

NAT Instance Configuration

Enabling Internet Access for Private Subnets

O R A C L E W H I T E P A P E R | J A N U A R Y 2 0 1 8

2 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Table of Contents

Introduction 3

Assumptions 4

Basic NAT Configuration 4

Architecture 5

Configuration 6

Terraform 10

NAT HA and Advanced Concepts 11

HA Architecture 11

Required Resources and Creation Order 12

HA Configuration 14

Conclusion 14

Appendices 15

Appendix 1: Example notify.sh 15

Appendix 2: Example keepalived.conf 16

3 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Introduction

Oracle Cloud Infrastructure enables you to create a virtual cloud network (VCN) that functions as

an extended data center in the cloud. The virtual networking primitives offered by the platform give

you full flexibility to build a network that meets complex enterprise requirements. You can use any

address range for your VCN, segment it into subnets, and configure security lists and route tables.

You can connect your VCN to your on-premises network through a dynamic routing gateway

(DRG), either through IPsec connections over the internet or through FastConnect over private,

dedicated connections.

One of the most common network design requirements is to secure private instances so that they

are not accessible from the internet but are accessible only from the on-premises network or

bastion hosts in public subnets. You can achieve this requirement by launching the instances in a

private subnet or by choosing not to assign a public IP address at launch. However, these

backend instances might need access to the internet for specific purposes, such as software

updates or CRL verification. You can choose to route this traffic to your on-premises network

through your internet gateway, but that might add unwanted latency or cost.

In 1993, the first document about Network Address Translation (NAT) was published. NAT was

conceived as a way to reuse address space to prevent IP address exhaustion, but was widely

adopted as a way for people to connect their private networks to the public internet.

Currently, NAT is most commonly used as a form of IP masquerade, which allows users to hide an

entire IP space behind a single external address. In effect, NAT provide an additional firewall

because no unauthorized traffic can enter the private network.

With the recent enhancements to the Oracle Cloud Infrastructure virtual networking platform, you

can now enable outbound internet access from private instances by using NAT instances. This

white paper describes recommended steps for setting up a NAT instance in your VCN and

configuring your private subnet to route internet requests through it.

4 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Assumptions

This white paper is intended for users who want to configure an instance that operates as a NAT

gateway for the private network.

To perform a deployment as described in this paper, you should have a solid familiarity with the

following items:

 Linux command line

 Provisioning cloud infrastructure via Terraform, a popular and free lightweight deployment

tool (https://www.terraform.io/intro/index.html)

 Basic understanding of networking protocols

You should also be familiar with the fundamentals of the Oracle Cloud Infrastructure. For

information, go to https://docs.us-phoenix-1.oraclecloud.com/. If this is the first time that you have

used the platform, we recommend specifically the tutorial at https://docs.us-phoenix-

1.oraclecloud.com/Content/GSG/Reference/overviewworkflow.htm.

Basic NAT Configuration

The nature of Oracle Cloud Infrastructure Networking makes it unnecessary to physically separate

subnets by using virtual interfaces. Because routing is done by underlying software-defined

networking, and because security lists exist between the subnets in most of the cases, it’s enough

to use a single virtual NIC (VNIC). As a result, most of the examples in this paper use a single

interface.

If you’re using more than one VNIC, ensure that your routing tables correctly point to the gateway

IP address in the subnet you’re connected to, or disable reverse path filtering in the Linux kernel.

https://www.terraform.io/intro/index.html
https://docs.us-phoenix-1.oraclecloud.com/
https://docs.us-phoenix-1.oraclecloud.com/Content/GSG/Reference/overviewworkflow.htm
https://docs.us-phoenix-1.oraclecloud.com/Content/GSG/Reference/overviewworkflow.htm

5 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Architecture

The following diagram shows a high-level architecture of the proposed setup.

The diagram shows a VCN (NAT-VCN-1) with two subnets:

 public (10.0.0.0/24), with access to internet through an internet gateway. NAT1 is an

instance in the frontend subnet that will function as NAT for the private subnet.  

 private (10.0.1.0/24), a private subnet with no access to the internet. Backend Host

represents the instances in the private subnet.

NOTE: Private subnet policy forbids public IP address assignment from the VNIC, which provides an

additional layer of security against external access.

Public Subnet Configuration

The route table for the public subnet has a route rule that configures the internet gateway as the

route target for all traffic (0.0.0.0/0).

Its security list has an egress rule to allow traffic to all destinations. Ingress rules allow traffic from

the backend subnet (and any other address ranges in the VCN).

6 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Private Subnet Configuration

The route table for the private subnet has a route rule that configures the NAT1 host as the route

target for all traffic (0.0.0.0/0).

Its security list has an egress rule to allow traffic to all destinations. Ingress rules allow only

specific address ranges (such as an on-premises network or any other backend subnets in the

VCN).

If connection with on-premises network is used, then the route toward the enterprise should be set

to the configured DRG.

With this configuration, when the backend instances initiate outbound internet requests, traffic is

routed to the NAT1 instance. The NAT1 instance forwards the traffic to the internet through the

internet gateway (after applying source NAT). The destination on the internet sees the traffic as

sourced from the NAT1 public IP address. When the NAT instance receives the response from the

internet, it forwards the traffic to the backend instance (after applying destination NAT).

Configuration

This section shows an example of basic steps to create the network and a NAT instance.

1. In the Oracle Cloud Infrastructure Console, create a VCN without any resources. The

VCN will have a default empty route table, a default security list, and DHCP options. In

this example, the VCN is called NAT-VCN-1.

2. Open the VCN that you created. In the Resources panel, click Security Lists and then

open the default security list. Click Edit All Rules.

3. Create an ingress rule. In the Source CIDR field, enter 10.0.1.0/24 (which will be your

private subnet space), and select All Protocols. You can also create a rule allowing SSH

protocol.

4. Create an egress rule that allows 0.0.0.0/0 for All Protocols.

5. Click Save Security List Rules.

7 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

6. In the Resources panel, click Internet Gateways, and then click Create Internet

Gateway.

7. Assign it the name InternetGateway, and then click Create Internet Gateway.

8. In the Resources panel, click Route Tables, and then open the default route table.

9. Create a rule in the default route table with the following values, and then click Create:

o Destination: 0.0.0.0/0

o Target Type: Internet Gateway Target

o Compartment: Choose a compartment.

o Target Selection: InternetGateway

10. In the Resources panel, click Subnets, and then click Create Subnet.

11. Enter the following values, and then click Create:

o Name: Public Subnet

o Availability Domain: Choose from the list.

o CIDR Block: 10.0.0.0/24

o Route Table: Default Route Table NAT-VCN-1

o Subnet Access: Public Subnet

o DHCP Options: Default DHCP Options for NAT-VCN-1

o Security Lists: Default Security for NAT-VCN-1

Before you create the private subnet, create your NAT instance. If you create the NAT

instance first, you can choose the OCID (identifier) of the private IP assigned to your NAT

instance as the route target in the subnet’s route table.

8 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

12. From the Compute menu, click Instances and then click Launch Instance. Configure

the instance as follows:

o Name: NAT1

o Availability Domain: Choose an Availability Domain that you created your subnet in.

o Image: Oracle-Linux-7.4-2017.08.24-1 or later

o Shape: VM.Standard1.2

o Virtual Cloud Network: NAT-VCN-1

o Subnet: Public Subnet

o Private IP Address: 10.0.0.2

o Assign public IP address: Select this check box.

o SSH Keys: Upload or paste your SSH key.

o Click Show Advanced Options, select the Paste Cloud-Init Script

option, and paste the following text. Alternatively, you can download

the file from https://github.com/oracle/terraform-provider-

oci/blob/master/docs/examples/networking/nat/user_data.tpl and use

the upload function.

This will configure the server firewall and kernel to provide NAT and routing service for

other hosts on the network.

#cloud-config

write_files:

Create file to be used when enabling ip forwarding

 - path: /etc/sysctl.d/98-ip-forward.conf

 content: |

 net.ipv4.ip_forward = 1

runcmd:

 # Run firewall commands to enable masquerading and port forwarding

 # Enable ip forwarding by setting sysctl kernel parameter

 - firewall-offline-cmd --direct --add-rule ipv4 nat POSTROUTING 0 -o ens3 -j MASQUERADE

 - firewall-offline-cmd --direct --add-rule ipv4 filter FORWARD 0 -i ens3 -j ACCEPT

 - /bin/systemctl restart firewalld

 - sysctl -p /etc/sysctl.d/98-ip-forward.conf

13. Click Launch Instance.

https://github.com/oracle/terraform-provider-oci/blob/master/docs/examples/networking/nat/user_data.tpl
https://github.com/oracle/terraform-provider-oci/blob/master/docs/examples/networking/nat/user_data.tpl

9 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

14. Click the name of your instance, and click Attached VNICs. Then click Edit VNIC.

15. Select Skip Source/Destination Check and then click Update VNIC.

Note: This step is important. Without it, other instances can’t send traffic through the NAT gateway

because of security features enabled by default. Trying to configure the route target to the VNIC with

a Source/Destination Check results in an error message.

At this point you have created all required resources in the public subnet. The next steps

guide you through the process of creating the private network.

16. Go back to Networking > Virtual Cloud Networks > NAT-VCN-1.

17. In the Resources panel, click Security Lists, and then click Create Security List.

18. Enter the following values, and then click Create Security List:

o For the name, enter Security List for Private Subnet.

o Add an egress rule with 0.0.0.0/0 as the destination and All Protocols selected.

o Configure ingress rules according to your needs and security policies. Be sure to add

at least one rule that allows SSH traffic.

19. In the Resources panel, click Route Tables, and then click Create Route Table.

20. Enter the following values and then click Create Route Table:

o Name: Private Route

o Destination: 0.0.0.0/0

o Target Type: Private IP

o Target Selection: 10.0.0.2

21. In the Resources panel, click Subnets, and then click Create Subnet.

10 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

22. Enter the following values and then click Create:

o Name: Private Subnet

o Availability Domain: Select an Availability Domain.

o CIDR Block: 10.0.1.0/24

o Route Table: Private Route

o Subnet Access: Private subnet

o DHCP Options: Default DHCP Options for NAT-VCN-1

o Security Lists: Security List for Private Subnet

Now you can launch the host instances by using any operating system in the private subnet. They

can connect to the internet without a public IP address assigned, and no connections originated on

the internet are possible directly to your server. To manage your private hosts, you need to use

SSH to connect to the NAT instance first, or use a CPE VPN connection from your own network.

Terraform

Terraform is a tool for building, changing, and versioning infrastructure. It generates an execution

plan from configuration files, describing what it will do to reach the necessary state, and then

executes changes to build an infrastructure. For basic information about Terraform, see the

following sites:

 https://github.com/oracle/terraform-provider-oci

 https://community.oracle.com/community/oracle-cloud/cloud-

infrastructure/blog/2017/02/15/terraform-and-oracle-bare-metal-cloud-services

https://github.com/oracle/terraform-provider-oci
https://community.oracle.com/community/oracle-cloud/cloud-infrastructure/blog/2017/02/15/terraform-and-oracle-bare-metal-cloud-services
https://community.oracle.com/community/oracle-cloud/cloud-infrastructure/blog/2017/02/15/terraform-and-oracle-bare-metal-cloud-services

11 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

The NAT example configuration is located in the examples folder of the terraform-provider-oci

Git repository at https://github.com/oracle/terraform-provider-

oci/tree/master/docs/examples/networking/nat.

NAT HA and Advanced Concepts

When a deployment uses multiple Availability Domains, you must maintain some form of heartbeat

and failover mechanism. In the typical non-cloud deployment, this can be achieved by using Layer

2 paths and IP failover. because of the nature of the Oracle Cloud Infrastructure Networking, the

best way to achieve redundancy is to maintain route-table configuration directly.

HA Architecture

The following diagram shows three Availability Domains with NAT instances and hosts in the

private subnet.

In normal conditions, traffic stays within the Availability Domain and is translated on the NAT

gateway in the public subnet.

https://github.com/oracle/terraform-provider-oci/tree/master/docs/examples/networking/nat
https://github.com/oracle/terraform-provider-oci/tree/master/docs/examples/networking/nat

12 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

In the case of a NAT gateway failure, traffic should fail over to the NAT gateway in the other

Availability Domain as shown in the following diagram:

Because NAT Instance 1 is not available, NAT Instance 2 takes over and modifies the route table

of the private subnet in AD1. The default gateway is configured for a private IP of NAT Instance 2

as a route target, using the unique identifier of the private IP (OCID). This ensures that the private

instance can still reach the internet even when an instance fails.

Required Resources and Creation Order

The following table summarizes the resources needed for the preceding setup. You can use it as a

deployment checklist.

VCN Dependencies

Internet Gateway Depends on the VCN

Public Route Table AD1 Depends on the VCN

Public Route Table AD2 Depends on the VCN

Public Route Table AD3 Depends on the VCN

Private Route Table AD1 Depends on the VCN

Private Route Table AD2 Depends on the VCN

13 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

VCN Dependencies

Private Route Table AD3 Depends on the VCN

Public Security List Depends on the VCN

Private Security List Depends on the VCN

Public Subnet AD1 Depends on the VCN Depends on the Route

Table

Depends on the Security

List

Public Subnet AD2 Depends on the VCN Depends on the Route

Table

Depends on the Security

List

Public Subnet AD3 Depends on the VCN Depends on the Route

Table

Depends on the Security

List

Private Subnet AD1 Depends on the VCN Depends on the Route

Table

Depends on the Security

List

Private Subnet AD2 Depends on the VCN Depends on the Route

Table

Depends on the Security

List

Private Subnet AD3 Depends on the VCN Depends on the Route

Table

Depends on the Security

List

NAT Instance AD1 Depends on the Subnet

NAT Instance AD2 Depends on the Subnet

NAT Instance AD3 Depends on the Subnet

Private Instance AD1 Depends on the Subnet

Private Instance AD2 Depends on the Subnet

Private Instance AD3 Depends on the Subnet

Route Rules for Public

subnets

Depends on the Internet

Gateway

Route Rules for Private

subnets

NAT Instance

Note that for route rule creation, the NAT instance must be launched first because the route to the

target rule requires an existing private IP object that is attached to the NAT instance VNIC.

14 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

HA Configuration

For HA in this example, a keepalived daemon and a custom script that performs the failover are

used. In addition, NAT instances must have an Oracle Cloud Infrastructure CLI, API key, user ID,

and relevant policy to manage virtual-network-family within the compartment. For example:

Allow group NAT to manage virtual-network-family in compartment id

aaa.compartment.ocid

Failover Script

The failover script processes the metadata information and performs route rule changes in the

designated route table. The active node within the VRRP group points the route rule to its private

IP OCID.

See Appendix 1 for the script example.

Keepalived.conf

For VRRP configuration, keepalived needs to be configured for three different instances. Each of

the NAT instances will be the MASTER node for the Availability Domain, and the two remaining

ones will be in the BACKUP state. Ensure that each VRRP instance has a different

virtual_router_id parameter and that the MASTER node has a higher priority.

See Appendix 2 for the configuration example.

For each node, be sure to update the priority within the correct Availability Domain, initial state,

and IP addresses of the nodes.

Conclusion

A NAT instance can be used to protect important resources in your cloud data center and provide

services for the hosts located on the private subnets. Servers located in the private subnet are

protected from being accessible from outside of your VCN, but can still reach out to the internet.

15 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Appendices

Appendix 1: Example notify.sh

#!/bin/bash

STATUS=$1

AD=$2

RT_TABLE_ID=$3

CURL="/usr/bin/curl -s"

OCI=$(/usr/bin/oci)

MDS="http://169.254.169.254/opc/v1"

INSTANCE_MDS=$MDS"/instance"

VNIC_MDS=$MDS"/vnics"

PATH="/usr/libexec/keepalived"

PUB_SN_ID=$($CURL "$INSTANCE_MDS/metadata/subnet_id")

PRIV_SN_ID=$($CURL "$INSTANCE_MDS/metadata/private_subnet_id")

VNIC_ID=$($CURL "$VNIC_MDS/0/vnicId")

echo $VNIC_MDS

echo $VNIC_ID

echo $STATUS > $PATH/$AD"_status.txt"

$OCI network private-ip list --subnet-id $PUB_SN_ID --vnic-id $VNIC_ID |

/usr/bin/python -c 'import sys, json; print

json.load(sys.stdin)["data"][0]["id"]' > $PATH"/private_ip.ocid"

case "$STATUS" in

 "master") echo "master"

 if [! -z $RT_TABLE_ID]; then

 PRIVATE_IP_ID=$(/bin/cat $PATH"/private_ip.ocid")

$OCI network route-table update --force --rt-id $RT_TABLE_ID --route-rules

'[{"cidrBlock":"0.0.0.0/0","networkEntityId":"'$PRIVATE_IP_ID'"}]'

 fi

 ;;

 "backup") echo "Backup Status"

 logger "Backup Status"

 exit 0

 ;;

 "stop") echo "Keepalived stopped"

 logger "Keepalived stopped"

 exit 0

 ;;

 "fault") echo "Keepalived fault!"

 logger "Keepalived fault!"

 exit 0

 ;;

 *)exit 1

 ;;

esac

16 | NAT INSTANCE CONFIGURATION: ENABLING INTERNET ACCESS FOR PRIVATE SUBNETS

Appendix 2: Example keepalived.conf

Replace ${variable} with real values.

vrrp_instance VI_1 {

 interface ens3

 state MASTER

 virtual_router_id 51

 priority ${priority_map_1}

 unicast_src_ip ${private_ip}

 unicast_peer {

 ${peer_ip}

 ${peer2_ip}

 }

 notify_master "/usr/libexec/keepalived/notify.sh master ad1 ${ad1_rt_id}"

 notify_backup "/usr/libexec/keepalived/notify.sh backup ad1 ${ad1_rt_id}"

 notify_fault "/usr/libexec/keepalived/notify.sh fault ad1 ${ad1_rt_id}"

 notify_stop "/usr/libexec/keepalived/notify.sh stop ad1 ${ad1_rt_id}"

}

vrrp_instance VI_2 {

 interface ens3

 state BACKUP

 virtual_router_id 52

 priority ${priority_map_2}

 unicast_src_ip ${private_ip}

 unicast_peer {

 ${peer_ip}

 ${peer2_ip}

 }

 notify_master "/usr/libexec/keepalived/notify.sh master ad2 ${ad2_rt_id}"

 notify_backup "/usr/libexec/keepalived/notify.sh backup ad2 ${ad2_rt_id}"

 notify_fault "/usr/libexec/keepalived/notify.sh fault ad2 ${ad2_rt_id}"

 notify_stop "/usr/libexec/keepalived/notify.sh stop ad2 ${ad2_rt_id}"

}

vrrp_instance VI_3 {

 interface ens3

 state BACKUP

 virtual_router_id 53

 priority ${priority_map_3}

 unicast_src_ip ${private_ip}

 unicast_peer {

 ${peer_ip}

 ${peer2_ip}

 }

 notify_master "/usr/libexec/keepalived/notify.sh master ad3 ${ad3_rt_id}"

 notify_backup "/usr/libexec/keepalived/notify.sh backup ad3 ${ad3_rt_id}"

 notify_fault "/usr/libexec/keepalived/notify.sh fault ad3 ${ad3_rt_id}"

 notify_stop "/usr/libexec/keepalived/notify.sh stop ad3 ${ad3_rt_id}"

}

Oracle Corporation, World Headquarters Worldwide Inquiries

500 Oracle Parkway Phone: +1.650.506.7000

Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0218

NAT Instance Configuration: Enabling Internet Access for Private Subnets
February 2018

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

