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Abstract. We study combinatorics of Stokes sets appearing in the theory of the
asymptotic integral expansions and closely related bifurcation diagrams of quadratic
differentials. Hidden within these bifurcation diagrams are Stasheff polyhedra and
their relatives.

Introduction

The main goal of these notes is to describe the combinatorial structure
of the Stokes sets for the polynomials in 1 variable, a certain bifurcation
diagram in the space of monic polynomials of given degree (precise defi-
nition is given in section 5). As it turns out, their structure is connected
intimately to other bifurcation diagrams (of quadratic differentials,
or of Smale functions), and to various combinatorial structures, most
prominent of them being Stasheff polyhedra. These notes are expository
with proofs at best sketched. Detailed exposition will appear elsewhere.

1. Stasheff polyhedra

1.1. GENERALITIES

Recall some interpretations of the associahedra, alias Stasheff polyhedra.
Denote by B, the set of all meaningful bracketings of (n + 2) indeter-
minables written in a line (that is the set of ways to form products in
a nonassociative algebra).

Join a pair of bracketings by an edge if they are related by one
application of the associativity relation, (a(bc)) = ((ab)c). It turns out
that the resulting graph is the 1-skeleton of a convex polyhedron whose
vertices are the elements of B,,, called the Stasheff polyhedron or the
associahedron and denoted by K,. The faces of K,, are again Stasheff
polyhedra and their products.

There are further interpretations of the Stasheff polyhedron (a gen-
eral reference being, e.g. [15]): it is a geometric realization of the posets
of triangulations of a convex plane (n + 3)-gon or of plane rooted trees
with (n 4 2) leaves. More precisely, an (incomplete) triangulation of a
convex polygon is just a collection of nonintersecting chords; ordered
by inclusion, these triangulations form a poset dual to the face poset of
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K,,. Similarly, assuming that a tree obtained by contracting an edge is
greater than the original one, one obtains a partial order on the plane
rooted trees isomorphic to the face poset of K.

There are several ways to construct convex polyhedra combinatori-
ally equivalent to K,,. We will make use of the following explicit convex
polyhedral realization of K, C R":

k
i=

(Here € is a small enough positive number).

More symmetric convex realizations (having the dihedral symmetry)
can be obtained using the interpretation of the polyhedron K,, as the
fiber polytope of the projection of (n + 2) simplex onto the regular
polygon with (n + 3) vertices [4].

1.2. STASHEFF FAN

Recall that a fan in a real vector space is a finite stratification of R™
by convex polyhedral cones C; such that the relative boundary of any
of the cones is a union of the cones of smaller dimensions and the
intersection of any two cones is again a cone of the family.

The normal fan associated to a convex compact polyhedron P is
defined as the collection of cones {C} in the dual space, where f runs
over faces of P: the cone Cf consists of the linear functionals attaining
their maxima over P on f.

Stasheff fan is a fan whose cones ordered by inclusion form a poset
dual to that of the facets of K,,, for example, the normal fan to a
Stasheff polyhedron (or rather to a convex realization of it, like K (€),
or the symmetric realization).

There is also an explicit construction of a Stasheff fan (related in
a natural way to the triangulation interpretation) which we will use
further:

Let P be a convex (n + 3)-gon in the plane. We call a (real-valued)
function on the set of vertices of P a balanced weight if its values add
to zero and the geometric center of masses is at the origin (so that the
balanced weights form a real vector space of dimension n). A weight
is called degenerate if there exists a linear function on plane, whose
restriction to P majorizes the weight and coincides with it in at least
four points.

The partition of R” defined by degenerate balanced weights is a
Stasheff fan >, C R™. The natural stratification of R" defined by the
Stasheff fan %, is simplicial (in other words, the Stasheff polyhedron
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is simple). The number of open simplicial cones in the Stasheff fan of

dimension 7 is = (*™), that is the Catalan number c,. The generating
function for the Catalan number, ® = > ¢,t" solves the functional

equation

D(t) = (1+t0)2, O =1+2t+5t2+ 1483 +....

2. Quadratic differentials

2.1. BIFURCATION DIAGRAMS

Quadratic differentials (a general reference here is [13]), that is differen-
tial elements f(z)dz? with holomorphic f, define a pair of orthogonal
(singular) foliations on the Riemann surface V of z as follows: the
vectors £ € T,V are tangent to the horizontal (vertical) foliation iff
f(2)€2 > 0 (f(2)€% < 0, respectively). The foliations are well-defined
everywhere outside the zeros of f; near a zero of order k£ they have
(k + 2) rays emanating from the zero.

When the zeros of f are simple, the singularities of each foliation are
“tripods” at each zero. For special parameter values special trajectories
(“instantons”) appear: some of the singular leaves can connect different
zeros. This happens on a set of parameters of real codimension 1.
The picture below shows a typical behavior of the singular trajecto-
ries of a quadratic differential along a 1-parametric transversal to the
bifurcation diagram.

Figure 1. Homoclinic
trajectory of a quadratic
differential (\Y -catastrophe}.

DEFINITION 2.1. Let L be the base of the versal deformation of a
quadratic differential fdz?. The bifurcation diagram S C L of the
quadratic differential is the closure of the set of parameter values cor-
responding to quadratic differentials with o singular leaf (horizontal or
vertical) joining two zeros of the differential.

The bifurcation diagram naturally splits into the union of the vertical
and horizontal ones, depending on to which of foliations the nongeneric
leaf belongs: S = S, U Sj,. The bifurcation diagram A of zeros of the
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quadratic differential, that is the set of parameter values corresponding
to differentials with multiple zeros is a subset of S, N Sy,

The study of the bifurcation diagrams of quadratic differentials
was initiated by J. Bruce and D. O’Shea [5] in connection with their
investigations of fields of principal directions on minimal surfaces in a 3-
dimensional Euclidean space (such surfaces can be invariantly equipped
with a conformal structure and a quadratic differential) It seems that
the question about the local structure of these bifurcation diagrams
has not been investigated earlier (see however [6]).

Below I describe, following [2] the combinatorial structure of the
bifurcation diagram in the base of the versal deformation of ‘A,-
singularity’, that is the quadratic differential z"*!dz?.

The general theory of versal deformations of holomorphic forms
fdxz* was developed by V. Kostov, S. Lando and others (a general
reference is [11], see also [9]). In our case of the quadratic differentials
(which was already treated in [6]), the base of versal deformation can
be identified with the n-dimensional complex linear space of monic
polynomials of degree (n + 1) with vanishing sum of zeros.

In their preprint Bruce and O’Shea calculated the bifurcation dia-
gram for A; case. For the standard deformation (z? — a)dz? it consists
of two straight lines in the a-plane intersecting at the origin.

2.2. COMBINATORICS OF BIFURCATION DIAGRAMS

Represent £ = C" as the product of two R"’s and consider two cylinders
over Y, in each of the factors, 3, = 3, x R"; 3, = R" x X,.

THEOREM 2.2. Bifurcation diagram in the base of versal deformation
of the quadratic differential z"'dz? is homeomorphic to the union $,U
¥, C R* xR™, that is there exists a homeomorphism h : (3,UX,, R™ x
R™) — (S, U Sy, A) taking ¥j, to Sy, and ¥, to S, .

In other words, the bifurcation diagram S is homeomorphic to the
fan dual to the product of two Stasheff polyhedra.

The number of connected components of the complement to the
bifurcation diagram in the base of the versal deformation of A,-
singularity is therefore equal to c¢2. For example, the cross of Bruce
and O’Shea divides R? into 4 = 22 pieces.

Consider the core h({0} x R™) of the vertical component of the
bifurcation diagram (the subset of parameters for which n — 1 instan-
tons exist). This is a topological submanifold. The intersections of the
vertical component S, with the germs of transversals to the core are
combinatorially Stasheff fans, but their geometry varies strongly. Over
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a generic point it is diffeomorphic to the dual fan to the realization
K (€), as on the left part of the Figure 2 below.

On the other hand, the intersection of the vertical component with
the core of the horizontal component has the dihedral symmetry,
indicated on the right part of the Figure 2.

Figure 2. Possible
geometries of the inter-
section of the vertical bi-
furcation diagram with
transversals and their dual
Stasheff polygons.

Both components of the bifurcation diagram, Sy and S,,, consist of a
large number of pieces of analytic (outside of the discriminant) hyper-
surfaces. Quite surprisingly, these pieces glue together upon analytical
continuation:

THEOREM 2.3. There ezist two hypersurfaces H, and Hy, in A = R*™
which are analytic and irreducible in the complement to the bifurcation
diagram of zeros A, such that S, C H, and Sy, C Hy,.

The analytic hypersurface from Theorem 2.3 is non-algebraic, unlike
the swallowtail. It has a logarithmic branching at A.

3. Weighted chord diagrams

3.1. DEFINITIONS

To construct the homeomorphism of Theorem 2.2 we will use the de-
scription of the Stasheff fan given in 1.2 in terms of balanced weights.
The balanced weights give rise to weighted chord diagrams in the plane
convex polygon P with (n + 3) vertices.

A weighted chord diagram in P is a set of non-intersecting chords
or diagonals (segments joining not neighboring vertices of the convex
(n+3)-gon P) with a positive number attached to each chord. This set
will be called the support of the weighted chord diagram. If the number
of chords is maximal (that is, n) we will call the weighted chord diagram
complete. Complete chord diagrams correspond to triangulations of P.

One can associate a weighted chord diagram to each balanced weight
as follows. Fix a point p in the plane of P which is in general position
with respect to vertices of P. Let a balanced weight f be given. For any
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two not neighboring vertices of P consider all linear functions coinciding
with f at those vertices and majorizing f elsewhere. The values of these
functions at p sweep an interval; its length we take as the weight of the
chord joining the vertices. One can check immediately, that the chords
with nonzero weight do not intersect and therefore the weight defines
a weighted chord diagram.

Conversely, any weighted chord diagram gives rise to a balanced
weight.

3.2. POLYHEDRAL MODEL

Balanced weights corresponding to weighted chord diagrams with a
given support form a simplicial cone of the dimension equal to the
number of chords. Denote this cone by Cy = R”, where D is a set of
nonintersecting chords (i.e. a chord diagram).

Recall that the chord diagrams (without weights) are ordered by
inclusion. For any ordered pair of chord diagrams Dy C D5 the cone
Cp, is embedded into C'p,: just set the weights of the extra chords to be
equal to 0. Gluing all these cones together along these mappings (or,
equivalently, taking the inductive limit) one arrives at a “polyhedral
model” of R" built of simplicial cones corresponding to chords dia-
grams. The cones of the Stasheff fan of positive codimension correspond
to the images of the cones Cy, |D| < n.

4. Quadratic differentials and weighted triangulations

4.1. FROM QUADRATIC DIFFERENTIALS TO WEIGHTED CHORD
DIAGRAMS

According to [11], the standard affine deformation
f(za)d2* = (2" + a2+ .+ a,)d2?

of the A, singularity of quadratic differential is versal. Now we as-
sociate a pair of weighted chord diagram to each value of parameter
a=(ay,...,ap).

For each a one can choose R > 0 large enough, so that outside of
the circle Cr = {|z| < R} the fields of directions defining any of the
foliations is sufficiently close to the fields of directions corresponding to
the unperturbed differential 2" t'dz2. In particular, the union of leaves
of (say) the horizontal foliation intersecting Cr consists of (m + 3)
arms going to infinity. We identify once and forever these arms with
the vertices of the convex polygon P.
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Take R so large that the interior of C'r contains the set Z of zeros
of f. We will call a nonsingular horizontal leaf nontrivial, if its inter-
section with Cg represents a nontrivial element of m(Cgr — Z, dCR).
A connected component of the union of nontrivial leaves we will call
a stream. Apparently, a stream goes from infinity to infinity along two
different arms. The integral of (a branch of) the 1-form \/fdz sends
the stream to an infinite horizontal strip on the complex plane. The
height of this strip we call the weight of the stream. Join the vertices of
P corresponding to the arms containing the stream by the chord and
attach to it the weight of the stream. What results is a weighted chord
diagram. The same can be done with the vertical foliation.

Therefore, one can associate a pair of weighted chord diagrams cor-
responding to the horizontal and vertical foliations to each (deformed)
quadratic differential fdz? (see an example on Figure 3 below).

4.2. ...AND BACK

This correspondence can be inverted: for each pair of weighted chord
diagrams, there exists unique (given that the sum of its zeros vanishes)
polynomial quadratic differential which generates exactly them.

For example, if both chord diagrams are empty (that is, the weights
of all chords are zeros), we arrive at polynomial 2" 1.

To describe the inversion, it will be convenient to draw two polygons
(with (n+3) vertices each) in which the chord diagrams in question are
given as inscribed with alternating vertices into a 2(n + 3)-gon D. We
will call this configuration the interlacing polygons. This reflects the
behavior of the arms of the horizontal and vertical foliations at infinity.

Let the chords with positive weights be represented by straight
segments joining the vertices of the large polygon. They divide the
interior of the polygon into several connected components. We put one
point into each of the components and join these points by segments
if the corresponding components share a segment of a chord on their
boundaries. Further, we join the interior point in each component with
the vertices of D which belong to the boundary of the component.

These segments divide the polygon D into convex polygons of the
following types:

a) triangles with one side being a side of D;

b) triangles with exactly one vertex being a vertex of D. Such a
triangle has to contain a piece of exactly one chord.

c) 4-gons containing exactly one point of intersection of chords (one
vertical and one horizontal). All the vertices of the 4-gon are
interior points of D.
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Replace each triangle of type a) by the quarterplane; each triangle of
type b) by the half-infinite rectangular strip of width equal the weight
of the chord piece of which the rectangle contains; and each 4-gon by a
rectangle whose sides are equal to the weights of the chords intersecting
inside the component. One can identify the corresponding sides of the
boundaries of these new geometric pieces.

The resulting (topological) disk acquires the conformal structure,
which is flat everywhere outside of (m + 1) internal points where
more than four right angles of the flat pieces come together. We
will denote these points by p;. There exists unique complex structure
compatible with the conformal one. As is easy to check, the disk is
conformally equivalent to the entire complex plane C. Choose a coor-
dinate z on this plane so that the sum of coordinates of p;’s vanishes,
and the directions to the images of the vertices of D are positioned
correctly (remember that they are identified with the arms of a poly-
nomial quadratic differential, which tend asymptotically to directions
exp(imk/(n + 3)),k = 0,...,2n + 3). This fixes the coordinate z. Let
the coordinates of the points p; be z;, i = 1,...,n + 1 (counted
with multiplicities), and take f to be the monic polynomial of degree
m+1 with roots z;. Then the polynomial quadratic differential f(z)dz?
generates the pair of weighted chord diagrams we have started with.
This proves Theorem 2.2.

Figure 3

A pair of chord diagrams and the foliations defined by the corre-
sponding polynomial quadratic differential of degree 4 are shown on
Figure 3. Here the solid diagonals on the left picture and the solid lines
on the right picture correspond to vertical foliation; dashed diagonals
and dashed lines to the horizontal one. The auxiliary segments subdi-
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viding D are shown as dotted. The pieces corresponding to the diagonal
AB and the corresponding stream are filled.

The linear space of monic polynomials with vanishing zero sum can
be identified not only with the base space of the versal deformation of
quadratic differential 2”1 dz? but also with the base space of the versal
deformation of the simple singularity A,, of plane curves [1]:

2 where f(z,a) = 2" +a12" "+ . +ay,.

a = PZ(Z,UO ::f(zaa)__tu

The discriminant Y is the set of values of parameters a for which
the level curve X, = {(z,w) : P,(z,w) = 0} is singular (equivalently,
for which f(-, a) has multiple roots). Let w = wdz. This holomorphic 1-
form w defines a section of the cohomological Milnor fibration over A—A
(the fibers of this fibration are H!(X,,C)) defined by the restrictions
of w to X,. The integral of the form over a locally constant (with
respect to the Gauss-Manin connection) section of the homological Mil-
nor fibration defines a (multi-valued) holomorphic function on A — A.
For a cycle constructed from a vertical (horizontal) instanton the real
(imaginary) part of this function vanishes. This shows that each of the
two components of the bifurcation diagram, S; and S,, are analytic
real hypersurfaces in A = R?™.

For example, for the standard deformation of the Morse singularity
Ala

f(z,a) = 2" —a,

we have h = a (up to a multiplicative constant), and the cross of Bruce
and O’Shea is just the union of lines R(a) = 0; F(a) = 0.

Consider the base space L as just the real linear space and let £P be
its complexification (that is AP = A ®g C). The function R(h) locally
defining the bifurcation diagram of quadratic differential near a smooth
point is locally holomorphic and its zero locus is an analytic hypersur-
face. This hypersurface is singular and non-algebraic (the function h
has logarithmic terms near A).

The discriminant A extends to AP as an algebraic singular variety
of (complex) codimension 2. In Example 4.2 77?7 the discriminant is
just the origin in the plane. Both strata of the bifurcation diagram are
smooth at the origin. Generally, both S, and S;, are smooth at the
smooth points of A. Indeed, let ag € ¥ € AP be a generic point of the
discriminant, such that only two zeros of p,, coincide and there is no
nontrivial instanton trajectories. In a neighborhood of ay we consider
the set S, consisting of quadratic differentials with a vertical trajec-
tory connecting the colliding at a roots of p,. Clearly, the hypersurface
Sy;q is smooth at a.
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The union of hypersurfaces S, A = NaeaS_v;a is smooth irreducible
(as A is irreducible) hypersurface in a tubular (of varying radius)
neighborhood of A in AP.

If ap is a generic point of the bifurcation diagram S,, the path
constructed in the beginning of this Section belongs to the smooth
part of the diagram and connects ag to S, A. The irreducibility of S, A
implies Theorem 2.3.

5. Stokes sets

5.1. STOKES PHENOMENA

The motivation for the study of Stokes sets comes primarily from the
theory of asymptotic expansions of integrals using the steepest descent
method.

Consider the approximation of the integrals

I(k;l) :/ a(z; 1)@ dg
(&

for £ — oo. Here the phase @ is an analytic in C function depending
analytically on some parameters [ and C is an infinite contour such
that #® — —oo at its ends (that is C represents some element of
H,(C,{R® <« 0})). To approximate this integral one customarily de-
forms the contour to pass through the critical points of ® and to go
along the trajectory of the steepest descent (that is the trajectory of the
gradient vector field of the real part of ®). These trajectories are the
leaves of the foliation defined by the level curves of the imaginary part
of ®. The nighborhoods of the critical points of the phase contribute
most to the integral.

The form of the asymptotic expansion thus obtained depends on
number of critical points through which the steepest descent contour
passes. Typically, one has

I(k;1) = myeP®@0) 4ooeh®@0)

where z; are the critical points of ® on the deformed contour; m;
are some functions of £ and [ slowly (as compared to the exponential
function) varying with k. The main contribution comes, of course, from
the critical values with the largest real part.

The Stokes phenomenon in this context is the discontinuous change
of the coefficients m (Stokes’ multipliers) as the parameters [ change.
The topological reasons for this is the discontinuous behavior of the
gradient trajectories at the parameter values when a segment of the
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trajectory connects two critical points. This is a nongeneric situation
which happens in real codimension 1. A typical example is shown below.

Figure 4

Here the contour is shown as a solid line; dotted lines show the
foliation by the level lines of the imaginary part of the phase.

Notice that at the bifurcation set, the real parts of the critical values
are strictly different: the Stokes phenomenon does not reduce to one
critical value bypassing the other and becoming the leading exponent.
A subset of parameters where this happens (antiStokes sets, see below)
is also relevant in asymptotic analysis and in our constructions.

At the bifurcation set the imaginary parts of the critical values
connected by the gradient trajectory coincide. However, the Maxwell
stratum for the imaginary part of ® is strictly larger than the set of
parameters where the Stokes phenomenon occurs: the existence of the
connecting gradient trajectory is necessary. The Maxwell strata for the
imaginary parts of holomorphic germs were studied in [10].

5.2. STOKES SETS

The Stokes set associated with an asymptotic integral depends on the
class of integration contour; taking into account all possible contours,
we get the following definition.

DEFINITION 5.1. Let @ : U x L - CU Cc C,L =2 C™ be a defor-
mation of the function ¢(-) = ®(-;0),l € L. The Stokes set S, C L
is the closure of the set of parameters for which there exists a smooth
component of a level set of the imaginary part of ®(-,1) with critical
points at its ends.

Similarly, the antiStokes set Sy C L is defined in terms of the
foliation by the level curves of the real part of ®.

The bifurcation diagram of functions D is apparently a stratum in
S, NSy,

Ezample. The Stokes set for the Airy function (corresponding to
®(z,l) = x3/3 + 21,1 € C) is the union of three rays from the origin at
120°; the antiStokes set is the centrally symmetric image of the Stokes
set.
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6. Even polygons and quadrillages

For multiparametric deformations these elementary Stokes sets, in
words of M. Berry, “coalesce or cross”. He says further that “there ought
to be a classification of the ways in which this can happen stably...”
[3]. A description of the combinatorics of the Stokes and antiStokes sets
follows.

6.1. DEFINITIONS

We will again use the polygons in a fashion similar to that of section 4.

All polygons we will consider here will be assumed “marked” mean-
ing that their vertices are numbered from 1 through v counterclockwise.
We will call a convex polygon with an even number of vertices simply
an even polygon.

DEFINITION 6.1. A quadrillage of an even polygon P is a set of non-
intersecting chords which partition P into even polygons. The number
of chords is called the size of a quadrillage. A quadrillage of maximal
size (that is such that all polygons of the partition are 4-gons) is called
complete.

Complete quadrillages of marked even polygons correspond to
rooted ternary trees just as triangulations correspond to rooted binary
trees. The generating functions

Q(t) = Z qnt"
0

where g, = #{complete quadrillages of 2n + 2-gon}t" solves the func-
tional equation

Q=(1+tQ)?

(the analogous equation for triangulations with squared, not cubed,
term, leads to the Catalan numbers) and implies, via Lagrange
inversion, g, = 51 (37); @ = 1+ 3t + 12¢% 4 5563 4+ 273t + .. .

For each even polygon we fix one of the two interlacing assignments
of signs (+) and (—) to its vertices; the even polygon with such an
assignment is called signed. For signed polygons one obtains an orien-
tation of the chords of a quadrillage and of the sides of the polygon P:
each of them is oriented from a (—) towards a (+).

An (ordered) pair of interlacing polygons (having the same number
of vertices v) is a convex polygon D with 2v vertices 1,2,...,2v num-
bered counterclockwise; the even vertices thought of as the vertices of
one polygon; the odd ones as the vertices of the other.
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We consider two interlacing even, signed polygons P, and P, called
respectively vertical and horizontal, and their quadrillages (also called
vertical and horizontal). Fix the first vertex of D to be horizontal and
the first two vertices to be (+)-signed. This sign assignmenet induces
an orientations (as described above) on the chords and sides in each of
the interlacing even polygons.

DEFINITION 6.2. Two quadrillages of a pair of interlacing even poly-
gons Py and P, is called admissible if for any couple of intersecting
chords cp, and c, of the respective polygons, the sense of the orientation
at the intersection point defined by the tangent vectors to ¢, and ¢, (in
this order) is positive.

Notice that the orientations at the intersections of chords and
sides of the polygons are automatically positive, due to the chosen
numbering/signing scheme.

For example, of the 3 x 3 pairs of complete quadrillages of interlacing
6-gons, 6 are admissible and 3 are not, see the figure below.

Figure 5. The dashed
chords are horizontal; the

admissible and nonadmissible

solid ones — vertical. pairs of quadrillages

6.2. COMBINATORICS OF STOKES/ANTISTOKES SETS

Similarly to 3.2, we associate to each admissible pair of quadrillages
m = (qu,qp) the simplicial cone C; of the nonnegative weights on its
chords. The dimension of this cone is clearly the sum of the sizes of the
quadrillages.

The pairs of quadrillages are ordered by inclusion (as the
quadrillages themselves are). For any two ordered admissible pairs of
quadrillages ™1 = (g}, q}) < 7* we denote by iz, : Cr, — Cpr, the
embedding attaching zero weights to the missing chords.

Gluing the cones C together using these embeddings we arrive at a
simplicial complex (or rather a cone over a simplicial complex) which
we denote by A.
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The union of the (images of) the cones with noncomplete verti-
cal quadrillages will be denoted by X,; the same for the horizontal
quadrillages will be denoted 5. Clearly, ¥, and Y; are simplicial
subcomplexes of A.

Consider also the admissible pairs of noncomplete quadrillages which
have the property that they can be augmented by a pair of intersecting
(one vertical, one horizontal) chords. The (image of the) union of the
corresponding cones we denote by .

The relevance of all these combinatorial constructions to our
problem is explained by the following result.

THEOREM 6.3. There exists a homeomorphism of quadruples
w: (La Sva Sh; S) - (A7 Eva Eh; E)
which is a diffeomorphism outside of S.

In particular, the space A is a cone over a sphere. The connectedness
of the sphere implies, in particular, that any two complete quadrillages
can be connected by a sequence of elementary flips (removing a chord
and replacing it by another one in the resulting hexagon).

This result is entirely analogous to Theorem A: to construct w one
just considers the quadratic differential ( fl’,dz)2 and applies the gluing
method. The only condition to check is that the resulting partitions
of the interlacing polygons satisfy the conditions of the theorem and,
conversely, that any admissible pair of weighted quadrillages gives rise
to a quadratic differential on C with even zeros only.

The analogue of Theorem 2.3 is also valid:

THEOREM 6.4. Forn > 3 the union of the Stokes and antiStokes sets
belongs to an irreducible (real) hypersurface in L (considered as a real
affine space), analytic outside of the discriminant.

(The configuration of the Stokes and antiStokes sets for the Airy
function shows that both of them belong to the same irreducible
hypersurface).

The connected components of A — ¥, are numbered by complete
quadrillages of the v-gon with ordered vertices.

PROPOSITION 6.5. The connected components of A — X, are cells.
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7. Polyminos

Fix a quadrillage ¢ subdividing the 2n + 2-gon into n 4-gons. It will be
convenient to think of the quadrillage as of a polymino (e.g., a hexagon
with 1 large diagonal correspnds to the doino).

An n-polymino is defined as following. Consider a collection S of n
copies of the unit square in the plane {|z| < 1/2,|y| < 1/2} (thus
equipped with an orientation). The sides of these squares are ori-
ented by the condition that together with the outward normal they
form a positive frame. A polymino is the space resulting from the
identifications of several sides of the squares in such a way that

a) the orientations of the identified sides are opposite if one of them
is vertical and one is horizontal and the same otherwise;

b) any two squares have at most 1 side identified and
c) the resulting space is connected.

More formally, let S be the set of sides of the squares in S. Consider
a partition of S into a family of subsets denoted by E; the element to
which the side a belongs is denoted by e(a). The partition of S into
the sides belonging to the same square we will encode via the function
s:S = S; s(«) is therefore the square of which « is a side.

Further, take a family of isometries ¢, : So — R, where « runs
through S, which preserve orientations when « is a horizontal edge and
reverse it if it is a vertical one, and send the midpoints of the edges to
zero. Now, we identify the points of the edge with the same e(«) having
equal values of ¢,. The resulting cell complex is called a polymino p.

We will assume (without loss of generality, to exclude some trivial
cases) that each subset of the partition E with more than 1 element
contains both vertical and horizontal sides.

The backbone of the polymino is the graph whose vertices are the
centers of the squares (these elements will be called s-vertices) and
of their identified edges, that is of points numbered by elements of E
(called e-vertices). The edges of the backbone are numbered by the
elements of S and the edge « connects the s-vertex s(a) with the e-
vertex e(a).

The backbone graph is clearly bipartite (into e- and s-vertices) and
naturally oriented: an edge « points from an s-vertex towards an e-
vertex if « is vertical and in the oposite direction if « is horizontal.

A polymino is called ordered if this orientation of the backbone graph
has no cycles.
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We say that a polymino is simple if any side of any square is identified
with at most one side of some other square. Examples of nonsimple and
unordered polyminos are given on the figure below.

Figure 6. Nonsimple (left)
and unordered (right) polyminos.

Denote by V(p) = R5(®) the real vector space of functions on the
edges of the backbone. The projection sending an edge to its e-vertex
embeds the space E(p) = R* of functions on e-vertices into V' (p).

To each polymino p we associate a fan S(p) in the real vector space
V(p)/E(p). To define a fan it is sufficient to define its intersection with
a vicinity of the origin. An element of V(p)/E(p) can be identified with
the functions w of flags having the property that ., w(a) = 0 for
any E-vertex e.

Provide each unit square of the polymino with the piecewise linear
foliation by the level sets of the function

agce

|z —1/2| = |y — 1/2],
Now perturb the isometries ¢, defining the polymino as

ba = Po + w(a).

Gluing together the squares according to thus modified isometries we
obtain (for small w) again a topological space with an oriented foliation.

We say that the vector w is degenerate if there exists a trajectory (a
piecewise linear immersion of the oriented segment into the polymino
tangent to the foliation at all points of linearity) of this foliation and
connecting centers of some two squares.

Degenerate vectors form a germ of the associated fan in V(p)/E(p)
which we will denote as S(p).

The relevance of the fans associated to polyminos is that they
describe the local combinatorics of the Stokes sets.

PROPOSITION 7.1. Let C(p) be the cell in the complement to the
antiStokes set corresponding to a polymino p. Then there exists a
homeomorphism

h: (C(p),C(p) NSy) — (R, S(p)) x R".
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8. Stokes polyhedra

It turns out that the fans S(p) for ordered polyminos are dual to
certain finite convex polyhedra. We formulate the theorems in terms
of polymino, so that they are valid also for those of them not coming
from quadrillages of even polygons.

THEOREM-PROPOSITION 8.1. For every ordered polymino p, the
fan S(p) is dual to a convex polyhedron St(p) called the Stokes
polyhedron of p.

The Stokes polyhedra form a family of polyhedra interpolating be-
tween the the Stasheff polyhedron and the cube. The examples of Stokes
polyhedra for polyminos with at most 4 squares are given below.

More generally, call the height of the polymino the length of the
longest oriented chain in its backbone graph.

If the height of p is 2, then S#(p) is a cube. If the backbone graph
itself is a chain, then St(p) is a Stasheff polyhedron. More generally,
one has the following result:

PROPOSITION 8.2. FEach Stokes polyhedron of an ordered polymino
15 a Minkovsky sum of the Stasheff polyhedra corresponding to mazimal
chains in the backbone graph.

The Minkovsky summands of some of the 3-dimensional Stokes
polyhedra shown on Figure 7 are shaded.
Some further useful properties of the Stokes polyhedra.

PROPOSITION 8.3. The polymino is simple if and only if the Stokes
polyhedron is simple.

If an s-vertex o of the backbone graph of p is separating (that is all
adjacent edges are either all in- or all out-vertices), or, equivalently, the
square is glued to along only vertical or only horizontal sides, then St(p)
is the product of Stokes polyhedra corresponding to the polyminos
obtained by removing the square o and replacing it by its copy in each
of the connected polymino into which p splits upon this removal.
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Figure 7. .

9. Miscellaneous remarks

9.1. COMBINATORICS

The Stokes polyhedra have some obvious combinatorial interpretations
in terms of enumerations of restricted triangulations (or bracketings).
For example, the vertices of the the Stokes polyhedron for the T-shaped
tetramino enumerate the triangulations of a heptagon with exactly one
of the chords 1 —4 and 1 — 5 in it.

Enumerating these restricted triangulations allows one to quantify
the clam made above that the Stokes polyhedra intrpolate between the
(most complicated) Stasheff polyhedron and (least comlpicated) cube.
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The number of vertices of the Stokes polyhedron corresponding to
the A-type polymino (left on the Figure 8) is the Catalan number ¢, ;
the number of vertices of the D-type polymono (right one) is ¢, — ¢,
(both with (n 4+ 2) squares).

RN RN

L L
|
Figure 8. |

9.2. SINGULARITIES

There are some natural ramifications of the theory sketched above
(to be described elsewhere). Thus, (ordered) non-simply connected
polymino appear naturally in the polyhedral models of the Stokes sets
in versal deformations of other singularities.

One can also study the real case (most interting for the applica-
tions). All the constructions remain valid; the condition of reality of
the deformation just implies that the pairs of the quadrillages and the
corrsponding polyminos have an axis of symmetry.

9.3. K-THEORY

More surprisingly, Stokes polyhedra appear in algebraic K-theory.
Recall that the Steinberg group of order n over a ring R is the free

group with generators zj;,1 < # 7 < n,a € R satisfying the relations

ZE;L](II?J = xgj'i'b’ (A)
[z, 23] = 0 if i # 1 andj # k, (B)

and
2%, a%] = af,i, j, k distinct. (©)

Kapranov and Saito undertook in [8] a study of these relations
syzygies between them in a geometric way, the first step of which is to
represent the generators of a group as 1-simplices and the relations as 2-
cells spanning them, so that the group itself appears as the fundamental
group of the resulting cell complex. The next steps then would consist
in finding the syzygies between the relations (corresponding to 3-cells),
syzygies between syzygies and so on. One can see immediately that the
Steinberg relations themselves can be represented as a triangle (relation
A), square (relation B) and the pentagon (relation C).

The topology of space obtained by gluing the cells representing the
higher syzygies encodes, conjecturally, the higher K-theories.
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The first steps of this program has been successfully realized: a fam-
ily of polyhedra representing the syzygies between Steinberg relations
has been proposed in [8], such that the second homotopy group of the
resulting CW-complex is equal to K3(R).

The surprising fact is that all these polyhedra (with exception of
those containing a triangle corresponding to the additive relation A)
turned out to be the Stokes polyhedra listed in the right column of
Figure 7.

An explanation of this comes from the Hatcher-Wagoner approach
to K-theory [T7].

Recall that a Smale-Morse function is a Morse function such that
the stable and unstable manifolds C*(f, ) of the gradient flow corre-
sponding to critical points x (that is unions of gradient trajectories of
f approaching z as t — +00) intersect transversally. (Of course this is
a property of the pair [function, metric], or rather of the pair [function,
gradient-like vector-field], not of the function per se). The unstable
manifold S™(f,z) for a Morse-Smale function is diffeomorphic to the
Euclidean space of dimension equal to the index of z.

Consider a smooth manifold M™ (with boundary) and a Morse-
Smale function f having only Morse critical points of the same index
1 <4 < m such that

a) all critical values are positive, and

b) the intersections of the unstable manifolds with {f = 0} are
spheres.

Then, provided with orientations, these unstable manifolds form a
basis of H;(M,{f <0};Z).

Consider now the space M of Morse functions on M having r crit-
ical points and such that the two conditions above are satisfied. For a
generic function, the stable and unstable manifolds of different critical
points do not intersect, but for some of them this Smale condition
is violated. Denote this bifurcation diagram ¥. A result of [7] states
that under some dimensional conditions there exists an isomorphism
of the Steinberg group with r generators over R = Z(mw(M)) and
T (M, M —%).

A smooth point of the codimension 1 stratum of the bifurcation
diagram corresponds to the transversal intersection of the stable and
unstable manifolds S~(f,z) and S*(f,z) of some 2 critical points =
and y along a gradient trajectory from y to x.

The element of this group represented by a generic l-parameter
deformation passing through a point on the codimension 1 stratum
of ¥ yields the change of the basis of H; by an elementary operation.
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The codimension 2 strata are either the selfintersections of the
smooth parts of codimension 1 strata corresponding to pairs of disjoint
trajectories connecting two pairs of critical points, or strata correspond-
ing to chains of three critical points £ — y — 2z connected by the
gradient trajectories. The former strata correspond to the squares, or,
algebraically, to the 4-term relation B; the latter to the pentagon, that
is to the 5-term relation C.

Figure 9. Changes of
the homology basis associ-
ated with the crossing of the
bifurcation diagram

More generally, for any partial order on the set of critical vertices,
one can consider the strata consisting of such a Morse function that
the ordered points correspond to the critical values connected by a
chain of gradient trajectories. One can show that at generic points
the CW-complexes dual to this stratification again have combinatorial
type of certain convex polyhedra which are Minkovski sums of Stasheff
polyhedra.

The bifurcation diagrams associated with polyminos described in
Section 7 are obviously a special case of this construction. Moreover,
in small codimensions (below 5) bifurcations coming from polymino
exhaust the combinatorial types of these polyhedra. This explains their
appearance in our lists.

References

1. Arnold, V., Varchenko, A., Gussein-Zade, S. Singularities of Differentiable
Mappings, vol. 2, Birkhauser, Boston, 1988.

2. Baryshnikov, Yu. Bifurcation diagrams of quadratic differentials, C. R. Acad.
Sci. Paris, 325, 71-76, 1997.

3. Berry, M. Stokes’ phenomenon: smoothing a Victorian discontinuity, Publ. Math.
IHES, 68, 211-221, 1989.

4. Billera, L.J; Sturmfels, B., Fiber polytopes, Ann. Math., 135, 527-549, 1992.

5. Bruce, J.W.; O’Shea, D.B., On Binary Differential Equations and Minimal
Surfaces, Preprint, Liverpool, 1995.

6. Hubbard, J., Masur, H. Quadratic Differentials and Foliations, Acta Mathemat-
ica, 142, 1979.

7. Hatcher, A., Wagoner, J.Pseudo-isotopies of compact manifolds. Asterisque, No.
6. Societe Mathematique de France, Paris, 1973.

8. Kapranov, M., Saito M., Hidden Stasheff polytopes in algebraic K-theory and
in the space of Morse functions, Contemp. Math., 227, 1998.

stokll.tex; 29/11/2000; 13:12; p.21



22

9. Kostov, V. P.; Versal deformations of differential forms of real degree on the real
line, Math. USSR, Izv. 37, No. 3, 525-537, 1991.

10. Kostov, V. P., On the stratification and singularities of the Stokes hypersurface
of one- and two-parameter families of polynomials. In: Theory of singularities and
its applications, (V. I. Arnol’d, Ed.), Adv. Soviet Math., 1, AMS, Providence,
1990, pp. 251-271.

11. Kostov, V. P.; Lando, S. K.; 1993, Versal deformations of powers of volume
forms. Computational algebraic geometry (Nice, 1992), Progr. Math., 109,
Birkh&user Boston, Boston, MA, 1993, pp. 143-162.

12. Shnider, S., Sternberg, S. Quantum groups. Graduate Texts in Mathematical
Physics, II. International Press, Cambridge, MA, 1993.

13. Strebel, K. Quadratic Differentials, Springer, Berlin, 1984.

14. Wright, F.J. The Stokes set of the cusp diffraction catastrophe, J. Phys. A13,
2913-2928, 1980.

15. Ziegler, M. Polytopes, Springer, Berlin, 1997.

Address for Offprints: 45 Av. des Etats-Unis, Bat. Fermat, 78035 Versailles, France

stokll.tex; 29/11/2000; 13:12; p.22



