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Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on
binary trees of size n equals the number of triangulations
of size n?
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Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on
binary trees of size n equals the number of triangulations
of size n?

k2 A A A A

A A A A

\ Ii / A A A A
2(4n +1)! A
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[Chapoton 06] [Tutte 62, Poulalhon & Schaeffer 03]
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Broader picture :

Stanley intervals = Realizers of triangulations.
6(2n)!(2n+2)!
n!(n+1)!(n+2)!(n+3)!

Tamari intervals = Triangulations.
2(4n+1)!
(n+1)!(3n+2)!

Kreweras intervals = Stack triangulations.

1 (Sn)
2n+1 \ n
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Catalan lattices and realizers
a Catalan lattices : Stanley, Tamari, Kreweras.

e Triangulations and realizers.

e Bijections:
Stanley intervals < Realizers.
Tamari intervals <~ Minimal realizers.

Kreweras intervals <= Minimal and maximal realizers.
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Catalan lattices
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Dyck paths

A Dyck path is made of +1, -1 steps, starts from O, remains
non-negative and ends at O.

ATNAN

There are C,, = — (") Dyck paths of size n (length 2n).

CRM, April 2007 Olivier Bernardi — p.6/34



Catalan objects

Dyck paths :
Plane trees :

Binary trees :

D?com osition
of polygons :

Parenthesis
systems :

Non-crossing
partitions :
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Stanley lattice

The relation of being above defines the Stanley lattice on

the set of Dyck paths of size n.

Hasse Diagram n = 4:
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Tamari lattice

The Tamatri lattice is defined on the set of binary trees with
n nodes.
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Tamari lattice

The Tamatri lattice is defined on the set of binary trees with
n nodes.

The covering relation corresponds to right-rotation.
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Tamari lattice

The Tamatri lattice is defined on the set of binary trees with
n nodes.

The covering relation corresponds to right-rotation.

Hasse Diagram n = 4:
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Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing
partitions of {1,... ., n}.
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Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing
partitions of {1,... ., n}.

Kreweras relation corresponds to refinement.:
Hasse Diagram n = 4:
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Stanley, Tamari and Kreweras
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Stanley Tamari Kreweras

[Knuth 06] The Stanley lattice is an extension of the
Tamari lattice which is an extension of the Kreweras lattice.
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Triangulations and realizers
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Maps
A map is a connected planar graph properly embedded in

the sphere.
The map is considered up to homeomorphism.

7
.
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Maps

A map is a connected planar graph properly embedded in
the sphere.

The map is considered up to homeomorphism.

7
.

A map is rooted if a half-edge Is distinguished as the root.
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Triangulations

A triangulation is a 3-connected map in which every face
has degree 3.
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Triangulations

A triangulation is a 3-connected map in which every face
has degree 3.

A triangulation of size »n has n internal vertices, 3n internal
edges, 2n + 1 internal triangles.
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Realizers [Schnyder 89,90]

Example:
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Realizers [Schnyder 89,90]

Example:
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Realizers [Schnyder 89,90]

Example:

A realizer is a partition of the internal edges in 3 trees
satisfying the Schnyder condition:
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94].
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94].
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.

Example:
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94].
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.

Example:

The minimal element for this lattice Is the realizer
containing no clockwise triangle. 7
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94].
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.

Example:

The maximal element for this lattice is the realizer
containing no counterclockwise triangle.
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Digression : lattice of realizers

Proposition [Schnyder 90]: The realizers are In
one-to-one correspondence with the 3-orientations.
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Digression : lattice of realizers

Proposition [Schnyder 90]: The realizers are In
one-to-one correspondence with the 3-orientations.

Proposition: Any triangulation has a 3-orientation.
(Characterization of score vectors [Felsner 04]).
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Digression : lattice of realizers

Proposition [Schnyder 90]: The realizers are In
one-to-one correspondence with the 3-orientations.

Proposition: Any triangulation has a 3-orientation.
(Characterization of score vectors [Felsner 04]).

Proposition [Propp 93, Felsner 04]. For any score

vector o : V' — N, the set of a-orientations of a planar map
can be endowed with a lattice structure.
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Main results

Stanley intervals < Realizers.
Tamari intervals ~—  Minimal realizers.
Kreweras intervals <= Minimal and maximal realizers.
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From realizers to pairs of Dyck paths
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From realizers to pairs of Dyck paths

- i M

e P is the Dyck path associated to the blue tree.

- ANTVN
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From realizers to pairs of Dyck paths

e () is the Dyck path N.S"t ... N.SP~ where (3; is the number
of red heads incident to the vertex u;.

NS'NSINSONS?NSONSINSONSINS4
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Main results

Theorem: The mapping V is a bijection between realizers
of size n and pairs of non-crossing Dyck paths of size n.
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Main results

Theorem: The mapping V is a bijection between realizers
of size n and intervals in the n™ Stanley lattice.
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Main results: Tamari

Theorem: The mapping V induces a bijection between

minimal realizers of size n and intervals in the n" Tamari
lattice.
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Main results: Tamari

Theorem: The mapping V induces a bijection between

minimal realizers of size n and intervals in the n" Tamari
lattice.

Corollary: We obtain a bijection between triangulations of
size n and intervals in the n™ Tamari lattice.
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Main results: Kreweras

Theorem: The mapping V induces a bijection between

minimal and maximal realizers of size n and intervals in the
n™ Kreweras lattice.
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Main results: Kreweras

Theorem: The mapping V induces a bijection between

minimal and maximal realizers of size n and intervals in the
n™ Kreweras lattice.

Proposition: A triangulation has a unique realizer if and
only if it is stack.
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Main results: Kreweras

Theorem: The mapping V induces a bijection between

minimal and maximal realizers of size n and intervals in the
n™ Kreweras lattice.

Proposition: A triangulation has a unique realizer if and
only if it is stack.

AN A A A A

Corollary: We obtain a bijection between stack
triangulations (< ternary trees) of size n and intervals in
the n™ Kreweras lattice.
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Elements of proofs

CRM, April 2007 Olivier Bernardi — p.23/34



Claim : The image of any realizer is a pair of non-crossing
Dyck paths.
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

e P is a Dyck path.

- ANTVIN
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

e P is a Dyck path.
e () returns to the 0.
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

e P is a Dyck path.
e () returns to the O.

It only remains to show that the path () stays above P.
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0 (P,Q)
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e For any red edge, the tail appears before the head

around the blue tree.
— The sequence of heads and tails is a Dyck path.
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e For any red edge, the tail appears before the head

around the blue tree.
— The sequence of heads and tails is a Dyck path.

e The sequence of heads and tails is 7% H"' ... T HPn,
where P = NS .. . NS® and Q = NS ... NS,
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e For any red edge, the tail appears before the head

around the blue tree.
— The sequence of heads and tails is a Dyck path.

e The sequence of heads and tails is 7% H"' ... T HPn,
where P = NS .. . NS® and Q = NS ... NS,

— The path () stays above P.
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Inverse mapping
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Inverse mapping

o /WVQ?\

Step 1: Construct the blue tree (using P).
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Inverse mapping

o /WVQ?\

Step 2: Add red tails and heads (using @)).

Kij
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Inverse mapping

o /WVQ?\

Step 3: Join tails and head.

Claim : There is only one way of joining tails and heads.
- amzd NIS CrEAtes a tree.



Inverse mapping

o /WVQ?\

Step 4: Construct the green tree.
@

Claim : There exist a unique green tree.
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Inverse mapping

o /WVQ?\

Step 5. Close the map.
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Refinement Tamari

e Chose a good bijection binary-trees — Dyck paths.

9 /\/V\/\
e
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Refinement Tamari

e Chose a good bijection binary-trees — Dyck paths.

e Characterize the covering relation of the Tamari lattice in
terms of Dyck paths.
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Refinement Tamari

e Chose a good bijection binary-trees — Dyck paths.

e Characterize the covering relation of the Tamari lattice in
terms of Dyck paths.

e Characterize the minimal realizers [Bon, Gav, Han 02].
U
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Refinement Tamari

e Chose a good bijection binary-trees — Dyck paths.

e Characterize the covering relation of the Tamari lattice in
terms of Dyck paths.

e Characterize the minimal realizers [Bon, Gav, Han 02].

e Make an induction on A(P, ()) to prove that P and () are
comparable in the Tamari lattice if and only if the realizer
U (P, () is minimal.

NN
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Refinement Kreweras

e Chose a good bijection non-crossing partitions — Dyck
paths.

o fo\ A\ LN A VAN
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Refinement Kreweras

e Chose a good bijection non-crossing partitions — Dyck
paths.

e Characterize the covering relation of the Kreweras lattice
In terms of Dyck paths.

/\M »/\m
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Refinement Kreweras

e Chose a good bijection non-crossing partitions — Dyck
paths.

e Characterize the covering relation of the Kreweras lattice
In terms of Dyck paths.

e Characterize the minimal and maximal realizers [Bon,
Gav, Han 02].

u u
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Refinement Kreweras

e Chose a good bijection non-crossing partitions — Dyck
paths.

e Characterize the covering relation of the Kreweras lattice
In terms of Dyck paths.

e Characterize the minimal and maximal realizers [Bon,
Gav, Han 02].

e Make an induction on A(P, ()) to prove that P and () are
comparable in the Kreweras lattice if and only if the realizer
U (P, () is minimal and maximal.
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Refinement Kreweras

e Chose a good bijection non-crossing partitions — Dyck
paths.

e Characterize the covering relation of the Kreweras lattice
In terms of Dyck paths.

e Characterize the minimal and maximal realizers [Bon,
Gav, Han 02].

e Make an induction on A(P, ()) to prove that P and () are
comparable in the Kreweras lattice if and only if the realizer
U (P, () is minimal and maximal.

¢ Prove that a triangulation has a unique realizer if and
only if it is stack.
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Summary
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e Bijection: Realizers < Stanley intervals

VN
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e Bijection: Realizers < Stanley intervals

VN

Stanley Tamari Kreweras
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Bijection

Stanley intervals < Realizers
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Refinement Tamari

Tamaril intervals <= Minimal realizers
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Refinement Tamari

Tamaril intervals <= Minimal realizers
<= Triangulations

/\ VVVYVY
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Refinement Kreweras

Kreweras intervals <= Minimal and maximal realizers
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Refinement Kreweras

Kreweras intervals «—— Minimal and maximal realizers
<= Stack triangulations (< Ternary trees)

A\ VVVYVY
//3\ — VYVYVVYVY
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Thanks.
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