A.1. Bangladesh

Bangladesh currently implements a single routine opportunity for vaccination for infants 9 months of age with an average coverage rate of 88%, along with follow-up supplemental immunization activities every four years targeting children 9 months up to 59 months of age (though this target age group shows some variation in historical SIAs from 1995 - 2006). A second routine dose is not presently included in the country's vaccination strategy, and the current vaccine formulation is single-antigen (measles) only.

A catch-up campaign was performed in Bangladesh in 2006, followed by a large outbreak in 2007 (based on cases reported by WHO, though not reflected in primary data collection), after which yearly incidence dropped again to lower levels. A regular follow-up campaign was performed in 2009, targeting 99% of children aged 9 months through 4 years (reported coverage). Due to the sporadic nature of vaccination campaigns and oscillations in recent reported incidence, it is difficult to predict whether Bangladesh will be able to achieve 90% mortality reduction goals by the target date of 2013 by continuing its current vaccination strategy.

Bangladesh was simulated as consisting of ten districts (aggregated from a country total of 64 districts) based on average MCV1 coverage for 2009 (only year available for district-level coverage data), with values ranging from 76% to 98%. As defined in the sections above, the transmission model yielded average mortality figures for 2000 of 14,751 (range: $11,569-15,888$), which falls within the range of estimated mortality provided by WHO. Comparing model results for simulated district-level incidence of the period from 2004 to 2009 with reported incidence over the same period (based on district-level passive surveillance case reports from Bangladesh) results in an average correlation coefficient of 0.7969 (range: 0.7721 0.8212).

Table A.1.1. Vaccination assumptions and simulation outcomes for mortality reduction scenarios, Bangladesh.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinatio on Assumpti ons								Target (and post-target) Vaccination Assumpti ons							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{aligned} & \text { Ramp } \\ & \text { up } \\ & \text { factor } \end{aligned}$	Yr change to 12 mo	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
1	Baseline	2013	88\%	9 mo	N/A	N/A	95\%	$\begin{array}{r} \hline 9 \mathrm{mo}- \\ 59 \mathrm{mo} \\ \hline \end{array}$	4 yrs	N/A	N/A	N/A	18 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo} \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	88\%	9 mo	N/A	N/A	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	4 yrs	59\%
2	No SIA		88\%	9 mo	N/A	N/A	95\% (unti I 2010)	9 mo59 mo	4 yrs	N/A	N/A	N/A	18 mo	N/A	N/A	N/A	N/A	88\%	9 mo	N/A	N/A	N/A	N/A	N/A	48\%
3	95\% Mortality	2015	88\%	9 mo	N/A	N/A	95\%	9 mo 59 mo	4 yrs	1.0	N/A		18 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	89.2\%	9 mo	80.2\%	18 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	4 yrs	80\%
4	98\% Mortality Reduction	2020	88\%	9 mo	N/A	N/A	95\%	9 mo 59 mo	4 yrs	1.0	N/A		18 mo	N/A	95\%	9 mo 59 mo	4 yrs	89.3\%	9 mo	80.2\%	18 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	4 yrs	80\%

Data were collected in Bangladesh in January/February 2010 on the costs of measles vaccination for routine immunization and SIAs. Because no data were available on the cost of increasing routine coverage, an assumption was made that 5% of the baseline cost would be needed to increase coverage by 1%. Information on societal costs, the cost of obtaining vaccination, and cost savings from not treating a measles case were taken from published studies.

Table A.1.2. Assumptions for Costs of Measles Vaccination in Bangladesh
$\left.\begin{array}{|c|r|}\hline \text { Parameter } & \text { Value (costs in US\$) } \\ \hline \text { Initial Coverage } & 85 \% \\ \hline \begin{array}{c}\text { Cost per dose of routine } \\ \text { immunization }\end{array} & \$ 1.46 \\ \hline \begin{array}{c}\text { Added Cost per additional } \\ \text { percent of coverage for } \\ \text { routine immunization }\end{array} & \begin{array}{c}\$ 0.07 \text { until } 90 \% ; \\ \$ 0.15 \mathrm{after} 90 \%\end{array} \\ \hline \begin{array}{c}\text { Cost per dose of measles } \\ \text { vaccination given through SIA }\end{array} & \$ 0.52 \\ \hline \begin{array}{c}\text { Cost to Household of Obtaining } \\ \text { Vaccination }\end{array} & \$ 0.50 \\ \hline \text { Cost of Treating Case of } \\ \text { Measles }\end{array} \quad \$ 12.40\right\}$

[^0]Table A.1.3. Transmission and cost results for reduction in mortality scenarios, Bangladesh (all totals discounted by 3\%).

Bangladesh	$\begin{gathered} \hline \text { Baseline (90\% RM } \\ \text { by } 2013 \text {) } \\ \hline \end{gathered}$		No SIA		95\% RM by 2015		98\% RM by 2020	
Correlati on Coeffi cient		0.7721		0.8059		0.7999		0.7999
2000 Mortality		11,569.32		14,603.20		15,559.66		15,559.66
Target Year Mortality		5,944.76		6,999.12		2,979.69		2,588.98
\% Reduction in Mortality through 2050		59\%		48\%		80\%		80\%
Total Cost 2010-2030	\$	227,892,625.21	\$	149,854,448.88	\$	459,393,952.04	\$	448,066,217.12
Incremental Cost over Baseline, 2010-2030	\$		\$	(78,038,176.33)	\$	231,501,326.83	\$	220,173,591.91
Total DALYs, 2010-2030		2,412,591.89		3,510,404.44		1,579,828.47		1,547,006.63
Total Deaths, 2010-2030		78,029.87		110,996.24		48,506.77		47,520.14
Total Cases, 2010-2030		11,678,967.05		16,802,964.29		6,005,692.38		5,936,737.20
DALYs Averted over Baseline, 2010-2030				(1,097,812.55)		832,763.42		865,585.26
Deaths Averted over Baseline, 2010-2030				(32,966.37)		29,523.10		30,509.73
Cases Averted over B aseline, 2010-2030				(5,123,997.24)		5,673,274.67		5,742,229.85
Cost per DALY, 2010-2030	\$		\$	71.09	\$	277.99	\$	254.36
Cost per Death, 2010-2030	\$		\$	2,367.21	\$	7,841.36	\$	7,216.50
Cost per Case, 2010-2030	\$	-	\$	15.23	\$	40.81	\$	38.34
Total Cost 2010-2050	\$	339,617,241.20	\$	228,600,513.67	\$	655,079,084.94	\$	644,770,779.65
Incremental Cost over Baseline, 2010-2050	\$	-	\$	(111,016,727.53)	\$	315,461,843.74	\$	305,153,538.45
Total DALYs, 2010-2050		3,684,549.45		5,540,973.79		2,466,201.53		2,394,268.10
Total Deaths, 2010-2050		118,287.83		175,056.26		75,247.53		73,122.74
Total Cases, 2010-2050		17,637,747.29		27,000,755.31		9,367,817.21		9,198,446.91
DALYs Averted over Baseline, 2010-2050				(1,856,424.34)		1,218,347.92		1,290,281.35
Deaths Averted over Baseline, 2010-2050				(56,768.43)		43,040.30		45,165.09
Cases Averted over B aseline, 2010-2050				(9,363,008.02)		8,269,930.08		8,439,300.38
Cost per DALY, 2010-2050	\$		\$	59.80	\$	258.93	\$	236.50
Cost per Death, 2010-2050	\$		\$	1,955.61	\$	7,329.45	\$	6,756.40
Cost per Case, 2010-2050	\$	-	\$	11.86	\$	38.15	\$	36.16

Monthly Measles Incidence per 1,000 Population -Bangladesh Mortality Reduction Scenarios

Figure A.1.1. Country-level monthly incidence for 10-district simulations for Bangladesh, reduction in mortality scenarios.

Table A.1.4. Vaccination assumptions and simulation outcomes for eradication scenarios, Bangladesh.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Post-Goal Vaccinati on Assumpti ons							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{array}{\|\|c\|} \hline \text { Ramp } \\ \text { up } \\ \text { factor } \\ \hline \end{array}$	Yr change to 12 mo	Ramp up rate	Age	Yr intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
5	Eradication	2020	88\%	9 mo	N/A	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	1.0	2020		18 mo	2010	95\%	9 mo59 mo	4 yrs	89.3\%	12 mo	80.2\%	18 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	100\%
																		89.3\%	12 mo	80.2\%	18 mo	-	-	-	100\%
																		89.3\%	12 mo	-	-	-	-	-	100\%
6	Eradication	2025	88\%	9 mo	N/A	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	1.0	2025		18 mo	2010	95\%	$\begin{array}{r} 9 \mathrm{mo}- \\ 59 \mathrm{mo} \end{array}$	4 yrs	89.5\%	12 mo	80.2\%	72 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \\ & \hline \end{aligned}$	4 yrs	100\%
																		89.6\%	12 mo	80.2\%	72mo	-	-	-	100\%
																		89.6\%	12 mo	-	-	-	-	-	100\%

Table A.1.4. Transmission and cost results for eradication scenarios, Bangladesh (all totals discounted by 3\%).

Bangladesh		$\begin{aligned} & \text { E2020- } \\ & 1+\text { MCV2 + SIA } \\ & \hline \end{aligned}$		$\begin{gathered} \text { E2020- } \\ \text { MCV1 }+ \text { MCV2 } \\ \hline \end{gathered}$		2020 - MCVI		$\begin{aligned} & \hline \text { E2025 - } \\ & 1+\text { MCV }+ \text { SIA } \\ & \hline \end{aligned}$		$\begin{gathered} \text { E2025- } \\ \text { MCVI + MCV2 } \\ \hline \end{gathered}$	E2025-MCVI	
Correlati on Coeffi cient		0.7999		0.7852		0.7999		0.7919		0.8212		0.7933
2000 Mortality		15,559.66		14,446.23		15,559.66		14,437.14		14,331.83		15,888.43
Target Year Mortality		221.52		130.03		221.52		208.94		166.17		188.88
\% Reduction in Mortality through 2050		100\%		100\%		100\%		100\%		100\%		100\%
Total Cost 2010-2030	\$	327,028,916.35	\$	308,883,967.31	\$	266,753,907.64	\$	382,098,221.40	\$	339,896,747.26	\$	341,179,469.90
Incremental Cost over B aseline, 2010-2030	\$	99,136,291.14	\$	80,991,342.10	\$	38,861,282.43	\$	154,205,596.19	\$	112,004,122.05	\$	113,286,844.69
Total DALYs, 2010-2030		513,411.79		558,709.37		513,411.79		787,391.79		743,875.64		779,691.18
Total Deaths, 2010-2030		16,214.96		17,644.75		16,214.96		24,627.63		23,233.13		24,383.24
Total Cases, 2010-2030		2,173,072.76		2,353,312.80		2,173,072.76		3,217,773.27		3,031,847.60		3,201,783.29
DALYs Averted over Baseline, 2010-2030		1,899,180.10		1,853,882.52		1,899,180.10		1,625,200.10		1,668,716.25		1,632,900.71
Deaths Averted over Baseline, 2010-2030		61,814.91		60,385.12		61,814.91		53,402.24		54,796.74		53,646.63
Cases Averted over B aseline, 2010-2030		9,505,894.29		9,325,654.25		9,505,894.29		8,461,193.78		8,647,119.45		8,477,183.76
Cost per DALY, 2010-2030	\$	52.20	\$	43.69	\$	20.46	\$	94.88	\$	67.12	\$	69.38
Cost per Death, 2010-2030	\$	1,603.76	\$	1,341.25	\$	628.67	\$	2,887.62	\$	2,043.99	\$	2,111.72
Cost per Case, 2010-2030	\$	10.43	\$	8.68	\$	4.09	\$	18.23	\$	12.95	\$	13.36
Total Cost 2010-2050	\$	459,834,337.15	\$	388,423,817.02	\$	299,600,525.23	\$	552,054,443.15	\$	433,772,538.49	\$	395,814,066.48
Incremental Cost over B aseline, 2010-2050	\$	120,217,095.95	\$	48,806,575.82	\$	(40,016,715.97)	\$	212,437,201.95	\$	94,155,297.29	\$	56,196,825.28
Total DALYs, 2010-2050		513,411.79		558,709.37		513,411.79		787,391.79		743,875.64		779,691.18
Total Deaths, 2010-2050		16,214.96		17,644.75		16,214.96		24,627.63		23,233.13		24,383.24
Total Cases, 2010-2050		2,173,072.76		2,353,312.80		2,173,072.76		3,217,773.27		3,031,847.60		3,201,783.29
DALYs Averted over Baseline, 2010-2050		3,171,137.66		3,125,840.08		3,171,137.66		2,897,157.66		2,940,673.81		2,904,858.27
Deaths Averted over Baseline, 2010-2050		102,072.87		100,643.08		102,072.87		93,660.20		95,054.70		93,904.59
Cases Averted over Baseline, 2010-2050		15,464,674.53		15,284,434.49		15,464,674.53		14,419,974.02		14,605,899.69		14,435,964.00
Cost per DALY, 2010-2050	\$	37.91	\$	15.61	\$	(12.62)	\$	73.33	\$	32.02	\$	19.35
Cost per Death, 2010-2050	\$	1,177.76	\$	484.95	\$	(392.04)	\$	2,268.17	\$	990.54	\$	598.45
Cost per Case, 2010-2050	\$	7.77	\$	3.19	\$	(2.59)	\$	14.73	\$	6.45	\$	3.89

Figure A.1.2. Country-level monthly incidence for 10-district simulations for Bangladesh, eradication scenarios.

A.2. Brazil

Brazil currently implements two routine opportunities for vaccination - MCV1 for infants 12 months of age with an average coverage rate of 94%, and MCV2 for children 4-6 years with an average coverage of 16% - along with irregular catch-up and follow-up supplemental immunization activities from 1992-2009 targeting a range of age groups. The current vaccine formulation is trivalent (measles-mumps-rubella).

Measles was eliminated locally in Brazil in 2000, and incidence and mortality have been maintained at this level since then with the exception of occasional cases imported from outside the country in 2003, 2005 and 2006.

Brazil was simulated as consisting of ten districts (aggregated from a country total of 27 districts) based on average MCV1 coverage for 1994-2007, with 2007 values ranging from 89% to 97%. As defined in the sections above, the transmission model yielded average mortality figures for 2000 of no deaths (range: $0-0.09$), which corresponds with estimated mortality provided by WHO. Comparing model results for simulated district-level incidence of the period from 1989 to 2003 with reported incidence over the same period (based on district-level data from Brazil) results in an average correlation coefficient of 0.7037 (range: $0.6951-0.7141$).

Table A.2.1. Vaccination assumptions and simulation outcomes for mortality reduction scenarios, Brazil.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinatio on Assumpti ons								Target (and post-target) Vaccination Assumpti ons							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{aligned} & \text { Ramp } \\ & \text { up } \\ & \text { factor } \end{aligned}$	Yr change to 12 mo	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
1	$\mathbf{9 0 \%}$ Mortality Reduction	2013	94\%	12 mo	16\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	94\%	12 mo	16\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	4 yrs	91\%
2	NoSIA																								
3	95\% Mortality Reduction	2015	94\%	12 mo	16\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	2012	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	94\%	12 mo	16\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	4 yrs	93\%
4	98\% Mortality Reducti on	2020	94\%	12 mo	16\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	2012	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	94\%	12 mo	16\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	4 yrs	86\%

Data were collected in Brazil in October 2009 on the costs of measles vaccination for routine immunization and SIAs, from one of the municipalities. In addition, national data were collected on the costs of vaccines, syringes and some logistical expenditures.

Table A.2.2. Assumptions for Costs of Measles Vaccination in Brazil
$\left.\begin{array}{|c|r|}\hline \text { Parameter } & \text { Value (costs in US\$) } \\ \hline \text { Initial Coverage } & 94 \% \\ \hline \begin{array}{c}\text { Cost per dose of routine } \\ \text { immunization }\end{array} & \$ 3.91 \\ \hline \begin{array}{c}\text { Added Cost per additional } \\ \text { percent of coverage for } \\ \text { routine immunization }\end{array} & \$ 1.27 \\ \hline \begin{array}{c}\text { Cost per dose of measles } \\ \text { vaccination given through SIA }\end{array} & \mathrm{N} / \mathrm{A} \\ \hline \begin{array}{c}\text { Cost to Household of Obtaining } \\ \text { Vaccination }\end{array} & \$ 1.43 \\ \hline \text { Cost of Treating Case of } \\ \text { Measles }\end{array} \quad \$ 198.50\right\}$

Source: Data collection by Emily Simons; Acharya 2002.

Table A.2.3. Transmission and cost results for reduction in mortality scenarios, Brazil (all totals discounted by 3\%).

Brazil	$\begin{gathered} \hline \text { Baseline (} 90 \% \text { RM } \\ \text { by } 2013 \text {) } \\ \hline \end{gathered}$		No SIA	95\% RM by 2015		98\% RM by 2020	
Correlati on Coeffi cient		0.7017			0.7060		0.6951
2000 Mortality		0.62			0.55		0.34
Target Year Mortality		-			0.03		0.09
\% Reduction in Mortality through 2050		91\%			93\%		86\%
Total Cost 2010-2030	\$	1,051,147,065.26		\$	1,021,136,663.29	\$	933,748,545.37
Incremental Cost over Baseline, 2010-2030	\$			\$	(30,010,401.96)	\$	$(117,398,519.89)$
Total DALYs, 2010-2030		37.16			28.86		26.30
Total Deaths, 2010-2030		1.15			0.72		0.72
Total Cases, 2010-2030		1,143.90			831.20		800.55
DALYs Averted over Baseline, 2010-2030		-			8.30		10.86
Deaths Averted over Baseline, 2010-2030		-			0.43		0.43
Cases Averted over Baseline, 2010-2030		-			312.70		343.35
Cost per DALY, 2010-2030	\$	-		\$	$(3,617,107.51)$	\$	(10,813,367.35)
Cost per Death, 2010-2030	\$	-		\$	(69,925,100.36)	\$	(273,541,930.41)
Cost per Case, 2010-2030	\$			\$	(95,971.39)	\$	(341,919.31)
Total Cost 2010-2050	\$	1,526,615,403.91		\$	1,491,701,167.44	\$	1,399,605,151.39
Incremental Cost over Baseline, 2010-2050	\$	-		\$	(34,914,236.47)	\$	(127,010,252.52)
Total DALYs, 2010-2050		52.18			44.39		39.63
Total Deaths, 2010-2050		1.53			1.06		1.11
Total Cases, 2010-2050		1,559.44			1,258.10		1,170.89
DALYs Averted over Baseline, 2010-2050					7.79		12.55
Deaths Averted over Baseline, 2010-2050		-			0.47		0.42
Cases Averted over Baseline, 2010-2050		-			301.34		388.55
Cost per DALY, 2010-2050	\$			\$	(4,481,211.00)	\$	(10,119,330.72)
Cost per Death, 2010-2050	\$			\$	(73,933,403.86)	\$	(300,801,805.31)
Cost per Case, 2010-2050	\$			\$	$(115,864.71)$		$(326,885.81)$

 Scenarios

Figure A.2.1. Country-level monthly incidence for 10 -district simulations for Brazil, reduction in mortality scenarios.

Table A.2.4. Vaccination assumptions and simulation outcomes for eradication scenarios, Brazil.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Post-Goal Vaccinatio on Assumpti ons							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{array}{\|l} \hline \text { Ramp } \\ \text { up } \\ \text { factor } \\ \hline \end{array}$	change to 12 mo	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
5	Eradication	2020	94\%	12 mo	16.2	60 mo	95\%	9 mo - 47 mo	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{gathered} 9 \mathrm{mo}- \\ 47 \mathrm{mo} \end{gathered}$	4 yrs	94.4\%	12 mo	16.2\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	100\%
																		94.4\%	12 mo	16.2\%	60 mo	-	-	-	100\%
																		94.4\%	12 mo	-	-	-	-	-	100\%
6	Eradication	2025	94\%	12 mo	16.2	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	94.4\%	12 mo	16.2\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	100\%
																		94.4\%	12 mo	16.2\%	60 mo	-	-	-	100\%
																		94.4\%	12 mo	-	-	-	-	-	100\%

Table A.2.5. Transmission and cost results for eradication scenarios, Brazil (all totals discounted by 3%).

Brazil		$\begin{aligned} & \text { E2020- } \\ & 1+\text { MCV2 + SIA } \\ & \hline \end{aligned}$		$\begin{gathered} \text { E2020- } \\ \text { MCV1 }+ \text { MCV2 } \\ \hline \end{gathered}$		2020 - MCV1		$\begin{array}{l\|} \hline \text { E2025 - } \\ 1+\text { MCV2 + SIA } \\ \hline \end{array}$		$\begin{gathered} \text { E2025- } \\ \text { MCVI + MCV2 } \\ \hline \end{gathered}$	E2025-MCV1	
Correlati on Coeffi cient		0.7020		0.6988		0.7138		0.7030		0.6989		0.7141
2000 Mortality		0.41		0.70		1.33		0.95		0.58		11
Target Year Mortality		0.00		0.00		0.00		0.00		-		0.00
\% Reduction in Mortality through 2050		100\%		100\%		100\%		100\%		100\%		100\%
Total Cost 2010-2030	\$	861,886,040.01	\$	877,780,949.38	\$	746,531,839.35	\$	876,384,714.13	\$	939,961,986.03	\$	855,431,782.92
Incremental Cost over B aseline, 2010-2030	\$	(189,261,025.25)	\$	(173,366,115.88)	\$	(304,615,225.91)	\$	(174,762,351.13)	\$	(111,185,079.23)	\$	(195,715,282.34)
Total DALYs, 2010-2030		8.30		15.24		8.85		13.53		19.54		12.05
Total Deaths, 2010-2030		0.26		0.38		0.21		0.38		0.51		0.38
Total Cases, 2010-2030		249.75		471.72		286.06		403.92		600.34		381.78
DALYs Averted over Baseline, 2010-2030		28.86		21.92		28.31		23.63		17.62		25.11
Deaths Averted over Baseline, 2010-2030		0.89		0.77		0.94		0.77		0.64		0.77
Cases Averted over Baseline, 2010-2030		894.15		672.18		857.84		739.98		543.56		762.12
Cost per DALY, 2010-2030	\$	(6,558,629.29)	\$	$(7,910,194.47)$	\$	(10,761,204.82)	\$	$(7,396,785.99)$	\$	(6,311,311.17)	\$	(7,795,311.07)
Cost per Death, 2010-2030	\$	(212,849,125.48)	\$	(225,391,046.90)	\$	(324,341,947.16)	\$	(227,206,274.31)	\$	(173,949,763.92)	\$	(254,446,909.41)
Cost per Case, 2010-2030	\$	(211,665.49)	\$	(257,915.62)	\$	(355,094.98)	\$	(236,171.23)	\$	(204,549.20)	\$	(256,803.24)
Total Cost 2010-2050	\$	1,165,921,600.88	\$	1,107,256,826.12	\$	946,880,633.23	\$	1,181,500,432.28	\$	1,169,437,862.78	\$	1,055,780,576.80
Incremental Cost over B aseline, 2010-2050	\$	(360,693,803.03)	\$	(419,358,577.79)	\$	(579,734,770.68)	\$	(345,114,971.62)	\$	(357,177,541.13)	\$	$(470,834,827.11)$
Total DALYs, 2010-2050		8.30		15.24		8.85		13.53		19.54		12.05
Total Deaths, 2010-2050		0.26		0.38		0.21		0.38		0.51		0.38
Total Cases, 2010-2050		249.75		471.72		286.06		403.92		600.34		381.78
DALYs Averted over Baseline, 2010-2050		43.88		36.94		43.33		38.65		32.64		40.13
Deaths Averted over Baseline, 2010-2050		1.27		1.15		1.32		1.15		1.02		1.15
Cases Averted over B aseline, 2010-2050		1,309.69		1,087.72		1,273.38		1,155.52		959.10		1,177.66
Cost per DALY, 2010-2050	\$	(8,219,770.42)	\$	(11,352,040.73)	\$	(13,379, 137.85)	\$	(8,928,947.17)	\$	(10,942,520.22)	\$	(11,732,373.74)
Cost per Death, 2010-2050	\$	(283,511,041.50)	\$	(363,951,037.02)	\$	(438,449,306.12)	\$	(299,516,829.91)	\$	(349,407,078.22)	\$	(408,626,012.84)
Cost per Case, 2010-2050	\$	$(275,404.74)$	\$	(385,540.42)	\$	$(455,273.75)$	\$	(298,667.35)	S	(372,410.53)	\$	$(399,806.68)$

Figure A.2.2. Country-level monthly incidence for 10 -district simulations for Brazil, eradication scenarios.

A.3. Colombia

Colombia currently implements two routine opportunities for vaccination - MCV1 for infants 12 months of age with an average coverage rate of 95%, and MCV2 for children 5 years with an average coverage of 69% - along with irregular catch-up and follow-up supplemental immunization activities from 1993-2006 targeting a range of age groups. The current vaccine formulation is trivalent (measles-mumps-rubella).

Measles was eliminated locally in Colombia in 2000, and incidence and mortality have been maintained at this level since then with the exception of occasional cases imported from outside the country in 2002.

Colombia was simulated as consisting of ten districts (aggregated from a country total of 33 districts) based on average MCV1 coverage for 2006 2009 , with 2009 values ranging from 83% to 99%. As defined in the sections above, the transmission model yielded average mortality figures for 2000 of 0.14 deaths (range: $0.04-0.25$), which corresponds with estimated mortality provided by WHO. Comparing model results for simulated district-level incidence of the period from 1990 to 2009 with reported incidence over the same period (based on country-level data from Colombia) results in an average correlation coefficient of 0.9706 (range: $0.9678-0.9745$).

Table A.3.1. Vaccination assumptions and simulation outcomes for mortality reduction scenarios, Colombia.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinatio on Assumpti ons								Target (and post-target) Vaccination Assumptions							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{aligned} & \text { Ramp } \\ & \text { up } \\ & \text { factor } \end{aligned}$	Yr change to 12 mo	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
1	$\mathbf{9 0 \%}$ Mortality Reduction	2013	95\%	12 mo	69\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	95\%	12 mo	69\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	4 yrs	63\%
2	NoSIA																								
3	95\% Mortality Reduction	2015	95\%	12 mo	69\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	95\%	12 mo	69\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	4 yrs	88\%
4	98\% Mortality Reduction	2020	95\%	12 mo	69\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	95\%	12 mo	69\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	4 yrs	74\%

Data were collected in Colombia in March/April 2010 on the costs of measles vaccination for routine immunization and SIAs, in three districts in the country: Bogota, Cali and Medellin. Information on cost savings from not treating a measles case were taken from published studies.

Table A.3.2. Assumptions for Costs of Measles Vaccination in Colombia

Parameter	Value (costs in US\$)
Initial Coverage	95%
Cost per dose of routine immunization	$\$ 7.77$
Added Cost per additional percent of coverage for routine immunization	$\$ 2.87$
Cost per dose of measles vaccination given through SIA	N / A
Cost to Household of Obtaining	
Vaccination	$\$ 3.80$
Cost of Treating Case of Measles	

Source: WHO/Bogota; Salutia Foundation 2000; Acharya 2002.

Table A.3.3. Transmission and cost results for reduction in mortality scenarios, Colombia (all totals discounted by 3\%).

Figure A.3.1. Country-level monthly incidence for 10 -district simulations for Colombia, reduction in mortality scenarios.
Table A.3.4. Vaccination assumptions and simulation outcomes for eradication scenarios, Colombia.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Post-Goal Vaccinati on Assumpti ons							Average \% Mortality Reduction
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{aligned} & \text { Ramp } \\ & \text { up } \\ & \text { factor } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Yr} \\ \text { change } \\ \text { to } 12 \mathrm{mo} \end{array}$	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
5	Eradication	2020	95\%	12 mo	69\%	60 mo	95\%	$\begin{gathered} 9 \mathrm{mo}- \\ 47 \mathrm{mo} \end{gathered}$	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo} \text { - } \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	94.5\%	12 mo	68.9\%	60 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	100\%
																		94.6\%	12 mo	68.9\%	60 mo	-	-	-	100\%
																		94.6\%	12 mo	-	-	-	-	-	100\%
6	Eradication	2025	95\%	12 mo	69\%	60 mo	95\%	9 mo - 47 mo	4 yrs	N/A	N/A	N/A	60 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	4 yrs	94.5\%	12 mo	68.9\%	60 mo	95\%	$\begin{array}{r} 9 \mathrm{mo}- \\ 47 \mathrm{mo} \end{array}$	4 yrs	100\%
																		94.6\%	12 mo	68.9\%	60 mo	-	-	-	100\%
																		94.6\%	12 mo	-	-	-	-	-	100\%

Table A.3.5. Transmission and cost results for eradication scenarios, Colombia (all totals discounted by 3%).

Colombia		$\begin{aligned} & \text { E2020- } \\ & 1+\text { MCV2 + SIA } \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{E} 2020- \\ \mathrm{MCV} 1+\mathrm{MCV} 2 \\ \hline \end{gathered}$		020 - MCV1		$\begin{array}{l\|} \hline \mathrm{E} 2025- \\ 1+\mathrm{MCV} 2+\mathrm{SIA} \\ \hline \end{array}$		$\begin{gathered} \text { E2025 - } \\ \text { MCV1 + MCV2 } \\ \hline \end{gathered}$	E2025-MCV1	
Correlati on Coeffi cient		0.9745		0.9715		0.9688		0.9695		0.9715		0.9681
2000 Mortality		0.04		0.10		0.18		0.21		0.10		. 16
Target Year Mortality				0.00		0.00		-		-		
\% Reduction in Mortality through 2050		100\%		100\%		100\%		100\%		100\%		100\%
Total Cost 2010-2030	\$	604,630,795.09	\$	575,700,560.03	\$	514,673,735.56	\$	606,905,231.72	\$	592,879,627.24	\$	569,747,481.38
Incremental Cost over Baseline, 2010-2030	\$	$(3,937,682.36)$	\$	(32,867,917.42)	\$	(93,894,741.89)	\$	$(1,663,245.73)$	\$	(15,688,850.21)	\$	(38,820,996.07)
Total DALYs, 2010-2030		5.53		9.66		9.6		8.38		12.85		11.24
Total Deaths, 2010-2030		0.09		0.17		0.17		0.13		0.26		0.17
Total Cases, 2010-2030		491.64		864.06		864.06		770.38		1,162.46		1,019.62
DALYs Averted over Baseline, 2010-2030		22.18		18.05		18.05		19.33		14.86		16.47
Deaths Averted over Baseline, 2010-2030		0.51		0.43		0.43		0.47		0.34		0.43
Cases Averted over Baseline, 2010-2030		2,029.79		1,657.37		1,657.37		1,751.05		1,358.97		1,501.81
Cost per DALY, 2010-2030	\$	(177,533.02)	\$	$(1,820,937.25)$	\$	(5,201,924.76)	\$	$(86,044.79)$	\$	(1,055,777.27)	\$	$(2,357,073.23)$
Cost per Death, 2010-2030	\$	(7,720,945.80)	\$	(76,437,017.26)	\$	(218,359,864.86)	\$	$(3,538,820.70)$	\$	$(46,143,677.09)$	\$	(90,281,386.21)
Cost per Case, 2010-2030	\$	(1,939.95)	\$	$(19,831.37)$	\$	$(56,652.85)$	\$	(949.86)	\$	$(11,544.66)$	\$	(25,849.47)
Total Cost 2010-2050	\$	917,454,022.03	\$	832,876,319.80	\$	669,305,589.91	\$	919,639,758.49	\$	850,055,387.01	\$	726,146,810.22
Incremental Cost over B aseline, 2010-2050	\$	$(7,838,611.57)$	\$	(92,416,313.80)	\$	(255,987,043.69)	\$	$(5,652,875.11)$	\$	(75,237,246.59)	\$	(199,145,823.38)
Total DALYs, 2010-2050		5.53		9.66		9.66		8.38		12.85		11.24
Total Deaths, 2010-2050		0.09		0.17		0.17		0.13		0.26		0.17
Total Cases, 2010-2050		491.64		864.06		864.06		770.38		1,162.46		1,019.62
DALYs Averted over Baseline, 2010-2050		43.20		39.07		39.07		40.35		35.88		37.49
Deaths Averted over Baseline, 2010-2050		0.76		0.68		0.68		0.72		0.59		0.68
Cases Averted over Baseline, 2010-2050		3,968.15		3,595.73		3,595.73		3,689.41		3,297.33		3,440.17
Cost per DALY, 2010-2050	\$	(181,449.34)	\$	($2,365,403.48)$	\$	(6,552,010.33)	\$	$(140,096.04)$	\$	$(2,096,913.23)$	\$	$(5,311,971.82)$
Cost per Death, 2010-2050	\$	(10,313,962.59)	\$	(135,906,343.82)	\$	(376,451,534.84)	\$	(7,851,215.43)	\$	(127,520,756.93)	\$	(292,861,504.97)
Cost per Case, 2010-2050		$(1,975.38)$		$(25,701.68)$	\$	(71,191.95)		$(1,532.19)$		$(22,817.63)$	\$	$(57,888.37)$

Figure A.3.2. Country-level monthly incidence for 10 -district simulations for Colombia, eradication scenarios.

A.4. Ethiopia

Ethiopia currently implements a single routine opportunity for vaccination for infants 9 months of age with an average coverage rate of 74%, along with catch-up and follow-up supplemental immunization activities every year from 1998-2009 at national and sub-national levels targeting children 9 months up to 47 months of age (though this target age group shows some variation in historical SIAs). A second routine dose is not presently included in the country's vaccination strategy, and the current vaccine formulation is single-antigen only.

Since the most recent catch-up campaign performed in Ethiopia in 2006 and 2008 measles incidence appears to have declined, though the variable numbers of reported cases over recent years make it difficult to determine the likelihood that the country will be able to achieve 90% mortality reduction goals by the target date of 2013 by continuing its current vaccination strategy.

Ethiopia was simulated as consisting of ten districts (aggregated from a country total of 11 districts) based on average MCV1 coverage over the period $2008-2009$, with values ranging from 40% to 98%. As defined in the sections above, the transmission model yielded average mortality figures for 2000 of 35,510 (range: $33,297-38,993$), which falls somewhat above the range of estimated mortality provided by WHO. Comparing model results for simulated district-level incidence over the period from 2000 to 2008 with reported incidence over the same period (based on country-level case reports from Ethiopia) results in an average correlation coefficient of 0.7185 (range: $0.6752-0.7311$).

Table A.4.1. Vaccination assumptions and simulation outcomes for mortality reduction scenarios, Ethiopia.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinatio on Assumpti ons								Target (and post-target) Vaccinatio on Assumptions							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	Ramp up factor	$\begin{array}{\|c\|} \hline \mathrm{Yr} \\ \text { change } \\ \text { to } 12 \mathrm{mo} \end{array}$	Ramp up rate	Age	Yr intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
1	90\% Mortality Reducti on	2013	72\%	9 mo	N/A	N/A	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	N/A	N/A	N/A	N/A	N/A	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	72\%	9 mo	N/A	N/A	90\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	3 yrs	90\%
2	No SIA		72\%	9 mo	N/A	N/A	90\%	$\begin{array}{r} 9 \mathrm{mo}- \\ 47 \mathrm{mo} \\ \hline \end{array}$	3 yrs	N/A	72\%	9 mo	N/A	N/A	N/A	N/A	N/A	86\%							
3	95\% Mortality Reduction	2015	72\%	9 mo	N/A	N/A	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	2	2013	N/A	18 mo	2013	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	88.7\%	12 mo	68\%	N/A	95\%	$\begin{gathered} 9 \mathrm{mo}-47 \\ \mathrm{mo} \end{gathered}$	3 yrs	94\%
4	98\% Mortality Reduction	2020	72\%	9 mo	N/A	N/A	90\%	$\begin{gathered} 9 \mathrm{mo}- \\ 47 \mathrm{mo} \end{gathered}$	3 yrs	2	2013	N/A	18 mo	2013	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	2 yrs	90.1\%	12 mo	81\%	18 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	3 yrs	97\%

Data were collected in Ethiopia in March 2010 on the costs of measles vaccination for routine immunization and SIAs. Information on societal costs, the cost of obtaining vaccination, was taken from published studies.

Table A.4.2. Assumptions for Costs of Measles Vaccination in Ethiopia
$\left.\begin{array}{|c|rr|}\hline \text { Parameter } & \text { Value (costs in US\$) } \\ \hline \text { Initial Coverage } & 63 \% \\ \hline \begin{array}{c}\text { Cost per dose of routine } \\ \text { immunization }\end{array} & \$ 1.35 \\ \hline \begin{array}{c}\text { Added Cost per } \\ \text { additional percent of } \\ \text { coverage for routine } \\ \text { immunization }\end{array} & \$ 0.64 \\ \hline \begin{array}{c}\text { Cost per dose of measles } \\ \text { vaccination given through } \\ \text { SIA }\end{array} & \begin{array}{l}\text { \$0.055 until } 80 \% ; \\ \$ 0.118 \text { after } 80 \%\end{array} \\ \hline \begin{array}{c}\text { Cost to Household of } \\ \text { Obtaining Vaccination }\end{array} & \$ 0.25^{*} \\ \hline \text { Cost of Treating Case of } \\ \text { Measles }\end{array} \quad \$ 12.34\right\}$

Source: Data Collection in Ethiopia

Table A.4.3. Transmission and cost results for reduction in mortality scenarios, Ethiopia (all totals discounted by 3\%).

Ethiopia	Baseline (90\% RM by 2013)		No SIA		95\% RM by 2015		98\% RM by 2020	
Correlati on Coeffi cient		0.6752		0.6752		0.7164		0.7311
2000 Mortality		38,992.68		38,993.02		33,297.44		34,830.40
Target Year Mortality		719.65		940.67		1,935.34		1,772.06
\% Reduction in Mortality through 2050		90\%		86\%		94\%		97\%
Total Cost 2010-2030	\$	163,190,735.77	\$	86,768,505.88	\$	264,972,282.57	\$	397,479,299.10
Incremental Cost over Baseline, 2010-2030	\$	-	\$	(76,422,229.89)	\$	101,781,546.80	\$	234,288,563.33
Total DALYs, 2010-2030		1,449,344.87		1,967,606.28		1,082,052.33		556,113.21
Total Deaths, 2010-2030		47,656.55		63,859.68		34,588.89		18,068.38
Total Cases, 2010-2030		3,677,901.24		5,155,858.75		2,399,399.78		1,260,505.77
DALYs Averted over Baseline, 2010-2030				$(518,261.41)$		367,292.54		893,231.66
Deaths Averted over Baseline, 2010-2030				$(16,203.13)$		13,067.66		29,588.17
Cases Averted over Baseline, 2010-2030				(1,477,957.51)		1,278,501.46		2,417,395.47
Cost per DALY, 2010-2030	\$	-	\$	147.46	\$	277.11	\$	262.29
Cost per Death, 2010-2030	\$	-	\$	4,716.51	\$	7,788.81	\$	7,918.32
Cost per Case, 2010-2030	\$	-	\$	51.71	\$	79.61	\$	96.92
Total Cost 2010-2050	\$	253,881,583.40	\$	126,127,748.53	\$	404,882,480.23	\$	645,064,647.51
Incremental Cost over B aseline, 2010-2050	\$	-	\$	$(127,753,834.87)$	\$	151,000,896.83	\$	391,183,064.11
Total DALYs, 2010-2050		2,396,529.26		3,339,679.52		1,602,619.84		829,133.21
Total Deaths, 2010-2050		79,267.11		109,922.95		50,666.80		26,634.02
Total Cases, 2010-2050		6,389,957.15		9,400,370.94		3,490,625.15		1,850,073.84
DALYs Averted over Baseline, 2010-2050		-		$(943,150.26)$		793,909.42		1,567,396.05
Deaths Averted over Baseline, 2010-2050				$(30,655.84)$		28,600.31		52,633.09
Cases Averted over B aseline, 2010-2050				$(3,010,413.79)$		2,899,332.00		4,539,883.31
Cost per DALY, 2010-2050	\$	-	\$	135.45	\$	190.20	\$	249.58
Cost per Death, 2010-2050	\$		\$	4,167.36	\$	5,279.69	\$	7,432.26
Cost per Case, 2010-2050	\$	-	\$	42.44	\$	52.08	\$	86.17

Figure A.4.1. Country-level monthly incidence for 10 -district simulations for Ethiopia, reduction in mortality scenarios.
Table A.4.4. Vaccination assumptions and simulation outcomes for eradication scenarios, Ethiopia.

Scenario	Goal	$\begin{aligned} & \text { Target } \\ & \text { Year } \end{aligned}$	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Post-Goal Vaccinati on Assumpti ons							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{array}{\|l} \hline \text { Ramp } \\ \text { up } \\ \text { factor } \end{array}$	Yr change to 12 mo	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
5	Eradication	2020	72\%	9 mo	N/A	N/A	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	2.0	2013	N/A	18 mo	2013	95\%	9 mo 59 mo	2 yrs	90.1\%	12 mo	81.1\%	18 mo	95\%	$\begin{array}{r} 9 \mathrm{mo}- \\ 59 \mathrm{mo} \end{array}$	3 yrs	100\%
																		90.1\%	12 mo	81.1\%	18 mo	-	-	-	100\%
																		90.1\%	12 mo	-	-	-	-	-	100\%
6	Eradication	2025	72\%	9 mo	N/A	N/A	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	2.0	2013	N/A	18 mo	2013	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	2 yrs	90.8\%	12 mo	81.7\%	18 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	3 yrs	100\%
																		90.8\%	12 mo	81.7\%	18 mo	-	-	-	100\%
																		90.8\%	12 mo	-	-	-	-	-	100\%

Table A.4.5. Transmission and cost results for eradication scenarios, Ethiopia (all totals discounted by 3%).

Ethiopia	$\begin{array}{\|c\|} \hline \text { E2020 - } \\ \text { MCV1 }+ \text { MCV2 }+ \text { SIA } \\ \hline \end{array}$		$\begin{gathered} \mathrm{E} 2020- \\ \mathrm{MCV1}+\mathrm{MCV} 2 \\ \hline \end{gathered}$		E2020-MCV1		$\begin{array}{\|c\|} \hline \text { E2025 - } \\ \text { MCV1 }+ \text { MCV2 }+ \text { SIA } \\ \hline \end{array}$		$\begin{gathered} \text { E2025- } \\ \text { MCV1 + MCV2 } \\ \hline \end{gathered}$		E2025-MCVI	
Correlati on Coeffi cient		0.7311		0.7311		0.7311		0.7311		0.7311		0.7311
2000 Mortality		34,830.40		34,830.40		34,830.40		34,830.40		34,830.40		34,830.40
Target Year Mortality		93.03		93.03		93.03		128.68		128.68		128.68
\% Reduction in Mortality through 2050		100\%		100\%		100\%		100\%		100\%		100\%
Total Cost 2010-2030	\$	387,055,310.40	\$	373,965,235.68	\$	338,659,726.79	\$	444,615,094.36	\$	438,328,075.24	\$	422,517,146.15
Incremental Cost over Baseline, 2010-2030	\$	223,864,574.63	\$	210,774,499.91	\$	175,468,991.02	\$	281,424,358.59	\$	275,137,339.47	\$	259,326,410.38
Total DALYs, 2010-2030		312,528.28		312,528.28		312,528.28		434,698.97		434,698.97		434,698.97
Total Deaths, 2010-2030		10,356.40		10,356.40		10,356.40		14,276.00		14,276.00		14,276.00
Total Cases, 2010-2030		750,751.91		750,751.91		750,751.91		999,529.64		999,529.64		999,529.64
DALYs Averted over Baseline, 2010-2030		1,136,816.59		1,136,816.59		1,136,816.59		1,014,645.90		1,014,645.90		1,014,645.90
Deaths Averted over Baseline, 2010-2030		37,300.15		37,300.15		37,300.15		33,380.55		33,380.55		33,380.55
Cases Averted over B aseline, 2010-2030		2,927,149.33		2,927,149.33		2,927,149.33		2,678,371.60		2,678,371.60		2,678,371.60
Cost per DALY, 2010-2030	\$	196.92	\$	185.41	\$	154.35	\$	277.36	\$	271.17	\$	255.58
Cost per Death, 2010-2030	\$	6,001.71	\$	5,650.77	\$	4,704.24	\$	8,430.79	\$	8,242.44	\$	7,768.79
Cost per Case, 2010-2030	\$	76.48	\$	72.01	\$	59.95	\$	105.07	\$	102.73	\$	96.82
Total Cost 2010-2050	\$	577,774,318.98	\$	533,409,758.32	\$	439,461,622.25	\$	654,809,243.78	\$	617,247,814.64	\$	526,227,267.78
Incremental Cost over Baseline, 2010-2050	\$	323,892,735.58	\$	279,528,174.92	\$	185,580,038.85	\$	400,927,660.38	\$	363,366,231.24	\$	272,345,684.38
Total DALYs, 2010-2050		312,528.28		312,528.28		312,528.28		434,698.97		434,698.97		434,698.97
Total Deaths, 2010-2050		10,356.40		10,356.40		10,356.40		14,276.00		14,276.00		14,276.00
Total Cases, 2010-2050		750,751.91		750,751.91		750,751.91		999,529.64		999,529.64		999,529.64
DALYs Averted over Baseline, 2010-2050		2,084,000.98		2,084,000.98		2,084,000.98		1,961,830.29		1,961,830.29		1,961,830.29
Deaths Averted over Baseline, 2010-2050		68,910.71		68,910.71		68,910.71		64,991.11		64,991.11		64,991.11
Cases Averted over Baseline, 2010-2050		5,639,205.24		5,639,205.24		5,639,205.24		5,390,427.51		5,390,427.51		5,390,427.51
Cost per DALY, 2010-2050	\$	155.42	\$	134.13	\$	89.05	\$	204.36	\$	185.22	\$	138.82
Cost per Death, 2010-2050	\$	4,700.18	\$	4,056.38	\$	2,693.05	\$	6,168.96	\$	5,591.01	\$	4,190.51
Cost per Case, 2010-2050	\$	57.44	5	49.57	\$	32.91	\$	74.38	\$	67.41	\$	50.52

Figure A.4.2. Country-level monthly incidence for 10 -district simulations for Ethiopia, eradication scenarios.

A.5. Tajikistan

Tajikistan currently implements two routine opportunities for vaccination - MCV1 for infants 12 months of age with an average coverage rate of 86%, and MCV2 for children 6 years with an average coverage of 83% - along with two supplemental immunization activities in 2004 and 2009 targeting children 1-14 years and 1-5 years, respectively. The current vaccine formulation is bivalent (measles-mumps).

Tajikistan has been near elimination of measles since 2004, and incidence and mortality have been maintained at very low levels since then, indicating a possibility that the country may achieve elimination in the near future by continuing its current vaccination strategy.

Tajikistan was simulated as consisting of five districts (representing all 5 districts in the country), with all districts maintaining recent MCV1 levels at approximately the country average of 86%. As defined in the sections above, the transmission model yielded average mortality figures for 2000 of 25 deaths (range: $17-33$), which corresponds with estimated mortality provided by WHO. Comparing model results for simulated district-level incidence of the period from 1990 to 2009 with reported incidence over the same period (based on country-level data from Tajikistan) results in an average correlation coefficient of 0.8229 (range: $0.8055-0.8525$).

Table A.5.1. Vaccination assumptions and simulation outcomes for mortality reduction scenarios, Tajikistan.

Scenario	Goal	Target Year	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Target (and post-target) Vaccination Assumptions							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	Ramp up factor	$\begin{array}{\|c\|} \hline \mathrm{Yr} \\ \text { change } \\ \text { to 12 } \mathrm{mo} \end{array}$	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
1	$\mathbf{9 0} \%$ Mortality Reduction	2013	86\%	12 mo	83\%	72 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	72 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	86\%	12 mo	83\%	72 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	4 yrs	50\%
2	No SIA		86\%	12 mo	83\%	72 mo	$\begin{aligned} & \hline 95 \% \\ & \text { (unti I } \\ & 2010 \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	N/A	N/A	N/A	72 mo	N/A	N/A	N/A	N/A	86\%	12 mo	83\%	72 mo	N/A	N/A	N/A	38\%
3	95\% Mortality	2015	86\%	12 mo	83\%	72 mo	95\%	9 mo 59 mo	4 yrs	0.5	N/A		72 mo	N/A	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	90.5\%	12 mo	90.0\%	72 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	4 yrs	82\%
4	98\% Mortality Reduction	2020	86\%	12 mo	83\%	72 mo	95\%	9 mo 59 mo	4 yrs	0.5	N/A		72 mo	N/A	95\%	9 mo 59 mo	4 yrs	92.0\%	12 mo	90.0\%	72 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	4 yrs	83\%

Data were collected in Tajikistan in April 2010 on the costs of measles vaccination for routine immunization and SIAs. During the visit, three districts in the country were visited to collect data on epidemiologic and operational costs. The three districts were Faizabad, Yavon, and Varzob. Information on societal costs, the cost of obtaining vaccination, was taken from published studies.

Table A.5.2. Assumptions for Costs of Measles Vaccination in Tajikistan

Parameter	Value (costs in US\$)
Initial Coverage	86%
Cost per dose of routine immunization	$\$ 1.68$
Added Cost per additional percent of coverage for routine immunization	$\$ 0.62$
Cost per dose of measles vaccination given through SIA	$\$ 0.75$ until $90 \% ;$ $\$ 0.15 \mathrm{after} 90 \%$
Cost to Household of Obtaining	
Vaccination	$\$ 0.72$
Cost of Treating Case of Measles	$\$ 12.95$

Source: Data Collection in Tajikistan

Table A.5.3. Transmission and cost results for reduction in mortality scenarios, Tajikistan (all totals discounted by 3\%).

Tajikistan	Baseline $(90 \%$ RM by 2013)		No SIA		95\% RM by 2015		98\% RM by 2020	
Correlati on Coeffi cient		0.8055		0.8193		0.8096		0.8316
2000 Mortality		24.13		28.81		29.65		32.51
Target Year Mortality		13.76		22.56		7.66		3.99
\% Reduction in Mortality through 2050		50\%		38\%		82\%		83\%
Total Cost 2010-2030	\$	19,849,988.25	\$	14,976,635.17	\$	42,033,448.05	\$	41,368,462.37
Incremental Cost over Baseline, 2010-2030	\$	-	\$	$(4,873,353.08)$	\$	22,183,459.80	\$	21,518,474.12
Total DALYs, 2010-2030		5,727.68		8,905.97		3,231.45		2,745.18
Total Deaths, 2010-2030		187.19		284.57		99.13		84.10
Total Cases, 2010-2030		45,624.93		69,805.23		19,068.42		15,920.09
DALYs Averted over Baseline, 2010-2030				$(3,178.29)$		2,496.23		2,982.50
Deaths Averted over Baseline, 2010-2030				(97.38)		88.06		103.09
Cases Averted over Baseline, 2010-2030				(24,180.30)		26,556.51		29,704.84
Cost per DALY, 2010-2030	\$	-	\$	1,533.33	\$	8,886.79	\$	7,214.91
Cost per Death, 2010-2030	\$	-	\$	50,044.70	\$	251,913.01	\$	208,734.83
Cost per Case, 2010-2030	\$	-	\$	201.54	\$	835.33	\$	724.41
Total Cost 2010-2050	\$	30,133,327.80	\$	23,023,491.95	\$	60,730,926.90	\$	60,450,676.90
Incremental Cost over Baseline, 2010-2050	\$	-	\$	$(7,109,835.85)$	\$	30,597,599.10	\$	30,317,349.10
Total DALYs, 2010-2050		8,843.02		13,345.46		4,662.18		4,276.31
Total Deaths, 2010-2050		286.61		425.79		141.86		126.69
Total Cases, 2010-2050		69,278.82		105,781.57		26,419.80		23,823.29
DALYs Averted over Baseline, 2010-2050		-		$(4,502.44)$		4,180.84		4,566.71
Deaths Averted over Baseline, 2010-2050				(139.18)		144.75		159.92
Cases Averted over Baseline, 2010-2050				$(36,502.75)$		42,859.02		45,455.53
Cost per DALY, 2010-2050	\$		\$	1,579.11	\$	7,318.53	\$	6,638.77
Cost per Death, 2010-2050	\$		\$	51,083.75	\$	211,382.38	\$	189,578.22
Cost per Case, 2010-2050	\$	-	\$	194.78	\$	713.91	\$	666.97

Scenarios

Figure A.5.1. Country-level monthly incidence for 5-district simulations for Uganda, reduction in mortality scenarios.
Table A.5.4. Vaccination assumptions and simulation outcomes for eradication scenarios, Tajikistan.

Scenario	Goal	$\begin{aligned} & \text { Target } \\ & \text { Year } \end{aligned}$	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Post-Goal Vaccinati on Assumpti ons							Average \% Mortality Reduction
			MCV1		MCV2		SIA			Mcv1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{aligned} & \text { Ramp } \\ & \text { up } \\ & \text { factor } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Yr} \\ \text { change } \\ \text { to } 12 \mathrm{mogo} \end{array}$	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
5	Eradication	2020	86\%	12 mo	83	72 mo	95\%	9 mo 59 mo	4 yrs	0.5	N/A		72 mo	N/A	95\%	$\begin{array}{r} 9 \mathrm{mo}- \\ 59 \mathrm{mo} \end{array}$	4 yrs	92.0\%	12 mo	90.0\%	72 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	100\%
																		92.0\%	12 mo	90.0\%	72mo	-	-	-	100\%
																		92.0\%	12 mo	-	-	-	-	-	100\%
6	Eradication	2025	86\%	12 mo	83	72 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	0.5	N/A		72 mo	N/A	95\%	9 mo 59 mo	4 yrs	94.0\%	12 mo	90.0\%	72 mo	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	4 yrs	100\%
																		94.0\%	12 mo	90.0\%	72mo	-	-	-	100\%
																		94.0\%	12 mo	-	-	-	-	-	100\%

Table A.5.5. Transmission and cost results for eradication scenarios, Tajikistan (all totals discounted by 3\%).

Tajikistan		$\begin{aligned} & \text { E2020 - } \\ & 1+\text { MCV2 }+ \text { SIA } \\ & \hline \end{aligned}$		$\begin{array}{r} \mathrm{E} 2020- \\ \mathrm{MCV} 1+\mathrm{MCV} 2 \\ \hline \end{array}$		2020 - MCV 1		$\begin{aligned} & \text { E2025 - } \\ & 1+\text { MCV2 + SIA } \end{aligned}$		$\begin{gathered} \text { E2025- } \\ \text { MCV1 }+ \text { MCV2 } \\ \hline \end{gathered}$		25 - MCV
Correlati on Coeffi cient		0.8218		0.8150		0.8237		0.8525		0.8377		0.8120
2000 Mortality		28.77		17.33		27.50		21.89		18.93		19.37
Target Year Mortality		0.31		0.30		0.45		0.39		0.59		0.57
\% Reduction in Mortality through 2050		100\%		100\%		100\%		100\%		100\%		100\%
Total Cost 2010-2030	\$	31,325,552.19	\$	31,261,047.48	\$	28,372,341.05	\$	34,308,530.39	\$	34,156,901.43	\$	34,151,385.96
Incremental Cost over Baseline, 2010-2030	\$	11,475,563.94	\$	11,411,059.23	\$	8,522,352.80	\$	14,458,542.14	\$	14,306,913.18	\$	14,301,397.71
Total DALYs, 2010-2030		1,220.68		1,174.08		1,188.00		1,909.77		1,871.12		1,791.91
Total Deaths, 2010-2030		38.43		36.99		37.62		59.97		58.44		56.01
Total Cases, 2010-2030		8,083.67		7,843.06		8,063.96		12,557.85		12,134.44		11,522.31
DALYs Averted over Baseline, 2010-2030		4,507.00		4,553.60		4,539.68		3,817.91		3,856.56		3,935.77
Deaths Averted over B aseline, 2010-2030		148.76		150.20		149.57		127.22		128.75		131.18
Cases Averted over B aseline, 2010-2030		37,541.26		37,781.87		37,560.97		33,067.08		33,490.49		34,102.62
Cost per DALY, 2010-2030	\$	2,546.16	\$	2,505.94	\$	1,877.30	\$	3,787.03	\$	3,709.76	\$	3,633.70
Cost per Death, 2010-2030	\$	77,141.46	\$	75,972.43	\$	56,979.03	\$	113,649.91	\$	111,121.66	\$	109,021.17
Cost per Case, 2010-2030	\$	305.68	\$	302.02	\$	226.89	\$	437.25	\$	427.19	\$	419.36
Total Cost 2010-2050	\$	42,808,641.85	\$	40,525,203.87	\$	34,003,417.85	\$	45,959,779.19	\$	43,636,126.37	\$	39,898,496.75
Incremental Cost over Baseline, 2010-2050	\$	12,675,314.05	\$	10,391,876.07	\$	3,870,090.05	\$	15,826,451.39	\$	13,502,798.57	\$	9,765,168.95
Total DALYs, 2010-2050		1,220.68		1,174.08		1,188.00		1,909.77		1,871.12		1,791.91
Total Deaths, 2010-2050		38.43		36.99		37.62		59.97		58.44		56.01
Total Cases, 2010-2050		8,083.67		7,843.06		8,063.96		12,557.85		12,134.44		11,522.31
DALYs Averted over Baseline, 2010-2050		7,622.34		7,668.94		7,655.02		6,933.25		6,971.90		7,051.11
Deaths Averted over Baseline, 2010-2050		248.18		249.62		248.99		226.64		228.17		230.60
Cases Averted over Baseline, 2010-2050		61,195.15		61,435.76		61,214.86		56,720.97		57,144.38		57,756.51
Cost per DALY, 2010-2050	\$	1,662.92	\$	1,355.06	\$	505.56	\$	2,282.69	\$	1,936.75	\$	1,384.91
Cost per Death, 2010-2050	\$	51,073.07	\$	41,630.78	\$	15,543.15	\$	69,830.80	\$	59,178.68	\$	42,346.79
Cost per Case, 2010-2050	\$	207.13	5	169.15	\$	63.22	\$	279.02	\$	236.29	\$	169.07

Figure A.5.2. Country-level monthly incidence for 5-district simulations for Tajikistan, eradication scenarios.

A.6. Uganda

Uganda currently implements a single routine opportunity for vaccination for infants 9 months of age with an average coverage rate of 68%, along with follow-up supplemental immunization activities every three years targeting children 9 months up to 47 months of age (though this target age group shows some variation in historical SIAs). A second routine dose is not presently included in the country's vaccination strategy, and the current vaccine formulation is single-antigen only.

Since the catch-up campaign performed in Uganda in 2003 measles incidence has dropped off dramatically, and has remained at significantly lower levels than previously, indicating a high likelihood that the country will be able to achieve 90% mortality reduction goals by the target date of 2013 by continuing its current vaccination strategy.

Uganda was simulated as consisting of ten districts (aggregated from a country total of 80 districts) based on average MCV1 coverage over the period $2001-2008$, with values ranging from 32% to 95%. As defined in the sections above, the transmission model yielded average mortality figures for 2000 of 5,472 (range: 4,962-5,839), which falls within the range of estimated mortality provided by WHO. Comparing model results for simulated district-level incidence over the period from 2000 to 2008 with reported incidence over the same period (based on district-level case reports from Uganda) results in an average correlation coefficient of 0.7693 (range: $0.7513-0.7970$).

Table A.6.1. Vaccination assumptions and simulation outcomes for mortality reduction scenarios, Uganda.

Scenario	Goal	$\begin{array}{\|c} \text { Target } \\ \text { Year } \end{array}$	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Target (and post-target) Vaccination Assumpti ons							Average \% Mortality Reducti on
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{aligned} & \text { Ramp } \\ & \text { up } \\ & \text { factor } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{Yr} \\ \text { change } \\ \text { to } 12 \mathrm{mog} \end{array}$	Ramp up rate	Age	Yr intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
1	$\mathbf{9 0 \%}$ Mortality Reduction	2013	68\%	9 mo	-	-	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	N/A	N/A	N/A	-	N/A	90\%	$\begin{gathered} 9 \mathrm{mo}-3 \\ \mathrm{yr} \end{gathered}$	3 yrs	68\%	9 mo	-	-	90\%	$\begin{gathered} 9 \mathrm{mo}-3 \\ \mathrm{yr} \end{gathered}$	3 yrs	91\%
2	No SIA		68\%	9 mo	-	-	90\% (unti I 2010)	9 mo - 47 mo	3 yrs	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	68\%	9 mo	-	-	N/A	N/A	N/A	-3\%
3	95\% Mortality Reducti on	2015	68\%	9 mo	-	-	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	1.5	2012		18 mo	2013	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	3 yrs	82.8\%	12 mo	69.7\%	18 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	3 yrs	94\%
4	98\% Mortality Reducti on	2020	68\%	9 mo	-	-	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	1.5	2012		18 mo	2013	95\%	9 mo - 59 mo	3 yrs	84.7\%	12 mo	76.3\%	18 mo	95\%	$\begin{gathered} 9 \mathrm{mo}-59 \\ \mathrm{mo} \end{gathered}$	3 yrs	97\%

Data were collected in Uganda in September 2009 on the costs of measles vaccination for routine immunization and SIAs. Four districts were visited in the country: Kalangala, Lira, Mubende, and Mbarara. Interviews were conducted with caretakers in each district on the cost of traveling to health facilities and waiting time. The $\mathrm{WHO} / \mathrm{Kampala}$ provided data on expenditures on three measles campaigns that took place in the country. The cost of measles treatment was taken from a published study.

Table A.6.2. Assumptions for Costs of Measles Vaccination in Uganda

Parameter	Value (costs in US\$)
Initial Coverage	68%
Cost per dose of routine immunization	$\$ 2.35$
Added Cost per additional percent of coverage for routine immunization	$\$ 1.24$
Cost per dose of measles vaccination given through SIA	$+\$ 0.04$ until 80\%; $\$ 0.08$
Cost to Household of Obtaining	
Vaccination	

Source: Data Collection in Uganda; WHO/Kampala; Dayan 2004

Table A.6.3. Transmission and cost results for reduction in mortality scenarios, Uganda (all totals discounted by 3\%).

Uganda	\qquad		No SIA		95\% RM by 2015		98\% RM by 2020	
Correlati on Coeffi cient		0.7961		0.7663		0.7518		0.7657
2000 Mortality		5,604.82		5,552.34		4,961.77		5,668.11
Target Year Mortality		519.98		856.48		361.84		90.47
\% Reduction in Mortality through 2050		91\%		-3\%		94\%		97\%
Total Cost 2010-2030	\$	134,111,220.41	\$	77,946,791.33	\$	325,958,785.40	\$	454,257,788.31
Incremental Cost over Baseline, 2010-2030	\$	-	\$	(56,164,429.08)	\$	191,847,564.99	\$	320,146,567.90
Total DALYs, 2010-2030		184,425.61		1,062,197.50		130,949.10		73,443.24
Total Deaths, 2010-2030		6,020.04		33,431.87		4,325.94		2,337.26
Total Cases, 2010-2030		230,428.27		1,325,609.33		156,828.02		70,657.84
DALYs Averted over Baseline, 2010-2030				(877,771.89)		53,476.51		110,982.37
Deaths Averted over Baseline, 2010-2030				$(27,411.83)$		1,694.10		3,682.78
Cases Averted over Baseline, 2010-2030				$(1,095,181.06)$		73,600.25		159,770.43
Cost per DALY, 2010-2030	\$		\$	63.99	\$	3,587.51	\$	2,884.66
Cost per Death, 2010-2030	\$	-	\$	2,048.91	\$	113,244.53	\$	86,930.68
Cost per Case, 2010-2030	\$	-	\$	51.28	\$	2,606.62	\$	2,003.79
Total Cost 2010-2050	\$	228,702,222.89	\$	130,439,939.60	\$	577,918,530.63	\$	774,117,819.30
Incremental Cost over Baseline, 2010-2050	\$	-	\$	(98,262,283.29)	\$	349,216,307.74	\$	545,415,596.41
Total DALYs, 2010-2050		523,234.88		2,973,520.95		206,415.96		124,775.92
Total Deaths, 2010-2050		10,531.59		93,085.40		6,747.04		3,922.11
Total Cases, 2010-2050		413,112.15		3,832,251.97		244,168.12		118,243.86
DALYs Averted over Baseline, 2010-2050		-		$(2,450,286.07)$		316,818.92		398,458.96
Deaths Averted over Baseline, 2010-2050		-		$(82,553.81)$		3,784.55		6,609.48
Cases Averted over Baseline, 2010-2050				(3,419,139.82)		168,944.03		294,868.29
Cost per DALY, 2010-2050	\$		\$	40.10	\$	1,102.26	\$	1,368.81
Cost per Death, 2010-2050	\$	-	\$	1,190.28	\$	92,274.20	\$	82,520.20
Cost per Case, 2010-2050	\$		\$	28.74	\$	2,067.05	\$	1,849.69

Figure A.6.1. Country-level monthly incidence for 10-district simulations for Uganda, reduction in mortality scenarios.

Table A.6.4. Vaccination assumptions and simulation outcomes for eradication scenarios, Uganda.

Scenario	Goal	$\begin{aligned} & \text { Target } \\ & \text { Year } \end{aligned}$	Initi al Vaccinati on Assumpti ons							Ramp-Up Vaccinati on Assumpti ons								Post-Goal Vaccinati on Assumpti ons							Average \% Mortality Reduction
			MCV1		MCV2		SIA			MCV1		MCV2			SIA			MCV1		MCV2		SIA			
			Covg	Age	Covg	Age	Covg	Age	Freq	$\begin{array}{\|l} \text { Ramp } \\ \text { up } \\ \text { factor } \end{array}$	Yr change to 12 mo	Ramp up rate	Age	Yr Intro	Covg	Age	Freq	Covg	Age	Covg	Age	Covg	Age	Freq	
5	Eradication	2020	68\%	9 mo	-	-	90\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 47 \mathrm{mo} \end{aligned}$	3 yrs	1.5	2012		18 mo	2013	95\%	$\begin{gathered} 9 \mathrm{mo}- \\ 59 \mathrm{mo} \end{gathered}$	3 yrs	84.7\%	12 mo	76.3\%	18 mo	95\%	$\begin{array}{r} 9 \mathrm{mo} \\ 59 \mathrm{mo} \end{array}$	3 yrs	100\%
																		84.7\%	12 mo	76.3\%	18 mo	-	-	-	100\%
																		84.7\%	12 mo	-	-	-	-	-	100\%
6	Eradication	2025	68\%	9 mo	-	-	90\%	$\begin{array}{\|c\|} 9 \mathrm{mo}- \\ 47 \mathrm{mo} \end{array}$	3 yrs	1.5	2012		18 mo	2013	95\%	$\begin{aligned} & 9 \mathrm{mo}- \\ & 59 \mathrm{mo} \end{aligned}$	3 yrs	85.3\%	12 mo	76.8\%	18 mo	95\%	$9 \mathrm{mo}$	3 yrs	100\%
																		85.3\%	12 mo	76.8\%	18 mo	-	-	-	100\%
																		85.3\%	12 mo	-	-	-	-	-	100\%

Table A.6.5. Transmission and cost results for eradication scenarios, Uganda (all totals discounted by 3\%).

Uganda		$\begin{array}{l\|} \hline \mathrm{E} 2020 \text { - } \\ 1+\mathrm{MCV} 2+\text { SIA } \\ \hline \end{array}$		$\begin{gathered} \mathrm{E} 2020- \\ \mathrm{MCV} 1+\mathrm{MCV} 2 \\ \hline \end{gathered}$		2020 - MCVI		$\begin{aligned} & \text { E2025 - } \\ & 1+\text { MCV }+ \text { SIA } \end{aligned}$		$\begin{gathered} \text { E2025 - } \\ \text { MCV1 + MCV2 } \\ \hline \end{gathered}$	E2025-MCV1	
Correlati on Coeffi cient		0.7778		0.7586		0.7579		0.7513		0.7707		0.7970
2000 Mortality		5,394.01		5,553.03		5,839.90		5,140.25		5,410.25		5,600.01
Target Year Mortality		. 35		7.39		7.66		12.55		12.28		13.06
\% Reduction in Mortality through 2050		100\%		100\%		100\%		100\%		100\%		100\%
Total Cost 2010-2030	\$	399,843,176.01	\$	385,094,242.87	\$	331,790,449.70	\$	408,687,060.73	\$	400,993,954.61	\$	379,446,431.80
Incremental Cost over Baseline, 2010-2030	\$	265,731,955.60	\$	250,983,022.46	\$	197,679,229.29	\$	274,575,840.32	\$	266,882,734.20	\$	245,335,211.39
Total DALYs, 2010-2030		24,460.37		24,619.08		25,370.81		36,097.21		33,847.71		35,560.80
Total Deaths, 2010-2030		799.23		805.70		832.98		1,176.12		1,097.85		1,157.86
Total Cases, 2010-2030		26,200.14		26,595.63		27,733.48		38,368.46		35,287.25		37,729.60
DALYs Averted over Baseline, 2010-2030		159,965.24		159,806.53		159,054.80		148,328.40		150,577.90		148,864.81
Deaths Averted over Baseline, 2010-2030		5,220.81		5,214.34		5,187.06		4,843.92		4,922.19		4,862.18
Cases Averted over Baseline, 2010-2030		204,228.13		203,832.64		202,694.79		192,059.81		195,141.02		192,698.67
Cost per DALY, 2010-2030	\$	1,661.19	\$	1,570.54	\$	1,242.84	\$	1,851.13	\$	1,772.39	\$	1,648.04
Cost per Death, 2010-2030	\$	50,898.61	\$	48,133.23	\$	38,110.07	\$	56,684.64	\$	54,220.32	\$	50,457.86
Cost per Case, 2010-2030	\$	1,301.15	\$	1,231.32	\$	975.26	\$	1,429.64	\$	1,367.64	\$	1,273.15
Total Cost 2010-2050	\$	692,813,800.90	\$	629,688,565.72	\$	471,966,252.64	\$	705,467,173.50	\$	650,433,859.18	\$	523,688,959.76
Incremental Cost over Baseline, 2010-2050	\$	464,111,578.01	\$	400,986,342.83	\$	243,264,029.75	\$	476,764,950.61	\$	421,731,636.29	\$	294,986,736.87
Total DALYs, 2010-2050		24,460.37		24,619.08		25,370.81		36,097.21		33,847.71		35,560.80
Total Deaths, 2010-2050		799.23		805.70		832.98		1,176.12		1,097.85		1,157.86
Total Cases, 2010-2050		26,200.14		26,595.63		27,733.48		38,368.46		35,287.25		37,729.60
DALYs Averted over Baseline, 2010-2050		498,774.51		498,615.80		497,864.07		487,137.67		489,387.17		487,674.08
Deaths Averted over Baseline, 2010-2050		9,732.36		9,725.89		9,698.61		9,355.47		9,433.74		9,373.73
Cases Averted over B aseline, 2010-2050		386,912.01		386,516.52		385,378.67		374,743.69		377,824.90		375,382.55
Cost per DALY, 2010-2050	\$	930.50	\$	804.20	\$	488.62	\$	978.71	\$	861.75	\$	604.89
Cost per Death, 2010-2050	\$	47,687.47	\$	41,228.76	\$	25,082.36	\$	50,961.09	\$	44,704.61	\$	31,469.52
Cost per Case, 2010-2050	\$	1,199.53	\$	1,037.44	\$	631.23	\$	1,272.24	S	1,116.21	\$	785.83

Figure A.6.2. Country-level monthly incidence for 10-district simulations for Uganda, eradication scenarios.

[^0]: Source: Bangladesh cMYP, WHO/Dhaka; Maskery et al. 2009

