C

G. Manacher, S. Graham
Editors

Programming
Techniques

Backtrack
Programming
Techniques

James R. Bitner and Edward M. Reingold
University of Illinois at Urbana-Champaign

[REe]

The purpose of this paper is twofold. First, a brief
exposition of the general backtrack technique and its
history is given. Second, it is shown how the use of
macros can considerably shorten the computation time
in many cases. In particular, this technique has allowed
the solution of two previously open combinatorial
problems, the computation of new terms in a well-known
series, and the substantial reduction in computation
time for the solution to another combinatorial problem.

Key Words and Phrases : backtrack, depth-first search,
exhaustive search, macros, combinatorial computing, non-
attacking queen’s problem, difference-preserving codes,
pentominoes, tiling problems, squaring the square

CR Categories: 5.30

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM’s copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This work was supported in part by NSF grant GJ-41538,
Authors’ address: Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL 61801. :

651

Introduction 156 Z (7@

Using a computer to answer q)uestions such as
“how many ways are there to...” “list all possi-
ble . ..,”” or “is there a way to . ..” usually requires an
exhaustive search of the set of all potential solutions.
One general technique for organizing such searches is
backtrack, which works by continually trying to extend
a partial solution. At each stage of the search, if an
extension of the current partial solution is not possible,
we ‘“‘backtrack’ to a shorter partial solution and try
again. This technique was first called backtrack by
D.H. Lehmer in the 1950’s, but has been discovered
and rediscovered many times. One early description of
such a method used to thread mazes is given in [16].
Currently, this method is used in a wide range of com-
binatorial problems including, for example, parsing
[1], game playing [21], and optimization [14]. Other
applications are discussed in [9] and [12].

Walker [24] was the first to state backtrack in its
full generality. Assume that the solution to a problem
consists of a vector (a;, a.,...) of undetermined
length. This vector satisfies certain constraints on the
components, which makes it a solution. Each a; is a
member of a finite, linearly ordered set 4;. Thus the
exhaustive search must consider the elements of
A X A X ... X A, fori = 0,1,2 ...as potential
solutions. Initially we start with the null vector A as
our partial solution, and the constraints tell us which
of the members of A4, are candidates for a,; we call this
subset S;. We choose the least element of S as aj,
and now we have the partial solution (a). In general,
the various constraints which describe solutions tell us
which subset S of A comprises candidates for the

extension of the partial solution (a1, as, ..., @&-1) to
(a,, a»,... aw., as). If the partial solution
(a, a., ..., ax:) admits no possibilities for a., then

S = &, so we backtrack and make a new choice for
ai_. . If there are no new choices for a;_, we backtrack
still further and make a new choice for a;_» , and so on.

The algorithm can be described formally as follows:

ai — smallest element in Sk

514_/41 SI;"“SE"" ‘ak]
k1 . if (a; ,as,...,as isasolu-
while k > 0do | while S, 7 280 (™ o4 then record it
ke—k-+1
compute Sk

ke—k—1
stop all solutions have been found

It is helpful to picture this process in terms of a tree
traversal (sce [11]). The subset of Ay X 4. X ... X A:,
i = 0,1, 2,...which is searched is represented as a
tree as follows: The root of the tree (the Oth level) is
the null vector. lts sons are the choices for a;, and in
general the nodes at the kth level are the choices for
a,, given the choices made for a, @», ..., Gk @S
indicated by the ancestors of these nodes. In the tree
shown in Figure 1 backtrack traverses the nodes of the

Communications November 1975
of Volume 18
the ACM Number 11

Fig. 1. The tree of partial solutions. The depth-first order in
which backtrack explores it is shown by the dotted arrows.

START

CHOICES FOR @,

CHOICES FOR Qp, GIVEN Q;

CHOICES FOR Oy, GIVEN 0; AND Oy

CHOICES FOR Q4. GIVEN 0y, Gp, AND Oy

tree as shown by the dotted lines. Since the traversal
goes as deep as possible in the tree before backing up
to explore other parts of the tree, such a search is
called depth-first.

Tarjan [22] has used depth-first search for various
graph algorithms, giving a nice recursive procedure for
such a search. In full generality this becomes

procedure backtrack (vector, i)
if vector is a solution then record it
compute S,
for a € S, do backtrack(vector ® (a), i + 1)
return

This procedure is invoked by the call backtrack (A, 1).
@ is used to denote concatenation of vectors.

Programming Techniques

Many applications of backtrack require relatively
little storage and so it is not unreasonable to increase
the storage requirements in order to decrease the run-
ning time of a program. This can be done in a language
with macro expansion facilities (typically an assembly
language) by using macros in such a way that some of
the work i1s done once at assembly time instead of many
times at run time. If a macro facility is not available,
the same results can be achieved by hand coding, so
these techniques may also be used in high level lan-
guages. If all solutions have length n, this can be done,
for example, by eliminating part of the loop structure
as follows: Write a macro called, say CODE,, whose
body consists of '

compute S,

L;: ifS;, = ¢ then goto L,_,
a; < minimum element in S;
Si =S — {a;}

, This macro CODE; is expanded fori = 1,2,... nto
produce the program

CODE,
CODE,

CODE,
record (a, , . .
goto L,

L,: stop—all solutions have been found

., a.) as a solution

652

As we shall see later, macros can also be useful when
the length of the solution is not known.

This technique results in several obvious savings.
First, the step “compute S’ may be very different for
different /; we can use the macro to ‘“‘customize’ each
block to compute S in the most efficient way. Second,
the technique often facilitates the greater and easier use
of registers since each block can have exclusive use of
one or more registers. This can be accomplished during
the expansion of the macro, but is in general difficult to
accomplish in a nonmacro program. Finally, loop
counters and end checks are unneeded and branching
occurs only when backtrack is necessary.

Macros provide . a method of increasing the speed
of the program (that is, the rate at which we process
nodes in the tree). Of even greater importance is to
decrease the number of nodes in the search tree, and
hence, also speed up the program. There are four
general methods to accomplish this:

(1) Preclusion. This is a very general technique
found in nearly all backtrack programs. In the genera-
tion of solutions, backtracking should occur as soon as
it is discovered that the current partial solution cannot
produce any solutions.

(2) Branch merging. When possible, do not search
branches of the tree that are isomorphic to branches
that have already been searched.

(3) Search rearrangement. In general, nodes of low
degree should occur early in the search tree, and nodes
of high degree should occur later. Since preclusion fre-
quently occurs at a fixed depth, fewer nodes may need
to be examined. When faced with the choice of several
ways of extending the partial solution (i.e. which
square to tile next or in which column to place the next
queen; see below), we choose the one that offers the
fewest alternatives.

(4) Branch and bound. This technique is used when
we are searching for a solution of minimum ‘“cost.”
Once a solution is found, all partial solutions with
greater cost (assuming the costs are additive) can be
discarded. In using this technique, it is beneficial to get
a good solution early in the search, and so it is best to
arrange the search so good solutions will be found
early.

An example of the usefulness of the first two tech-
niques is in the n X n nonattacking queens problem:
In how many ways can n queens be placed on ann X n
chess board so that no two queens are attacking each
other? This problem was first proposed in about 1850
by Franz Nauck and has since been extensively investi-
gated; a complete history of it and related problems
can be found in [2]. The most thorough pre-computer
results are in [13] and [20]. Walker [24] used backtrack
on SWAC to find the number of solutions for 6 £ n < 13.
Lin [15] found the number of solutions (although not
the number of inequivalent solutions) for n = 14,

Since exactly one queen must be in each column, a
solution can be represented as a vector (a, a,, .. ., a,)

Communications November 1975
of Volume 18
the ACM Number 11

<

in which a; represents the row of the queen in the ith
column. This illustrates a use of preclusion. We do not
consider all placements of queens, only ones with one
queen in each column. Since all others are automatically
illegal, they can be immediately discarded.

Two solutions are called equivalent if one can be
transformed into the other by a series of 90° rotations
and/or reflections. Clearly, if we find all inequivalent
solutions, then we can easily produce the set of all
solutions. Notice that a queen in any corner attacks
the other corners and so there are no solutions with
queens in more than one corner. Thus any solution
with a queen in the (1, 1) square can be transformed
by 90° rotations and/or a reflection into an equivalent
solution in which the (1, 1) square is empty. Thus we
know that we will still get all inequivalent solutions
under the restriction a; = 2. Moreover, if a1 > [3nl
the solution can be reflected to obtain an equivalent
solution in which @, < [4nl. Since this does not interfere
with the restriction that a = 2, we can restrict
2 < a, < [inl. When n is odd and a, = [nl, we may
restrict @» < [4n] — 2 by the same principle.! These
restrictions provide an example of branch merging.
We can ignore solutions known to be isomorphic to
solutions that will be generated.

Including these tests in the general backtrack algo-
rithm is expensive since they must be made each time
through the inner loop, even though they will rarely be
successful. Using the macro approach outlined above,
however, the instructions for these tests would not be
included in CODE, for i > 2 where they are not needed.
Essentially, separate (although similar) programs are
written for each level in the tree. On an 1BM System/360
this allows us to do almost all of the work in the regis-
ters instead of in the (relatively) slower memory. Thus
registers 0 through 14 can be used, respectively, to
hold the positions of the queens in columns 1 through
15 in the 15 X 15 case. Using such a technique the
14 X 14 case was run in 5 min and the 15 X 15 case
was run in 25 min. (An earlier attempt had taken five
times as long on the same computer [5].) The 16 X 16
case required 168 min.??

There are other, less general, ways to use macros to

speed up backtrack programs. For example, in tiling

problems a macro can be written which produces a
separate section of code for each position to be tiled or

11n fact, after the programs had been run, A.1. Stocks pointed
out that by reasoning as in the case . = 1, thecase @y = 3(n + 1),
n odd, need not be considered. Thus we can always restrict
22 a S 30

2 While peripheral to this paper, it should be noted that the
following results were obtained:

number of number of
n solutions inequivalent solutions
14 365596 45752
15 2279184 285053
16 14772512 1846955

3 All of the fomputer runs descr{bed in this paper were done
on the IBM Systbm/360-75 at the Unjversity of lllinois at Urbana-
Champaign.

“ [1567

Fig. 2. Solutions for the Sn X 12 problem for n = 10. The

50 % 12 solution is formed by using the tiling on the left
(without the shaded area) as the upper half of the solution and
the tiling on the right as the bottom half. To produce a solution
for n > 10, the shaded area is repeated # — 10 times.

i

I
L4
a

I

=5
q
s
|_|
STl
=T

'_J
ShT=i
ST

=

for each tile. This technique also results in significant
savings, since each section of code can now be tailored
to the idiosyncracies of a specific piece. This approach
was first used by Fletcher [7] for pentomino problems,
and was subsequently used for soma-cube problems by
Peterson [18]. The macro approach described for the
queens problem can be viewed as CODE; placing the
ith queen on the board.

Macros can be used in backtrack applications even
if the length of a solution is unknown. For example,
Fletcher’s method was successfully extended to find the
smallest 7 such that a 5n X 12 board can be tiled with

the pentomino E&u .

This problem was posed in [6] and the smallest known
value was n = 16, due to D. Klarner. A backtrack with
macros technique found tilings for n = 10 and n = 11,
and demonstrated (by exhaustive search) that no tilings
exist for n < 10. Furthermore, the solution for n = 11
gives rise to solutions for all n = 10, as shown in Figure
2. Related results of this type can be found in [4].

The program considers each of the eight reflections
and/or rotations of the pentomino as a separate piece
and tries to cover the board with them. A clever method
due to Fletcher [7] is used to determine which pieces
can cover a given square. Each piece is put on the board,
and the lowest numbered square it covers is called the
lead square. Offsets from the lead square to the other
four squares are then calculated. Each node in the tree
has an offset as its value, and each path from the root
to a terminal node corresponds to one piece. The offsets
along this path tell us which squares the piece will

Communications November 1975
of Volume 18
the ACM Number 11

6. Chvatal, V., Klarner, D.A., and Knuth, D.E. Selected com-
binatorial research problems. Tech. Rep. STAN-CS-72-292,
Computer Sci. Dep., Stanford U, 1972.

7. Fletcher, J.G. A program to solve the pentomino problem
by the recursive use of macros.Comm. ACM 8, 10 (Oct. 1965),
621-623.

8. Gardner, M. Mathematical games. Scientific American,
Sept. 1966 and Jan. 1967.

9. Golomb, S.W., and Baumert, L.D. Backtrack programming.
J. ACM 12,4 (Oct.1965), 516-524.

10. Hall, M., and Knuth, D.E. Combinatorial analysis and
computers. Amer. Math. Mo. 72, 2 (Part 11) (Feb. 1965), 21-28.
11. Knuth, D.E. The Art of Computer Programming, Volume

I: Fundamental Algorithms, 2nd ed. Addison-Wesley,

Reading, Mass., 1973.

12. Knuth, D.E. Estimating the efficiency of backtrack programs.

Math. Comp. 29 (1975), 121-136.

13. Kraitchik, M. Mathematical Recreations. W.W. Norton,
New York, 1942; Revised ed., Dover, New York, 1953.

14. Lawler, E.L., and Wood, D.E. Branch-and-bound methods: a
survery. Oper. Res. 14 (1966), 699-719.

15. Lin, S. (personal communication).

16. Lucas, E., Récréations Mathématiques, 2nd ed. Gauthier-
Villars, Paris, 1891.

17. Nievergelt, J. (personal communication).

18. Peterson, G. (personal communication).

19. Preparata, F., and Nievergelt, J. Difference-preserving codes
IEEE Trans. on Inf. Theory 20 (1974), 643-649.

20. Sainte-Lagué, M.A. Les Reseaux (ou Graphes). Memorial des
Sciences Mathematiques, Fasc. 18, Gauthier-Villars, Paris, 1926.
21. Slagle, J.R. Ariificial Intelligence—The Heuristic Program-
ming Approach. McGraw-Hill, New York, 1971.

22. Tarjan, R.E. Depth first search and linear graph algorithms.
SIAM J. Comput. 1 (1972), 146-160.

23. Tutte, W.T. The quest of the perfect square. Amer. Math.
Mo. 72,2 (Part 1) (Feb. 1965), 29-35.

24. Walker, R.J. An enumerative technique for a class of
combinatorial problems. Combinatorial Analysis (Proceedings
of Symposium in Applied Mathematics, Vol. X), Amer. Math.
Soc., Providence, R.1., 1960.

656

Communications
of
the ACM

" November 1975
Volume 18
Number 11

