
  

Git

Pau Garcia i Quiles <pgquiles@elpauer.org>

Slides: http://www.elpauer.org/stuff/git.pdf

  

What is a (D)VCS

(Distributed) Version Control System

Management of multiple revisions of the same 
unit of information (for instance, files)

Very useful in software development: 

Know who and when changed what

Be able to go back, in case you screwed 
something

VCS vs DVCS

Central repository vs distributed (no central) 
repository



  

Architecture

Created by Linus Torvals in April 2005 for the 
Linux kernel

Maintained by Junio Hamano since July 2005

Each command is a different program (porcelain 
vs plumbing)

Originally: a few C programs, lots of shell-scripts 
around them

Now: shell-scripts mostly replaced by C programs

Future: libgit2 library + exactly 1 program

  

Overview



  

Repository
Repository

Your stuff, managed by git

There is a single '.git' directory per repository, 
at the root of the repository

Working tree

The repository at a particular moment in time 
(a �snapshot� of the repository)

Index (AKA �staging area�)

Kind of a �pre-filter�: you must make git aware 
of your changes or your changes will not be 
�committed� by �git commit�

  

Config

$ git config user.name "FirstName LastName"

$ git config user.email "user@example.com"

$ git config --global color.branch "auto"

$ git config --global color.status "auto"

$ git config --global color.diff "auto"

$ git config --global pack.threads "0"



  

Workflow

$ git init

$ vi file.cpp

$ git add main.cpp

$ git commit -m “Initial import”

$ vi main.cpp

$ git commit -m “I'm screwing it”

$ vi main.cpp

$ git commit --amend

...

  

SHA-1

No sequentian revision numbers

Commits in git are identified by a SHA-1 hash

You can go back to a �revision� by checking out 
that SHA-1:

git checkout 



  

Reflog

Shows actions done to your repository:

$ git reflog

78c80b7... HEAD@{0}: pull : Fast forward

c516234... HEAD@{1}: checkout: moving to master

c516234... HEAD@{2}: pull : Fast forward

01fdb2a... HEAD@{3}: rebase: mplayer: adapt configure 

options to latest svn

da8ed38... HEAD@{4}: rebase

  

Branch

git branch ...

git checkout ...



  

Diff

More or less like GNU diff

git diff: changes in the working tree relative to 
the index

git diff �cached: changes in the index relative to 
the repository

git diff HEAD: changes in the working tree relative 
to the repository

  

Fetch & Merge

Get changes from another repository:

$ git fetch ...

But those changes are NOT merged locally!

Merge them:

$ git merge ...

There is a convenience command for this:

git pull � git fetch + git merge



  

Revert/reset

Make last 2 commits disappear but do not modify 
HEAD:

$ git [�mixed] reset HEAD~2

Scrap uncommited changes:

$ git reset �hard

Set HEAD to three commits ago:

$ git reset �soft HEAD~3

  

Tag

It does the WRONG thing by default:

$ git tag 1.0 # Creates a �lightweight� tag (  �

pointer)

What you really want to do is:

$ git tag -a 1.0 # Annotated tag

or

$ git tag -s 1.0 # Signed tag



  

Clone

Copy a remote repository into your machine

FULL copy, including history (unlike CVS, SVN...)

$ git clone git://gitorious.org/teamgit/mainline.git  

There is no difference between a cloned 
repository and the �original� repository

NO partial clones (i.e. NO svn checkout 
svn://repo/dir/subdir/ )

  

Push

Send your changes to a remote repository

$ git push

BEWARE! 'commit' does not imply 'push'!!! It's 
not like 'svn commit'!!!

svn commit  git commit + git push�



  

Rebase

Forward port local commits to the updated 
upstream head

Done incrementally (i. e. commit by commit)

Branch development made possible! (svn branch 
in Subversion < 1.5 was nearly useless, as 
merging back was very difficult and time-
consuming due to conflics)

  

Stash

Saves your work temporarily (you can go back at 
any time)

Very useful if you have local changes and you 
want to go forward (rebase) or go back 
(checkout an old commit)

$ git stash 

$ git checkout HEAD~5

$ git stash apply

$ git stash clear

$ git stash 

$ git rebase

$ git stash apply

$ git stash clear



  

Submodules

More or less like svn externals

FULL OF CRAP

There is no good replacement to svn externals in 
git

  

Bisect

Find the change that introduced a bug by binary 
search

Mark �good� commits and �bad� commits 
iteratively:

It's mostly a helper around �git checkout�



  

Bisect

$ git bisect start

$ git bisect bad # Currently HEAD is bad

$ git bisect good 0cadf32 # Tell git rev 0cadf32 
was good and checkout the �middle point� 
between HEAD and 0cadf32

(Build & check)

$ git bisect bad # Tell git that middle point was 
bad and checkout the middle point between it 
and 0cadf32

(Build & check)

$ git bisect good

...

  

Cherry pick

Take a commit (usually from a different branch), 
create a patch (temporary) and apply it to the 
current branch

Very useful if you want to merge selectively from 
other branches



  

Interacting with other (D)VCS

Subversion

CVS

Darcs

Perforce

fast-import / fast-export

  

Other

grep

send email

blame

show

describe

rm, mv, cp

lots more



  

Server-side

git daemon

git-instaweb

  

Hosting

repo.or.cz (FLOSS, small projects)

gitorious.org (FLOSS)

github.com (FLOSS/commercial)

unfuddle.com (FLOSS/commercial)

Many more



  

libQtGit

Generic library which allows you Qt application to 
use git

Uses:

Create a GUI for git (TortoiseGit anyone?)

Add versioning to your application

Versioned projects

Collaboration: send only changes

etc

License: LGPL 2.1 and 3

Take a look at the example

  

Questions

Ask me


