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Motivations

Cross-fertilization between software engineering and enumerative
combinatorics

I Enumerative Combinatorics (EC)
I Branch of mathematics
I  Counting discrete structures of given size
I Also, exhibiting non-trivial structural bijections

I Software Engineering (SE)
I methods for the rational design, devt and maintenance of software
I validation, mainly by testing (around 50% of software devt)

I EC for SE
I Analysis of algorithm complexity
I Bounded exhaustive testing with structured data

I SE for EC
I Methods for guessing and proving conjectures in combinatorics
I Focus on rooted map enumeration
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Bounded exhaustive testing

I Motivation: test cases for programs manipulating structured
data (lists, arrays, trees, etc.) with complex invariants (e.g.
red-black trees, Dyck words)

I Exhaustive generation of combinatorial structures up to some
given (small) size

I Naive solution: Rejection (not efficient)
I Test case generators based on constraint logic programming

(CLP)
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Example: Dyck words

I A Dyck word over the alphabet {(, )} is a balanced parenthesis
word

I A Dyck word of length 2n (size n) contains n pairs of parentheses
(possibly nested) which correctly match

I Example: ( ( ) ) ( ( ( ) ( ) ) )
I Grammar: D ::= ε | (D )D
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CLP-based test case generators [SF12]

I Motivation: test cases for programs manipulating
structured data (lists, arrays, trees, etc.) with complex
invariants

I Logic programs provide declarative specifications of
test cases

I Filter promotion techniques optimize specifications
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Logic programming

I Programs are sets of rules (Horn clauses) of the form
C :- H1 ∧...∧ Hn

(meaning, C holds if Hi holds for i = 1, . . . ,n )
I Example

ordered([]).
ordered([x]).
ordered([x1,x2|L]) :- x1 ≤ x2 ∧ ordered([x2|L]).

I Query evaluation
1. Pick leftmost atom in current query: Q = H∧R
2. Find unifying head: Cσ = Hσ
3. Rewrite to get a new query: (H1 ∧...∧ Hn ∧R)σ
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LP-based generation

ordered([]).
ordered([x]).
ordered([x1,x2|L]) :- x1 ≤ x2 ∧ ordered([x2|L]).

as a generator:
ordered(L).

=⇒ =⇒
=⇒ =⇒ L = []

=⇒ =⇒ L = [x]

=⇒ =⇒ L = [x1,x2] with x1 ≤ x2

. . . L = [x1,x2,x3] with x1 ≤ x2 ∧ x2 ≤ x3
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Planar topological map

I A planar topological map is a connected graph (loops
and multiple edges allowed) drawn on the sphere so that
each connected component of the complement of the
graph (face) is homeomorphic to an open disc

I Maps are studied (generated, counted, etc.) up to
isomorphism (orientation-preserving surface
isomorphism + underlying graph isomorphism)

I A rooted map is a map with a distinguished dart (half an
edge), its root

I Rooted maps have no non-trivial (root-preserving)
automorphism→ easier to study than maps

I A combinatorial map is a triple (D,R, L) where D is a
finite set, R is a permutation of D and L is a fixpoint-free
involution of D such that the group 〈R, L〉 generated by R
and L acts transitively on D
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Correspondence between two map encodings

Encodings of rooted planar maps
I By words: Canonical parenthesis-bracket

systems [Walsh & Lehman 72], named p-words here
I By trees

I Former proposals: well labeled trees [Cori & Vauquelin 81],
balanced blossom trees [Schaeffer 03]

I New family (conjecture): p-trees

I New theorem: p-words and p-trees of the same size
are in one-to-one correspondence
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p-words

I A p-word is any shuffle of a Dyck word on the alphabet {(, )} and
a Dyck word on the alphabet {[, ]}, which does not contain any
subword [ ( ] ) composed of two pairs [ ] and ( ) matching in the
Dyck words (canonicity property)

I Forbidden pattern . . . [. . . (. . .] . . .) . . .

I Example
I 9 p-words with 4 letters

( ( ) ) ( [ ] ) ( [ ) ] ( ) ( ) ( ) [ ] [ ( ) ] [ [ ] ] [ ] ( ) [ ] [ ]
I One non-canonical p-word with 4 letters: [ ( ] )

I The size of a p-word is half its length

Giorgetti, Genestier & Senni Soft. Eng. and Combinatorics 12 / 24



Bounded exhaustive testing Planar rooted map encodings Conclusion

Design of efficient p-word generators [GS12]

Exploiting the resolution-based computation mechanism of Prolog

1. First declarative version in logic programming (specification, correct)
I Dyck words, two kinds of parentheses
I Shuffling
I Inefficient: Several computation branches leading to failure

2. Second (more operational) version
I Based on word extension from left to right + a stack of counters
I More efficient

3. Third version (optimized)
I Pruning failing computations in the second version
I Even more efficient

How to ensure correctness of (2) and (3) w.r.t. (1)?
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Correctness of p-word generators

How to ensure correctness of (2) and (3) w.r.t. (1)?

I Compare their outputs incrementally (by the size of the structure)
I Number of generated structures
I Sets of generated structures
I Programs validated up to size 11 (constructing around 1.60x109

structures)
I Also for a translation of the optimized program (3) into C
I Our C program is more efficient than any other C program in the

literature
I Incremental comparison improves confidence of correctness
I Logic programming-supported method for the design of

combinatorial algorithms
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What are the key ingredients of the proof?

I Bijection between two encodings of rooted planar maps
I p-words
I p-trees (see next slide)

I Computer-assisted discovery of bijections w2t and t2w between
both families

I With a validation tool (LP-based) and a proof assistant
(Coq/SSReflect)
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Definition of p-trees
I An mtree is a (rooted plane) binary-unary tree in which each

unary node is labelled by a natural number

I n du c t i ve mtree :=
| mty : mtree
| bnode : mtree → mtree → mtree
| unode : N → mtree → mtree .

I The degree of an mtree is defined by

Funct ion deg ( t : mtree ) : N :=
match t w i th
| mty ⇒ 0
| bnode u v ⇒ 2 + deg u + deg v
| unode n ⇒ n + 1
end .

I A ptree is an mtree where each unary node label does not
exceed the degree of its child

I The size of a tree is the total number of its nodes
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p-trees in Coq/SSReflect

I A ptree is an mtree where each unary node label does not
exceed the degree of its child

I Characteristic property of p-trees among m-trees

Funct ion i sP t ree ( t : mtree ) : bool :=
match t w i th
| mty ⇒ t r ue
| bnode u v ⇒ i sP t ree u && isP t ree v
| unode n w ⇒ i sP t ree w && ( n <= deg w)
end .

I ptrees are mtrees with this property

St ruc tu re p t ree : Type := mkPtree {
pval :> mtree ;

: i sP t ree pval
} .
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p-words in Coq/SSReflect
I Letters: [ ] ( ) : lett
I Words: Definition word := seq lett .
I Dyck words on parentheses

I n du c t i ve dwp : word → Prop :=
| mtyP : dwp n i l
| decompP : ∀ u v : word ,

dwp u → dwp v → dwp ( ( : : u ++ ) : : v ) .

I Characterization of p-words (adapted from [Cor75, Property II.7])

I n du c t i ve pword : word → Prop :=
| pwordmty : pword n i l
| pwordbracket : ∀ u v : word ,

pword u → pword v → pword ( [ : : u ++ ] : : v )
| pwordparen : ∀ u v : word , dwp ( rmb u ) →

pword ( u ++ v ) → pword ( ( : : u ++ ) : : v ) .

where rmb removes brackets
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Validation

I Similar definitions in Prolog
I Same number of generated structures up to size 6
I Sequence 1, 2, 9, 54, 378, 2916, 24057

(https://oeis.org/A000168)
I Same set of generated structures up to size 5
I Guess inductive functions

t2w : mtree→word
and
w2t : word→tree
whose restrictions to ptrees and pwords are bijective
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From p-trees to p-words

F i x p o i n t t2w ( t : mtree ) { s t r u c t t } : word := ???

I Source of inspiration: Binary trees→ Dyck words

match t w i th
| mty ⇒ n i l
| bnode u v ⇒ [ : : t2w u ++ ] : : t2w v
| unode n s ⇒ l e t w := t2w s i n ( : : inser tCP w n

I Ideas for the insertion function
I n is sometimes less than the length of w
I Add a ) before the first n letters of w?

I Invalidated by generation of words of size 3
I ( [ ( ) ) ] twice, ( [ ( ) ] ) missing

I Add a ) after the n-th Dyck word in rmb w?
I Invalidated, but works with deg s − n instead of n
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From p-words to p-trees
F i x p o i n t w2t (w : word ) { s t r u c t w} : mtree :=
match w wi th
| n i l ⇒ mty
| [ : : u ⇒ ??
| ( : : u ⇒ ???
end .

I For [, similar to parsing of Dyck words
I For free in LP

w2t ( [ ] , mty ) .
w2t ( [ b |W] , b ( T1 , T2 ) ) :− append (U , [ r |V] ,W) ,

pword (U) , pword (V) , w2t (U, T1 ) , w2t (V, T2 ) .

I For (, discovery in Prolog
w2t ( [ p |W] , u (N, T ) ) :− append (U , [ a |V] ,W) ,

rmb (U,P) , dwp(P) , append (U,V,S) , w2t (S, T ) ,
cn (V, Np1 ) , N i s Np1−1.

I Last line guessed, comparing T with the antecedent of W by t2w.
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Conclusion

I Software engineering methods to
I Assist the discovery and proof of new results in combinatorics
I Design and validate generators of structured data/combinatorial

objects
I Giving more confidence in scientific results and programs
I Testing works as an accelerator, formal proving as a brake
I Thanks to Reynald Affeldt, Cyril Cohen and Enrico Tassi for their

help on SSReflect, to Timothy R. S. Walsh for helpful comments
and to Noam Zeilberger for exciting discussions

I Work in progress. . . Join the team!
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