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Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on
binary trees of size n equals the number of triangulations
of size n?
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Question [Chapoton] :

Why does the number of intervals in the Tamari lattice on
binary trees of size n equals the number of triangulations
of size n?

2(4n + 1)!

(n + 1)!(3n + 2)!

[Chapoton 06] [Tutte 62, Poulalhon & Schaeffer 03]
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Broader picture :

Stanley intervals ⇐⇒ Realizers of triangulations.
6(2n)!(2n+2)!

n!(n+1)!(n+2)!(n+3)!

Tamari intervals ⇐⇒ Triangulations.
2(4n+1)!

(n+1)!(3n+2)!

Kreweras intervals ⇐⇒ Stack triangulations.
1

2n+1

(

3n

n

)
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Catalan lattices and realizers

Catalan lattices : Stanley, Tamari, Kreweras.

Triangulations and realizers.

Bijections:
Stanley intervals ⇐⇒ Realizers.
Tamari intervals ⇐⇒ Minimal realizers.
Kreweras intervals ⇐⇒ Minimal and maximal realizers.
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Catalan lattices
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Dyck paths

A Dyck path is made of +1, -1 steps, starts from 0, remains
non-negative and ends at 0.

There are Cn = 1
n+1

(

2n

n

)

Dyck paths of size n (length 2n).

CRM, April 2007 Olivier Bernardi – p.6/34



Catalan objects

partitions :
Non-crossing

Parenthesis
systems :

Dyck paths :

Binary trees :

Plane trees :

Decomposition
of polygons :
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Stanley lattice

The relation of being above defines the Stanley lattice on
the set of Dyck paths of size n.

Hasse Diagram n = 4:
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Tamari lattice

The Tamari lattice is defined on the set of binary trees with
n nodes.
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Tamari lattice

The Tamari lattice is defined on the set of binary trees with
n nodes.

The covering relation corresponds to right-rotation.

BBA
C A

C
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Tamari lattice

The Tamari lattice is defined on the set of binary trees with
n nodes.

The covering relation corresponds to right-rotation.

Hasse Diagram n = 4:
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Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing
partitions of {1, . . . , n}.

1 2 3 4 5 6 7 98 10
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Kreweras lattice

The Kreweras lattice is defined on the set of non-crossing
partitions of {1, . . . , n}.

Kreweras relation corresponds to refinement.:

Hasse Diagram n = 4:
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Stanley, Tamari and Kreweras

TamariStanley Kreweras

[Knuth 06] The Stanley lattice is an extension of the

Tamari lattice which is an extension of the Kreweras lattice.

CRM, April 2007 Olivier Bernardi – p.11/34



Triangulations and realizers
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Maps

A map is a connected planar graph properly embedded in
the sphere.
The map is considered up to homeomorphism.

= 6=
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Maps

A map is a connected planar graph properly embedded in
the sphere.
The map is considered up to homeomorphism.

= 6=

A map is rooted if a half-edge is distinguished as the root.
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Triangulations

A triangulation is a 3-connected map in which every face
has degree 3.
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Triangulations

A triangulation is a 3-connected map in which every face
has degree 3.

A triangulation of size n has n internal vertices, 3n internal
edges, 2n + 1 internal triangles.
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Realizers [Schnyder 89,90]
Example:
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Realizers [Schnyder 89,90]
Example:
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Realizers [Schnyder 89,90]
Example:

A realizer is a partition of the internal edges in 3 trees
satisfying the Schnyder condition:
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94]:
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94]:
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.

Example:
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94]:
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.

Example:

The minimal element for this lattice is the realizer
containing no clockwise triangle.
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Prop [Schnyder 89], [Propp 93, Ossona de Mendez 94]:
For any triangulation, the set of realizers is non-empty and
can be endowed with a lattice structure.

Example:

The maximal element for this lattice is the realizer
containing no counterclockwise triangle.

CRM, April 2007 Olivier Bernardi – p.16/34



Digression : lattice of realizers

Proposition [Schnyder 90]: The realizers are in
one-to-one correspondence with the 3-orientations.
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Digression : lattice of realizers

Proposition [Schnyder 90]: The realizers are in
one-to-one correspondence with the 3-orientations.

Proposition: Any triangulation has a 3-orientation.
(Characterization of score vectors [Felsner 04]).
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Digression : lattice of realizers

Proposition [Schnyder 90]: The realizers are in
one-to-one correspondence with the 3-orientations.

Proposition: Any triangulation has a 3-orientation.
(Characterization of score vectors [Felsner 04]).

Proposition [Propp 93, Felsner 04]: For any score
vector α : V 7→ N, the set of α-orientations of a planar map
can be endowed with a lattice structure.
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Main results

Stanley intervals ⇐⇒ Realizers.
Tamari intervals ⇐⇒ Minimal realizers.
Kreweras intervals ⇐⇒ Minimal and maximal realizers.
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From realizers to pairs of Dyck paths

Ψ (P ,Q)
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From realizers to pairs of Dyck paths

Ψ (P ,Q)

• P is the Dyck path associated to the blue tree.

CRM, April 2007 OOlivier Bernardi – p.19/34



From realizers to pairs of Dyck paths

Ψ (P ,Q)

• Q is the Dyck path NSβ1 . . . NSβn, where βi is the number
of red heads incident to the vertex ui.

u9u8

u0

u1 u4u3

u2

u5 u6

u7

NS0NS1NS0NS2NS0NS1NS0NS1NS4
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Main results

Theorem: The mapping Ψ is a bijection between realizers
of size n and pairs of non-crossing Dyck paths of size n.

Ψ (P ,Q)
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Main results

Theorem: The mapping Ψ is a bijection between realizers
of size n and intervals in the nth Stanley lattice.

Ψ (P ,Q)

CRM, April 2007 Olivier Bernardi – p.20/34



Main results: Tamari

Theorem: The mapping Ψ induces a bijection between
minimal realizers of size n and intervals in the nth Tamari
lattice.
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Main results: Tamari

Theorem: The mapping Ψ induces a bijection between
minimal realizers of size n and intervals in the nth Tamari
lattice.

Corollary: We obtain a bijection between triangulations of
size n and intervals in the nth Tamari lattice.
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Main results: Kreweras

Theorem: The mapping Ψ induces a bijection between
minimal and maximal realizers of size n and intervals in the
nth Kreweras lattice.
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Main results: Kreweras

Theorem: The mapping Ψ induces a bijection between
minimal and maximal realizers of size n and intervals in the
nth Kreweras lattice.

Proposition: A triangulation has a unique realizer if and
only if it is stack.
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Main results: Kreweras

Theorem: The mapping Ψ induces a bijection between
minimal and maximal realizers of size n and intervals in the
nth Kreweras lattice.

Proposition: A triangulation has a unique realizer if and
only if it is stack.

Corollary: We obtain a bijection between stack
triangulations (⇔ ternary trees) of size n and intervals in
the nth Kreweras lattice.
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Elements of proofs
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

Ψ (P ,Q)
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

Ψ (P ,Q)

• P is a Dyck path.
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

Ψ (P ,Q)

• P is a Dyck path.
• Q returns to the 0.

u9u8

u0

u1 u4u3

u2

u5 u6

u7

NS0NS1NS0NS2NS0NS1NS0NS1NS4
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Claim : The image of any realizer is a pair of non-crossing
Dyck paths.

Ψ (P ,Q)

• P is a Dyck path.
• Q returns to the 0.

It only remains to show that the path Q stays above P .
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Ψ (P ,Q)
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Ψ (P ,Q)

• For any red edge, the tail appears before the head
around the blue tree.
⇒ The sequence of heads and tails is a Dyck path.
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Ψ (P ,Q)

• For any red edge, the tail appears before the head
around the blue tree.
⇒ The sequence of heads and tails is a Dyck path.

• The sequence of heads and tails is T α1Hβ1 . . . T αnHβn,
where P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn.
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Ψ (P ,Q)

• For any red edge, the tail appears before the head
around the blue tree.
⇒ The sequence of heads and tails is a Dyck path.

• The sequence of heads and tails is T α1Hβ1 . . . T αnHβn,
where P = NSα1 . . . NSαn and Q = NSβ1 . . . NSβn.

=⇒ The path Q stays above P .
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Inverse mapping

(P ,Q)
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Inverse mapping

(P ,Q)

Step 1: Construct the blue tree (using P ).
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Inverse mapping

(P ,Q)

Step 2: Add red tails and heads (using Q).

CRM, April 2007 OOlivier Bernardi – p.26/34



Inverse mapping

(P ,Q)

Step 3: Join tails and head.

Claim : There is only one way of joining tails and heads.
This creates a tree.CRM, April 2007 OOlivier Bernardi – p.26/34



Inverse mapping

(P ,Q)

Step 4: Construct the green tree.

Claim : There exist a unique green tree.
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Inverse mapping

(P ,Q)

Step 5: Close the map.
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Refinement Tamari

• Chose a good bijection binary-trees 7→ Dyck paths.

σ
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Refinement Tamari

• Chose a good bijection binary-trees 7→ Dyck paths.

• Characterize the covering relation of the Tamari lattice in
terms of Dyck paths.
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Refinement Tamari

• Chose a good bijection binary-trees 7→ Dyck paths.

• Characterize the covering relation of the Tamari lattice in
terms of Dyck paths.

• Characterize the minimal realizers [Bon, Gav, Han 02].

u
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Refinement Tamari

• Chose a good bijection binary-trees 7→ Dyck paths.

• Characterize the covering relation of the Tamari lattice in
terms of Dyck paths.

• Characterize the minimal realizers [Bon, Gav, Han 02].

• Make an induction on ∆(P ,Q) to prove that P and Q are
comparable in the Tamari lattice if and only if the realizer
Ψ(P ,Q) is minimal.
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Refinement Kreweras

• Chose a good bijection non-crossing partitions 7→ Dyck
paths.

1 2 3 4 5 6 7

θ
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Refinement Kreweras

• Chose a good bijection non-crossing partitions 7→ Dyck
paths.

• Characterize the covering relation of the Kreweras lattice
in terms of Dyck paths.
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Refinement Kreweras

• Chose a good bijection non-crossing partitions 7→ Dyck
paths.

• Characterize the covering relation of the Kreweras lattice
in terms of Dyck paths.

• Characterize the minimal and maximal realizers [Bon,
Gav, Han 02].

or

u u
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Refinement Kreweras

• Chose a good bijection non-crossing partitions 7→ Dyck
paths.

• Characterize the covering relation of the Kreweras lattice
in terms of Dyck paths.

• Characterize the minimal and maximal realizers [Bon,
Gav, Han 02].

• Make an induction on ∆(P ,Q) to prove that P and Q are
comparable in the Kreweras lattice if and only if the realizer
Ψ(P ,Q) is minimal and maximal.
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Refinement Kreweras

• Chose a good bijection non-crossing partitions 7→ Dyck
paths.

• Characterize the covering relation of the Kreweras lattice
in terms of Dyck paths.

• Characterize the minimal and maximal realizers [Bon,
Gav, Han 02].

• Make an induction on ∆(P ,Q) to prove that P and Q are
comparable in the Kreweras lattice if and only if the realizer
Ψ(P ,Q) is minimal and maximal.

• Prove that a triangulation has a unique realizer if and
only if it is stack.
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Summary
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• Bijection: Realizers ⇐⇒ Stanley intervals

Ψ
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• Bijection: Realizers ⇐⇒ Stanley intervals

Ψ

• Refinements:

TamariStanley Kreweras
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Bijection

Stanley intervals ⇐⇒ Realizers
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Refinement Tamari

Tamari intervals ⇐⇒ Minimal realizers
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Refinement Tamari

Tamari intervals ⇐⇒ Minimal realizers
⇐⇒ Triangulations

CRM, April 2007 Olivier Bernardi – p.32/34



Refinement Kreweras

Kreweras intervals ⇐⇒ Minimal and maximal realizers
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Refinement Kreweras

Kreweras intervals ⇐⇒ Minimal and maximal realizers
⇐⇒ Stack triangulations (⇔ Ternary trees)
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Thanks.
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