Skip to main content

Incremental computation and maintenance of temporal aggregates

Abstract.

We consider the problems of computing aggregation queries in temporal databases and of maintaining materialized temporal aggregate views efficiently. The latter problem is particularly challenging since a single data update can cause aggregate results to change over the entire time line. We introduce a new index structure called the SB-tree, which incorporates features from both segment-trees and B-trees. SB-trees support fast lookup of aggregate results based on time and can be maintained efficiently when the data change. We extend the basic SB-tree index to handle cumulative (also called moving-window) aggregates, considering separatelycases when the window size is or is not fixed in advance. For materialized aggregate views in a temporal database or warehouse, we propose building and maintaining SB-tree indices instead of the views themselves.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Bayer R, McCreight EM (1972) Organization and maintenance of large ordered indices. Acta Informat 1:173-189

    MATH  Google Scholar 

  2. 2

    Becker B, Gschwind S, Ohler T, Seeger B, Widmayer P (1996) An asymptotically optimal multiversion B-tree. VLDB J 5(4):264-275

    Article  Google Scholar 

  3. 3

    Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms. MIT Press, Cambridge, MA

  4. 4

    Epstein R (1979) Techniques for processing of aggregates in relational database systems. Technical Report UCB/ERL M7918, University of California, Berkeley, CA

  5. 5

    Geffner S, Agrawal D, El Abbadi A (2000) The dynamic data cube. In: Proceedings of the 2000 international conference on extending database technology, Konstanz, Germany, March 2000, pp 237-253

  6. 6

    Gendrano JAG, Huang BC, Rodrigue JM, Moon B, Snodgrass RT (1999) Parallel algorithms for computing temporal aggregates. In: Proceedings of the 1999 international conference on data engineering, Sydney, Australia, March 1999, pp 418-427

  7. 7

    Gray J, Reuter A (1993) Transaction processing: concepts and techniques. Morgan Kaufmann, San Mateo, CA

    MathSciNet  Google Scholar 

  8. 8

    Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data, Boston, June 1984, pp 47-57

  9. 9

    Hadjieleftheriou M (2001) Java SB-tree library. =http://www.cs.ucr.edu/ marioh/sbtree/=.

  10. 10

    Ho CT, Agrawal R, Megiddo N, Srikant R (1997) Range queries in OLAP data cubes. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, Tucson, AZ, June 1997, pp 73-88

  11. 11

    Jagadish HV, Narayan PPS, Seshadri S, Sudarshan S, Kanneganti R (1997) Incremental organization for data recording and warehousing. In: Proceedings of the 1997 international conference on very large data bases, Athens, Greece, August 1997, pp 16-25

  12. 12

    Kline N, Snodgrass RT (1995) Computing temporal aggregates. In: Proceedings of the 1995 international conference on data engineering, Taipei, Taiwan, March 1995, pp 222-231

  13. 13

    Kolovson CP, Stonebraker M (1991) Segment indexes: dynamic indexing techniques for multi-dimensional interval data. In: Proceedings of the 1991 ACM SIGMOD international conference on management of data, Denver, CO, May 1991, pp 138-147

  14. 14

    Kriegel HP, Pötke M, Seidl T (2000) Managing intervals efficiently in object-relational databases. In: Proceedings of the 2000 international conference on very large data bases, Cairo, Egypt, September 2000, pp 407-418

  15. 15

    Moon B, Lopez IFV, Immanuel V (2000) Scalable algorithms for large temporal aggregation. In: Proceedings of the 2000 international conference on data engineering, San Diego, March 2000, pp 145-154

  16. 16

    Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. 17

    Salzberg B, Tsotras VJ (1999) Comparison of access methods for time-evolving data. ACM Comput Surv 21(2):158-221

    Article  Google Scholar 

  18. 18

    Snodgrass RT (ed) (1995) The TSQL2 temporal query language. Kluwer, Boston

  19. 19

    Snodgrass RT, Gomez S, McKenzie LE (1993) Aggregates in the temporal query language TQuel. IEEE Trans Knowl Data Eng 5(5):826-842

    Article  Google Scholar 

  20. 20

    Tuma PA (1992) Implementing historical aggregates in TempIS. Master's thesis, Wayne State University, Detroit, MI

  21. 21

    Yang J, Widom J (1998) Maintaining temporal views over non-temporal information sources for data warehousing. In: Proceedings of the 1998 international conference on extending database technology, Valencia, Spain, March 1998, pp 389-403

  22. 22

    Yang J, Widom J (2000) Temporal view self-maintenance in a warehousing environment. In: Proceedings of the 2000 international conference on extending database technology, Konstanz, Germany, March 2000, pp 395-412

  23. 23

    Yang J, Widom J (2001) Incremental computation and maintenance of temporal aggregates. In: Proceedings of the 2001 international conference on data engineering, Heidelberg, Germany, April 2001

  24. 24

    Ye X, Keane JA (1997) Processing temporal aggregates in parallel. In: Proceedings of the 1997 IEEE international conference on systems, man, and cybernetics, Orlando, October 1997, pp 1373-1378

  25. 25

    Zhang D, Markowetz A, Tsotras V, Gunopulos D, Seeger B (2001) Efficient computation of temporal aggregates with range predicates. In: Proceedings of the 2001 ACM symposium on principles of database systems, Santa Barbara, May 2001

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jun Yang.

Additional information

Received: 20 March 2001, Accepted: 21 March 2001, Published online: 17 September 2003

This work was supported by the National Science Foundation under grant IIS-9811947 and by NASA Ames under grant NCC2-5278.

Edited by R. Snodgrass

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, J., Widom, J. Incremental computation and maintenance of temporal aggregates. VLDB 12, 262–283 (2003). https://doi.org/10.1007/s00778-003-0107-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00778-003-0107-z

Keywords:

  • Temporal database
  • Aggregation
  • View maintenance
  • Access methods
  • B-tree
  • Segment tree