bag-of-words feature vector, which represents the
quantity of token turnover, or code change, introduced by the commit.
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(a) Each data point is binned hold-out examples with sim-
ilar predicted coding times in hours (x-axis). The y-axis
is the mean of the actual coding times. The MDN cap-
tures the ‘average’ coding time of developers, whereas
linear regression (inset top) and random forest (inset bot-
tom) fail on this dataset.

(b) An author deleted 8 and added 12 lines across 9 files
of Python code. The commit interval was 3.96 minutes
with an estimated coding time of 3.70 minutes. The MDN
model predicts this work is equivalent to 10.6 minutes of
the standard coder’s labor time.

Figure 3: Validating the standard coder.

The relationship between code change and coding time is irreducibly noisy due to fundamental prop-
erties of the generative process (e.g., due to skill differences between developers and random noise due
to work interruptions). In consequence, the regression model must be robust to noise. Plus, we want to
bound the uncertainty of our coding time predictions. A MDN [4] fulfills both criteria. Deep MDNs are
multi-layered neural networks that predict the parameters of a mixture distribution (i.e., predict a ran-
dom, rather than deterministic, target), where the parameters are a nonlinear function of input features.
We train with a likelihood loss. At prediction time we may compute the mixture mean, or use the full
distribution.

4.3 Model validation

The MDN learns distributions of coding times that correspond to similar kinds of code changes. To
validate the model we need a ground truth. We know, from our experience of software development, that
very short commit intervals (e.g. < 1 hour) typically correspond to sustained periods of actual coding.2

We therefore select, as our ground truth, holdout data with commit intervals < 1 hour.3

We trained a MDN model on 347K examples of Python code changes (with commit intervals replaced
by coding times). The MDN predicts a mixture of 10 Gaussians using 140 bag-of-token features and 3
hidden layers of size 28.4 We neither expect, nor require, that our model predict individual examples
with high accuracy. Rather, we aim to predict the ‘average’ coding time of the population of developers.
So, for model validation, we collect holdout examples into bins of similar predicted coding times, and
then compare against the bin means of actual coding times. Figure 3a illustrates that the MDN model
accurately captures the behavior of the standard coder. The upshot is a measure of the ‘amount of output’
represented by code change in units of labor hours supplied by the standard coder (see figure 3b).

5 Code quality: an ensemble of nonlinear quantile regression models

Code quality has many facets. For example, run-time bugs imply poor quality, but the source code of
an error-free program may nonetheless contain high technical debt, and therefore be difficult and costly
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Figure 4: A code quality comparison chart from lgtm.com. The x-axis is LOC and the y-axis is quality.
Each bubble is an open-source Java project. The highlighted project, apache/flume, has 107 alerts, a
quality score of 0.22 and final grade D.

to maintain. LGTM alerts detect a wide range of potential problems in source code, including problems
indicative of run-time bugs5 and technical debt.6 We therefore use the number and kinds of alerts in
source code as a proxy for code quality. Intuitively, the more alerts triggered by some code, the worse its
quality. However, code quality must also consider both the properties of the code that triggers alerts and
their types: e.g., a small project with a single, serious alert has worse quality than a large project with a
few less serious alerts.

LGTM classifies alerts into different categories (e.g. errors or warnings, with differing severities
and precision).7. For every alert category for every language we fit a non-linear quantile regression
model that predicts the alert distribution for a project with a given size in lines-of-code (LOC).8 We
train with data from > 50K LGTM projects. We constrain the models to output monotonously increasing
functions of LOC (to enforce the simple heuristic that alerts increase with LOC).9 The models feed into a
percentile-rank model that outputs an estimate of the cumulative distribution function Fl,i of the expected
number of alerts in category i given l LOC. The ‘quality score’ for each category is si = 1−Fl,i(ni)
where l is the project’s LOC and ni is the actual number of alerts in category i. The interpretation of si

is straightforward: it measures how well the project performs (0 = worst, 0.5 = as expected, 1 = best)
when compared to the expected distribution of alerts predicted by the model. The final code quality score
is a weighted sum of the si, where the weights are defined by simple heuristics based on the statistical
distribution of alert categories in LGTM data; e.g. more severe alerts weigh more, rarer alerts weigh
more etc.

We also assign a quality grade (A+ best, E worst) by comparing a project’s quality score to a reference
set. A+ means the project is best amongst its peers, whereas E means the project has room to improve.
The upshot is a quantitative measure of the quality of source code that summarizes the results of hundreds
of independent, and often complex, quality probes (see figure 4).

6 Conclusion

We construct community-based standards of software productivity from high volumes of empirical data
on the quantity and quality of code changes. We apply machine learning techniques to construct models
of coding output and code quality that function as standards of measurement. The models reduce com-
plex, structural code changes to quantitative measures of the quantity and quality of software developers’
output. We plan to make our productivity metrics available on lgtm.com for testing and feedback.

lgtm.com
lgtm.com
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Notes
1Since the 90s, efforts have been made to combine the flexible power of neural networks with the sequential approach of

HMMs. [3] used NN to generate the HMMs outputs, while recently [6] obtained excellent results by obtaining HMM parameters
from NN outputs for parts-of-speech tagging.

2The coding time model confirms this expectation since, for all developers, it discovers a near one-one relation between
coding times and short commit intervals (see Figure 2b).

3And, to avoid any possible interference from the coding time model, we simply set coding times equal to raw commit
intervals.

4Note that the holdout data is not drawn from the same distribution as the training set. In consequence, at prediction time, we
truncate the mixture distribution so the entire probability mass is contained within the interval [0,1] hour. The final prediction
is the mean of the truncated distribution.

5See lgtm.com/blog/testing_and_alerts_3.
6See lgtm.com/help/lgtm/query-tags.
7This information is available at github.com/lgtmhq/lgtm-queries
8Future extensions will take into account other properties of source code (e.g. complexity) that also affect code quality.
9This is strongly supported by the data with Kendall τb correlation coefficients between LOC and overall number of alerts

of 0.69, 0.72 and 0.73 for Javascript, Python and Java projects respectively.
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