
Software Engineering
and Enumerative Combinatorics
Alain Giorgetti1 Richard Genestier1 Valerio Senni2
1FEMTO-ST Institute, Univ. of Franche-Comté
2IASI-CNR, Roma

MAP 2014

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 1 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Motivations

Cross-fertilization between software engineering and enumerative
combinatorics

I Enumerative Combinatorics (EC)
I Branch of mathematics
I Counting discrete structures of given size
I Also, exhibiting non-trivial structural bijections

I Software Engineering (SE)
I methods for the rational design, devt and maintenance of software
I validation, mainly by testing (around 50% of software devt)

I EC for SE
I Analysis of algorithm complexity
I Bounded exhaustive testing with structured data

I SE for EC
I Methods for guessing and proving conjectures in combinatorics
I Focus on rooted map enumeration

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 2 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Outline

Motivations

Bounded exhaustive testing

Planar rooted map encodings

Conclusion

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 3 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Bounded exhaustive testing

I Motivation: test cases for programs manipulating structured
data (lists, arrays, trees, etc.) with complex invariants (e.g.
red-black trees, Dyck words)

I Exhaustive generation of combinatorial structures up to some
given (small) size

I Naive solution: Rejection (not efficient)
I Test case generators based on constraint logic programming

(CLP)

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 4 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Example: Dyck words

I A Dyck word over the alphabet {(,)} is a balanced parenthesis
word

I A Dyck word of length 2n (size n) contains n pairs of parentheses
(possibly nested) which correctly match

I Example: (()) ((() ()))
I Grammar: D ::= ε | (D)D

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 5 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

CLP-based test case generators [SF12]

I Motivation: test cases for programs manipulating
structured data (lists, arrays, trees, etc.) with complex
invariants

I Logic programs provide declarative specifications of
test cases

I Filter promotion techniques optimize specifications

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 6 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Logic programming

I Programs are sets of rules (Horn clauses) of the form
C :- H1 ∧...∧ Hn

(meaning, C holds if Hi holds for i = 1, . . . ,n)
I Example

ordered([]).
ordered([x]).
ordered([x1,x2|L]) :- x1 ≤ x2 ∧ ordered([x2|L]).

I Query evaluation
1. Pick leftmost atom in current query: Q = H∧R
2. Find unifying head: Cσ = Hσ
3. Rewrite to get a new query: (H1 ∧...∧ Hn ∧R)σ

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 7 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

LP-based generation

ordered([]).
ordered([x]).
ordered([x1,x2|L]) :- x1 ≤ x2 ∧ ordered([x2|L]).

as a generator:
ordered(L).

=⇒ =⇒
=⇒ =⇒ L = []

=⇒ =⇒ L = [x]

=⇒ =⇒ L = [x1,x2] with x1 ≤ x2

. . . L = [x1,x2,x3] with x1 ≤ x2 ∧ x2 ≤ x3

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 8 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Outline

Motivations

Bounded exhaustive testing

Planar rooted map encodings

Conclusion

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 9 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Planar topological map

I A planar topological map is a connected graph (loops
and multiple edges allowed) drawn on the sphere so that
each connected component of the complement of the
graph (face) is homeomorphic to an open disc

I Maps are studied (generated, counted, etc.) up to
isomorphism (orientation-preserving surface
isomorphism + underlying graph isomorphism)

I A rooted map is a map with a distinguished dart (half an
edge), its root

I Rooted maps have no non-trivial (root-preserving)
automorphism→ easier to study than maps

I A combinatorial map is a triple (D,R, L) where D is a
finite set, R is a permutation of D and L is a fixpoint-free
involution of D such that the group 〈R, L〉 generated by R
and L acts transitively on D

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 10 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Correspondence between two map encodings

Encodings of rooted planar maps
I By words: Canonical parenthesis-bracket

systems [Walsh & Lehman 72], named p-words here
I By trees

I Former proposals: well labeled trees [Cori & Vauquelin 81],
balanced blossom trees [Schaeffer 03]

I New family (conjecture): p-trees

I New theorem: p-words and p-trees of the same size
are in one-to-one correspondence

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 11 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

p-words

I A p-word is any shuffle of a Dyck word on the alphabet {(,)} and
a Dyck word on the alphabet {[,]}, which does not contain any
subword [(]) composed of two pairs [] and () matching in the
Dyck words (canonicity property)

I Forbidden pattern . . . [. . . (. . .] . . .) . . .

I Example
I 9 p-words with 4 letters

(()) ([]) ([)] () () () [] [()] [[]] [] () [] []
I One non-canonical p-word with 4 letters: [(])

I The size of a p-word is half its length

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 12 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Design of efficient p-word generators [GS12]

Exploiting the resolution-based computation mechanism of Prolog

1. First declarative version in logic programming (specification, correct)
I Dyck words, two kinds of parentheses
I Shuffling
I Inefficient: Several computation branches leading to failure

2. Second (more operational) version
I Based on word extension from left to right + a stack of counters
I More efficient

3. Third version (optimized)
I Pruning failing computations in the second version
I Even more efficient

How to ensure correctness of (2) and (3) w.r.t. (1)?

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 13 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Correctness of p-word generators

How to ensure correctness of (2) and (3) w.r.t. (1)?

I Compare their outputs incrementally (by the size of the structure)
I Number of generated structures
I Sets of generated structures
I Programs validated up to size 11 (constructing around 1.60x109

structures)
I Also for a translation of the optimized program (3) into C
I Our C program is more efficient than any other C program in the

literature
I Incremental comparison improves confidence of correctness
I Logic programming-supported method for the design of

combinatorial algorithms

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 14 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

What are the key ingredients of the proof?

I Bijection between two encodings of rooted planar maps
I p-words
I p-trees (see next slide)

I Computer-assisted discovery of bijections w2t and t2w between
both families

I With a validation tool (LP-based) and a proof assistant
(Coq/SSReflect)

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 15 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Definition of p-trees
I An mtree is a (rooted plane) binary-unary tree in which each

unary node is labelled by a natural number

I n du c t i ve mtree :=
| mty : mtree
| bnode : mtree → mtree → mtree
| unode : N → mtree → mtree .

I The degree of an mtree is defined by

Funct ion deg (t : mtree) : N :=
match t w i th
| mty ⇒ 0
| bnode u v ⇒ 2 + deg u + deg v
| unode n ⇒ n + 1
end .

I A ptree is an mtree where each unary node label does not
exceed the degree of its child

I The size of a tree is the total number of its nodes
Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 16 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

p-trees in Coq/SSReflect

I A ptree is an mtree where each unary node label does not
exceed the degree of its child

I Characteristic property of p-trees among m-trees

Funct ion i sP t ree (t : mtree) : bool :=
match t w i th
| mty ⇒ t r ue
| bnode u v ⇒ i sP t ree u && isP t ree v
| unode n w ⇒ i sP t ree w && (n <= deg w)
end .

I ptrees are mtrees with this property

St ruc tu re p t ree : Type := mkPtree {
pval :> mtree ;

: i sP t ree pval
} .

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 17 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

p-words in Coq/SSReflect
I Letters: [] () : lett
I Words: Definition word := seq lett .
I Dyck words on parentheses

I n du c t i ve dwp : word → Prop :=
| mtyP : dwp n i l
| decompP : ∀ u v : word ,

dwp u → dwp v → dwp ((: : u ++) : : v) .

I Characterization of p-words (adapted from [Cor75, Property II.7])

I n du c t i ve pword : word → Prop :=
| pwordmty : pword n i l
| pwordbracket : ∀ u v : word ,

pword u → pword v → pword ([: : u ++] : : v)
| pwordparen : ∀ u v : word , dwp (rmb u) →

pword (u ++ v) → pword ((: : u ++) : : v) .

where rmb removes brackets
Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 18 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Validation

I Similar definitions in Prolog
I Same number of generated structures up to size 6
I Sequence 1, 2, 9, 54, 378, 2916, 24057

(https://oeis.org/A000168)
I Same set of generated structures up to size 5
I Guess inductive functions

t2w : mtree→word
and
w2t : word→tree
whose restrictions to ptrees and pwords are bijective

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 19 / 24

https://oeis.org/A000168

Bounded exhaustive testing Planar rooted map encodings Conclusion

From p-trees to p-words

F i x p o i n t t2w (t : mtree) { s t r u c t t } : word := ???

I Source of inspiration: Binary trees→ Dyck words

match t w i th
| mty ⇒ n i l
| bnode u v ⇒ [: : t2w u ++] : : t2w v
| unode n s ⇒ l e t w := t2w s i n (: : inser tCP w n

I Ideas for the insertion function
I n is sometimes less than the length of w
I Add a) before the first n letters of w?

I Invalidated by generation of words of size 3
I ([())] twice, ([()]) missing

I Add a) after the n-th Dyck word in rmb w?
I Invalidated, but works with deg s − n instead of n

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 20 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

From p-words to p-trees
F i x p o i n t w2t (w : word) { s t r u c t w} : mtree :=
match w wi th
| n i l ⇒ mty
| [: : u ⇒ ??
| (: : u ⇒ ???
end .

I For [, similar to parsing of Dyck words
I For free in LP

w2t ([] , mty) .
w2t ([b |W] , b (T1 , T2)) :− append (U , [r |V] ,W) ,

pword (U) , pword (V) , w2t (U, T1) , w2t (V, T2) .

I For (, discovery in Prolog
w2t ([p |W] , u (N, T)) :− append (U , [a |V] ,W) ,

rmb (U,P) , dwp(P) , append (U,V,S) , w2t (S, T) ,
cn (V, Np1) , N i s Np1−1.

I Last line guessed, comparing T with the antecedent of W by t2w.
Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 21 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Outline

Motivations

Bounded exhaustive testing

Planar rooted map encodings

Conclusion

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 22 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

Conclusion

I Software engineering methods to
I Assist the discovery and proof of new results in combinatorics
I Design and validate generators of structured data/combinatorial

objects
I Giving more confidence in scientific results and programs
I Testing works as an accelerator, formal proving as a brake
I Thanks to Reynald Affeldt, Cyril Cohen and Enrico Tassi for their

help on SSReflect, to Timothy R. S. Walsh for helpful comments
and to Noam Zeilberger for exciting discussions

I Work in progress. . . Join the team!

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 23 / 24

Bounded exhaustive testing Planar rooted map encodings Conclusion

References

Robert Cori.
Un code pour les graphes planaires et ses applications.
Société mathématique de France, 1975.

Alain Giorgetti and Valerio Senni.
Specification and Validation of Algorithms Generating Planar Lehman
Words.
In GASCom’12, Bordeaux, France, June 2012.

Valerio Senni and Fabio Fioravanti.
Generation of test data structures using constraint logic programming.
In Achim D. Brucker and Jacques Julliand, editors, TAP, volume 7305 of
Lecture Notes in Computer Science, pages 115–131. Springer, 2012.

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 24 / 24

	Bounded exhaustive testing
	Planar rooted map encodings
	Conclusion

