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Abstract: The n-queens problem is a classical combinatorial optimization problem which has been proved to be NP-hard. The 

goal is to place n non-attacking queens on an n×n chessboard. In this paper, the Imperialist Competitive Algorithm (ICA), 

which is a recent evolutionary metaheuristic method, has been applied for solving the n-queens problem. As another variation, 

the ICA was combined with a local search method, resulting the Hybrid ICA (HICA). Since, the parameters of heuristic and 

metaheuristic algorithms have a great influence on the performance of the search, parameter tuning is used for handling the 

problems in an efficient manner. Hence, a TOPSIS-based parameters tuning is proposed, which not only considers the number 

of Fitness Function Evaluations (FFE), but also aims to minimize the running time of the presented heuristics. In order to, 

investigate the performance of the suggested approach, a computational analysis on the n-queens problem was performed. 

Extensive experimental results showed that the proposed HICA outperformed the basic ICA in terms of average runtimes and 

average number of FFE. The developed algorithms were also compared to the Cooperative PSO (CPSO) algorithm, which is 

currently the best algorithm in the literature for finding the first valid solution to the n-queens problem, and the results showed 

that the HICA dominates the CPSO by evaluating the fitness function fewer times. 

 

Keywords: n-queens problem, ICA, local search, parameter tuning, TOPSIS method. 

 

Received May 20, 2012; accepted May 13, 2013; published online March 13, 2014  
  

1. Introduction  

The n-queens problem is a classical combinatorial 

optimization problem in Artificial Intelligence [7]. The 

objective of the problem is to place n non-attacking 

queens on an n×n chessboard by considering the chess 

rules. Although, the problem itself has an 

uncomplicated structure, it has been broadly utilized to 

develop new intelligent problem solving approaches. 

Despite the fact that the n-queens problem is often 

studied as a ‘mathematical recreation’, it has found 

several real-world applications such as practical task 

scheduling and assignment, computer resource      

management (deadlock prevention and register       

allocation), VLSI testing, traffic control,               

communication system design, robot placement for 

maximum sensor coverage, permutation problems, 

parallel memory storage schemes, complete mapping 

problems, constraint satisfaction, and other physics, 

computer science and industrial applications [19]. The 

variety of these applications indicates the reason of the 

wide interest on this well-known problem. 

The earliest paper on the general n-queens problem 

was presented by Lionnet [14], and the first proof of 

the possibility of placing n non-attacking queens on an 

n×n chessboard is credited to Pauls [17]. A thorough 

review on the problem and its applications is presented 

in [4]. The n-queens problem belongs to the class of 

Constraint Satisfaction Problems (CSP), and is known 

as an NP-hard problem [10]. 

There are three variants of the n-queens problem [1]: 

Finding all solutions of a given n×n chessboard,      

generating one or more, but not all solutions, and    

finding only one valid solution. In the first variant,  

finding all solutions may be possible for small sizes, 

but the number of feasible solutions increases          

exponentially with the problem size, such that the   

largest instance solved to date is for n = 26 with a total 

number of 2.23×10
16

 solutions, calculated within 271 

days on  parallel supercomputers in [20]. A    solution 

to the 8-queens problem (out of 92 solutions) is 

illustrated in Figure 1, with the permutation presented 

as (5, 1, 8, 4, 2, 7, 3, 6). 

 

 
Figure 1. A solution to the 8-queens problem. 

 

According to the extensive bibliography of n-queens 

problems in [13] many mathematical and statistical 

techniques, heuristic and metaheuristic algorithms, both 

exact and approximate, have been proposed for solving 

the problem [7, 15, 18]. 
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The main advantage of metaheuristics compared to 

exact methods is their ability in handling large-scale 

instances in a reasonable time [23], but at the expense 

of losing a guarantee for achieving the optimal 

solution. Therefore, due to the NP-hardness of the n-

queens problem, metaheuristic techniques are 

appropriate choices for solving it. 

In designing met heuristics two criteria are         

important that create two different classes of          

algorithms: Exploitation (intensification) versus       

exploration (diversification) [21]. The first class is the 

algorithms which are able to intensify the search in 

local regions. They are called Single-solution based 

metaheuristic (S- metaheuristic), and improve a single 

solution in solving an optimization problem.          

Population based metaheuristic (P-metaheuristic) are 

the second class, which explore the search space and 

introduce diversity in found solutions. Simulated    

Annealing (SA) and Tabu Search (TS) are examples of 

S-metaheuristic, and Genetic Algorithm (GA), 

Differential Evolution Algorithm (DEA) and Ant 

Colony Optimization (ACO) are examples of P-met 

heuristics, which have been used for solving n-queens 

problem in the literature. For instance, Homaifar et al. 

[8] determined how well the operators of GA handled 

very difficult combinatorial and constraint satisfaction 

problems such as the n-queens problem. Results are 

presented for n<200. Also, three metaheuristic 

algorithms (SA, TS and GA) are used to solve the   n-

queens problem by Martinjak and Golub [15]. They 

presented test results and upper bound complexity for 

the problem. Many problem instances with large    

dimensions are solved and the efficiencies of           

algorithms are compared. 

Dirakkhunakon and Suansook [6] compare the     

results of the classical SA algorithm with Iterative 

Improvement Simulated Annealing (IISA) algorithm 

for the n-queens problem. The numerical results show 

that the modified scheme provides better results than 

the classical algorithm. Khan et al. [12] proposed a 

solution for the n-queens problem based on ACO. The 

proposed solution is applied to 8-queens problem and 

they supposed that it can very easily be extended to the 

generalized form of the problem for large values of n. 

Their paper contains detailed discussion of the problem 

background and complexity, ACO and experimental 

graphs. 

In this paper, the Imperialist Competitive Algorithm 

(ICA) evolutionary method developed in 2007 is    

applied for the first time to solve the third variant of 

the n-queens problem, that is, to find the first 

encountered valid solution. Also, the ICA was 

combined with a local search, resulting in the Hybrid 

ICA (HICA) method. Because heuristics are parameter 

sensitive for finding the best solution, a parameter 

tuning approach based on the TOPSIS method is 

proposed to obtain the optimal set of parameters. It 

follows two goals of reducing the number of Fitness 

Function Evaluation (FFE) and runtime for solving the 

problem. Using the tuned parameters, HICA 

outperformed the original ICA in terms of average 

runtimes and average number of FFE. 

The rest of the paper is organized as follows: 

Section 2 presents the basic ICA and its components 

for solving n-queens problem, section 3 presents the 

details of the HICA method, and section 4 provides 

TOPSIS-based parameter tuning. The numerical results 

of Design of Experiments to find the best setting of 

alternative parameters, as well as comparison between 

the performance of basic ICA and the suggested HICA 

for various sizes of the problem are presented in 

section 5. Finally, conclusions are in section 6. 

 

2. The Basic Imperialist Competitive       

Algorithm 

The ICA was first introduced by Atashpaz-Gargari and 

Lucas [3] as an Evolutionary Computation method 

based on a social-political evolution. The ICA begins 

with generating an initial population of ‘countries’ 

(counterparts of chromosomes in GAs or particles in 

PSO). Then, according to a fitness function value, 

some of the best countries are determined as 

‘imperialists’, and remaining ones as the ‘colonies’ of 

these imperialists, which altogether form some 

‘empires’. 

Assimilation and Revolution are the two main 

operators of this algorithm: The colonies of each 

empire get closer to its imperialist by the assimilation 

operator (a concept akin to the recombination operator 

in other evolutionary algorithms), and random changes 

happen to the colonies according to the Revolution 

operator (a concept akin to the mutation operator in 

other evolutionary algorithms) which may modify the 

position of colonies in the search space. These 

operators may improve the solutions of the problem 

and increase the power of the colonies to take the 

control of the empire. If so, they swap their positions 

with their imperialists. 

Imperialistic competition among these empires is 

another part of the ICA, which forms the basis of this 

evolutionary algorithm. During this competition, 

powerful empires survive and take possession of the 

colonies of weaker empires. This procedure eliminates 

all the imperialists except for one, which yields the 

final solution. The details of the algorithm’s steps 

tailored for the n-queens problem are described below. 

 

2.1. Generating Initial Empires 

In the n-queens problem, each country is represented 

by a solution encoded in the form of a permutation 

[π(1), π(2),..., π(n)], in which the value of π(i) indicates 

the row number and i specifies the column number of a 

queen on the chessboard as shown in Figure 1. 

Through this scheme, we can easily generate initial 
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solutions with no two queens on the same row or 

column, letting the conflicts occur merely along the 

diagonals of the chessboard. 

The algorithm starts by producing a population of 

countries, which for the sake of improving the quality 

of initial solutions, a large number of them are created 

and then sorted in order of their objective function 

values to form the initial population with a desired 

size. From this new list, a number (say N) of them with 

the highest qualities are considered as imperialists, and 

the remaining solutions are sequentially assigned to the 

imperialists as their colonies. In our problem the value 

of a solution is equal to the number of queen attacks 

(conflicts) and so lower values mean higher quality. 

As an example, assuming that the sorted initial 

population of size 16 with N = 3 imperialists is: [1, 2, 

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], the 

resulting three empires with their imperialists shown in 

bold will be {[1, 4, 7, 10, 13, 16]; [2, 5, 8, 11, 14]; [3, 

6, 9, 12, 15]}. 

 

2.2. Assimilation Within an Empire 

In the real political world, imperialists try to promote 

the life standards of their colonies by assimilating and 

absorbing them. In the ICA, this fact is simulated by 

moving each colony toward its respective imperialist. 

For the assimilation phase, we have utilized two types 

of Crossover operators: The Partially Matched 

Crossover (PMX) and Order Crossover (OX). 

In PMX operator, two genotypes (solution 

encodings) are selected as parents, and two crossover 

positions are picked randomly along the solutions. 

Then, all chromosomes of Parent A lying between 

these two points are exchanged with the chromosomes 

of Parent B at the same positions, and vice versa. 

For example, for the 8-queens strings in Figure 2, 

taking the Parents A and B, the two crossover limits 

are fixed at 4
th
 and 6

th 
positions, and the dark area 

indicates the pairs which must undergo exchange. As a 

result, in both parents, the following swaps take place: 

7↔4, 3↔1, and 8↔2, which create two new children. 

Now, in our method, the first parent is permanently 

assumed to be the imperialist solution, and the second 

parent rotates among all colonies. Thus, the generated 

offspring will somewhat inherit the nature and power 

of their imperialist parent, which can be interpreted as 

a kind of assimilation. 

 

 

Figure 2. An example of parents and children in the PMX. 

In the OX method, one offspring is generated from 

two parents. First a substring from the Parent A (which 

is an imperialist) is selected randomly and an offspring 

is produced by copying the substring into its 

corresponding position. Then, these selected elements 

are deleted from the Parent B (a colony). The resulting 

sequence contains the elements that the offspring 

needs. The crossover is finished by placing the 

remaining elements into the vacant positions of the 

offspring from left to right, according to the order of 

their appearance in the Parent B. This procedure is 

demonstrated in Figure 3. 

 

 

Figure 3. OX operator illustration. 

Regardless of the type of applied crossover, the next 

generation will be selected from the best solutions of 

the pool, with the size of the population maintained. 

 

2.3. Revolution Within an Empire 

The Revolution operator brings about radical changes 

in a colony in hope for a better fitness value and also 

diversifying the population. This unary operator is 

applied to colonies with a constant rate Revolution 

Rate (RR) and acts like the mutation operator in GAs. 

In our method the Revolution operator is 

implemented by randomly swapping the values of 

chromosomes at one or two positions. The colony is 

updated if a better fitness value is obtained. Figure 4 

shows an example of this operator for the 8-queens 

problem. 

 

 

Figure 4: An example of the revolution operator. 

 

2.4. Power Struggle 

While moving toward the imperialist, a colony may 

achieve a position with lower cost (or equivalently, 

higher power) than its imperialist. In such a case, the 

imperialist will be toppled and superseded by that 

colony. The colony becomes the new imperialist 

starting from the next iteration. This act is similar to 

shifting the best global experience (gbest) in the swarm 

from a particle to another particle in the PSO method. 

 

2.5. Imperialistic Competition 

Through the imperialistic competition step, weaker 

empires lose their power further by losing their 

colonies, and powerful empires become more powerful 

by owning new colonies. 

The total power of an empire is calculated by adding 

the power (i.e., fitness function value) of the 

imperialist country to a percentage of the mean power 

of its colonies. Mathematically: 

Parent A: 8 7 2 5 1 4 6 3 

Parent B: 2 5 8 7 4 1 3 6 
Offspring: 2 8 7 5 1 4 3 6 

Parent A: 2 4 6 7 3 8 5 1 
Parent B: 8 5 3 4 1 2 7 6 

 

Child 1: 8 7 6 4 1 2 5 3 

Child 2: 2 5 1 7 3 8 4 6 

Colony (state 0): 8 7 2 5 1 4 6 3 
Colony (state 1): 8 7 3 5 1 4 6 2 
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                 1

in
j

i i i
ji

ξ
P(E ) = P(I ) + P(C )

n =
∑  

in which P(Ei) is the power of Empire i, P(Ii) is the 

power of the Imperialist country of Empire i, P(C
j

i) is 

the power of the j-th colony of Empire i, ni is the 

number of colonies in Empire i, and 0 < ξ < 1 is a 

constant determining the importance and impact of the 

colonies in each empire. We found ξ = 0.1 a proper 

value as suggested by Nazari-Shirkouhi et al. [16]. 

For a minimization problem, the normalized total 

power of Empire i is obtained by subtracting the lowest 

power among all empires from its power, as in 

Equation 2. Note that a high power corresponds to a 

low cost: 

                  
{ }NP(E ) = P(E ) - min P(E )i i ii

 

Thus, the normalized total power of the weakest 

empire will be zero, and for others, a positive value. 

The Possession Probability (PP) of each Empire is 

based on its total power and should be calculated at the 

start of the imperialistic competition step, according to 

Equation 3, in which N is the total number of empires: 

                            

i
i N

j
j =1

NP(E )
PP =

NP(E )∑      

                           

The PP is used to update the distribution of the 

colonies among the empires. For each empire i, by 

subtracting a uniform random number randi ∈ U(0, 1) 

from its PPi, a new vector is formed, defined as: 

         D = [PP1 − rand1, PP2 − rand2, ..., PPN − randN]         (4) 

In the vector D, the empire that has the least value 

among others loses its weakest colony, which is 

reassigned to the most powerful empire. 

The Assimilation, Revolution, and Imperialistic 

Competition steps are repeated until the weakest 

empire loses all of its colonies, in which case it is 

discarded and its imperialist becomes a colony of the 

most powerful empire. 

In our n-queens problem, the stopping criterion is 

satisfied when there are no conflicts (attacks) among 

the queens. 

 

3. The Hybrid ICA 

As described earlier, the ICA utilizes random numbers 

in almost all of its steps: Initial population creation, 

assimilation, revolution, and imperialistic competition. 

This randomness can be quite effective in diversifying 

the solutions and adequately exploring the search 

space. However, we noticed that this fact weakens the 

algorithm’s ability to intensify its search around a good 

solution, which leads to a slow convergence to a 

suboptimal solution. 
As a result, we decided to add a local search 

component to the ICA and reinforce its intensification 

ability. This local search is applied on a solution to 
improve it as much as possible (i.e., until reaching a 
local optimum) through a neighborhood generation and 
selection procedure. 

A common method for generating neighbors of a 
given solution is Random Swap, which exchanges the 
places of two randomly-selected queens. This action 
may or may not decrease the number of conflicts 
among queens. So, to make the neighborhood 
generation more goal-directed, we propose a new 
variant of the swap operator, called Effective Swap, 
which acts more intelligently than the Random Swap 
since, it selects the exchange rows by also considering 
the number of attacks rather than just choosing them 
randomly. The following details illustrate the function 
of this new operator. 

The Effective Swap operator starts with counting 

the number of conflicts on the main diagonal of the 

chessboard. If this number is nonzero, it marks that 

diagonal for further operations. Otherwise, it proceeds 

with the sub diagonals immediately above and below 

the main diagonal. Conflict counting is repeated for 

these diagonals too, and if no conflicts are found, it 

proceeds with farther sub diagonals parallel to the main 

diagonal. In case that still no conflicts are identified, 

the above procedure is repeated for the secondary 

diagonal and its parallel sub diagonals until a 

conflicting diagonal is found and marked for further 

operations. 

Next, suppose that the marked diagonal has m 

conflicts. Then, the operator performs m-1 Random 

Swaps, such that in each swap, one of the queens is 

selected from the conflicting queens, and the other is a 

randomly-selected queen not causing any conflict in 

the marked diagonal. It is worthy to note that 

performing an Effective Swap does not guarantee an 

improvement in the fitness function; however, as 

indicated by our extensive experiments it reduces the 

number of conflicts far better than the Random Swap 

operator. 

As an example of Effective Swap, consider a 

configuration of 8-queens displayed in Figure 5-a, 

where there are m=2 conflicting queens on the marked 

main diagonal, namely π(1) and π(8), of which one 

queen is selected randomly, e.g., π(8). Now, another 

queen which does not cause conflicts in this diagonal is 

randomly selected, e.g., π(7), and the selected rows are 

swapped by π(7) ↔ π(8), as shown in Figure 5-b. 

After applying an Effective Swap, a neighbor 

solution is generated, and we check whether any 

improvement has occurred in the fitness function or 

not. If yes, then this neighbor solution is kept; 

otherwise, a new one is generated. This procedure 

iterates until a stopping criterion is satisfied.  

The stopping criterion contains a parameter T to 

control the depth of the local search, set by: 

                                            T = k · n                                           (5) 

(3) 

(1) 

(2) 
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a) Before applying the Effective   

Swap on the chessboard. 

b)  After applying the Effective  

     Swap on the chessboard. 

Figure 5. Applying an effective swap as a neighborhood generation 

method. 

 

Where k is a constant and n is the size of the problem. 

After each iteration of the local search, the value of T 

is updated by: 

                                        T = 0.99 · T                             (6) 

The local search procedure iterates until T reaches a 

lower bound like Tmin. On the other hand, the n-queens 

problem has multiple optimal solutions (with a fitness 

function value of zero, meaning no conflicts), and the 

number of these solutions increases exponentially as n 

grows. Therefore, if the local search is given more time 

to transform an initial solution, it can converge to an 

optimal solution much faster. For this purpose, 

whenever the newly generated neighbor causes an 

improvement in the fitness function value, a rewarding 

mechanism is enforced to update the T by: 

                                          T = 1.01 · T                                      (7) 

Note that, the 1.01 coefficient delays the convergence 

and causes the search to deeply exploit seemingly good 

solutions. As a result, such a dynamic definition of T 

causes an effective search of the space, as the 

algorithm spends more time on exploring an 

appropriate solution, and less time on non-promising 

ones. 

We name the ICA with the abovementioned local 

search procedure as “HICA”. Figure 6 shows the 

flowchart of the HICA. 

The HICA has another advantage over the basic 

ICA: As noticed in Equation 4, the empire having the 

largest value in the vector D will possess the weakest 

colony of the weakest empire. On the other hand, we 

know that the most powerful empire (e.g., E*) has the 

largest PP index calculated in Equation 3. But, since 

the vector D is obtained by subtracting random 

numbers from the PPi indices, there is no guarantee 

that the E* will still be selected for accommodating the 

weakest colony. 

Although, we used the Equation 4 for our basic ICA 

to keep the authenticity of the algorithm presented by 

Atashpaz-Gargari and Lucas [3] we discarded the 

random number subtraction in Equation 4 in the HICA 

and used the following vector D instead: 

D = [PP1, PP2, ..., PPN]             (8) 

 

     
 

Figure 6. Flowchart of the HICA. 

 

4. Parameter Tuning 

As stated before, the parameters of metaheuristic 

algorithms have a significant effect on the efficiency 

and effectiveness of the search for a particular 

problem. There may be many options for these factors 

No 

No 

No 

Yes 
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Compute the total cost of all empires 

Pick the weakest colony from the weakest empire and 

give it to the strongest empire 

Yes 

Exchange the positions of that colony 

and the imperialist 

Move the colonies to their relevant 
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dominates its imperialist? 
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colonies? 

Eliminate this empire 

Stopping condition 
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Unite similar empires 

I =1 

I ≤ Pop_size 

 No 

I =I +1 

S = Country (I) 

Substitute S with its best neighbor S′ using the 

Effective Swap and repeat until T < Tmin 

Is the cost of S′ = 0? 

No 

Yes 

Yes 

Output 
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for a given problem. Therefore, using an appropriate 

approach like parameter tuning in order to find the best 

choice from many alternatives can produce better 

solutions for the given problem. In this section, some 

levels of the parameters for the ICA and HICA are 

introduced. There are two goals in solving the n-

queens problem by the proposed algorithms: Reducing 

the number of FFE and reducing the runtime. The 

TOPSIS method is used to cope with both objectives at 

the same time. Finally, the results of the TOPSIS-based 

parameter tuning are displayed for both algorithms. 

 

4.1. Parameters Levels in ICA 

Four factors are considered as the most important 
parameters in the two algorithms. The first is the initial 
population which is randomly generated and then 10 
solutions are considered as initial solutions, divided 
into empires and colonies. It’s possible levels are {100, 
300}. The second is the crossover type in two levels 
{PMX, OX}. Third is the RR presented in four levels 
{0.3, 0.4, 0.5, 0.6}, and the fourth parameter (k) is 
used only in the HICA with the levels {1, 5, 10, 20}. 

 

4.2. TOPSIS 

Hwang and Yoon [9] developed the TOPSIS to assess 
alternatives prior to multiple-attribute decision making. 
In the TOPSIS, the distance to the ideal solution and 
negative-ideal solution according to each alternative is 
considered, and then the best alternative is selected 
which is the nearest one to the ideal solution and the 
farthest one from the negative-ideal solution. The 
TOPSIS structure for aggregating the more important 
objectives in solving the n-queens problem can be 
explained as follows [22]: 

a. Alternative Performance Matrix Creation: The 
structure of the alternative performance matrix can 
be expressed as follows: 

            

               FFE        Runtime  

11 211

12 222

... ......

1 2

x xR

x xR
D

x xRm m m

=

 
 
 
 
    

       

In the proposed problem, the number of FFE and 
runtime are the objectives (Xj, j = 1, 2) which are 
related to alternative performances. Possible 
alternatives (run experiments) are denoted as Ri, i = 1, 
..., m; and xij is the performance of Ri with respect to 
the objective Xj. 

b. Normalization of the Performance Matrix: For this 
purpose, the transformation Equation 10 is used, in 
which pij represents the normalized performance of 
Ri with respect to the objective Xj. The matrix form 
of pij is represented as P, with i = 1, 2, ..., m and j = 
1, 2. 

             
x ij

P = p , p =ij ij 2m x iji =1∑

 
 

                       

c. Multiplying the Performance Matrix by its Related 

Weights: Each column of the matrix P is multiplied 

by weights associated with each objective FFE 

(wFFE) and runtime (wT). The weighted 

performance matrix V is obtained as follows: 

FFE 11 T 12 11 12

FFE 21 T 22 21 22

FFE m1 T m2 m1 m2

w p w p v v

w p w p v v
V = =  

... ... ... ...

w p w p v v

   
   
   
   
      

 

in which vij represents the weighted normalized 
performance of Ri with respect to Xj for i = 1, 2, …, 
m and  j = 1, 2. 

d. Determination of Ideal and Negative-Ideal 

Solutions: The ideal value set V
+
 and the negative-

ideal value set V
−
 are determined in Equations 12 

and 13 for minimizing both objectives 

simultaneously, in which J′ = { j = 1, 2 | vij, a smaller 

response is desired}: 

         
( ){ } { }+ + +

V = minv | j J , i = 1, 2, ..., m = v ,v1 2ij
′∈          

         
( ){ } { }- - -

V = maxv | j J , i = 1, 2, ..., m = v ,v1 2ij
′∈  

e. Calculation of Separation Measures: The separation 
of each alternative from the ideal solution (Si

+

), as 
well as the separation of each alternative from the 
negative-ideal solution (Si

−

) is given as follows: 

( )
22

1j

S v vi ij j
=

+ += −∑ , ( )
22

1

 
j

S v vi ij j
=

− −= −∑  

f. Calculation of Relative Closeness to the Ideal 
Solution and Ranking the Preference Order: The 
relative closeness Ci 

to the ideal solution can be 
expressed as follows: 

                        

S iCi
S Si i

−
= + −+   

              

Where Ci 
lies between 0 and 1. The closer Ci is to 1, 

the higher is the priority of the i-th run experiment. 
Because of the multiple levels of each parameter, is 

iC calculated as the mean of relative closeness to the 
ideal solution for each parameter per level. 
Numerical results of using the TOPSIS for the n-
queens problem with tuned parameter are presented 
in the next section. 

5. Experimental Results 

It is clear from the Table 1 that the first two parameters 

have 2 levels and last two factors have 4 levels. Thus, it 

is required 2 × 2 × 4 × 4 = 64 experiments for the full 

factorial design. But, considering the computational cost 

and time and based on statistical theories, there is no 

need to test all the combinations of factors. Therefore, 

the Taguchi method is used to design the experiments. 

The number of degrees of freedom should be calculated 

in order to, select an appropriate Taguchi orthogonal 

array. By considering 1 degree of freedom for the first 

(9)   

 (10) 

(12) 

(13) 

(15) 

(14) 

 (11) 
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two parameters, 3 degrees of freedom for the last two 

factors and 1 degree of freedom for the total mean, there 

should be at least (2 × 1) + (2 × 3) + 1 = 9 experimental 

runs. As a result, L16 (2
2 
× 4

2
) is chosen as the orthogonal 

array. The relative closeness to the ideal solution (Ci) 

are calculated for each experiment as Table 1. 
 

Table 1. Taguchi orthogonal array L16 (2
2 × 42). 

No. 
Initial 

Population Size 

Crossover 

Type 

Mutation 

Rate 
k Ci 

1 1 1 1 1 0.89 

2 1 1 1 2 0.61 

3 2 2 1 3 0.31 

4 2 2 1 4 0.00 

5 1 2 2 1 0.88 

6 1 2 2 2 0.45 

7 2 1 2 3 0.31 

8 2 1 2 4 0.40 

9 2 1 3 1 1.00 

10 2 1 3 2 0.69 

11 1 2 3 3 0.41 

12 1 2 3 4 0.24 

13 2 2 4 1 0.77 

14 2 2 4 2 0.56 

15 1 1 4 3 0.38 

16 1 1 4 4 0.40 

C  
1C =0.53 

2C =0.51 

1C =0.58 

2C =0.48 

1C =0.60 

2C =0.62 

3C =0.59 

4C =0.53 

1C =0.89 

2C =0.58 

3C =0.35 

4C =0.26 

 

For choosing the best level of each parameter, we 

should find the Ci that is closer to 1. As can be inferred 

from the Table 1, the parameters of the algorithms 

were set as follows: Initial population size = 100, 

Crossover type = PMX, RR = 0.4 and k = 1 (in (5)). 

The algorithms with tuned parameters were coded in 

Matlab
®
 and run on an Intel

™
 Core i7 2.00 GHz CPU 

with 4.00 GB of RAM. 

Tables 2 and 3 show the experimental results of 

solving the n-queens problem at different sizes. 

Considering the randomness of the methods, each 

instance was run 10 times, and the mean and the 

Standard Deviation (SD) of runtimes and two other 

performance criteria, the FFE and Normalized 

Convergence Curve Area (NCCA), are reported. 

The FFE criterion measures the total number of FFE 

during the whole search, and NCCA. The convergence 

curve plots the best-found fitness function value at each 

iteration, until the final solution is reached. In the n-

queens problem, this curve shows how the algorithm 

reduces the number of conflicts during its execution till 

it becomes zero. Figure 7 shows convergence curves of 

the ICA for various sizes of the problem: n = 50, 100, 

200 and 300. The number of conflicts and iterations are 

displayed along the vertical and horizontal axes, 

respectively. As can be seen, initial numbers of 

conflicts were about half the sizes of the problems, and 

larger problems took much more iterations to converge 

than smaller instances. 

 
 

Table 2. Average results of 10 runs of the ICA for various sizes of 
the n-queens problem. 

n 
FFE 

NCCA 
Runtime (s) 

Min Max Avg. Avg. SD 

8 17 330 159 0.36 0.05 0.06 

10 150 2315 785 2.17 0.14 0.13 

25 1550 10880 6500 5.40 2.15 1.06 

50 12215 116150 4402 10.95 26.48 17.43 

100 105870 542720 280014 22.28 348.51 162.39 

200 1022990 1882564 1558751 50.15 3284.22 303.54 

300 2754111 4258966 3859979 143.51 21650.58 573.81 

 

Table 3. Average results of 10 runs of the HICA for various sizes 
of the n-queens problem. 

n 
FFE 

NCCA 
Runtime (s) 

Min Max Avg. Avg. SD 

8 0 445 96.3 2.20 0.05 0.05 

10 21 940 408.3 11.33 0.14 0.11 

30 184 5038 1657.6 13.74 0.67 0.62 

50 323 5882 2327.6 11.61 1.20 1.03 

75 525 5708 2265.2 11.21 1.28 0.88 

100 1374 7006 2932.7 8.81 1.98 1.29 

200 6060 9405 8893.6 13.70 9.38 1.10 

300 10805 14624 12302.6 12.79 19.60 2.74 

500 13717 24906 20962.4 16.47 148.74 29.82 

750 23279 42164 33767.5 13.65 616.17 254.26 

1000 31701 74877 43272.4 15.80 984.13 301.12 

2000 79984 101571 89827.1 21.93 7023.87 545.54 
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Figure 7. Convergence curves for the ICA run on n = 50, 100, 200, 

and 300 queens. 

 

Inspired by the behavior of the convergence curve, 

we designed a new performance criterion to compare 

the basic and HICA methods: The NCCA. In fact, by 

calculating the area under a convergence cure we can 

infer how fast a method reduces the number of 

conflicts. A relatively small area implies that the 

algorithm succeeded in reducing the number of 

conflicts at its early iterations. The NCCA measures 

the area under the convergence curve with the number 

of conflicts plotted along the vertical axis and the 

number of FFE along the horizontal axis; but since for 

large problem sizes the area becomes too large, we 

divided it to a factor of n
2 
and eliminated the impact of 

problem size, obtaining a normalized value. 

Table 2 shows that the ICA spent about 6 hours of 

computation averagely for the 300-queens problem, 
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and so we stopped solving larger instances. On the 

other hand, the HICA performed surprisingly well and 

could find a solution to the 2000-queens problem in 

less than 2 hours. The number of FFE in the HICA 

method was also significantly less than that of the 

basic ICA method. For the NCCA criterion the 

behaviors are a bit different: For small sizes the ICA 

converges to a low number of conflicts faster than the 

powerful HICA method, but then for n > 100 the HICA 

regains its superiority (with smaller NCCA index). 

This fact is due to the impact of the implemented local 

search on the algorithm’s speed. 

Figure 8 illustrates the superimposed convergences 

of the two algorithms, which are plotted for n = 100 by 

considering the best run in terms of convergence speed 

out of 10 runs. Note, that here the horizontal axis 

shows the number of FFE’s (and not iterations) since 

the local search component in the HICA executes some 

additional iterations which should not be compared to 

the main iterations of ICA. 
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Figure 8. A comparison of convergence curves for basic and hybrid 

ICAs on n = 100 queens. 

5.1. Comparisons 

In order to evaluate the efficiency of the presented 

HICA method, we compared it with an algorithm that 

had produced the best known results in finding the first 

solution to the n-queens problem. This method is called 

Cooperative PSO (CPSO) and is introduced in [2] for 

solving permutation problems, including the n-queens 

problem. Compared to the PSO method [11], the CPSO 

uses parallel searching to reduce calculation time. 

For solving the n-queens problem by using the 

CPSO, an initial random population of particles is 

generated, where each particle has initial information 

about the locations of n-queens on an n × n chessboard. 

Each particle of the population is divided into n equal 

sub-swarms, and then each sub-swarm is changed into 

one sub-particle. Sub-particles use the standard PSO to 

update their velocities and positions according to the 

best local experience of each sub-particle and the best 

position for each particle among all particles. 

Through a number of experiments, Amooshahi et al. 

[2] compared the CPSO with implementations of 

standard PSO, SA, TS and GA algorithms reported in 

[15] and outperformed all those met heuristics in terms 

of the number of FFE. The results of average FFE 

values obtained by our proposed HICA and the CPSO 

algorithms are reported in Table 4 and plotted in 

Figure 9. It was observed that the HICA always 

evaluated the fitness function fewer times than the 

CPSO. 
 

Table 4. Average number of FFEs for HICA and CPSO. 

n HICA CPSO Improvement (%) 

8 96.3 225.8 57.4 

10 408.3 540.5 24.5 

30 1657.6 2020.5 18.0 

50 2327.6 2764.2 15.8 

75 2265.2 3661.6 38.1 

100 2932.7 5063.6 42.1 

200 8893.6 9184.5 3.2 

300 12302.6 14559.6 15.5 

500 20962.4 23799.6 11.9 

750 33767.5 34765.2 2.9 

1000 43272.4 47299.8 8.5 

2000 89827.1 95235.9 5.7 
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Figure 9. Comparison of the number of FFE versus the problem size 

for the HICA and CPSO methods. 

 

6. Conclusions 

In this paper the ICA, which is a recent evolutionary 
method, is used for finding the first encountered 
solution to the n-queens problem. For improving the 
performance of the algorithm a local search is 
incorporated into the algorithm, which we call HICA. 
Due to the effect of the initial factors of metaheuristic 
on effectiveness of the algorithms, TOPSIS-based 
parameter tuning is proposed to select the best set of 
parameters for the algorithm. Experimental result 
showed that the HICA is able to find the solution for a 
given number of queens faster than the basic ICA and 
can solve large instances through smaller numbers of 
FFE. The HICA was also compared to the best 
algorithm in the literature for solving this specific 
problem (i.e., CPSO), and outperformed it in terms of 
the number of FFE. 

As a future work, the RR can be considered as an 
adaptive parameter such that in initial iterations it takes 
a relatively large value and decreases as the search 
proceeds. The decreasing rate would be dynamic and 
would depend on some information obtained from the 
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course of the search. As a result, more diversification 
of solutions in the earlier iterations can be expected, 
which may lead to faster convergence. Another 
enhancement could be performing a landscape analysis 
for the n-queens problem, which probably can explain 
the reason of the significant improvement caused by 
hybridizing the ICA with a simple local search 
compared to the basic ICA. 
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