Catalan lattices and realizers of triangulations

Olivier Bernardi - Centre de Recerca Matemàtica Joint work with Nicolas Bonichon

CRM, April 2007

1

Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on binary trees of size n equals the number of triangulations of size n?

Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on binary trees of size n equals the number of triangulations of size n?

Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on binary trees of size n equals the number of triangulations of size n?

Broader picture :

Stanley intervals

 $\longleftrightarrow \\ \frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$

Realizers of triangulations.

Tamari intervals

 $\iff 2(4n+1)!$ (n+1)!(3n+2)!

Triangulations.

Kreweras intervals

Stack triangulations.

CRM, April 2007

Olivier Bernardi – p.3/34

Catalan lattices and realizers

- Catalan lattices : Stanley, Tamari, Kreweras.
- Triangulations and realizers.
- Bijections:
 - Stanley intervals \iff Realizers.
 - Tamari intervals \iff Minimal realizers.
 - Kreweras intervals \iff Minimal and maximal realizers.

A Dyck path is made of +1, -1 steps, starts from 0, remains non-negative and ends at 0.

There are $C_n = \frac{1}{n+1} \binom{2n}{n}$ Dyck paths of size *n* (length 2*n*).

Catalan objects

The relation of being above defines the Stanley lattice on the set of Dyck paths of size n.

Hasse Diagram n = 4:

The Tamari lattice is defined on the set of binary trees with n nodes.

The Tamari lattice is defined on the set of binary trees with n nodes.

The covering relation corresponds to right-rotation.

Tamari lattice

The Tamari lattice is defined on the set of binary trees with n nodes.

The covering relation corresponds to right-rotation.

Hasse Diagram n = 4:

Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing partitions of $\{1, \ldots, n\}$.

Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing partitions of $\{1, \ldots, n\}$.

Kreweras relation corresponds to refinement.:

Hasse Diagram n = 4:

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Stanley, Tamari and Kreweras

[Knuth 06] The Stanley lattice is an extension of the Tamari lattice which is an extension of the Kreweras lattice.

Triangulations and realizers

Maps

A map is a connected planar graph properly embedded in the sphere.

The map is considered up to homeomorphism.

Maps

A map is a connected planar graph properly embedded in the sphere.

The map is considered up to homeomorphism.

A map is rooted if a half-edge is distinguished as the root.

Triangulations

A triangulation is a 3-connected map in which every face has degree 3.

Triangulations

A triangulation is a 3-connected map in which every face has degree 3.

A triangulation of size n has n internal vertices, 3n internal edges, 2n + 1 internal triangles.

T.

Realizers [Schnyder 89,90]

Example:

CRM, April 2007

T.

Realizers [Schnyder 89,90]

Example:

T.

Realizers [Schnyder 89,90]

Example:

A realizer is a partition of the internal edges in 3 trees satisfying the Schnyder condition:

Example:

Example:

The minimal element for this lattice is the realizer containing no clockwise triangle.

Example:

The maximal element for this lattice is the realizer containing no counterclockwise triangle.

Proposition [Schnyder 90]: The realizers are in one-to-one correspondence with the 3-orientations.

Proposition: Any triangulation has a 3-orientation. (Characterization of score vectors [Felsner 04]).

Proposition [Schnyder 90]: The realizers are in one-to-one correspondence with the 3-orientations.

Proposition: Any triangulation has a 3-orientation. (Characterization of score vectors [Felsner 04]).

Proposition [Propp 93, Felsner 04]: For any score vector $\alpha : V \mapsto \mathbb{N}$, the set of α -orientations of a planar map can be endowed with a lattice structure.

Main results

Stanley intervals \iff Realizers.

- Tamari intervals \iff Minimal realizers.
- Kreweras intervals \iff Minimal and maximal realizers.

From realizers to pairs of Dyck paths

From realizers to pairs of Dyck paths

• *P* is the Dyck path associated to the blue tree.

From realizers to pairs of Dyck paths

• Q is the Dyck path $NS^{\beta_1} \dots NS^{\beta_n}$, where β_i is the number of red heads incident to the vertex u_i .

Main results

Theorem: The mapping Ψ is a bijection between realizers of size n and pairs of non-crossing Dyck paths of size n.

Theorem: The mapping Ψ is a bijection between realizers of size n and intervals in the n^{th} Stanley lattice.

Main results : Tamari

Theorem: The mapping Ψ induces a bijection between minimal realizers of size n and intervals in the n^{th} Tamari lattice.

Main results : Tamari

Theorem: The mapping Ψ induces a bijection between minimal realizers of size n and intervals in the n^{th} Tamari lattice.

Corollary: We obtain a bijection between triangulations of size n and intervals in the n^{th} Tamari lattice.

Main results: Kreweras

Theorem: The mapping Ψ induces a bijection between minimal and maximal realizers of size n and intervals in the n^{th} Kreweras lattice.

Main results: Kreweras

Theorem: The mapping Ψ induces a bijection between minimal and maximal realizers of size n and intervals in the n^{th} Kreweras lattice.

Proposition: A triangulation has a unique realizer if and only if it is stack.

Main results: Kreweras

Theorem: The mapping Ψ induces a bijection between minimal and maximal realizers of size n and intervals in the n^{th} Kreweras lattice.

Proposition: A triangulation has a unique realizer if and only if it is stack.

Corollary: We obtain a bijection between stack triangulations (\Leftrightarrow ternary trees) of size *n* and intervals in the *n*th Kreweras lattice.

Elements of proofs

• *P* is a Dyck path.

- *P* is a Dyck path.
- Q returns to the 0.

- *P* is a Dyck path.
- Q returns to the 0.

It only remains to show that the path Q stays above P.

- For any red edge, the tail appears before the head around the blue tree.
- \Rightarrow The sequence of heads and tails is a *Dyck path*.

- For any red edge, the tail appears before the head around the blue tree.
- \Rightarrow The sequence of heads and tails is a *Dyck path*.
- The sequence of heads and tails is $T^{\alpha_1}H^{\beta_1}\dots T^{\alpha_n}H^{\beta_n}$, where $P = NS^{\alpha_1}\dots NS^{\alpha_n}$ and $Q = NS^{\beta_1}\dots NS^{\beta_n}$.

- For any red edge, the tail appears before the head around the blue tree.
- \Rightarrow The sequence of heads and tails is a *Dyck path*.
- The sequence of heads and tails is $T^{\alpha_1}H^{\beta_1}\dots T^{\alpha_n}H^{\beta_n}$, where $P = NS^{\alpha_1}\dots NS^{\alpha_n}$ and $Q = NS^{\beta_1}\dots NS^{\beta_n}$.

$$\implies$$
 The path Q stays above P .

Inverse mapping

(P, Q)

Step 1: Construct the blue tree (using P).

Step 2: Add red tails and heads (using Q).

Inverse mapping (P, Q)

Step 3: Join tails and head.

Claim : There is only one way of joining tails and heads. This creates a tree.

Inverse mapping (P, Q)

Step 4: Construct the green tree.

Claim : There exist a unique green tree.

Inverse mapping (P, Q)

Step 5: Close the map.

• Chose a good bijection binary-trees \mapsto Dyck paths.

- Chose a good bijection binary-trees \mapsto Dyck paths.
- Characterize the covering relation of the Tamari lattice in terms of Dyck paths.

- Chose a good bijection binary-trees \mapsto Dyck paths.
- Characterize the covering relation of the Tamari lattice in terms of Dyck paths.
- Characterize the minimal realizers [Bon, Gav, Han 02].

- Chose a good bijection binary-trees \mapsto Dyck paths.
- Characterize the covering relation of the Tamari lattice in terms of Dyck paths.
- Characterize the minimal realizers [Bon, Gav, Han 02].
- Make an induction on $\Delta(P, Q)$ to prove that P and Q are comparable in the Tamari lattice if and only if the realizer $\Psi(P, Q)$ is minimal.

Refinement Kreweras

• Chose a good bijection non-crossing partitions \mapsto Dyck paths.

- \bullet Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.

- \bullet Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.
- Characterize the minimal and maximal realizers [Bon, Gav, Han 02].

- \bullet Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.
- Characterize the minimal and maximal realizers [Bon, Gav, Han 02].
- Make an induction on $\Delta(P, Q)$ to prove that P and Q are comparable in the Kreweras lattice if and only if the realizer $\Psi(P, Q)$ is minimal and maximal.

- \bullet Chose a good bijection non-crossing partitions \mapsto Dyck paths.
- Characterize the covering relation of the Kreweras lattice in terms of Dyck paths.
- Characterize the minimal and maximal realizers [Bon, Gav, Han 02].
- Make an induction on $\Delta(P, Q)$ to prove that P and Q are comparable in the Kreweras lattice if and only if the realizer $\Psi(P, Q)$ is minimal and maximal.
- Prove that a triangulation has a unique realizer if and only if it is stack.

• **Bijection:** Realizers \iff Stanley intervals

 Ψ

 Ψ

• Refinements:

Stanley intervals \iff Realizers

Refinement Tamari

Tamari intervals \iff Minimal realizers

Refinement Tamari

Tamari intervals \iff Minimal realizers \iff Triangulations

Refinement Kreweras

Kreweras intervals \iff Minimal and maximal realizers

Refinement Kreweras

Kreweras intervals <

↔ Minimal and maximal realizers
↔ Stack triangulations (⇔ Ternary trees)

