MySQL NDB Cluster 8.0

Abstract
This is the MySQL NDB Cluster 8.0 extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2022-05-09 (revision: 73149)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiii ittt e et ettt e et e et et eeeaaa s iX
1 General INFOMMALIONiiiii ettt e et e et et e e e et e e e e et e e e e nba s 1
2 NDB CIUSTET OVEIVIEWceeitieeeeiti ettt ettt ettt et e e et et e et e e e et et r et e e abneeeena e e eenans 5
2.1 NDB ClIUSLEr COre CONCEPLS ...eevtuieiiiii ettt ettt et e e et e e e e e eet e et eeb e e e e e e e ena e eeenens 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitionsc.occoviieeiiiineeens 9
2.3 NDB Cluster Hardware, Software, and Networking Requirementsoccoiiieeiiiinieeiennnnnn. 13
2.4 What iS NeW iN NDB CIUSEEIcoiitiiiiiii e 14
2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0 41
2.6 MySQL Server Using InnoDB Compared with NDB CIUSTErcccuviiiiiiiiiiiiiiieceii e a7
2.6.1 Differences Between the NDB and InnoDB Storage ENginescccoeevveviviineeeennnnnn. 47
2.6.2 NDB and INNODB WOTKIOAASccoiuuiiiiiiiiiiei et 48
2.6.3 NDB and InnoDB Feature Usage SUMMAIYcoeieuuiiieiiiiieieiie e e 49

2.7 Known Limitations Of NDB CIUSTETiiiiitiiiiiiii e e e e e e 50
2.7.1 Noncompliance with SQL Syntax in NDB CIUSEErccouuiiiiiiiiiiiiiiieceeii e 50
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limitsc.....cccuunnee. 53
2.7.3 Limits Relating to Transaction Handling in NDB Clustercccocoiiiiiiiiiiiiiiiiees 54
2.7.4 NDB Cluster Error Handlingcoouuuiioiiiie et 57
2.7.5 Limits Associated with Database Objects in NDB CIUSTerccccovviiiiiiiiiiiiineeciii, 57
2.7.6 Unsupported or Missing Features in NDB CIUSEErc...oviiiiiiiiiiiiiiiieci e 58
2.7.7 Limitations Relating to Performance in NDB CIUSEErcccuiiiiiiiiiiiiiiiiieeei e 59
2.7.8 I1ssues EXCIUSIVE t0 NDB CIUSTEIuiiiiiiiiiiiiii ettt e 59
2.7.9 Limitations Relating to NDB Cluster Disk Data StOragecccooveveiviieeiiiiiieeeiiineeens 60
2.7.10 Limitations Relating to Multiple NDB Cluster NOAESccc.uiieiiiiiiiiiiiiinieiiiiineeeenen 60
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0ccocovviiiiiiiiiineeiinnnnnn. 61

3 NDB CIUSEEr INSTAIALIONeevtiieeeit ettt et ettt ettt e e e e e e eaba e e ennes 63
3.1 Installation of NDB CIUSIEN ON LINUXuuuiiiiiiiieiiiii ettt e et e e et eeeeneneeees 65
3.1.1 Installing an NDB Cluster Binary Release on LiNUXccoiiiiiiiiiiniiiiiiiecceeecein 66
3.1.2 Installing NDB Cluster from RPMccoouuiiiiiiiiiiiii e 68
3.1.3 Installing NDB Cluster Using .deb Filesooiiiiiiiiiii e 72
3.1.4 Building NDB Cluster from Source on LINUXoociiiiiiiiiiieiiieecei e 73

3.2 Installing NDB Cluster 0N WINAOWSiiiiiiiiiiiiie ettt eeeenns 74
3.2.1 Installing NDB Cluster on Windows from a Binary Releaseccccooovvviiiiiiiiiiinnenes 74
3.2.2 Compiling and Installing NDB Cluster from Source on Windowscceuvieeeinnnnnn. 78
3.2.3 Initial Startup of NDB Cluster 0n WINAOWScocuuuiiiiiiiieiiiiieeeeii e e e eeeens 78
3.2.4 Installing NDB Cluster Processes as WIindOWS SErViCeScccuiiveiiiiinieiiiiinieeiiiinnnn, 81

3.3 Initial Configuration Of NDB CIUSTENuiiiiiiiiiiii e 83
3.4 Initial Startup Of NDB CIUSTETceuiiiiiiii et e 85
3.5 NDB Cluster Example with Tables and Dataccc.iviiiiiiiiiiiii e 86
3.6 Safe Shutdown and Restart 0f NDB CIUSTENuiiiiiiiiiiiiiiieeeii e 89
3.7 Upgrading and Downgrading NDB CIUSTENiiuuiiiiiiiie e 90
3.8 The NDB Cluster Auto-Installer (N0 longer SUPPOIEd)ocvevuiieieiiiieiii e 93
3.8.1 NDB Cluster Auto-Installer REQUIFEMENEScoouuuiiiiiiiieiiii e 93
3.8.2 Using the NDB Cluster AUtO-INSTAIIEriiiiiiiii e 95

4 Configuration Of NDB CIUSLENc.uuuiiiiii e et e e e e 117
4.1 Quick Test Setup Of NDB CIUSLETcuuuiiiiii ettt 117
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 120
4.2.1 NDB Cluster Data Node Configuration Parameterscccoveeveviineiiiiiineeiiiieeeeeinnnn. 120
4.2.2 NDB Cluster Management Node Configuration Parameterscccoeveveeviieeieinnneeens 127
4.2.3 NDB Cluster SQL Node and API Node Configuration Parameterscccccooeevvvneeens 128
4.2.4 Other NDB Cluster Configuration Parameterscoveeieiiiiiiieiiiieeiiieeeie e 129
4.2.5 NDB Cluster mysqgld Option and Variable Referenceccccooooviiiiiiiiiiiiiiiineeees 131

MySQL NDB Cluster 8.0

4.3 NDB Cluster Configuration FileSooiiiiiiiiii e 141
4.3.1 NDB Cluster Configuration: Basic EXamplec.ccoceiiiiiiiiiiiciee e 142
4.3.2 Recommended Starting Configuration for NDB CIUSEErc..coevviiiiiiieiiiiciiieecieeenn, 145
4.3.3 NDB Cluster Connection StHNGSc.uuiiiiiieiiieiii e e e e e e e e e e eens 148
4.3.4 Defining Computers in an NDB CIUSEETcc.uiiiiiiiciii e 149
4.3.5 Defining an NDB Cluster Management SEIVELccccuuveiuieeiiieeiiieeiie e eeie e eaens 150
4.3.6 Defining NDB Cluster Data NOUEScccuiviiiiiiiieiiiiecie e e e e e aaees 157
4.3.7 Defining SQL and Other APl Nodes in an NDB CIUStErccccvvvviiiiiiiiiiiiiec e, 240
4.3.8 DEfiNiNg the SYSIEM ..o e e e 249
4.3.9 MySQL Server Options and Variables for NDB CIUSterc.cccceviviiiiiiieiiiieeeieeeennn, 250
4.3.10 NDB Cluster TCP/IP CONNECLIONSccuuuiiiiiiiiieeiiii et e et e et e eeeai e e e eain s eeeees 313
4.3.11 NDB Cluster TCP/IP Connections Using Direct Connectionscccocvvvvvevinieiinnnns 318
4.3.12 NDB Cluster Shared-Memory CONNECLIONSoeiuuieiiiiiiiiieeci e e e 319
4.3.13 Data Node Memory Managementccuuviiuiieiiiieeiieeeie e e e e e e e e e e e e e ranes 325
4.3.14 Configuring NDB Cluster Send Buffer Parameterscccooeviiiiiiiieiiiciieeeceeeen, 329

4.4 Using High-Speed Interconnects with NDB CIUSEErccovuiiiiiiiiiieci e 330

R 1B = R @ 0TS =T g md (o [= = 331

5.1 ndbd — The NDB Cluster Data NOde DaBmMONcccuuiiiiiiiiieiiiiieee e 332

5.2 ndbinfo_select_all — Select From ndbinfo Tablesccooiiiiiiii i 343

5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)cccoovviiiieiiiieeins 348

5.4 ndb_mgmd — The NDB Cluster Management Server Daemoncoovevuiveiiiieiiiieeiieenins 349

5.5 ndb_mgm — The NDB Cluster Management ClIentcooevviiiiiiiieiii e 361

5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 367

5.7 ndb_config — Extract NDB Cluster Configuration Informationccccocciiiiiiiiiiiicineennn, 373

5.8 ndb_delete_all — Delete All Rows from an NDB Tablecccooviiiiiiiiiciin e 386

5.9 ndb_desc — Describe NDB TabIESc.uiiiiiiiiieei e e e e 391

5.10 ndb_drop_index — Drop Index from an NDB Tablecooviiiiiiiiiiiiicce e 401

5.11 ndb_drop_table — Drop an NDB Tableooiiiiiiiiiie e 406

5.12 ndb_error_reporter — NDB Error-Reporting Utilityc.coiiiiiiiiiiiiee e, 410

5.13 ndb_import — Import CSV Data INto NDBcouuiiiiiiiiii e e e 412

5.14 ndb_index_stat — NDB Index Statistics ULIlitycccoiiiiiiiiiiiiii e, 430

5.15 ndb_move_data — NDB Data Copy ULIlItYccoviiiiiiiiiic e 438

5.16 ndb_perror — Obtain NDB Error Message Informationccccceeviiiiiiiiiiicii v, 444

5.17 ndb_print_backup_file — Print NDB Backup File Contentscccccoveviiiiiiiieciiicceeeeenn, 447

5.18 ndb_print_file — Print NDB Disk Data File CONtentsccccooviiiiiiiiiiiiiicciece e, 452

5.19 ndb_print_frag_file — Print NDB Fragment List File Contentscccooceiveiiiieiiiniecieeennnn, 452

5.20 ndb_print_schema_file — Print NDB Schema File Contentscccoovviiveiiineviii e, 453

5.21 ndb_print_sys_file — Print NDB System File CONtentscccccoiieiiiiiiiiieeii e 454

5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo LOgcccocvvvvvvinnnnnn. 454

5.23 ndb_restore — Restore an NDB Cluster Backupccccovvviiiiiii i, 457
5.23.1 Restoring an NDB Backup to a Different Version of NDB Clusterccceeeene.. 485
5.23.2 Restoring to a different number of data nodesccoeeeiiiiiii i, 486
5.23.3 Restoring from a backup taken in parallelccooooiiiiiiiii 490

5.24 ndb_select_all — Print Rows from an NDB Tablec.cooiiiiiiiiiic e 491

5.25 ndb_select_count — Print Row Counts for NDB Tablesccccoveiiiiiiiiiii e, 498

5.26 ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED) 502

5.27 ndb_show_tables — Display List of NDB Tablesccccoviiiiiiiiiiiiiii e, 506

5.28 ndb_size.pl — NDBCLUSTER Size Requirement EStimatorccoeveviiieiiii i 511

5.29 ndb_top — View CPU usage information for NDB threadscccccciiiiiiiiiii i 514

5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Statusc.cccceveviiieiiiieiiineeiins 520

5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster 526

6 Management Of NDB CIUSTETuuiiiiiii et e e e e e e e e e e et e e et e eanaeeees 531

6.1 Commands in the NDB Cluster Management Clentcccooiviiiiiiiieiiin e 533

6.2 NDB ClUSEr LOG MESSATES ...ucvvuneiiieiiiiieiieee e e e e e e e e e e et e e e et e e et e e et e e st eeaneeenans 540

MySQL NDB Cluster 8.0

6.2.1 NDB Cluster: Messages in the CIUSter LOgcccouiiiiiiiiiieiin e, 540
6.2.2 NDB Cluster Log StartUp MESSAGESuuieiuuiiiiieiiieeeiieeiie e e e et e et e et e e e eaenns 555
6.2.3 Event Buffer Reporting in the CIUSIEr LOGccvviiiiiiiiiicii e 556
6.2.4 NDB Cluster: NDB TranSpOMEr EITOIScc.uiiiiiieeiieeiiieeee e eeen e e et e et e eaa e eens 557
6.3 Event Reports Generated in NDB CIUSIENcciuuiiiiiieiii e e e e e e e e eaa e 558
6.3.1 NDB Cluster Logging Management COmmMandScooevuuieiinieiiiieeeieeiiiieeieeeaneens 560
6.3.2 NDB ClIUStEr LOG EVENLSiiiiiiiiii et e e et e e e e e e eens 562
6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client 568
6.4 Summary of NDB Cluster Start PRASescoiiuiiiiiiiii i 571
6.5 Performing a Rolling Restart of an NDB CIUSLErcoovviiiiiiiiiii e 573
6.6 NDB Cluster Single USEI MOUEc.uiiiiiiiie e e e e e e e e 575
6.7 Adding NDB Cluster Data NOdes ONlINEooiiiiiiiiiiiiicce e e 576
6.7.1 Adding NDB Cluster Data Nodes Online: General ISSUEScceveviiieiiiieiiiniennnanns 576
6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedurecccooevveeviiieviieninnenn, 578
6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Exampleccoccoeeiiiiieiiieeinnns 579
6.8 Online Backup Of NDB ClIUSEELciuuiiiiiiei e e e e e e e e e e eaens 587
6.8.1 NDB Cluster Backup CONCEPLSuuiviiiiiiiieii et e e e e e e e e e e eeas 587
6.8.2 Using The NDB Cluster Management Client to Create a Backupccccoevvvvevnnnnnen. 588
6.8.3 Configuration for NDB CIUSter BACKUPSccuuiviiniiiieeiiiietiieeeieeeei e e e e e e e eanaeeaen 592
6.8.4 NDB Cluster Backup Troubleshootingcccoiiiiiiiiiiiii e, 592
6.8.5 Taking an NDB Backup with Parallel Data NOJEeSccceeeviiiiiiiiiiieii e, 593
6.9 MySQL Server Usage for NDB CIUSLENc..uiiiiieiiiieie e e e e e e e 593
6.10 NDB Cluster Disk Data TablesScooeuuiiiiiiiiiei e e eaeans 595
6.10.1 NDB Cluster Disk Data ODBJECESccuuuiiiiiiiii e e e e 595
6.10.2 NDB Cluster Disk Data Storage ReqUIrEMENLScc.uveviiieiiieiiiieiiieeiee e eeaeeeanns 600
6.11 Online Operations with ALTER TABLE in NDB CIUSterccciviiiiiiiiiii e, 601
6.12 Privilege Synchronization and NDB_STORED USERccccooviiiiiiiii e, 604
6.13 NDB API Statistics Counters and Variablescooiiiiiiiiiiiiii e 605
6.14 ndbinfo: The NDB Cluster Information Databaseocoouiiiiiiiiiiiiiii e 618
6.14.1 The ndbinfo arbitrator_validity _detail Tablec.ccoiiiiiiiii e, 623
6.14.2 The ndbinfo arbitrator_validity_ summary Tablecccoiiiiiiiiii e, 624
6.14.3 The ndbinfo backup_id Tablecccouiiiiii i 624
6.14.4 The ndbinfo BIODS TabIEccoiiiii e 625
6.14.5 The ndbinfo BIOCKS Tablecoouuiiii e 626
6.14.6 The ndbinfo cluster_locks Tablec.oiiiiiiiiii e 626
6.14.7 The ndbinfo cluster_operations Tableccocoii i, 628
6.14.8 The ndbinfo cluster_transactions Tablecccoooiiiiiiiiii e, 629
6.14.9 The ndbinfo config_Nodes Tablecc.iiiiiiiiii e 631
6.14.10 The ndbinfo config_params Tablecccooiiiiiii e, 631
6.14.11 The ndbinfo config_values Tableccooiiiiiii e 632
6.14.12 The ndbinfo counters Tableoiiiiiiiiiii e 635
6.14.13 The ndbinfo cpudata Tablecccoeuiiiiiii e 637
6.14.14 The ndbinfo cpudata_1SeC Tablecccuiiiiiiiiiiii e 637
6.14.15 The ndbinfo cpudata_20SeC Tablecc.iiiiiiiiii e 638
6.14.16 The ndbinfo cpudata 50ms Tablec.cooiiiiiiiii e, 639
6.14.17 The ndbinfo cpuinfo Table ..o 640
6.14.18 The ndbinfo cpustat Tablecc.ooiiiiiii i 640
6.14.19 The ndbinfo cpustat 50mMs Tableooiiiiiiiiii e 641
6.14.20 The ndbinfo cpustat_1SeC Tableccoiiiiiiiiii e 642
6.14.21 The ndbinfo cpustat 20seC Tableccooiiiiiiiii i, 643
6.14.22 The ndbinfo dictionary_columns Tableccooeiiiiiiiii e 644
6.14.23 The ndbinfo dictionary_tables Tableccoooiiiiiiiii e, 645
6.14.24 The ndbinfo dict_obj info Tablecoiiiiiii e 647
6.14.25 The ndbinfo dict_obj tree Tableccooiiiiiiiii e 648

MySQL NDB Cluster 8.0

6.14.26 The ndbinfo dict_obj _types Tablecooiiiiiii e 651
6.14.27 The ndbinfo disk_write_speed _base Tablecccccoviiiiiiiiii i, 652
6.14.28 The ndbinfo disk_write_speed _aggregate Tableccccoceiviiiiiiii i, 652
6.14.29 The ndbinfo disk_write_speed_aggregate node Tablecccoveviieiiiiiiiiiieennenn, 653
6.14.30 The ndbinfo diskpagebuffer Tablecccooiiiiii i, 654
6.14.31 The ndbinfo diskstat TabIeoiiiiiiiiiei e 656
6.14.32 The ndbinfo diskstats _1seC Tablecoooiiiiiiiii e, 657
6.14.33 The ndbinfo error_messages Tableccooiiiiiii i, 658
6.14.34 The ndbinfo events Table ... 660
6.14.35 The ndbinfo files Table ... 660
6.14.36 The ndbinfo foreign_keys Tableccooiiiiiiiiii e, 661
6.14.37 The ndbinfo hash_maps Tablecooiiiiiii i 662
6.14.38 The ndbinfo hwinfo Table ... e 662
6.14.39 The ndbinfo index_columns Tablecooiiiiiii i 663
6.14.40 The ndbinfo index_stats Tablecc.oiiiiiiiii e 664
6.14.41 The ndbinfo locks_per _fragment Tableccoooviiiiiiiiiii e, 664
6.14.42 The ndbinfo logbuffers Table ..o 666
6.14.43 The ndbinfo 10gSPaces TabIEoiiiiiiiiiii e 667
6.14.44 The ndbinfo membership Table ... 668
6.14.45 The ndbinfo memoryusage Tableccoiiiiiiiiii e 670
6.14.46 The ndbinfo memory_per_fragment Tableccoooiiiiiiiiii e, 671
6.14.47 The ndbinfo NOAES TabIEiiiiii e 673
6.14.48 The ndbinfo operations_per_fragment Tablecocoiiiiiiiii i, 675
6.14.49 The ndbinfo pgman_time_track stats Tableccooveiiiiiiiiii e 678
6.14.50 The ndbinfo processes Tablec.iiiiiiiii i 679
6.14.51 The ndbinfo resources Table ..o 681
6.14.52 The ndbinfo restart_iNfo Table ... 682
6.14.53 The ndbinfo server_0cks Tableciiiiiiiiii e 685
6.14.54 The ndbinfo server_operations Tablecccooiiiiii i, 687
6.14.55 The ndbinfo server_transactions Tableccoooiiiiiii i 689
6.14.56 The ndbinfo table_distribution_status Tablecccoiviiiiiiii e 690
6.14.57 The ndbinfo table_fragments Tableccooiiiiiii i, 691
6.14.58 The ndbinfo table_INfo Table ..o 692
6.14.59 The ndbinfo table_replicas Tablecooooiiiiii i 693
6.14.60 The ndbinfo tc_time_track stats Tablec.ccoiviiiiiiiii e, 694
6.14.61 The ndbinfo threadblocks Table ..o, 696
6.14.62 The ndbinfo threads Tableooiiiiiiiii e 696
6.14.63 The ndbinfo threadstat Tableoooviiiiiii e 697
6.14.64 The ndbinfo transporters Tableccoviiiiiiiii e 699

6.15 INFORMATION_SCHEMA Tables for NDB CIUSLEIuiiiiieiiiiiiiiiiiieieeeveeeiiiieenseeeeeeennnns 701
6.16 NDB Cluster and the Performance SChemacoouiiiiiiiiiiiiiii e 702
6.17 Quick Reference: NDB Cluster SQL Statementscccuveiiiiiiiiiieiieeie e cee e 703
6.18 NDB ClUSIEIr SECUILY ISSUES ...uuuiiiiiiiiiciii et e e e e e e e e e e e e e e e e e e eaanas 710
6.18.1 NDB Cluster Security and Networking ISSUESccveiiiiviiiiiiiieieee e 710
6.18.2 NDB Cluster and MySQL PriVIIEgEScccvuiiiiiiiiieee et 714
6.18.3 NDB Cluster and MySQL Security Proceduresccoeuuiieiiiieiiiieeiii e 716
A1) = T O 013 =T g = =T o] o= o1 o P 719
7.1 NDB Cluster Replication: Abbreviations and Symbolscccooiiiiiiii e, 721
7.2 General Requirements for NDB Cluster Replicationc.coevviiiiiiiiciiiiecin e 721
7.3 Known Issues in NDB Cluster RepliCAtioNcocuuiiiiiiieiiieiiii e e e 722
7.4 NDB Cluster Replication Schema and Tablescooi i 729
7.5 Preparing the NDB Cluster for Replicationcooiiiiiiiiiiiii e 737
7.6 Starting NDB Cluster Replication (Single Replication Channel)ccocooviiiiiiiiiiiieeens 739
7.7 Using Two Replication Channels for NDB Cluster Replicationcccoeeviiiiiiiiiiineninee, 741

Vi

MySQL NDB Cluster 8.0

7.8 Implementing Failover with NDB Cluster Replicationcoovviiiiiiiiii e 742

7.9 NDB Cluster Backups With NDB Cluster Replicationccoooevuiiiiiiiiiiii e 744
7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source

211 =1V o T SN 747

7.9.2 Point-In-Time Recovery Using NDB Cluster Replicationc.occooveviiiiiiinieiieeennnn, 750

7.10 NDB Cluster Replication: Bidirectional and Circular Replicationcccoeeviiiiiiiineinnenn. 751

7.11 NDB Cluster Replication Conflict RESOIULIONccooviiiiiiiiii e, 756

F N | @ T) (=T g AN S 775

Vii

viii

Preface and Legal Notices

Licensing information—MySQL NDB Cluster 8.0. If you are using a Commercial release of MySQL
NDB Cluster 8.0, see the MySQL NDB Cluster 8.0 Commercial Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Commercial release. If you are using a Community release of MySQL NDB Cluster 8.0,
see the MySQL NDB Cluster 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf

Documentation Accessibility

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 General Information

MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 8.0 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster 8.0
users who build from source should use the sources provided for MySQL 8.0 and build with the options
required to provide NDB support. (Locations where the sources can be obtained are listed later in this
section.)

Important

MySQL NDB Cluster does not support InnoDB Cluster, which must be deployed
using MySQL Server 8.0 with the | nnoDB storage engine as well as additional
applications that are not included in the NDB Cluster distribution. MySQL Server
8.0 binaries cannot be used with MySQL NDB Cluster. For more information about
deploying and using InnoDB Cluster, see MySQL AdminAPI. Section 2.6, “MySQL
Server Using InnoDB Compared with NDB Cluster”, discusses differences between
the NDB and | nnoDB storage engines.

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysqgl.com/support/
supportedplatforms/cluster.html.

Availability. NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysqgl.com/downloads/cluster/.

NDB Cluster release numbers. NDB 8.0 follows the same release pattern as the MySQL Server 8.0
series of releases, beginning with MySQL 8.0.13 and MySQL NDB Cluster 8.0.13. In this Manual and other
MySQL documentation, we identify these and later NDB Cluster releases employing a version number that
begins with “NDB”. This version number is that of the NDBCLUSTER storage engine used in the NDB 8.0
release, and is the same as the MySQL 8.0 server version on which the NDB Cluster 8.0 release is based.

Version strings used in NDB Cluster software. The version string displayed by the nmysql client
supplied with the MySQL NDB Cluster distribution uses this format:

nysql - nysqgl _server _versi on-cl uster

nysql _server _ver si on represents the version of the MySQL Server on which the NDB Cluster release
is based. For all NDB Cluster 8.0 releases, this is 8. 0. n, where n is the release number. Building from
source using - DW TH_NDBCLUSTER or the equivalent adds the - cl ust er suffix to the version string. (See
Section 3.1.4, “Building NDB Cluster from Source on Linux”, and Section 3.2.2, “Compiling and Installing
NDB Cluster from Source on Windows”.) You can see this format used in the nysql client, as shown here:

$> nysql

Wel come to the MySQL nonitor. Conmmands end with ; or \g.
Your MySQL connection id is 2

Server version: 8.0.29-cluster Source distribution

Type 'help;' or "\h' for help. Type '\c' to clear the buffer.

nysqgl > SELECT VERSI ON()\ G

kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 1 r ow kkkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x
VERSI ON(): 8.0.29-cluster

1 rowin set (0.00 sec)

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster

The first General Availability release of NDB Cluster using MySQL 8.0 is NDB 8.0.19, using MySQL 8.0.19.

The version string displayed by other NDB Cluster programs not normally included with the MySQL 8.0
distribution uses this format:

nysql - nysql _server _versi on ndb-ndb_engi ne_versi on

nysql _server _ver si on represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 8.0 releases, this is 8. 0. n, where n is the release number.
ndb_engi ne_ver si on is the version of the NDB storage engine used by this release of the NDB Cluster
software. For all NDB 8.0 releases, this number is the same as the MySQL Server version. You can see
this format used in the output of the SHONcommand in the ndb_ngmclient, like this:

ndb_ngnm> SHOW
Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @0.0.10.6 (nysql-8.0.29 ndb-8.0.30, Nodegroup: 0, *)
id=2 @.0.0.10.8 (nysql-8.0.29 ndb-8.0.30, Nodegroup: 0)

[ndb_ngnd(MGM] 1 node(s)
i d=3 @.o0.0.10.2 (nysqgl-8.0.29 ndb-8.0.30)

[mysql d(API)] 2 node(s)
i d=4 @.o0.0.10.10 (nysql-8.0.29 ndb-8.0.30)
i d=5 (not connected, accepting connect from any host)

Compatibility with standard MySQL 8.0 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster (see
Section 2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome, but this also
means that you are very unlikely to be able to switch an existing application datastore—that currently uses,
for example, Myl SAMor | nnoDB—to use the NDB storage engine without allowing for the possibility of
changes in schemas, queries, and applications. A nysql d compiled without NDB support (that is, built
without - DW TH_NDBCLUSTER_STORAGE_ENG NE or its alias - DW TH_NDBCLUSTER) cannot function as
a drop-in replacement for a nysql d that is built with it.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed from
https://github.com/mysqgl/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are licensed
under the GPL. For information about obtaining MySQL sources using Git and building them yourself, see
Installing MySQL Using a Development Source Tree.

Note
As with MySQL Server 8.0, NDB Cluster 8.0 releases are built using CVake.

NDB Cluster 8.0 is available beginning with NDB 8.0.19 as a General Availability release, and is
recommended for new deployments. NDB Cluster 7.6 and 7.5 are previous GA releases still supported
in production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6. For similar
information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB Cluster 7.4 and 7.3 are
previous GA releases still supported in production, although we recommend that new deployments for
production use NDB Cluster 8.0; see MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

The contents of this chapter are subject to revision as NDB Cluster continues to evolve. Additional
information regarding NDB Cluster can be found on the MySQL website at http://www.mysql.com/products/
cluster/.

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

Additional Resources. More information about NDB Cluster can be found in the following places:

» For answers to some commonly asked questions about NDB Cluster, see Appendix A, NDB Cluster
FAQ.

e The NDB Cluster Forum: https://forums.mysqgl.com/list.php?25.

» Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

https://forums.mysql.com/list.php?25
http://www.planetmysql.org/

Chapter 2 NDB Cluster Overview

Table of Contents

2.1 NDB ClIUSLEr COre COMNCEPLS ...eetiueiiiti ettt ettt ettt e et e et et e b e e et et e et e eb e et e ab e e e enbaeeeenanns 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitionsccccoovvviviiieiiiiinneecinnnnn. 9
2.3 NDB Cluster Hardware, Software, and Networking Requirementscccoevveeiiiiiiiiiiii e 13
2.4 What iS NeW iN NDB CIUSTEI .. .couuiiiiiiiii et e ettt e e et e e et e e eeri e aees 14
2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0cccceeevevennen. 41
2.6 MySQL Server Using InnoDB Compared with NDB CIUSTENuiiiiiiiiiiiiiiiiieceii e a7
2.6.1 Differences Between the NDB and InnoDB Storage ENginesccoovvveiviiiiiiiiiniciiiinneeenn, a7
2.6.2 NDB and INNODB WOTKIOAASccoouuiiiiiiiiieeiiie e 48
2.6.3 NDB and InnoDB Feature USage SUMIMANYoveiiiiiieiiiiiieeiiiia et e e e e e 49
2.7 Known Limitations Of NDB CIUSTETciiiiiiiiiiiie ittt e e e e e eneas 50
2.7.1 Noncompliance with SQL Syntax in NDB CIUSEENuiiiiiiiiiiiiiiiieecei e 50
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limitscccccoevvviviiierennnnn. 53
2.7.3 Limits Relating to Transaction Handling in NDB CIUSEETccouuiiiiiiiiiiieiiiiieeeeii e 54
2.7.4 NDB Cluster Error HAnAINGcoouiiniiei e e e 57
2.7.5 Limits Associated with Database Objects in NDB CIUSEEroveiiiiiiiiiiiiiiieciiiieeeeieeees 57
2.7.6 Unsupported or Missing Features in NDB CIUSEENcoiiiiiiiiiiiiiieiei e 58
2.7.7 Limitations Relating to Performance in NDB CIUSTENoviiiiiiiiiiiiiieie e 59
2.7.8 1ssues EXCIUSIVE 10 NDB CIUSTETiiiiiiieiiiiii et e e e e e e eeees 59
2.7.9 Limitations Relating to NDB Cluster Disk Data StOragecooeeevviiieiiiinneiiiineeceiineeeenenn 60
2.7.10 Limitations Relating to Multiple NDB CIUSter NOUEScuuiiiiiiiiiiiiiiieecii e 60
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0cccoovviiiiiiiiiiiiiiieeiiiieeees 61

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing system.
The shared-nothing architecture enables the system to work with very inexpensive hardware, and with a
minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms such
as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine called NDB
(which stands for “Network DataBase”). In our documentation, the term NDB refers to the part of the setup
that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the combination of one or
more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Figure 2.1 NDB Cluster Components

Clients/APIs
NDB
mysq| MySOL PHP Connector Connector %‘fgﬁ": Management
Client C API /3 /NET (NDBAPI) et
ndb_mgm
T 1'_1' AA 4
SQL Nodes i J
= = =
= = =
|MysaL | | MysaL | IM\}SQLI
mysqld mysqld mysqld
A A A
1 1 T
1 | bem——— q
[T e Rt 1l
——————————————————————— Al
H
Data Nodes - 11
— N
b T — R
|
— i y
ndbd ndbd S > »
I I S— F |»
< > r
NDB
" > — Management
> Server
—— — ndb_mgm
ndbd ndbd

All these programs work together to form an NDB Cluster (see Chapter 5, NDB Cluster Programs. When
data is stored by the NDB storage engine, the tables (and table data) are stored in the data nodes. Such
tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster. Thus, in a payroll
application storing data in a cluster, if one application updates the salary of an employee, all other MySQL
servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the nysql d server daemon, it differs in a number of critical
respects from the mysql d binary supplied with the MySQL 8.0 distributions, and the two versions of
nysqgl d are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage engine
and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,
this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling restarts
(in which all nodes are restarted in turn) are used in making configuration changes and software upgrades
(see Section 6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling restarts are also used as

part of the process of adding new data nodes online (see Section 6.7, “Adding NDB Cluster Data Nodes
Online”). For more information about data nodes, how they are organized in an NDB Cluster, and how
they handle and store NDB Cluster data, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”.

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Core Concepts

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality found
in the NDB Cluster management client and the ndb_r est or e program included in the NDB Cluster
distribution. For more information, see Section 6.8, “Online Backup of NDB Cluster”, and Section 5.23,
“ndb_restore — Restore an NDB Cluster Backup”. You can also use the standard MySQL functionality
provided for this purpose in nysql dunp and the MySQL server. See mysgldump — A Database Backup
Program, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing options,
but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes on a
single computer; for a computer on which one or more cluster nodes are being run
we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there are at least three
nodes, one of each of these types:

» Management node: The role of this type of node is to manage the other nodes within the NDB Cluster,
performing such functions as providing configuration data, starting and stopping nodes, and running
backups. Because this node type manages the configuration of the other nodes, a node of this type
should be started first, before any other node. A management node is started with the command
ndb_ngnd.

» Data node: This type of node stores cluster data. There are as many data nodes as there are fragment
replicas, times the number of fragments (see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”). For example, with two fragment replicas, each having two fragments, you
need four data nodes. One fragment replica is sufficient for data storage, but provides no redundancy;
therefore, it is recommended to have two (or more) fragment replicas to provide redundancy, and thus
high availability. A data node is started with the command ndbd (see Section 5.1, “ndbd — The NDB
Cluster Data Node Daemon”) or ndbnt d (see Section 5.3, “ndbmtd — The NDB Cluster Data Node
Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we refer to
NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored on disk; see
Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

* SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node is a
traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a nysql d process
started with the - - ndbcl ust er and - - ndb- connect st ri ng options, which are explained elsewhere
in this chapter, possibly with additional MySQL server options as well.

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Core Concepts

An SQL node is actually just a specialized type of APl node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_r est or e utility that is used
to restore a cluster backup. It is possible to write such applications using the NDB API. For basic
information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes. The
use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and partitions
in NDB Cluster, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual
communication links between nodes. NDB Cluster is currently designed with the intention that data nodes
are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to provide a
single point of configuration, all configuration data for the cluster as a whole is located in one configuration
file.

The management server manages the cluster configuration file and the cluster log. Each node in the
cluster retrieves the configuration data from the management server, and so requires a way to determine
where the management server resides. When interesting events occur in the data nodes, the nodes
transfer information about these events to the management server, which then writes the information to the
cluster log.

In addition, there can be any number of cluster client processes or applications. These include standard
MySQL clients, NDB-specific API programs, and management clients. These are described in the next few
paragraphs.

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in PHP,
Perl, C, C++, Java, Python, and so on. Such client applications send SQL statements to and receive
responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that they interact
with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability

to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use j dbc: mysql : | oadbal ance: // URLs (improved in
Connector/J 5.1.7) to achieve load balancing transparently; for more information about using Connector/J
with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from the
NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster, using
the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes where an
SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector for
Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-relational
mapping persistence frameworks such as Hibernate and JPA that connect directly to NDBCLUSTER, and so
does not require access to a MySQL Server. See Java and NDB Cluster, and The Clusterd API and Data
Object Model, for more information.

NDB Cluster also supports applications written in JavaScript using Node.js. The MySQL Connector for
JavaScript includes adapters for direct access to the NDB storage engine and as well as for the MySQL
Server. Applications using this Connector are typically event-driven and use a domain object model similar

https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html
https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

in many ways to that employed by ClusterJ. For more information, see MySQL NoSQL Connector for
JavasScript.

Management clients. These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),
showing node versions and status, starting and stopping backups, and so on. An example of this type
of program is the ndb_ngmmanagement client supplied with NDB Cluster (see Section 5.5, “ndb_mgm
— The NDB Cluster Management Client”). Such applications can be written using the MGM API, a C-
language API that communicates directly with one or more NDB Cluster management servers. For more
information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as nysql d server options and variables
relating to NDB Cluster. MySQL Cluster Manager 1.4.8 provides experimental support for NDB 8.0. See
MySQL Cluster Manager 1.4.8 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so
on), priority, and severity. A complete listing of all reportable events may be found in Section 6.3, “Event
Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

» Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.
* Node log: A separate log which is also kept for each individual node.
Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which work
together to ensure that a consistent view of the cluster's data is maintained. These are shown in the
following list:

» Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take place
for all nodes in the cluster more or less concurrently. An LCP usually occurs every few minutes; the
precise interval varies, and depends upon the amount of data stored by the node, the level of cluster
activity, and other factors.

NDB 8.0 supports partial LCPs, which can significantly improve performance under some conditions.
See the descriptions of the Enabl eParti al Lcp and Recover yWr k configuration parameters which
enable partial LCPs and control the amount of storage they use.

» Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global checkpoints,
see NDB Cluster Data Node File System Directory.

2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

A number of concepts central to an understanding of this topic are discussed in the next few paragraphs.

Datanode. An ndbd or ndbnt d process, which stores one or more fragment replicas—that is, copies of
the partitions (discussed later in this section) assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple data
node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an ndbd or
ndbnt d process; where mentioned, management nodes (ndb_ngnd processes) and SQL nodes (nysql d
processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores patrtitions, or sets of fragment
replicas (see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number of
data nodes and of the number of fragment replicas (NoOf Repl i cas configuration parameter), as shown
here:

[# of node groups] = [# of data nodes] / NoOf Replicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOf Repl i cas is setto 1 in the
config.ini file,2 node groups if NoOf Repl i cas is setto 2, and 1 node group if NoOf Repl i cas is set
to 4. Fragment replicas are discussed later in this section; for more information about NoOf Repl i cas, see
Section 4.3.6, “Defining NDB Cluster Data Nodes”.

Note
All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping at
least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and the
number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDMthreads]

When using data nodes running ndbnt d, the number of LDM threads is controlled by the setting for
MaxNoOf Execut i onThr eads. When using ndbd there is a single LDM thread, which means that there
are as many cluster partitions as nodes participating in the cluster. This is also the case when using
ndbnt d with MaxNoOf Execut i onThr eads set to 3 or less. (You should be aware that the number of
LDM threads increases with the value of this parameter, but not in a strictly linear fashion, and that there
are additional constraints on setting it; see the description of MaxNoCOf Execut i onThr eads for more
information.)

NDB and user-defined partitioning. = NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LI NEAR KEY patrtitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 * [nunber
of LDM threads] * [nunber of node groups],the number of node groups in an NDB Cluster
being determined as discussed previously in this section. When running ndbd for data node processes,
setting the number of LDM threads has no effect (since Thr eadConf i g applies only to ndbnt d);

10

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

in such cases, this value can be treated as though it were equal to 1 for purposes of performing this
calculation.

See Section 5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 2.7, “Known
Limitations of NDB Cluster”, and Partitioning Limitations Relating to Storage Engines.

Fragment replica. This is a copy of a cluster partition. Each node in a node group stores a fragment
replica. Also sometimes known as a patrtition replica. The number of fragment replicas is equal to the
number of nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several fragment
replicas.

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two node
groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node
group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires an
ndb_nygnd process for cluster management and at least one SQL node to access
the data stored by the cluster, these have been omitted from the figure for clarity.

Figure 2.2 NDB Cluster with Two Node Groups

Node Group O

Partition O Partition O
(Primary fragment replica) (Backup fragment replica)

] —]

Node 1 Node 2
Partition 2 Partition 2
(Backup fragment replica) (Primary fragment replica)
Node Group 1
Partition 1 Partition 1
(Primary fragment replica) (Backup fragment replica)

]]

Node 3 Node 4
Partition 3 Partition 3
(Backup fragment replica) (Primary fragment replica)

11

https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

+ Partition O is stored on node group O; a primary fragment replica (primary copy) is stored on node 1, and
a backup fragment replica (backup copy of the partition) is stored on node 2.

 Partition 1 is stored on the other node group (node group 1); this partition's primary fragment replica is
on node 3, and its backup fragment replica is on node 4.

* Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed from
that of Partition O; for Partition 2, the primary fragment replica is stored on node 2, and the backup on
node 1.

« Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed from
those of partition 1. That is, its primary fragment replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node group
participating in the cluster has at least one node operating, the cluster has a complete copy of all data and
remains viable. This is illustrated in the next diagram.

Figure 2.3 Nodes Required for a 2x2 NDB Cluster

Node Group 0
«——-(}i-——>»

L ‘h —h. L
MNode 1 MNode 2
A A
Y \J

—_—
L . |
o= = =¥y = —
Node 3 Node 4
Node Group 1

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at least
one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a single
node group fail, the combination consisting of the remaining two nodes in the other node group is not
sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide access to a
complete set of all NDB Cluster data.

The maximum number of node groups supported for a single NDB Cluster instance is 48.

12

NDB Cluster Hardware, Software, and Networking Requirements

2.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data storage
is done in memory. (It is possible to reduce this requirement using Disk Data tables—see Section 6.10,
“NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple and faster CPUs
can enhance performance. Memory requirements for other NDB Cluster processes are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require any
unusual modules, services, applications, or configuration to support NDB Cluster. For supported operating
systems, a standard installation should be sufficient. The MySQL software requirements are simple: all that
is needed is a production release of NDB Cluster. It is not strictly necessary to compile MySQL yourself
merely to be able to use NDB Cluster. We assume that you are using the binaries appropriate to your
platform, available from the NDB Cluster software downloads page at https://dev.mysgl.com/downloads/
cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard topology,
and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or
router to provide network connectivity for the cluster as a whole. We strongly recommend that an NDB
Cluster be run on its own subnet which is not shared with machines not forming part of the cluster for the
following reasons:

» Security. Communications between NDB Cluster nodes are not encrypted or shielded in any way.
The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster on a
protected network. If you intend to use NDB Cluster for Web applications, the cluster should definitely
reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or elsewhere.

See Section 6.18.1, “NDB Cluster Security and Networking Issues”, for more information.

» Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB Cluster not only
helps protect against unauthorized access to NDB Cluster data, it also ensures that NDB Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single point
of failure; many device drivers support failover for such communication links.

Network communication and latency. = NDB Cluster requires communication between data nodes

and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to execute
gueries and updates. Communication latency between these processes can directly affect the observed
performance and latency of user queries. In addition, to maintain consistency and service despite the

silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat an extended
loss of communication from a node as node failure. This can lead to reduced redundancy. Recall that, to
maintain data consistency, an NDB Cluster shuts down when the last node in a node group fails. Thus, to
avoid increasing the risk of a forced shutdown, breaks in communication between nodes should be avoided
wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the failed
node. Data node recovery requires synchronization of the failed node's data from a surviving data node,
and re-establishment of disk-based redo and checkpoint logs, before the data node returns to service. This
recovery can take some time, during which the Cluster operates with reduced redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible if the
node is overloaded, has insufficient machine CPU due to sharing with other programs, or is experiencing
delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat the node that is
slow to respond as failed.

13

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in NDB Cluster

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as Hear t beat | nt er val DbDb and Hear t beat | nt er val DbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be expected
in a LAN environment (on the order of 100 us), timeout parameters must be increased to ensure that any
allowed periods of latency periods are well within configured timeouts. Increasing timeouts in this way has
a corresponding effect on the worst-case time to detect failure and therefore time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer a
range of latencies, as well as redundancy with slower failover times. Individual link failures may require
route changes to propagate before end-to-end connectivity is restored. At the TCP level this can appear as
large latencies on individual channels. The worst-case observed TCP latency in these scenarios is related
to the worst-case time for the IP layer to reroute around the failures.

2.4 What is New in NDB Cluster

The following sections describe changes in the implementation of NDB Cluster in MySQL NDB Cluster
8.0 through 8.0.30, as compared to earlier release series. NDB Cluster 8.0 is available as a General
Availability (GA) release, beginning with NDB 8.0.19. NDB Cluster 7.6 and 7.5 are previous GA releases
still supported in production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6.
For similar information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB Cluster 7.4 and
7.3 are previous GA releases still supported in production, although we recommend that new deployments
for production use NDB Cluster 8.0; see MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

What is New in NDB Cluster 8.0

Major changes and new features in NDB Cluster 8.0 which are likely to be of interest are shown in the
following list:

» Compatibility enhancements. The following changes reduce longstanding nonessential differences
in NDB behavior as compared to that of other MySQL storage engines:

e Development in parallel with MySQL server. Beginning with this release, MySQL NDB Cluster
is being developed in parallel with the standard MySQL 8.0 server under a new unified release model
with the following features:

» NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree.
» The numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0.

« Building the source with NDB support appends - cl ust er to the version string returned by nysql -
V, as shown here:

$> nysql -V
nmysql Ver 8.0.30-cluster for Linux on x86_64 (Source distribution)

NDB binaries continue to display both the MySQL Server version and the NDB engine version, like
this:

$> ndb_ngm -V
M/SQL distrib nysql-8.0.29 ndb-8.0.30, for Linux (x86_64)

14

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

What is New in NDB Cluster 8.0

In MySQL Cluster NDB 8.0, these two version numbers are always the same.

To build the MySQL 8.0 source with NDB Cluster support, use the CMake option -
DW TH_NDBCLUSTER.

e Platform support notes. NDB 8.0 makes the following changes in platform support:

« NDBCLUSTER no longer supports 32-bit platforms. Beginning with NDB 8.0.21, the NDB build
process checks the system architecture and aborts if it is not a 64-bit platform.

« Itis now possible to build NDB from source for 64-bit ARMCPUSs. Currently, this support is source-
only, and we do not provide any precompiled binaries for this platform.

« Database and table names. NDB 8.0 removes the previous 63-byte limit on identifiers for
databases and tables. These identifiers can now use up to 64 bytes, as for such objects using other
MySQL storage engines. See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster
8.0".

* Generated names for foreign keys. NDB now uses the patternt bl _nane_f k_Nfor naming
internally generated foreign keys. This is similar to the pattern used by | nnoDB.

e Schema and metadata distribution and synchronization. NDB 8.0 makes use of the MySQL
data dictionary to distribute schema information to SQL nodes joining a cluster and to synchronize new
schema changes between existing SQL nodes. The following list describes individual enhancements
relating to this integration work:

e Schema distribution enhancements. The NDB schema distribution coordinator, which handles
schema operations and tracks their progress, has been extended in NDB 8.0 to ensure that resources
used during a schema operation are released at its conclusion. Previously, some of this work was
done by the schema distribution client; this has been changed due to the fact that the client did not
always have all needed state information, which could lead to resource leaks when the client decided
to abandon the schema operation prior to completion and without informing the coordinator.

To help fix this issue, schema operation timeout detection has been moved from the schema
distribution client to the coordinator, providing the coordinator with an opportunity to clean up

any resources used during the schema operation. The coordinator now checks ongoing schema
operations for timeout at regular intervals, and marks participants that have not yet completed a given
schema operation as failed when detecting timeout. It also provides suitable warnings whenever

a schema operation timeout occurs. (It should be noted that, after such a timeout is detected, the
schema operation itself continues.) Additional reporting is done by printing a list of active schema
operations at regular intervals whenever one or more of these operations is ongoing.

As an additional part of this work, a new nysql d option - - ndb- schema- di st -ti meout makes it
possible to set the length of time to wait until a schema operation is marked as having timed out.

« Disk data file distribution. NDB Cluster 8.0.14, uses the MySQL data dictionary to make sure that
disk data files and related constructs such as tablespaces and log file groups are correctly distributed
between all connected SQL nodes.

* Schema synchronization of tablespace objects. When a MySQL Server connects as an
SQL node to an NDB cluster, it checks its data dictionary against the information found in the NDB
dictionary.

Previously, the only NDB objects synchronized on connection of a new SQL node were databases
and tables; MySQL NDB Cluster 8.0 also implements schema synchronization of disk data objects

15

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

What is New in NDB Cluster 8.0

including tablespaces and log file groups. Among other benefits, this eliminates the possibility of a
mismatch between the MySQL data dictionary and the NDB dictionary following a native backup and
restore, in which tablespaces and log file groups were restored to the NDB dictionary, but not to the
MySQL Server's data dictionary.

It is also no longer possible to issue a CREATE TABLE statement that refers to a nonexistent
tablespace. Such a statement now fails with an error.

Database DDL synchronization enhancements. Work done for NDB 8.0 insures that
synchronization of databases by newly joined (or rejoined) SQL nodes with those on existing SQL
nodes now makes proper use of the data dictionary so that any database-level operations (CREATE
DATABASE, ALTER DATABASE, or DROP DATABASE) that may have been misssed by this SQL node
are now correctly duplicated on it when it connects (or reconnects) to the cluster.

As part of the schema synchronization procedure performed when starting, an SQL node now
compares all databases on the cluster's data nodes with those in its own data dictionary, and if any
of these is found to be missing from the SQL node's data dictionary, the SQL Node installs it locally
by executing a CREATE DATABASE statement. A database thus created uses the default MySQL
Server database properties (such as those as determined by char act er _set dat abase and
col I ati on_dat abase) that are in effect on this SQL node at the time the statement is executed.

NDB metadata change detection and synchronization. NDB 8.0 implements a new mechanism
for detection of updates to metadata for data objects such as tables, tablespaces, and log file groups
with the MySQL data dictionary. This is done using a thread, the NDB metadata change monitor
thread, which runs in the background and checks periodically for inconsistencies between the NDB
dictionary and the MySQL data dictionary.

The monitor performs metadata checks every 60 seconds by default. The polling interval can be
adjusted by setting the value of the ndb_net adat a_check_i nt er val system variable; polling can
be disabled altogether by setting the ndb_net adat a_check system variable to OFF. The status
variable Ndb_net adat a_det ect ed_count shows the number of times since mysql d was last
started that inconsistencies have been detected.

NDB ensures that NDB database, table, log file group, and tablespace objects submitted by the
metadata change monitor thread during operations following startup are automatically checked for
mismatches and synchronized by the NDB binlog thread.

NDB 8.0 adds two status variables relating to automatic synchronization:

Ndb_rnet adat a_synced_count shows the number of objects synchronized automatically;

Ndb_rnet adat a_excl uded_count indicates the number of objects for which synchronization has
failed (prior to NDB 8.0.22, this variable was named Ndb_net adat a_bl ackl i st _si ze). In addition,
you can see which objects have been synchronized by inspecting the cluster log.

Setting the ndb_net adat a_sync system variable to t r ue overrides any settings that have been
made for ndb_net adat a_check_i nt erval and ndb_net adat a_check, causing the change
monitor thread to begin coninuous metadata change detection.

In NDB 8.0.22 and later, setting ndb_net adat a_sync to t r ue clears the list of objects for which
synchronization has failed previously, which means it is no longer necessary to discover individual

16

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database

What is New in NDB Cluster 8.0

tables or to re-trigger synchronization by reconnecting the SQL node to the cluster. In addition, setting
this variable to f al se clears the list of objects waiting to be retried.

Beginning with NDB 8.0.21, more detailed information about the current state of automatic
synchronization than can be obtained from log messages or status variables is provided by two new
tables added to the MySQL Performance Schema. The tables are listed here:

« ndb_sync_pendi ng_obj ect s: Contains information about database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary (and
which have not been excluded from automatic synchronization).

 ndb_sync_excl uded_obj ect s: Contains information about NDB database objects which have
been excluded because they cannot be synchronized between the NDB dictionary and the MySQL
data dictionary, and thus require manual intervention.

A row in one of these tables provides the database object's parent schema, name, and type. Types
of objects include schemas, tablespaces, log file groups, and tables. (If the object is a log file group
or tablespace, the parent schema is NULL.) In addition, the ndb_sync_excl uded_obj ect s table
shows the reason for which the object has been excluded.

These tables are present only if NDBCLUSTER storage engine support is enabled. For more
information about these tables, see Performance Schema NDB Cluster Tables.

Changes in NDB table extra metadata. The extra metadata property of an NDB table is used

for storing serialized metadata from the MySQL data dictionary, rather than storing the binary
representation of the table as in previous versions. (This was a . f r mfile, no longer used by the
MySQL Server—see MySQL Data Dictionary.) As part of the work to support this change, the
available size of the table's extra metadata has been increased. This means that NDB tables created
in NDB Cluster 8.0 are not compatible with previous NDB Cluster releases. Tables created in previous
releases can be used with NDB 8.0, but cannot be opened afterwards by an earlier version.

This metadata is accessible using the NDB API methods get Ext r aMet adat a() and
set ExtraMet adat a() .

For more information, see Section 3.7, “Upgrading and Downgrading NDB Cluster”.

On-the-fly upgrades of tables using .frm files. A table created in NDB 7.6 and earlier contains
metadata in the form of a compressed . f r mfile, which is no longer supported in MySQL 8.0. To
facilitate online upgrades to NDB 8.0, NDB performs on-the-fly translation of this metadata and writes
it into the MySQL Server's data dictionary, which enables the mysql d in NDB Cluster 8.0 to work with
the table without preventing subsequent use of the table by a previous version of the NDB software.

Important

Once a table's structure has been modified in NDB 8.0, its metadata is stored
using the data dictionary, and it can no longer be accessed by NDB 7.6 and
earlier.

This enhancement also makes it possible to restore an NDB backup made using an earlier version to a
cluster running NDB 8.0 (or later).

Metadata consistency check error logging. As part of work previously done in NDB 8.0, the
metadata check performed as part of auto-synchronization between the representation of an NDB
table in the NDB dictionary and its counterpart in the MySQL data dictionary includes the table's

17

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-pending-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-excluded-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-excluded-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-cluster-tables.html
https://dev.mysql.com/doc/refman/8.0/en/data-dictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata

What is New in NDB Cluster 8.0

name, storage engine, and internal ID. Beginning with NDB 8.0.23, the range of properties checked is
expanded to include properties of the following data objects:

¢ Columns
* Indexes
» Foreign keys

In addition, details of any mismatches in metadata properties are now written to the MySQL server
error log. The formats used for the error log messages differ slightly depending on whether the
discrepancy is found on the table level or on the level of a column, index, or foreign key. The format
for a log error resulting from a table-level property mismatch is shown here, where property

is the property name, ndb_val ue is the property value as stored in the NDB dictionary, and

mysql d_val ue is the value of the property as stored in the MySQL data dictionary:

Diff in 'property' detected, 'ndb_value' != 'nysqld_val ue'

For mismatches in properties of columns, indexes, and foreign keys, the format is as follows, where
obj _type isone of col um, i ndex, or f orei gn key, and obj _nane is the name of the object:

Diff in obj _type 'obj_nane.property' detected, 'ndb_value' !'= 'nysqld_val ue'

Metadata checks are performed during automatic synchronization of NDB tables when they are
installed in the data dictionary of any mysql d acting as an SQL node in an NDB Cluster. If the
mysql d is debug-compiled, checks are also made whenever a CREATE TABLE statement is
executed, and whenever an NDB table is opened.

» Synchronization of user privileges with NDB_STORED_USER. A new mechanism for sharing

and synchronizing users, roles, and privileges between SQL nodes is available in NDB 8.0, using
the NDB_STORED USER privilege. Distributed privileges as implemented in NDB 7.6 and earlier (see
Distributed Privileges Using Shared Grant Tables) are no longer supported.

Once a user account is created on an SQL node, the user and its privileges can be stored in NDB and
thus shared between all SQL nodes in the cluster by issuing a GRANT statement such as this one:

GRANT NDB_STORED USER ON *.* TO 'jon' @I ocal host"';

NDB STORED USER always has global scope and must be granted using ON *. *, System reserved
accounts such as nysql . sessi on@ ocal host ornysql . i nfoschema@ ocal host cannot be
assigned this privilege.

Roles can also be shared between SQL nodes by issuing the appropriate GRANT NDB_STORED USER
statement. Assigning such a role to a user does not cause the user to be shared; the
NDB_ STORED USER privilege must be granted to each user explicitly.

A user or role having NDB_ STORED USER, along with its privileges, is shared with all SQL nodes as soon
as they join a given NDB Cluster. It is possible to make such changes from any connected SQL node,
but recommended practice is to do so from a designated SQL node only, since the order of execution

of statements affecting privileges from different SQL nodes cannot be guaranteed to be the same on all
SQL nodes.

Prior to NDB 8.0.27, changes to the privileges of a user or role were synchronized immediately with
all connected SQL nodes. Beginning with MySQL 8.0.27, an SQL node takes a global read lock when

18

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

What is New in NDB Cluster 8.0

updating privieleges, which keeps concurrent changes executed by multiple SQL nodes from causing a
deadlock.

Implications for upgrades. Due to changes in the MySQL server's privilege system (see Grant
Tables), privilege tables using the NDB storage engine do not function correctly in NDB 8.0. It is safe but
not necessary to retain such privilege tables created in NDB 7.6 or earlier, but they are no longer used
for access control. In NDB 8.0, a nysql d acting as an SQL node and detecting such tables in NDB writes
a warning to the MySQL server log, and creates | nnoDB shadow tables local to itself; such shadow
tables are created on each MySQL server connected to the cluster. When performing an upgrade from
NDB 7.6 or earlier, the privilege tables using NDB can be removed safely using ndb_dr op_t abl e

once all MySQL servers acting as SQL nodes have been upgraded (see Section 3.7, “Upgrading and
Downgrading NDB Cluster”).

The ndb_r est or e utility's - -rest ore-pri vi |l ege-t abl es option is deprecated but continues to

be honored in NDB 8.0, and can still be used to restore distributed privilege tables present in a backup
taken from a previous release of NDB Cluster to a cluster running NDB 8.0. These tables are handled as
described in the preceeding paragraph.

Shared users and grants are stored in the ndb_sql _net adat a table, which ndb_r est or e by default
does not restore in NDB 8.0; you can specify the - - i ncl ude- st or ed- gr ant s option to cause it to do
so.

See Section 6.12, “Privilege Synchronization and NDB_STORED_USER?”, for more information.

INFORMATION_SCHEMA changes. The following changes are made in the display of information
regarding Disk Data files in the | NFORMATI ON_SCHEMNA. FI LES table:

« Tablespaces and log file groups are no longer represented in the FI LES table. (These constructs are
not actually files.)

< Each data file is now represented by a single row in the FI LES table. Each undo log file is also now
represented in this table by one row only. (Previously, a row was displayed for each copy of each of
these files on each data node.)

In addition, | NFORVATI ON_SCHENA tables are now populated with tablespace statistics for MySQL
Cluster tables. (Bug #27167728)

Error information with ndb_perror. The deprecated - - ndb option for per r or has been removed.
Instead, use ndb_per r or to obtain error message information from NDB error codes. (Bug #81704, Bug
#81705, Bug #23523926, Bug #23523957)

Condition pushdown enhancements. Previously, condition pushdown was limited to predicate
terms referring to column values from the same table to which the condition was being pushed. In
NDB 8.0, this restriction is removed such that column values from tables earlier in the query plan can
also be referred to from pushed conditions. NDB 8.0 supports joins comparing column expressions,
as well as comparisons between columns in the same table. Columns and column expressions to be
compared must be of exactly the same type; this means they must also be of the same signedness,
length, character set, precision, and scale, whenever these attributes apply.

Pushing down larger parts of a condition allows more rows to be filtered out by the data nodes, thereby
reducing the number of rows which mysqgl d must handle during join processing. Another benefit of these
enhancements is that filtering can be performed in parallel in the LDM threads, rather than in a single
mysqld process on an SQL node; this has the potential to improve query performance significantly.

Existing rules for type compatibility between column values being compared continue to apply (see
Engine Condition Pushdown Optimization).

19

https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html

What is New in NDB Cluster 8.0

These additional improvements are made in NDB 8.0.21:

« Antijoins produced by the MySQL Optimizer through the transformation of NOT EXI STSand NOT | N
queries (see Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations) can be
pushed down to the data nodes by NDB.

This can be done when there is no unpushed condition on the table, and the query fulfills any other
conditions which must be met for an outer join to be pushed down.

« NDB attempts to identify and evaluate a non-dependent scalar subquery before trying to retrieve any
rows from the table to which it is attached. When it can do so, the value obtained is used as part of a
pushed condition, instead of using the subquery which provided the value.

Beginning with NDB 8.0.27, conditions pushed as part of a pushed query can now refer to columns from
ancestor tables within the same pushed query, subject to the following conditions:

« Pushed conditions may include any of the comparison operators <, <=, >, >=, =, and <>.
< Values being compared must be of the same type, including length, precision, and scale.

« NULL handling is performed according to the comparison semantics specified by the ISO SQL
standard; any comparison with NULL returns NULL.

Consider the table created using the statement shown here:

CREATE TABLE t (
X | NT PRI MARY KEY,
y | NT

) ENG NE=NDB;

A query suchas SELECT * FROMt AS a LEFT JON1t AS b ON a.x=0 AND b.y>5 can now
use the engine condition pushdown optimization to push down the condition column y.

See Engine Condition Pushdown Optimization, for more information.

The NDB API methods br anch_col eq_paran{(), branch_col ne_ paranm(),

branch _col It _paranm(),branch _col |e paranm(),branch _col gt paran(),
and branch_col _ge_par an() were added in NDB 8.0.27 as part of this work. These
Ndbl nt er pr et edCode can be used to compare column values with values of parameters.

In addition, NdbScanFi | ter:: cnp_paran(), also added in NDB 8.0.27, makes it possible to define
comparisons between column values and parameter values for use in performing scans.

Increase in maximum row size. NDB 8.0 increases the maximum number of bytes that can be
stored in an NDBCLUSTER table from 14000 to 30000 bytes.

A BLOB or TEXT column continues to use 264 bytes of this total, as before.

The maximum offset for a fixed-width column of an NDB table is 8188 bytes; this is also unchanged from
previous releases.

See Section 2.7.5, “Limits Associated with Database Objects in NDB Cluster”, for more information.

ndb_mgm SHOW command and single user mode. In NDB 8.0, when the cluster in single user
mode, the output of the management client SHONcommand indicates which API or SQL node has
exclusive access while this mode is in effect.

20

https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-equal
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp-param
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

What is New in NDB Cluster 8.0

e Online column renames. Columns of NDB tables can now be renamed online, using
ALGORI THVEI NPLACE. See Section 6.11, “Online Operations with ALTER TABLE in NDB Cluster”, for
more information.

* Improved ndb_mgmd startup times. Start times for management nodes daemon have been
significantly improved in NDB 8.0, in the following ways:

* Due to replacing the list data structure formerly used by ndb_ngnd for handling node properties from
configuration data with a hash table, overall startup times for the management server have been
decreased by a factor of 6 or more.

« In addition, in cases where data and SQL node host names not present in the management server's
host s file are used in the cluster configuration file, ndb_ngnd start times can be up to 20 times
shorter than was previously the case.

 NDB APl enhancements. NdbScanFilter::cnp() and several comparison methods of
Ndbl nt er pr et edCode can now be used to compare table column values with each other. The affected
Ndbl nt er pr et edCode methods are listed here:

e branch_col _eq()
e branch_col ge()
e« branch_col _gt ()
e branch_col 1e()
e branch_col _It()
e branch_col _ne()

For all of the methods just listed, table column values to be compared much be of exactly matching
types, including with respect to length, precision, signedness, scale, character set, and collation, as
applicable.

See the descriptions of the individual APl methods for more information.

» Offline multithreaded index builds. It is now possible to specify a set of cores to be used for /O
threads performing offline multithreaded builds of ordered indexes, as opposed to normal I/O duties
such as file I/O , compression , or decompression. “Offline” in this context refers to building of ordered
indexes performed when the parent table is not being written to; such building takes place when an
NDB cluster performs a node or system restart, or as part of restoring a cluster from backup using
ndb_restore--rebuil d-indexes.

In addition, the default behavior for offline index build work is modified to use all cores available to
ndbnt d, rather limiting itself to the core reserved for the I/O thread. Doing so can improve restart and
restore times and performance, availability, and the user experience.

This enhancement is implemented as follows:

1. The default value for Bui | dl ndexThr eads is changed from 0 to 128. This means that offline
ordered index builds are now multithreaded by default.

2. The default value for TwoPassl ni t i al NodeRest art Copy is changed from f al se totrue.
This means that an initial node restart first copies all data from a “live” node to one that is starting
—without creating any indexes—builds ordered indexes offline, and then again synchronizes its
data with the live node, that is, synchronizing twice and building indexes offline between the two

21

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne

What is New in NDB Cluster 8.0

synchonizations. This causes an initial node restart to behave more like the normal restart of a node,
and reduces the time required for building indexes.

3. Anew thread type (i dxbl d) is defined for the Thr eadConf i g configuration parameter, to allow
locking of offline index build threads to specific CPUs.

In addition, NDB now distinguishes the thread types that are accessible to Thr eadConf i g by these two
criteria:

1. Whether the thread is an execution thread. Threads of types mai n, | dm recv, rep,tc, and send
are execution threads; thread types i o, wat chdog, and i dxbl d are not.

2. Whether the allocation of the thread to a given task is permanent or temporary. Currently all thread
types excepti dxbl d are permanent.

For additonal information, see the descriptions of the indicated parameters in the Manual. (Bug
#25835748, Bug #26928111)

logbuffers table backup process information. When performing an NDB backup, the

ndbi nf o. | ogbuf f er s table now displays information regarding buffer usage by the backup process
on each data node. This is implemented as rows reflecting two new log types in addition to REDO and

DD- UNDO. One of these rows has the log type BACKUP- DATA, which shows the amount of data buffer
used during backup to copy fragments to backup files. The other row has the log type BACKUP- LOG,
which displays the amount of log buffer used during the backup to record changes made after the
backup has started. One each of these | og_t ype rows is shown in the | ogbuf f er s table for each data
node in the cluster. Rows having these two log types are present in the table only while an NDB backup
is currently in progress. (Bug #25822988)

ndbinfo.processes table on Windows. The process ID of the monitor process used on Windows
platforms by RESTART to spawn and restart a nysql d is now shown in the pr ocesses table as an
angel pid.

String hashing improvements. Prior to NDB 8.0, all string hashing was based on first transforming
the string into a normalized form, then MD5-hashing the resulting binary image. This could give rise to
some performance problems, for the following reasons:

» The normalized string is always space padded to its full length. For a VARCHAR, this often involved
adding more spaces than there were characters in the original string.

« The string libraries were not optimized for this space padding, which added considerable overhead in
some use cases.

« The padding semantics varied between character sets, some of which were not padded to their full
length.

¢ The transformed string could become quite large, even without space padding; some Unicode 9.0
collations can transform a single code point into 100 bytes or more of character data.

* Subsequent MD5 hashing consisted mainly of padding with spaces, and was not particularly efficient,
possibly causing additional performance penalties by flushing significant portions of the L1 cache.

A collation provides its own hash function, which hashes the string directly without first creating a
normalized string. In addition, for a Unicode 9.0 collation, the hash is computed without padding. NDB

22

https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/char.html

What is New in NDB Cluster 8.0

now takes advantage of this built-in function whenever hashing a string identified as using a Unicode 9.0
collation.

Since, for other collations, there are existing databases which are hash partitioned on the transformed
string, NDB continues to employ the previous method for hashing strings that use these, to maintain
compatibility. (Bug #89590, Bug #89604, Bug #89609, Bug #27515000, Bug #27523758, Bug
#27522732)

RESET MASTER changes. Because the MySQL Server now executes RESET MASTER with a global
read lock, the behavior of this statement when used with NDB Cluster has changed in the following two
respects:

« ltis no longer guaranteed to be synonchrous; that is, it is now possible that a read coming immediately
before RESET NMASTERIs issued may not be logged until after the binary log has been rotated.

< It now behaves in exactly the same fashion, whether the statement is issued on the same SQL node
that is writing the binary log, or on a different SQL node in the same cluster.

Note

SHOW BI NLOG EVENTS, FLUSH LOGS, and most data definition statements
continue, as they did in previous NDB versions, to operate in a synchronous
fashion.

ndb_restore option usage. The --nodei d and - - backupi d options are now both required when
invoking ndb_r est or e.

ndb_log_bin default. NDB 8.0 changes the default value of the ndb_| og_bi n system variable from
TRUE to FALSE.

Dynamic transactional resource allocation. Allocation of resources in the transaction

coordinator is now performed using dynamic memory pools. This means that resource allocation
determined by data node configuration parameters such as MaxDMVLOper at i onsPer Tr ansact i on,
MaxNoOF Concur r ent | ndexOper at i ons, MaxNoOf Concur r ent Oper ati ons,

MaxNoOF Concur r ent Scans, MaxNoOf Concur r ent Tr ansact i ons, MaxNoOf Fi redTr i ggers,
MaxNoCOf Local Scans, and Tr ansact i onBuf f er Menor y is now done in such a way that, if the load
represented by each of these parameters is within the target load for all such resources, others of these
resources can be limited so as not to exceed the total resources available.

As part of this work, several new data node parameters controlling transactional resources in DBTC,
listed here, have been added:

¢ ReservedConcurrent | ndexOperati ons
¢ ReservedConcurrent Operati ons

¢ ReservedConcurrent Scans

¢ ReservedConcurrent Transacti ons

¢ ReservedFi redTriggers

* ReservedLocal Scans

¢ ReservedTransacti onBuffer Menory.

See the descriptions of the parameters just listed for further information.

23

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

What is New in NDB Cluster 8.0

e Backups using multiple LDMs per data node. NDB backups can now be performed in a parallel

fashion on individual data nodes using multiple local data managers (LDMs). (Previously, backups were
done in parallel across data nodes, but were always serial within data node processes.) No special
syntax is required for the START BACKUP command in the ndb_ngmclient to enable this feature, but all
data nodes must be using multiple LDMs. This means that data nodes must be running ndbnt d (ndbd
is single-threaded and thus always has only one LDM) and they must be configured to use multiple
LDMs before taking the backup; you can do this by choosing an appropriate setting for one of the multi-
threaded data node configuration parameters MaxNoCOf Execut i onThr eads or Thr eadConfi g.

Backups using multiple LDMs create subdirectories, one per LDM, under the BACKUP/

BACKUP- backup_i d/ directory. ndb_r est or e now detects these subdirectories automatically, and if
they exist, attempts to restore the backup in parallel; see Section 5.23.3, “Restoring from a backup taken
in parallel”, for details. (Single-threaded backups are restored as in previous versions of NDB.) It is also
possible to restore backups taken in parallel using an ndb_r est or e binary from a previous version of
NDB Cluster by modifying the usual restore procedure; Section 5.23.3.2, “Restoring a parallel backup
serially”, provides information on how to do this.

You can force the creation of single-threaded backups by setting the Enabl eMul ti t hr eadedBackup
data node parameter to O for all data nodes in the [ndbd def aul t] section of the cluster's global
configuration file (confi g. i ni).

Binary configuration file enhancements. NDB 8.0 uses a new format for the management
server's hinary configuration file. Previously, a maximum of 16381 sections could appear in the cluster
configuration file; now the maximum number of sections is 4G. This is intended to support larger
numbers of nodes in a cluster than was possible before this change.

Upgrades to the new format are relatively seamless, and should seldom if ever require manual
intervention, as the management server continues to be able to read the old format without issue. A
downgrade from NDB 8.0 to an older version of the NDB Cluster software requires manual removal of
any binary configuration files or, alternatively, starting the older management server binary with the - -
initial option.

For more information, see Section 3.7, “Upgrading and Downgrading NDB Cluster”.

Increased number of data nodes. NDB 8.0 increases the maximum number of data nodes
supported per cluster to 144 (previously, this was 48). Data nodes can now use node IDs in the range 1
to 144, inclusive.

Previously, the recommended node IDs for management nodes were 49 and 50. These are still
supported for management nodes, but using them as such limits the maximum number of data nodes
to 142; for this reason, it is now recommended that node IDs 145 and 146 are used for management
nodes.

As part of this work, the format used for the data node sysfi | e has been updated to version 2. This file
records information such as the last global checkpoint index, restart status, and node group membership
of each node (see NDB Cluster Data Node File System Directory).

RedoOverCommitCounter and RedoOverCommitLimit changes. Due to ambiguities in the
semantics for setting them to 0, the minimum value for each of the data node configuration parameters
RedoOver Conmi t Count er and RedoOver Conmi t Li mi t has been increased to 1.

ndb_autoincrement_prefetch_sz changes. The default value of the
ndb_aut oi ncrenent _pr ef et ch_sz server system variable is increased to 512.

Changes in parameter maxmimums and defaults. NDB 8.0 makes the following changes in
configuration parameter maximum and default values:

24

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

What is New in NDB Cluster 8.0

* The maximum for Dat aMenor y is increased to 16 terabytes.

e The maximum for Di skPageBuf f er Menor y is also increased to 16 terabytes.

The default value for St ri ngMenor vy is increased to 25%.
e The default for LcpScanPr ogr essTi meout is increased to 180 seconds.

Disk Data checkpointing improvements. NDB Cluster 8.0 provides a number of new
enhancements which help to reduce the latency of checkpoints of Disk Data tables and tablespaces
when using non-volatile memory devices such as solid-state drives and the NVMe specification for such
devices. These improvements include those in the following list:

« Avoiding bursts of checkpoint disk writes
« Speeding up checkpoints for disk data tablespaces when the redo log or the undo log becomes full

< Balancing checkpoints to disk and in-memory checkpoints against one other, when necessary

Protecting disk devices from overload to help ensure low latency under high loads

As part of this work, two data node configuration parameters have been added. MaxDi skDat aLat ency
places a ceiling on the degree of latency permitted for disk access and causes transactions taking longer
than this length of time to be aborted. Di skDat aUsi ngSaneDi sk makes it possible to take advantage
of housing Disk Data tablespaces on separate disks by increasing the rate at which checkpoints of such
tablespaces can be performed.

In addition, three new tables in the ndbi nf o database provide information about Disk Data
performance:

e The di skst at table reports on writes to Disk Data tablespaces during the past second

e The di skst ats_1sec table reports on writes to Disk Data tablespaces for each of the last 20
seconds

« The pgman_tinme_track_st at s table reports on the latency of disk operations relating to Disk Data
tablespaces

Memory allocation and TransactionMemory. A new Transact i onMenory parameter simplifies
allocation of data node memory for transactions as part of the work done to pool transactional and Local

25

What is New in NDB Cluster 8.0

Data Manager (LDM) memory. This parameter is intended to replace several older transactional memory
parameters which have been deprecated.

Transaction memory can now be set in any of the three ways listed here:

< Several configuration parameters are incompatible with Tr ansact i onMenor y. If any of these are set,
Transacti onMenory cannot be set (see Parameters incompatible with TransactionMemory), and
the data node's transaction memory is determined as it was previous to NDB 8.0.

Note

Attempting to set Tr ansact i onMenor y and any of these parameters
concurrently in the confi g. i ni file prevents the management server from
starting.

« If Transact i onMenory is set, this value is used for determining transaction memory.
Transact i onMenory cannot be set if any of the incompatible parameters mentioned in the previous
item have also been set.

« If none of the incompatible parameters are set and Tr ansact i onMenor y is also not set, transaction
memory is set by NDB.

For more information, see the description of Tr ansact i onMenor y, as well as Section 4.3.13, “Data
Node Memory Management”.

Support for additional fragment replicas. NDB 8.0 increases the maximum number of fragment
replicas supported in production from two to four. (Previously, it was possible to set NoOf Repl i cas to 3
or 4, but this was not officially supported or verified in testing.)

Restoring by slices. Beginning with NDB 8.0.20, it is possible to divide a backup into roughly
equal portions (slices) and to restore these slices in parallel using two new options implemented for
ndb_restore:

e --num sl i ces determines the number of slices into which the backup should be divided.

e --slice-id provides the ID of the slice to be restored by the current instance of ndb_r est or e.

This makes it possible to employ multiple instances of ndb_r est or e to restore subsets of the backup in
parallel, potentially reducing the amount of time required to perform the restore operation.

For more information, see the description of the ndb_rest ore - - num sl i ces option.

Read from any fragment replica enabled. Read from any fragment replica is enabled by default

for all NDB tables. This means that the default value for the ndb_r ead_backup system variable is now
ON, and that the value of the NDB_TABLE comment option READ BACKUP is 1 when creating a new NDB
table. Enabling read from any fragment replica significantly improves performance for reads from NDB
tables, with minimal impact on writes.

For more information, see the description of the ndb_r ead_backup system variable, and Setting NDB
Comment Options.

ndb_blob_tool enhancements. Beginning with NDB 8.0.20, the ndb_bl ob_t ool utility can detect
missing blob parts for which inline parts exist and replace these with placeholder blob parts (consisting
of space characters) of the correct length. To check whether there are missing blob parts, use the - -

26

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

What is New in NDB Cluster 8.0

check- m ssi ng option with this program. To replace any missing blob parts with placeholders, use the
- -add- m ssi ng option.

For more information, see Section 5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of
NDB Cluster Tables”.

ndbinfo versioning. NDB 8.0.20 and later supports versioning for ndbi nf o tables, and maintains the
current definitions for its tables internally. At startup, NDB compares its supported ndbi nf o version with
the version stored in the data dictionary. If the versions differ, NDB drops any old ndbi nf o tables and
recreates them using the current definitions.

Support for Fedora Linux. Beginning with NDB 8.0.20, Fedora Linux is a supported platform for
NDB Cluster Community releases and can be installed using the RPMs supplied for this purpose by
Oracle. These can be obtained from the NDB Cluster downloads page.

NDB programs—NDBT dependency removal. The dependency of a number of NDB utility programs
on the NDBT library has been removed. This library is used internally for development, and is not
required for normal use; its inclusion in these programs could lead to unwanted issues when testing.

Affected programs are listed here, along with the NDB versions in which the dependency was removed:

e ndb_restore

ndb_del ete_all
* ndb_show t abl es (NDB 8.0.20)
* ndb_wai t er (NDB 8.0.20)

The principal effect of this change for users is that these programs no longer print NDBT_Pr ogr amexi t
- st at us following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading to the indicated versions.

Pushdown of outer joins and semijoins. Work done in NDB 8.0.20 allows many outer joins and
semijoins, and not only those using a primary key or unique key lookup, to be pushed down to the data
nodes (see Engine Condition Pushdown Optimization).

Outer joins using scans which can now be pushed include those which meet the following conditions:
* There are no unpushed conditions on the table

« There are no unpushed conditions on other tables in the same join nest, or in upper join nests on
which it depends

« All other tables in the same join nest, or in upper join nests on which it depends, are also pushed

A semijoin that uses an index scan can now be pushed if it meets the the conditions just noted for a
pushed outer join, and it uses the f i r st Mat ch strategy (see Optimizing IN and EXISTS Subquery
Predicates with Semijoin Transformations).

When a join cannot be pushed, EXPLAI N should provide the reason or reasons.

Foreign keys and lettercasing. NDB stores the names of foreign keys using the case with which they
were defined. Formerly, when the value of the | ower case_t abl e _nanes system variable was set

to 0, it performed case-sensitive comparisons of foreign key names as used in SELECT and other SQL
statements with the names as stored. Beginning with NDB 8.0.20, such comparisons are now always
performed in a case-insensitive fashion, regardless of the value of | ower case_t abl e _nanes.

27

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/select.html

What is New in NDB Cluster 8.0

e Multiple transporters. NDB 8.0.20 introduces support for multiple transporters to handle node-to-

node communication between pairs of data nodes. This facilitates higher rates of update operations for
each node group in the cluster, and helps avoid constraints imposed by system or other limitations on
inter-node communications using a single socket.

By default, NDB now uses a number of transporters based on the number of local data management
(LDM) threads or the number of transaction coordinator (TC) threads, whichever is greater. By default,
the number of transporters is equal to half of this number. While the default should perform well for most
workloads, it is possible to adjust the number of transporters employed by each node group by setting
the NodeGr oupTr ansport er s data node configuration parameter (also introduced in NDB 8.0.20),

up a maximum of the greater of the number of LDM threads or the number of TC threads. Setting it to O
causes the number of transporters to be the same as the number of LDM threads.

ndb_restore: primary key schema changes. NDB 8.0.21 (and later) supports different primary key
definitions for source and target tables when restoring an NDB native backup with ndb_r est or e when
it is run with the - - al | ow pk- changes option. Both increasing and decreasing the number of columns
making up the original primary key are supported.

When the primary key is extended with an additional column or columns, any columns added must

be defined as NOT NULL, and no values in any such columns may be changed during the time that

the backup is being taken. Because some applications set all column values in a row when updating

it, whether or not all values are actually changed, this can cause a restore operation to fail even if no
values in the column to be added to the primary key have changed. You can override this behavior
using the - - i gnor e- ext ended- pk- updat es option also added in NDB 8.0.21; in this case, you must
ensure that no such values are changed.

A column can be removed from the table's primary key whether or not this column remains part of the
table.

For more information, see the description of the - - al | ow- pk- changes option for ndb_r est or e.

Merging backups with ndb_restore. In some cases, it may be desirable to consolidate data
originally stored in different instances of NDB Cluster (all using the same schema) into a single

target NDB Cluster. This is now supported when using backups created in the ndb_ngmclient (see
Section 6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and restoring them with
ndb_rest or e, using the - - r emap- col unm option added in NDB 8.0.21 along with - - r est or e- dat a
(and possibly additional compatible options as needed or desired). - - r emap- col unm can be employed
to handle cases in which primary and unique key values are overlapping between source clusters, and

it is necessary that they do not overlap in the target cluster, as well as to preserve other relationships
between tables such as foreign keys.

- - remap- col umm takes as its argument a string having the format db. t bl . col : f n: ar gs, where
db, t bl , and col are, respectively, the names of the database, table, and column, f n is the name

of a remapping function, and ar gs is one or more arguments to f n. There is no default value. Only

of f set is supported as the function name, with ar gs as the integer offset to be applied to the value of
the column when inserting it into the target table from the backup. This column must be one of | NT or

28

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

What is New in NDB Cluster 8.0

Bl G NT; the allowed range of the offset value is the same as the signed version of that type (this allows
the offset to be negative if desired).

The new option can be used multiple times in the same invocation of ndb_r est or e, so that you can
remap to new values multiple columns of the same table, different tables, or both. The offset value does
not have to be the same for all instances of the option.

In addition, two new options are provided for ndb_desc, also beginning in NDB 8.0.21.:

e --auto-inc (short form - a): Includes the the next auto-increment value in the output, if the table has
an AUTO | NCREVENT column.

e --cont ext (short form - x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

For more information and examples, see the description of the - - r emap- col umm option.

Send thread improvements. As of NDB 8.0.20, each send thread now handles sends to a subset of
transporters, and each block thread now assists only one send thread, resulting in more send threads,
and thus better performance and data node scalability.

Adaptive spin control using SpinMethod. A simple interface for setting up adaptive CPU spin on
platforms supporting it, using the Spi nMet hod data node parameter. This parameter (added in NDB
8.0.20, functional beginning with NDB 8.0.24) has four settings, one each for static spinning, cost-based
adaptive spinning, latency-optimized adaptive spinning, and adaptive spinning optimized for database
machines on which each thread has its own CPU. Each of these settings causes the data node to use a
set of predetermined values for one or more spin parameters which enable adaptive spinning, set spin
timing, and set spin overhead, as appropriate to a given scenario, thus obviating the need to set these
directly for common use cases.

For fine-tuning spin behavior, it is also possible to set these and additional spin parameters directly,
using the existing Schedul er Spi nTi mer data node configuration parameter as well as the following
DUMP commands in the ndb_ngmclient:

 DUVMP 104000 (Set Schedul er Spi nTi ner Al |') : Sets spin time for all threads
« DUVP 104001 (Set Schedul er Spi nTi ner Thr ead) : Sets spin time for a specified thread

e DUMP 104002 (Set Al'l owedSpi nOver head) : Sets spin overhead as the number of units of CPU
time allowed to gain 1 unit of latency

« DUMP 104003 (Set Spi nti mePer Cal |): Sets the time for a call to spin

« DUVP 104004 (Enabl eAdapti veSpi nni ng) : Enables or disables adpative spinning

NDB 8.0.20 also adds a new TCP configuration parameter TcpSpi nTi me which sets the time to spin for
a given TCP connection.

The ndb_t op tool is also enhanced to provide spin time information per thread.

For additional information, see the description of the Spi nMet hod parameter, the listed DUMP
commands, and Section 5.29, “ndb_top — View CPU usage information for NDB threads”.

29

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104001.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104003.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html

What is New in NDB Cluster 8.0

Disk Data and cluster restarts. Beginning with NDB 8.0.21, an initial restart of the cluster forces the
removal of all Disk Data objects such as tablespaces and log file groups, including any data files and
undo log files associated with these objects.

See Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

Disk Data extent allocation. Beginning with NDB 8.0.20, allocation of extents in data files is done
in a round-robin fashion among all data files used by a given tablespace. This is expected to improve
distribution of data in cases where multiple storage devices are used for Disk Data storage.

For more information, see Section 6.10.1, “NDB Cluster Disk Data Objects”.

--ndb-log-fail-terminate option. Beginning with NDB 8.0.21, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysql d with the
--ndb-1o0g-fail-term nat e option.

AllowUnresolvedHostNames parameter. By default, a management node refuses to start when it
cannot resolve a host name present in the global configuration file, which can be problematic in some
environments such as Kubernetes. Beginning with NDB 8.0.22, it is possible to override this behavior by
setting Al | ownr esol vedHost Nanes totrue inthe[tcp defaul t] section of the cluster global
confugration file (confi g. i ni file). Doing so causes such errors to be treated as warnings instead, and
to permit ndb_ngnd to continue starting

Blob write performance enhancements. NDB 8.0.22 implements a number of improvements which
allow more efficient batching when modifying multiple blob columns in the same row, or when modifying
multiple rows containing blob columns in the same statement, by reducing the number of round trips
required between an SQL or other APl node and the data nodes when applying these modifications. The
performance of many | NSERT, UPDATE, and DELETE statements can thus be improved. Examples of
such statements are listed here, where t abl e is an NDB table containing one or more Blob columns:

« I NSERT I NTO tabl e VALUES RON 1, blob_val uel, blob_value2, ...),thatis, insertion
of a row containing one or more Blob columns

¢« I NSERT I NTO tabl e VALUES RON 1, blob_valuel), RON2, blob_value2), ROWNS3,
bl ob_val ue3), ...,thatis, insertion of multiple rows containing one or more Blob columns

« UPDATE tabl e SET bl ob_col uml = bl ob_val uel, bl ob_colum2 =
bl ob_val ue2,

* UPDATE table SET bl ob_columm = bl ob_val ue WHERE primary_key_colum in
(val ue_li st), where the primary key column is not a Blob type

e DELETE FROM tabl e WHERE primary_key_col unm = val ue, where the primary key column is
not a Blob type

e DELETE FROM tabl e WHERE prinmary_key columm I N (val ue_li st), where the primary key
column is not a Blob type

Other SQL statements may benefit from these improvements as well. These include LOAD DATA

| NFI LE and CREATE TABLE ... SELECTInaddition, ALTER TABLE table ENG NE =
NDB, where t abl e uses a storage engine other than NDB prior to execution of the statement, may also
execute more efficiently.

This enhancement applies to statements affecting columns of MySQL type BLOB, VEDI UVBLOB,
LONGBLOB, TEXT, MEDI UMTEXT, and LONGTEXT. Statements which update TI NYBLOB or Tl NYTEXT
columns (or both types) only are not affected by this work, and no changes in their performance should
be expected.

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

What is New in NDB Cluster 8.0

The performance of some SQL statements is not noticeably improved by this enhancement, due to the
fact that they require scans of table Blob columns, which breaks up batching. Such statements include
those of the types listed here:

e SELECT FROM tabl e [WHERE key colum I N (bl ob_value_ list)], whererows are
selected by matching on a primary key or unique key column which uses a Blob type

¢ UPDATE table SET bl ob_colum = bl ob_val ue WHERE condi ti on, usingacondition
which does not depend on a unique value

e« DELETE FROM t abl e WHERE condi ti on to delete rows containing one or more Blob columns,
using a condi t i on which does not depend on a unique value

« Acopying ALTER TABLE statement on a table which already used the NDB storage engine prior
to executing the statement, and whose rows contain one or more Blob columns before or after the
statement is executed (or both)

To take advantage of this improvement to its fullest extent, you may wish to increase the values used for
the - - ndb- bat ch- si ze and - - ndb- bl ob-wri t e- bat ch- byt es options for mysqgl d, to minimize the
number of round trips required to modify blobs. For replication, it is also recommended that you enable
the sl ave_al | ow_bat chi ng system variable, which minimizes the number of round trips required by
the replica cluster to apply epoch transactions.

Note

Beginning with NDB 8.0.30, you should also use

ndb_replica_bat ch_si ze instead of - - ndb- bat ch- si ze, and
ndb_replica_bl ob_wite_batch_bytes ratherthan - - ndb- bl ob-wite-
bat ch- byt es. See the descriptions of these variables, as well as Section 7.5,
“Preparing the NDB Cluster for Replication”, for more information.

Node.js update. Beginning with with NDB 8.0.22, the NDB adapter for Node.js is built using version
12.18.3, and only that version (or a later version of Node.js) is now supported.

Encrypted backups. NDB 8.0.22 adds support for backup files encrypted using AES-256-CBC; this
is intended to protect against recovery of data from backups that have been accessed by unathorized
parties. When encrypted, backup data is protected by a user-supplied password. The password can be
any string consisting of up to 256 characters from the range of printable ASCII characters other than !,
"L, 9$,%)\, and *. Retention of the password used to encrypt any given NDB Cluster backup must be
performed by the user or application; NDB does not save the password. The password can be empty,
although this is not recommended.

When taking an NDB Cluster backup, you can encrypt it by using ENCRYPT PASSWORD=passwor d with
the management client START BACKUP command. Users of the MGM API can also initiate an encrypted
backup by calling ndb_ngm start_backup4().

You can encrypt existing backup files using the ndbxf r mutility which is added to the NDB Cluster
distribution in the 8.0.22 release; this program can also be employed for decrypting encrypted backup
files. In addition, ndbxf r mcan compress backup files and decompress compressed backup files using
the same method that is employed by NDB Cluster for creating backups when the Conpr essedBackup
configuration parameter is set to 1.

To restore from an encrypted backup, use ndb_r est or e with the options - - decr ypt and - - backup-
passwor d. Both options are required, along with any others that would be needed to restore the same

31

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-backup.html#mgm-ndb-mgm-start-backup4

What is New in NDB Cluster 8.0

backup if it were not encrypted. ndb_pri nt _backup_fil e and ndbxf r mcan also read encrypted files
using, respectively, - P passwor d and - - decr ypt - passwor d=passwor d.

In all cases in which a password is supplied together with an option for encryption or decryption, the
password must be quoted; you can use either single or double quotation marks to delimit the password.

Beginning with NDB 8.0.24, several NDB programs, listed here, also support input of the password from
standard input, similarly to how this is done when logging in interactively with the nysql client using the
- - passwor d option (without including the password on the command line):

e Forndb_restoreandndb_print_backup fil e, the--backup-password-fromstdin
option enables input of the password in a secure fashion, similar to how it is done by the nmysqgl client'
- - passwor d option. For ndb_r est or e, use the option together with the - - decr ypt option; for
ndb_print_backup fil e, use the option in place of the - P option.

e For ndb_ngmthe option - - backup- passwor d- f rom st di n, is supported together with - -
execut e "START BACKUP [options]" for starting a cluster backup from the system shell.

e Two ndbxf r moptions, - - encr ypt - passwor d-from st di nand - - decrypt - password-f rom
st di n, cause similar behavior when using that program to encrypt or to decrypt a backup file.

See the descriptions of the programs just listed for more information.

It is also possible, beginning with NDB 8.0.22, to enforce encryption of backups by setting
Requi r eEncr ypt edBackup=1 in the [ndbd def aul t] section of the cluster global configuration file.
When this is done, the ndb_ngmclient rejects any attempt to perform a backup that is not encrypted.

Beginning with NDB 8.0.24, you can cause ndb_ngmto use encryption whenever it creates a backup by
starting it with - - encr ypt - backup. In this case, the user is prompted for a password when invoking
START BACKUP if none is supplied.

IPv6 support. Beginning with NDB 8.0.22, IPv6 addressing is supported for connections to
management and data nodes; this includes connections between management and data nodes with SQL
nodes. When configuring a cluster, you can use numeric IPv6 addresses, host names which resolve to
IPv6 addresses or both.

For IPv6 addressing to work, the operating platform and network on which the cluster is deployed must
support IPv6. As when using IPv4 addressing, hostname resolution to IPv6 addresses must be provided
by the operating platform.

IPv4 addressing continues to be supported by NDB. Using IPv4 and IPv6 addresses concurrently is not
recommended, but can be made to work in the following cases:

* When the management node is configured with IPv6 and data nodes are configured with IPv4
addresses in the confi g. i ni file: This works if - - bi nd- addr ess is not used with ngnd, and data
nodes are started with - - ndb- connect st ri ng set to the IPv4 address of the management nodes.

« When the management node is configured with IPv4 and data nodes are configured with IPv6
addresses in conf i g. i ni : Similarly to the other case, this works if - - bi nd- addr ess is not passed
to ngnd and data nodes are started with - - ndb- connect st ri ng set to the IPv6 address of the
management node.

These cases work because ndb_ngnd does not bind to any IP address by default.

To perform an upgrade from a version of NDB that does not support IPv6 addressing to one that does,
provided that the network supports IPv4 and IPv6, first perform the software upgrade; after this has been

32

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

What is New in NDB Cluster 8.0

done, you can update IPv4 addresses used in the confi g. i ni file with IPv6 addresses. After this, to
cause the configuration changes to take effect and to make the cluster start using the IPv6 addresses, it
is necessary to perform a system restart of the cluster.

Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_set up. py) is deprecated in NDB 8.0.22, and is removed in NDB 8.0.23 and later.
It is no longer supported.

ndbmemcache deprecation and removal. ndbnentache is no longer supported. ndbnentache
was deprecated in NDB 8.0.22, and removed in NDB 8.0.23.

ndbinfo backup_id table. NDB 8.0.24 adds a backup_i d table to the ndbi nf o information
database. This is intended to serve as a replacement for obtaining this information by using

ndb_sel ect _al | to dump the contents of the internal SYSTAB 0 tyable, which is error-prone and takes
an excessively long time to perform.

This table has a single column and row containing the ID of the most recent backup of the cluster taken
using the START BACKUP management client command. In the event that no backup of this cluster can
be found, the table contains a single row whose column value is 0.

Table partitioning enhancements. NDB 8.0.23 introduces a new method for handling table
partitions and fragments, which can determine the number of local data managers (LDMs) for a given
data node independently of the number of redo log parts. This means that the number of LDMs can
now be highly variable. NDB can employ this method when the Cl assi cFr agnent at i on data node
configuration parameter, also implemented in NDB 8.0.23, is set to f al se; when this is the case, the
number of LDMs is no longer used to determine how many partitions to create for a table per data node,
and the value of the Parti ti onsPer Node parameter (also introduced in NDB 8.0.23) determines this
number instead, which is also used for calculating the number of fragments used for a table.

When Cl assi cFragnent at i on has its default value t r ue, then the traditional method of using the
number of LDMs is used to determine the number of fragments that a table should have.

For more information, see the descriptions of the new parameters referenced previously, in Multi-
Threading Configuration Parameters (ndbmtd).

Terminology updates. To align with work begun in MySQL 8.0.21 and NDB 8.0.21, NDB 8.0.23
implements a number of changes in terminology, listed here:

e The system variable ndb_sl ave _conflict _rol e is now deprecated. It is replaced by
ndb_conflict_role.

« Many NDB status variables are deprecated. These variables, and their replacements, are shown in the
following table:

Table 2.1 Deprecated NDB status variables and their replacements

Deprecated variable Replacement

Ndb_api _adaptive_send_deferred_count_ sNdbeapi adaptive send_deferred_count _pepli ca

Ndb_api _adaptive_send _forced _count sl aMeb_api adaptive_send forced count _replica

Ndb_api _adaptive_send_unforced count_ sNdweapi adaptive send unforced_count repli ca

Ndb_api bytes received count_sl ave Ndb_api _bytes received count _replica
Ndb_api _bytes_sent count _sl ave Ndb_api _bytes_sent _count _replica
Ndb_api _pk_op_count _sl ave Ndb_api _pk_op_count _replica

Ndb_api _pruned_scan_count _sl ave Ndb_api _pruned_scan_count _replica

33

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

What is New in NDB Cluster 8.0

Deprecated variable Replacement

Ndb_api _range_scan_count _sl ave Ndb_api _range_scan_count _replica
Ndb_api _read_row count sl ave Ndb_api _read _row count _replica
Ndb_api _scan_bat ch_count _sl ave Ndb_api _scan_batch_count _replica
Ndb_api _tabl e_scan_count _sl ave Ndb_api _tabl e_scan_count _replica
Ndb_api _trans_abort count _sl ave Ndb_api _trans_abort _count _replica
Ndb_api trans_cl ose_count _sl ave Ndb_api _trans_cl ose_count _replica
Ndb_api _trans_commit_count _sl ave Ndb_api _trans_conmit_count _replica

Ndb_api _trans_l ocal _read_row count _sl aMgb_api trans_| ocal _read_row count _replica

Ndb_api trans_start _count_sl ave Ndb_api trans_start_count _replica

Ndb_api _uk_op_count _sl ave Ndb_api _uk_op_count _replica

Ndb_api _wait_exec_conpl ete_count sl aveNdb _api _wait_exec_conpl ete_count _replica

Ndb_api _wait_neta_request_count_sl ave|[Ndb_api _wait_rneta_request_count _replica

Ndb_api _wai t _nanos_count _sl ave Ndb_api _wait _nanos_count _replica

Ndb_api _wait_scan_result count_slave [Ndb_api wait_scan_result_count replica

1>-2

Ndb_sl ave_nax_replicated_epoch Ndb_replica_max_replicated_epoch

The deprecated status variables continue to be shown in the output of SHOW STATUS, but applications
should be updated as soon as possible not to rely upon them any longer, since their availability in
future release series is not guaranteed.

e The values ADD_TABLE_MASTER and ADD_TABLE_SLAVE previously shown in the
tab_copy_stat us column of the ndbi nf o ndbi nfo. tabl e _di stribution_stat us table
are deprecated. These are replaced by, respectively, the values ADD TABLE COORDI NATOR and
ADD TABLE PARTI Cl PANT.

e The - - hel p output of some NDB client and utility programs such as ndb_r est or e has been
modified.

e ThreadConfig enhancements. As of NDB 8.0.23, the configurability of the Thr eadConf i g
parameter has been extended with two new thread types, listed here:

e query: A query thread works (only) on READ COVM TTED queries. A query thread also acts as a
recovery thread. The number of query threads must be 0, 1, 2, or 3 times the number of LDM threads.
0 (the default, unless using Thr eadConf i g, or Aut onat i cThr eadConfi g is enabled) causes LDMs
to behave as they did prior to NDB 8.0.23.

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed

What is New in NDB Cluster 8.0

e recover : A recovery thread retrieves data from a local checkpoint. A recovery thread specified as
such never acts as a query thread.

It is also possible to combine the existing mai n and r ep threads in either of two ways:

« Into a single thread by setting either one of these arguments to 0. When this is done, the resulting
combined thread is shown with the name rmai n_r ep in the ndbi nf o. t hr eads table.

« Together with the r ecv thread by setting both | dmand t ¢ to 0, and setting r ecv to 1. In this case, the
combined thread is named nai n_rep_recv.

In addition, the maximum numbers of a number of existing thread types have been increased. The new
maximums, including those for query threads and recovery threads, are listed here:

e LDM: 332

e Query: 332

¢ Recovery: 332

e TC: 128

* Receive: 64

e Send: 64

e Main: 2

Maximums for other thread types remain unchanged.

Also, as the result of work done relating to this task, NDB now employs mutexes to protect job buffers
when using more than 32 block threads. While this can cause a slight decrease in performance (1 to

2 percent in most cases), it also significantly reduces the amount of memory required by very large
configurations. For example, a setup with 64 threads which used 2 GB of job buffer memory prior to NDB
8.0.23 should require only about 1 GB instead in NDB 8.0.23 and later. In our testing this has resulted in
an overall improvement on the order of 5 percent in the execution of very complex queries.

For further information, see the descriptions of the Thr eadConf i g parameter and the
ndbi nf o. t hr eads table.

ThreadConfig thread count changes. As the result of work done in NDB 8.0.30, setting the value
of Thr eadConf i g requires including mai n, rep, recv, and | dmin the Thr eadConf i g value string
explicitly, in this and subsequent NDB Cluster releases. In addition, count =0 must be set explicitly
for each thread type (of mai n, r ep, or | dm) that is not to be used, and setting count =1 for replication
threads (r ep) requires also setting count =1 for i n.

These changes can have a significant impact on upgrades of NDB clusters where this parameter is in
use; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more information.

ndbmtd Thread Auto-Configuration. Beginning with NDB 8.0.23, it is possible to employ automatic
configuration of threads for multi-threaded data nodes using the ndbnt d configuration parameter

Aut omat i cThr eadConf i g. When this parameter is set to 1, NDB sets up thread assignments
automatically, based on the number of processors available to applications, for all thread supported
thread types, including the new quer y and r ecover thread types described in the previous item. If
the system does not limit the number of processors, you can do so if desired by setting NunCPUs (also
added in NDB 8.0.23). Otherwise, automatic thread configuration accommodates up to 1024 CPUs.

35

What is New in NDB Cluster 8.0

Automatic thread configuration occurs regardless of any values set for Thr eadConfi g or
MaxNoCOf Execut i onThr eads in confi g. i ni ; this means that it is not necessary to set either of these
parameters.

In addition, NDB 8.0.23 implements a number of new ndbi nf o information database tables providing
information about hardware and CPU availability, as well as CPU usage by NDB data nodes. These
tables are listed here:

e cpudat a

e cpudat a_1lsec
e cpudat a_20sec
e cpudat a_50ns
e cpuinfo

* hwi nfo

Some of these tables are not available on every platform supported by NDB Cluster; see the individual
descriptions of them for more information.

Hierachical views of NDB database objects. The di ct _obj tree table, added to the ndbi nf o
information database in NDB 8.0.24, can provide hierarchical and tree-like views of many NDB database
objects, including the following:

« Tables and associated indexes
« Tablespaces and associated data files

 Lodfile groups and associated undo log files

For more information and examples, see Section 6.14.25, “The ndbinfo dict_obj_tree Table".

Index statistics enhancements. NDB 8.0.24 implements the following improvements in calculation
of index statistics:

 Index statistics were previously collected from one fragment only; this is changed such that this
extrapolation is extended to additional fragments.

» The algorithm used for very small tables, such as those having very few rows where results are
discarded, has been improved, so that estimates for such tables should be more accurate than
previously.

As of NDB 8.0.27, the index statistics tables are created and updated automatically by default,
| ndexSt at Aut oCr eat e and | ndex St at Aut oUpdat e both default to 1 (enabled) rather than 0
(disabled), and it is no longer necessary to run ANALYZE TABLE to update the statistics.

For additional information, see Section 6.13, “NDB API Statistics Counters and Variables”.

36

https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html

What is New in NDB Cluster 8.0

e Conversion between NULL and NOT NULL during restore operations. Beginning with NDB
8.0.26, ndb_r est or e can support restoring of NULL columns as NOT NULL and the reverse, using the
options listed here:

* To restore a NULL column as NOT NULL, use the - -1 ossy- conver si ons option.

The column originally declared as NULL must not contain any NULL rows; if it does, ndb_r est ore
exits with an error.

e Torestore a NOT NULL column as NULL, use the - - pronot e- at t ri but es option.

For more information, see the descriptions of the indicated ndb_r est or e options.

e SQL-compliant NULL comparison mode for NdbScanFilter. Traditionally, when making
comparisons involving NULL, NdbScanFi | t er treats NULL as equal to NULL (and thus considers NULL
== NULL to be TRUE). This is not the same as specified by the SQL Standard, which requires that any
comparison with NULL return NULL, including NULL == NULL.

Previously, it was not possible for an NDB API application to override this behavior; beginning with NDB
8.0.26, you can do so by calling NdbScanFi | t er: : set Sql CnpSenant i cs() prior to creating a scan
filter. (Thus, this method is always invoked as a class method and not as an instance method.) Doing so
causes the next NdbScanFi | t er object to be created to employ SQL-compliant NULL comparison for
all comparison operations performed over the lifetime of the instance. You must invoke the method for
each NdbScanFi | t er object that should use SQL-compliant comparisons.

For more information, see NdbScanFilter::setSglCmpSemantics().

» Deprecation of NDB APl .FRM file methods. MySQL 8.0 and NDB 8.0 no longer use . FRMfiles for
storing table metadata. For this reason, the NDB API methods get Fr mDat a(), get FrnLengt h(), and
set Frm() are deprecated as of NDB 8.0.27, and subject to removal in a future release. For reading and
writing table metadata, use get Ext r aMet adat a() and set Ext r aMet adat a() instead.

» Preference for IPv4 or IPv6 addressing. NDB 8.0.26 adds the Pr ef er | PVer si on configuration
parameter, which controls the addressing preference for DNS resolution. IPv4 (Pr ef er | PVer si on=4)
is the default. Because configuration retrieval in NDB requires that this preference be the same for
all TCP connections, you should set it only inthe [t cp def aul t] section of the cluster global
configuration (confi g. i ni) file.

See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for more information.

e Logging enhancements. Previously, analysis of NDB Cluster data node and management node logs
could be hampered by the fact that different log messages used different formats, and that not all log
messages included timestamps. Such issues were due in part to the fact that logging was performed by
a number of different mechanisms, such as the functions printf, fpri ntf, ndbout, and ndbout _c,
overloading of the << operator, and so on.

We fix these problems by standardizing on the Event Logger mechanism, which is already present in
NDB, and which begins each log message with a timestamp in YYYY- Mt DD HH: MM SS format.

See Section 6.3, “Event Reports Generated in NDB Cluster”, for more information about NDB Cluster
event logs and the Event Logger log message format.

» Copying ALTER TABLE improvements. Beginning with NDB 8.0.27, a copying ALTER TABLE on
an NDB table compares the fragment commit counts for the source table before and after performing

37

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmdata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmlength
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setfrm
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

What is New in NDB Cluster 8.0

the copy. This allows the SQL node executing this statement to determine whether there has been any
concurrent write activity to the table being altered; if so, the SQL node can then terminate the operation.

When concurrent writes are detected being made to the table being altered, the ALTER TABLE
statement is rejected with the error Det ect ed change to data in source table
during copying ALTER TABLE. Alter aborted to avoid inconsistency
(ER_TABLE_DEF_CHANGED). Stopping the alter operation, rather than allowing it to proceed with
concurrent writes taking place, can help prevent silent data loss or corruption.

ndbinfo index_stats table. NDB 8.0.28 adds the i ndex_st at s table, which provides basic
information about NDB index statistics. It is intended primarily for internal testing, but may be useful as a
supplement to ndb_i ndex_st at .

ndb_import --table option. Prior to NDB 8.0.28, ndb_i nport always imported the data read from
a CSV file into a table whose name was derived from the name of the file being read. NDB 8.0.28 adds
a - -t abl e option (short form: - t) for this program to specify the name of the target table directly, and
override the previous behavior.

The defult behavior for ndb_i npor t remains to use the base name of the input file as the name of the
target table.

ndb_import --missing-ai-column option. Beginning with NDB 8.0.29, ndb_i nport can import

data from a CSV file that contains empty values for an AUTO | NCREMENT column, using the - -

m ssi ng- ai - col umm option introduced in that release. The option can be used with one or more tables
containing such a column.

In order for this option to work, the AUTO | NCREMENT column in the CSV file must not contain any
values. Otherwise, the import operation cannot proceed.

ndb_import and empty lines. ndb_i nport has always rejected any empty lines encountered in an
incoming CSV file. NDB 8.0.30 adds support for importing empty lines into a single column, provided that
it is possible to convert the empty value into a column value.

ndb_restore --with-apply-status option. Beginning with NDB 8.0.29, it is possible to restore the
ndb_appl y_st at us table from an NDB backup, using ndb_r est or e with the - - wi t h- appl y-

st at us option added in that release. To use this option, you must also use - - r est or e- dat a when
invoking ndb_r est or e.

--w t h-appl y- st at us restores all rows of the ndb_appl y_st at us table except for the row
having server i d = 0; to restore this row, use - - r est or e- epoch. For more information, see
ndb_apply_status Table, as the description of the - - wi t h- appl y- st at us option.

SQL access to tables with missing indexes. Prior to NDB 8.0.29, when a user query attempted

to open an NDB table with a missing or broken index, the MySQL server raised NDB error 4243 (I ndex
not found). This situation could arise when constraint violations or missing data make it impossible to
restore an index on an NDB table, and ndb_r est or e - - di sabl e-i ndexes was used to restore the
data without the index.

Beginning with NDB 8.0.29, an SQL query against an NDB table which has missing indexes

succeeds if the query does not use any of the missing indexes. Otherwise, the query is rejected with

ER _NOT_KEYFI LE. In this case, you can use ALTER TABLE ... ALTER INDEX ... |NVISIBLEto
keep the MySQL Optimizer from trying to use the index, or drop the index (and then possibly re-create it)
using the appropriate SQL statements.

NDB API List::clear() method. The NDB API Di cti onary methods | i st Event s(),
l'istlndexes(),andlistObjects() each require areferencetoali st object which is empty.

38

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_def_changed
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4243
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_keyfile
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html#alter-table-index
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listevents
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listindexes
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listobjects
https://dev.mysql.com/doc/ndbapi/en/ndb-list.html

What is New in NDB Cluster 8.0

Previously, reusing an existing Li st with any of these methods was problematic for this reason. NDB
8.0.29 makes this easier by implementing a cl ear () method which removes all data from the list.

As part of this work, the Li st class destructor now calls Li st : : cl ear () before removing any
elements or attributes from the list.

NDB dictionary tables in ndbinfo. = NDB 8.0.29 introduces several new tables in the ndbi nf o
database providing information from NdbDi ct i onary that previously required the use of ndb_desc,
ndb_sel ect _al |, and other NDB utility programs.

Two of these tables are actually views. The hash_naps table provides information about hash maps
used by NDB; the f i | es table shows information regarding files used for storing data on disk (see
Section 6.10, “NDB Cluster Disk Data Tables”).

The remaining six ndbi nf o tables added in NDB 8.0.29 are base tables. These tables are not hidden

and are not named using the prefix ndb$. These tables are listed here, with descriptions of the objects

represented in each table:

* bl obs: Blob tables used to store the variable-size parts of BLOB and TEXT columns
e dictionary_col ums: Columns of NDB tables

e dictionary_tabl es: NDB tables

« event s: Event subscriptions in the NDB API

e foreign_keys: Foreign keys on NDB tables

e index_col ums: Indexes on NDB tables

NDB 8.0.29 also makes changes in the ndbi nf o storage engine's implementation of primary keys to
improve compatibility with NdbDi ct i onary.

ndbcluster plugin and Performance Schema. As of NDB 8.0.29, ndbcl ust er plugin threads
are shown in the Performance Schemat hr eads and set up_t hr eads tables, making it possible
to obtain information about the performance of these threads. The three threads exposed in

per f or mance_schena tables are listed here:

e ndb_bi nl og: Binary logging thread
* ndb_i ndex_st at : Index statistics thread

« ndb_net adat a: Metadata thread
See ndbcluster Plugin Threads, for more information and examples.
In NDB 8.0.30 and later, transaction batching memory usage is visible as nenory/

ndbcl ust er/ Thd_ndb: : bat ch_nmem r oot in the Performance Schema
menory_summary_by thread by event nanme and set up_i nstrunent s tables. You can use

this information to see how much memory is being used by transactions. For additional information, see

Transaction Memory Usage.

39

https://dev.mysql.com/doc/ndbapi/en/ndb-list.html#ndb-list-clear
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-instruments-table.html

What is New in NDB Cluster 8.0

e Configurable blob inline size. Beginning with NDB 8.0.30, it is possible to set a blob column's inline

size as part of CREATE TABLE or ALTER TABLE. The maximum inline size supported by NDB Cluster is
29980 bytes.

For additional information and examples, see NDB_COLUMN Options, as well as String Type Storage
Requirements.

replica_allow_batching enabled by default. Replica write batching improves NDB Cluster
Replication performance greatly, especially when replicating blob-type columns (TEXT, BLOB, and
JSQON), and so generally should be enabled whenever using replication with NDB Cluster. For this
reason, beginning with NDB 8.0.30, the r epl i ca_al | ow_bat chi ng system variable is enabled by
default, and setting it to OFF raises a warning.

Conflict resolution insert operation support. Prior to NDB 8.0.30, there were only two strategies
available for resolving primary key conflicts for update and delete operations, implemented as the
functions NDB$SMAX() and NDBSMVAX _DELETE_W N() . Neither of these has any effect on write
operations, other than that a write operation with the same primary key as a previous write is always
rejected, and accepted and applied only if no operation having the same primary key already

exists. NDB 8.0.30 introduces two new conflict resolution functions NDBSMAX | NS() and NDB
$MAX_DEL_W N_I NS() that handle primary key conflicts between insert operations. These functions
handle conflicting writes as follows:

1. If there is no conflicting write, apply this one (this is the same as NDBSNVAX()).
2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

For conflicting update and delete operations, NDBSMAX_| NS() behaves as NDB$MAX() does, and NDB
$VAX_DEL_W N_I NS() behaves in the same way as NDBSMAX_DELETE_W N() .

This enhancement provides support for configuring conflict detection when handling conflicting
replicated write operations, so that a replicated | NSERT with a higher timestamp column value is applied
idempotently, while a replicated | NSERT with a lower timestamp column value is rejected.

As with the other conflict resolution functions, rejected operations can optionally be logged in an
exceptions table; rejected operations increment a counter (status variables Ndb_conflict _fn_nax for
“greatest timestamp wins” and Ndb_confl i ct _fn_ol d for “same timestamp wins”).

For more information, see the descriptions of the new conflict resolution functions, and as well as
Section 7.11, “NDB Cluster Replication Conflict Resolution”.

Replication applier batch size control. Previously, the size of batches used when writing to a
replica NDB Cluster was controlled by - - ndb- bat ch- si ze, and the batch size used for writing blob
data to the replica was determined by ndb- bl ob-wri t e- bat ch- byt es. One problem with this
arrangement was that the replica used the global values of these variables which meant that changing
either of them for the replica also affected the value used by all other sessions. In addition, it was not
possible to set different defaults for these values exclusive to the replica, which should preferably have a
higher default value than other sessions.

NDB 8.0.30 adds two new system variables which are specific to the replica applier.
ndb_replica_bat ch_si ze now controls the batch size used for the replica applier, and

40

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

ndb_replica_blob wite batch bytes variable now determines the blob write batch size used to

perform batch blob writes on the replica.

This change should improve the behavior of MySQL NDB Cluster Replication using default settings,
and lets the user fine tune NDB replication performance without affecting user threads, such as those
performing processing of SQL queries.

For more information, see the descriptions of the new variables. See also Section 7.5, “Preparing the
NDB Cluster for Replication”.

MySQL Cluster Manager 1.4.8 also provides experimental support for NDB Cluster 8.0. MySQL Cluster
Manager has an advanced command-line interface that can simplify many complex NDB Cluster
management tasks. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

2.5 Options, Variables, and Parameters Added, Deprecated or
Removed in NDB 8.0

Parameters Introduced in NDB 8.0
Parameters Deprecated in NDB 8.0
Parameters Removed in NDB 8.0

Options and Variables Introduced in NDB 8.0
Options and Variables Deprecated in NDB 8.0

Options and Variables Removed in NDB 8.0

The next few sections contain information about NDB node configuration parameters and NDB-specific
nmysql d options and variables that have been added to, deprecated in, or removed from NDB 8.0.

Parameters Introduced in NDB 8.0

The following node configuration parameters have been added in NDB 8.0.

Al | ownr esol vedHost Nanes: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only. Added in
NDB 8.0.22.

Aut omat i cThr eadConf i g: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation. Added in NDB
8.0.23.

Cl assi cFragnent at i on: When true, use traditional table fragmentation; set false to enable flexible
distribution of fragments among LDMs. Disabled by AutomaticThreadConfig. Added in NDB 8.0.23.

Di skDat aUsi ngSaneDi sk: Set to false if Disk Data tablespaces are located on separate physical
disks. Added in NDB 8.0.19.

Enabl eMul tit hr eadedBackup: Enable multi-threaded backup. Added in NDB 8.0.16.

Encrypt edFi | eSyst em Encrypt local checkpoint and tablespace files. EXPERIMENTAL. Added in
NDB 8.0.29.

KeepAl i veSendI nt er val : Time between keep-alive signals on links between data nodes, in
milliseconds. Set to O to disable. Added in NDB 8.0.27.

41

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

Parameters Deprecated in NDB 8.0

MaxDi skDat aLat ency: Maximum allowed mean latency of disk access (ms) before starting to abort
transactions. Added in NDB 8.0.19.

NodeG oupTr ansport er s: Number of transporters to use between nodes in same node group. Added
in NDB 8.0.20.

NunCPUs: Specify number of CPUs to use with AutomaticThreadConfig. Added in NDB 8.0.23.

Partiti onsPer Node: Determines the number of table partitions created on each data node; not used
if ClassicFragmentation is enabled. Added in NDB 8.0.23.

Pr ef er | PVer si on: Indicate DNS resolver preference for IP version 4 or 6. Added in NDB 8.0.26.

Requi r eEncr ypt edBackup: Whether backups must be encrypted (1 = encryption required, otherwise
0). Added in NDB 8.0.22.

Reser vedConcur rent | ndexOper at i ons: Number of simultaneous index operations having
dedicated resources on one data node. Added in NDB 8.0.16.

Reser vedConcur r ent Oper at i ons: Number of simultaneous operations having dedicated resources
in transaction coordinators on one data node. Added in NDB 8.0.16.

Reser vedConcur r ent Scans: Number of simultaneous scans having dedicated resources on one data
node. Added in NDB 8.0.16.

Reser vedConcurrent Tr ansact i ons: Number of simultaneous transactions having dedicated
resources on one data node. Added in NDB 8.0.16.

Reser vedFi r edTri gger s: Number of triggers having dedicated resources on one data node. Added
in NDB 8.0.16.

Reser vedLocal Scans: Number of simultaneous fragment scans having dedicated resources on one
data node. Added in NDB 8.0.16.

ReservedTransact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Added in NDB 8.0.16.

Spi nMet hod: Determines spin method used by data node; see documentation for details. Added in
NDB 8.0.20.

TcpSpi nTi ne: Time to spin before going to sleep when receiving. Added in NDB 8.0.20.

Transact i onMenor y: Memory allocated for transactions on each data node. Added in NDB 8.0.19.

Parameters Deprecated in NDB 8.0

The following node configuration parameters have been deprecated in NDB 8.0.

Bat chSi zePer Local Scan: Used to calculate number of lock records for scan with hold lock.
Deprecated in NDB 8.0.19.

MaxAl | ocat e: No longer used; has no effect. Deprecated in NDB 8.0.27.

MaxNoCOF Concurr ent | ndexQper at i ons: Total number of index operations that can execute
simultaneously on one data node. Deprecated in NDB 8.0.19.

MaxNoCOF Concur r ent Tr ansact i ons: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster. Deprecated in NDB 8.0.19.

42

Parameters Removed in NDB 8.0

MaxNoCF Fi redTr i gger s: Total number of triggers that can fire simultaneously on one data node.
Deprecated in NDB 8.0.19.

MaxNoOF Local Oper at i ons: Maximum number of operation records defined on this data node.
Deprecated in NDB 8.0.19.

MaxNoCf Local Scans: Maximum number of fragment scans in parallel on this data node. Deprecated in
NDB 8.0.19.

ReservedTransact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Deprecated in NDB 8.0.19.

UndoDat aBuf f er : Unused; has no effect. Deprecated in NDB 8.0.27.

Undol ndexBuf f er : Unused; has no effect. Deprecated in NDB 8.0.27.

Parameters Removed in NDB 8.0

No node configuration parameters have been removed in NDB 8.0.

Options and Variables Introduced in NDB 8.0

The following system variables, status variables, and server options have been added in NDB 8.0.

Ndb_api _adaptive_send_deferred_count _repl i ca: Number of adaptive send calls not actually
sent by this replica. Added in NDB 8.0.23.

Ndb_api _adaptive_send_forced_count replica: Number of adaptive sends with forced-send
set sent by this replica. Added in NDB 8.0.23.

Ndb_api _adaptive_send_unforced _count replica: Number of adaptive sends without forced-
send sent by this replica. Added in NDB 8.0.23.

Ndb_api _bytes_recei ved_count _repl i ca: Quantity of data (in bytes) received from data nodes
by this replica. Added in NDB 8.0.23.

Ndb_api _bytes_sent count repli ca: Qunatity of data (in bytes) sent to data nodes by this replica.
Added in NDB 8.0.23.

Ndb_api _pk_op_count repli ca: Number of operations based on or using primary keys by this
replica. Added in NDB 8.0.23.

Ndb_api _pruned_scan_count _repl i ca: Number of scans that have been pruned to one partition
by this replica. Added in NDB 8.0.23.

Ndb_api _range_scan_count repl i ca: Number of range scans that have been started by this
replica. Added in NDB 8.0.23.

Ndb_api _read_row count repli ca: Total number of rows that have been read by this replica.
Added in NDB 8.0.23.

Ndb_api _scan_bat ch_count _repl i ca: Number of batches of rows received by this replica. Added
in NDB 8.0.23.

Ndb_api _tabl e_scan_count repli ca: Number of table scans that have been started, including
scans of internal tables, by this replica. Added in NDB 8.0.23.

43

Options and Variables Introduced in NDB 8.0

Ndb_api trans_abort count replica: Number of transactions aborted by this replica. Added in
NDB 8.0.23.

Ndb_api trans_cl ose_count replica: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) by this replica. Added in NDB 8.0.23.

Ndb_api _trans_commit_count replica: Number of transactions committed by this replica. Added
in NDB 8.0.23.

Ndb_api trans_l ocal read row count replica: Total number of rows that have been read by
this replica. Added in NDB 8.0.23.

Ndb_api _trans_start_count _replica: Number of transactions started by this replica. Added in
NDB 8.0.23.

Ndb_api _uk_op_count _repl i ca: Number of operations based on or using unique keys by this
replica. Added in NDB 8.0.23.

Ndb_api _wait_exec_conpl et e_count repli ca: Number of times thread has been blocked while
waiting for operation execution to complete by this replica. Added in NDB 8.0.23.

Ndb_api _wait_neta_request count _replica: Number of times thread has been blocked waiting
for metadata-based signal by this replica. Added in NDB 8.0.23.

Ndb_api _wait_nanos_count repli ca: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica. Added in NDB 8.0.23.

Ndb_api _wait_scan_result _count _replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Added in NDB 8.0.23.

Ndb_confi g_gener at i on: Generation number of the current configuration of the cluster. Added in
NDB 8.0.24.

Ndb_conflict_fn_max_del _w n_i ns: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations. Added in NDB
8.0.30.

Ndb_conflict_fn_max_i ns: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations. Added in NDB 8.0.30.

Ndb_rnet adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Added in NDB 8.0.18.

Ndb_rnet adat a_det ect ed_count : Number of times NDB metadata change monitor thread has
detected changes. Added in NDB 8.0.16.

Ndb_rnet adat a_excl uded_count : Number of NDB metadata objects that NDB binlog thread has
failed to synchronize. Added in NDB 8.0.22.

Ndb_ret adat a_synced_count : Number of NDB metadata objects which have been synchronized.
Added in NDB 8.0.18.

Ndb_trans_hi nt _count _sessi on: Number of transactions using hints that have been started in this
session. Added in NDB 8.0.17.

ndb- appl i er-al | ow ski p- epoch: Lets replication applier skip epochs. Added in NDB 8.0.28.

ndb- | og-fail -term nat e: Terminate mysqld process if complete logging of all found row events is
not possible. Added in NDB 8.0.21.

44

Options and Variables Deprecated in NDB 8.0

ndb- schema- di st -ti neout : How long to wait before detecting timeout during schema distribution.
Added in NDB 8.0.17.

ndb_conflict _rol e: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL thread
is stopped. See documentation for further information. Added in NDB 8.0.23.

ndb_dbg check_shar es: Check for any lingering shares (debug builds only). Added in NDB 8.0.13.

ndb_rnet adat a_check: Enable auto-detection of NDB metadata changes with respect to MySQL data
dictionary; enabled by default. Added in NDB 8.0.16.

ndb_rnet adat a_check_i nt er val : Interval in seconds to perform check for NDB metadata changes
with respect to MySQL data dictionary. Added in NDB 8.0.16.

ndb_rnet adat a_sync: Triggers immediate synchronization of all changes between NDB dictionary and
MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values to be
ignored. Resets to false when synchronization is complete. Added in NDB 8.0.19.

ndb_replica_bat ch_si ze: Batch size in bytes for replica applier. Added in NDB 8.0.30.

ndb_schenma_di st | ock _wait _tineout: Time during schema distribution to wait for lock before
returning error. Added in NDB 8.0.18.

ndb_schena_di st _ti neout : Time to wait before detecting timeout during schema distribution. Added
in NDB 8.0.16.

ndb_schena_di st _upgrade_al | owed: Allow schema distribution table upgrade when connecting to
NDB. Added in NDB 8.0.17.

ndbi nf o: Enable ndbinfo plugin, if supported. Added in NDB 8.0.13.

replica_al |l ow _bat chi ng: Turns update batching on and off for replica. Added in NDB 8.0.26.

Options and Variables Deprecated in NDB 8.0

The following system variables, status variables, and options have been deprecated in NDB 8.0.

Ndb_api _adaptive_send_deferred_count _sl ave: Number of adaptive send calls not actually
sent by this replica. Deprecated in NDB 8.0.23.

Ndb_api _adaptive_send _forced_count _sl ave: Number of adaptive sends with forced-send set
sent by this replica. Deprecated in NDB 8.0.23.

Ndb_api _adaptive_send_unforced_count _sl ave: Number of adaptive sends without forced-
send sent by this replica. Deprecated in NDB 8.0.23.

Ndb_api _bytes_recei ved_count _sl ave: Quantity of data (in bytes) received from data nodes by
this replica. Deprecated in NDB 8.0.23.

Ndb_api _bytes_sent count _sl ave: Qunatity of data (in bytes) sent to data nodes by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _pk_op_count _sl ave: Number of operations based on or using primary keys by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _pruned_scan_count _sl ave: Number of scans that have been pruned to one partition by
this replica. Deprecated in NDB 8.0.23.

45

Options and Variables Removed in NDB 8.0

Ndb_api _range_scan_count _sl ave: Number of range scans that have been started by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _read_row _count _sl ave: Total number of rows that have been read by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _scan_bat ch_count _sl ave: Number of batches of rows received by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _t abl e_scan_count _sl ave: Number of table scans that have been started, including scans
of internal tables, by this replica. Deprecated in NDB 8.0.23.

Ndb_api _trans_abort _count _sl ave: Number of transactions aborted by this replica. Deprecated in
NDB 8.0.23.

Ndb_api _trans_cl ose_count _sl ave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica. Deprecated in NDB 8.0.23.

Ndb_api _trans_commit_count sl ave: Number of transactions committed by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _trans_l ocal read _row count sl ave: Total number of rows that have been read by this
replica. Deprecated in NDB 8.0.23.

Ndb_api _trans_start_count _sl ave: Number of transactions started by this replica. Deprecated in
NDB 8.0.23.

Ndb_api _uk_op_count _sl ave: Number of operations based on or using unique keys by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _wait_exec_conpl et e_count _sl ave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica. Deprecated in NDB 8.0.23.

Ndb_api _wait_ neta request count sl ave: Number of times thread has been blocked waiting for
metadata-based signal by this replica. Deprecated in NDB 8.0.23.

Ndb_api _wait_nanos_count _sl ave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica. Deprecated in NDB 8.0.23.

Ndb_api _wait_scan_resul t _count _sl ave: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Deprecated in NDB 8.0.23.

Ndb_rnet adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Deprecated in NDB
8.0.21.

Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected. Deprecated in NDB 8.0.23.

ndb_sl ave_conflict _rol e: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information. Deprecated in NDB 8.0.23.

sl ave_al | ow _bat chi ng: Turns update batching on and off for replica. Deprecated in NDB 8.0.26.

Options and Variables Removed in NDB 8.0

The following system variables, status variables, and options have been removed in NDB 8.0.

46

MySQL Server Using InnoDB Compared with NDB Cluster

 Ndb_net adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Removed in NDB

8.0.22.

2.6 MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and | nnoDB can serve

as transactional MySQL storage engines, users of MySQL Server sometimes become interested in NDB
Cluster. They see NDB as a possible alternative or upgrade to the default | nnoDB storage engine in
MySQL 8.0. While NDB and | nnoDB share common characteristics, there are differences in architecture
and implementation, so that some existing MySQL Server applications and usage scenarios can be a good
fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by NDB

8.0 with | nnoDB used in MySQL 8.0. The next few sections provide a technical comparison. In many
instances, decisions about when and where to use NDB Cluster must be made on a case-by-case basis,
taking all factors into consideration. While it is beyond the scope of this documentation to provide specifics
for every conceivable usage scenario, we also attempt to offer some very general guidance on the relative
suitability of some common types of applications for NDB as opposed to | nnoDB back ends.

NDB Cluster 8.0 uses a nysqgl d based on MySQL 8.0, including support for | nnoDB 1.1. While it is
possible to use | nnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible to
use programs or libraries from an NDB Cluster 8.0 distribution with MySQL Server 8.0, or the reverse.

While it is also true that some types of common business applications can be run either on NDB Cluster or
on MySQL Server (most likely using the | nnoDB storage engine), there are some important architectural
and implementation differences. Section 2.6.1, “Differences Between the NDB and InnoDB Storage
Engines”, provides a summary of the these differences. Due to the differences, some usage scenarios

are clearly more suitable for one engine or the other; see Section 2.6.2, “NDB and InnoDB Workloads”.
This in turn has an impact on the types of applications that better suited for use with NDB or | nnoDB. See
Section 2.6.3, “NDB and InnoDB Feature Usage Summary”, for a comparison of the relative suitability of
each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to

Use MEMORY or NDB Cluster.

See Alternative Storage Engines, for additional information about MySQL storage engines.

2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from | nnoDB in a number of ways. For those unaccustomed to working with NDB,
unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign keys, table

limits, and other characteristics. These are shown in the following table:

Table 2.2 Differences between InnoDB and NDB storage engines

Feature I nnoDB (MySQL 8.0) NDB 8.0

MySQL Server Version 8.0 8.0

| nnoDB Version I nnoDB 8.0.29 I nnoDB 8.0.29
NDB Cluster Version N/A NDB 8.0.30/8.0.30
Storage Limits 64TB 128TB

Foreign Keys Yes Yes

Transactions

All standard types

READ COW TTED

47

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed

NDB and InnoDB Workloads

Feature | nnoDB (MySQL 8.0) NDB 8.0
MVCC Yes No
Data Compression Yes No (NDB checkpoint and backup

files can be compressed)

Large Row Support (> 14K)

Supported for VARBI NARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and TEXT
columns only (Using these types
to store very large amounts of
data can lower NDB performance)

Replication Support

Asynchronous and
semisynchronous replication
using MySQL Replication; MySQL
Group Replication

Automatic synchronous
replication within an NDB Cluster;
asynchronous replication between
NDB Clusters, using MySQL
Replication (Semisynchronous
replication is not supported)

Scaleout for Read Operations

Yes (MySQL Replication)

Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations

Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA)

Built-in, from InnoDB cluster

Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

From MySQL Group Replication

Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery

30 seconds or longer

Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally be
stored on disk; both in-memory
and disk data storage are durable)

NoSQL Access to Storage Engine |Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/REST)

Concurrent and Parallel Writes Yes Up to 48 writers, optimized for

concurrent writes

Conflict Detection and Resolution |Yes (MySQL Group Replication) |Yes
(Multiple Sources)
Hash Indexes No Yes

Online Addition of Nodes

Read/write replicas using MySQL
Group Replication

Yes (all node types)

Online Upgrades

Yes (using replication)

Yes

Online Schema Modifications

Yes, as part of MySQL 8.0

Yes

2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-node
implementation, NDB Cluster also has specific constraints that may keep some workloads from performing

48

https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

NDB and InnoDB Feature Usage Summary

well. A number of major differences in behavior between the NDB and | nnoDB storage engines with regard
to some common types of database-driven application workloads are shown in the following table::

Table 2.3 Differences between InnoDB and NDB storage engines, common types of data-driven

application workloads.

Workload | nnoDB NDB Cluster (NDB)

High-Volume OLTP Applications |Yes Yes

DSS Applications (data marts, Yes Limited (Join operations across

analytics) OLTP datasets not exceeding 3TB
in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly primary
key access); NDB Cluster 8.0
supports foreign keys

In-Network Telecoms Applications |No Yes

(HLR, HSS, SDP)

Session Management and Yes Yes

Caching

E-Commerce Applications Yes Yes

User Profile Management, AAA Yes Yes

Protocol

2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of | nnoDB with NDB, some are clearly
more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each

feature is typically better suited.

Table 2.4 Supported application features according to the storage engine to which each feature is

typically better suited

Preferred application requirements for | nnoDB

Preferred application requirements for NDB

» Foreign keys
Note

NDB Cluster 8.0 supports
foreign keys

* Full table scans
* Very large databases, rows, or transactions

* Transactions other than READ COVM TTED

Write scaling
99.999% uptime

Online addition of nodes and online schema
operations

Multiple SQL and NoSQL APIs (see NDB Cluster
APIs: Overview and Concepts)

Real-time performance
Limited use of BLOB columns
Foreign keys are supported, although their use

may have an impact on performance at high
throughput

49

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Known Limitations of NDB Cluster

2.7 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as compared
with the features available when using the Myl SAMand | nnoDB storage engines. If you check the “Cluster”
category in the MySQL bugs database at http://bugs.mysqgl.com, you can find known bugs in the following
categories under “MySQL Server:” in the MySQL bugs database at http://bugs.mysqgl.com, which we intend
to correct in upcoming releases of NDB Cluster:

NDB Cluster

Cluster Direct API (NDBAPI)
Cluster Disk Data

Cluster Replication

ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report
any discrepancies that you encounter to the MySQL bugs database using the instructions given in How to
Report Bugs or Problems. Any problem which we do not plan to fix in NDB Cluster 8.0, is added to the list.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0” for a list of issues in
earlier releases that have been resolved in NDB Cluster 8.0.

Note

Limitations and other issues specific to NDB Cluster Replication are described in
Section 7.3, “Known Issues in NDB Cluster Replication”.

2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as
described in the following list:

Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that
uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the error Tabl e
storage engi ne 'ndbcluster' does not support the create option ' TEMPORARY' .

Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

e Column width. Attempting to create an index on an NDB table column whose width is greater than
3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such cases, a
warning Speci fi ed key was too |long; nmax key length is 3072 bytes isissued, and a
SHOW CREATE TABLE statement shows the length of the index as 3072.

e« TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the
TEXT or BLOB data types.

 FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for Myl SAMand | nnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

¢ USING HASH keys and NULL. Using nullable columns in unique keys and primary keys means
that queries using these columns are handled as full table scans. To work around this issue, make the
column NOT NULL, or re-create the index without the USI NG HASH option.

50

http://bugs.mysql.com
http://bugs.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Noncompliance with SQL Syntax in NDB Cluster

« Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072 bytes,
as described earlier in this section. Also see Section 2.7.6, “Unsupported or Missing Features in NDB
Cluster”, for additional information.)

e BIT columns. A BI T column cannot be a primary key, unique key, or index, nor can it be part of a
composite primary key, unique key, or index.

*« AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can
handle a maximum of one AUTO_| NCREMENT column per table, and this column must be indexed.
However, in the case of an NDB table with no explicit primary key, an AUTO | NCREVENT column is
automatically defined and used as a “hidden” primary key. For this reason, you cannot create an NDB
table having an AUTO | NCREMENT column and no explicit primary key.

The following CREATE TABLE statements do not work, as shown here:

No index on AUTO_| NCREMENT col um; table has no primary key
Rai ses ER_WRONG _AUTO _KEY
mysql > CREATE TABLE n (

-> a | NT,

-> b | NT AUTO_ | NCREMENT
->)

-> ENG NE=NDB;

ERROR 1075 (42000): Incorrect table definition; there can be only one auto
colum and it nust be defined as a key

I ndex on AUTO_| NCREMENT col umm; table has no primary key
Rai ses NDB error 4335
mysql > CREATE TABLE n (

-> a | NT,

-> b | NT AUTO | NCREMENT,
-> KEY k (b)

->)

-> ENG NE=NDB;

ERROR 1296 (HY000): Got error 4335 'Only one autoincrenent columm all owed per
table. Having a table without prinmary key uses an autoincr' from NDBCLUSTER

The following statement creates a table with a primary key, an AUTO | NCREMENT column, and an
index on this column, and succeeds:

I ndex on AUTO | NCREMENT col umm; table has a primary key
nysqgl > CREATE TABLE n (

> a | NT PRI MARY KEY,

> b I NT AUTO | NCREMENT,
o> KEY k (b)

->)

> ENG NE=NDB;

Query OK, 0 rows affected (0.38 sec)

» Restrictions on foreign keys. Support for foreign key constraints in NDB 8.0 is comparable to that
provided by | nnoDB, subject to the following restrictions:

« Every column referenced as a foreign key requires an explicit unique key, if it is not the table's primary
key.

« ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing
the old primary key) plus an insert of the new row (with a new primary key). This is not visible to the

51

https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_auto_key
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4335
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Noncompliance with SQL Syntax in NDB Cluster

NDB kernel, which views these two rows as being the same, and thus has no way of knowing that this
update should be cascaded.

* ON DELETE CASCADE is also not supported where the child table contains one or more columns of
any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

e SET DEFAULT is not supported. (Also not supported by | nnoDB.)

e The NO ACTI ON keyword is accepted but treated as RESTRI CT. NO ACTI ON, which is a standard
SQL keyword, is the default in MySQL 8.0. (Also the same as with | nnoDB.)

« In earlier versions of NDB Cluster, when creating a table with foreign key referencing an index in
another table, it sometimes appeared possible to create the foreign key even if the order of the
columns in the indexes did not match, due to the fact that an appropriate error was not always
returned internally. A partial fix for this issue improved the error used internally to work in most cases;
however, it remains possible for this situation to occur in the event that the parent index is a unique
index. (Bug #18094360)

For more information, see FOREIGN KEY Constraints, and FOREIGN KEY Constraints.

NDB Cluster and geometry data types.
Geometry data types (WKT and V\KB) are supported for NDB tables. However, spatial indexes are not
supported.

Character sets and binary log files. Currently, the ndb_appl y_st at us and ndb_bi nl og_i ndex
tables are created using the | at i n1 (ASCII) character set. Because names of binary logs are recorded
in this table, binary log files named using non-Latin characters are not referenced correctly in these
tables. This is a known issue, which we are working to fix. (Bug #50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any the
--basedir,--10g-bin,or--Io0g-bin-index options.

Creating NDB tables with user-defined partitioning. Support for user-defined partitioning in NDB
Cluster is restricted to [LI NEAR] KEY partitioning. Using any other partitioning type with ENG NE=NDB or
ENG NE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings. For
details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using the
table's primary key as the partitioning key. If no primary key is explicitly set for the table, the “hidden”
primary key automatically created by the NDB storage engine is used instead. For additional discussion
of these and related issues, see KEY Partitioning.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER table
not to meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTI TI ON BY [LI NEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. = The maximum number of partitions that
can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node group.

52

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/8.0/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin-index
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html#partitioning-limitations-ndb
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limits and Differences of NDB Cluster from Standard MySQL Limits

(See Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information about NDB Cluster node groups.

DROP PARTITION not supported. Itis not possible to drop partitions from NDB tables using

ALTER TABLE ... DROP PARTI Tl ON. The other partitioning extensions to ALTER TABLE—ADD
PARTI Tl ON, REORGANI ZE PARTI Tl ON, and COALESCE PARTI TI ON—are supported for NDB tables,
but use copying and so are not optimized. See Management of RANGE and LIST Partitions and ALTER
TABLE Statement.

Partition selection. Partition selection is not supported for NDB tables. See Partition Selection, for
more information.

» JSON datatype. The MySQL JSON data type is supported for NDB tables in the nysql d supplied
with NDB 8.0.

An NDB table can have a maximum of 3 JSON columns.

The NDB API has no special provision for working with JSON data, which it views simply as BLOB data.
Handling data as JSON must be performed by the application.

2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not found
in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules hold
true:

» A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for
re-use by inserts on the same table only. However, this memory can be made available for general re-
use by performing OPTI M ZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 6.5, “Performing
a Rolling Restart of an NDB Cluster”.

e« ADROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by this
table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See TRUNCATE
TABLE Statement.

» Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets limits.

See the complete list of configuration parameters in Section 4.3, “NDB Cluster Configuration Files”. Most
configuration parameters can be upgraded online. These hard limits include:

« Database memory size and index memory size (Dat aMenor y and | ndexMenor y, respectively).

Dat aMenory is allocated as 32KB pages. As each Dat aMenor y page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

53

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-management-range-list.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-selection.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Limits Relating to Transaction Handling in NDB Cluster

« The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOf Concur r ent Qper at i ons and MaxNoOf Local Oper at i ons.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special
cases by running multiple transactions, and so are not subject to this limitation.

« Different limits related to tables and indexes. For example, the maximum number of ordered indexes
in the cluster is determined by MaxNoOf Or der edl ndexes, and the maximum number of ordered
indexes per table is 16.

e Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

e The maximum number of data nodes is 145. (In NDB 7.6 and earlier, this was 48.)
A data node must have a node ID in the range of 1 to 144, inclusive.
Management and API nodes may use node IDs in the range 1 to 255, inclusive.

¢ The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL nodes
(MySQL Servers), APl nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

¢ The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit is
hard-coded.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0”, for more information.

2.7.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include the
following:

e Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COWM TTED transaction isolation level. (I nnoDB, for example, supports READ COVM TTED, READ
UNCOWM TTED, REPEATABLE READ, and SERI ALI ZABLE.) You should keep in mind that NDB
implements READ COVM TTED on a per-row basis; when a read request arrives at the data node storing
the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can observe
“before” values, “after” values, or both, for different rows among these, due to the fact that a given row
read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK I N SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

« Increased frequency of lock wait timeout errors, and reduced concurrency
 Increased transaction processing overhead due to reads requiring a commit phase

« Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoCOf Concur r ent Qper ati ons

54

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/8.0/en/select.html

Limits Relating to Transaction Handling in NDB Cluster

NDB uses READ COVM TTED for all reads unless a modifier such as LOCK | N SHARE MODE or FOR
UPDATE is used. LOCK | N SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value that
uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of the BLOB
or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives rise to two
related issues of which you should be aware whenever executing SELECT statements on tables that
contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COVM TTED transaction isolation level is converted to a read with read lock. This is done to
guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the BLOB or
TEXT data types and that is executed within a transaction, a shared read lock is held on the table for
the duration of the transaction—that is, until the transaction is either committed or aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables having
BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
a INT NOT NULL AUTO | NCRENMENT PRI MARY KEY,
b I NT NOT NULL,
¢ INT NOT NULL,
d TEXT,
I NDEX i (b),
UNI QUE KEY u(c)
) ENG NE = NDB,

The following query on t causes a shared read lock, because it uses a unique key lookup:

SELECT * FROMt WHERE c = 1,

However, none of the four queries shown here causes a shared read lock:
SELECT * FROMt WHERE b = 1;

SELECT * FROMt WHERE d = '1';

SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use table
scans, and the fourth, while using a primary key lookup, does not retrieve the value of any BLOB or
TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable, by
committing transactions as soon as possible afterward.

55

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Limits Relating to Transaction Handling in NDB Cluster

» Unique key lookups and transaction isolation. Unique indexes are implemented in NDB using a

hidden index table which is maintained internally. When a user-created NDB table is accessed using

a unique index, the hidden index table is first read to find the primary key that is then used to read the
user-created table. To avoid modification of the index during this double-read operation, the row found
in the hidden index table is locked. When a row referenced by a unique index in the user-created NDB
table is updated, the hidden index table is subject to an exclusive lock by the transaction in which the
update is performed. This means that any read operation on the same (user-created) NDB table must
wait for the update to complete. This is true even when the transaction level of the read operation is
READ COWM TTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unique index when performing the read. This can be done by using the | GNORE | NDEX
index hint as part of the SELECT statement reading the table (see Index Hints). Because the MySQL
server creates a shadowing ordered index for every unique index created in NDB, this lets the ordered
index be read instead, and avoids unique index access locking. The resulting read is as consistent as a
committed read by primary key, returning the last committed value at the time the row is read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have higher
latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

Rollbacks. There are no partial transactions, and no patrtial rollbacks of transactions. A duplicate key
or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as | nnoDB that may roll back
individual statements.

Transactions and memory usage.

As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better

to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions require
very large amounts of memory. Because of this, the transactional behavior of a number of MySQL
statements is affected as described in the following list:

« TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to empty
the table, then it must be re-run until it is successful.

« DELETE FROM(even with no VVHERE clause) is transactional. For tables containing a great many
rows, you may find that performance is improved by using several DELETE FROM ... LIMT ...
statements to “chunk” the delete operation. If your objective is to empty the table, then you may wish
to use TRUNCATE TABLE instead.

« LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.
Important

When executing a LOAD DATA statement, the NDB engine performs commits at
irregular intervals that enable better utilization of the communication network. It
is not possible to know ahead of time when such commits take place.

« ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the
creation of the copy is nontransactional. (In any case, this operation is rolled back when the copy is
deleted.)

56

https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

NDB Cluster Error Handling

e Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible to
guarantee the transactional consistency of the COUNT() function on the replica. In other words, when
performing on the source a series of statements (I NSERT, DELETE, or both) that changes the number of
rows in a table within a single transaction, executing SELECT COUNT(*) FROM t abl e queries on the
replica may yield intermediate results. This is due to the fact that SELECT COUNT(...) may perform
dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321 for more information.)

2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail.
These include the following cases:

e Temporary errors. When first starting a node, it is possible that you may see Error 1204 Tenpor ary
failure, distribution changed and similar temporary errors.

» Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should
be done by retrying the transaction.

See also Section 2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

2.7.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER
storage engine:

 Number of database objects. = The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

» Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

» Attributes per key. The maximum number of attributes per key is 32.

 Row size. In NDB 8.0, the maximum permitted size of any one row is 30000 bytes (increased from
14000 bytes in previous releases).

Each BLOB or TEXT column contributes 256 + 8 = 264 bytes to this total; this includes JSON columns.
See String Type Storage Requirements, as well as JSON Storage Requirements, for more information
relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting to
create a table that violates this limitation fails with NDB error 851 Maxi num of f set for fi xed-

si ze col umms exceeded. For memory-based columns, you can work around this limitation by using
a variable-width column type such as VARCHAR or defining the column as COLUVN_FORMAT=DYNAM C,
this does not work with columns stored on disk. For disk-based columns, you may be able to do so

by reordering one or more of the table's disk-based columns such that the combined width of all but
the disk-based column defined last in the CREATE TABLE statement used to create the table does

not exceed 8188 bytes, less any possible rounding performed for some data types such as CHAR or
VARCHAR; otherwise it is necessary to use memory-based storage for one or more of the offending
column or columns instead.

e BIT column storage per table. The maximum combined width for all Bl T columns used in a given
NDB table is 4096.

57

https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-json
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html

Unsupported or Missing Features in NDB Cluster

e FIXED column storage. = NDB Cluster 8.0 supports a maximum of 128 TB per fragment of data in
FI XED columns.

2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to use
any of these features in NDB Cluster does not cause errors in or of itself; however, errors may occur in
applications that expects the features to be supported or enforced. Statements referencing such features,
even if effectively ignored by NDB, must be syntactically and otherwise valid.

* Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE | NDEX, the
prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be syntactically
valid. For example, the following statement always fails with Error 1089 | ncorrect prefix key;

the used key part isn't a string, the used length is |longer than the key
part, or the storage engi ne doesn't support unique prefix keys, regardless of
storage engine:

CREATE TABLE t1 (
cl I NT NOT NULL,
€2 VARCHAR(100),
INDEX i 1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.
» Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in Myl SAM

* Durability of commits. There are no durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

» Replication. Statement-based replication is not supported. Use - - bi nl og- f or mat =ROWN/(or - -

bi nl og- f or mat =M XED) when setting up cluster replication. See Chapter 7, NDB Cluster Replication,
for more information.

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 8.0. Do not enable GTIDs when using the NDB storage engine, as this is very
likely to cause problems up to and including failure of NDB Cluster Replication.

Semisynchronous replication is not supported in NDB Cluster.

e Generated columns. The NDB storage engine does not support indexes on virtual generated

columns.

As with other storage engines, you can create an index on a stored generated column, but you should
bear in mind that NDB uses Dat aMenor y for storage of the generated column as well as | ndexMenory
for the index. See JSON columns and indirect indexing in NDB Cluster, for an example.

NDB Cluster writes changes in stored generated columns to the binary log, but does log not those made
to virtual columns. This should not effect NDB Cluster Replication or replication between NDB and other
MySQL storage engines.

Note

See Section 2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”, for
more information relating to limitations on transaction handling in NDB.

58

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/create-table-secondary-indexes.html#json-column-indirect-index-mysql-cluster
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limitations Relating to Performance in NDB Cluster

2.7.7 Limitations Relating to Performance in NDB Cluster
The following performance issues are specific to or especially pronounced in NDB Cluster:

 Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either Myl SAMor
| nnoDB.

» Reliability of Records in range. The Records i n range statistic is available but is not completely
tested or officially supported. This may result in nonoptimal query plans in some cases. If necessary,
you can employ USE | NDEX or FORCE | NDEX to alter the execution plan. See Index Hints, for more
information on how to do this.

* Unique hash indexes. Unique hash indexes created with USI NG HASH cannot be used for
accessing a table if NULL is given as part of the key.

2.7.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

* Machine architecture. All machines used in the cluster must have the same architecture. That is, all
machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture of both.
For example, you cannot have a management node running on a PowerPC which directs a data node
that is running on an x86 machine. This restriction does not apply to machines simply running nysql or
other clients that may be accessing the cluster's SQL nodes.

* Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

« sqgl | og_bi n has no effect on data operations; however, it is supported for schema operations.
« NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

« Only the following schema operations are logged in a cluster binary log which is not on the nysql d
executing the statement:

» CREATE TABLE

* ALTER TABLE

 DROP TABLE

* CREATE DATABASE / CREATE SCHENA
» DROP DATABASE / DROP SCHENA

* CREATE TABLESPACE

* ALTER TABLESPACE

* DROP TABLESPACE

* CREATE LOGFI LE GROUP

* ALTER LOGFI LE GROUP

 DROP LOGFI LE GROUP

59

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/drop-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/drop-logfile-group.html

Limitations Relating to NDB Cluster Disk Data Storage

e Schema operations. Schema operations (DDL statements) are rejected while any data node
restarts. Schema operations are also not supported while performing an online upgrade or downgrade.

* Number of fragment replicas. The number of fragment replicas, as determined by the
NoOF Repl i cas data node configuration parameter, is the number of copies of all data stored by NDB
Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no redundancy
is provided, and the loss of a data node entails loss of data. To guarantee redundancy, and thus
preservation of data even if a data node fails, set this parameter to 2, which is the default and
recommended value in production.

Setting NoOf Repl i cas to a value greater than 2 is supported (to a maximum of 4) but unnecessary to
guard against loss of data.

See also Section 2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following maximums
and minimums:

» Maximum number of tablespaces: 232 (4294967296)
» Maximum number of data files per tablespace: 216 (65536)

» The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See CREATE TABLESPACE Statement, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

» Data files use Dat aMenor y. Usage is the same as for in-memory data.

» Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

» Extents require sufficient Di skPageBuf f er Menor y; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and are
specific to the NDBCLUSTER storage engine:

» Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created separately
on each SQL node. See Stored routines and triggers in NDB Cluster.

* No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the SQL
node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true for a lock
issued by any statement that locks tables as part of its operations. (See next item for an example.)

60

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/stored-program-restrictions.html#stored-routines-ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock

Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM Read or LM Excl usi ve. For more information about how
to do this, see the description of NdbOper at i on: : get LockHandl e() in the NDB Cluster API Guide.

* ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers
(SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed table locks.)

Multiple management nodes.
When using multiple management servers:

« If any of the management servers are running on the same host, you must give nodes explicit IDs in
connection strings because automatic allocation of node IDs does not work across multiple management
servers on the same host. This is not required if every management server resides on a different host.

» When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server - -r el oad and - -i ni ti al startup options are ignored unless
the management server is the only one running. It also means that, when performing a rolling restart of
an NDB Cluster with multiple management nodes, the management server reads its own configuration
file if (and only if) it is the only management server running in this NDB Cluster. See Section 6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data hode are not supported. Use of
these is liable to cause problems: In the event of a data node failure, an SQL node waits for confirmation
that the data node went down but never receives it because another route to that data node remains open.
This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards)
for a single data node, but these must be bound to the same address. This also
means that it not possible to use more than one [t cp] section per connection in
the confi g. i ni file. See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for
more information.

2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

A number of limitations and related issues that existed in earlier versions of NDB Cluster have been
resolved in NDB 8.0. These are described briefly in the following list:

» Database and table names. In NDB 7.6 and earlier, when using the NDB storage engine, the
maximum allowed length both for database names and for table names was 63 characters, and a
statement using a database name or table name longer than this limit failed with an appropriate error. In
NDB 8.0, this restriction is lifted; identifiers for NDB databases and tables may now use up to 64 bytes, as
with other MySQL database and table names.

» IPv6 support. Prior to NDB 8.0.22, it was necessary for all network addresses used for connections
between nodes within an NDB Cluster to use or to be resolvable to IPv4 addresses. Beginning with NDB
8.0.22, NDB supports IPv6 addresses for all types of cluster nodes, as well as for applications that use
the NDB API or MGM API.

61

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

62

Chapter 3 NDB Cluster Installation

Table of Contents

3.1 Installation of NDB CIUSTEr ON LINUXuiiiitiieiiitiieeeiii ettt e e et e e et e e e et e e e est e e e enea e eeenes 65
3.1.1 Installing an NDB Cluster Binary Release 0N LiNUXc..uieiiiiiiieiiiiiieeeeieecei e 66
3.1.2 Installing NDB Cluster from RPMcoouiiiiiiiiiiii ettt 68
3.1.3 Installing NDB Cluster Using .deb Fileso i 72
3.1.4 Building NDB Cluster from SOUICE ON LINUXoiiiiiiiiiiiiieeiiiiie et e et e e e e 73

3.2 Installing NDB ClIUSLEr 0N WINGOWSc.uuuiiiiiiieeeiii ettt et e et e et e e e e e e 74
3.2.1 Installing NDB Cluster on Windows from a Binary Releasecccoooveviniiiiiiiieiiiiiineeceinnn. 74
3.2.2 Compiling and Installing NDB Cluster from Source on WiNdOWScccoiiiiiiiiineeeinineenens 78
3.2.3 Initial Startup of NDB Cluster 0n WINAOWSuuiiiiiiiiiiiiee e 78
3.2.4 Installing NDB Cluster Processes as WINAOWS SEIVICEScccuuieiiruiieiiiiiiieieiinaeeeniinaeeenens 81

3.3 Initial Configuration Of NDB CIUSTEIuuiiiiii et 83

3.4 Initial Startup Of NDB CIUSTEIceiiiiiiii ettt e et e e e e ae s 85

3.5 NDB Cluster Example with Tables and Dataoveieuiiiieiiiiieiiii e 86

3.6 Safe Shutdown and Restart 0f NDB CIUSTEIoiiiiiiiiiiiii e 89

3.7 Upgrading and Downgrading NDB CIUSTETcccuuuuiiiiiiiieiiii e 90

3.8 The NDB Cluster Auto-Installer (No longer SUpPOrted)uoieiiiiiiiiiiiii e 93
3.8.1 NDB Cluster Auto-Installer REQUIFEMENTScoiuuiiiiiiiieeii e 93
3.8.2 Using the NDB Cluster AULO-INSTAIIETuuiiiiiii e 95

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Chapter 4, Configuration of NDB Cluster provide more in-depth information

on a variety of clustering options and configuration, the result of following the guidelines and procedures
outlined here should be a usable NDB Cluster which meets the minimum requirements for availability and
safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB Cluster;
basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample database; and
performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's physical
and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 3.1 Network addresses of nodes in example cluster

Node IP Address

Management node (ngnd) 198.51.100.10
SQL node (nysql d) 198.51.100.20
Data node "A" (ndbd) 198.51.100.30
Data node "B" (ndbd) 198.51.100.40

This setup is also shown in the following diagram:

63

Figure 3.1 NDB Cluster Multi-Computer Setup

ndb_mgmd mysqld --ndbcluster

ndb_mgm

1| — 2168010 -]

192.168.0.20—
Management MySQL Server
Server (SQL Node)
(MGM Node)
—
(.._.
—
&~

LD

Network

Switch

ndbd ndbd

|:| —192.168.0.30 ———— —— 192.168.0.40 — |:|

Data Node “A” Data Node “B"
(NDBD Node) (NDBD Node)
Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric

IP addresses. However, if DNS resolution is available on your network, it is possible to use host names

in lieu of IP addresses in configuring Cluster. Alternatively, you can use the host s file (typically / et c/
host s for Linux and other Unix-like operating systems, C: \ W NDOAS\ syst enB2\ dri ver s\ et c\ host s
on Windows, or your operating system's equivalent) for providing a means to do host lookup if such is
available.

Prior to NDB 8.0.22, all network addresses used for connections to or from data and management nodes
must use or be resolvable using IPv4. This includes addresses used by SQL nodes to contact the other
nodes. Beginning with NDB 8.0.22, NDB Cluster supports IPv6 for connections between any and all cluster
nodes.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set up
the system's own host name in the / et ¢/ host s during installation. Consider two machines with the host
names ndb1 and ndb2, both in the cl ust er network domain. Red Hat Linux (including some derivatives
such as CentOS and Fedora) places the following entries in these machines'/ et ¢/ host s files:

ndbl /etc/hosts:
127.0.0.1 ndbl. cl uster ndbl | ocal host. | ocal domai n | ocal host

ndb2 /etc/hosts:
127.0.0.1 ndb2. cl uster ndb2 | ocal host. | ocal domai n | ocal host

SUSE Linux (including OpenSUSE) places these entries in the machines' / et c/ host s files:

ndbl /etc/hosts:
127.0.0.1 | ocal host
127.0.0.2 ndbl. cl uster ndbl

64

Installation of NDB Cluster on Linux

ndb2 /etc/hosts:
127.0.0.1 | ocal host
127.0.0.2 ndb2. cl ust er ndb2

In both instances, ndb1 routes ndb1. cl ust er to a loopback IP address, but gets a public IP address
from DNS for ndb2. cl ust er, while ndb2 routes ndb2. cl ust er to a loopback address and obtains a
public address for ndb1. cl ust er. The result is that each data node connects to the management server,
but cannot tell when any other data nodes have connected, and so the data nodes appear to hang while
starting.

Caution

You cannot mix | ocal host and other host names or IP addresses in

confi g. i ni . Forthese reasons, the solution in such cases (other than to use IP
addresses for all conf i g. i ni Host Nane entries) is to remove the fully qualified
host names from / et ¢/ host s and use these in confi g. i ni for all cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop

PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-issue
Ethernet networking appliance such as a switch. (All machines should use network cards with the same
throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four machines
should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit Ethernet provides
better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less than
100 Mbps or which experiences a high degree of latency. For this reason (among
others), attempting to run an NDB Cluster over a wide area network such as the
Internet is not likely to be successful, and is not supported in production.

Sample data. We use the wor | d database which is available for download from the MySQL website
(see https://dev.mysgl.com/doc/index-other.html). We assume that each machine has sufficient memory
for running the operating system, required NDB Cluster processes, and (on the data nodes) storing the
database.

For general information about installing MySQL, see Installing and Upgrading MySQL. For information
about installation of NDB Cluster on Linux and other Unix-like operating systems, see Section 3.1,
“Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on Windows
operating systems, see Section 3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

3.1 Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating systems.
While the next few sections refer to a Linux operating system, the instructions and procedures given
there should be easily adaptable to other supported Unix-like platforms. For manual installation and setup
instructions specific to Windows systems, see Section 3.2, “Installing NDB Cluster on Windows”.

65

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html

Installing an NDB Cluster Binary Release on Linux

Each NDB Cluster host computer must have the correct executable programs installed. A host running

an SQL node must have installed on it a MySQL Server binary (nysqgl d). Management nodes require the
management server daemon (ndb_ngnd); data nodes require the data node daemon (ndbd or ndbnt d). It
is not necessary to install the MySQL Server binary on management node hosts and data node hosts. It is
recommended that you also install the management client (ndb_ngn) on the management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded as
a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of these
installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 3.3, “Initial
Configuration of NDB Cluster”.

3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each cluster
host is to download the binary archive from the NDB Cluster downloads page. (For the most recent 64-bit
NDB 8.0 release, thisis mysql - cl ust er-gpl -8. 0. 28-1i nux-glibc2.12-x86_64.tar.gz.) We
assume that you have placed this file in each machine's / var / t np directory.

If you require a custom binary, see Installing MySQL Using a Development Source Tree.
Note

After completing the installation, do not yet start any of the binaries. We show
you how to do so following the configuration of the nodes (see Section 3.3, “Initial
Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps as
the system r oot user:

1. Checkyour/etc/ passwd and/ et c/ gr oup files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a nmysql group
and mysgl user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new nysql user group, and then add a
nysql user to this group:

$> groupadd nysq
$> useradd -g nysql -s /bin/fal se nysq

The syntax for user add and gr oupadd may differ slightly on different versions of Unix, or they may
have different names such as adduser and addgr oup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named nysql to the nysql directory.

Note

The actual file and directory names vary according to the NDB Cluster version
number.

$> cd /var/tnp
$> tar -C /usr/local -xzvf nysql-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64.tar.gz
$> In -s /usr/local /nysql-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64 /usr/local/nysq

66

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html

Installing an NDB Cluster Binary Release on Linux

3. Change location to the nysql directory and set up the system databases using nysql d - -
initialize asshown here:

$> cd nysq
$> nysqld --initialize

This generates a random password for the MySQL r oot account. If you do not want the random
password to be generated, you can substitute the --i ni ti al i ze-i nsecur e option for - -
initialize.In either case, you should review Initializing the Data Directory, for additional information
before performing this step. See also mysql_secure_installation — Improve MySQL Installation
Security.

4. Set the necessary permissions for the MySQL server and data directories:

$> chown -R root
$> chown -R nysqgl data
$> chgrp -R nysq

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when
the operating system is booted up:

$> cp support-files/nmysqgl.server /etc/rc.d/init.d/
$> chnod +x /etc/rc.d/init.d/ nysql.server
$> chkconfig --add nysql.server

(The startup scripts directory may vary depending on your operating system and version—for example,
in some Linux distributions, itis/etc/init.d.)

Here we use Red Hat's chkconf i g for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as updat e-r c. d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to reside.

Data nodes. Installation of the data nodes does not require the nmysql d binary. Only the NDB Cluster
data node executable ndbd (single-threaded) or ndbnt d (multithreaded) is required. These binaries can
also be found in the . t ar . gz archive. Again, we assume that you have placed this archive in / var/t np.

As system r oot (that is, after using sudo, su r oot , or your system's equivalent for temporarily assuming
the system administrator account's privileges), perform the following steps to install the data node binaries
on the data node hosts:

1. Change location to the / var / t np directory, and extract the ndbd and ndbnt d binaries from the
archive into a suitable directory such as / usr/ | ocal / bi n:

$> cd /var/tnp

$> tar -zxvf nysql-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64.tar.gz
$> cd nysql -cluster-gpl-8.0.28-1inux-glibc2.12-x86_64

$> cp bin/ndbd /usr/local/bin/ndbd

$> cp bin/ndbntd /usr/local/bin/ndbntd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from / var / t np once ndb_ngmand ndb_ngnd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chnod +x ndb*

The preceding steps should be repeated on each data node host.

67

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/data-directory-initialization.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html

Installing NDB Cluster from RPM

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbnt d in the preceding instructions. We recommend that you do
this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since this saves
time and trouble in the event that you later decide to change from one to the other.

Note

The data directory on each machine hosting a data node is / usr /| ocal / nysql /
dat a. This piece of information is essential when configuring the management
node. (See Section 3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the nmysql d binary.
Only the NDB Cluster management server (ndb_ngnd) is required; you most likely want to install the
management client (ndb_ngn) as well. Both of these binaries also be found in the . t ar . gz archive.
Again, we assume that you have placed this archive in / var / t np.

As system r oot , perform the following steps to install ndb_ngnd and ndb_ngmon the management node
host:

1. Change location to the / var / t np directory, and extract the ndb_ngmand ndb_ngnd from the archive
into a suitable directory such as / usr /| ocal / bi n:

$> cd /var/tnp

$> tar -zxvf nysqgl-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64.tar.gz
$> cd nysql -cluster-gpl-8.0.28-1inux-glibc2.12-x86_64

$> cp bin/ndb_ngn¥ /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from / var / t np once ndb_ngmand ndb_ngnd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chnod +x ndb_ngnt

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in our
example NDB Cluster.

3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster 8.0
node using RPM packages supplied by Oracle.

As an alternative to the method described in this section, Oracle provides MySQL Repositories for NDB
Cluster that are compatible with many common Linux distributions. Two repostories, listed here, are
available for RPM-based distributions:

 For distributions using yumor dnf , you can use the MySQL Yum Repository for NDB Cluster. See
Installing MySQL NDB Cluster Using the Yum Repository, for instructions and additional information.

» For SLES, you can use the MySQL SLES Repository for NDB Cluster. See Installing MySQL NDB
Cluster Using the SLES Repository, for instructions and additional information.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

nysql - cl ust er - conmuni t y- dat a- node- 8. 0. 28- 1. el 7. x86_64. r pm

68

https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install

Installing NDB Cluster from RPM

nmysql -cl uster-1icense-conponent-ver-rev.distro.arch. rpm

|'i cense: = {comrerci a

| communi ty}

conponent : {managenent -server | data-node | server | client | other-see text}

ver: major. mnor.rel ease

rev: major[.mnor]

distro: {el6 | el 7 | slesl2}

arch: {i686 | x86_64}

I i cense indicates whether the RPM is part of a Commercial or Community release of NDB Cluster. In the
remainder of this section, we assume for the examples that you are installing a Community release.

Possible values for conponent , with descriptions, can be found in the following table:

Table 3.2 Components of the NDB Cluster RPM distribution

Component

Description

auto-install er (DEPRECATED)

NDB Cluster Auto Installer program; see
Section 3.8, “The NDB Cluster Auto-Installer (No
longer supported)”, for usage

client MySQL and NDB client programs; includes nysql
client, ndb_ngmclient, and other client tools

common Character set and error message information
needed by the MySQL server

dat a- node ndbd and ndbnt d data node binaries

devel Headers and library files needed for MySQL client
development

enbedded Embedded MySQL server

enbedded- conpat

Backwards-compatible embedded MySQL server

enbedded- devel

Header and library files for developing applications
for embedded MySQL

j ava JAR files needed for support of ClusterJ applications
I'ibs MySQL client libraries
|'i bs- conpat Backwards-compatible MySQL client libraries

managemnent - server

The NDB Cluster management server (ndb_ngnd)

nencached

Files needed to support ndbnmentache

m ni mal - debugi nf o

Debug information for package server-minimal,
useful when developing applications that use this
package or when debugging this package

ndbcl i ent

NDB client library for running NDB APl and MGM
API applications (I i bndbcl i ent)

ndbcl i ent - devel

Header and other files needed for developing NDB
API and MGM API applications

nodej s

Files needed to set up Node.JS support for NDB
Cluster

69

Installing NDB Cluster from RPM

Component Description

server The MySQL server (mysql d) with NDB storage
engine support included, and associated MySQL
server programs

server-m ni nal Minimal installation of the MySQL server for NDB
and related tools

t est nysql t est, other MySQL test programs, and

support files

A single bundle (. t ar file) of all NDB Cluster RPMs for a given platform and architecture is also available.
The name of this file follows the pattern shown here:

nysql -cl uster-1|icense-ver-rev.distro.arch.rpmbundl e.tar

You can extract the individual RPM files from this file using t ar or your preferred tool for extracting
archives.

The components required to install the three major types of NDB Cluster nodes are given in the following
list:

e Management node: mnanagenent - ser ver
» Data node: dat a- node
e SQL node: server and conmon

In addition, the cl i ent RPM should be installed to provide the ndb_ngmmanagement client on at least
one management node. You may also wish to install it on SQL nodes, to have nysqgl and other MySQL
client programs available on these. We discuss installation of nodes by type later in this section.

ver represents the three-part NDB storage engine version number in 8.0.x format, shown as 8. 0. 28 in the
examples. r ev provides the RPM revision number in maj or .ni nor format. In the examples shown in this
section, we use 1. 1 for this value.

The di st r o (Linux distribution) is one of r hel 5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5), el 6
(Oracle Linux 6, Red Hat Enterprise Linux 6), el 7 (Oracle Linux 7, Red Hat Enterprise Linux 7), or sl es12
(SUSE Enterprise Linux 12). For the examples in this section, we assume that the host runs Oracle Linux
7, Red Hat Enterprise Linux 7, or the equivalent (el 7).

archisi 686 for 32-bit RPMs and x86_64 for 64-bit versions. In the examples shown here, we assume a
64-bit platform.

The NDB Cluster version number in the RPM file names (shown here as 8. 0. 28) can vary according to
the version which you are actually using. It is very important that all of the Cluster RPMs to be installed
have the same version number. The architecture should also be appropriate to the machine on which the
RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs (x86_64) cannot be used
with 32-bit operating systems (use i 686 for the latter).

Data nodes. On a computer that is to host an NDB Cluster data node it is hecessary to install only
the dat a- node RPM. To do so, copy this RPM to the data node host, and run the following command
as the system root user, replacing the name shown for the RPM as necessary to match that of the RPM
downloaded from the MySQL website:

$> rpm - Uhv nysql - cl ust er - conmuni t y- dat a- node- 8. 0. 28- 1. el 7. x86_64. r pm

This installs the ndbd and ndbnt d data node binaries in / usr/ sbi n. Either of these can be used to run a
data node process on this host.

70

Installing NDB Cluster from RPM

SQL nodes. Copy the server and conmon RPMs to each machine to be used for hosting an NDB
Cluster SQL node (ser ver requires conmon). Install the ser ver RPM by executing the following
command as the system root user, replacing the name shown for the RPM as necessary to match the
name of the RPM downloaded from the MySQL website:

$> rpm - Uhv nysql - cl ust er-conmmuni ty-server-8.0.28-1. el 7. x86_64. rpm

This installs the MySQL server binary (mysql d), with NDB storage engine support, in the / usr/ sbi n
directory. It also installs all needed MySQL Server support files and useful MySQL server programs,
including the nysql . server and nysql d_saf e startup scripts (in / usr/ shar e/ nysql and/ usr/ bi n,
respectively). The RPM installer should take care of general configuration issues (such as creating the
nmysgl user and group, if needed) automatically.

Important

You must use the versions of these RPMs released for NDB Cluster ; those
released for the standard MySQL server do not provide support for the NDB storage
engine.

To administer the SQL node (MySQL server), you should also install the cl i ent RPM, as shown here:

$> rpm - Uhv nysql - cl ust er-conmmunity-client-8.0.28-1.el7.x86_64.rpm

This installs the nysql client and other MySQL client programs, such as nmysql adm n and nysql dunp, to
/usr/ bin.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
managenent - ser ver RPM. Copy this RPM to the computer intended to host the management node,
and then install it by running the following command as the system root user (replace the name shown
for the RPM as necessary to match that of the nanagenent - ser ver RPM downloaded from the MySQL
website):

$> rpm - Uhv nysql - cl ust er - conmuni t y- managenent - server-8. 0. 28-1. el 7. x86_64. r pm

This RPM installs the management server binary ndb_ngnd in the / usr/ sbi n directory. While this is the
only program actually required for running a management node, it is also a good idea to have the ndb_ngm
NDB Cluster management client available as well. You can obtain this program, as well as other NDB client
programs such as ndb_desc and ndb_conf i g, by installing the cl i ent RPM as described previously.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about installing
MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster; see Section 3.3, “Initial Configuration of
NDB Cluster”, for the relevant information.

It is very important that all of the Cluster RPMs to be installed have the same version number. The

ar chi t ect ur e designation should also be appropriate to the machine on which the RPM is to be
installed; in particular, you should keep in mind that 64-bit RPMs cannot be used with 32-bit operating
systems.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the ser ver
RPM. To do so, copy this RPM to the data node host, and run the following command as the system root
user, replacing the name shown for the RPM as necessary to match that of the RPM downloaded from the
MySQL website:

$> rpm -Uhv MySQL-Cl uster-server-gpl-8.0.28-1.sles11.i386.rpm

71

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html

Installing NDB Cluster Using .deb Files

Although this installs all NDB Cluster binaries, only the program ndbd or ndbnt d (both in/ usr/ shi n)is
actually needed to run an NDB Cluster data node.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the ser ver RPM
by executing the following command as the system root user, replacing the name shown for the RPM as
necessary to match the name of the RPM downloaded from the MySQL website:

$> rpm-Uhv MySQL-Cl uster-server-gpl-8.0.28-1.sles11.i386.rpm

This installs the MySQL server binary (mysql d) with NDB storage engine support in the / usr/ sbhin
directory, as well as all needed MySQL Server support files. It also installs the nysql . server and
nysqgl d_saf e startup scripts (in/ usr/ shar e/ nysql and/ usr/ bi n, respectively). The RPM installer
should take care of general configuration issues (such as creating the nmysql user and group, if needed)
automatically.

To administer the SQL node (MySQL server), you should also install the cl i ent RPM, as shown here:

$> rpm-Uhv MySQL-C uster-client-gpl-8.0.28-1.sles1l.i386.rpm
This installs the nysql client program.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the ser ver RPM downloaded from the MySQL website):

$> rpm-Uhv MySQL-Cl uster-server-gpl-8.0.28-1.sles11.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_ngnd (in the /
usr/ sbi n directory) is actually required for running a management node. The ser ver RPM also installs
ndb_ngm the NDB management client.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about installing
MySQL using RPMs supplied by Oracle. See Section 3.3, “Initial Configuration of NDB Cluster”, for
information about required post-installation configuration.

3.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the . deb files supplied by Oracle for this purpose.

Oracle also provides an NDB Cluster APT repository for Debian and other distributions. See Installing
MySQL NDB Cluster Using the APT Repository, for instructions and additional information.

Oracle provides . deb installer files for NDB Cluster for 32-bit and 64-bit platforms. For a Debian-based
system, only a single installer file is necessary. This file is named using the pattern shown here, according
to the applicable NDB Cluster version, Debian version, and architecture:

nmysql - cl ust er - gpl - ndbver - debi andebi anver - ar ch. deb

Here, ndbver is the 3-part NDB engine version number, debi anver is the major version of Debian (8
or 9), and ar ch is one of i 686 or x86_64. In the examples that follow, we assume you wish to install
NDB 8.0.28 on a 64-bit Debian 9 system; in this case, the installer file is named nysql - cl ust er -
gpl - 8. 0. 28- debi an9- x86_64. deb- bundl e. t ar.

Once you have downloaded the appropriate . deb file, you can untar it, and then install it from the
command line using dpkg, like this:

72

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install

Building NDB Cluster from Source on Linux

$> dpkg -i nysql -cluster-gpl-8.0.28-debi an9-i 686. deb
You can also remove it using dpkg as shown here:
$> dpkg -r nysql

The installer file should also be compatible with most graphical package managers that work with . deb
files, such as GDebi for the Gnome desktop.

The . deb file installs NDB Cluster under / opt / mysql / server -ver si on/ , where ver si on is the 2-
part release series version for the included MySQL server. For NDB 8.0, this is always 5. 7. The directory
layout is the same as that for the generic Linux binary distribution (see MySQL Installation Layout for
Generic Unix/Linux Binary Package), with the exception that startup scripts and configuration files are
found in support-fil es instead of shar e. All NDB Cluster executables, such as ndb_ngm ndbd, and
ndb_ngnd, are placed in the bi n directory.

3.1.4 Building NDB Cluster from Source on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs

in a few key respects discussed here. For general information about building MySQL from source, see
Installing MySQL from Source. For information about compiling NDB Cluster on Windows platforms, see
Section 3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysql.com/downloads/. The archived source file should
have a name similar to nysql - 8. 0. 28. t ar. gz. You can also obtain the sources from GitHub at https://
github.com/mysql/mysql-server.

Note

In previous versions, building of NDB Cluster from standard MySQL Server sources
was not supported. In MySQL 8.0 and NDB Cluster 8.0, this is no longer the case
—both products are now built from the same sources.

The W TH_NDBCLUSTER option for CMake causes the binaries for the management nodes, data
nodes, and other NDB Cluster programs to be built; it also causes mysql d to be compiled with NDB
storage engine support. This option (or one of its aliases W TH_NDBCLUSTER STORAGE ENG NE and
W TH_PLUG N_NDBCLUSTER) is required when building NDB Cluster.

Important

The W TH_NDB_JAVA option is enabled by default. This means that, by default, if
Chake cannot find the location of Java on your system, the configuration process
fails; if you do not wish to enable Java and ClusterJ support, you must indicate
this explicitly by configuring the build using - DW TH_NDB_JAVA=OFF. Use

W TH_CLASSPATH to provide the Java classpath if needed.

For more information about C\Vake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

After you have run make && nmake install (or your system's equivalent), the result is similar to what is
obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default rake i nstal |, the
management server and management client binaries (ndb_ngnd and ndb_ngn) can be found in / usr/

73

https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options

Installing NDB Cluster on Windows

I ocal / mysql / bi n. Only ndb_ngnd is required to be present on a management node host; however,
it is also a good idea to have ndb_ngmpresent on the same host machine. Neither of these executables
requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or

ndbnt d. (nysql d, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory / usr/ | ocal / nysql / bi n. For installing on multiple
data node hosts, only ndbd or ndbnt d need be copied to the other host machine or machines. (This
assumes that all data node hosts use the same architecture and operating system; otherwise you may
need to compile separately for each different platform.) The data node binary need not be in any particular
location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbnt d to be built
automatically; make i nstal | places the ndbnt d binary in the installation bi n directory along with

nysql d, ndbd, and ndb_ngm

SQL nodes. If you compile MySQL with clustering support, and perform the default installation (using
nmake install asthe systemr oot user), nysql dis placedin/usr/ | ocal / nysql / bi n. Follow the
steps given in Installing MySQL from Source to make nysql d ready for use. If you want to run multiple
SQL nodes, you can use a copy of the same nysql d executable and its associated support files on
several machines. The easiest way to do this is to copy the entire / usr/ | ocal / nysql directory and all
directories and files contained within it to the other SQL node host or hosts, then repeat the steps from
Installing MySQL from Source on each machine. If you configure the build with a nondefault PREFI X
option, you must adjust the directory accordingly.

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in our
example NDB Cluster.

3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster 8.0
binaries for Windows can be obtained from https://dev.mysqgl.com/downloads/cluster/. For information
about installing NDB Cluster on Windows from a binary release provided by Oracle, see Section 3.2.1,
“Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this section
(see Chapter 3, NDB Cluster Installation), as shown in the following table:

Table 3.3 Network addresses of nodes in example cluster

Node IP Address

Management node (ngnd) 198.51.100.10
SQL node (nmysql d) 198.51.100.20
Data node "A" (ndbd) 198.51.100.30
Data node "B" (ndbd) 198.51.100.40

74

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows from a Binary Release

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on it a
MySQL Server binary (mysql d. exe). You should also have the MySQL client (nysql . exe) on this host.
For management nodes and data nodes, it is not necessary to install the MySQL Server binary; however,
each management node requires the management server daemon (ndb_ngnd. exe); each data node
requires the data node daemon (ndbd. exe or ndbnt d. exe). For this example, we refer to ndbd. exe
as the data node executable, but you can install ndbnt d. exe, the multithreaded version of this program,
instead, in exactly the same way. You should also install the management client (ndb_ngm exe) on the
management server host. This section covers the steps necessary to install the correct Windows binaries
for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with the

. exe file extension. However, it is not necessary to include the . exe extension
when invoking these programs from the command line. Therefore, we often simply
refer to these programs in this documentation as nysql d, nysql , ndb_ngnd, and
so on. You should understand that, whether we refer (for example) to nmysql d or
nysgl d. exe, either name means the same thing (the MySQL Server program).

For setting up an NDB Cluster using Oracles's no- i nst al | binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysql.com/
downloads/cluster/. This archive has a filename of the nysql - cl ust er - gpl - ver - wi nar ch. zi p,
where ver is the NDB storage engine version (such as 8. 0. 28), and ar ch is the architecture (32 for 32-
bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 8.0.28 archive for 64-bit Windows
systems is named nysql - cl ust er-gpl - 8. 0. 28-w n64. zi p.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-bit
NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit version of
Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C: \ Docunent s

and Settings\usernanme\ My Documnent s\ Downl oads on the computer having the IP address
198.51.100.20, where user nane is the name of the current user. (You can obtain this name using ECHO
%JSERNANVEY0N the command line.) To install and run NDB Cluster executables as Windows services, this
user should be a member of the Admi ni st r at or s group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is adequate
for this task. (If you use a different archive program, be sure that it extracts all files and directories from
the archive, and that it preserves the archive's directory structure.) When you are asked for a destination
directory, enter C: \ , which causes the Extraction Wizard to extract the archive to the directory C. \ nysql -
cl uster-gpl -ver-w nar ch. Rename this directory to C: \ nysql .

It is possible to install the NDB Cluster binaries to directories other than C: \ mysql \ bi n; however, if you
do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL Server
(SQL node) binary is installed to a location other than C: \ nysql or C:\ Program Fi | es\ MySQL\ My SQL
Server 8. 0, or if the SQL node's data directory is in a location other than C: \ nysql \ dat a or C:.

\ Program Fi | es\ MySQL\ MySQL Server 8. 0\ dat a, extra configuration options must be used on the
command line or added to the ny. i ni or ny. cnf file when starting the SQL node. For more information
about configuring a MySQL Server to run in a nonstandard location, see Installing MySQL on Microsoft
Windows Using a noi nst al | ZIP Archive.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options - - ndbcl ust er and - - ndb- connect st ri ng. While you can specify these options on the

75

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/windows-install-archive.html
https://dev.mysql.com/doc/refman/8.0/en/windows-install-archive.html

Installing NDB Cluster on Windows from a Binary Release

command line, it is usually more convenient to place them in an option file. To do this, create a new text file
in Notepad or another text editor. Enter the following configuration information into this file;

[nysql d]

Options for nysqld process:

ndbcl ust er # run NDB storage engine

ndb- connect stri ng=198. 51. 100. 10 # | ocati on of nmanagenent server

You can add other options used by this MySQL Server if desired (see Creating an Option File), but the file
must contain the options shown, at a minimum. Save this file as C: \ mysql \ my. i ni . This completes the
installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one of
either ndbd. exe or ndbnt d. exe. For this example, we assume that you are using ndbd. exe, but the
same instructions apply when using ndbnt d. exe. On each computer where you wish to run a data node
(the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the directories C:
\'nysql, C:\nysqgl\bin,and C:\ nysql \ cl ust er - dat a; then, on the computer where you downloaded
and extracted the no-i nst al | archive, locate ndbd. exe inthe C: \ mysql \ bi n directory. Copy this file
to the C: \ nysql \ bi n directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of

the management server. You can supply this information on the command line using the - - ndb-
connect stri ng or - ¢ option when starting each data node process. However, it is usually preferable to
put this information in an option file. To do this, create a new text file in Notepad or another text editor and
enter the following text:

[mysql _cluster]
Options for data node process:
ndb- connect stri ng=198. 51. 100. 10 # | ocati on of nanagenent server

Save this file as C. \ nysql \ my. i ni on the data node host. Create another text file containing the same
information and save it on as C. nysql \ ny. i ni on the other data node host, or copy the my.ini file from
the first data node host to the second one, making sure to place the copy in the second data node's C:
\'nmysqgl directory. Both data node hosts are now ready to be used in the NDB Cluster, which leaves only
the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an NDB
Cluster management node is the management server program ndb_ngnd. exe. However, in order to
administer the NDB Cluster once it has been started, you should also install the NDB Cluster management
client program ndb_ngm exe on the same machine as the management server. Locate these two
programs on the machine where you downloaded and extracted the no-i nst al | archive; this should be
the directory C: \ mysqgl \ bi n on the SQL node host. Create the directory C: \ nysql \ bi n on the computer
having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_ngnd. exe:

1. Alocal configuration file to supply configuration data specific to the management node itself. Typically,
this file needs only to supply the location of the NDB Cluster global configuration file (see item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql _cluster]
Options for nmanagenent node process
config-file=C:/nysql/bin/config.ini

Save this file as the text file C: \ nysqgl \ bi n\ ny. i ni .

76

https://dev.mysql.com/doc/refman/8.0/en/windows-create-option-file.html

Installing NDB Cluster on Windows from a Binary Release

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data nodes
(Host Nane configuration parameter). It is also advisable to include the following additional information:

e The IP address or hostname of any SQL nodes

* The data memory and index memory allocated to each data node (Dat aMenory and | ndexMenory
configuration parameters)

« The number of fragment replicas, using the NoOf Repl i cas configuration parameter (see
Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

e The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the Dat aDi r configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd defaul t]

Options affecting ndbd processes on all data nodes

NoCf Repl i cas=2 Nunber of fragnent replicas

Dat aDi r =C: / nysql / cl ust er - dat a Directory for each data node's data files
Forward sl ashes used in directory path
rather than backsl ashes. This is correct;
see Inmportant note in text

HOoH R HH

Dat aMenor y=80M # Menory all ocated to data storage
| ndexMenory=18M # Menory all ocated to index storage
For DataMenory and | ndexMenory, we have used the
default values. Since the "world" database takes up
only about 500KB, this should be nmore than enough for
this exanple Custer setup
[ndb_ngnd]
Managenent process options
Host Nane=198. 51. 100. 10 # Hostnanme or | P address of nmanagenent node

Dat aDi r =C: / nysql / bi n/ cl ust er - | ogs # Directory for managenent node log files

[ndbd]
Options for data node "A"

(one [ndbd] section per data node)
Host Nane=198. 51. 100. 30 # Hostname or |P address

[ndbd]
Options for data node "B"
Host Nane=198. 51. 100. 40 # Hostnane or | P address

[nysaql d]
SQL node options
Host Nane=198. 51. 100. 20 # Hostnane or |P address

Save this file as the text file C. \ mysqgl \ bi n\config.ini.
Important

A single backslash character (\) cannot be used when specifying directory paths in
program options or configuration files used by NDB Cluster on Windows. Instead,
you must either escape each backslash character with a second backslash (\\), or
replace the backslash with a forward slash character (/). For example, the following
line from the [ndb_ngnd] section of an NDB Cluster confi g. i ni file does not
work:

Dat abDi r =C: \ nysql \ bi n\ cl ust er -1 ogs

77

Compiling and Installing NDB Cluster from Source on Windows

Instead, you may use either of the following:
Dat aDi r=C: \\ nysql \\ bi n\\cluster-1ogs # Escaped backsl ashes

Dat aDi r =C: / nysql / bi n/ cl ust er -1 ogs # Forward sl ashes

For reasons of brevity and legibility, we recommend that you use forward slashes
in directory paths used in NDB Cluster program options and configuration files on
Windows.

3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most users.
However, if you wish, it is also possible to compile NDB Cluster for Windows from source code. The
procedure for doing this is almost identical to the procedure used to compile the standard MySQL Server
binaries for Windows, and uses the same tools. However, there are two major differences:

 Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysqgl.com/downloads/. The archived source file should
have a name similar to nysqgl - 8. 0. 28. t ar . gz. You can also obtain the sources from GitHub at
https://github.com/mysqgl/mysql-server.

* You must configure the build using the W TH_NDBCLUSTER option in addition to any other build options
you wish to use with CVake. W TH_NDBCLUSTER STORAGE ENG NE and W TH_PLUG N_NDBCLUSTER
are supported as aliases for W TH_NDBCLUSTER, and work in exactly the same way.

Important

The W TH_NDB_JAVA option is enabled by default. This means that, by default, if
CWMake cannot find the location of Java on your system, the configuration process
fails; if you do not wish to enable Java and ClusterJ support, you must indicate this
explicitly by configuring the build using - DW TH_NDB_JAVA=CFF. (Bug #12379735)
Use W TH_CLASSPATH to provide the Java classpath if needed.

For more information about C\Vake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Installing MySQL Using a Standard Source Distribution provides the commands needed to perform this
task on Windows systems. The NDB Cluster binaries can be found in the bi n directory of the resulting
archive, which is equivalent to the no- i nst al | archive, and which can be installed and configured in the
same manner. For more information, see Section 3.2.1, “Installing NDB Cluster on Windows from a Binary
Release”.

3.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial

start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the cluster.
Each cluster node process must be started separately, and on the host computer where it resides. The
management node should be started first, followed by the data nodes, and then finally by any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\nysql \ bi n> ndb_ngnd
2010- 06-23 07:53:34 [Mynt Srvr] INFO -- NDB Cl uster Managenent Server. mnysql-8.0.29-ndb-8.0.30

78

https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/installing-source-distribution.html

Initial Startup of NDB Cluster on Windows

2010- 06-23 07:53:34 [Mgnt Srvr] | NFO -- Reading cluster configuration from'config.ini

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB Cluster on
a Unix-like platform such as Linux, you may notice that the management node's default behavior in this
regard on Windows is effectively the opposite of its behavior on Unix systems, where it runs by default
as a Unix daemon process. This behavior is also true of NDB Cluster data node processes running on
Windows.) For this reason, do not close the window in which ndb_ngnd. exe is running; doing so kills
the management node process. (See Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”, where we show how to install and run NDB Cluster processes as Windows services.)

The required - f option tells the management node where to find the global configuration file
(confi g.ini). The long form of this optionis - - confi g-fi |l e.

Important

An NDB Cluster management node caches the configuration data that it reads
from confi g. i ni ; once it has created a configuration cache, it ignores the
config.ini file on subsequent starts unless forced to do otherwise. This
means that, if the management node fails to start due to an error in this file,
you must make the management node re-read confi g. i ni after you have
corrected any errors in it. You can do this by starting ndb_ngnd. exe with the
--reloador--initial optiononthe command line. Either of these options
works to refresh the configuration cache.

It is not necessary or advisable to use either of these options in the
management node's ny. i ni file.

On each of the data node hosts, run the command shown here to start the data node processes:

C:\ nysql \ bi n> ndbd
2010- 06- 23 07:53:46 [ndbd] I NFO -- Configuration fetched from'local host: 1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown in the
preceding example, and is followed by additional lines of logging output. As with the management node
process, this is normal, because the data node is not running as a Windows service. For this reason, do
not close the console window in which the data node process is running; doing so kills ndbd. exe. (For
more information, see Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”.)

Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node host,
start the NDB Cluster management client ndb_ngm exe, which should be in C: \ nysql \ bi n on the
management node host. (Do not try to re-use the console window where ndb_ngnd. exe is running by
typing CTRL+C, as this kills the management node.) The resulting output should look like this:

C:\ nysql \ bi n> ndb_ngm
-- NDB Cluster -- Managenent Client --
ndb_ngn>

When the prompt ndb_ngn® appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start by
entering ALL STATUS at the management client prompt. This command causes a running report of the
data nodes's startup sequence, which should look something like this:

ndb_mgn> ALL STATUS

Connected to Management Server at: |ocal host: 1186

Node 2: starting (Last conpleted phase 3) (nysqgl-8.0.29-ndb-8.0.30)
Node 3: starting (Last conpleted phase 3) (nysqgl-8.0.29-ndb-8.0.30)

79

Initial Startup of NDB Cluster on Windows

Node 2: starting (Last conpleted phase 4) (nysqgl-8.0.29-ndb-8.0.30)
Node 3: starting (Last conpleted phase 4) (nysqgl-8.0.29-ndb-8.0.30)

Node 2: Started (version 8.0.30)
Node 3: Started (version 8.0.30)

ndb_ngne
Note

Commands issued in the management client are not case-sensitive; we

use uppercase as the canonical form of these commands, but you are not
required to observe this convention when inputting them into the ndb_ngm
client. For more information, see Section 6.1, “Commands in the NDB Cluster
Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the speed
at which the data nodes are able to start, the release version number of the NDB Cluster software

you are using, and other factors. What is significant is that, when you see that both data nodes have
started, you are ready to start the SQL node.

You can leave ndb_ngm exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after you
have started it.

On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C.

\ mysql \ bi n).
Start the SQL node by invoking mysql d. exe from the command line, as shown here:

C:\ nysql \ bi n> nysqgl d --consol e

The - - consol e option causes logging information to be written to the console, which can be helpful in
the event of problems. (Once you are satisfied that the SQL node is running in a satisfactory manner,
you can stop it and restart it out without the - - consol e option, so that logging is performed normally.)

In the console window where the management client (ndb_ngm exe) is running on the management
node host, enter the SHONcommand, which should produce output similar to what is shown here:

ndb_ngn»> SHOW
Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
i d=2 @98.51.100.30 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)
i d=3 @98.51.100.40 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_mymd(M3M] 1 node(s)
id=1 @98.51.100.10 (Version: 8.0.29-ndb-8.0.30)

[mysql d(API)] 1 node(s)
i d=4 @98.51.100. 20 (Version: 8.0.29-ndb-8.0.30)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysqgl . exe) using the SHOW ENG NE NDB STATUS statement.

80

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html#show-engine-ndb-status

Installing NDB Cluster Processes as Windows Services

You should now be ready to work with database objects and data using NDB Cluster 's NDBCLUSTER
storage engine. See Section 3.5, “NDB Cluster Example with Tables and Data”, for more information and
examples.

You can also install ndb_ngnd. exe, ndbd. exe, and ndbnt d. exe as Windows services. For information
on how to do this, see Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”).

3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes and
data nodes as Windows services, so that these processes are started and stopped automatically whenever
Windows is started or stopped. This also makes it possible to control these processes from the command
line with the appropriate SC START and SC STOP commands, or using the Windows graphical Ser vi ces
utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_ngnd. exe from the command line
on the machine hosting the management node, using the - - i nst al | option, as shown here:

C.\> C \nysql\bin\ndb_ngnd. exe --install

Installing service ' NDB Cl uster Managenent Server'
as '"C \nysqgl\bin\ndbd. exe" "--servi ce=ndb_ngnmd"'

Servi ce successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should always
specify the complete path; otherwise the service installation may fail with the error
The system cannot find the file specified.

The - -i nst al | option must be used first, ahead of any other options that might be specified for
ndb_ngnd. exe. However, it is preferable to specify such options in an options file instead. If your options
file is not in one of the default locations as shown in the output of ndb_ngnd. exe - - hel p, you can
specify the location using the - - conf i g-fi | e option.

Now you should be able to start and stop the management server like this:
C.\> SC START ndb_ngnd

C:\> SC STOP ndb_ngnd
Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C:\> NET START 'NDB Cl uster Managenent Server'
The NDB Cl uster Managenent Server service is starting.
The NDB C uster Managenent Server service was started successfully.

C:\> NET STOP 'NDB Cluster Managenent Server'
The NDB Cl uster Managenent Server service is stopping..
The NDB O uster Managenment Server service was stopped successfully.

It is usually simpler to specify a short service name or to permit the default service name to be used when
installing the service, and then reference that name when starting or stopping the service. To specify a
service name other than ndb_ngnd, append it to the - - i nst al | option, as shown in this example:

81

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Installing NDB Cluster Processes as Windows Services

C.\> C \nysql\bin\ndb_ngnd. exe --install=ngnd1
Installing service ' NDB Cl uster Managenent Server'

as '"C \nysql\bin\ndb_ngnd. exe" "--service=ngnmdl"’
Servi ce successfully installed.

Now you should be able to start or stop the service using the name you have specified, like this:
C:\> SC START nynul

C:\> SC STOP ngnull

To remove the management node service, use SC DELETE servi ce_nane:

C.\> SC DELETE ngndl

Alternatively, invoke ndb_ngnd. exe with the - - r enove option, as shown here:
C.\> C\nysql\bi n\ndb_ngnd. exe --renove

Renmovi ng service 'NDB Cl uster Managenment Server'
Servi ce successfully renoved.

If you installed the service using a service name other than the default, pass the service nhame as the value
of the ndb_ngnd. exe - - r enove option, like this:

C.\> C\nysqgl\bi n\ndb_ngnd. exe --renpve=ngndl

Renmovi ng service ' ngndl'
Servi ce successfully renoved.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar fashion,
using the - - i nst al | option for ndbd. exe (or ndbnt d. exe), as shown here:

C.\> C\nysqgl\bin\ndbd. exe --install

Installing service 'NDB Cluster Data Node Daenon' as '"C:\nysqgl\bin\ndbd. exe" "--service=ndbd"'
Servi ce successfully installed.

Now you can start or stop the data node as shown in the following example:
C:\> SC START ndbd

C.\> SC STOP ndbd

To remove the data node service, use SC DELETE servi ce_nane:

C.\> SC DELETE ndbd

Alternatively, invoke ndbd. exe with the - - r enove option, as shown here:

C:\> C \nysqgl\bin\ndbd. exe --renpve
Renmovi ng service 'NDB O uster Data Node Daenon'
Servi ce successful ly renpved.

As with ndb_ngnd. exe (and nysql d. exe), when installing ndbd. exe as a Windows service, you can
also specify a name for the service as the value of - - i nst al | , and then use it when starting or stopping
the service, like this:

C:\> C \nysqgl\bin\ndbd. exe --instal |l =dnodel
Installing service 'dnodel' as '"C:\nysql\bin\ndbd. exe" "--service=dnodel"'
Servi ce successfully install ed.

C.\> SC START dnodel

82

Initial Configuration of NDB Cluster

C.\> SC STOP dnodel

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C.\> SC DELETE dnodel

Alternatively, you can pass the service name as the value of the ndbd. exe - - r enove option, as shown
here:

C.\> C \nysqgl\bin\ndbd. exe --renpve=dnodel
Renovi ng service ' dnodel’
Servi ce successfully renpved.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and removing
the service are done in a similar fashion, using nysqgl d - -i nstal I , SC START, SC STOP, and SC
DELETE (or nysql d - - renove). NET commands can also be used to start or stop a service. For additional
information, see Starting MySQL as a Windows Service.

3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to write
four configuration files, one per node host.

» Each data node or SQL node requires a ny. cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the MySQL
server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage engine.

For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.

» The management node needs a conf i g. i ni file telling it how many fragment replicas to maintain, how
much memory to allocate for data and indexes on each data node, where to find the data nodes, where
to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The ny. cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the / et ¢ directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/ny.cnf
Note

We show vi being used here to create the file, but any text editor should work just
as well.

For each data node and SQL node in our example setup, my. cnf should look like this:

[nysql d]
Options for nysqgld process:
ndbcl ust er # run NDB storage engine

[mysqgl _cl uster]
Options for NDB Cl uster processes:
ndb- connect string=198. 51. 100. 10 # | ocati on of managenent server

83

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_remove
https://dev.mysql.com/doc/refman/8.0/en/windows-start-service.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Initial Configuration of NDB Cluster

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysql d process with the ndbcl ust er and ndb-
connect st ri ng parameters in the [mysql d] and [nysqgl _cl ust er] sections
of the ny. cnf file as shown previously, you cannot execute any CREATE TABLE
or ALTER TABLE statements without having actually started the cluster. Otherwise,
these statements fail with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to create
the directory in which the configuration file can be found and then to create the file itself. For example
(running as r oot):

$> nkdir /var/lib/nysql-cluster
$> cd /var/lib/nysql-cluster
$> vi config.ini

For our representative setup, the confi g. i ni file should read as follows:

[ndbd defaul t]

Options affecting ndbd processes on all data nodes:

NoOf Repl i cas=2 # Nunmber of fragnment replicas

Dat aMenor y=98M # How nuch menory to allocate for data storage

[ndb_ngnd]

Managenent process options:

Host Nane=198. 51. 100. 10 # Hostnane or | P address of nanagenent node
Dat aDir=/var/li b/ mysqgl-cluster # Directory for managenent node log files

[ndbd]
Options for data node "A":

(one [ndbd] section per data node)
Host Nane=198. 51. 100. 30 # Hostnane or | P address
Nodel d=2 # Node ID for this data node
Dat aDi r=/usr/| ocal / nysql /data # Directory for this data node's data files
[ndbd]
Options for data node "B":
Host Nane=198. 51. 100. 40 # Hostnane or | P address
Nodel d=3 # Node ID for this data node
Dat aDi r=/usr/| ocal /nysql /data # Directory for this data node's data files
[nysql d]
SQL node options:
Host Nane=198. 51. 100. 20 # Hostnane or | P address
(additional nysqgld connections can be
specified for this node for various
purposes such as runni ng ndb_restore)

Note

The wor | d database can be downloaded from https://dev.mysgl.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you are
ready to proceed with starting the cluster and verifying that all processes are running. We discuss how this
is done in Section 3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their uses,
see Section 4.3, “NDB Cluster Configuration Files”, and Chapter 4, Configuration of NDB Cluster. For

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Initial Startup of NDB Cluster

configuration of NDB Cluster as relates to making backups, see Section 6.8.3, “Configuration for NDB
Cluster Backups”.

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. However, the cluster can automatically allocate ports for data nodes
from those that are already free.

3.4 Initial Startup of NDB Cluster

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management
node process:

$> ndb_ngnd --initial -f /var/lib/nysql-cluster/config.ini

The first time that it is started, ndb_ngnd must be told where to find its configuration file, using the - f
or --config-fil e option. This option requires that - -i ni ti al or--rel oad also be specified; see
Section 5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for details.

2. On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_ngmmanagement node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

$> ndb_nmgm

-- NDB Custer -- Managenent Cient --

ndb_ngnm> SHOW

Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @98.51.100.30 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)
i d=3 @98.51.100.40 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_ngnmd(MGM] 1 node(s)
id=1 @98.51.100. 10 (Version: 8.0.29-ndb-8.0.30)

[mysql d(API)] 1 node(s)
i d=4 @98.51.100.20 (Version: 8.0.29-ndb-8.0.30)

The SQL node is referenced here as [nysql d(API')], which reflects the fact that the nmysql d process is
acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the output
of SHOWis the address used by the SQL or API node to connect to the cluster data
nodes, and not to any management node.

85

NDB Cluster Example with Tables and Data

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 3.5, “NDB
Cluster Example with Tables and Data”, for a brief discussion.

3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

» For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify this,
use the ENG NE=NDBCLUSTER or ENG NE=NDB option when creating the table:

CREATE TABLE tbl _nanme (col _nane col unm_defini ti ons) ENG NE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the
table to use NDBCLUSTER:

ALTER TABLE t bl _nanme ENG NE=NDBCLUSTER;

» Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes up
space just as does any other table index. (It is not uncommon to encounter problems due to insufficient
memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysql dunp, you can open the
SQL script in a text editor and add the ENG NE option to any table creation statements, or replace any
existing ENG NE options. Suppose that you have the wor | d sample database on another MySQL server
that does not support NDB Cluster, and you want to export the Ci t y table:

$> nysql dunp --add-drop-table world City > city_table.sql

The resulting ci ty_t abl e. sql file contains this table creation statement (and the | NSERT statements
necessary to import the table data):

DROP TABLE IF EXISTS "Gty ;

CREATE TABLE Gty (
“ID int(11) NOT NULL auto_i ncrenent,
“Nanme® char(35) NOT NULL default '',
“CountryCode’ char(3) NOT NULL default "'
“District™ char(20) NOT NULL default "'
“Popul ation® int(11) NOT NULL default 'O0',
PR MARY KEY ('ID)

) ENG NE=My| SAM DEFAULT CHARSET=I ati ni;

INSERT INTO "GCity VALUES (1,'Kabul',"'AFG,'Kabol', 1780000);
INSERT INTO "GCity VALUES (2,'Qandahar','AFG ,' Qandahar', 237500);
INSERT INTO "City VALUES (3, 'Herat','AFG,'Herat', 186800);
(remai ni ng | NSERT statenents omtted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are two
ways that this can be accomplished. One of these is to modify the table definition before importing it into
the Cluster database. Using the Ci t y table as an example, modify the ENG NE option of the definition as
follows:

DROP TABLE | F EXISTS "City’;
CREATE TABLE "Gty (

86

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Example with Tables and Data

“ID int(11) NOT NULL auto_i ncrenent,
“Nane® char(35) NOT NULL default "'
“CountryCode’ char(3) NOT NULL default "'
“District™ char(20) NOT NULL default "'
“Popul ation® int(11) NOT NULL default '0',
PR MARY KEY ('I1D)

) ENG NE=NDBCLUSTER DEFAULT CHARSET=I ati ni;

INSERT INTO "City" VALUES (1,'Kabul','AFG,'Kabol', 1780000);
INSERT INTO "City" VALUES (2,' Qandahar','AFG ,' Qandahar', 237500) ;
INSERT INTO "City VALUES (3,'Herat','AFG,'Herat', 186800);
(remaining | NSERT statenents onitted)

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace all
instances of TYPE=engi ne_nane or ENG NE=engi ne_nane with ENG NE=NDBCLUSTER. If you do not
want to modify the file, you can use the unmodified file to create the tables, and then use ALTER TABLE to
change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named wor | d on the SQL node of the cluster, you
can then use the nysql command-line clienttoread city_t abl e. sql , and create and populate the
corresponding table in the usual manner:

$> nysgl world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the
SQL node is running (in this case, on the machine with the IP address 198. 51. 100. 20).

To create a copy of the entire wor | d database on the SQL node, use nysqgl dunp on the noncluster server
to export the database to a file named wor | d. sql (for example, in the / t nmp directory). Then modify the
table definitions as just described and import the file into the SQL node of the cluster like this:

$> nysql world < /tnp/world. sql
If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in the
usual way (specify the r oot password at the Ent er passwor d: prompt):

$> nysql -u root -p

Ent er passwor d:

Wel conme to the MySQL nonitor. Conmmands end with ; or \g.

Your MySQL connection id is 1 to server version: 8.0.29-ndb-8.0.30

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
nysql >

We simply use the MySQL server's r oot account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong r oot password. For more
information, see Securing the Initial MySQL Account.

It is worth taking into account that NDB Cluster nodes do not make use of the MySQL privilege system

when accessing one another. Setting or changing MySQL user accounts (including the r oot account)

effects only applications that access the SQL node, not interaction between nodes. See Section 6.18.2,
“NDB Cluster and MySQL Privileges”, for more information.

If you did not modify the ENG NE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

87

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/default-privileges.html

NDB Cluster Example with Tables and Data

nmysql > USE wor | d;

nmysqgl > ALTER TABLE City ENG NE=NDBCLUSTER

nmysqgl > ALTER TABLE Country ENG NE=NDBCLUSTER,

nmysql > ALTER TABLE CountrylLanguage ENG NE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished in
the usual manner, as is exiting the MySQL Monitor;

nmysql > USE wor | d;
mysql > SELECT Nane, Popul ati on FROM City ORDER BY Popul ati on DESC LIMT 5;

Hommmmeeaaaa Fommmmmeeaaaa +
| Nane | Popul ation |
Hommmmeeaaaa Fommmmmeeaaaa +
Bonbay	10500000
Seoul	9981619
S&o Paul o	9968485
Shanghai	9696300
Jakarta	9604900
Hommmmeeaaaa Fommmmmeeaaaa +

5 rows in set (0.34 sec)

mysqgl > \q
Bye

$>

Applications that use MySQL can employ standard APls to access NDB tables. It is important to remember
that your application must access the SQL node, and not the management or data nodes. This brief
example shows how we might execute the SELECT statement just shown by using the PHP 5.X nysql i
extension running on a Web server elsewhere on the network:

<! DOCTYPE HTM. PUBLIC "-//WBC//DTD HTM. 4.01 Transitional //EN'
"http://ww. w3. org/ TR ht m 4/ oose. dtd" >
<ht m >
<head>
<meta http-equi v="Cont ent - Type"
content="text/htm ; charset=iso-8859-1">
<title>SI MPLE nysqli SELECT</title>

</ head>
<body>
<?php
connect to SQL node
$link = new nysqgli('198.51.100.20', 'root', 'root_password' , 'world")

paraneters for mysqgli constructor are:
host, user, password, database

i f(nysqgli_connect_errno())
di e(" Connect failed: " . nysqli_connect_error());

$query = "SELECT Nane, Popul ation
FROM Gty
ORDER BY Popul ati on DESC
LIMT 5";

if no errors...
if($result = $link->query(S$query))

{
2>
<tabl e border="1" w dth="40% cell paddi ng="4" cell spacing ="1">
<t body>
<tr>
<th wi dth="10% >Ci ty</th>
<t h>Popul ati on</t h>
</tr>
<?

then display the results...

88

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Safe Shutdown and Restart of NDB Cluster

whil e($row = $resul t->fetch_object())
printf("<tr>\n <td align=\"center\">%</td><td>%l</td>\n</tr>\n",
$r ow >Name, $r ow >Popul at i on)

?>
</ t body
</t abl e>
<?
...and verify the nunber of rows that were retrieved
printf("<p>Affected rows: %l</p>\n", $link->affected_rows);
}
el se

otherwi se, tell us what went wong
echo nysqli _error ()

free the result set and the nmysqgli connection object
$resul t->cl ose();

$l i nk->cl ose();
?>

</ body>
</htm >

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the management
node:

$> ndb_ngm -e shut down

The - e option here is used to pass a command to the ndb_ngmclient from the shell. The command
causes the ndb_ngm ndb_ngnd, and any ndbd or ndbnt d processes to terminate gracefully.

Any SQL nodes can be terminated using nysql adm n shut down and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC STOP
servi ce_nanme or NET STOP servi ce_nane.

To restart the cluster on Unix platforms, run these commands:
» On the management host (198. 51. 100. 10 in our example setup):
$> ndb_ngnd -f /var/lib/nysql-cluster/config.in
e On each of the data node hosts (198. 51. 100. 30 and 198. 51. 100. 40):
$> ndbd
» Use the ndb_ngmclient to verify that both data nodes have started successfully.
« Onthe SQL host (198. 51. 100. 20):

$> nysql d_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows services
using the default service names (see Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”), you can restart the cluster as follows:

« On the management host (198. 51. 100. 10 in our example setup), execute the following command:

89

Upgrading and Downgrading NDB Cluster

C:\> SC START ndb_ngnd

e On each of the data node hosts (198. 51. 100. 30 and 198. 51. 100. 40), execute the following
command:

C.\> SC START ndhbd

« On the management node host, use the ndb_ngmclient to verify that the management node and both
data nodes have started successfully (see Section 3.2.3, “Initial Startup of NDB Cluster on Windows").

» On the SQL node host (198. 51. 100. 20), execute the following command:

C.\ > SC START nysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even
when making configuration changes, or performing upgrades to the cluster hardware or software (or both),
which require shutting down individual host machines, it is possible to do so without shutting down the
cluster as a whole by performing a rolling restart of the cluster. For more information about doing this, see
Section 6.5, “Performing a Rolling Restart of an NDB Cluster”.

3.7 Upgrading and Downgrading NDB Cluster

This section provides information about NDB Cluster software and table file compatibility between different
NDB Cluster 8.0 releases with regard to performing upgrades and downgrades as well as compatibility
matrices and notes. You should already be familiar with installing and configuring NDB Cluster prior to
attempting an upgrade or downgrade. See Chapter 4, Configuration of NDB Cluster.

Schema operations, including SQL DDL statements, cannot be performed while any data nodes are
restarting, and thus during an online upgrade or downgrade of the cluster. For other information regarding
the rolling restart procedure used to perform an online upgrade, see Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”.

Important

Compatibility between release versions is taken into account only with regard to
NDBCLUSTER in this section, and there are additional issues to be considered. See
Upgrading MySQL.

As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL
versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the NDB Cluster software.

The table shown here provides information on NDB Cluster upgrade and downgrade compatibility among
different releases of NDB 8.0. Additional notes about upgrades and downgrades to, from, or within the
NDB Cluster 8.0 release series can be found following the table.

90

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Upgrades and Downgrades, NDB Cluster 8.0

Upgrades and Downgrades, NDB Cluster 8.0

Figure 3.2 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 8.0

MySQL NDB Cluster 8.0
8.0.29
8.0.28
8.0.27
8.0.26
8.0.25
8.0.24
8.0.23
8.0.22
8.0.21
8.0.20
8.0.19

KEY:

Online upgrades and
downgrades possible

Version support. The following versions of NDB Cluster are supported for upgrades to GA releases of
NDB Cluster 8.0 (8.0.19 and later):

* NDB Cluster 7.6: NDB 7.6.4 and later
» NDB Cluster 7.5: NDB 7.5.4 and later
* NDB Cluster 7.4: NDB 7.4.6 and later

To upgrade from a release series previous to NDB 7.4, you must upgrade in stages, first to one of the
versions just listed, and then from that version to the latest NDB 8.0 release. In such cases, upgrading to
the latest NDB 7.6 release is recommended as the first step. For information about upgrades to NDB 7.6
from previous versions, see Upgrading and Downgrading NDB 7.6.

Known Issues. The following issues are known to occur when upgrading to or between NDB 8.0
releases:

» Online downgrades from NDB 8.0 to previous releases are not supported. Tables created in NDB 8.0
are not backwards compatible with previous releases. This is due to a change in usage of the extra
metadata property implemented by NDB tables to provide full support for the MySQL data dictionary.

For more information, see Changes in NDB table extra metadata. See also MySQL Data Dictionary.

» In NDB 8.0, the default values changed for | og_bi n (from 0 to 1) and ndb_I| og_bi n (from 1 to 0). This
means that you must now explicitly set ndb_| og_bi n to 1 to enable binary logging.

« Distributed privileges shared between MySQL servers as implemented in prior release series (see
Distributed Privileges Using Shared Grant Tables) are not supported in NDB Cluster 8.0. When started,
the nysql d supplied with NDB 8.0 and later checks for the existence of any grant tables which use

91

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-upgrade-downgrade-7-6.html
https://dev.mysql.com/doc/refman/8.0/en/data-dictionary.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

Upgrades and Downgrades, NDB Cluster 8.0

the NDB storage engine; if it finds any, it creates local copies (“shadow tables”) of these using | nnoDB.
This is true for each MySQL server connected to NDB Cluster. After this has been performed on all
MySQL servers acting as NDB Cluster SQL nodes, the NDB grant tables may be safely removed using
the ndb_dr op_t abl e utility supplied with the NDB Cluster distribution, like this:

ndb_drop_table -d nysql user db columms_priv tables_priv proxies_priv procs_priv

It is safe to retain the NDB grant tables, but they are not used for access control and are effectively
ignored.

For more information about the MySQL privileges system used in NDB 8.0, see Section 6.12, “Privilege
Synchronization and NDB_STORED_USER”, as well as Grant Tables.

In NDB 8.0, the binary configuration file format has been enhanced to provide support for greater
numbers of nodes than in previous versions. The new format is not accessible to nodes running older
versions of NDB, although newer management servers can detect older nodes and communicate with
them using the appropriate format.

Upgrades to NDB 8.0 should not be problematic in this regard. When downgrading from NDB 8.0 to
previous versions, because older management servers cannot read the newer binary configuration

file format, some manual intervention is required. When performing such a downgrade, it is necessary
to remove any cached binary configuration files prior to starting the management using the older NDB
software version, and to have the plaintext configuration file available for the management server to
read. Alternatively, you can start the older management server using the - -i ni ti al option (again, it is
necessary to have the confi g. i ni available). If the cluster uses multiple management servers, one of
these two things must be done for each management server binary.

Also in connection with support for increased numbers of nodes, due to incompatible changes
implemented in NDB 8.0 in the data node LCP Sysfi | e, it is necessary, when performing an online
downgrade from NDB 8.0 to a prior NDB Cluster release, to restart all data nodes using the --i ni ti al
option.

Restarting the data nodes with - - i ni ti al is also required when upgrading any release prior to NDB
7.6.4 to any NDB 8.0 release.

Direct downgrades of clusters running more than 48 data nodes, or with data nodes using node IDs
greater than 48, to earlier NDB Cluster releases from NDB 8.0 are not supported. It is necessary in such
cases to reduce the number of data nodes, change the configurations for all data nodes such that they
use node IDs less than or equal to 48, or both, as required not to exceed the old maximums.

If you are downgrading from NDB 8.0 to NDB 7.5 or NDB 7.4, you must set an explicit value for

I ndexMenory in the cluster configuration file if none is already present. This is because NDB 8.0 does
not use this parameter (which was removed in NDB 7.6) and sets it to 0 by default, whereas it is required
in NDB 7.5 and NDB 7.4, in both of which the cluster refuses to start with | nval i d confi gurati on
received from Managenent Server... if | ndexMenory is not set to a nonzero value.

Setting | ndexMenor y is not required for downgrades from NDB 8.0 to NDB 7.6.

NDB 8.0.22 adds support for IPv6 addressing for management nodes and data nodes in the
config.ini file. To begin using IPv6 addresses as part of an upgrade, perform the following steps:

1. Perform an upgrade of the cluster to version 8.0.22 or a later version of the NDB Cluster software in
the usual manner.

2. Change the addresses used in the confi g. i ni file to IPv6 addresses.

3. Perform a system restart of the cluster.

92

https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html

The NDB Cluster Auto-Installer (No longer supported)

» Due to changes in the internal mysql . ndb_schena table, if you upgrade to an NDB 8.0 release prior to
8.0.24, then you are advised to use ndb_schenma_di st _upgrade_al | owed = 0 to avoid unexpected
outages (Bug #30876990, Bug #31016905).

« If you are using multithreaded data nodes (ndbnt d) and the Thr eadConf i g configuration parameter,
you may need to make changes in the value set for this in the confi g. i ni file when upgrading from a
previous release to NDB 8.0.30 or later. When upgrading from NDB 8.0.23 or earlier, any usage of mai n,
rep, recv, or | dmthreads that was implicit in the earlier version must be explicitly set. When upgrading
from NDB 8.0.23 or later to NDB 8.0.30 or later, any usage of r ecv threads must be set explicitly in the
ThreadConfi g string. In addition, to avoid using i n, r ep, or | dmthreads in NDB 8.0.30 or later, you
must set the thread count for the given type to 0 explicitly.

An example follows.

NDB 8.0.22 and earlier:

e config.ini filecontains ThreadConfi g=I dm

« This is interpreted by these versions of NDB as Thr eadConf i g=nmi n, | dm recv, rep.

e Required in confi g. i ni to match effect in NDB 8.0.30 or later:
Thr eadConfi g=mai n, | dmrecv, rep.

NDB 8.0.23—8.0.29:
e config.ini file contains Thr eadConfi g=I dm
» This is interpreted by these versions of NDB as Thr eadConf i g=I dm r ecv.

¢ Required in confi g. i ni to match effect in NDB 8.0.30 or later:
Thr eadConf i g=mai n={ count =0}, | dm r ecv, r ep={ count =0} .

For more information, see the description of the Thr eadConf i g configuration parameter.

3.8 The NDB Cluster Auto-Installer (No longer supported)

Note

This feature has been removed from NDB Cluster, and is no longer supported. See
Section 2.4, “What is New in NDB Cluster”, for more information.

This section describes the web-based graphical configuration installer included as part of the NDB

Cluster distribution. Topics discussed include an overview of the installer and its parts, software and other
requirements for running the installer, navigating the GUI, and using the installer to set up and start or stop
an NDB Cluster on one or more host computers.

The NDB Cluster Auto-Installer is made up of two components. The front end is a GUI client implemented
as a Web page that loads and runs in a standard Web browser such as Firefox or Microsoft Internet
Explorer. The back end is a server process (ndb_set up. py) that runs on the local machine or on another
host to which you have access.

These two components (client and server) communicate with each other using standard HTTP requests
and responses. The back end can manage NDB Cluster software programs on any host where the back
end user has granted access. If the NDB Cluster software is on a different host, the back end relies on
SSH for access.

3.8.1 NDB Cluster Auto-Installer Requirements

93

NDB Cluster Auto-Installer Requirements

This section provides information on supported operating platforms and software, required software, and
other prerequisites for running the NDB Cluster Auto-Installer.

Supported platforms. The NDB Cluster Auto-Installer is available with NDB 8.0 distributions for recent
versions of Linux, Windows, Solaris, and macOS. For more detailed information about platform support for
NDB Cluster and the NDB Cluster Auto-Installer, see https://www.mysql.com/support/supportedplatforms/
cluster.html.

Supported web browsers. The web-based installer is supported with recent versions of Firefox
and Microsoft Internet Explorer. It should also work with recent versions of Opera, Safari, and Chrome,
although we have not thoroughly tested for compability with these browsers.

Required software—setup host. The following software must be installed on the host where the Auto-
Installer is run:

e Python 2.6 or higher. The Auto-Installer requires the Python interpreter and standard libraries. If
these are not already installed on the system, you may be able to add them using the system's package
manager. Otherwise, you can download them from http://python.org/download/.

» Paramiko 2 or higher. You can download this from http://www.lag.net/paramiko/ if it is not available
from your system's package manager.

» Pycrypto version 1.9 or higher. This cryptography module is required by Paramiko, and can be
iunstalled using pi p i nstall cryptography. If pi p is not installed, and the module is not available
using your system's package manage, you can download it from https://www.dlitz.net/software/pycrypto/.

All of the software in the preceding list is included in the Windows version of the configuration tool, and
does not need to be installed separately.

Required software—remote hosts. The only software required for remote hosts where you wish
to deploy NDB Cluster nodes is the SSH server, which is usually installed by default on Linux and
Solaris systems. Several alternatives are available for Windows; for an overview of these, see http://
en.wikipedia.org/wiki/Comparison_of _SSH_servers.

An additional requirement when using multiple hosts is that it is possible to authenticate to any of the
remote hosts using SSH and the proper keys or user credentials, as discussed in the next few paragraphs:

Authentication and security. Three basic security or authentication mechanisms for remote access
are available to the Auto-Installer, which we list and describe here:

e SSH. A secure shell connection is used to enable the back end to perform actions on remote hosts.
For this reason, an SSH server must be running on the remote host. In addition, the operating system
user running the installer must have access to the remote server, either with a user name and password,
or by using public and private keys.

Important

You should never use the system r oot account for remote access, as this is
extremely insecure. In addition, mysql d cannot normally be started by system
r oot . For these and other reasons, you should provide SSH credentials for a
regular user account on the target system, and not for system r oot . For more
information about this issue, see How to Run MySQL as a Normal User.

« HTTPS. Remote communication between the Web browser front end and the back end is not
encrypted by default, which means that information such as the user's SSH password is transmitted as
cleartext that is readable to anyone. For communication from a remote client to be encrypted, the back
end must have a certificate, and the front end must communicate with the back end using HTTPS rather
than HTTP. Enabling HTTPS is accomplished most easily through issuing a self-signed certificate. Once

94

https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
http://python.org/download/
http://www.lag.net/paramiko/
https://www.dlitz.net/software/pycrypto/
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
https://dev.mysql.com/doc/refman/8.0/en/changing-mysql-user.html

Using the NDB Cluster Auto-Installer

the certificate is issued, you must make sure that it is used. You can do this by starting ndb_set up. py
from the command line with the - - use-https (-S)and --cert-fil e (- ¢) options.

A sample certificate file cf g. pemis included and is used by default. This file is located in the ntc
directory under the installation share directory; on Linux, the full path to the file is normally / usr/

shar e/ nysql / ncc/ cf g. pem On Windows systems, this is usually C. \ Pr ogram Fi | es\ MySQL

\ MySQL Server 8.0\share\ntc)\cfg. pem Letting the default be used means that, for testing
purposes, you can simply start the installer with the - S option to use an HTTPS connection between the
browser and the back end.

The Auto-Installer saves the configuration file for a given cluster mycl ust er 01 as nycl ust er 01. ntc
in the home directory of the user invoking the ndb_set up. py executable. This file is encrypted with a
passphrase supplied by the user (using Fernet); because HTTP transmits the passphrase in the clear,
it is strongly recommended that you always use an HTTPS connection to access the Auto-Installer on a
remote host.

Certificate-based authentication. The back end ndb_set up. py process can execute commands
on the local host as well as remote hosts. This means that anyone connecting to the back end can take
charge of how commands are executed. To reject unwanted connections to the back end, a certificate
may be required for authentication of the client. In this case, a certificate must be issued by the user,
installed in the browser, and made available to the back end for authentication purposes. You can enact
this requirement (together with or in place of password or key authentication) by starting ndb_set up. py
with the - - ca-certs-fil e (- a) option.

There is no need or requirement for secure authentication when the client browser is running on the same
host as the Auto-Installer back end.

See also Section 6.18, “NDB Cluster Security Issues”, which discusses security considerations to take into
account when deploying NDB Cluster, as well as Security, for more general MySQL security information.

3.8.2 Using the NDB Cluster Auto-Installer

The NDB Cluster Auto-Installer interface is made up of several pages, each corresponding to a step in the
process used to configure and deploy an NDB Cluster. These pages are listed here, in order:

Welcome: Begin using the Auto-Installer by choosing either to configure a new NDB Cluster, or to
continue configuring an existing one.

Define Cluster: Set basic information about the cluster as a whole, such as name, hosts, and load type.
Here you can also set the SSH authentication type for accessing remote hosts, if needed.

Define Hosts: Identify the hosts where you intend to run NDB Cluster processes.
Define Processes: Assign one or more processes of a given type or types to each cluster host.
Define Parameters: Set configuration attributes for processes or types of processes.

Deploy Configuration: Deploy the cluster with the configuration set previously; start and stop the
deployed cluster.

NDB Cluster Installer Settings and Help Menus

These menus are shown on all screens except for the Welcome screen. They provide access to installer
settings and information. The Settings menu is shown here in more detail:

95

https://cryptography.io/en/latest/fernet/
https://dev.mysql.com/doc/refman/8.0/en/security.html

Using the NDB Cluster Auto-Installer

Figure 3.3 NDB Cluster Auto-Installer Settings menu

use cg

Help «

Automatically save configuration as cookies
Show advanced configuration options

.+ Automatically get reseurce information for new hosts

The Settings menu has the following entries:

Automatically save configuration as cookies: Save your configuration information—such as host
names, process data, and parameter values—as a cookie in the browser. When this option is chosen, all
information except any SSH password is saved. This means that you can quit and restart the browser,
and continue working on the same configuration from where you left off at the end of the previous
session. This option is enabled by default.

The SSH password is never saved; if you use one, you must supply it at the beginning of each new
session.

Show advanced configuration options: Shows by default advanced configuration parameters where
available.

Once set, the advanced parameters continue to be used in the configuration file until they are explicitly
changed or reset. This is regardless of whether the advanced parameters are currently visible in the
installer; in other words, disabling the menu item does not reset the values of any of these parameters.

You can also toggle the display of advanced parameters for individual processes on the Define
Parameters screen.

This option is disabled by default.

Automatically get resource information for new hosts: Query new hosts automatically for hardware
resource information to pre-populate a number of configuration options and values. In this case, the
suggested values are not mandatory, but they are used unless explicitly changed using the appropriate
editing options in the installer.

This option is enabled by default.

The installer Help menu is shown here:

96

Using the NDB Cluster Auto-Installer

Figure 3.4 NDB Cluster Auto-Installer Help menu

Help «

Contents

)) Current page
use case. |f you intend to use remote hosts for deploying My?

About

The Help menu provides several options, described in the following list:

» Contents: Show the built-in user guide. This is opened in a separate browser window, so that it can be
used simultaneously with the installer without interrupting workflow.

» Current page: Open the built-in user guide to the section describing the page currently displayed in the
installer.

» About: open a dialog displaying the installer name and the version number of the NDB Cluster
distribution with which it was supplied.

The Auto-Installer also provides context-sensitive help in the form of tooltips for most input widgets.

In addition, the names of most NDB configuration parameters are linked to their descriptions in the online
documentation. The documentation is displayed in a separate browser window.

The next section discusses starting the Auto-Installer. The sections immediately following it describe in
greater detail the purpose and function of each of these pages in the order listed previously.

Starting the NDB Cluster Auto-Installer

The Auto-Installer is provided together with the NDB Cluster software. Separate RPM and . deb packages
containing only the Auto-Installer are also available for many Linux distributions. (See Chapter 3, NDB
Cluster Installation.)

The present section explains how to start the installer. You can do by invoking the ndb_set up. py
executable.

User and privileges

You should run the ndb_set up. py as a normal user; no special privileges are
needed to do so. You should not run this program as the nmysql user, or using the
system r oot or Administrator account; doing so may cause the installation to fail.

ndb_set up. py is found in the bi n within the NDB Cluster installation directory; a typical location might
be /usr/ | ocal / nmysqgl / bi n on a Linux system or C: \ Program Fi | es\ MySQL\ MySQL Ser ver

8. 0\ bi n on a Windows system. This can vary according to where the NDB Cluster software is installed on
your system, and the installation method.

97

Using the NDB Cluster Auto-Installer

On Windows, you can also start the installer by running set up. bat in the NDB Cluster installation
directory. When invoked from the command line, this batch file accepts the same options as
ndb_set up. py.

ndb_set up. py can be started with any of several options that affect its operation, but it is usually
sufficient to allow the default settings be used, in which case you can start ndb_set up. py by either of the
following two methods:

1. Navigate to the NDB Cluster bi n directory in a terminal and invoke it from the command line, without
any additional arguments or options, like this:

$> ndb_set up. py

Runni ng out of install dir: /usr/local/nysqgl/bin

Starting web server on port 8081

URL is https://|ocal host: 8081/ wel cone. ht m

deat hkey=627876

Press CTRL+C to stop web server.

The application should now be running in your browser.

(Alternatively you can navigate to https://|ocal host: 8081/ wel come. html to start it)

This works regardless of operating platform.

2. Navigate to the NDB Cluster bi n directory in a file browser (such as Windows Explorer on Windows, or
Kongqueror, Dolphin, or Nautilus on Linux) and activate (usually by double-clicking) the ndb_setup.py
file icon. This works on Windows, and should work with most common Linux desktops as well.

On Windows, you can also navigate to the NDB Cluster installation directory and activate the setup.bat
file icon.

In either case, once ndb_set up. py is invoked, the Auto-Installer's Welcome screen should open in the
system's default web browser. If not, you should be able to open the page htt p: / /| ocal host : 8081/
wel cone. ht M orhttps://|ocal host: 8081/ wel cone. ht M manually in the browser.

In some cases, you may wish to use non-default settings for the installer, such as specifying HTTPS

for connections, or a different port for the Auto-Installer's included web server to run on, in which case
you must invoke ndb_set up. py with one or more startup options with values overriding the necessary
defaults. The same startup options can be used on Windows systems with the set up. bat file supplied for
such platforms in the NDB Cluster software distribution. This can be done using the command line, but if
you want or need to start the installer from a desktop or file browser while employing one or more of these
options, it is also possible to create a script or batch file containing the proper invocation, then to double-
click its file icon in the file browser to start the installer. (On Linux systems, you might also need to make
the script file executable first.) If you plan to use the Auto-Installer from a remote host, you should start
using the - S option. For information about this and other advanced startup options for the NDB Cluster
Auto-Installer, see Section 5.26, “ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster
(DEPRECATED)".

NDB Cluster Auto-Installer Welcome Screen

The Welcome screen is loaded in the default browser when ndb_set up. py is invoked. The first time the
Auto-Installer is run (or if for some other reason there are no existing configurations), this screen appears
as shown here:

98

Using the NDB Cluster Auto-Installer

Figure 3.5 The NDB Cluster Auto-Installer Welcome screen, first run

ORACLE MySQL Cluster Installer

MEW COMFIGURATION L PASSPHRASE:

CONFIRM PP:

[%’. View cfg if" Continue

In this case, the only choice of cluster listed is for configuration of a new cluster, and both the View Cfg
and Continue buttons are inactive.

To create a new configuration, enter and confirm a passphrase in the text boxes provided. When this has
been done, you can click Continue to proceed to the Define Cluster screen where you can assign a name
to the new cluster.

If you have previously created one or more clusters with the Auto-Installer, they are listed by name. This
example shows an existing cluster named nmycl ust er - 1:

99

Using the NDB Cluster Auto-Installer

Figure 3.6 The NDB Cluster Auto-Installer Welcome screen, with previously created cluster
mycluster-1

ORACLE MySQL Cluster Installer

& PASSPHRASE:

MEW COMFIGURATION

myclustar-1.mec

CONFIRM PP:

[%’. View cfg L Continue

To view the configuration for and work with a given cluster, select the radiobutton next to its name in the
list, then enter and confirm the passphrase that was used to create it. When you have done this correctly,
you can click View Cfg to view and edit this cluster's configuration.

NDB Cluster Auto-Installer Define Cluster Screen

The Define Cluster screen is appears following the Welcome screen, and is used for setting general
properties of the cluster. The layout of the Define Cluster screen is shown here:

100

Using the NDB Cluster Auto-Installer

Figure 3.7 The NDB Cluster Auto-Installer Define Cluster screen

ORACLE" MySQL Cluster Installer

Define cluster

Cluster Type and S5H Credentials

MySQL Cluster is able to operate in various configurations. Please specify the settings below to define the right cluster type that fits your use
case. If you intend to use remote hosts for deploying MySOL Cluster, S5H must be enabled. Unless key based S5H is possible, you must submit
your user name and password below.

I

Cluster property Value

Cluster name [?] mycluster-1
Hast list [7]
Application area [7] simple testing

Write laad [7] medium

S5H property Value
(Cluster-wide)

Key based SSH

i Key user: [7]

Key passphrase:
]
Passwerd [7] Key file: [7]

User name [7]

Install properties Value
(Cluster-wide) v

o Frevious | Save&MNext | | Finish

This screen and subsequent screens also include Settings and Help menus which are described later in
this section; see NDB Cluster Installer Settings and Help Menus.

The Define Cluster screen allows you to set three sorts of properties for the cluster: cluster properties,
SSH properties, and installation properties.

Cluster properties that can be set on this screen are listed here:

« Cluster name: A name that identifies the cluster; in this example, this is nycl ust er - 1. The name is set
on the previous screen and cannot be changed here.

» Host list: A comma-delimited list of one or more hosts where cluster processes should run. By default,
thisis 127. 0. 0. 1. If you add remote hosts to the list, you must be able to connect to them using the
credentials supplied as SSH properties.

» Application type: Choose one of the following:

1. Simple testing: Minimal resource usage for small-scale testing. This the default. Not intended for
production environments.

2. Web: Maximize performance for the given hardware.

3. Real-time: Maximize performance while maximizing sensitivity to timeouts in order to minimize the
time needed to detect failed cluster processes.

» Write load: Choose a level for the anticipated number of writes for the cluster as a whole. You can
choose any one of the following levels:

1. Low: The expected load includes fewer than 100 write transactions for second.

2. Medium: The expected load includes 100 to 1000 write transactions per second; this is the default.

101

Using the NDB Cluster Auto-Installer

3. High: The expected load includes more than 1000 write transactions per second.

SSH properties are described in the following list:

Key-Based SSH: Check this box to use key-enabled login to the remote host. If checked, the key user
and passphrase must also be supplied; otherwise, a user and password for a remote login account are
needed.

User: Name of user with remote login access.

Password: Password for remote user.

Key user: Name of the user for whom the key is valid, if not the same as the operating system user.
Key passphrase: Passphrase for the key, if required.

Key file: Path to the key file. The defaultis ~/ . ssh/i d_rsa.

The SSH properties set on this page apply to all hosts in the cluster. They can be overridden for a given
host by editing that hosts's properties on the Define Hosts screen.

Two installation properties can also be set on this screen:

Install MySQL Cluster: This setting determines the source from which the Auto-Installer installs NDB
Cluster software, if any, on the cluster hosts. Possible values and their effects are listed here:

1. DOCKER: Try to install the MySQL Cluster Docker image from ht t ps: // hub. docker . conir/
mysql / mysql - cl ust er/ on each host

2. REPQ Try to install the NDB Cluster software from the MySQL Repositories on each host

3. BOTH: Try to install either the Docker image or the software from the repository on each host, giving
preference to the repository

4. NONE: Do not install the NDB Cluster software on the hosts; this is the default

Open FW Ports: Check this check box to have the installer attempt to open ports required by NDB
CLuster processes on all hosts.

The next figure shows the Define Cluster page with settings for a small test cluster with all nodes running
onl ocal host:

102

https://repo.mysql.com/

Using the NDB Cluster Auto-Installer

Figure 3.8 The NDB Cluster Auto-Installer Define Cluster screen, with settings for a test cluster

ORACLE" MySQL Cluster Installer

Define cluster
Settings + Help +

Cluster Type and S5H Credentials
MySQL Cluster is able to operate in various configurations. Flease specify the settings below to define the right cluster type that fits your use
case. If you irtend to use remote hosts for deploying MySQL Cluster, S5H must be enabled. Unless key based S5H is possible, you must subrit

your user nama and password below.

Cluster property Value
Cluster name [7] mycluster-1
Host list [7] localhost
Application area [7] simple testing
Write load [7] low

55H property Value

(Cluster-wide)

Key based SSH

i Key user: [7]

Key passphrase:
7
Password [7] Key file: [7]

User name [7]

Install properties Value
(Cluster-wide)

Install MySQL Cluster [7] NOME

Open FW ports [7]

o Frevious | Save&MNext | | M Finish

After making the desired settings, you can save them to the configuration file and proceed to the Define
Hosts screen by clicking the Save & Next button.

If you exit the installer without saving, no changes are made to the configuration file.

NDB Cluster Auto-Installer Define Hosts Screen

The Define Hosts screen, shown here, provides a means of viewing and specifying several key properties

of each cluster host:

103

Using the NDB Cluster Auto-Installer

Figure 3.9 NDB Cluster Define Hosts screen, start

ORACLE' MySQL Cluster Installer

Define hosts Settings ¥ Help +

Select and Edit Hosts

MySQL Cluster can be deployed on several hosts. Please select the desired hests by pressing the Add hast button below and erter a comma separated list of host names or ip addresses.
Resource information is automatically retrieved from the added host if this is checked in the settings menu, and if the required SSH credentials have been submitted. When a host has been
added, the corresponding infarmation can be edited by double clicking a cell in the grid. If you wart to apply the same changes te several hosts, multiple rows can be selected and the Edit
selected host{s) button can be pressed, which shows a dialog where the editing can be dene. Hosts can be deleted by selecting the corresponding rows in the table and pressing the Remave
selected host(s) button. If a host is removed, processes configured to run on that host will alse be removed from the configuration.

Host Res.info Platform = Memory (MB) Cores MySOL Cluster install directory | MySOL Cluster data directory | DiskFree

localhest 0K Linux 32032 8 tusrilacalfbing ivarflibimysql-cluster? 5506

add host | | 3{ Remove selected host(s] « Edit selected host | | =" Refresh selected hostfs) “ Show extended info

« Previous | [P Savediext | [M Finish

Properties shown include the following:

* Host: Name or IP address of this host

» Res.info: Shows K if the installer was able to retrieve requested resource information from this host
» Platform: Operating system or platform

* Memory (MB): Amount of RAM on this host

» Cores: Number of CPU cores available on this host

* MySQL Cluster install directory: Path to directory where the NDB Cluster software is installed on this
host; defaults to / usr/ | ocal / bin

» MySQL Cluster data directory: Path to directory used for data by NDB Cluster processes on this host;
defaultsto/ var /i b/ mysql -cl uster.

» DiskFree: Free disk space in bytes
For hosts with multiple disks, only the space available on the disk used for the data directory is shown.
This screen also provides an extended view for each host that includes the following properties:

» FDQN: This host's fully qualified domain name, used by the installer to connect with it, distribute
configuration information to it, and start and stop cluster processes on it.

 Internal IP: The IP address used for communication with cluster processes running on this host by
processes running elsewhere.

» OS Details: Detailed operating system name and version information.

* Open FW: If this check box is enabled, the installer attempts to open ports in the host's firewall needed
by cluster processes.

* REPO URL: URL for MySQL NDB Cluster repository

104

Using the NDB Cluster Auto-Installer

 DOCKER URL: URL for MySQL NDB CLuster Docker images; for NDB 8.0, this is nysql / nysql -
cluster:8.0.

« Install: If this check box is enabled, the Auto-Installer attempts to install the NDB Cluster software on
this host

The extended view is shown here:

Figure 3.10 NDB Cluster Define Hosts screen, extended host info view

ORACLE" MySQL Cluster Installer

Define hosts Settings ¥ Help +

Select and Edit Hosts
MySQL Cluster can be deployed on sevaral hosts. Flease selact the desired hosts by pressing the Add hast button below and enter & comma separated list of host names or ip addresses.

Resource information is automnatically retrieved from the added host if this is checked in the settings menu, and if the required SSH eredentisls hava been submitted. When a host has been
added, the corresponding information can be edited by double cicking a cellin the grid. If you want to apply the same changes to several hosts, multiple rows can be selected and the Edit
selected host(s) button can be pressed, which shows a dialog where the editing can be done. Hosts can be deleted by selecting the correspending rows in the table and pressing the Remove
selected host(s) button. If a host is remeved, processes configured to run on that hest will also be removed from the configuration.

Host Res.info Platform | Memory (MB) Cores MySOL Cluster install directory | MySOL Cluster data directory | DiskFree
FODH Intemal IP 05 details Open FW REPO URL DOCKER URL Install
localhost 0K Linux 32032] ivarflibimysql-clusters 5506
localhost localhost opensuse, ver. 42.3

&dd host | | 3 Remowe selected hostls) + Edit selected host | | "= Refresh selected hostls) “, Hide extended info

« Previous | [P Savediext | [M Finish

All cells in the display are editable, with the exceptions of those in the Host, Res.info, and FQDN columns.

Be aware that it may take some time for information to be retrieved from remote hosts. Fields for which no
value could be retrieved are indicated with an ellipsis (..). You can retry the fetching of resource information
from one or more hosts by selecting the hosts in the list and then clicking the Refresh selected host(s)
button.

Adding and Removing Hosts

You can add one or more hosts by clicking the Add Host button and entering the required properties
where indicated in the Add new host dialog, shown here:

105

Using the NDB Cluster Auto-Installer

Figure 3.11 NDB Cluster Add Host dialog

Add new host

Host name: [¥]

Host internal IP (WPN): [7]

Key-based auth: [7] |

User [7] Passphrase [7]
Key file [7]

Ordinary login:

User [7] Password [7]

Open FW parts [?] Configure installation [7]

[Cancel] [.H.:I:I]

This dialog includes the following fields:

106

Using the NDB Cluster Auto-Installer

» Host name: A comma-separated list of one or more host names, IP addresses, or both. These must be
accessible from the host where the Auto-Installer is running.

» Host internal IP (VPN): If you are setting up the cluster to run on a VPN or other internal network, enter
the IP address or addresses used for contact by cluster nodes on other hosts.

» Key-based auth: If checked, enables key-based authentication. You can enter any additional needed
information in the User, Passphrase, and Key file fields.

e Ordinary login: If accessing this host using a password-based login, enter the appropriate information in
the User and Password fields.

» Open FW ports: Selecting this check box allows the installer try opening any ports needed by cluster
processes in this host's firewall.

» Configure installation: Checking this allows the Auto-Install to attempt to set up the NDB Cluster
software on this host.

To save the new host and its properties, click Add. If you wish to cancel without saving any changes, click
Cancel instead.

Similarly, you can remove one or more hosts using the button labelled Remove selected host(s). When
you remove a host, any process which was configured for that host is also removed.

Warning

Remove selected host(s) acts immediately. There is no confirmation dialog. If you
remove a host in error, you must re-enter its name and properties manually using
Add host.

If the SSH user credentials on the Define Cluster screen are changed, the Auto-Installer attempts to
refresh the resource information from any hosts for which information is missing.

You can edit the host's platform name, hardware resource information, installation directory, and data
directory by clicking the corresponding cell in the grid, by selecting one or more hosts and clicking the
button labelled Edit selected host(s). This causes a dialog box to appear, in which these fields can be
edited, as shown here:

107

Using the NDB Cluster Auto-Installer

Figure 3.12 NDB Cluster Auto-Installer Edit Hosts dialog

Edit selected hostis)

Please edit the fields you want to change. The changes will be applied to all selected hosts. Fields that are not edited in the form
belowwill be left unchanged.

Platfarm Mermory (MB) CPU cores [7] MySOL Cluster install directery MySOL Cluster data directory BiskFree [7]
[71 [?1 [71 [?1
Linuzx 3z.032 8 E50G

Host external IP: [7]
localhost

Hest internal IF (VEN): [7]
lacalhast

Key-based auth: [7]

User [7] Passphrase [7]
Key file [7]

Ordinary login:

User [7] Passward [7]

Open FW ports [?] Cenfigure installation [7]

Cancel Save

When more than one host is selected, any edited values are applied to all selected hosts.

Once you have entered all desired host information, you can use the Save & Next button to save the
information to the cluster's configuration file and proceed to the Define Processes screen, where you can
set up NDB Cluster processes on one or more hosts.

NDB Cluster Auto-Installer Define Processes Screen

The Define Processes screen, shown here, provides a way to assign NDB Cluster processes (nodes) to
cluster hosts:

108

Using the NDB Cluster Auto-Installer

Figure 3.13 NDB Cluster Auto-Installer Define Processes dialog

ORACLE" MySQAL Cluster Installer

Define processes

Settings * Help =

Define Processes and Cluster Topology

Various processes may be part of a MySOQL Cluster configuration. Please refer to the MySQL Cluster Documentation for a description of the different
process types. If you have added hosts previously, a default configuration will be suggested the first time you enter this page. This configuration may
be modified by moving processes between hosts by drag and drop, or by adding and removing processes. You may alse go back to the previous page
and add more hosts before editing the topology. The special entry labelled Any hest in the tree below represents an arbitrary host. On this special tree
entry, only AP processes can be moved or added. These processes will not be required to run on a particular host, but may execute anywhere,

mycluster-1 topology

1 Any host
[lacalhost
¥ Management node 1
&% P node 1
&P APl nede 2
&% 0Pl node 3
&¥ S0L node 1
¥ S0Lnode 2
&P Multi threaded data nade 1
&% Multi threaded data node 2

) Add process | | 3 Dl process

o Previous | [#

i | M Finish

This screen contains a process tree showing cluster hosts and processes set up to run on each one, as
well as a panel which displays information about the item currently selected in the tree.

When this screen is accessed for the first time for a given cluster, a default set of processes is defined for
you, based on the number of hosts. If you later return to the Define Hosts screen, remove all hosts, and
add new hosts, this also causes a new default set of processes to be defined.

NDB Cluster processes are of the types described in this list:

« Management node. Performs administrative tasks such as stopping individual data nodes, querying
node and cluster status, and making backups. Executable: ndb_ngnd.

» Single-threaded data node. Stores data and executes queries. Executable: ndbd.

» Multi threaded data node. Stores data and executes queries with multiple worker threads executing
in parallel. Executable: ndbnt d.

 SQL node. MySQL server for executing SQL queries against NDB. Executable: mysql d.

 APInode. A client accessing data in NDB by means of the NDB API or other low-level client API,
rather than by using SQL. See MySQL NDB Cluster API Developer Guide, for more information.

For more information about process (node) types, see Section 2.1, “NDB Cluster Core Concepts”.

Processes shown in the tree are numbered sequentially by type, for each host—for example, SQL node
1, SQL node 2, and so on—to simplify identification.

Each management node, data node, or SQL process must be assigned to a specific host, and is not
allowed to run on any other host. An API node may be assigned to a single host, but this is not required.
Instead, you can assign it to the special Any host entry which the tree also contains in addition to any

109

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/

Using the NDB Cluster Auto-Installer

other hosts, and which acts as a placeholder for processes that are allowed to run on any host. Only API
processes may use this Any host entry.

Adding processes. To add a new process to a given host, either right-click that host's entry in the tree,
then select the Add process popup when it appears, or select a host in the process tree, and press the

Add process button below the process tree. Performing either of these actions opens the add process
dialog, as shown here:

Figure 3.14 NDB Cluster Auto-Installer Add Process Dialog

Add new process

Select process type: |Management nodel

Enter process name: Management node 2

Cancel Add

Here you can select from among the available process types described earlier this section; you can also
enter an arbitrary process name to take the place of the suggested value, if desired.

Removing processes. To delete a process, select that process in the tree and use the Del process
button.

When you select a process in the process tree, information about that process is displayed in the
information panel, where you can change the process name and possibly its type. You can change a
multi-threaded data node (ndbnt d) to a single-threaded data node (ndbd), or the reverse, only; no other
process type changes are allowed. If you want to make a change between any other process types, you
must delete the original process first, then add a new process of the desired type.

NDB Cluster Auto-Installer Define Parameters Screen

Like the Define Processes screen, this screen includes a process tree; the Define Parameters process
tree is organized by process or node type, in groups labelled Management Layer, Data Layer, SQL
Layer, and API Layer. An information panel displays information regarding the item currently selected. The
Define Attributes screen is shown here:

110

Using the NDB Cluster Auto-Installer

Figure 3.15 NDB Cluster Auto-Installer Define Parameters screen

ORACLE" MySQL Cluster Installer

> Define parameters

Settings * Help =

Define Processes Parameters

The processes in your MySQL Cluster configuration can be tuned by setting a number of configuration parameters. Please refer to the MySQL Cluster
Documentation for a description of the different process parameters. This page allows you to define a subset of the configuration parameters. Below,
you will see your processes to the left grouped by process type. If you select a process type entry in the tree, you may set parameters that will be
applied to all instances of that process. However, if you want to set a parameter specifically for one process, you may do so by selecting the process
instance in the tree and set the desired parameter. This tool suggests predefined settings for the differert parameters based on the hardware
resources and the cluster topology. The predefined settings may be overridden by pressing the Owerride button to the very right of the configuration
parameter. If you want to cancel your setting, you may revert to the predefined value by pressing the Revert button which shows up when a
parameter is overridden

mycluster-1 processes

* Management layer
@Manaqement node 1
-~ Data layer
&% Multi threaded data node 1
@ Multi threaded data node 2
“ SQL layer
@ s0Lnede 1
@¥ S0Lnode 2
= APl layer
@ aplnode 1
¥ BPl node 2
&% 8P node 3

Show advanced configuration
options

o Previous | [Save&Next | [M Finish

The check box labelled Show advanced configuration, when checked, makes advanced options for
data node and SQL node processes visible in the information pane. These options are set and used
whether or not they are visible. You can also enable this behavior globally by checking Show advanced
configuration options under Settings (see NDB Cluster Installer Settings and Help Menus).

You can edit attributes for a single process by selecting that process from the tree, or for all processes
of the same type in the cluster by selecting one of the Layer folders. A per-process value set for a given
attribute overrides any per-group setting for that attribute that would otherwise apply to the process in
guestion. An example of such an information panel (for an SQL process) is shown here:

111

Using the NDB Cluster Auto-Installer

Figure 3.16 Define Parameters—Process Attributes

ORACLE" MySQL Cluster Installer

Define parameters

Settings * Help =

Define Processes Parameters

The processes in your MySQL Cluster configuration can be tuned by setting a number of configuration parameters. Please refer to the MySQL Cluster
Documentation for a description of the different process parameters. This page allows you to define a subset of the configuration parameters. Below,
you will see your processes to the left grouped by process type. If you select a process type entry in the tree, you may set parameters that will be
applied to all instances of that process. However, if you want to set a parameter specifically for one process, you may do so by selecting the process
instance in the tree and set the desired parameter. This tool suggests predefined settings for the differert parameters based on the hardware
resources and the cluster topology. The predefined settings may be overridden by pressing the Owerride button to the very right of the configuration
parameter. If you want to cancel your setting, you may revert to the predefined value by pressing the Revert button which shows up when a
parameter is overridden

mycluster-1 processes Process property Value Override

HNode identity and

directories
= Data layer Hodeld [7] 45
@ Multi threaded data node 1 HostMame [7] localhest
¥ Multi threaded data node 2 DataDir [7] fhomeljon/MySOL_Clusterias/ [+]
> SQL layer ArbitrationRank [7] 1 [+)
& soLnede 1 TotalSendBufferMemary [+
& 5oL node 2 71
A :-l?E]DeatlntervalMgmdMgmd 1500 e
@ aplnode 1
GQ“P‘ nods 2 Communication
& a1 node 2 Partnumber [7] 1186 [+

Show advanced configuration
options

o Previous | [Save&Next | [M Finish

Attributes whose values can be overridden are shown in the information panel with a button bearing a
plus sign. This + button activates an input widget for the attribute, enabling you to change its value. When
the value has been overridden, this button changes into a button showing an X. The X button undoes any
changes made to a given attribute, which immediately reverts to the predefined value.

All configuration attributes have predefined values calculated by the installer, based such factors as host
name, node ID, node type, and so on. In most cases, these values may be left as they are. If you are not
familiar with it already, it is highly recommended that you read the applicable documentation before making
changes to any of the attribute values. To make finding this information easier, each attribute name shown
in the information panel is linked to its description in the online NDB Cluster documentation.

NDB Cluster Auto-Installer Deploy Configuration Screen

This screen allows you to perform the following tasks:
» Review process startup commands and configuration files to be applied

« Distribute configuration files by creating any necessary files and directories on all cluster hosts—that is,
deploy the cluster as presently configured

 Start and stop the cluster

The Deploy Configuration screen is shown here:

112

Using the NDB Cluster Auto-Installer

Figure 3.17 NDB Cluster Auto-Installer Deploy Configuration screen

ORACLE" MySQL Cluster Installer

Deploy configuration
Settings + Help +

Deploy Configuration and start MySQL Cluster

Your MySQL Cluster configuration can be reviewed below. To the left are the processes you have defined, ordered by their startup sequence. Flease
select a process to view its startup command(s) and configuration file. Mote that some processes do not have configuration files. At the bottorm of the
center panel, there are buttons to Deploy, Start and Stop your duster. Please note that starting the cluster may take up to several minutes depending

on the configuration you have defined. In the process tree, the icons reflact the status of the process as reported by the management daeron
unknown or if the managerment daemon does not reply, @ © connected orstarted,) : starting or shutting down, and @ not connected or

stopped.

mycluster-1 processes Startup command

~ Management layer

&® Management node 1

- Data layer

@Multi threaded data node 1

@ Multi threaded data node 2
= S0L layer

@® S0Lnode 1

¥ S0Lnode 2

Configuration file

% AP layer
&% 0PI node 1
¥ 8P node 2

&P ol node 3

|® install cluster |4 Deploy cluster | | Start cluster | |l Stop cluscer

o Previous | B Savesblex | M Finish

Like the Define Parameters screen, this screen features a process tree which is organized by process
type. Next to each process in the tree is a status icon indicating the current status of the process:
connected (CONNECTED), starting (STARTI NG), running (STARTED), stopping (STOPPI NG), or disconnected
(NO_CONTACT). The icon shows green if the process is connected or running; yellow if it is starting or
stopping; red if the process is stopped or cannot be contacted by the management server.

This screen also contains two information panels, one showing the startup command or commands needed
to start the selected process. (For some processes, more than one command may be required—for
example, if initialization is necessary.) The other panel shows the contents of the configuration file, if any,
for the given process.

This screen also contains four buttons, labelled as and performing the functions described in the following
list:

« Install cluster: Nonfunctional in this release; implementation intended for a future release.

» Deploy cluster: Verify that the configuration is valid. Create any directories required on the cluster
hosts, and distribute the configuration files onto the hosts. A progress bar shows how far the deployment
has proceeded, as shown here, and a dialog is pisplayed when the deployment has completed, as
shown here:

113

Using the NDB Cluster Auto-Installer

Figure 3.18 Cluster Deployment Process

ORACLE" MySQL Cluster Installer

Deploy configuration
Settings ¥ Help v

Deploy Configuration and start MysQL Cluster

Your MySQL Cluster configuration can be reviewed below. o the lef are have defined, ordered p secuence. Please
select a process to view is startup command(=) and configuration file Nate that some procasses do not have configuration fles. At the bottom of the
center panel, there are buttons to Deploy. Start and Stop your duster. Please note that starting the cluster may take up ko seversl minukes depending

on the configuration you have dfn the management daeman: &

o deployed i ppetvmaien-ly 1
stopped,

e

(5 Manag

& Management nod

Deplaying configuration x|
Ihost: 1186,

(= Data layer
[l i 4 Corfuraon daployed
& Multi thre sded dat
(= SQLlayer
& SaLnads 1
@ SaLnods 2
(= 801 layar
&8P nods 1
&8Pl nods 2
&8Pl nods 3

T00%

e G T e Tor ETE praeese

b install cluster | [Deploy cluster | (W Start cluster | W Scop cluster

[Previous | B savestie M Finish

114

Using the NDB Cluster Auto-Installer

» Start cluster: The cluster is deployed as with Deploy cluster, after which all cluster processes are
started in the correct order.

Starting these processes may take some time. If the estimated time to completion is too large, the
installer provides an opportunity to cancel or to continue of the startup procedure. A progress bar
indicates the current status of the startup procedure, as shown here:

Figure 3.19 Cluster Startup Process with Progress Bar

MySQL Cluster Installer

Deploy configuration

Settings v Help

not reply, O

Startup comm;
¥atn

Exacutable

Starting chuster

host: 1186,

Starting nods 2 (ndbmtd)

» * > W Stop cluster

The process status icons next to the items shown in the process tree also update with the status of each
process.

A confirmation dialog is shown when the startup process has completed, as shown here:

Figure 3.20 Cluster Startup, Process Completed Dialog

ORACLE' MySQL Cluster Installer

Deploy configuration

Settings v Help

Deploy Confi
Vour MySQL Clust

O Mukithreaded datanods 2
SQLlayer

O S0Lnode 1

O S0Lnode 2

AP Layar

Q APt nads 1

Q APineds 2

Q APineds 3

> * > W Stop cluster

o« Pravious | B »

» Stop cluster: After the cluster has been started, you can stop it using this. As with starting the cluster,
cluster shutdown is not instantaneous, and may require some time complete. A progress bar, similar

115

Using the NDB Cluster Auto-Installer

to that displayed during cluster startup, shows the approximate current status of the cluster shutdown
procedure, as do the process status icons adjoining the process tree. The progress bar is shown here:

Figure 3.21 Cluster Shutdown Process, with Progress Bar

ORACLE" MySQL Cluster Installer

Deploy configuration
Settings Help

Deploy Configuration and start MySQL Cluster

» * > M Stop clustar

A confirmation dialog indicates when the shutdown process is complete:

Figure 3.22 Cluster Shutdown, Process Completed Dialog

ORACLE" MySQL Cluster Installer

Deploy configuration

Settings v Help ~

°| Cluster stopped successfuly

T]

& Mt threaded daci o
N canfiguriion il farchi procs:s

SOLlayar
& soLnade 1
& soLnade 2

AP Layar
& o nods 1
& o nods 2
& o nods 3

» * > B Stop clustar

o Previous | B M

The Auto-Installer generates a confi g. i ni file containing NDB node parameters for each management
node, as well as a nmy. cnf file containing the appropriate options for each mysql d process in the cluster.
No configuration files are created for data nodes or API nodes.

116

Chapter 4 Configuration of NDB Cluster

Table of Contents

4.1 Quick Test Setup Of NDB CIUSTETivuiiiiiii s e e e e e e e e ean s 117
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variablesc..cccovvvveeen. 120
4.2.1 NDB Cluster Data Node Configuration Parameterscccovvviiiveiiiiiiiii e eeeeeeenn 120
4.2.2 NDB Cluster Management Node Configuration Parameterscccoceeveviineveneieinieeneennnnn 127
4.2.3 NDB Cluster SQL Node and API Node Configuration Parameterscc.ccceveviiievenneennnnns 128
4.2.4 Other NDB Cluster Configuration Parametersc..oviveieiiiiiiiineeeieeen e e e e e e eeens 129
4.2.5 NDB Cluster mysqld Option and Variable Referencecccoovvviiiiiiiiinii e 131
4.3 NDB Cluster Configuration FilESiiuiiiiiiiiii e e e e e e e e e aanas 141
4.3.1 NDB Cluster Configuration: Basic EXamplecoiviuiiiiiiiiiiices e 142
4.3.2 Recommended Starting Configuration for NDB CIUStErcccceviiiiiiiiiiiiii e 145
4.3.3 NDB Cluster CONNECION SEHNGS ..ovvvuieiiiieiieeieeei et e e e s e e e et e e e e e e et e e e eenaeeeen 148
4.3.4 Defining Computers in an NDB CIUSEETiiiiieii i 149
4.3.5 Defining an NDB Cluster Management SEIVETc.uuiciuieeiieeeieeeeee e e e e eei e eeaneeees 150
4.3.6 Defining NDB Cluster Data NOUEScccuviiuiiiiiiiii e e e e e e e e e e ee s 157
4.3.7 Defining SQL and Other APl Nodes in an NDB CIUStErccocoviviiiiiiiiiiic e 240
4.3.8 DEfiNING the SYSIEM ...iiii e e e e e e e et e e e 249
4.3.9 MySQL Server Options and Variables for NDB CIUSEErccouoviviiiiiiiiieiiee e, 250
4.3.10 NDB Cluster TCP/IP CONNECHIONSuuuiiiiiiieteiiie ettt e e e e e e eaai e e eann e eennes 313
4.3.11 NDB Cluster TCP/IP Connections Using Direct CONNECLIONScccuivviiieiiieeiiierineeineens 318
4.3.12 NDB Cluster Shared-Memory CONNECHIONSvevuniiiiiieeireeiieeei e e e e e e e e e eens 319
4.3.13 Data Node Memory ManagemENtc..uuieeuneeiniereieeeieeei s erae e et eeet e e e e e e aeraneeaneeenns 325
4.3.14 Configuring NDB Cluster Send Buffer Parametersccoovvvuiiiviii i 329
4.4 Using High-Speed Interconnects With NDB CIUSTENccovuiiiiiiiiii e 330

A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my. cnf configuration file, or start the server
with the - - ndbcl ust er option.

This MySQL server is a part of the cluster, so it also must know how to access a management node

to obtain the cluster configuration data. The default behavior is to look for the management node on

| ocal host . However, should you need to specify that its location is elsewhere, this can be done in

my. cnf , or with the nysql client. Before the NDB storage engine can be used, at least one management
node must be operational, as well as any desired data nodes.

For more information about - - ndbcl ust er and other nysql d options specific to NDB Cluster, see
Section 4.3.9.1, “MySQL Server Options for NDB Cluster”.

For general information about installing NDB Cluster, see Chapter 3, NDB Cluster Installation.

4.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

117

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Quick Test Setup of NDB Cluster

First, you need to create a configuration directory such as/ var/ | i b/ mysql - cl ust er, by executing the
following command as the system r oot user:

$> nkdir /var/lib/nysql-cluster

In this directory, create a file named confi g. i ni that contains the following information. Substitute
appropriate values for Host Nane and Dat aDi r as necessary for your system.

file "config.ini" - showi ng mninmal setup consisting of 1 data node,

1 managenment server, and 3 MySQ. servers.

The enpty default sections are not required, and are shown only for

the sake of conpl et eness.

Dat a nodes nust provide a hostnane but MySQL Servers are not required

to do so.

If you don't know the hostnanme for your machi ne, use | ocal host.

The DataDir paraneter also has a default value, but it is reconmended to

set it explicitly.

Note: [db], [api], and [mgn] are aliases for [ndbd], [nysqld], and [ndb_ngnd],
respectively. [db] is deprecated and should not be used in new installations.

H o H O H O H R HH

[ndbd defaul t]
NoOf Repl i cas= 1

[mysqld default]
[ndb_ngnd def aul t]
[tcp defaul t]

[ndb_nmgnd]
Host Nane= myhost . exanpl e. com

[ndbd]
Host Nane= myhost . exanpl e. com
Dat aDir= /var/lib/nysql -cl uster

[nysql d]
[nysql d]
[nysal d]

You can now start the ndb_ngnd management server. By default, it attempts to read the confi g. i ni
file in its current working directory, so change location into the directory where the file is located and then
invoke ndb_ngnd:

$> cd /var/lib/nysqgl-cluster
$> ndb_ngnd

Then start a single data node by running ndbd:

$> ndhd

By default, ndbd looks for the management server at | ocal host on port 1186.
Note

If you have installed MySQL from a binary tarball, you must to specify the path of
the ndb_ngnd and ndbd servers explicitly. (Normally, these can be found in / usr/
I ocal / mysql / bin.)

Finally, change location to the MySQL data directory (usually / var /| i b/ nysql or/usr/ | ocal / mysql/
dat a), and make sure that the ny. cnf file contains the option necessary to enable the NDB storage
engine:

[mysql d]
ndbcl ust er

You can now start the MySQL server as usual:

118

Quick Test Setup of NDB Cluster

$> nysql d_safe --user=nysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice nysgl ended,

check the server's . er r file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

$> nysql
Wel conme to the MySQL nonitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 8.0.29

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

nysql > SHOW ENG NES\ G

LEEE AR EEE R EEEEEEEEEEEE I) [OWW ¥ X% * ok ok ok kkk ok ok ok ok ok ok ok ok ok ok ok ok Xk k ko

Engi ne: NDBCLUSTER

Support: YES

Comment: Custered, fault-tol erant, nenory-based tables

R R R I I I R S I I O 13. |’OW ER R R I I I S
Engi ne: NDB

Support: YES

Comment: Alias for NDBCLUSTER

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> nysql
nmysql > USE test;
Dat abase changed

nysql > CREATE TABLE ctest (i |NT) ENG NE=NDBCLUSTER;
Query OK, O rows affected (0.09 sec)

nmysql > SHOW CREATE TABLE ctest \G
kkhkkkkkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkkkkk*x 1 r ow kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x
Tabl e: ctest
Create Tabl e: CREATE TABLE "ctest’ (
it int(11) default NULL
) ENG NE=ndbcl ust er DEFAULT CHARSET=I ati nl
1 rowin set (0.00 sec)

To check that your nodes were set up properly, start the management client:

$> ndb_ngm

Use the SHOWcommand from within the management client to obtain a report on the cluster's status:

ndb_ngnm> SHOW

Cluster Configuration

[ndbd(NDB)] 1 node(s)

i d=2 @27.0.0.1 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)

[ndb_mymd(M3M] 1 node(s)
id=1 @27.0.0.1 (Version: 8.0.29-ndb-8.0.30)

[mysql d(API')] 3 node(s)

i d=3 @27.0.0.1 (Version: 8.0.29-ndb-8.0.30)

i d=4 (not connected, accepting connect from any host)
i d=5 (not connected, accepting connect from any host)

119

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Overview of NDB Cluster Configuration Parameters, Options, and Variables

At this point, you have successfully set up a working NDB Cluster . You can now store data in the cluster
by using any table created with ENG NE=NDBCLUSTER or its alias ENG NE=NDB.

4.2 Overview of NDB Cluster Configuration Parameters, Options,
and Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used in
the confi g. i ni file to govern various aspects of node behavior, as well as of options and variables read
by mysql d from a ny. cnf file or from the command line when run as an NDB Cluster process. Each of
the node parameter tables lists the parameters for a given type (ndbd, ndb_ngnd, nysql d, conput er,

t cp, or shm). All tables include the data type for the parameter, option, or variable, as well as its default,
mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what type
of restart is required (node restart or system restart)—and whether the restart must be done with - -

i ni ti al —to change the value of a given configuration parameter. When performing a node restart or
an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a rolling
restart). It is possible to update cluster configuration parameters marked as node online—that is, without
shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd process
withthe --initi al option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without any
problems, although it is advisable to do so progressively, making such adjustments
in relatively small increments. Many of these can be increased online, using a
rolling restart.

However, decreasing the values of such parameters—whether this is done using

a node restart, node initial restart, or even a complete system restart of the
cluster—is not to be undertaken lightly; it is recommended that you do so only

after careful planning and testing. This is especially true with regard to those
parameters that relate to memory usage and disk space, such as MaxNoOf Tabl es,
MaxNoOF Or der edl ndexes, and MaxNoCOF Uni queHashl ndexes. In addition, it

is the generally the case that configuration parameters relating to memory and disk
usage can be raised using a simple node restart, but they require an initial node
restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX | NT_RNI L and is equal to
OXFFFFFEFF, or 232 - 28 - 1,

4.2.1 NDB Cluster Data Node Configuration Parameters

120

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd def aul t]
sections of aconfi g. i ni file for configuring NDB Cluster data nodes. For detailed descriptions and other
additional information about each of these parameters, see Section 4.3.6, “Defining NDB Cluster Data
Nodes”.

These parameters also apply to ndbnt d, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbnt d follows.

Ar bi trati on: How arbitration should be performed to avoid split-brain issues in event of node failure.
Arbi trationTi neout : Maximum time (milliseconds) database partition waits for arbitration signal.
BackupDat aBuf f er Si ze: Default size of databuffer for backup (in bytes).

BackupDat aDi r : Path to where to store backups. Note that string /BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

BackupDi skW it eSpeedPct : Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

BackupLogBuf f er Si ze: Default size of log buffer for backup (in bytes).

BackupMaxW i t eSi ze: Maximum size of file system writes made by backup (in bytes).
BackupMenor y: Total memory allocated for backups per node (in bytes).

BackupReport Fr equency: Frequency of backup status reports during backup in seconds.
BackupW i t eSi ze: Default size of file system writes made by backup (in bytes).

Bat chSi zePer Local Scan: Used to calculate number of lock records for scan with hold lock.

Bui | dl ndexThr eads: Number of threads to use for building ordered indexes during system or node
restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0 disables
multithreaded building of ordered indexes.

Conpr essedBackup: Use zlib to compress backups as they are written.
Conpr essedLCP: Write compressed LCPs using zlib.

Connect Checkl nt er val Del ay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

CrashOnCor r upt edTupl e: When enabled, forces node to shut down whenever it detects corrupted
tuple.

Dat aDi r : Data directory for this node.

Dat aMenor y: Number of bytes on each data node allocated for storing data; subject to available system
RAM and size of IndexMemory.

Def aul t HashMapSi ze: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

Di ct Tr ace: Enable DBDICT debugging; for NDB development.

Di skDat aUsi ngSaneDi sk: Set to false if Disk Data tablespaces are located on separate physical
disks.

Di skl OThr eadPool : Number of unbound threads for file access, applies to disk data only.

Di skl ess: Run without using disk.

121

NDB Cluster Data Node Configuration Parameters

Di skPageBuf f er Ent ri es: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value.

Di skPageBuf f er Menor y: Number of bytes on each data node allocated for disk page buffer cache.

Di skSyncSi ze: Amount of data written to file before synch is forced.

Enabl eParti al Lcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full checkpoints.
Enabl eRedoCont r ol : Enable adaptive checkpointing speed for controlling redo log usage.

Encrypt edFi | eSyst em Encrypt local checkpoint and tablespace files. EXPERIMENTAL.

Event LogBuf f er Si ze: Size of circular buffer for NDB log events within data nodes.

Execut eOnConput er : String referencing earlier defined COMPUTER.

Ext r aSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

Fi | eSyst enPat h: Path to directory where data node stores its data (directory must exist).

Fi | eSyst enPat hDat aFi | es: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

Fi | eSyst enPat hDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

Fi | eSyst enPat hUndoFi | es: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value
of DataDir is used.

Fragnent LogFi | eSi ze: Size of each redo log file.

Hear t beat | nt er val DbApi : Time between API node-data node heartbeats. (API connection closed
after 3 missed heartbeats).

Hear t beat | nt er val DbDb: Time between data node-to-data node heartbeats; data node considered
dead after 3 missed heartbeats.

Hear t beat Or der : Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

Host Nane: Host name or IP address for this data node.

I ndexMenor y: Number of bytes on each data node allocated for storing indexes; subject to available
system RAM and size of DataMemory.

| ndex St at Aut oCr eat e: Enable/disable automatic statistics collection when indexes are created.
| ndex St at Aut oUpdat e: Monitor indexes for changes and trigger automatic statistics updates.

I ndex St at SaveScal e: Scaling factor used in determining size of stored index statistics.

| ndexSt at SaveSi ze: Maximum size in bytes for saved statistics per index.

| ndexSt at Tri gger Pct : Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

122

NDB Cluster Data Node Configuration Parameters

| ndexSt at Tri gger Scal e: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

| ndex St at Updat eDel ay: Minimum delay between automatic index statistics updates for given index.
0 means no delay.

I ni t Fragnent LogFi | es: Initialize fragment logfiles (sparse/full).

I nitial LogFil eG oup: Describes log file group that is created during initial start. See documentation
for format.

I nitial NoOf OpenFi | es: Initial number of files open per data node. (One thread is created per file).

I nitial Tabl espace: Describes tablespace that is created during initial start. See documentation for
format.

I nsert Recover yWor k: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use.

Lat eAl | oc: Allocate memory after connection to management server has been established.

LcpScanPr ogr essTi nmeout : Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable.

LockExecut eThr eadToCPU: Comma-delimited list of CPU IDs.
LockMai nt Thr eadsToCPU: CPU ID indicating which CPU runs maintenance threads.

LockPagesl nMai nMenor y: O=disable locking, 1=lock after memory allocation, 2=lock before memory
allocation.

LogLevel Checkpoi nt : Log level of local and global checkpoint information printed to stdout.
LogLevel Congesti on: Level of congestion information printed to stdout.

LogLevel Connecti on: Level of node connect/disconnect information printed to stdout.
LogLevel Error: Transporter, heartbeat errors printed to stdout.

LogLevel I nf o: Heartbeat and log information printed to stdout.

LogLevel NodeRest art : Level of node restart and node failure information printed to stdout.
LogLevel Shut down: Level of node shutdown information printed to stdout.

LoglLevel St art up: Level of node startup information printed to stdout.

LogLevel Stati sti c: Level of transaction, operation, and transporter information printed to stdout.
LongMessageBuf f er : Number of bytes allocated on each data node for internal long messages.
MaxAl | ocat e: No longer used; has no effect.

MaxBuf f er edEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

MaxBuf f er edEpochByt es: Total number of bytes allocated for buffering epochs.

MaxDi skDat aLat ency: Maximum allowed mean latency of disk access (ms) before starting to abort
transactions.

123

NDB Cluster Data Node Configuration Parameters

MaxDi skW i t eSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing.

MaxDi skW i t eSpeedO her NodeRest ar t : Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting.

MaxDi skW it eSpeedOwnRest ar t : Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting.

MaxFKBui | dBat chSi ze: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well.

MaxDMLQper at i onsPer Tr ansact i on: Limit size of transaction; aborts transaction if it requires more
than this many DML operations. Set to O to disable.

MaxLCPSt ar t Del ay: Time in seconds that LCP polls for checkpoint mutex (to allow other data nodes to
complete metadata synchronization), before putting itself in lock queue for parallel recovery of table data.

MaxNoOf At t ri but es: Suggests total number of attributes stored in database (sum over all tables).

MaxNoCOf Concurrent | ndexQper at i ons: Total number of index operations that can execute
simultaneously on one data node.

MaxNoCOf Concur r ent Oper at i ons: Maximum number of operation records in transaction coordinator.
MaxNoOf Concur r ent Scans: Maximum number of scans executing concurrently on data node.
MaxNoCOf Concur r ent SubQOper at i ons: Maximum number of concurrent subscriber operations.

MaxNoOf Concur r ent Tr ansact i ons: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster.

MaxNoCF Fi redTr i gger s: Total number of triggers that can fire simultaneously on one data node.
MaxNoOF Local Oper at i ons: Maximum number of operation records defined on this data node.
MaxNoCOf Local Scans: Maximum number of fragment scans in parallel on this data node.

MaxNoOf OpenFi | es: Maximum number of files open per data node.(One thread is created per file).
MaxNoOF Or der edl ndexes: Total number of ordered indexes that can be defined in system.

MaxNoOF SavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

MaxNoOf Subscri ber s: Maximum number of subscribers.

MaxNoCOF Subscri pti ons: Maximum number of subscriptions (default 0 = MaxNoOfTables).
MaxNoCf Tabl es: Suggests total number of NDB tables stored in database.

MaxNoCOF Tr i gger s: Total number of triggers that can be defined in system.

MaxNoCf Uni queHashl ndexes: Total number of unique hash indexes that can be defined in system.

MaxPar al | el Copyl nst ances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

MaxPar al | el ScansPer Fr agnent : Maximum number of parallel scans per fragment. Once this limit is
reached, scans are serialized.

124

NDB Cluster Data Node Configuration Parameters

MaxReor gBui | dBat chSi ze: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.

Max St ar t Fai | Ret ri es: Maximum retries when data node fails on startup, requires StopOnError = 0.
Setting to 0 causes start attempts to continue indefinitely.

MaxUl Bui | dBat chSi ze: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well.

MenRepor t Fr equency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

M nDi skW i t eSpeed: Minimum number of bytes per second that can be written by LCP and backup.
M nFr eePct : Percentage of memory resources to keep in reserve for restarts.

NodeG oup: Node group to which data node belongs; used only during initial start of cluster.

NodeG oupTr ansport er s: Number of transporters to use between nodes in same node group.

Nodel d: Number uniquely identifying data node among all nodes in cluster.

NoOf Fr agnent LogFi | es: Number of 16 MB redo log files in each of 4 file sets belonging to data node.
NoOf Repl i cas: Number of copies of all data in database.

Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to O permits system to determine
use of interleaving by data node process; 1 means that it is determined by data node.

ODi r ect : Use O_DIRECT file reads and writes when possible.

ODi rect SyncFl ag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is not
enabled, InitFragmentLogFiles is set to SPARSE, or both.

Real ti meSchedul er : When true, data node threads are scheduled as real-time threads. Default is
false.

Recover yWr k: Percentage of storage overhead for LCP files: greater value means less work in normal
operations, more work during recovery.

RedoBuf f er : Number of bytes on each data node allocated for writing redo logs.

RedoOver Conmi t Count er : When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

RedoOver Conmi t Li mi t : Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

Reser vedConcur rent | ndexOper at i ons: Number of simultaneous index operations having
dedicated resources on one data node.

Reser vedConcur r ent Oper at i ons: Number of simultaneous operations having dedicated resources
in transaction coordinators on one data node.

Reser vedConcur r ent Scans: Number of simultaneous scans having dedicated resources on one data
node.

Reser vedConcur rent Tr ansact i ons: Number of simultaneous transactions having dedicated
resources on one data node.

125

NDB Cluster Data Node Configuration Parameters

Reser vedFi redTri gger s: Number of triggers having dedicated resources on one data node.

Reser vedLocal Scans: Number of simultaneous fragment scans having dedicated resources on one
data node.

ReservedTransact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node.

Rest art OnErr or | nsert : Control type of restart caused by inserting error (when StopOnError is
enabled).

Schedul er Execut i onTi mer : Number of microseconds to execute in scheduler before sending.

Schedul er Responsi veness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput.

Schedul er Spi nTi mer : Number of microseconds to execute in scheduler before sleeping.

Ser ver Port : Port used to set up transporter for incoming connections from API nodes.

Shar edd obal Menory: Total number of bytes on each data node allocated for any use.

Spi nMet hod: Determines spin method used by data node; see documentation for details.

St art Fai | Ret r yDel ay: Delay in seconds after start failure prior to retry; requires StopOnError = 0.
St art Fai | ureTi meout : Milliseconds to wait before terminating. (O=Wait forever).

St art NoNodeG oupTi neout : Time to wait for nodes without nodegroup before trying to start
(O=forever).

Start Partial Ti meout : Milliseconds to wait before trying to start without all nodes. (0=Wait forever).
StartPartitionedTi meout : Milliseconds to wait before trying to start partitioned. (0=Wait forever).
St art upSt at usReport Fr equency: Frequency of status reports during startup.

St opOnEr r or : When set to 0, data node automatically restarts and recovers following node failures.
St ri ngMenor y: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

TcpBi nd_I NADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

Ti meBet weenEpochs: Time between epochs (synchronization used for replication).
Ti meBet weenEpochsTi neout : Timeout for time between epochs. Exceeding causes node shutdown.
Ti meBet weend obal Checkpoi nt s: Time between group commits of transactions to disk.

Ti meBet weend obal Checkpoi nt sTi neout : Minimum timeout for group commit of transactions to
disk.

Ti meBet weenl nacti veTr ansacti onAbort Check: Time between checks for inactive transactions.

Ti meBet weenLocal Checkpoi nt s: Time between taking snapshots of database (expressed in base-2
logarithm of bytes).

Ti meBet weenWat chDogCheck: Time between execution checks inside data node.

Ti meBet weenWat chDogCheckl ni ti al : Time between execution checks inside data node (early start
phases when memory is allocated).

126

NDB Cluster Management Node Configuration Parameters

e Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers..

» Transact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data allocated for
each data node.

» Transacti onDeadl ockDet ecti onTi nmeout : Time transaction can spend executing within data node.
This is time that transaction coordinator waits for each data node participating in transaction to execute
request. If data node takes more than this amount of time, transaction is aborted.

* Transacti onl nacti veTi neout : Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another part
(query, statement) of transaction. If application takes too much time, then transaction is aborted. Timeout
= 0 means that application never times out.

* Transacti onMenory: Memory allocated for transactions on each data node.

» TwoPassl ni ti al NodeRest art Copy: Copy data in 2 passes during initial node restart, which enables
multithreaded building of ordered indexes for such restarts.

» UndoDat aBuf f er : Unused; has no effect.
* Undol ndexBuf f er : Unused; has no effect.

» UseShm Use shared memory connections between this data node and API node also running on this
host.

The following parameters are specific to ndbnt d:

» Aut ormat i cThr eadConf i g: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation.

» Cl assi cFragnent at i on: When true, use traditional table fragmentation; set false to enable flexible
distribution of fragments among LDMs. Disabled by AutomaticThreadConfig.

» Enabl eMul tit hr eadedBackup: Enable multi-threaded backup.

e MaxNoCOF Execut i onThr eads: For ndbmtd only, specify maximum number of execution threads.
* NoOr Fragnent LogPar t s: Number of redo log file groups belonging to this data node.

* NunCPUs: Specify number of CPUs to use with AutomaticThreadConfig.

» Partiti onsPer Node: Determines the number of table partitions created on each data node; not used
if ClassicFragmentation is enabled.

» ThreadConfi g: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty string;
see documentation for syntax and other information.

4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_ngnd] or [ngm
section of a confi g. i ni file for configuring NDB Cluster management nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 4.3.5, “Defining an NDB
Cluster Management Server”.

e ArbitrationDel ay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

e Arbi trationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order 1,
2.

127

NDB Cluster SQL Node and API Node Configuration Parameters

« Dat aDi r: Data directory for this node.
» Execut eOnConput er : String referencing earlier defined COMPUTER.

» ExtraSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

* Heartbeat | nt er val MgmrdMgnd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats.

» Heartbeat ThreadPri ority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

* Host Name: Host name or IP address for this management node.
| d: Number identifying management node. Now deprecated; use Nodeld instead.
» LogDesti nati on: Where to send log messages: console, system log, or specified log file.
* Nodel d: Number uniquely identifying management node among all nodes in cluster.
e Port Nunber : Port number to send commands to and fetch configuration from management server.
» Port Number St at s: Port number used to get statistical information from management server.
» Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers.
» wan: Use WAN TCP setting as default.
Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect. See
Section 4.3.5, “Defining an NDB Cluster Management Server”, for more information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes".

4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [mysql d] and [api]
sections of a confi g. i ni file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 4.3.7, “Defining
SQL and Other API Nodes in an NDB Cluster”.

» Api Ver bose: Enable NDB API debugging; for NDB development.
» ArbitrationDel ay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.
» ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

» Aut oReconnect : Specifies whether an API node should reconnect fully when disconnected from
cluster.

» Bat chByt eSi ze: Default batch size in bytes.

» Bat chSi ze: Default batch size in number of records.

128

Other NDB Cluster Configuration Parameters

Connect Backof f MaxTi nme: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this APl node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.

Connect i onMap: Specifies which data nodes to connect.

Def aul t HashMapSi ze: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

Def aul t Oper ati onRedoPr obl emAct i on: How operations are handled in event that
RedoOverCommitCounter is exceeded.

Execut eOnConput er : String referencing earlier defined COMPUTER.

Ext r aSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

Hear t beat Thr eadPri ori t y: Set heartbeat thread policy and priority for API nodes; see manual for
allowed values.

Host Name: Host name or IP address for this SQL or API node.

| d: Number identifying MySQL server or APl node (Id). Now deprecated; use Nodeld instead.
MaxScanBat chSi ze: Maximum collective batch size for one scan.

Nodel d: Number uniquely identifying SQL node or API node among all nodes in cluster.

St art Connect Backof f MaxTi me: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this APl node.

Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers.

wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see Section 4.3.9.1, “MySQL Server Options
for NDB Cluster”. For information about MySQL server system variables relating to NDB Cluster, see
Section 4.3.9.2, “NDB Cluster System Variables”.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,

it is necessary to perform a rolling restart of all cluster nodes after adding new

[mysqgl d] or[api] sections tothe confi g.ini file (orfiles, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [conputer],[tcp], and

[shni sections of a confi g. i ni file for configuring NDB Cluster. For detailed descriptions and additional
information about individual parameters, see Section 4.3.10, “NDB Cluster TCP/IP Connections”, or
Section 4.3.12, “NDB Cluster Shared-Memory Connections”, as appropriate.

129

Other NDB Cluster Configuration Parameters

The following parameters apply to the confi g. i ni file's[conput er] section:
* Host Name: Host name or IP address of this computer.

* | d: Unique identifier for this computer.

The following parameters apply to the confi g. i ni file's[tcp] section:

« Al | ownr esol vedHost Nanes: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only.

e Checksum If checksum is enabled, all signals between nodes are checked for errors.

* Group: Used for group proximity; smaller value is interpreted as being closer.

» Host Namel: Name or IP address of first of two computers joined by TCP connection.

» Host Nanme2: Name or IP address of second of two computers joined by TCP connection.

* Nodel d1: ID of node (data node, API node, or management node) on one side of connection.
* Nodel d2: ID of node (data node, API node, or management node) on one side of connection.
* Nodel dSer ver : Set server side of TCP connection.

» Overl oadLi mi t : When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

» Preferl PVersion: Indicate DNS resolver preference for IP version 4 or 6.

* PreSendChecksum If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors.

e Proxy: ...

* Recei veBuf f er Menor y: Bytes of buffer for signals received by this node.

» SendBuf f er Menor y: Bytes of TCP buffer for signals sent from this node.

» SendSi gnal | d: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.
« TCP_MAXSEG S| ZE: Value used for TCP_MAXSEG.

« TCP_RCV_BUF_SI ZE: Value used for SO_RCVBUF.

« TCP_SND BUF_SI ZE: Value used for SO_SNDBUF.

e TcpBi nd_I NADDR_ANY: Bind InAddrAny instead of host name for server part of connection.
The following parameters apply to the confi g. i ni file's[shn] section:

e Checksum If checksum is enabled, all signals between nodes are checked for errors.

* Group: Used for group proximity; smaller value is interpreted as being closer.

» Host Namel: Name or IP address of first of two computers joined by SHM connection.

» Host Name2: Name or IP address of second of two computers joined by SHM connection.

* Nodel d1: ID of node (data node, API node, or management node) on one side of connection.

* Nodel d2: ID of node (data node, API node, or management node) on one side of connection.

130

NDB Cluster mysgld Option and Variable Reference

Nodel dSer ver : Set server side of SHM connection.

Over | oadLi m t : When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

Pr eSendChecksum If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors.

SendBuf f er Menor y: Bytes in shared memory buffer for signals sent from this node.
SendSi gnal | d: Sends ID in each signal. Used in trace files.

ShnKey: Shared memory key; when set to 1, this is calculated by NDB.

ShSpi nTi me: When receiving, number of microseconds to spin before sleeping.
Shnfi ze: Size of shared memory segment.

Si gnum Signal number to be used for signalling.

4.2.5 NDB Cluster mysqgld Option and Variable Reference

The following list includes command-line options, system variables, and status variables applicable within
nmysqgl d when it is running as an SQL node in an NDB Cluster. For a reference to all command-line
options, system variables, and status variables used with or relating to mysql d, see Server Option, System
Variable, and Status Variable Reference.

Com show_ndb_st at us: Count of SHOW NDB STATUS statements.
Handl er _di scover : Number of times that tables have been discovered.
ndb- appl i er - al | ow ski p- epoch: Lets replication applier skip epochs.
ndb- bat ch- si ze: Size (in bytes) to use for NDB transaction batches.

ndb- bl ob- r ead- bat ch- byt es: Specifies size in bytes that large BLOB reads should be batched into.
0 =no limit.

ndb- bl ob-w i t e- bat ch- byt es: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

ndb- cl ust er - connect i on- pool : Number of connections to cluster used by MySQL.

ndb- cl ust er - connect i on- pool - nodei ds: Comma-separated list of node IDs for connections to
cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-pool.

ndb- connect st ri ng: Address of NDB management server distributing configuration information for
this cluster.

ndb- def aul t - col umtm- f or mat : Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns.

ndb- def err ed- constr ai nt s: Specifies that constraint checks on unigue indexes (where these are
supported) should be deferred until commit time. Not normally needed or used,; for testing purposes only.

ndb- di st ri buti on: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

ndb- | og- appl y- st at us: Cause MySQL server acting as replica to log mysqgl.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective only if
server is started with --ndbcluster option.

131

https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx

NDB Cluster mysgld Option and Variable Reference

ndb- | og- enpt y- epochs: When enabled, causes epochs in which there were no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

ndb- | og- enpt y- updat e: When enabled, causes updates that produced no changes to be written to
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

ndb- | og- excl usi ve-r eads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

ndb- | og-fail -term nat e: Terminate mysqld process if complete logging of all found row events is
not possible.

ndb- | og- ori g: Log originating server id and epoch in mysql.ndb_binlog_index table.

ndb- | og-transacti on-i d: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

ndb- | og- updat e- mi ni mal : Log updates in minimal format.
ndb- | og- updat ed- onl y: Log complete rows (ON) or updates only (OFF).

ndb- | og- updat e- as- wri t e: Toggles logging of updates on source between updates (OFF) and
writes (ON).

ndb- ngnd- host : Set host (and port, if desired) for connecting to management server.
ndb- nodei d: NDB Cluster node ID for this MySQL server.

ndb- opti m zed- node- sel ecti on: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

ndb- transi d- nysql - connect i on- map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

ndb- wai t - connect ed: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

ndb- wai t - set up: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

ndb- al | ow copyi ng-al ter -t abl e: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables.

Ndb_api _adapti ve_send_def erred_count : Number of adaptive send calls not actually sent by this
MySQL Server (SQL node).

Ndb_api _adaptive_send_deferred_count _sessi on: Number of adaptive send calls not actually
sent in this client session.

Ndb_api _adaptive_send_deferred_count _replica: Number of adaptive send calls not actually
sent by this replica.

Ndb_api _adaptive_send_deferred_count _sl ave: Number of adaptive send calls not actually
sent by this replica.

Ndb_api _adaptive_send_f orced_count : Number of adaptive sends with forced-send set sent by
this MySQL Server (SQL node).

Ndb_api _adaptive_send_forced_count sessi on: Number of adaptive sends with forced-send
set in this client session.

132

NDB Cluster mysgld Option and Variable Reference

Ndb_api _adaptive_send_forced_count replica: Number of adaptive sends with forced-send
set sent by this replica.

Ndb_api _adaptive_send _forced_count _sl ave: Number of adaptive sends with forced-send set
sent by this replica.

Ndb_api _adapti ve_send_unf or ced_count : Number of adaptive sends without forced-send sent by
this MySQL Server (SQL node).

Ndb_api _adaptive_send_unforced_count _sessi on: Number of adaptive sends without forced-
send in this client session.

Ndb_api _adaptive_send_unforced_count replica: Number of adaptive sends without forced-
send sent by this replica.

Ndb_api _adaptive_send_unforced_count _sl ave: Number of adaptive sends without forced-
send sent by this replica.

Ndb_api byt es_recei ved_count : Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

Ndb_api _bytes_recei ved_count _sessi on: Quantity of data (in bytes) received from data nodes in
this client session.

Ndb_api _bytes recei ved _count repli ca: Quantity of data (in bytes) received from data nodes
by this replica.

Ndb_api _bytes_recei ved _count _sl ave: Quantity of data (in bytes) received from data nodes by
this replica.

Ndb_api byt es_sent count: Quantity of data (in bytes) sent to data nodes by this MySQL Server
(SQL node).

Ndb_api _bytes_sent count sessi on: Quantity of data (in bytes) sent to data nodes in this client
session.

Ndb_api _bytes_sent count repli ca: Qunatity of data (in bytes) sent to data nodes by this replica.
Ndb_api _bytes_sent count _sl ave: Qunatity of data (in bytes) sent to data nodes by this replica.

Ndb_api _event byt es_count : Number of bytes of events received by this MySQL Server (SQL
node).

Ndb_api _event bytes _count i nj ect or : Number of bytes of event data received by NDB binary
log injector thread.

Ndb_api _event dat a_count : Number of row change events received by this MySQL Server (SQL
node).

Ndb_api _event dat a_count i nj ect or: Number of row change events received by NDB binary log
injector thread.

Ndb_api _event nondat a_count : Number of events received, other than row change events, by this
MySQL Server (SQL node).

Ndb_api _event nondat a_count _i nj ect or : Number of events received, other than row change
events, by NDB binary log injector thread.

Ndb_api _pk_op_count : Number of operations based on or using primary keys by this MySQL Server
(SQL node).

133

NDB Cluster mysgld Option and Variable Reference

Ndb_api _pk_op_count _sessi on: Number of operations based on or using primary keys in this client
session.

Ndb_api _pk_op_count _repl i ca: Number of operations based on or using primary keys by this
replica.

Ndb_api _pk_op_count _sl ave: Number of operations based on or using primary keys by this replica.

Ndb_api _pruned_scan_count : Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

Ndb_api _pruned_scan_count _sessi on: Number of scans that have been pruned to one partition in
this client session.

Ndb_api _pruned_scan_count _repl i ca: Number of scans that have been pruned to one partition
by this replica.

Ndb_api _pruned_scan_count _sl ave: Number of scans that have been pruned to one partition by
this replica.

Ndb_api _range_scan_count : Number of range scans that have been started by this MySQL Server
(SQL node).

Ndb_api _range_scan_count _sessi on: Number of range scans that have been started in this client
session.

Ndb_api _range_scan_count repli ca: Number of range scans that have been started by this
replica.

Ndb_api _range_scan_count _sl ave: Number of range scans that have been started by this replica.

Ndb_api _read_r ow_count : Total number of rows that have been read by this MySQL Server (SQL
node).

Ndb_api _read_row count sessi on: Total number of rows that have been read in this client
session.

Ndb_api _read_row _count _repl i ca: Total number of rows that have been read by this replica.
Ndb_api _read_r ow_count _sl ave: Total number of rows that have been read by this replica.

Ndb_api _scan_bat ch_count : Number of batches of rows received by this MySQL Server (SQL
node).

Ndb_api _scan_bat ch_count _sessi on: Number of batches of rows received in this client session.
Ndb_api _scan_bat ch_count _repl i ca: Number of batches of rows received by this replica.
Ndb_api _scan_bat ch_count _sl ave: Number of batches of rows received by this replica.

Ndb_api _tabl e_scan_count : Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

Ndb_api tabl e_scan_count sessi on: Number of table scans that have been started, including
scans of internal tables, in this client session.

Ndb_api _tabl e_scan_count repli ca: Number of table scans that have been started, including
scans of internal tables, by this replica.

Ndb_api _tabl e_scan_count _sl ave: Number of table scans that have been started, including scans
of internal tables, by this replica.

134

NDB Cluster mysgld Option and Variable Reference

Ndb_api _trans_abort count: Number of transactions aborted by this MySQL Server (SQL node).
Ndb_api _trans_abort _count _sessi on: Number of transactions aborted in this client session.
Ndb_api _trans_abort count replica: Number of transactions aborted by this replica.

Ndb_api _trans_abort count sl ave: Number of transactions aborted by this replica.

Ndb_api _trans_cl ose_count : Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this MySQL Server (SQL node).

Ndb_api trans_cl ose_count sessi on: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) in this client session.

Ndb_api trans_cl ose_count replica: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) by this replica.

Ndb_api _trans_cl ose_count _sl ave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica.

Ndb_api trans_commrit _count: Number of transactions committed by this MySQL Server (SQL
node).

Ndb_api _trans_commt_count _sessi on: Number of transactions committed in this client session.
Ndb_api _trans_commit_count _repl i ca: Number of transactions committed by this replica.
Ndb_api _trans_commit_count sl ave: Number of transactions committed by this replica.

Ndb_api _trans_l ocal read row count: Total number of rows that have been read by this MySQL
Server (SQL node).

Ndb_api _trans_l ocal _read_row _count _sessi on: Total number of rows that have been read in
this client session.

Ndb_api _trans_|l ocal _read row count replica: Total number of rows that have been read by
this replica.

Ndb_api _trans_|l ocal _read row count sl ave: Total number of rows that have been read by this
replica.

Ndb_api _trans_start _count: Number of transactions started by this MySQL Server (SQL node).
Ndb_api _trans_start count sessi on: Number of transactions started in this client session.
Ndb_api _trans_start _count replica: Number of transactions started by this replica.

Ndb_api _trans_start_count _sl ave: Number of transactions started by this replica.

Ndb_api _uk_op_count : Number of operations based on or using unique keys by this MySQL Server
(SQL node).

Ndb_api _uk_op_count _sessi on: Number of operations based on or using unique keys in this client
session.

Ndb_api _uk_op_count _repl i ca: Number of operations based on or using unique keys by this
replica.

Ndb_api _uk_op_count _sl ave: Number of operations based on or using unique keys by this replica.

Ndb_api _wait_exec_conpl et e_count : Number of times thread has been blocked while waiting for
operation execution to complete by this MySQL Server (SQL node).

135

NDB Cluster mysgld Option and Variable Reference

Ndb_api _wait_exec_conpl et e_count _sessi on: Number of times thread has been blocked while
waiting for operation execution to complete in this client session.

Ndb_api _wait_ exec_conpl ete_count repli ca: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

Ndb_api _wait_exec_conpl et e_count _sl ave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

Ndb_api _wait_neta_request _count : Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

Ndb_api _wait_ neta_request count _sessi on: Number of times thread has been blocked waiting
for metadata-based signal in this client session.

Ndb_api _wait_neta request count _replica: Number of times thread has been blocked waiting
for metadata-based signal by this replica.

Ndb_api _wait_neta_request_count _sl ave: Number of times thread has been blocked waiting for
metadata-based signal by this replica.

Ndb_api _wait _nanos_count : Total time (in nanoseconds) spent waiting for some type of signal from
data nodes by this MySQL Server (SQL node).

Ndb_api _wait_nanos_count sessi on: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes in this client session.

Ndb_api _wai t _nanos_count _repl i ca: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

Ndb_api _wai t _nanos_count _sl ave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

Ndb_api _wait_scan_result _count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

Ndb_api _wait_scan_result_ count _sessi on: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

Ndb_api _wait_scan_result _count _replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

Ndb_api _wait_scan_result_count sl ave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

ndb_aut oi ncrenent _pr ef et ch_sz: NDB auto-increment prefetch size.

ndb_cache_check_t i nme: Number of milliseconds between checks of cluster SQL nodes made by
MySQL query cache.

ndb_cl ear _appl y_st at us: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

Ndb_cl ust er _node_i d: Node ID of this server when acting as NDB Cluster SQL node.
Ndb_confi g_from host: NDB Cluster management server host name or IP address.
Ndb_confi g_from port: Port for connecting to NDB Cluster management server.

Ndb_confi g_gener ati on: Generation number of the current configuration of the cluster.

136

NDB Cluster mysgld Option and Variable Reference

Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDB$SEPOCH() NDB
replication conflict detection function.

Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication NDB
$EPOCH2() conflict detection function.

Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function.

Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

Ndb_conflict_fn_max: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

Ndb_conflict fn_nmax_del w n: Number of times that NDB replication conflict resolution based on
outcome of NDB$SMAX_DELETE_WIN() has been applied to update and delete operations.

Ndb_conflict_fn_max_i ns: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations.

Ndb_conflict_fn_max_del _w n_i ns: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations.

Ndb_conflict _fn_ol d: Number of times in NDB replication "same timestamp wins" conflict resolution
has been applied.

Ndb_conflict | ast_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

Ndb_conflict | ast_stabl e_epoch: Number of rows found to be in conflict by transactional conflict
function.

Ndb_conflict_refl ected _op_di scard_count: Number of reflected operations that were not
applied due error during execution.

Ndb_conflict _reflected op_prepare_count: Number of reflected operations received that have
been prepared for execution.

Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

ndb_conflict_rol e: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL thread
is stopped. See documentation for further information.

Ndb_conflict_trans_conflict_comm t_count: Number of epoch transactions committed after
requiring transactional conflict handling.

Ndb_conflict_trans_detect _iter_count:Number of internal iterations required to commit epoch
transaction. Should be (slightly) greater than or equal to Ndb_conflict_trans_conflict_commit_count.

Ndb_conflict_trans_reject_count: Number of transactions rejected after being found in conflict
by transactional conflict function.

Ndb_conflict _trans_row conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

Ndb_conflict _trans_row reject count: Total number of rows realigned after being found in
conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows
included in or dependent on conflicting transactions.

137

NDB Cluster mysgld Option and Variable Reference

ndb_dat a_node_nei ghbour : Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables.

ndb_def aul t _col um_f or mat : Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables.

ndb_def erred_constrai nts: Specifies that constraint checks should be deferred (where these are
supported). Not normally needed or used; for testing purposes only.

ndb_dbg_check_shar es: Check for any lingering shares (debug builds only).
ndb- schema- di st-ti neout: How long to wait before detecting timeout during schema distribution.

ndb_di stri buti on: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

Ndb_epoch_del et e_del et e_count : Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist).

ndb_event buf f er _free_percent : Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

ndb_event buf f er _nmax_al | oc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit).

Ndb_execut e_count : Number of round trips to NDB kernel made by operations.

ndb_extra_| oggi ng: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

ndb_f or ce_send: Forces sending of buffers to NDB immediately, without waiting for other threads.
ndb_ful l y_replicat ed: Whether new NDB tables are fully replicated.
ndb_i ndex_st at _enabl e: Use NDB index statistics in query optimization.

ndb_i ndex_st at _opt i on: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

ndb_j oi n_pushdown: Enables pushing down of joins to data nodes.
Ndb_| ast _commit_epoch_server: Epoch most recently committed by NDB.
Ndb_| ast _commi t _epoch_sessi on: Epoch most recently committed by this NDB client.

ndb_| og_appl y_st at us: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its own
server ID.

ndb_| og_bi n: Write updates to NDB tables in binary log. Effective only if binary logging is enabled with
--log-hin.

ndb_| og_bi nl og_i ndex: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

ndb_| og_enpty_epochs: When enabled, epochs in which there were no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

138

NDB Cluster mysgld Option and Variable Reference

ndb_| og_enpty_ updat e: When enabled, updates which produce no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

ndb_I| og_excl usi ve_r eads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

ndb_| og_ori g: Whether id and epoch of originating server are recorded in mysqgl.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

ndb_| og_t ransacti on_i d: Whether NDB transaction IDs are written into binary log (Read-only).

ndb_net adat a_check: Enable auto-detection of NDB metadata changes with respect to MySQL data
dictionary; enabled by default.

Ndb_ret adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count.

ndb_rnet adat a_check_i nt er val : Interval in seconds to perform check for NDB metadata changes
with respect to MySQL data dictionary.

Ndb_ret adat a_det ect ed_count : Number of times NDB metadata change monitor thread has
detected changes.

Ndb_rnet adat a_excl uded_count : Number of NDB metadata objects that NDB binlog thread has
failed to synchronize.

ndb_net adat a_sync: Triggers immediate synchronization of all changes between NDB dictionary and
MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values to be
ignored. Resets to false when synchronization is complete.

Ndb_rnet adat a_synced_count : Number of NDB metadata objects which have been synchronized.

Ndb_nunber _of _dat a_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

ndb- opti ni zat i on- del ay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

ndb_opti m zed_node_sel ecti on: Determines how SQL node chooses cluster data node to use as
transaction coordinator.

Ndb_pruned_scan_count : Number of scans executed by NDB since cluster was last started where
partition pruning could be used.

Ndb_pushed_queri es_def i ned: Number of joins that APl nodes have attempted to push down to
data nodes.

Ndb_pushed_queri es_dr opped: Number of joins that APl nodes have tried to push down, but failed.

Ndb_pushed_queri es_execut ed: Number of joins successfully pushed down and executed on data
nodes.

Ndb_pushed_r eads: Number of reads executed on data nodes by pushed-down joins.

ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable for
individual NDB tables.

139

NDB Cluster mysgld Option and Variable Reference

ndb_recv_thread_activation_threshol d: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads).

ndb_recv_t hread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details.

Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected.

ndb_replica_bat ch_si ze: Batch size in bytes for replica applier.

ndb_report _thresh_bi nl og epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS OVER_THRESHOLD event buffer status message; prior to NDB 7.5: Threshold
for number of epochs to lag behind before reporting binary log status.

ndb_report _t hresh_bi nl og_nmem usage: Threshold for percentage of free memory remaining
before reporting binary log status.

ndb_r ow _checksum When enabled, set row checksums; enabled by default.
Ndb_scan_count : Total number of scans executed by NDB since cluster was last started.

ndb_schena_di st | ock wait _tineout: Time during schema distribution to wait for lock before
returning error.

ndb_schena_di st _ti neout : Time to wait before detecting timeout during schema distribution.

ndb_schena_di st _upgrade_al | owed: Allow schema distribution table upgrade when connecting to
NDB.

ndb_show f orei gn_key_nock_t abl es: Show mock tables used to support foreign_key checks=0.

ndb_sl ave_conflict _rol e: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

Ndb_sl ave_nmax_repl i cat ed_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

Ndb_syst em nane: Configured cluster system name; empty if server not connected to NDB.

ndb_t abl e_no_I| oggi ng: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered to
use NDBCLUSTER persists for table's lifetime.

ndb_t abl e_t enpor ar y: NDB tables are not persistent on disk: no schema files are created and tables
are not logged.

Ndb_trans_hi nt _count _sessi on: Number of transactions using hints that have been started in this
session.

ndb_use _copyi ng_al ter _t abl e: Use copying ALTER TABLE operations in NDB Cluster.
ndb_use_exact _count : Use exact row count when planning queries.

ndb_use_transacti ons: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

140

NDB Cluster Configuration Files

e ndb_ver si on: Shows build and NDB engine version as an integer.
* ndb_ver si on_stri ng: Shows build information including NDB engine version in ndb-x.y.z format.

» ndbcl ust er : Enable NDB Cluster (if this version of MySQL supports it). Disabled by - - ski p-
ndbcl uster.

e ndbi nf o: Enable ndbinfo plugin, if supported.

» ndbi nf o_dat abase: Name used for NDB information database; read only.
* ndbi nf o_nmax_byt es: Used for debugging only.

» ndbi nf o_nax_r ows: Used for debugging only.

» ndbi nf o_of f1i ne: Put ndbinfo database into offline mode, in which no rows are returned from tables
or views.

» ndbi nf o_show_hi dden: Whether to show ndbinfo internal base tables in mysql client; default is OFF.
« ndbi nfo_tabl e_prefi x: Prefix to use for naming ndbinfo internal base tables; read only.

» ndbi nf o_ver si on: ndbinfo engine version; read only.

* replica_all ow_bat chi ng: Turns update batching on and off for replica.

e server _id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be less
than 2 to power of this value.

» ski p- ndbcl ust er : Disable NDB Cluster storage engine.
» slave_al | ow_bat chi ng: Turns update batching on and off for replica.

e transaction_al | ow_bat chi ng: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

4.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

e ny. cnf : Specifies options for all NDB Cluster executables. This file, with which you should be familiar
with from previous work with MySQL, must be accessible by each executable running in the cluster.

» config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. conf i g. i ni contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between
all nodes in the cluster. For a quick reference to the sections that can appear in this file, and what sorts
of configuration parameters may be placed in each section, see Sections of the confi g. i ni File.

Caching of configuration data. ~ NDB uses stateful configuration. Rather than reading the global
configuration file every time the management server is restarted, the management server caches the
configuration the first time it is started, and thereafter, the global configuration file is read only when one of
the following conditions is true:

« The management server is started using the --initial option. When--ini ti al is used, the global
configuration file is re-read, any existing cache files are deleted, and the management server creates a
new configuration cache.

141

NDB Cluster Configuration: Basic Example

e The management server is started using the --reload option. The - - r el oad option causes
the management server to compare its cache with the global configuration file. If they differ, the
management server creates a new configuration cache; any existing configuration cache is preserved,
but not used. If the management server's cache and the global configuration file contain the same
configuration data, then the existing cache is used, and no new cache is created.

* The management server is started using --config-cache=FALSE. This disables - - confi g-
cache (enabled by default), and can be used to force the management server to bypass configuration
caching altogether. In this case, the management server ignores any configuration files that may be
present, always reading its configuration data from the confi g. i ni file instead.

* No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. The management server by default creates configuration cache files in

a directory named nmysql - cl ust er in the MySQL installation directory. (If you build NDB Cluster from
source on a Unix system, the default location is / usr/ | ocal / nysql - cl ust er.) This can be overridden
at runtime by starting the management server with the - - conf i gdi r option. Configuration cache files are
binary files named according to the pattern ndb_node _id confi g. bi n. seq_i d, where node_i d is the
management server's node ID in the cluster, and seq_i d is a cache idenitifer. Cache files are numbered
sequentially using seq_i d, in the order in which they are created. The management server uses the latest
cache file as determined by the seq_i d.

Note

It is possible to roll back to a previous configuration by deleting later configuration
cache files, or by renaming an earlier cache file so that it has a higher seq_i d.
However, since configuration cache files are written in a binary format, you should
not attempt to edit their contents by hand.

For more information about the - - confi gdi r, --confi g-cache,--initial,and--rel oad options
for the NDB Cluster management server, see Section 5.4, “ndb_mgmd — The NDB Cluster Management
Server Daemon”.

We are continuously making improvements in NDB Cluster configuration and attempting to simplify this
process. Although we strive to maintain backward compatibility, there may be times when introduce an
incompatible change. In such cases we try to let NDB Cluster users know in advance if a change is not
backward compatible. If you find such a change and we have not documented it, please report it in the
MySQL bugs database using the instructions given in How to Report Bugs or Problems.

4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you should update my. cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used in
confi g.ini global configuration files. Global configuration options are discussed
later in this section.

ny. cnf
exanpl e additions to ny.cnf for NDB C uster
(valid in M/SQL 8.0)

enabl e ndbcl uster storage engi ne, and provi de connection string for
managenent server host (default port is 1186)

142

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html

NDB Cluster Configuration: Basic Example

[nysgl d]
ndbcl ust er
ndb- connect st ri ng=ndb_ngnd. nmysql . com

provide connection string for managenent server host (default port: 1186)
[ndbd]
connect - stri ng=ndb_ngnd. nysql . com

provide connection string for managenent server host (default port: 1186)

[ndb_nmgm
connect - stri ng=ndb_ngnd. nysql . com

provide |ocation of cluster configuration file
| MPORTANT: When starting the management server with this option in the

configuration file, the use of --initial or --reload on the command |ine when
i nvoking ndb_ngnd is al so required
[ndb_ngnd]

config-file=/etc/config.in

(For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.)

ny. cnf
exanpl e additions to ny.cnf for NDB C uster
(works on all versions)

enabl e ndbcl uster storage engine, and provi de connection string for managenent
server host to the default port 1186

[nysal d]
ndbcl ust er
ndb- connect st ri ng=ndb_ngnd. nysql . com 1186

Important

Once you have started a mysql d process with the NDBCLUSTER and ndb-
connect st ri ng parameters in the [mysql d] in the ny. cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE statements
without having actually started the cluster. Otherwise, these statements fail with an
error. This is by design.

You may also use a separate [nysql _cl ust er] section in the cluster ny. cnf file for settings to be read
and used by all executables:

cluster-specific settings
[mysql _cl uster]
ndb- connect st ri ng=ndb_ngnd. nmysql . com 1186

For additional NDB variables that can be set in the my. cnf file, see Section 4.3.9.2, “NDB Cluster System
Variables”.

The NDB Cluster global configuration file is by convention named conf i g. i ni (but this is not required).
If needed, it is read by ndb_ngnd at startup and can be placed in any location that can be read by it. The
location and name of the configuration are specified using - - conf i g-fi | e=pat h_nane with ndb_ngnd
on the command line. This option has no default value, and is ignored if ndb_ngnd uses the configuration
cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded by
section headings (surrounded by square brackets), followed by the appropriate parameter names and
values. One deviation from the standard INI format is that the parameter name and value can be separated
by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another deviation is that
sections are not uniquely identified by section name. Instead, unique sections (such as two different nodes
of the same type) are identified by a unique 1D specified as a parameter within the section.

143

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Configuration: Basic Example

Default values are defined for most parameters, and can also be specified in confi g. i ni . To create a
default value section, simply add the word def aul t to the section name. For example, an [ndbd] section
contains parameters that apply to a particular data node, whereas an [ndbd def aul t] section contains
parameters that apply to all data nodes. Suppose that all data nodes should use the same data memory
size. To configure them all, create an [ndbd def aul t] section that contains a Dat aMenor y line to
specify the data memory size.

If used, the [ndbd def aul t] section must precede any [ndbd] sections in the configuration file. This is
also true for def aul t sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for

NoOF Repl i cas, which always had to be specified explicitly in the [ndbd

def aul t] section. Although this parameter now has a default value of 2, which is
the recommended setting in most common usage scenarios, it is still recommended
practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes

This file is placed in the startup directory of ndb_ngnd (the
managenent server)

The first M/SQL Server can be started fromany host. The second
can be started only on the host nysqld_5. mysqgl.com

[ndbd defaul t]
NoOf Repl i cas= 2
DataDir= /var/lib/nysql -cl uster

[ndb_ngnd]
Host nane= ndb_ngnd. nysql . com
Dat abDir= /var/lib/ nysql -cl uster

[ndbd]
Host Nane= ndbd_2. nysql . com

[ndbd]
Host Nane= ndbd_3. nysql . com

[nysql d]
[nysql d]
Host Nane= nysql d_5. nysql . com

Note

The preceding example is intended as a minimal starting configuration for purposes
of familiarization with NDB Cluster , and is almost certain not to be sufficient for
production settings. See Section 4.3.2, “Recommended Starting Configuration for
NDB Cluster”, which provides a more complete example starting configuration.

Each node has its own section in the conf i g. i ni file. For example, this cluster has two data nodes, so
the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the confi g. i ni
file; this causes the management server not to start because it cannot parse the
configuration file in such cases.

144

Recommended Starting Configuration for NDB Cluster

Sections of the config.ini File

There are six different sections that you can use in the confi g. i ni configuration file, as described in the
following list:

[comput er] : Defines cluster hosts. This is not required to configure a viable NDB Cluster, but be may
used as a convenience when setting up a large cluster. See Section 4.3.4, “Defining Computers in an
NDB Cluster”, for more information.

[ndbd] : Defines a cluster data node (ndbd process). See Section 4.3.6, “Defining NDB Cluster Data
Nodes”, for details.

[mysql d] : Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion
of SQL node configuration, see Section 4.3.7, “Defining SQL and Other APl Nodes in an NDB Cluster”.

[mgn] or [ndb_ngnd] : Defines a cluster management server (MGM) node. For information concerning
the configuration of management nodes, see Section 4.3.5, “Defining an NDB Cluster Management
Server”.

[t cp] : Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default transport
protocol. Normally, [t cp] or[tcp defaul t] sections are not required to set up an NDB Cluster,

as the cluster handles this automatically; however, it may be necessary in some situations to override
the defaults provided by the cluster. See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for
information about available TCP/IP configuration parameters and how to use them. (You may also find
Section 4.3.11, “NDB Cluster TCP/IP Connections Using Direct Connections” to be of interest in some
cases.)

[shni : Defines shared-memory connections between nodes. In MySQL 8.0, it is enabled by default,
but should still be considered experimental. For a discussion of SHM interconnects, see Section 4.3.12,
“NDB Cluster Shared-Memory Connections”.

[sci] : Defines Scalable Coherent Interface connections between cluster data nodes. Not supported in
NDB 8.0.

You can define def aul t values for each section. If used, a def aul t section should come before any
other sections of that type. For example, an [ndbd def aul t] section should appear in the configuration
file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server ny. cnf or my. i ni
files.

4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

NDB Cluster software version

Numbers of data nodes and SQL nodes
Hardware

Operating system

Amount of data to be stored

Size and type of load under which the cluster is to operate

145

Recommended Starting Configuration for NDB Cluster

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which can
vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are also likely to
be indicated when changes are made in the platform on which the cluster is run, or in applications that use
the NDB Cluster 's data. For these reasons, it is not possible to offer a single configuration that is ideal for
all usage scenarios. However, in this section, we provide a recommended base configuration.

Starting config.ini file. The following confi g. i ni file is a recommended starting point for configuring
a cluster running NDB Cluster 8.0:

TCP PARAMETERS

[tcp defaul t]
SendBuf f er Menor y=2M
Recei veBuf f er Menor y=2M

Increasing the sizes of these 2 buffers beyond the default val ues
hel ps prevent bottlenecks due to slow disk I/0O

MANAGEMENT NODE PARAMETERS

[ndb_ngnd def aul t]
Dat aDi r =pat h/ t o/ managenent / server/ dat a/ di rectory

1t is possible to use a different data directory for each managenent
server, but for ease of administration it is preferable to be
consi stent.

[ndb_ngnd]
Host Nane=managenent - ser ver - A- host nanme
Nodel d=managenent - ser ver - A- nodei d

[ndb_ngnd]
Host Nane=managenent - ser ver - B- host nanme
Nodel d=managenent - ser ver - B- nodei d

Usi ng 2 managenent servers hel ps guarantee that there is always an
arbitrator in the event of network partitioning, and so is
recommended for high availability. Each managenent server mnust be
identified by a Host Name. You may for the sake of conveni ence specify
a Nodel d for any managenent server, although one is allocated

for it automatically; if you do so, it nust be in the range 1-255
inclusive and nmust be unique anong all |Ds specified for cluster
nodes

HHHHHHHH

DATA NODE PARAMETERS

[ndbd defaul t]
NoOf Repl i cas=2

Using two fragment replicas is recomended to guarantee availability of data
using only one fragnment replica does not provide any redundancy, which nmeans
that the failure of a single data node causes the entire cluster to shut down.
1t is also possible (but not required) in NDB 8.0 to use nore than two

fragnent replicas, although two fragnment replicas are sufficient to provide

high availability.

LockPages| nMai nMenor y=1

On Linux and Sol aris systems, setting this paranmeter |ocks data node
processes into menory. Doing so prevents them from swapping to di sk
whi ch can severely degrade cluster performance

Dat aMenor y=3456M

The val ue provi ded for DataMenory assunes 4 GB RAM
per data node. However, for best results, you should first calcul ate

146

Recommended Starting Configuration for NDB Cluster

the nenory that woul d be used based on the data you actually plan to
store (you may find the ndb_size.pl utility helpful in estimating

this), then allow an extra 20% over the cal cul ated val ues. Naturally,
you shoul d ensure that each data node host has at |east as much

physical menory as the sum of these two val ues.

ODirect=1

Enabling this paraneter causes NDBCLUSTER to try using O _DI RECT

wites for local checkpoints and redo | ogs; this can reduce | oad on
CPUs. W reconmend doi ng so when using NDB Cl uster on systenms runni ng
Linux kernel 2.6 or later.

NoOf Fr agnent LogFi | es=300
Dat aDi r =pat h/ t o/ dat a/ node/ dat a/ di rectory
MaxNoCOf Concur r ent Oper at i ons=100000

Schedul er Spi nTi mer =400

Schedul er Execut i onTi mer =100

Real Ti neSchedul er =1

Setting these paraneters allows you to take advantage of real-tine scheduling
of NDB threads to achi eve increased throughput when using ndbd. They

are not needed when using ndbntd; in particular, you should not set

Real Ti meSchedul er for ndbntd data nodes.

Ti meBet weend obal Checkpoi nt s=1000
Ti neBet weenEpochs=200
RedoBuf f er =32M

ConpressedLCP=1

Conpr essedBackup=1

Enabl i ng ConpressedLCP and ConpressedBackup causes, respectively, |ocal
checkpoint files and backup files to be conpressed, which can result in a space
savi ngs of up to 50% over nonconpressed LCPs and backups.

MaxNoOf Local Scans=64
MaxNoCOf Tabl es=1024
MaxNoOf Or der edl ndexes=256

[ndbd]
Host Nane=dat a- node- A- host nane
Nodel d=dat a- node- A- nodei d

LockExecut eThr eadToCPU=1

LockMai nt Thr eads ToCPU=0

On systens with multiple CPUs, these paranmeters can be used to | ock NDBCLUSTER
threads to specific CPUs

[ndbd]
Host Nane=dat a- node- B- host nane
Nodel d=dat a- node- B- nodei d

LockExecut eThr eadToCPU=1
LockMai nt Thr eads ToCPU=0

You must have an [ndbd] section for every data node in the cluster;
each of these sections nust include a Host Name. Each section nay
optionally include a Nodeld for conveni ence, but in nost cases, it is
sufficient to allow the cluster to allocate node |IDs dynamically. |If
you do specify the node ID for a data node, it nust be in the range 1
to 144 inclusive and nust be unique anong all |Ds specified for

cl uster nodes.

HHHEHHFEHEHE

SQL NODE / API NODE PARAMETERS

[nysql d]
Host Nane=sql - node- A- host nane

147

NDB Cluster Connection Strings

Nodel d=sql - node- A- nodei d
[nysgl d]
[nysgl d]

Each APl or SQL node that connects to the cluster requires a [nysqld]
or [api] section of its own. Each such section defines a connection
“slot”; you should have at | east as many of these sections in the
config.ini file as the total nunmber of APl nodes and SQL nodes that
you wi sh to have connected to the cluster at any given tine. There is
no performance or other penalty for having extra slots available in
case you find later that you want or need nore APl or SQ. nodes to
connect to the cluster at the same tinme.

If no HostNane is specified for a given [nmysqld] or [api] section,
then any APl or SQL node may use that slot to connect to the

cluster. You may wish to use an explicit HostNane for one connection sl ot
to guarantee that an APl or SQ node fromthat host can al ways

connect to the cluster. If you wish to prevent APl or SQ. nodes from
connecting fromother than a desired host or hosts, then use a

Host Nane for every [nysqgld] or [api] section in the config.ini file.
You can if you wish define a node ID (Nodeld paraneter) for any APl or
SQL node, but this is not necessary; if you do so, it nmust be in the
range 1 to 255 inclusive and nust be uni que anong all |Ds specified
for cluster nodes.

HHFHHFHH R

Required my.cnf options for SQL nodes. MySQL servers acting as NDB Cluster SQL nodes must
always be started with the - - ndbcl ust er and - - ndb- connect st ri ng options, either on the command
line orinmy. cnf.

4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_ngnd), each node that is part of an NDB
Cluster requires a connection string that points to the management server's location. This connection
string is used in establishing a connection to the management server as well as in performing other tasks
depending on the node's role in the cluster. The syntax for a connection string is as follows:

[nodei d=node_i d,]host-definition[, host-definition[, ...]]

host - definition:
host _nane[: port_nunber]

node_i d is an integer greater than or equal to 1 which identifies a node in confi g. i ni . host _nane is
a string representing a valid Internet host name or IP address. port _nunber is an integer referring to a
TCP/IP port number.

exanple 1 (long): "nodei d=2, nyhost 1: 1100, nyhost 2: 1100, 198. 51. 100. 3: 1200"
exanple 2 (short): "myhost 1"

| ocal host: 1186 is used as the default connection string value if none is provided. If port _numis
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers. An
NDB Cluster data or APl node attempts to contact successive management servers on each host in the
order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes having
multiple network interfaces for connecting to management servers. A bind address consists of a hostname

148

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Defining Computers in an NDB Cluster

or network address and an optional port number. This enhanced syntax for connection strings is shown
here:

[nodei d=node_i d,]
[bi nd- addr ess=host -definition,]
host -definition[; bind-address=host-definition]
host-definition[; bind-address=host-definition]

[...11

host -definition
host _nane[: port_nunber]

If a single bind address is used in the connection string prior to specifying any management hosts,

then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection string
causes the node to use 198. 51. 100. 242 regardless of the management server to which it connects:

bi nd- addr ess=198. 51. 100. 242, posei don: 1186, perch: 1186

If a bind address is specified following a management host definition, then it is used only for connecting to
that management node. Consider the following connection string:

posei don: 1186; bi nd- addr ess=I ocal host, perch: 1186; bi nd- addr ess=198. 51. 100. 242

In this case, the node uses | ocal host to connect to the management server running on the host named
posei don and 198. 51. 100. 242 to connect to the management server running on the host named
per ch.

You can specify a default bind address and then override this default for one or more specific management
hosts. In the following example, | ocal host is used for connecting to the management server running on
host posei don; since 198. 51. 100. 242 is specified first (before any management server definitions), it
is the default bind address and so is used for connecting to the management servers on hosts per ch and
orca:

bi nd- addr ess=198. 51. 100. 242, posei don: 1186; bi nd- addr ess=I ocal host, perch: 1186, or ca: 2200
There are a number of different ways to specify the connection string:

» Each executable has its own command-line option which enables specifying the management server at
startup. (See the documentation for the respective executable.)

« Itis also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysqgl cl uster] section in the management server's ny. cnf file.

» For backward compatibility, two other options are available, using the same syntax:
1. Setthe NDB_CONNECTSTRI NG environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb. cf g and place this file in
the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my. cnf file for each executable.

4.3.4 Defining Computers in an NDB Cluster

149

Defining an NDB Cluster Management Server

The [conput er] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

e Id

Version (or later)

NDB 8.0.13

Type or units

Default

Range

Restart Type

IS (NDB 8.0.13)

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

e Host Nane

Important

The computer ID is not the same as the node ID used for a management, API, or
data node. Unlike the case with node IDs, you cannot use Nodel d in place of | d
inthe [conput er] section of the confi g. i ni file.

Version (or later)

NDB 8.0.13

Type or units

name or IP address

Default

Range

Restart Type

N (NDB 8.0.13)

This is the computer's hostname or IP address.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.1 NDB Cluster restart types

Symbol

Restart Type

Description

N

Node

The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

System

All cluster nodes must be

shut down completely, then
restarted, to effect a change in thi
parameter

(]

Initial

Data nodes must be restarted
using the--initial option

4.3.5 Defining an NDB Cluster Management Server

The [ndb_ngnd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an [ndb_ngnd
def aul t] section. [mgn] and [ngm def aul t] are older aliases for these, supported for backward

compatibility.

150

Defining an NDB Cluster Management Server

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the Execut eOnConput er nor the Host Nane parameter is present, the
default value | ocal host is assumed for both.

Id

Version (or later) NDB 8.0.13
Type or units unsigned
Default [...]

Range 1-255

Restart Type IS (NDB 8.0.13)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 145. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 144.

The use of the | d parameter for identifying management nodes is deprecated in favor of Nodel d.
Although | d continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

Nodel d

Version (or later) NDB 8.0.13
Type or units unsigned
Default [...]

Range 1-255

Restart Type IS (NDB 8.0.13)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 145. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 144.

Nodel d is the preferred parameter name to use when identifying management nodes. Although the
older | d continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used,; it is also subject to removal in a future NDB Cluster release.

s Execut eOnConput er

151

Defining an NDB Cluster Management Server

Version (or later) NDB 8.0.13
Type or units name

Default [...]

Range

Deprecated Yes (in NDB 7.5)
Restart Type S (NDB 8.0.13)

This refers to the | d set for one of the computers defined in a [conput er] section of the confi g. i ni
file.

Important

This parameter is deprecated, and is subject to removal in a future release. Use
the Host Nane parameter instead.

e Port Nunber

Version (or later) NDB 8.0.13
Type or units unsigned
Default 1186

Range 0-64K
Restart Type S (NDB 8.0.13)

This is the port number on which the management server listens for configuration requests and
management commands.

The node ID for this node can be given out only to connections that explicitly request it. A management
server that requests “any” node ID cannot use this one. This parameter can be used when running
multiple management servers on the same host, and Host Nane is not sufficient for distinguishing among
processes. Intended for use in testing.

* Host Nane
Version (or later) NDB 8.0.13
Type or units name or IP address
Default [...]
Range
Restart Type N (NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the management node is to

reside. To specify a hostname other than | ocal host , either this parameter or Execut eOnConput er is
required.

e Locati onDonmi nld

Version (or later) NDB 8.0.13
Type or units integer

152

Defining an NDB Cluster Management Server

Default 0
Range 0-16
Restart Type S (NDB 8.0.13)

Assigns a management node to a specific availability domain (also known as an availability zone) within
a cloud. By informing NDB which nodes are in which availability domains, performance can be improved

in a cloud environment in the following ways:

« If requested data is not found on the same node, reads can be directed to another node in the same

availability domain.

« Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

« The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain

whenever possible.

e The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

Locat i onDonai nl d takes an integer value between 0 and 16 inclusive, with 0 being the default; using

0 is the same as leaving the parameter unset.

» LogDestination

Version (or later)

NDB 8.0.13

Type or units

{CONSOLE|SYSLOG|FILE}

Default

FILE: flename=ndb_nodeid_cluster.log,
maxsize=1000000, maxfiles=6

Range

153

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

Defining an NDB Cluster Management Server

Restart Type N (NDB 8.0.13)

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSCLE, SYSLOG, and FI LE—with FI LE being the default:

¢ CONSOLE outputs the log to st dout :

CONSOLE

¢ SYSLOGsends the log to a sys| og facility, possible values being one of aut h, aut hpri v, cr on,
daenon, ftp, kern, | pr, mai |, news, sysl og, user, uucp, | ocal 0, ocal 1,1 ocal 2,1 ocal 3,
| ocal 4,1 ocal 5,1 ocal 6, orl ocal 7.

Note
Not every facility is necessarily supported by every operating system.

SYSLOG faci |l ity=sysl og

e FI LE pipes the cluster log output to a regular file on the same machine. The following values can be
specified:

o fil ename: The name of the log file.
The default log file name used in such cases is ndb_nodei d_cl uster. | og.

e maxsi ze: The maximum size (in bytes) to which the file can grow before logging rolls over to a new
file. When this occurs, the old log file is renamed by appending . N to the file name, where Nis the
next number not yet used with this name.

o maxfil es: The maximum number of log files.

FI LE: fi | enane=cl ust er. | og, maxsi ze=1000000, maxfi | es=6

The default value for the FI LE parameter is
FILE: fil ename=ndb_node_id cluster. | og, maxsi ze=1000000, maxfi | es=6, where
node_i d is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE; SYSLOG f aci |l i ty=l ocal O; FI LE: fi | ename=/ var /| og/ ngnd

e ArbitrationRank

Version (or later) NDB 8.0.13
Type or units 0-2

Default 1

Range 0-2

Restart Type N (NDB 8.0.13)

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL
nodes can be arbitrators. Ar bi t r at i onRank can take one of the following values:

* 0: The node is never used as an arbitrator.

« 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

154

Defining an NDB Cluster Management Server

« 2: Indicates a low-priority node which is used as an arbitrator only if a node with a higher priority is not
available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its

Arbi trationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting Ar bi t r at i onRank to 0 on all management
and SQL nodes, or by setting the Ar bi t r at i on parameter in the [ndbd def aul t] section

of the confi g. i ni global configuration file. Setting Ar bi t r at i on causes any settings for
Ar bi trati onRank to be disregarded.

e« ArbitrationDel ay

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

An integer value which causes the management server's responses to arbitration requests to be delayed
by that number of milliseconds. By default, this value is O; it is normally not necessary to change it.

e DataDir

Version (or later) NDB 8.0.13
Type or units path

Default

Range

Restart Type N (NDB 8.0.13)

This specifies the directory where output files from the management server are placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,

this location can be overridden by setting the FI LE parameter for LogDest i nati on, as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_ngnd is located.

e Port Nunber Stats

Version (or later) NDB 8.0.13
Type or units unsigned
Default [--]

Range 0-64K
Restart Type N (NDB 8.0.13)

This parameter specifies the port number used to obtain statistical information from an NDB Cluster
management server. It has no default value.

 \an

155

Defining an NDB Cluster Management Server

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

Use WAN TCP setting as default.

Heart beat ThreadPriority

Version (or later) NDB 8.0.13
Type or units string

Default [...]

Range

Restart Type N (NDB 8.0.13)

Set the scheduling policy and priority of heartbeat threads for management and API nodes.
The syntax for setting this parameter is shown here:
Hear t beat ThreadPriority = policy[, priority]

policy:
{FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FI FO(first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

Ext r aSendBuf f er Menory

Version (or later) NDB 8.0.13
Type or units bytes

Default 0

Range 0-32G
Restart Type N (NDB 8.0.13)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using Tot al SendBuf f er Menor y, SendBuf f er Menor y, or both.

Tot al SendBuf f er Menory

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 256K - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

156

Defining NDB Cluster Data Nodes

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.14, “Configuring NDB Cluster Send Buffer

Parameters”.

e Heart beat | nt er val MgmdMgnd

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the
connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait for
approximately 1600 ms before timing out.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 2.7.10, “Limitations Relating to Multiple NDB

Cluster Nodes”.

Restart types. Information about the restart types used by the parameter descriptions in this section is

shown in the following table:

Table 4.2 NDB Cluster restart types

Symbol

Restart Type

Description

N

Node

The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

System

All cluster nodes must be

shut down completely, then
restarted, to effect a change in this
parameter

Initial

Data nodes must be restarted
using the --initial option

4.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd def aul t] sections are used to configure the behavior of the cluster's data

nodes.

[ndbd] and [ndbd def aul t] are always used as the section names whether you are using ndbd or
ndbnt d binaries for the data node processes.

157

Defining NDB Cluster Data Nodes

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is either one of Execut eOnConput er or Host Nane; this must be defined in the
local [ndbd] section.

The parameter NoOf Repl i cas should be defined in the [ndbd def aul t] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOf Repl i cas, but it is good practice to set it
explicitly.

Most data node parameters are set in the [ndbd def aul t] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, Host Nane, Nodel d and Execut eOnConput er must be defined in the local [ndbd] section, and
not in any other section of conf i g. i ni . In other words, settings for these parameters are specific to one
data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M or Gas a suffix
to indicate units of 1024, 1024x1024, or 1024x1024x1024. (For example, 100K means 100 x 1024 =
102400.)

Parameter names and values are case-insensitive, unless used in a MySQL Server ny. cnf or my. i ni
file, in which case they are case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later in
this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbnt d (the multithreaded version of ndbd). Three additional

data node configuration parameters—NVaxNoCOf Execut i onThr eads, Thr eadConfi g, and

NoOf Fr agnent LogPar t s—apply to ndbnt d only; these have no effect when used with ndbd. For more
information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 5.3, “ndbmtd —
The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes. The Nodel d or | d value (that is, the data node identifier) can be allocated on
the command line when the node is started or in the configuration file.

* Nodel d
Version (or later) NDB 8.0.13
Type or units unsigned
Default [...]
Range 1-48
Version (or later) NDB 8.0.18
Type or units unsigned
Default [...]
Range 1-144
Restart Type IS (NDB 8.0.13)

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 144 inclusive. Each node in the cluster must have a unigque identifier.

Nodel d is the only supported parameter name to use when identifying data nodes.

* Execut eOnConput er

‘Version (or later)

NDB 8.0.13

158

Defining NDB Cluster Data Nodes

Type or units name

Default [...]

Range

Deprecated Yes (in NDB 7.5)
Restart Type S (NDB 8.0.13)

This refers to the | d set for one of the computers defined in a [conput er] section.
Important

This parameter is deprecated, and is subject to removal in a future release. Use
the Host Nane parameter instead.

The node ID for this node can be given out only to connections that explicitly request it. A management
server that requests “any” node ID cannot use this one. This parameter can be used when running
multiple management servers on the same host, and Host Nane is not sufficient for distinguishing among
processes. Intended for use in testing.

Host Name

Version (or later) NDB 8.0.13

Type or units name or IP address
Default localhost

Range

Restart Type N (NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the data node is to reside. To
specify a hostname other than | ocal host , either this parameter or Execut eOnConput er is required.

Server Por t

Version (or later) NDB 8.0.13
Type or units unsigned
Default [...]

Range 1-64K
Restart Type S (NDB 8.0.13)

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the same
port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd

159

Defining NDB Cluster Data Nodes

160

def aul t] section of the confi g. i ni file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_ngnd management port (the management server's Por t Nunber) so
outgoing connections to that port from any data nodes should always be
permitted.

TcpBi nd_| NADDR_ANY

Setting this parameter to TRUE or 1 binds | P_ADDR ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

NodeG oup

Version (or later) NDB 8.0.13
Type or units unsigned
Default [...]

Range 0 - 65536
Restart Type IS (NDB 8.0.13)

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd def aul t] section of the
config.ini file, and care must be taken not to assign nodes to node groups in such a way that an
invalid numbers of nodes are assigned to any node groups.

The NodeGr oup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeG oup value for all cluster data nodes, only for
those nodes which are to be started and added to the cluster as a new node group at a later time. For
more information, see Section 6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

Locat i onDommi nl d

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-16

Restart Type S (NDB 8.0.13)

Assigns a data node to a specific availability domain (also known as an availability zone) within a cloud.
By informing NDB which nodes are in which availability domains, performance can be improved in a
cloud environment in the following ways:

« If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

« Communication between nodes in different availability domains are guaranteed to use NDB

ANSNO \WAN alala YiViidaTa AN\, ner manua N

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

Defining NDB Cluster Data Nodes

e The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain

whenever possible.

e The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

Locat i onDonai nl d takes an integer value between 0 and 16 inclusive, with 0 being the default; using

0 is the same as leaving the parameter unset.

NoOf Repl i cas

Version (or later) NDB 8.0.13
Type or units integer

Default 2

Range 1-2

Version (or later) NDB 8.0.19
Type or units integer

Default 2

Range 1-4

Restart Type IS (NDB 8.0.13)

This global parameter can be set only in the [ndbd def aul t] section, and defines the number of
fragment replicas for each table stored in the cluster. This parameter also specifies the size of node
groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way of
example, assume that we have 4 data nodes and that NoOf Repl i cas is set to 2. The four data nodes
have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the second
node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the
same node groups are not placed on the same computer because a single hardware failure would cause
the entire cluster to fail.

If no node IDs are provided, the order of the data nodes is the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client's SHOWcommand.

The default value for NoOf Repl i cas is 2. This is the recommended value for most production
environments. In NDB 8.0, setting this parameter's value to 3 or 4 is fully tested and supported in
production.

Warning
Setting NoOf Repl i cas to 1 means that there is only a single copy of all Cluster
data; in this case, the loss of a single data node causes the cluster to fail because

there are no additional copies of the data stored by that node.

The number of data nodes in the cluster must be evenly divisible by the value of this parameter. For
example, if there are two data nodes, then NoOf Repl i cas must be equal to either 1 or 2, since 2/3 and

161

Defining NDB Cluster Data Nodes

2/4 both yield fractional values; if there are four data nodes, then NoOf Repl i cas must be equal to 1, 2,
or4.

e DataDir

Version (or later) NDB 8.0.13
Type or units path
Default

Range

Restart Type IN (NDB 8.0.13)

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.
The default is the data node process working directory.

* Fil eSystenPat h

Version (or later) NDB 8.0.13
Type or units path

Default DataDir

Range

Restart Type IN (NDB 8.0.13)

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs (for
Disk Data tables), and data files are placed. The default is the directory specified by Dat aDi r .

Note
This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for NDB Cluster includes / var /| i b/ mysql - ¢l ust er, under
which a directory for the node's file system is created. The name of this subdirectory contains the node
ID. For example, if the node ID is 2, this subdirectory is named ndb_2 fs.

» BackupDat aDi r

Version (or later) NDB 8.0.13
Type or units path

Default FileSystemPath
Range

Restart Type IN (NDB 8.0.13)

This parameter specifies the directory in which backups are placed.

Important

The string '/ BACKUP' is always appended to this value. For example, if you set
the value of BackupDat aDi r to/var/|i b/ cl ust er-dat a, then all backups
are stored under / var/ | i b/ cl ust er - dat a/ BACKUP. This also means that
the effective default backup location is the directory named BACKUP under the
location specified by the Fi | eSyst enPat h parameter.

162

Defining NDB Cluster Data Nodes

Data Memory, Index Memory, and String Memory

Dat aMenory and | ndexMenory are [ndbd] parameters specifying the size of memory segments used
to store the actual records and their indexes. In setting values for these, it is important to understand how
Dat aMenory is used, as it usually needs to be updated to reflect actual usage by the cluster.

Note

I ndexMenor vy is deprecated, and subject to removal in a future version of NDB
Cluster. See the descriptions that follow for further information.

* Dat aMenory
Version (or later) NDB 8.0.13
Type or units bytes
Default 98M
Range IM-1T
Version (or later) NDB 8.0.19
Type or units bytes
Default 98M
Range 1M - 16T
Restart Type N (NDB 8.0.13)

This parameter defines the amount of space (in bytes) available for storing database records. The entire
amount specified by this value is allocated in memory, so it is extremely important that the machine has
sufficient physical memory to accommodate it.

The memory allocated by Dat aMenor y is used to store both the actual records and indexes. There is a
16-byte overhead on each record; an additional amount for each record is incurred because it is stored
in a 32KB page with 128 byte page overhead (see below). There is also a small amount wasted per
page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
Dat aMenor y. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per attribute.

In NDB 8.0, the maximum record size is 30000 bytes.

Resources assigned to Dat aMenor y are used for storing all data and indexes. (Any memory configured
as | ndexMenor y is automatically added to that used by Dat aMenor y to form a common resource
pool.)

Currently, NDB Cluster can use a maximum of 512 MB for hash indexes per partition, which means

in some cases it is possible to get Tabl e i s ful | errorsin MySQL client applications even when
ndb_nmgm -e "ALL REPORT MEMORYUSAGE" shows significant free Dat aMenor y. This can also pose
a problem with data node restarts on nodes that are heavily loaded with data.

You can control the number of partitions per local data manager for a given table by setting

the NDB_TABLE option PARTI TI ON_BALANCE to one of the values FOR_RA_BY_LDM

FOR_RA BY_LDM X 2, FOR_RA BY_LDM X_ 3, or FOR_RA BY_LDM X_ 4, for 1, 2, 3, or 4 partitions per
LDM, respectively, when creating the table (see Setting NDB Comment Options).

163

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

Defining NDB Cluster Data Nodes

Note

In previous versions of NDB Cluster it was possible to create extra partitions
for NDB Cluster tables and thus have more memory available for hash indexes
by using the MAX_ ROWS option for CREATE TABLE. While still supported for
backward compatibility, using MAX_ ROWS for this purpose is deprecated; you
should use PARTI TI ON_BALANCE instead.

You can also use the M nFr eePct configuration parameter to help avoid problems with node restarts.

The memory space allocated by Dat aMenor y consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOf Repl i cas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except
by deleting the table. (This also means that Dat aMenor y pages, once allocated to a given table, cannot
be used by other tables.) Performing a data node recovery also compresses the partition because all
records are inserted into empty partitions from other live nodes.

The Dat aMenor y memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the Dat aMenor y. There is also a reference to each copy in the ordered
table indexes. Unigue hash indexes are updated only when the unique index columns are updated, in
which case a new entry in the index table is inserted and the old entry is deleted upon commit. For this
reason, it is also necessary to allocate enough memory to handle the largest transactions performed by
applications using the cluster. In any case, performing a few large transactions holds no advantage over
using many smaller ones, for the following reasons:

e Large transactions are not any faster than smaller ones

« Large transactions increase the number of operations that are lost and must be repeated in event of
transaction failure

+ Large transactions use more memory

The default value for Dat aMenory in NDB 8.0 is 98MB. The minimum value is 1IMB. There is no
maximum size, but in reality the maximum size has to be adapted so that the process does not start
swapping when the limit is reached. This limit is determined by the amount of physical RAM available on
the machine and by the amount of memory that the operating system may commit to any one process.
32-bit operating systems are generally limited to 2-4GB per process; 64-bit operating systems can use
more. For large databases, it may be preferable to use a 64-bit operating system for this reason.

* | ndexMenory

Version (or later) NDB 8.0.13
Type or units bytes

Default 0

Range IM-1T
Deprecated Yes (in NDB 7.6)
Restart Type N (NDB 8.0.13)

The | ndexMenor y parameter is deprecated (and subject to future removal); any memory assigned to
| ndexMenor y is allocated instead to the same pool as Dat aMenor y, which is solely responsible for all

164

https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Defining NDB Cluster Data Nodes

resources needed for storing data and indexes in memory. In NDB 8.0, the use of | ndexMenor vy in the
cluster configuration file triggers a warning from the management server.

You can estimate the size of a hash index using this formula:

size = ((fragments * 32K) + (rows * 18))
* fragnent _replicas

f ragment s is the number of fragments, f r agnent _r epl i cas is the number of fragment replicas
(normally 2), and r ows is the number of rows. If a table has one million rows, eight fragments, and two
fragment replicas, the expected index memory usage is calculated as shown here:

((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
(262144 + 18000000) * 2
18262144 * 2 = 36524288 bytes = ~35MB

Index statistics for ordered indexes (when these are enabled) are stored in the
nysql . ndb_i ndex_stat sanpl e table. Since this table has a hash index, this adds to index memory
usage. An upper bound to the number of rows for a given ordered index can be calculated as follows:

sanpl e_si ze= key_size + ((key_attributes + 1) * 4)
sanpl e_rows = | ndexSt at SaveSi ze

* ((0.01 * IndexStatSaveScale * |ogy(rows * sanple_size)) + 1)
| sanpl e_si ze

In the preceding formula, key_si ze is the size of the ordered index key in bytes, key attri butes is
the number ot attributes in the ordered index key, and r ows is the number of rows in the base table.

Assume that table t 1 has 1 million rows and an ordered index named i x1 on two four-byte integers.
Assume in addition that | ndex St at SaveSi ze and | ndexSt at SaveScal e are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

sample_size =8 + ((1 + 2) * 4) = 20 bytes

N
~

sanpl e_rows =
((0.01 * 100 * |0g2(1000000*20)) + 1)
20

32768 * ((1 * ~16.811) +1) / 20
32768 * ~17.811 / 20

~29182 rows

o= *w

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 bytes.

In NDB 8.0, the minimum and default vaue for this parameter is O (zero).

StringMenory

Version (or later) NDB 8.0.13

Type or units % or bytes

Default 25

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S (NDB 8.0.13)

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [ndbd] or [ndbd def aul t] section of the confi g. i ni file. A value between 0 and
100 inclusive is interpreted as a percent of the maximum default value, which is calculated based on

165

Defining NDB Cluster Data Nodes

a number of factors including the number of tables, maximum table name size, maximum size of . FRM
files, MaxNoOf Tri gger s, maximum column name size, and maximum default column value.

A value greater than 100 is interpreted as a number of bytes.
The default value is 25—that is, 25 percent of the default maximum.

Under most circumstances, the default value should be sufficient, but when you have a great many NDB
tables (1000 or more), it is possible to get Error 773 Qut of string nenory, please nodify
StringMenory config paraneter: Permanent error: Schema error, inwhich case you
should increase this value. 25 (25 percent) is not excessive, and should prevent this error from recurring
in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE exanpl e (
a | NT NOT NULL,
b INT NOT NULL,
Cc | NT NOT NULL,
PRI MARY KEY(a),
UNI QUE(b)
) ENG NE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10
bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per
record. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the exanpl e table as well
8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary
key and the unique constraint. We also need 64MB for the records of the base table and the unique index
table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

Currently, the only partitioning algorithm is hashing and ordered indexes are local to each node. Thus,
ordered indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both | ndexMenor y and Dat aMenor vy is that the total database size is the sum of
all data memory and all index memory for each node group. Each node group is used to store replicated
information, so if there are four nodes with two fragment replicas, there are two node groups. Thus, the
total data memory available is 2 x Dat aMenor y for each data node.

It is highly recommended that Dat aMenor y and | ndexMenor y be set to the same values for all nodes.
Data distribution is even over all nodes in the cluster, so the maximum amount of space available for any
node can be no greater than that of the smallest node in the cluster.

Dat aMenor y can be changed, but decreasing it can be risky; doing so can easily lead to a node or even
an entire NDB Cluster that is unable to restart due to there being insufficient memory space. Increasing
these values should be acceptable, but it is recommended that such upgrades are performed in the same
manner as a software upgrade, beginning with an update of the configuration file, and then restarting the
management server followed by restarting each data node in turn.

MinFreePct. A proportion (5% by default) of data node resources including Dat aMenor y is kept in
reserve to insure that the data node does not exhaust its memory when performing a restart. This can be
adjusted using the M nFr eePct data node configuration parameter (default 5).

166

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13
Type or units unsigned
Default 5

Range 0-100

Restart Type N (NDB 8.0.13)

Updates do not increase the amount of index memory used. Inserts take effect inmediately; however, rows
are not actually deleted until the transaction is committed.

Transaction parameters.

The next few [ndbd] parameters that we discuss are important because

they affect the number of parallel transactions and the sizes of transactions that can be handled by the
system. MaxNoCOf Concur rent Transact i ons sets the number of parallel transactions possible in a
node. MaxNoCOf Concur rent Oper at i ons sets the number of records that can be in update phase or

locked simultaneously.

Both of these parameters (especially MaxNoCOf Concur r ent Qper at i ons) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

MaxDML_Oper at i onsPer Transact i on sets the maximum number of DML operations that can be

performed in a given transaction.

e MaxNoOf Concurrent Transacti ons

Version (or later) NDB 8.0.13

Type or units integer

Default 4096

Range 32 - 4294967039 (OXxFFFFFEFF)
Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

Each cluster data node requires a transaction record for each active transaction in the cluster. The task
of coordinating transactions is distributed among all of the data nodes. The total number of transaction
records in the cluster is the number of transactions in any given node times the number of nodes in the

cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by that

connection. This means that a reasonable minimum for the total number of transactions in the cluster

can be expressed as

Tot al NoOF Concurrent Transacti ons =

(maxi mum nunber of tables accessed in any single transaction + 1)

* nunber of SQ. nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires 11

transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction records

are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction records total. Each

data node can be expected to handle TotaINoOfConcurrentTransactions / number of data nodes. For
an NDB Cluster having 4 data nodes, this would mean setting MaxNoOf Concur r ent Tr ansact i ons

on each data node to 1100/ 4 = 275. In addition, you should provide for failure recovery by ensuring
that a single node group can accommodate all concurrent transactions; in other words, that each

167

Defining NDB Cluster Data Nodes

data node's MaxNoOfConcurrentTransactions is sufficient to cover a number of transactions equal to
TotalNoOfConcurrentTransactions / number of node groups. If this cluster has a single node group,
then MaxNoOf Concur rent Tr ansact i ons should be set to 1100 (the same as the total number of
concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOr Concur r ent Tr ansact i ons should always be no more than the value of
MaxNoOF Concur r ent Oper ati ons.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions that
were ongoing in the failed node.

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must be
such that no more transactions occur than the lower of the old and new levels while this is taking place.

The default value is 4096.

MaxNoCOF Concur r ent Oper ati ons

Version (or later) NDB 8.0.13

Type or units integer

Default 32K

Range 32 - 4294967039 (OxFFFFFEFF)
Restart Type N (NDB 8.0.13)

It is a good idea to adjust the value of this parameter according to the size and number of transactions.
When performing transactions which involve only a few operations and records, the default value for this
parameter is usually sufficient. Performing large transactions involving many records usually requires
that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously in
transactions, divided by the number of cluster data nodes. For example, in a cluster which has four data
nodes and which is expected to handle one million concurrent updates using transactions, you should
set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is suggested that
you set this parameter to a value that is high enough to permit an individual data node to handle the load
for its node group. In other words, you should set the value equal to t ot al nunber of concurrent

168

Defining NDB Cluster Data Nodes

operations / nunber of node groups. (Inthe case where there is a single node group, this is
the same as the total number of concurrent operations for the entire cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoCOF Concur r ent Qper at i ons should always be greater than or equal to the value of
MaxNoCOF Concurrent Transacti ons.

Read queries which set locks also cause operation records to be created. Some extra space is allocated
within individual nodes to accommodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second handles
the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in the
transaction coordinator as there are reads, updates, and deletes involved in the transaction. However,
the operation records of the are spread over all eight nodes. Thus, if it is necessary to configure

the system for one very large transaction, it is a good idea to configure the two parts separately.
MaxNoCOf Concur r ent Qper at i ons is always used to calculate the number of operation records in the
transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume
about 1KB per record.

MaxNoCOf Local Oper ati ons

Version (or later) NDB 8.0.13

Type or units integer

Default UNDEFINED

Range 32 - 4294967039 (OxFFFFFEFF)
Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

By default, this parameter is calculated as 1.1 x MaxNoOf Concur r ent Oper at i ons. This fits systems
with many simultaneous transactions, none of them being very large. If there is a need to handle one
very large transaction at a time and there are many nodes, it is a good idea to override the default value
by explicitly specifying this parameter.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the Tr ansact i onMenor y parameter; if you try to set
values for both parameters in the cluster configuration file (confi g. i ni), the management server
refuses to start.

MaxDM_Qper at i onsPer Tr ansact i on

Version (or later) NDB 8.0.13

Type or units operations (DML) 169

Defining NDB Cluster Data Nodes

Default 4294967295
Range 32 - 4294967295
Restart Type N (NDB 8.0.13)

This parameter limits the size of a transaction. The transaction is aborted if it requires more than this
many DML operations. The minimum number of operations per transaction is 32; however, you can set
MaxDMLQper at i onsPer Transact i on to 0 to disable any limitation on the number of DML operations
per transaction. The maximum (and default) is 4294967295.

The value of this parameter cannot exceed that set for MaxNoOf Concur r ent Oper at i ons.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary
storage when executing a statement that is part of a Cluster transaction. All records are released when the
statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values
to enable better parallelism in the system, whereas users whose applications require relatively small

transactions can decrease the values to save memory.

* MaxNoOF Concurrent | ndexCOper ati ons

Version (or later) NDB 8.0.13

Type or units integer

Default 8K

Range 0 - 4294967039 (OXFFFFFEFF)
Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

For queries using a unique hash index, another temporary set of operation records is used during

a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoCOf Concur r ent Oper at i ons.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible and
can save memory if the DBA is certain that a high degree of parallelism is not required for the cluster.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the Tr ansact i onMenory parameter; if you try to set
values for both parameters in the cluster configuration file (conf i g. i ni), the management server

refuses to start.

* MaxNoOf Fi redTri ggers

Version (or later) NDB 8.0.13

Type or units integer

Default 4000

Range 0 - 4294967039 (OXFFFFFEFF)
Deprecated NDB 8.0.19

170

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

The default value of MaxNoCOf Fi r edTr i gger s is 4000, which is sufficient for most situations. In some
cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is short-
lived but can still require a large number of records in its pool for situations with many parallel write
operations on a base table containing a set of unique hash indexes.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the Tr ansact i onMenor y parameter; if you try to set

values for both parameters in the cluster configuration file (conf i g. i ni), the management server
refuses to start.

e Transact i onBuf f er Menory

Version (or later) NDB 8.0.13

Type or units bytes

Default M

Range 1K - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

The memory affected by this parameter is used for tracking operations fired when updating index tables
and reading unigue indexes. This memory is used to store the key and column information for these
operations. It is only very rarely that the value for this parameter needs to be altered from the default.

The default value for Tr ansact i onBuf f er Menory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF_FI LESI ZE (found in ndb/ sr ¢/ ker nel / bl ocks/ Dbt ¢/
Dbt c. hpp) set to 4000 x 128 bytes (500KB). A similar buffer for key information, ZDATABUF_FI LESI ZE

(also in Dbt c. hpp) contains 4000 x 16 = 62.5KB of buffer space. Dbt ¢ is the module that handles
transaction coordination.

Transaction resource allocation parameters. The parameters in the following list are used to allocate
transaction resources in the transaction coordinator (DBTC). Leaving any one of these set to the default

(O) dedicates transaction memory for 25% of estimated total data node usage for the corresponding
resource. The actual maximum possible values for these parameters are typically limited by the amount of
memory available to the data node; setting them has no impact on the total amount of memory allocated

to the data node. In addition, you should keep in mind that they control numbers of reserved internal
records for the data node independent of any settings for MaxDM_Oper at i onsPer Tr ansact i on,
MaxNoOf Concurrent | ndexQper at i ons, MaxNoOf Concur r ent Oper at i ons,

MaxNoOf Concur r ent Scans, MaxNoOf Concur r ent Tr ansact i ons, MaxNoOf Fi redTr i gger s,

MaxNoOf Local Scans, or Tr ansact i onBuf f er Menory (see Transaction parameters and Transaction
temporary storage).

* ReservedConcurrent| ndexQOperations

Version (or later) NDB 8.0.16
Type or units numeric

171

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

Defining NDB Cluster Data Nodes

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous index operations having dedicated resources on one data node.

» ReservedConcurrent Operations

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous operations having dedicated resources in transaction coordinators on one data

node.

* ReservedConcurrent Scans

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous scans having dedicated resources on one data node.

e ReservedConcurrent Transacti ons

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous transactions having dedicated resources on one data node.

* ReservedFiredTriggers

Version (or later) NDB 8.0.16
Type or units numeric
172 Default 0

Defining NDB Cluster Data Nodes

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16
Restart Type N (NDB 8.0.13)

Number of triggers that have dedicated resources on one ndbd(DB) node.

Reser vedLocal Scans

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous fragment scans having dedicated resources on one data node.

ReservedTransacti onBuf f er Menory

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 8.0.16

Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

Dynamic buffer space (in bytes) for key and attribute data allocated to each data node.

Transacti onMenory

Version (or later) NDB 8.0.19
Type or units bytes

Default 0

Range 0-16384G
Added NDB 8.0.19
Restart Type N (NDB 8.0.13)

This parameter determines the memory (in bytes) allocated for transactions on each data node. Setting
of transaction memory can be handled in any one of the three ways listed here:

* A number of configuration parameters are incompatible with Tr ansact i onMenor y. If any of these
are set, transaction memory is calculated as it was previous to NDB 8.0. You should be aware
that it is not possible to set any of these parameters concurrently with Tr ansact i onMenor y; if
you attempt to do so, the management server is unable to start (see Parameters incompatible with
TransactionMemory).

< If Transact i onMenory is set, this value is used for determining transaction memory.

173

Defining NDB Cluster Data Nodes

« If neither any incompatible parameters are set nor Tr ansact i onMenor y is set, transaction memory
is set by NDB to 10% of the value of the Dat aMenor y configuration parameter.

Parameters incompatible with TransactionMemory. The following parameters cannot be used
concurrently with Tr ansact i onMenor y and are deprecated in NDB 8.0:

¢ MaxNoCOr Concurrent | ndexQOper ati ons
e MaxNoOX Fi redTri ggers
¢« MaxNoOf Local Oper ati ons

« MaxNoOf Local Scans

Explicitly setting any of the parameters just listed when Tr ansact i onMenor y has also been set in the
cluster configuration file (conf i g. i ni) keeps the management node from starting.

For more information regarding resource allocation in NDB Cluster data nodes, see Section 4.3.13,
“Data Node Memory Management”.

Scans and buffering. There are additional [ndbd] parameters in the Dbl gh module (in

ndb/ src/ kernel / bl ocks/ Dbl gh/ Dbl gh. hpp) that affect reads and updates. These include
ZATTRI NBUF_FI LESI ZE, set by default to 10000 x 128 bytes (1250KB) and ZDATABUF FI LE_SI ZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

e Bat chSi zePer Local Scan

Version (or later) NDB 8.0.13
Type or units integer

Default 256

Range 1-992
Deprecated NDB 8.0.19
Restart Type N (NDB 8.0.13)

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

Bat chSi zePer Local Scan has a strong connection to the Bat chSi ze defined in the SQL nodes.

Deprecated in NDB 8.0.

» LongMessageBuf f er

Version (or later) NDB 8.0.13

Type or units bytes

Default 64M

Range 512K - 4294967039 (OXxFFFFFEFF)
Restart Type N (NDB 8.0.13)

174

Defining NDB Cluster Data Nodes

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB.

This parameter seldom needs to be changed from the default.

 MaxFKBui | dBat chSi ze

Version (or later) NDB 8.0.13
Type or units integer

Default 64

Range 16 - 512
Restart Type N (NDB 8.0.13)

Maximum scan batch size used for building foreign keys. Increasing the value set for this parameter may
speed up building of foreign key builds at the expense of greater impact to ongoing traffic.

 MaxNoOf Concur r ent Scans

Version (or later) NDB 8.0.13
Type or units integer

Default 256

Range 2-500

Restart Type N (NDB 8.0.13)

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter. Each
scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan record
in the node where the partition is located, the number of records being the value of this parameter
times the number of nodes. The cluster should be able to sustain MaxNoOf Concur r ent Scans scans
concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table scan.
The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on the
local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoCOf Concur r ent Scans is 256. The maximum value is 500.

e MaxNoOf Local Scans

Version (or later) NDB 8.0.13

Type or units integer

Default 4 * MaxNoOfConcurrentScans * [# of data nodes] +
2

Range 32 - 4294967039 (OXFFFFFEFF)

Deprecated NDB 8.0.19

175

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Specifies the number of local scan records if many scans are not fully parallelized. When the number of
local scan records is not provided, it is calculated as shown here:

4 * MaxNoOf Concurrent Scans * [# data nodes] + 2
This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the Tr ansact i onMenor y parameter; if you try to set

values for both parameters in the cluster configuration file (confi g. i ni), the management server
refuses to start.

MaxPar al | el Copyl nst ances

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-64

Restart Type N (NDB 8.0.13)

This parameter sets the parallelization used in the copy phase of a node restart or system restart, when
a node that is currently just starting is synchronised with a node that already has current data by copying
over any changed records from the node that is up to date. Because full parallelism in such cases can
lead to overload situations, MaxPar al | el Copyl nst ances provides a means to decrease it. This
parameter's default value 0. This value means that the effective parallelism is equal to the number of
LDM instances in the node just starting as well as the node updating it.

MaxPar al | el ScansPer Fr agnent

Version (or later) NDB 8.0.13

Type or units bytes

Default 256

Range 1 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

MaxReor gBui | dBat chSi ze

Version (or later) NDB 8.0.13
Type or units integer

Default 64

Range 16 - 512
Restart Type N (NDB 8.0.13)

Maximum scan batch size used for reorganization of table partitions. Increasing the value set for this
parameter may speed up reorganization at the expense of greater impact to ongoing traffic.

e MaxUl Bui | dBat chSi ze

176

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13
Type or units integer

Default 64

Range 16 - 512
Restart Type N (NDB 8.0.13)

Maximum scan batch size used for building unique keys. Increasing the value set for this parameter may
speed up such builds at the expense of greater impact to ongoing traffic.

Memory Allocation

MaxAl | ocat e

Version (or later) NDB 8.0.13
Type or units unsigned
Default 32M

Range IM-1G
Deprecated NDB 8.0.27
Restart Type N (NDB 8.0.13)

This parameter was used in older versions of NDB Cluster, but has no effect in NDB 8.0. It is deprecated
as of NDB 8.0.27, and subject to removal in a future release.

Multiple Transporters

Beginning with version 8.0.20, NDB allocates multiple transporters for communication between pairs of data
nodes. The number of transporters so allocated can be influenced by setting an appropriate value for the
NodeG oupTr ansport er s parameter introduced in that release.

NodeGr oupTransporters

Version (or later) NDB 8.0.20
Type or units integer

Default 0

Range 0-32

Added NDB 8.0.20
Restart Type N (NDB 8.0.13)

This parameter determines the number of transporters used between nodes in the same node group. The
default value (0) means that the number of transporters used is the same as the number of LDMs in the
node. This should be sufficient for most use cases; thus it should seldom be necessary to change this

value from its default.

Setting NodeG oupTr anspor t er s to a number greater than the number of LDM threads or the number

of TC threads, whichever is higher, causes NDB to use the maximum of these two numbers of threads. This
means that a value greater than this is effectively ignored.

Hash Map Size

Def aul t HashMapSi ze

177

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13
Type or units LDM threads
Default 240

Range 0 - 3840
Restart Type N (NDB 8.0.13)

The original intended use for this parameter was to facilitate upgrades and especially downgrades to and
from very old releases with differing default hash map sizes. This is not an issue when upgrading from

NDB Cluster 7.3 (or later) to later versions.

Decreasing this parameter online after any tables have been created or modified with
Def aul t HashVapSi ze equal to 3840 is not currently supported.

Logging and checkpointing.

e Fragment LogFi | eSi ze

The following [ndbd] parameters control log and checkpoint behavior.

Version (or later) NDB 8.0.13
Type or units bytes

Default 16M

Range 4M - 1G
Restart Type IN (NDB 8.0.13)

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log files
quickly enough before attempting to open new ones (only 2 fragment log files can be open at one time);

increasing the size of the fragment log files gives the cluster more time before having to open each new
fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOf Fr agnent LogFi | es.

e Initial NoO OQpenFil es

Version (or later) NDB 8.0.13

Type or units files

Default 27

Range 20 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

e I nitFragnent LogFil es

Version (or later) NDB 8.0.13
Type or units [see values]
Default SPARSE

178

Defining NDB Cluster Data Nodes

Range

SPARSE, FULL

Restart Type

IN (NDB 8.0.13)

By default, fragment log files are created sparsely when performing an initial start of a data node—that
is, depending on the operating system and file system in use, not all bytes are necessarily written to
disk. However, it is possible to override this behavior and force all bytes to be written, regardless of the
platform and file system type being used, by means of this parameter. | ni t Fr agnent LogFi | es takes

either of two values:

« SPARSE. Fragment log files are created sparsely. This is the default value.

e FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting | ni t Fr agnment LogFi | es=FULL may

help eliminate 1/O errors on writes to the REDO log.

» Enabl ePartial Lcp

Version (or later) NDB 8.0.13
Type or units boolean
Default true

Range

Restart Type N (NDB 8.0.13)

When t r ue, enable partial local checkpoints: This means that each LCP records only part of the full
database, plus any records containing rows changed since the last LCP; if no rows have changed, the
LCP updates only the LCP control file and does not update any data files.

If Enabl ePar ti al Lcp is disabled (f al se), each LCP uses only a single file and writes a full
checkpoint; this requires the least amount of disk space for LCPs, but increases the write load for
each LCP. The default value is enabled (t r ue). The proportion of space used by partial LCPS can be
modified by the setting for the Recover yWr k configuration parameter.

For more information about files and directories used for full and partial LCPs, see NDB Cluster Data

Node File System Directory.

Setting this parameter to f al se also disables the calculation of disk write speed used by the adaptive

LCP control mechanism.

» LcpScanProgressTi meout

Version (or later) NDB 8.0.13

Type or units second

Default 60

Range 0 - 4294967039 (OXFFFFFEFF)
Version (or later) NDB 8.0.19

Type or units second

Default 180

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

179

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

Defining NDB Cluster Data Nodes

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a given
amount of time has elapsed. This interval can be set using the LcpScanPr ogr essTi neout data node
configuration parameter, which sets the maximum time for which the local checkpoint can be stalled
before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this parameter
to 0 disables the LCP fragment scan watchdog altogether.

« MaxNoOF OpenFi | es

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 20 - 4294967039 (OXxFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

* MaxNoCOF SavedMessages

Version (or later) NDB 8.0.13

Type or units integer

Default 25

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter sets the maximum number of errors written in the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated when,

for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

* MaxLCPSt art Del ay

Version (or later) NDB 8.0.13
Type or units seconds
Default 0

Range 0-600

Restart Type N (NDB 8.0.13)

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial fashion.

In addition, recovery of dictionary and checkpoint information cannot be executed in parallel with
performing of local checkpoints. This means that, when starting or restarting many data nodes
concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can result in

longer node recovery times.

180

Defining NDB Cluster Data Nodes

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete, all

of the data nodes can recover table data in parallel, even while the local checkpoint is being executed.
To force such a delay, set MaxLCPSt ar t Del ay, which determines the number of seconds the cluster
can wait to begin a local checkpoint while data nodes continue to synchronize metadata. This parameter
should be setin the [ndbd def aul t] section of the confi g. i ni file, so that it is the same for all data
nodes. The maximum value is 600; the default is O.

* NoOr Fragnent LogFi | es

Version (or later) NDB 8.0.13

Type or units integer

Default 16

Range 3 - 4294967039 (OXFFFFFEFF)
Restart Type IN (NDB 8.0.13)

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated
to REDO logging. Because the REDO log files are organized in a ring, it is extremely important that the
first and last log files in the set (sometimes referred to as the “head” and “tail” log files, respectively)

do not meet. When these approach one another too closely, the node begins aborting all transactions
encompassing updates due to a lack of room for new log records.

A REDOlog record is not removed until both required local checkpoints have been completed since
that log record was inserted. Checkpointing frequency is determined by its own set of configuration
parameters discussed elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of 1024MB.
The size of the individual log files is configurable using the Fr agnent LogFi | eSi ze parameter. In
scenarios requiring a great many updates, the value for NoOf Fr agnent LogFi | es may need to be set
as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and
the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted with
internal error code 410 (Qut of log file space tenporarily). This condition prevails until a
checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using
--initial.Ifyouwish to change this value for all data nodes in a running
cluster, you can do so using a rolling node restart (using - -i ni ti al when
starting each data node).

* RecoveryWrk

Version (or later) NDB 8.0.13
Type or units integer
Default 60

Range 25-100

181

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Percentage of storage overhead for LCP files. This parameter has an effect only when
Enabl eParti al Lcp is true, that is, only when patrtial local checkpoints are enabled. A higher value
means:

* Fewer records are written for each LCP, LCPs use more space

* More work is needed during restarts

A lower value for Recover yWor k means:
* More records are written during each LCP, but LCPs require less space on disk.

« Less work during restart and thus faster restarts, at the expense of more work during normal
operations

For example, setting Recover yWr k to 60 means that the total size of an LCP is roughly 1 + 0.6 =

1.6 times the size of the data to be checkpointed. This means that 60% more work is required during
the restore phase of a restart compared to the work done during a restart that uses full checkpoints.
(This is more than compensated for during other phases of the restart such that the restart as a whole
is still faster when using partial LCPs than when using full LCPs.) In order not to fill up the redo log, it

is necessary to write at 1 + (1 / Recover yWr k) times the rate of data changes during checkpoints—
thus, when Recover yWor k = 60, it is necessary to write at approximately 1 + (1 /0.6) = 2.67 times the
change rate. In other words, if changes are being written at 10 MByte per second, the checkpoint needs
to be written at roughly 26.7 MByte per second.

Setting Recover yWor k = 40 means that only 1.4 times the total LCP size is nheeded (and thus the
restore phase takes 10 to 15 percent less time. In this case, the checkpoint write rate is 3.5 times the
rate of change.

The NDB source distribution includes a test program for simulating LCPs. | cp_si mul at or . cc can be
found in st or age/ ndb/ sr c/ ker nel / bl ocks/ backup/ . To compile and run it on Unix platforms,
execute the commands shown here:

$> gce | cp_sinmulator. cc
$> ./a.out

This program has no dependencies other than st di 0. h, and does not require a connection to an NDB
cluster or a MySQL server. By default, it simulates 300 LCPs (three sets of 100 LCPs, each consisting
of inserts, updates, and deletes, in turn), reporting the size of the LCP after each one. You can alter
the simulation by changing the values of r ecovery wor k, i nsert wor k, and del et e_wor k in the
source and recompiling. For more information, see the source of the program.

| nsert Recover yWor k

Version (or later) NDB 8.0.13
Type or units integer

Default 40

Range 0-70

Restart Type N (NDB 8.0.13)

Percentage of Recover yWr k used for inserted rows. A higher value increases the number of writes
during a local checkpoint, and decreases the total size of the LCP. A lower value decreases the number

182

Defining NDB Cluster Data Nodes

of writes during an LCP, but results in more space being used for the LCP, which means that recovery
takes longer. This parameter has an effect only when Enabl ePar ti al Lcp is true, that is, only when
partial local checkpoints are enabled.

Enabl eRedoCont r ol

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range

Restart Type N (NDB 8.0.13)

Enable adaptive checkpointing speed for controlling redo log usage. Setto f al se to disable (the
default). Setting Enabl eParti al Lcp to f al se also disables the adaptive calculation.

When enabled, Enabl eRedoCont r ol allows the data nodes greater flexibility with regard to the rate at
which they write LCPs to disk. More specifically, enabling this parameter means that higher write rates
can be employed, so that LCPs can complete and Redo logs be trimmed more quickly, thereby reducing
recovery time and disk space requirements. This functionality allows data nodes to make better use

of the higher rate of I/O and greater bandwidth available from modern solid-state storage devices and
protocols, such as solid-state drives (SSDs) using Non-Volatile Memory Express (NVMe).

The parameter currently defaults to f al se (disabled) due to the fact that NDB is still deployed widely on
systems whose 1/O or bandwidth is constrained relative to those employing solid-state technology, such
as those using conventional hard disks (HDDs). In settings such as these, the Enabl eRedoCont r ol
mechanism can easily cause the I/O subsystem to become saturated, increasing wait times for data
node input and output. In particular, this can cause issues with NDB Disk Data tables which have
tablespaces or log file groups sharing a constrained |0 subsystem with data node LCP and redo log
files; such problems potentially include node or cluster failure due to GCP stop errors.

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used
to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes, events,
and replication between clusters.

Note

These act merely as “suggestions” to the cluster, and any that are not specified
revert to the default values shown.

e MaxNoOf Attri butes

Version (or later) NDB 8.0.13

Type or units integer

Default 1000

Range 32 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter sets a suggested maximum number of attributes that can be defined in the cluster; like
MaxNoCf Tabl es, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more

183

Defining NDB Cluster Data Nodes

tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOf At t ri but es attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is fully
replicated on the servers.

When setting MaxNoCOF At t ri but es, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (gr eat est _nunber of attri butes)
has 100 attributes, a good starting point for the value of MaxNoOf At t ri but es would be 6 *
greatest _nunber _of _attri butes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoCOf Tabl es. If this value is larger than the value obtained in the previous paragraph, you should
use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that this
number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOf At t ri but es by another multiple of MaxNoOf Tabl es and test it again.

MaxNoCOf Tabl es

Version (or later) NDB 8.0.13
Type or units integer

Default 128

Range 8 - 20320
Restart Type N (NDB 8.0.13)

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOF At t ri but es, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoCOf Tabl es tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoOf Tabl es, MaxNoCOf Or der edl ndexes, and
MaxNoOf Uni queHashl ndexes must not exceed 2°? — 2 (4294967294).

e MaxNoOf Or der edl ndexes

184

Version (or later) NDB 8.0.13

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Defining NDB Cluster Data Nodes

Type or units integer

Default 128

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique index
and primary key has both an ordered index and a hash index. MaxNoCOf Or der edl ndexes sets the total
number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data per
node.

Note

The sum of MaxNoOf Tabl es, MaxNoOf Or der edl ndexes, and
MaxNoCOf Uni queHashl ndexes must not exceed 232 - 2 (4294967294).

MaxNoOF Uni queHashl ndexes

Version (or later) NDB 8.0.13

Type or units integer

Default 64

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

For each unique index that is not a primary key, a special table is allocated that maps the unique key to
the primary key of the indexed table. By default, an ordered index is also defined for each unique index.
To prevent this, you must specify the USI NG HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOF Tabl es, MaxNoOf Or der edl ndexes, and
MaxNoCf Uni queHashl ndexes must not exceed 232 — 2 (4294967294).

MaxNoCOFf Tri gger s

Version (or later) NDB 8.0.13

Type or units integer

Default 768

Range 0 - 4294967039 (OXFFFFFEFF)

185

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a single
trigger object. Backups also use three trigger objects for each normal table in the cluster.

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

MaxNoCOf Subscri pti ons

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage with
MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoCOf Subscri pti ons is 0, which is treated as equal to MaxNoOf Tabl es.
Each subscription consumes 108 bytes.

MaxNoCOf Subscri bers

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter is of interest only when using NDB Cluster Replication. The default value is 0. Prior to
NDB 8.0.26, this was treated as 2 * MaxNoOf Tabl es; beginning with NDB 8.0.26, it is treated as 2
* MaxNoOf Tabl es + 2 * [nunber of API nodes]. There is one subscription per NDB table for
each of two MySQL servers (one acting as the replication source and the other as the replica). Each
subscriber uses 16 bytes of memory.

When using circular replication, multi-source replication, and other replication setups involving more than
2 MySQL servers, you should increase this parameter to the number of mysql d processes included in
replication (this is often, but not always, the same as the number of clusters). For example, if you have a
circular replication setup using three NDB Clusters, with one nysql d attached to each cluster, and each
of these mysql d processes acts as a source and as a replica, you should set MaxNoOf Subscri bers
equalto 3 * MaxNoOrf Tabl es.

For more information, see Chapter 7, NDB Cluster Replication.

186

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

« MaxNoCOr Concurrent SubOper ati ons

Version (or later) NDB 8.0.13

Type or units unsigned

Default 256

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter sets a ceiling on the number of operations that can be performed by all API nodes in
the cluster at one time. The default value (256) is sufficient for normal operations, and might need to be
adjusted only in scenarios where there are a great many API nodes each performing a high volume of
operations concurrently.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1 or
Y, and as FALSE by setting them equal to 0 or N.

e ConpressedLCP

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalentto gzi p --fast, and can save 50% or more of the space required on the data node to store
uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd def aul t] section of the confi g. i ni file).

Important

You cannot restore a compressed local checkpoint to a cluster running a MySQL
version that does not support this feature.

The default value is 0 (disabled).

Prior to NDB 8.0.29, this parameter had no effect on Windows platforms (BUG#106075,
BUG#33727690).

* CrashOnCorrupt edTupl e

Version (or later) NDB 8.0.13
Type or units boolean
Default true

Range true, false
Restart Type N (NDB 8.0.13)

Defining NDB Cluster Data Nodes

e Di skl ess

Version (or later) NDB 8.0.13
Type or units truelfalse (1|0)
Default false

Range true, false
Restart Type IS (NDB 8.0.13)

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed to disk
and that no logging occurs. Such tables exist only in main memory. A consequence of using diskless
tables is that neither the tables nor the records in those tables survive a crash. However, when operating
in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is
not possible.

Di skl ess is disabled by default.

Encrypt edFi | eSyst em

Version (or later) NDB 8.0.13
Type or units unsigned
Default 0

Range 0-1

Added NDB 8.0.29
Restart Type IN (NDB 8.0.13)

Encrypt LCP and tablespace files, including undo logs and redo logs. Disabled by default (0); setto 1 to

enable.

This feature is not currently supported in production, and should be considered experimental.

e LateAll oc

Version (or later) NDB 8.0.13
Type or units numeric
Default 1

Range 0-1

Restart Type N (NDB 8.0.13)

Allocate memory for this data node after a connection to the management server has been established.

Enabled by default.

e LockPagesl| nMai nMenory

188

‘Version (or later)

NDB 8.0.13

Defining NDB Cluster Data Nodes

Type or units numeric
Default 0

Range 0-2

Restart Type N (NDB 8.0.13)

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-time

characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:

< 0: Disables locking. This is the default value.

« 1: Performs the lock after allocating memory for the process.

« 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then the data node

process making use of this parameter may have to be run as system root. (LockPages| nMai nMenory
uses the nml ockal | function. From Linux kernel 2.6.9, unprivileged users can lock memory as limited by
max | ocked menory. For more information, see ul i mt -1 and http:/linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or f al se

was the default setting, and disabled locking. 1 or t r ue enabled locking of the
process after its memory was allocated. NDB Cluster 8.0 treats t r ue or f al se
for the value of this parameter as an error.

Important

Beginning with gl i bc 2.10, gl i bc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear to
affect performance significantly.)

The gl i bc behavior is intended to be configurable via the MALLOC ARENA NMAX
environment variable, but a bug in this mechanism prior to gl i bc 2.16 meant
that this variable could not be set to less than 8, so that the wasted memory
could not be reclaimed. (Bug #15907219; see also http://sourceware.org/bugzilla/
show_bug.cgi?id=13137 for more information concerning this issue.)

One possible workaround for this problem is to use the LD _PRELOAD
environment variable to preload a j enal | oc memory allocation library to take
the place of that supplied with gl i bc.

o ODirect
Version (or later) NDB 8.0.13
Type or units boolean
Default false
Range true, false

189

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Enabling this parameter causes NDB to attempt using O DI RECT writes for LCP, backups, and redo logs,

often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODi r ect if you are
using a 2.6 or later kernel.

ODi r ect is disabled by default.

 ODirect SyncFl ag

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

When this parameter is enabled, redo log writes are performed such that each completed file system
write is handled as a call to f sync. The setting for this parameter is ignored if at least one of the
following conditions is true:

* ODirect is not enabled.

e I'nitFragnent LogFi | es is set to SPARSE.

Disabled by default.

e RestartOnErrorl nsert

Version (or later) NDB 8.0.13
Type or units error code
Default 2

Range 0-4

Restart Type N (NDB 8.0.13)

This feature is accessible only when building the debug version where it is possible to insert errors in the
execution of individual blocks of code as part of testing.

This feature is disabled by default.

e StopOnError

Version (or later) NDB 8.0.13
Type or units boolean
Default 1

Range 0,1

190

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

This parameter specifies whether a data node process should exit or perform an automatic restart when
an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node process to
halt.

When an error is encountered and St opOnEr r or is 0, the data node process is restarted.

Users of MySQL Cluster Manager should note that, when St opOnEr r or equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart and
recovery. See Starting and Stopping the Agent on Linux, for more information.

UseShm

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

Enable a shared memory connection between this data node and the API node also running on this host.
Set to 1 to enable.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions in

Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this are
mentioned where applicable.

e Ti meBet weenWat chDogCheck

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 6000

Range 70 - 4294967039 (OXxFFFFFEFF)
Restart Type N (NDB 8.0.13)

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It
can be specified on a per-node basis although there seems to be little reason for doing so.

The default timeout is 6000 milliseconds (6 seconds).

» Ti neBet weenWat chDogCheckl ni ti al

Version (or later) NDB 8.0.13
Type or units milliseconds

191

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-using-start-stop-agent-linux.html

Defining NDB Cluster Data Nodes

Default 6000
Range 70 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This is similar to the Ti neBet weenWat chDogCheck parameter, except that
Ti meBet weenWat chDogCheckl ni ti al controls the amount of time that passes between execution
checks inside a storage node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

StartPartial Ti neout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 30000

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster
may start only if all nodes are available.

StartPartitionedTi neout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

If the cluster is ready to start after waiting for St ar t Par ti al Ti meout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTi neout is setto 0, the cluster waits indefinitely (232—1 ms, or approximately

49.71 days).

This parameter is overridden when performing an initial start or initial restart of the cluster.

e StartFail ureTi neout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)

192

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10-15 minutes (that is, 600000 to 1000000
milliseconds) might be required to perform a node restart.

e Start NoNodeG oupTi neout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 15000

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

When a data node is configured with Nodegr oup = 65536, is regarded as not being assigned to any
node group. When that is done, the cluster waits St ar t NoNodegr oupTi neout milliseconds, then
treats such nodes as though they had been added to the list passed to the - - nowai t - nodes option,
and starts. The default value is 15000 (that is, the management server waits 15 seconds). Setting this
parameter equal to 0 means that the cluster waits indefinitely.

St ar t NoNodegr oupTi meout must be the same for all data nodes in the cluster; for this reason, you
should always set it in the [ndbd def aul t] section of the confi g. i ni file, rather than for individual
data nodes.

See Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

e Heartbeat| nterval DbDb

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 5000

Range 10 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats cannot
be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for
discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

The default heartbeat interval is 5000 milliseconds (5 seconds). This parameter must not be changed
drastically and should not vary widely between nodes. If one node uses 5000 milliseconds and the node

193

Defining NDB Cluster Data Nodes

watching it uses 1000 milliseconds, obviously the node is declared dead very quickly. This parameter
can be changed during an online software upgrade, but only in small increments.

See also Network communication and latency, as well as the description of the
Connect Checkl nt er val Del ay configuration parameter.

Hear t beat | nt er val DbApi

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains

in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until all
activities initiated by the previous MySQL instance have been completed. The three-heartbeat criteria for
this determination are the same as described for Hear t beat | nt er val DbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data
nodes because each data node watches the MySQL servers connected to it, independently of all other
data nodes.

For more information, see Network communication and latency.

Hear t beat Or der

Version (or later) NDB 8.0.13
Type or units numeric
Default 0

Range 0 - 65535
Restart Type S (NDB 8.0.13)

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors the
previous one. If a heartbeat is not detected by a given data node, this node declares the previous data
node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a data node
is dead is done globally; in other words; once a data node is declared dead, it is regarded as such by all
nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared to
heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or temporary
connection problem), such that a data node is declared dead, even though the node can still function as
part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data nodes
makes a difference as to whether or not a particular data node is declared dead. If this declaration

194

Defining NDB Cluster Data Nodes

occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and as thus to a
failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host 1 and
host 2, and that these data nodes make up 2 node groups, as shown in the following table:

Table 4.3 Four data nodes A, B, C, D running on two host computers hostl, host2; each data
node belongs to one of two node groups.

Node Group Nodes Running on host 1 Nodes Running on host 2
Node Group 0: Node A Node B
Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order of
transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of the
heartbeat causes nodes A and D to be declared dead; in this case, each node group has one surviving
node, and the cluster survives.

The Hear t beat Or der configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for Hear t beat Or der is zero; allowing the default value to be used on
all data nodes causes the order of heartbeat transmission to be determined by NDB. If this parameter
is used, it must be set to a nonzero value (maximum 65535) for every data node in the cluster, and
this value must be unique for each data node; this causes the heartbeat transmission to proceed from
data node to data node in the order of their Hear t beat Or der values from lowest to highest (and
then directly from the data node having the highest Hear t beat Or der to the data node having the
lowest value, to complete the circle). The values need not be consecutive. For example, to force the
heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you could set the
Hear t beat Or der values as shown here:

Table 4.4 HeartbeatOrder values to force a heartbeat transition order of A->B->D->C->A.

Node Hear t beat Or der Value
A 10
B 20
C 30
D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster, you must
first set Hear t beat Or der for each data node in the cluster in the global configuration (confi g.ini)
file (or files). To cause the change to take effect, you must perform either of the following:

« A complete shutdown and restart of the entire cluster.

2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

» Connect Checkl nt er val Del ay

‘Version (or later) NDB 8.0.13 195

https://dev.mysql.com/doc/ndb-internals/en/dump-command-908.html

Defining NDB Cluster Data Nodes

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter enables connection checking between data nodes after one of them has failed heartbeat
checks for 5 intervals of up to Hear t beat | nt er val DbDb milliseconds.

Such a data node that further fails to respond within an interval of Connect Checkl nt er val Del ay

milliseconds is considered suspect, and is considered dead after two such intervals. This can be useful
in setups with known latency issues.

The default value for this parameter is O (disabled).

» Ti neBet weenLocal Checkpoi nts

Version (or later) NDB 8.0.13

Type or units number of 4-byte words, as base-2 logarithm
Default 20

Range 0-31

Restart Type N (NDB 8.0.13)

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new local
checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-byte
words, so that the default value 20 means 4MB (4 x 220) of write operations, 21 would mean 8MB, and
S0 on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting Ti neBet weenLocal Checkpoi nts

to 6 or less means that local checkpoints are executed continuously without pause, independent of the
cluster's workload.

Ti meBet weend obal Checkpoi nts

Version (or later) NDB 8.0.13
Type or units milliseconds
Default 2000

Range 20 - 32000
Restart Type N (NDB 8.0.13)

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reasoning
behind this behavior is that having the transaction safely committed on at least two autonomous host
machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is handled
properly. To guarantee that this happens, all transactions taking place within a given interval are put into

196

Defining NDB Cluster Data Nodes

a global checkpoint, which can be thought of as a set of committed transactions that has been flushed to
disk. In other words, as part of the commit process, a transaction is placed in a global checkpoint group.
Later, this group's log records are flushed to disk, and then the entire group of transactions is safely
committed to disk on all computers in the cluster.

In NDB 8.0, we recommended when you are using solid-state disks (especially those employing
NVMe) with Disk Data tables that you reduce this value. In such cases, you should also ensure that
MaxDi skDat aLat ency is set to a proper level.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

» Ti neBet weend obal Checkpoi nt sTi meout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 120000

Range 10 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter defines the minimum timeout between global checkpoints. The default is 120000
milliseconds.

» Ti neBet weenEpochs

Version (or later) NDB 8.0.13
Type or units milliseconds
Default 100

Range 0 - 32000
Restart Type N (NDB 8.0.13)

This parameter defines the interval between synchronization epochs for NDB Cluster Replication. The
default value is 100 milliseconds.

Ti meBet weenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve the
performance of NDB Cluster Replication.

« Ti meBet weenEpochsTi neout

Version (or later) NDB 8.0.13
Type or units milliseconds
Default 0

Range 0 - 256000

197

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node fails
to participate in a global checkpoint within the time determined by this parameter, the node is shut down.
The default value is O; in other words, the timeout is disabled.

Ti meBet weenEpochsTi nmeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP save
takes longer than 1 minute or a GCP commit takes longer than 10 seconds.

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts, commit
timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

MaxBuf f er edEpochs

Version (or later) NDB 8.0.13
Type or units epochs

Default 100

Range 0 - 100000
Restart Type N (NDB 8.0.13)

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this number

causes a lagging subscriber to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag enough
to cause disconnections, it is usually due to network or scheduling issues with regard to processes or
threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It may be desirable
to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory to
buffer data, and eventually shutting down. Instead, only the client is affected as a result of the disconnect
(by, for example gap events in the binary log), forcing the client to reconnect or restart the process.

« MaxBuf f er edEpochByt es

Version (or later) NDB 8.0.13

Type or units bytes

Default 26214400

Range 26214400 (0x01900000) - 4294967039
(OXFFFFFEFF)

Restart Type N (NDB 8.0.13)

The total number of bytes allocated for buffering epochs by this node.

e Ti neBet weenl nacti veTransact i onAbort Check

Version (or later)

NDB 8.0.13

Tvpe or units
PA N

milliseconds

198

Default

1000

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Range 1000 - 4294967039 (OXxFFFFFEFF)

Restart Type N (NDB 8.0.13)

Timeout handling is performed by checking a timer on each transaction once for every interval specified
by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction is checked for
timing out once per second.

The default value is 1000 milliseconds (1 second).

Transacti onl nacti veTi neout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 4294967039 (OXFFFFFEFF)
Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to ensure
that no transaction keeps locks for too long, this parameter should be set to a relatively small value.
Setting it to 0 means that the application never times out. The unit is milliseconds.

Tr ansact i onDeadl ockDet ecti onTi meout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1200

Range 50 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster
to respond before continuing. This parameter sets the amount of time that the transaction can spend
executing within a data node, that is, the time that the transaction coordinator waits for each data node
participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:
e The node is “dead”
« The operation has entered a lock queue

« The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another
node before aborting the transaction, and is important for both node failure handling and deadlock
detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds. 199

Defining NDB Cluster Data Nodes

* Di skSyncSi ze

Version (or later) NDB 8.0.13

Type or units bytes

Default 4M

Range 32K - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is done
to prevent write buffering, which can impede performance significantly. This parameter is not intended to
take the place of Ti neBet weenLocal Checkpoi nt s.

Note

When ODi r ect is enabled, it is not necessary to set Di skSyncSi ze; in fact, in
such cases its value is simply ignored.

The default value is 4M (4 megabytes).

» MaxDi skWit eSpeed

Version (or later) NDB 8.0.13
Type or units numeric
Default 20M

Range 1M - 1024G
Restart Type S (NDB 8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when no restarts (by this data node or any other data node) are taking place in this NDB
Cluster.

For setting the maximum rate of disk writes allowed while this data node is restarting, use

MaxDi skW it eSpeedOwnRest ar t . For setting the maximum rate of disk writes allowed while other
data nodes are restarting, use MaxDi skW i t eSpeedOQ her NodeRest ar t . The minimum speed for
disk writes by all LCPs and backup operations can be adjusted by setting M nDi skW i t eSpeed.

* MaxDi skW it eSpeedQ her NodeRest ar t

Version (or later) NDB 8.0.13
Type or units numeric
Default 50M

Range 1M - 1024G
Restart Type S (NDB 8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when one or more data nodes in this NDB Cluster are restarting, other than this node.

Defining NDB Cluster Data Nodes

nodes are restarting anywhere in the cluster, use MaxDi skW i t eSpeed. The minimum speed for disk

writes by all LCPs and backup operations can be adjusted by setting M nDi skW i t eSpeed.

MaxDi skW it eSpeedOwnRest art

Version (or later) NDB 8.0.13
Type or units numeric
Default 200M

Range 1M - 1024G
Restart Type S (NDB 8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup

operations while this data node is restarting.

For setting the maximum rate of disk writes allowed while other data nodes are restarting, use

MaxDi skW it eSpeedO her NodeRest ar t . For setting the maximum rate of disk writes allowed when
no data nodes are restarting anywhere in the cluster, use MaxDi skW i t eSpeed. The minimum speed

for disk writes by all LCPs and backup operations can be adjusted by setting M nDi skW i t eSpeed.

M nDi skW it eSpeed

Version (or later) NDB 8.0.13
Type or units numeric
Default 10M

Range 1M - 1024G
Restart Type S (NDB 8.0.13)

Set the minimum rate for writing to disk, in bytes per second, by local checkpoints and backup

operations.

The maximum rates of disk writes allowed for LCPs and backups under various conditions are
adjustable using the parameters MaxDi skW i t eSpeed, MaxDi skW it eSpeedOmnRest art, and
MaxDi skW it eSpeedO her NodeRest art . See the descriptions of these parameters for more

information.

ArbitrationTi neout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 7500

Range 10 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration

message. If this is exceeded, the network is assumed to have split.

The default value is 7500 milliseconds (7.5 seconds).

e Arbitration

‘Version (or later) ‘

NDB 8.0.13

201

Defining NDB Cluster Data Nodes

Type or units enumeration

Default Default

Range Default, Disabled, WaitExternal
Restart Type N (NDB 8.0.13)

The Ar bi t r ati on parameter enables a choice of arbitration schemes, corresponding to one of 3
possible values for this parameter:

e Default. This enables arbitration to proceed normally, as determined by the Ar bi t r at i onRank
settings for the management and API nodes. This is the default value.

e Disabled. Setting Arbitration = Di sabl edinthe[ndbd defaul t] section of the
config.ini fileto accomplishes the same task as setting Ar bi t r at i onRank to 0 on all
management and APl nodes. When Ar bi t r at i on is set in this way, any Ar bi t r at i onRank
settings are ignored.

e WaitExternal. The Arbi trati on parameter also makes it possible to configure arbitration in such
a way that the cluster waits until after the time determined by Ar bi trat i onTi neout has passed for
an external cluster manager application to perform arbitration instead of handling arbitration internally.
This can be done by setting Arbi trati on = Wit Ext er nal inthe[ndbd defaul t] section
of the confi g. i ni file. For best results with the Vi t Ext er nal setting, it is recommended that
ArbitrationTi neout be 2 times as long as the interval required by the external cluster manager to
perform arbitration.

Important
This parameter should be used only in the [ndbd def aul t] section of the

cluster configuration file. The behavior of the cluster is unspecified when
Ar bi trati on is set to different values for individual data nodes.

e Restart Subscri ber Connect Ti neout

Version (or later) NDB 8.0.13

Type or units ms

Default 12000

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter determines the time that a data node waits for subscribing API nodes to connect. Once
this timeout expires, any “missing” API nodes are disconnected from the cluster. To disable this timeout,
set Rest art Subscri ber Connect Ti neout to 0.

While this parameter is specified in milliseconds, the timeout itself is resolved to the next-greatest whole
second.

* KeepAl i veSendl nt erval

Version (or later) NDB 8.0.13

Type or units integer

Default 60000

Range 0.- 4294967039 (OXEFEFEFEFF)

202

Defining NDB Cluster Data Nodes

Added NDB 8.0.27
Restart Type N (NDB 8.0.13)

Beginning with NDB 8.0.27, it is possible to enable and control the interval between keep-alive signals
sent between data nodes by setting this parameter. The default for KeepAl i veSendI nt er val is 60000
milliseconds (one minute); setting it to O disables keep-alive signals. Values between 1 and 10 inclusive
are treated as 10.

This parameter may prove useful in environments which monitor and disconnect idle TCP connections,
possibly causing unnecessary data node failures when the cluster is idle.

The heartbeat interval between management nodes and data nodes is always 100 milliseconds, and is not
configurable.

Buffering and logging. Several [ndbd] configuration parameters enable the advanced user to have
more control over the resources used by node processes and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to the
fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

¢ Undol ndexBuf f er

Version (or later) NDB 8.0.13

Type or units unsigned

Default 2M

Range 1M - 4294967039 (OXFFFFFEFF)
Deprecated NDB 8.0.27

Restart Type N (NDB 8.0.13)

This parameter formerly set the size of the undo index buffer, but has no effect in current versions of
NDB Cluster.

In NDB 8.0.27 and later, the use of this parameter in the cluster configuration file raises a deprecation
warning; you should expect it to be removed in a future NDB Cluster release.

e UndoDat aBuf f er

Version (or later) NDB 8.0.13

Type or units unsigned

Default 16M

Range 1M - 4294967039 (OXFFFFFEFF)
Deprecated NDB 8.0.27

Restart Type N (NDB 8.0.13)

This parameter formerly set the size of the undo data buffer, but has no effect in current versions of NDB
Cluster.

In NDB 8.0.27 and later, the use of this parameter in the cluster configuration file raises a deprecation
warning; you should expect it to be removed in a future NDB Cluster release.

* RedoBuf fer

203

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units bytes

Default 32M

Range 1M - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the

data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuf f er sets the size of the buffer in which the REDO log is written. The default value is 32MB; the
minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO | og buffers
over | oaded). For this reason, you should exercise care if you attempt to decrease the value of
RedoBuf f er as part of an online change in the cluster's configuration.

ndbnt d allocates a separate buffer for each LDM thread (see Thr eadConf i g). For example, with 4
LDM threads, an ndbnt d data node actually has 4 buffers and allocates RedoBuf f er bytes to each
one, for a total of 4 * RedoBuf f er bytes.

» Event LogBufferSi ze

Version (or later) NDB 8.0.13
Type or units bytes

Default 8192

Range 0-64K
Restart Type S (NDB 8.0.13)

Controls the size of the circular buffer used for NDB log events within data nodes.

Controlling log messages. In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to st dout . For each event category, there are 16
possible event levels (numbered 0 through 15). Setting event reporting for a given event category to level
15 means all event reports in that category are sent to st dout ; setting it to O means that no event reports
in that category are made.

By default, only the startup message is sent to st dout , with the remaining event reporting level defaults
being set to 0. The reason for this is that these messages are also sent to the management server's cluster
log.

An analogous set of levels can be set for the management client to determine which event levels to record
in the cluster log.

e LoglLevel Startup

Version (or later) NDB 8.0.13
Type or units integer
Default 1

204

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Range

0-15

Restart Type

N (NDB 8.0.13)

The reporting level for events generated during startup of the process.

The default level is 1.

e LogLevel Shut down

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-15

Restart Type N (NDB 8.0.13)

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

* LogLevel Statistic

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-15

Restart Type N (NDB 8.0.13)

The reporting level for statistical events such as number of primary key reads, number of updates,

number of inserts, information relating to buffer usage, and so on.

The default level is 0.

* LogLevel Checkpoi nt

Version (or later) NDB 8.0.13
Type or units log level
Default 0

Range 0-15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by local and global checkpoints.

The default level is 0.

* LogLevel NodeRest art

Version (or later)

NDB 8.0.13

Type or units

integer

205

Default

0

Defining NDB Cluster Data Nodes

Range

0-15

Restart Type

N (NDB 8.0.13)

The reporting level for events generated during node restart.

The default level is 0.

e LogLevel Connecti on

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

* LogLevel Error

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by errors and warnings by the cluster as a whole. These errors

do not cause any node failure but are still considered worth reporting.

The default level is 0.

* LogLevel Congesti on

Version (or later) NDB 8.0.13
Type or units level

Default 0

Range 0-15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by congestion. These errors do not cause node failure but are

still considered worth reporting.

The default level is 0.

* LogLevelInfo

206

Version (or fater)

NDB 6.U. 1o

Type or units

integer

Defining NDB Cluster Data Nodes

Default 0
Range 0-15
Restart Type N (NDB 8.0.13)

The reporting level for events generated for information about the general state of the cluster.
The default level is 0.

MenReport Frequency

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter controls how often data node memory usage reports are recorded in the cluster log; it is
an integer value representing the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and a number
of 32 KB pages of Dat aMenory, as setinthe confi g. i ni file. For example, if Dat aMenory is equal
to 100 MB, and a given data node is using 50 MB for data memory storage, the corresponding line in the
cluster log might look like this:

2006-12-24 01:18:16 [MgnBrvr] INFO -- Node 2: Data usage is 50% 1280 32K pages of total 2560)

MenRepor t Fr equency is not a required parameter. If used, it can be set for all cluster data nodes in
the [ndbd def aul t] section of confi g. i ni, and can also be set or overridden for individual data
nodes in the corresponding [ndbd] sections of the configuration file. The minimum value—which is also
the default value—is 0, in which case memory reports are logged only when memory usage reaches
certain percentages (80%, 90%, and 100%), as mentioned in the discussion of statistics events in
Section 6.3.2, “NDB Cluster Log Events”.

St art upSt at usReport Frequency

Version (or later) NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

When a data node is started with the - - i ni ti al , it initializes the redo log file during Start Phase

4 (see Section 6.4, “Summary of NDB Cluster Start Phases”). When very large values are set for

NoOr Fr agnent LogFi | es, Fragnment LogFi | eSi ze, or both, this initialization can take a long
time.You can force reports on the progress of this process to be logged periodically, by means of the
St art upSt at usReport Fr equency configuration parameter. In this case, progress is reported in the
cluster log, in terms of both the number of files and the amount of space that have been initialized, as
shown here:

2009- 06-20 16:39:23 [MgnBrvr] INFO -- Node 1: Local redo log file initialization status:
#Total files: 80 Conpleted: 60

#Total MBytes: 20480, Conpleted: 15557 207

Defining NDB Cluster Data Nodes

2009- 06-20 16:39:23 [MgnBrvr] INFO -- Node 2: Local redo log file initialization status:
#Total files: 80, Conpleted: 60
#Total MBytes: 20480, Conpleted: 15570

These reports are logged each St ar t upSt at usReport Fr equency seconds during Start Phase 4. If
St art upSt at usRepor t Frequency is 0 (the default), then reports are written to the cluster log only
when at the beginning and at the completion of the redo log file initialization process.

Data Node Debugging Parameters

The following parameters are intended for use during testing or debugging of data nodes, and not for use
in production.

e DictTrace

Version (or later) NDB 8.0.13
Type or units bytes

Default undefined
Range 0-100

Restart Type N (NDB 8.0.13)

It is possible to cause logging of traces for events generated by creating and dropping tables using

Di ct Tr ace. This parameter is useful only in debugging NDB kernel code. Di ct Tr ace takes an integer
value. 0 is the default, and means no logging is performed; 1 enables trace logging, and 2 enables
logging of additional DBDI CT debugging output.

« Wat chdogl nmredi at eKi | |

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

You can cause threads to be killed immediately whenever watchdog issues occur by enabling the
WAt chdogl mredi at eKi | | data node configuration parameter. This parameter should be used only
when debugging or troubleshooting, to obtain trace files reporting exactly what was occurring the instant

that execution ceased.

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

» BackupDat aBuf fer Si ze

Version (or later) NDB 8.0.13

Type or units bytes

Default 16M

Range 512K - 4294967039 (OXFFFFFEFF)
Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

208

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

Defining NDB Cluster Data Nodes

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer

is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to the level
specified as BackupW i t eSi ze, the pages are sent to disk. While flushing data to disk, the backup
process can continue filling this buffer until it runs out of space. When this happens, the backup process
pauses the scan and waits until some disk writes have completed freeing up memory so that scanning
may continue.

The default value for this parameter is 16MB. The minimum is 512K.

BackupDi skW it eSpeedPct

Version (or later) NDB 8.0.13
Type or units percent
Default 50

Range 0-90

Restart Type N (NDB 8.0.13)

During normal operation, data nodes attempt to maximize the disk write speed used for local
checkpoints and backups while remaining within the bounds set by M nDi skW i t eSpeed and

MaxDi skW it eSpeed. Disk write throttling gives each LDM thread an equal share of the total budget.
This allows parallel LCPs to take place without exceeding the disk 1/0 budget. Because a backup is
executed by only one LDM thread, this effectively caused a budget cut, resulting in longer backup
completion times, and—if the rate of change is sufficiently high—in failure to complete the backup when
the backup log buffer fill rate is higher than the achievable write rate.

This problem can be addressed by using the BackupDi skW i t eSpeedPct configuration parameter,
which takes a value in the range 0-90 (inclusive) which is interpreted as the percentage of the node's
maximum write rate budget that is reserved prior to sharing out the remainder of the budget among
LDM threads for LCPs. The LDM thread running the backup receives the whole write rate budget for the
backup, plus its (reduced) share of the write rate budget for local checkpoints.

The default value for this parameter is 50 (interpreted as 50%).

BackupLogBuf ferSi ze

Version (or later) NDB 8.0.13

Type or units bytes

Default 16M

Range 2M - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is used
for generating a log of all table writes made during execution of the backup. The same principles apply
for writing these pages as with the backup data buffer, except that when there is no more space in the
backup log buffer, the backup fails. For that reason, the size of the backup log buffer must be large
enough to handle the load caused by write activities while the backup is being made. See Section 6.8.3,
“Configuration for NDB Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer to

209

Defining NDB Cluster Data Nodes

become full. If the disk subsystem is not configured for the write load caused by applications, the cluster
is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck
rather than the disks or the network connections.

The default value for this parameter is 16 MB.

» BackupMenory

Version (or later) NDB 8.0.13

Type or units bytes

Default 32M

Range 0 - 4294967039 (OXFFFFFEFF)
Deprecated Yes (in NDB 7.4)

Restart Type N (NDB 8.0.13)

This parameter is deprecated, and subject to removal in a future version of NDB Cluster. Any setting
made for it is ignored.

» BackupReport Frequency

Version (or later) NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter controls how often backup status reports are issued in the management client during a
backup, as well as how often such reports are written to the cluster log (provided cluster event logging
is configured to permit it—see Logging and checkpointing). BackupRepor t Fr equency represents the

time in seconds between backup status reports.
The default value is 0.

e« BackupWiteSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 256K

Range 32K - 4294967039 (OxFFFFFEFF)
Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

This parameter specifies the default size of messages written to disk by the backup log and backup data
buffers.

The default value for this parameter is 256KB.

» BackupMaxWiteSi ze

210

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units bytes

Default M

Range 256K - 4294967039 (OXFFFFFEFF)
Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

This parameter specifies the maximum size of messages written to disk by the backup log and backup

data buffers.

The default value for this parameter is 1MB.

Conpr essedBackup

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

Enabling this parameter causes backup files to be compressed. The compression used is equivalent
togzi p --fast, and can save 50% or more of the space required on the data node to store
uncompressed backup files. Compressed backups can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd def aul t] section of the confi g. i ni file).

Important

You cannot restore a compressed backup to a cluster running a MySQL version

that does not support this feature.

The default value is O (disabled).

Requi r eEncr ypt edBackup

Version (or later) NDB 8.0.22
Type or units integer

Default 0

Range 0-1

Added NDB 8.0.22
Restart Type N (NDB 8.0.13)

If set to 1, backups must be encrypted. While it is possible to set this parameter for each data node
individually, it is recommended that you set it in the [ndbd def aul t] section of the confi g. i ni
global configuration file. For more information about performing encrypted backups, see Section 6.8.2,
“Using The NDB Cluster Management Client to Create a Backup”.

Added in NDB 8.0.22.

211

Defining NDB Cluster Data Nodes

Note

The location of the backup files is determined by the BackupDat aDi r data node
configuration parameter.

Additional requirements. When specifying these parameters, the following relationships must hold
true. Otherwise, the data node cannot start.

» BackupDat aBuf f er Si ze >= BackupWiteSize + 188KB
» BackupLogBufferSi ze >= BackupWiteSi ze + 16KB

 BackupMaxWiteSi ze >= BackupWiteSi ze
NDB Cluster Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to specific
CPUs on multiprocessor data node hosts.

Note

To make use of these parameters, the data node process must be run as system
root.

e Buil dl ndexThr eads

Version (or later) NDB 8.0.13
Type or units numeric
Default 128

Range 0-128

Restart Type N (NDB 8.0.13)

This parameter determines the number of threads to create when rebuilding ordered indexes

during a system or node start, as well as when running ndb_restore --rebui |l d-i ndexes. Itis
supported only when there is more than one fragment for the table per data node (for example, when
COMMVENT="NDB_TABLE=PARTI TI ON_BALANCE=FOR _RA BY_LDM X_2" is used with CREATE
TABLE).

Setting this parameter to 0 (the default) disables multithreaded building of ordered indexes.
This parameter is supported when using ndbd or ndbnt d.

You can enable multithreaded builds during data node initial restarts by setting the
TwoPassl ni ti al NodeRest art Copy data node configuration parameter to TRUE.

e LockExecut eThreadToCPU

Version (or later) NDB 8.0.13

Type or units set of CPU IDs

Default 0

Range

Restart Type N-(NDB-8.0.13)
212

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Defining NDB Cluster Data Nodes

When used with ndbd, this parameter (now a string) specifies the ID of the CPU assigned to handle
the NDBCLUSTER execution thread. When used with ndbnt d, the value of this parameter is a comma-
separated list of CPU IDs assigned to handle execution threads. Each CPU ID in the list should be an
integer in the range 0 to 65535 (inclusive).

The number of IDs specified should match the number of execution threads determined by
MaxNoCOf Execut i onThr eads. However, there is no guarantee that threads are assigned to CPUs in

any given order when using this parameter. You can obtain more finely-grained control of this type using
Thr eadConfi g.

LockExecut eThr eadToCPU has no default value.

e LockMai nt Thr eadsToCPU

Version (or later) NDB 8.0.13
Type or units CPU ID
Default 0

Range 0-64K

Restart Type N (NDB 8.0.13)

This parameter specifies the ID of the CPU assigned to handle NDBCLUSTER maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). There is no default value.

* Numa

Version (or later) NDB 8.0.13
Type or units numeric
Default 1

Range

Restart Type N (NDB 8.0.13)

This parameter determines whether Non-Uniform Memory Access (NUMA) is controlled by the operating
system or by the data node process, whether the data node uses ndbd or ndbnt d. By default, NDB
attempts to use an interleaved NUMA memory allocation policy on any data node where the host
operating system provides NUMA support.

Setting Nuna = 0 means that the datanode process does not itself attempt to set a policy for memory
allocation, and permits this behavior to be determined by the operating system, which may be further
guided by the separate nurmact | tool. Thatis, Nunma = 0 yields the system default behavior, which can
be customised by nunact | . For many Linux systems, the system default behavior is to allocate socket-
local memory to any given process at allocation time. This can be problematic when using ndbnt d; this
is because nbdnt d allocates all memory at startup, leading to an imbalance, giving different access
speeds for different sockets, especially when locking pages in main memory.

Setting Nuna = 1 means that the data node process uses | i bnuna to request interleaved memory
allocation. (This can also be accomplished manually, on the operating system level, using nunmact | .)
Using interleaved allocation in effect tells the data node process to ignore non-uniform memory access
but does not attempt to take any advantage of fast local memory; instead, the data node process tries to

213

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

avoid imbalances due to slow remote memory. If interleaved allocation is not desired, set Nuna to 0 so
that the desired behavior can be determined on the operating system level.

The Numa configuration parameter is supported only on Linux systems where | i bnuna. so is available.

e Real ti neSchedul er

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

Setting this parameter to 1 enables real-time scheduling of data node threads.

The default is 0 (scheduling disabled).

e Schedul er Executi onTi mer

Version (or later) NDB 8.0.13
Type or units us

Default 50

Range 0- 11000
Restart Type N (NDB 8.0.13)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before

being sent. Setting it to 0 minimizes the response time; to achieve higher throughput, you can increase
the value at the expense of longer response times.

The default is 50 psec, which our testing shows to increase throughput slightly in high-load cases without

materially delaying requests.

* Schedul er Responsi veness

Version (or later) NDB 8.0.13
Type or units integer

Default 5

Range 0-10

Restart Type N (NDB 8.0.13)

Set the balance in the NDB scheduler between speed and throughput. This parameter takes an integer
whose value is in the range 0-10 inclusive, with 5 as the default. Higher values provide better response
times relative to throughput. Lower values provide increased throughput at the expense of longer

response times.

e Schedul er Spi nTi ner

Version (or later) NDB 8.0.13
Type or units Hs
Default 0

214

Defining NDB Cluster Data Nodes

Range 0 - 500
Restart Type N (NDB 8.0.13)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
sleeping.

Starting with NDB 8.0.20, if Spi nMet hod is set, any setting for this parameter is ignored.

Spi nMet hod

Version (or later) NDB 8.0.20

Type or units enumeration

Default StaticSpinning

Range CostBasedSpinning, LatencyOptimisedSpinning,
DatabaseMachineSpinning, StaticSpinning

Added NDB 8.0.20

Restart Type N (NDB 8.0.13)

This parameter is present beginning in NDB 8.0.20, but has no effect prior to NDB 8.0.24. It provides a
simple interface to control adaptive spinning on data nodes, with four possible values furnishing presets
for spin parameter values, as shown in the following list:

1. StaticSpinning (default): Sets Enabl eAdapt i veSpi nningtofal se and
Schedul er Spi nTi ner to 0. (Set Al | owedSpi nOver head is not relevant in this case.)

2. Cost BasedSpi nni ng: Sets Enabl eAdapt i veSpi nni ng tot rue, Schedul er Spi nTi mer to 100,
and Set Al | owedSpi nOver head to 200.

3. LatencyQOpti m sedSpi nni ng: Sets Enabl eAdapt i veSpi nni ngtotrue,
Schedul er Spi nTi ner to 200, and Set Al | owedSpi nOver head to 1000.

4. Dat abaseMachi neSpi nni ng: Sets Enabl eAdapti veSpi nni ngtotrue,
Schedul er Spi nTi ner to 500, and Set Al | owedSpi nOver head to 10000. This is intended for use
in cases where threads own their own CPUs.

The spin parameters modified by Spi niet hod are described in the following list:

e Schedul er Spi nTi ner : This is the same as the data node configuration parameter of that name. The
setting applied to this parameter by Spi nMet hod overrides any value set in the confi g. i ni file.

e Enabl eAdapt i veSpi nni ng: Enables or disables adaptive spinning. Disabling it causes spinning to
be performed without making any checks for CPU resources. This parameter cannot be set directly in
the cluster configuration file, and under most circumstances should not need to be, but can be enabled
directly using DUMP 104004 1 or disabled with DUVP 104004 0 in the ndb_ngmmanagement
client.

e Set Al | owedSpi nOver head: Sets the amount of CPU time to allow for gaining latency. This
parameter cannot be set directly in the confi g. i ni file. In most cases, the setting applied by
SpinMethod should be satisfactory, but if it is necessary to change it directly, you can use DUVP

215

https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html

Defining NDB Cluster Data Nodes

104002 over head to do so, where over head is a value ranging from 0 to 10000, inclusive; see the
description of the indicated DUVMP command for details.

On platforms lacking usable spin instructions, such as PowerPC and some SPARC platforms, spin time
is set to 0 in all situations, and values for Spi nMet hod other than St at i cSpi nni ng are ignored.

» TwoPassl ni ti al NodeRest art Copy

Version (or later) NDB 8.0.13
Type or units boolean
Default true

Range true, false
Restart Type N (NDB 8.0.13)

Multithreaded building of ordered indexes can be enabled for initial restarts of data nodes by setting
this configuration parameter to t r ue (the default value), which enables two-pass copying of data during
initial node restarts.

You must also set Bui | dl ndexThr eads to a nonzero value.

Multi-Threading Configuration Parameters (hdbmtd). ndbnt d runs by default as a single-threaded
process and must be configured to use multiple threads, using either of two methods, both of which require
setting configuration parameters in the conf i g. i ni file. The first method is simply to set an appropriate
value for the MaxNoOf Execut i onThr eads configuration parameter. A second method, makes it possible
to set up more complex rules for ndbnt d multithreading using Thr eadConf i g. The next few paragraphs
provide information about these parameters and their use with multithreaded data nodes.

Note

A backup using parallelism on the data nodes requires that multiple LDMs are in
use on all data nodes in the cluster prior to taking the backup. For more information,
see Section 6.8.5, “Taking an NDB Backup with Parallel Data Nodes”, as well as
Section 5.23.3, “Restoring from a backup taken in parallel”.

* Aut omati cThreadConfig

Version (or later) NDB 8.0.23
Type or units boolean

Default false

Range true, false
Added NDB 8.0.23
Restart Type IS (NDB 8.0.13)

When set to 1, enables automatic thread configuration employing the number of CPUs available to

a data node taking into account any limits set by t askset , nunmact | , virtual machines, Docker, and
other such means of controlling which CPUs are available to a given application (on Windows platforms,
automatic thread configuration uses all CPUs which are online); alternatively, you can set NunCPUs

to the desired number of CPUs (up to 1024, the maximum number of CPUs that can be handled by
automatic thread configuration). Any settings for Thr eadConf i g and MaxNoCf Execut i onThr eads
are ignored. In addition, enabling this parameter automatically disables Cl assi cFr agnment at i on.

» Cl assicFragnentation

216

https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.23
Type or units boolean
Default true

Range true, false
Added NDB 8.0.23
Restart Type N (NDB 8.0.13)

When enabled (set to t r ue), NDB distributes fragents among LDMs in the manner always used by NDB
prior to NDB 8.0.23; that is, the default number of partitions per node is equal to the minimum number of

local data manager (LDM) threads per data node.

For new clusters for which a downgrade to NDB 8.0.22 or earlier is never expected to occur, setting
Cl assi cFragnent ati on to f al se when first setting up the cluster is preferable; doing so causes
the number of partitions per node to be equal to the value of Parti ti onsPer Node, ensuring that all

partitions are spread out evenly between all LDMs.

This parameter and Aut ormat i cThr eadConf i g are mutually exclusive; enabling
Aut ormat i cThr eadConf i g automatically disables Cl assi cFragnment ati on.

e Enabl eMul tit hreadedBackup

Version (or later) NDB 8.0.13
Type or units unsigned
Default 1

Range 0-1

Added NDB 8.0.16
Restart Type N (NDB 8.0.13)

Enables multi-threaded backup. If each data node has at least 2 LDMs, all LDM threads patrticipate in
the backup, which is created using one subdirectory per LDM thread, and each subdirectory containing
.ctl,.Data,and. | og backup files.

This parameter is normally enabled (set to 1) for ndbnt d. To force a single-threaded backup that can
be restored easily using older versions of ndb_r est or e, disable multi-threaded backup by setting this
parameter to 0. This must be done for each data node in the cluster.

See Section 6.8.5, “Taking an NDB Backup with Parallel Data Nodes”, and Section 5.23.3, “Restoring
from a backup taken in parallel”, for more information.

« MaxNoOf Execut i onThr eads

Version (or later) NDB 8.0.13
Type or units integer
Default 2

Range 2-72

217

Defining NDB Cluster Data Nodes

Restart Type |S (NDB 8.0.13)

This parameter directly controls the number of execution threads used by ndbnt d, up to a maximum of
72. Although this parameter is set in [ndbd] or [ndbd def aul t] sections of the confi g. i ni file,itis
exclusive to ndbnt d and does not apply to ndbd.

Enabling Aut onat i cThr eadConf i g causes any setting for this parameter to be ignored.

Setting MaxNoOf Execut i onThr eads sets the number of threads for each type as determined by a
matrix in the file st or age/ ndb/ src/ common/ nmt _t hr _confi g. cpp. (Prior to NDB 8.0.30, this was
storage/ ndb/ src/ kernel /vm mt _thr_config. cpp.) This table shows these numbers of threads
for possible values of MaxNoOf Execut i onThr eads.

Table 4.5 MaxNoOfExecutionThreads values and the corresponding number of threads by thread
type (LQH, TC, Send, Receive).

MaxNoCOf Execut i oflDveEteads TC Threads Send Threads Receive Threads
Value

0.3 1 0 0 1
4..6 2 0 0 1
7.8 4 0 0 1
9 4 2 0 1
10 4 2 1 1
11 4 3 1 1
12 6 2 1 1
13 6 3 1 1
14 6 3 1 2
15 6 3 2 2
16 8 3 1 2
17 8 4 1 2
18 8 4 2 2
19 8 5 2 2
20 10 4 2 2
21 10 5 2 2
22 10 5 2 3
23 10 6 2 3
24 12 5 2 3
25 12 6 2 3
26 12 6 3 3
27 12 7 3 3
28 12 7 3 4
29 12 8 3 4
30 12 8 4 4
31 12 9 4 4

218

Defining NDB Cluster Data Nodes

MaxNoOf Execut i ol IDivieEtgeads TC Threads Send Threads Receive Threads
Value

32 16 8 3 3
33 16 8 3 4
34 16 8 4 4
35 16 9 4 4
36 16 10 4 4
37 16 10 4 5
38 16 11 4 5
39 16 11 5 5
40 20 10 4 4
41 20 10 4 5
42 20 11 4 5
43 20 11 5 5
44 20 12 5 5
45 20 12 5 6
46 20 13 5 6
47 20 13 6 6
48 24 12 5 5
49 24 12 5 6
50 24 13 5 6
51 24 13 6 6
52 24 14 6 6
53 24 14 6 7
54 24 15 6 7
55 24 15 7 7
56 24 16 7 7
57 24 16 7 8
58 24 17 7 8
59 24 17 8 8
60 24 18 8 8
61 24 18 8 9
62 24 19 8 9
63 24 19 9 9
64 32 16 7 7
65 32 16 7 8
66 32 17 7 8
67 32 17 8 8
68 32 18 8 8

219

Defining NDB Cluster Data Nodes

MaxNoOf Execut i ol IDivieHtgeads TC Threads Send Threads Receive Threads
Value

69 32 18 8

70 32 19 8

71 32 20 8

72 32 20 8 10

There is always one SUMA (replication) thread.

NoOF Fr agnent LogPar t s should be set equal to the number of LDM threads used by ndbnt d,
as determined by the setting for this parameter. This ratio should not be any greater than 4:1; a
configuration in which this is the case is specifically disallowed.

The number of LDM threads also determines the number of partitions used by an NDB table that is not
explicitly partitioned; this is the number of LDM threads times the number of data nodes in the cluster.
(If ndbd is used on the data nodes rather than ndbnt d, then there is always a single LDM thread; in
this case, the number of partitions created automatically is simply equal to the number of data nodes.
See Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information.

Adding large tablespaces for Disk Data tables when using more than the default number of LDM threads
may cause issues with resource and CPU usage if the disk page buffer is insufficiently large; see the
description of the Di skPageBuf f er Menor y configuration parameter, for more information.

The thread types are described later in this section (see Thr eadConf i g).

Setting this parameter outside the permitted range of values causes the management server to abort
on startup with the error Error |ine nunmber: 111l egal value value for paraneter
MaxNoOf Execut i onThr eads.

For MaxNoOF Execut i onThr eads, a value of 0 or 1 is rounded up internally by NDB to 2, so that 2 is
considered this parameter's default and minimum value.

MaxNoCOf Execut i onThr eads is generally intended to be set equal to the number of CPU threads
available, and to allocate a number of threads of each type suitable to typical workloads. It does not
assign particular threads to specified CPUs. For cases where it is desirable to vary from the settings
provided, or to bind threads to CPUs, you should use Thr eadConf i g instead, which allows you to
allocate each thread directly to a desired type, CPU, or both.

The multithreaded data node process always spawns, at a minimum, the threads listed here:
* 1 local query handler (LDM) thread

* 1 receive thread

220

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

« 1 subscription manager (SUMA or replication) thread

For a MaxNoOf Execut i onThr eads value of 8 or less, no TC threads are created, and TC handling is
instead performed by the main thread.

Changing the number of LDM threads normally requires a system restart, whether it is changed using
this parameter or Thr eadConf i g, but it is possible to effect the change using a node initial restart (NI)
provided the following two conditions are met:

e Each LDM thread handles a maximum of 8 fragments, and

« The total number of table fragments is an integer multiple of the number of LDM threads.

In NDB 8.0, an initial restart is not required to effect a change in this parameter, as it was in some older
versions of NDB Cluster.

NoOf Fr agnment LogPart s

Version (or later) NDB 8.0.13

Type or units numeric

Default 4

Range 4,6, 8, 10, 12, 16, 20, 24, 32
Restart Type IN (NDB 8.0.13)

Set the number of log file groups for redo logs belonging to this ndbnt d. The value of this parameter
should be set equal to the number of LDM threads used by ndbnt d as determined by the setting for
MaxNoCOf Execut i onThr eads. A configuration using more than 4 redo log parts per LDM is disallowed.

See the description of MaxNoOf Execut i onThr eads for more information.

* NunCPUs
Version (or later) NDB 8.0.23
Type or units integer
Default 0
Range 0-1024
Added NDB 8.0.23
Restart Type IS (NDB 8.0.13)

Cause automatic thread configuration to use only this many CPUs. Has no effect if

Aut omat i cThr eadConf i g is not enabled.

e PartitionsPer Node

Version (or later) NDB 8.0.23
Type or units integer
Default 2

Range 1-32
Added NDB 8.0.23

221

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Sets the number of partitions used on each node when creating a new NDB table. This makes it possible
to avoid splitting up tables into an excessive number of partitions when the number of local data
managers (LDMs) grows high.

While it is possible to set this parameter to different values on different data nodes and there are

no known issues with doing so, this is also not likely to be of any advantage; for this reason, it is
recommended simply to set it once, for all data nodes, in the [ndbd def aul t] section of the global
config.ini fie.

If Gl assi cFragnent at i on is enabled, any setting for this parameter is ignored. (Remember that
enabling Aut omat i cThr eadConf i g disables Cl assi cFragnment ati on.)

e ThreadConfi g

Version (or later) NDB 8.0.13
Type or units string

Default "

Range

Restart Type S (NDB 8.0.13)

This parameter is used with ndbnt d to assign threads of different types to different CPUs. Its value is a
string whose format has the following syntax:

ThreadConfig := entry[,entry[,...]]

entry := type={paranf, paranf,...]]}

type (NDB 8.0.22 and earlier) :=1ldm| main | recv | send | rep | io| tc | watchdog | idxbld

type (NDB 8.0.23 and later) :=ldm| query | recover | nain | recv | send | rep | io | tc | watchdog | idxb

param : = count =nunber
| cpubi nd=cpu_lIi st

| cpuset=cpu_li st

| spintinme=nunber

| realtine={0| 1}

| nosend={0]| 1}

| thread_prio={0. .10}

| cpubi nd_excl usi ve=cpu_lI i st
| cpuset_excl usi ve=cpu_|i st

The curly braces ({ ...}) surrounding the list of parameters are required, even if there is only one
parameter in the list.

A par am(parameter) specifies any or all of the following information:
e The number of threads of the given type (count).

* The set of CPUs to which the threads of the given type are to be nonexclusively bound. This is
determined by either one of cpubi nd or cpuset). cpubi nd causes each thread to be bound

222

Defining NDB Cluster Data Nodes

(nonexclusively) to a CPU in the set; cpuset means that each thread is bound (nonexclusively) to the
set of CPUs specified.

On Solaris, you can instead specify a set of CPUs to which the threads of the given type are to be
bound exclusively. cpubi nd_excl usi ve causes each thread to be bound exclusively to a CPU in the
set; cpuset _excl sui ve means that each thread is bound exclusively to the set of CPUs specified.

Only one of cpubi nd, cpuset, cpubi nd_excl usi ve, or cpuset _excl usi ve can be provided in a
single configuration.

e spi nti me determines the wait time in microseconds the thread spins before going to sleep.

The default value for spi nt i ne is the value of the Schedul er Spi nTi ner data node configuration
parameter.

spi nti me does not apply to I/O threads, watchdog, or offline index build threads, and so cannot be
set for these thread types.

e real tinme canbesettoOor 1. Ifitis setto 1, the threads run with real-time priority. This also means
thatt hr ead_pri o cannot be set.

The r eal ti me parameter is set by default to the value of the Real t i neSchedul er data node
configuration parameter.

real ti me cannot be set for offline index build threads.

e By setting nosend to 1, you can prevent a nai n, | dmr ep, ort ¢ thread from assisting the send
threads. This parameter is 0 by default, and cannot be used with other types of threads.

e thread_pri ois athread priority level that can be set from 0 to 10, with 10 representing the greatest
priority. The default is 5. The precise effects of this parameter are platform-specific, and are described
later in this section.

The thread priority level cannot be set for offline index build threads.

thread_prio settings and effects by platform. The implementation of t hr ead_pr i o differs
between Linux/FreeBSD, Solaris, and Windows. In the following list, we discuss its effects on each of
these platforms in turn:

e Linux and FreeBSD: We map t hr ead_pr i o to a value to be supplied to the ni ce system call. Since
a lower niceness value for a process indicates a higher process priority, increasing t hr ead_pri o has
the effect of lowering the ni ce value.

Table 4.6 Mapping of thread_prio to nice values on Linux and FreeBSD

thread_pri ovalue ni ce value
19

16

12

8

||| WIN|FL|O

223

Defining NDB Cluster Data Nodes

thread_pri o value ni ce value
7 -8

8 -12

9 -16

10 -20

Some operating systems may provide for a maximum process hiceness level of 20, but this is not
supported by all targeted versions; for this reason, we choose 19 as the maximum ni ce value that

can be set.

Solaris: Setting t hr ead_pr i o on Solaris sets the Solaris FX priority, with mappings as shown in the

following table:

Table 4.7 Mapping of thread_prio to FX priority on Solaris

t hread_pri o value

Solaris FX priority

15

20

25

30

35

40

45

50

55

O O N | B~ W|IDN|FL|O

59

=
o

60

Athread_pri o setting of 9 is mapped on Solaris to the special FX priority value 59, which means
that the operating system also attempts to force the thread to run alone on its own CPU core.

Windows: We map t hr ead_pri o to a Windows thread priority value passed to the Windows API
Set ThreadPri ority() function. This mapping is shown in the following table:

Table 4.8 Mapping of thread_prio to Windows thread priority

t hread_pri o value Windows thread priority

0-1 THREAD PRI ORI TY_LOWEST

2-3 THREAD PRI ORI TY_BELOW NORMAL
4-5 THREAD_PRI ORI TY_NORMAL

6-7 THREAD_PRI ORI TY_ABOVE_NORVAL

224

Defining NDB Cluster Data Nodes

thread_pri o value Windows thread priority
8-10 THREAD_PRI ORI TY_HI GHEST

The t ype attribute represents an NDB thread type. The thread types supported, and the range of
permitted count values for each, are provided in the following list:

e | dm Local query handler (DBLQH kernel block) that handles data. The more LDM threads that
are used, the more highly partitioned the data becomes. (Beginning with NDB 8.0.23, when
Cl assi cFragnent at i on is set to 0, the number of partitions is independent of the number of LDM
threads, and depends on the value of Parti t i onsPer Node instead.) Each LDM thread maintains its
own sets of data and index partitions, as well as its own redo log. Prior to NDB 8.0.23, the value set for
| dmmust be one of the values 1, 2, 4, 6, 8, 12, 16, 24, or 32. In NDB 8.0.23 and later, it is possible to
set | dmto any value in the range 1 to 332 inclusive; it also becomes possible to set it to 0, provided
that mei n, rep, and t c are also 0, and that r ecv is set to 1; doing this causes ndbnt d to emulate
ndbd.

Each LDM thread is normally grouped with 1 query thread to form an LDM group. A set of 4 to 8 LDM
groups is grouped into a round robin groups. Each LDM thread can be assisted in execution by any
query or threads in the same round robin group. NDB attempts to form round robin groups such that all
threads in each round robin group are locked to CPUs that are attached to the same L3 cache, within
the limts of the range stated for a round orbin group's size.

Changing the number of LDM threads normally requires a system restart to be effective and safe for
cluster operations; this requirement is relaxed in certain cases, as explained later in this section. This
is also true when this is done using MaxNoCOf Execut i onThr eads.

Adding large tablespaces (hundreds of gigabytes or more) for Disk Data tables when using
more than the default number of LDMs may cause issues with resource and CPU usage if
Di skPageBuf f er Menory is not sufficiently large.

As of NDB 8.0.30, | dmmust be included in the Thr eadConf i g value string. This may affect upgrades
from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

e query (Added in NDB 8.0.23): A query thread is tied to an LDM and together with it forms an LDM
group; acts only on READ COVM TTED queries. The number of query threads must be setto 0, 1, 2, or
3 times the number of LDM threads. Query threads are not used, unless this is overridden by setting
guery to a nonzero value, or by enabling the Aut onat i cThr eadConf i g parameter, in which case
LDMs behave as they did prior to NDB 8.0.23.

A query thread also acts as a recovery thread (see next item), although the reverse is not true.

Changing the number of query threads requires a node restart.

e recover (Added in NDB 8.0.23): A recovery thread restores data from a fragment as part of an LCP.

Changing the number of recovery threads requires a node restart.

e t c: Transaction coordinator thread (DBTC kernel block) containing the state of an ongoing transaction.
In NDB 8.0.23 and later, the maximum number of TC threads is 128; previously, this was 32.

Optimally, every new transaction can be assigned to a new TC thread. In most cases 1 TC thread per
2 LDM threads is sufficient to guarantee that this can happen. In cases where the number of writes

is relatively small when compared to the number of reads, it is possible that only 1 TC thread per 4
LQH threads is required to maintain transaction states. Conversely, in applications that perform a

225

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

Defining NDB Cluster Data Nodes

great many updates, it may be necessary for the ratio of TC threads to LDM threads to approach 1 (for
example, 3 TC threads to 4 LDM threads).

Setting t ¢ to 0 causes TC handling to be done by the main thread. In most cases, this is effectively
the same as setting it to 1.

Range: 0-64 (NDB 8.0.22 and earlier: 0 - 32)

mai n: Data dictionary and transaction coordinator (DBDI H and DBTC kernel blocks), providing schema
management. Prior to NDB 8.0.23, this was always handled by a single dedicated thread, beginning
ith NDB 8.0.23, it is also possible to specify zero or two main threads.

Range:
* NDB 8.0.22 and earlier: 1 only.
NDB 8.0.23 and later: 0-2.

Setting mai n to 0 and r ep to 1 causes the mai n blocks to be placed into the r ep thread; the
combined thread is shown in the ndbi nf o. t hr eads table as mai n_r ep. This is effectively the
same as setting r ep equal to 1 and mai n equal to 0.

It is also possible to set both mai n and r ep to 0, in which case both threads are placed in the first
r ecv thread; the resulting combined thread is named nai n_rep_r ecv in the t hr eads table.

As of NDB 8.0.30, mai n must be included in the Thr eadConf i g value string. This may affect
upgrades from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for
more information.

r ecv: Receive thread (CWM kernel block). Each receive thread handles one or more sockets for
communicating with other nodes in an NDB Cluster, with one socket per node. NDB Cluster supports
multiple receive threads; the maximum is 16 such threads.

Range:
« NDB 8.0.22 and earlier: 1 - 16

« NDB 8.0.23 and later: 1 - 64

As of NDB 8.0.30, r ecv must be included in the Thr eadConf i g value string. This may affect
upgrades from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for
more information.

send: Send thread (CMWM kernel block). To increase throughput, it is possible to perform sends from
one or more separate, dedicated threads (maximum 8).

In NDB 8.0.20 and later, due to changes in the multithreading implementation, using many send
threads can have an adverse effect on scalability.

Previously, all threads handled their own sending directly; this can still be made to happen by setting
the number of send threads to 0 (this also happens when MaxNoOf Execut i onThr eads is set less

226

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html

Defining NDB Cluster Data Nodes

than 10). While doing so can have an adeverse impact on throughput, it can also in some cases
provide decreased latency.

Range:
« NDB 8.0.22 and earlier: 0 - 16
« NDB 8.0.23 and later: O - 64

r ep: Replication thread (SUVA kernel block). Prior to NDB 8.0.23, asynchronous replication operations
are always handled by a single, dedicated thread. Beginning with NDB 8.0.23, this thread can be
combined with the main thread (see range information).

Range:
* NDB 8.0.22 and earlier: 1 only.

« NDB 8.0.23 and later: 0-1.

Setting r ep to 0 and nai n to 1 causes the r ep blocks to be placed into the mai n thread; the
combined thread is shown in the ndbi nf 0. t hr eads table as mai n_r ep. This is effectively the
same as setting mai n equal to 1 and r ep equal to 0.

It is also possible to set both mai n and r ep to 0, in which case both threads are placed in the first
r ecv thread; the resulting combined thread is named nai n_rep_r ecv in the t hr eads table.

As of NDB 8.0.30, r ep must be included in the Thr eadConf i g value string. This may affect upgrades
from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

i 0: File system and other miscellaneous operations. These are not demanding tasks, and are always
handled as a group by a single, dedicated I/O thread.

Range: 1 only.

wat chdog: Parameters settings associated with this type are actually applied to several threads, each
having a specific use. These threads include the Socket Ser ver thread, which receives connection
setups from other nodes; the Socket Cl i ent thread, which attempts to set up connections to other
nodes; and the thread watchdog thread that checks that threads are progressing.

Range: 1 only.

i dxbl d: Offline index build threads. Unlike the other thread types listed previously, which are
permanent, these are temporary threads which are created and used only during node or system

227

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

Defining NDB Cluster Data Nodes

restarts, or when running ndb_r est ore --rebui | d-i ndexes. They may be bound to CPU sets
which overlap with CPU sets bound to permanent thread types.

thread _prio,realtime, and spi nti ne values cannot be set for offline index build threads. In
addition, count is ignored for this type of thread.

Ifi dxbl d is not specified, the default behavior is as follows:

» Offline index build threads are not bound if the 1/O thread is also not bound, and these threads use
any available cores.

« If the I/O thread is bound, then the offline index build threads are bound to the entire set of bound
threads, due to the fact that there should be no other tasks for these threads to perform.

Range: 0 - 1.

Changing Thr eadCOnf i g normally requires a system initial restart, but this requirement can be relaxed
under certain cirumstances:

« If, following the change, the number of LDM threads remains the same as before, nothing more than a
simple node restart (rolling restart, or N) is required to implement the change.

e Otherwise (that is, if the number of LDM threads changes), it is still possible to effect the change using
a node initial restart (NI) provided the following two conditions are met:

a. Each LDM thread handles a maximum of 8 fragments, and

b. The total number of table fragments is an integer multiple of the number of LDM threads.
In any other case, a system initial restart is needed to change this parameter.

NDB can distinguish between thread types by both of the following criteria:

« Whether the thread is an execution thread. Threads of type nai n, | dm query (NDB 8.0.23 and later),
recv, rep,tc,and send are execution threads; i o, r ecover (NDB 8.0.23 and later), wat chdog,
and i dxbl d threads are not considered execution threads.

* Whether the allocation of threads to a given task is permanent or temporary. Currently all thread types
except i dxbl d are considered permanent; i dxbl d threads are regarded as temporary threads.

Simple examples:

Exanple 1.

Thr eadConf i g=I dm={ count =2, cpubi nd=1, 2}, nai n={ cpubi nd=12}, r ep={ cpubi nd=11}

Exanple 2.

Thr eadconf i g=nai n={ cpubi nd=0}, | dm={ count =4, cpubi nd=1, 2, 5, 6}, i o={ cpubi nd=3}

It is usually desirable when configuring thread usage for a data node host to reserve one or more
number of CPUs for operating system and other tasks. Thus, for a host machine with 24 CPUs, you
might want to use 20 CPU threads (leaving 4 for other uses), with 8 LDM threads, 4 TC threads

(half the number of LDM threads), 3 send threads, 3 receive threads, and 1 thread each for schema
management, asynchronous replication, and 1/0 operations. (This is almost the same distribution of

228

Defining NDB Cluster Data Nodes

threads used when MaxNoCf Execut i onThr eads is set equal to 20.) The following Thr eadConfi g
setting performs these assignments, additionally binding all of these threads to specific CPUs:

Thr eadConf i g=I dn{ count =8, cpubi nd=1, 2, 3, 4, 5, 6, 7, 8}, mai n={ cpubi nd=9}, i o={ cpubi nd=9}, \
rep={ cpubi nd=10}, t c{ count =4, cpubi nd=11, 12, 13, 14}, recv={ count =3, cpubi nd=15, 16, 17}, \
send{ count =3, cpubi nd=18, 19, 20}

It should be possible in most cases to bind the main (schema management) thread and the 1/O thread to
the same CPU, as we have done in the example just shown.

The following example incorporates groups of CPUs defined using both cpuset and cpubi nd, as well
as use of thread prioritization.

Thr eadConf i g=I dm={ count =4, cpuset =0- 3, t hr ead_pri 0=8, spi nti nre=200}, \

| dm={ count =4, cpubi nd=4-7, t hread_pri 0=8, spi nti me=200}, \

t c={count =4, cpuset =8-9, t hread_pri 0=6}, send={ count =2, t hr ead_pri 0=10, cpubi nd=10- 11}, \
mai n={ count =1, cpubi nd=10}, r ep={ count =1, cpubi nd=11}

In this case we create two LDM groups; the first uses cpubi nd and the second uses cpuset .

thread _prioandspintine are setto the same values for each group. This means there are eight
LDM threads in total. (You should ensure that NoOf Fr agnent LogPar t s is also set to 8.) The four TC
threads use only two CPUs; it is possible when using cpuset to specify fewer CPUs than threads in the
group. (This is not true for cpubi nd.) The send threads use two threads using cpubi nd to bind these
threads to CPUs 10 and 11. The main and rep threads can reuse these CPUs.

This example shows how Thr eadConf i g and NoOf Fr agnment LogPar t s might be set up for a 24-CPU
host with hyperthreading, leaving CPUs 10, 11, 22, and 23 available for operating system functions and
interrupts:

NoOf Fr agnment LogPar t s=10

Thr eadConf i g=| dm={ count =10, cpubi nd=0- 4, 12- 16, t hr ead_pri 0=9, spi nti me=200}, \

t c={ count =4, cpuset =6- 7, 18- 19, t hr ead_pri 0=8}, send={ count =1, cpuset =8}, \

recv={ count =1, cpuset =20} , mai n={ count =1, cpuset =9, 21}, r ep={ count =1, cpuset =9, 21}, \

i o={ count =1, cpuset =9, 21, t hr ead_pri 0=8}, wat chdog={ count =1, cpuset =9, 21, t hr ead_pri 0=9}

The next few examples include settings for i dxbl d. The first two of these demonstrate how a CPU
set defined for i dxbl d can overlap those specified for other (permanent) thread types, the first using
cpuset and the second using cpubi nd:

Thr eadConf i g=nmi n, | dn={ count =4, cpuset =1- 4} , t c={ count =4, cpuset =5, 6, 7}, \
i o={ cpubi nd=8}, i dxbl d={ cpuset =1- 8}

Thr eadConf i g=nmi n, | dn={ count =1, cpubi nd=1}, i dxbl d={ count =1, cpubi nd=1}

The next example specifies a CPU for the I/O thread, but not for the index build threads:

Thr eadConf i g=nmi n, | dn={ count =4, cpuset =1- 4} , t c={ count =4, cpuset =5, 6, 7}, \
i 0={ cpubi nd=8}

Since the Thr eadConf i g setting just shown locks threads to eight cores numbered 1 through 8, it is
equivalent to the setting shown here:

Thr eadConf i g=mai n, | dm={ count =4, cpuset =1- 4}, t c={ count =4, cpuset =5, 6, 7}, \
i o={ cpubi nd=8}, i dxbl d={ cpuset =1, 2, 3,4, 5, 6, 7, 8}

In order to take advantage of the enhanced stability that the use of Thr eadConf i g offers, it is
necessary to insure that CPUs are isolated, and that they not subject to interrupts, or to being
scheduled for other tasks by the operating system. On many Linux systems, you can do this by setting
| ROBALANCE _BANNED CPUSin/ et c/ sysconfig/irqgbal ance to OxFFFFFO, and by using the

229

Defining NDB Cluster Data Nodes

i sol cpus boot option in gr ub. conf . For specific information, see your operating system or platform

documentation.

Disk Data Configuration Parameters.

the following:

» Di skPageBufferEntries

Configuration parameters affecting Disk Data behavior include

Version (or later) NDB 8.0.13
Type or units 32K pages
Default 10

Range 1-1000
Version (or later) NDB 8.0.19
Type or units bytes

Default 64MB

Range 4MB - 16TB
Restart Type N (NDB 8.0.13)

This is the number of page entries (page references) to allocate. It is specified as a number of 32K
pages in Di skPageBuf f er Menor y. The default is sufficient for most cases but you may need to
increase the value of this parameter if you encounter problems with very large transactions on Disk Data
tables. Each page entry requires approximately 100 bytes.

» Di skPageBuf f er Menory

Version (or later) NDB 8.0.13
Type or units bytes

Default 64M

Range 4M - 1T
Version (or later) NDB 8.0.19
Type or units bytes

Default 64M

Range 4M - 16T
Restart Type N (NDB 8.0.13)

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or [ndbd
def aul t] section of the confi g. i ni file.

Note

Previously, this parameter was specified as a number of 32 KB pages. In NDB
8.0, it is specified as a number of bytes.

If the value for Di skPageBuf f er Menory is set too low in conjunction with using more than the default
number of LDM threads in Thr eadConf i g (for example {| dn¥6. . . }), problems can arise when
trying to add a large (for example 500G) data file to a disk-based NDB table, wherein the process takes
indefinitely long while occupying one of the CPU cores.

230

Defining NDB Cluster Data Nodes

This is due to the fact that, as part of adding a data file to a tablespace, extent pages are locked into
memory in an extra PGMAN worker thread, for quick metadata access. When adding a large file,
this worker has insufficient memory for all of the data file metadata. In such cases, you should either
increase Di skPageBuf f er Menory, or add smaller tablespace files. You may also need to adjust
Di skPageBufferEntries.

You can query the ndbi nf o. di skpagebuf f er table to help determine whether the value for this
parameter should be increased to minimize unnecessary disk seeks. See Section 6.14.30, “The ndbinfo
diskpagebuffer Table”, for more information.

Shar edd obal Menory

Version (or later) NDB 8.0.13
Type or units bytes

Default 128M

Range 0-64T

Restart Type N (NDB 8.0.13)

This parameter determines the amount of memory that is used for log buffers, disk operations (such

as page requests and wait queues), and metadata for tablespaces, log file groups, UNDOfiles, and

data files. The shared global memory pool also provides memory used for satisfying the memory
requirements of the UNDO BUFFER_SI ZE option used with CREATE LOGFI LE GROUP and ALTER
LOGFI LE GROUP statements, including any default value implied for this options by the setting of the
Initial LogFil eG oup data node configuration parameter. Shar edd obal Menory can be set in the
[ndbd] or [ndbd defaul t] section of the confi g. i ni configuration file, and is measured in bytes.

The default value is 128M

Di skl OThr eadPool

Version (or later) NDB 8.0.13

Type or units threads

Default 2

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter determines the number of unbound threads used for Disk Data file access. Before
Di skl OThr eadPool was introduced, exactly one thread was spawned for each Disk Data

file, which could lead to performance issues, particularly when using very large data files. With

Di skl OThr eadPool , you can—for example—access a single large data file using several threads
working in parallel.

This parameter applies to Disk Data I/O threads only.

The optimum value for this parameter depends on your hardware and configuration, and includes these
factors:

« Physical distribution of Disk Data files. You can obtain better performance by placing data files,
undo log files, and the data node file system on separate physical disks. If you do this with some or all

231

https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

Defining NDB Cluster Data Nodes

of these sets of files, then you can (and should) set Di skl OThr eadPool higher to enable separate
threads to handle the files on each disk.

In NDB 8.0, you should also disable Di skDat aUsi ngSaneDi sk when using a separate disk or disks
for Disk Data files; this increases the rate at which checkpoints of Disk Data tablespaces can be
performed.

« Disk performance and types. The number of threads that can be accommodated for Disk
Data file handling is also dependent on the speed and throughput of the disks. Faster disks and
higher throughput allow for more disk 1/0 threads. Our test results indicate that solid-state disk
drives can handle many more disk I/O threads than conventional disks, and thus higher values for
Di skl OThr eadPool .

Decreasing Ti neBet weend obal Checkpoi nt s is also recommended when using solid-state disk
drives, in particular those using NVMe. See also Disk Data latency parameters.

The default value for this parameter is 2.

» Disk Data file system parameters. The parameters in the following list make it possible to place
NDB Cluster Disk Data files in specific directories without the need for using symbolic links.

e Fil eSyst enPat hDD

Version (or later) NDB 8.0.13
Type or units filename
Default FileSystemPath
Range

Restart Type IN (NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data data files and undo log files are placed

in the indicated directory. This can be overridden for data files, undo log files, or both, by specifying
values for Fi | eSyst enPat hDat aFi | es, Fi | eSyst enPat hUndoFi | es, or both, as explained for
these parameters. It can also be overridden for data files by specifying a path in the ADD DATAFI LE
clause of a CREATE TABLESPACE or ALTER TABLESPACE statement, and for undo log files by
specifying a path in the ADD UNDOFI LE clause of a CREATE LOGFI LE GROUP or ALTER LOGFI LE
GROUP statement. If Fi | eSyst enPat hDD is not specified, then Fi | eSyst enPat h is used.

If a Fi | eSyst enPat hDD directory is specified for a given data node (including the case where the
parameter is specified in the [ndbd def aul t] section of the confi g. i ni file), then starting that
data node with - - i ni ti al causes all files in the directory to be deleted.

e Fil eSyst enPat hDat aFi | es

Version (or later) NDB 8.0.13

Type or units filename

Default FileSystemPathDD
Range

Restart Type IN (NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data data files are placed in the indicated
directory. This overrides any value set for Fi | eSyst enPat hDD. This parameter can be overridden

232

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html

Defining NDB Cluster Data Nodes

ALTER TABLESPACE statement used to create that data file. If Fi | eSyst enPat hDat aFi | es is not
specified, then Fi | eSyst enPat hDDis used (or Fi | eSyst enPat h, if Fi | eSyst enPat hDD has also
not been set).

If aFi | eSyst enPat hDat aFi | es directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd def aul t] section of the confi g. i ni file), then
starting that data node with - -i ni t i al causes all files in the directory to be deleted.

e Fi |l eSyst enPat hUndoFi | es

Version (or later) NDB 8.0.13

Type or units filename

Default FileSystemPathDD
Range

Restart Type IN (NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data undo log files are placed in the indicated
directory. This overrides any value set for Fi | eSyst enPat hDD. This parameter can be overridden
for a given data file by specifying a path in the ADD UNDO clause of a CREATE LOGFI LE GROUP or
ALTER LOGFI LE GROUP statement used to create that data file. If Fi | eSyst enPat hUndoFi | es is
not specified, then Fi | eSyst enPat hDDis used (or Fi | eSyst enPat h, if Fi | eSyst enPat hDD has
also not been set).

If aFi | eSyst enPat hUndoFi | es directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd def aul t] section of the confi g. i ni file), then
starting that data node with - -i ni ti al causes all files in the directory to be deleted.

For more information, see Section 6.10.1, “NDB Cluster Disk Data Objects”.

» Disk Data object creation parameters. The next two parameters enable you—when starting the
cluster for the first time—to cause a Disk Data log file group, tablespace, or both, to be created without
the use of SQL statements.

e Initial LogFileG oup

Version (or later) NDB 8.0.13

Type or units string

Default [see documentation]
Range

Restart Type S (NDB 8.0.13)

This parameter can be used to specify a log file group that is created when performing an initial start of
the cluster. I ni ti al LogFi | eG oup is specified as shown here:

Initial LogFil eGoup = [nane=nane;] [undo_buffer_size=size;] file-specification-Iist

file-specification-list:
file-specification[; file-specification[; ...]]

file-specification:

233

https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

Defining NDB Cluster Data Nodes

fil enane: si ze

The nane of the log file group is optional and defaults to DEFAULT- LG The undo_buf fer_si ze

is also optional; if omitted, it defaults to 64M Each fi | e- speci fi cati on corresponds to an undo
log file, and at least one must be specified inthe fi | e-specification-1ist. Undo log files are
placed according to any values that have been set for Fi | eSyst enPat h, Fi | eSyst enPat hDD, and
Fi | eSyst enPat hUndoFi | es, just as if they had been created as the result of a CREATE LOGFI LE
GROUP or ALTER LOGFI LE GROUP statement.

Consider the following:

Initial LogFil eGoup = nane=LGl; undo_buffer_size=128M undol.| og: 250M undo2.| og: 150M

This is equivalent to the following SQL statements:

CREATE LOGFI LE GROUP LGL
ADD UNDOFI LE ' undol. | og'
INI TIAL_SI ZE 250M
UNDO_BUFFER _SI ZE 128M
ENG NE NDBCLUSTER;

ALTER LOGFI LE GROUP LGL
ADD UNDOCFI LE ' undo2. | og'
INI TIAL_SI ZE 150M
ENG NE NDBCLUSTER;

This logfile group is created when the data nodes are started with--initi al .

Resources for the initial log file group are added to the global memory pool along with those indicated
by the value of Shar edd obal Menory.

This parameter, if used, should always be set in the [ndbd def aul t] section of the confi g. i ni
file. The behavior of an NDB Cluster when different values are set on different data nodes is not
defined.

Initial Tabl espace

Version (or later) NDB 8.0.13

Type or units string

Default [see documentation]
Range

Restart Type S (NDB 8.0.13)

This parameter can be used to specify an NDB Cluster Disk Data tablespace that is created when
performing an initial start of the cluster. | ni ti al Tabl espace is specified as shown here:

Initial Tabl espace = [nane=nane;] [extent_size=size;] file-specification-Iist

The nane of the tablespace is optional and defaults to DEFAULT- TS. The ext ent _si ze is also
optional; it defaultsto 1M The fi | e- speci fi cation-Ii st usesthe same syntax as shown with
thel nitial Logfil eG oup parameter, the only difference being that each fi | e- speci fi cati on
used with | ni ti al Tabl espace corresponds to a data file. At least one must be specified in the
file-specification-Iist.Datafiles are placed according to any values that have been set for

234

https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

Defining NDB Cluster Data Nodes

Fi | eSyst enPat h, Fi | eSyst enPat hDD, and Fi | eSyst enPat hDat aFi | es, just as if they had
been created as the result of a CREATE TABLESPACE or ALTER TABLESPACE statement.

For example, consider the following line specifying | ni t i al Tabl espace inthe [ndbd def aul t]
section of the confi g. i ni file (aswith I ni ti al Logfi | eG oup, this parameter should always be
setinthe [ndbd def aul t] section, as the behavior of an NDB Cluster when different values are set
on different data nodes is not defined):

Initial Tabl espace = nane=TS1; extent_size=8M datal.dat:2G data2.dat: 4G

This is equivalent to the following SQL statements:

CREATE TABLESPACE TS1
ADD DATAFI LE ' dat al. dat"’
EXTENT_SI ZE 8M
INITIAL_SI ZE 2G
ENG NE NDBCLUSTER,

ALTER TABLESPACE TS1
ADD DATAFI LE ' dat a2. dat "'
INITIAL_SI ZE 4G
ENG NE NDBCLUSTER,

This tablespace is created when the data nodes are started with - -i ni ti al , and can be used
whenever creating NDB Cluster Disk Data tables thereafter.

» Disk Data latency parameters.
latency issues with NDB Cluster Disk Data tables.

« MaxDi skDat aLat ency

The two parameters listed here can be used to improve handling of

Version (or later) NDB 8.0.19
Type or units ms

Default 0

Range 0 - 8000
Added NDB 8.0.19
Restart Type N (NDB 8.0.13)

This parameter controls the maximum allowed mean latency for disk access (maximum 8000
milliseconds). When this limit is reached, NDB begins to abort transactions in order to decrease
pressure on the Disk Data I/O subsystem. Use 0 to disable the latency check.

e Di skDat aUsi ngSaneDi sk

Version (or later) NDB 8.0.19
Type or units boolean
Default true

Range

Added NDB 8.0.19

235

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Set this parameter to f al se if your Disk Data tablespaces use one or more separate disks. Doing so
allows checkpoints to tablespaces to be executed at a higher rate than normally used for when disks
are shared.

When Di skDat aUsi ngSaneDi sk ist r ue, NDB decreases the rate of Disk Data checkpointing
whenever an in-memory checkpoint is in progress to help ensure that disk load remains constant.

Disk Data and GCP Stop errors. Errors encountered when using Disk Data tables such as Node
nodeid killed this node because GCP stop was det ect ed (error 2303) are often referred
to as “GCP stop errors”. Such errors occur when the redo log is not flushed to disk quickly enough; this is
usually due to slow disks and insufficient disk throughput.

You can help prevent these errors from occurring by using faster disks, and by placing Disk Data files on a
separate disk from the data node file system. Reducing the value of Ti neBet weend obal Checkpoi nts
tends to decrease the amount of data to be written for each global checkpoint, and so may provide some
protection against redo log buffer overflows when trying to write a global checkpoint; however, reducing
this value also permits less time in which to write the GCP, so this must be done with caution.

In addition to the considerations given for Di skPageBuf f er Menory as explained previously, it is
also very important that the Di skl OThr eadPool configuration parameter be set correctly; having
Di skl OThr eadPool set too high is very likely to cause GCP stop errors (Bug #37227).

GCP stops can be caused by save or commit timeouts; the Ti neBet weenEpochsTi neout data node
configuration parameter determines the timeout for commits. However, it is possible to disable both types
of timeouts by setting this parameter to O.

Parameters for configuring send buffer memory allocation. Send buffer memory is allocated
dynamically from a memory pool shared between all transporters, which means that the size of the send
buffer can be adjusted as necessary. (Previously, the NDB kernel used a fixed-size send buffer for every
node in the cluster, which was allocated when the node started and could not be changed while the
node was running.) The Tot al SendBuf f er Menory and Over LoadLi nmi t data node configuration
parameters permit the setting of limits on this memory allocation. For more information about the use of
these parameters (as well as SendBuf f er Menor y), see Section 4.3.14, “Configuring NDB Cluster Send
Buffer Parameters”.

« ExtraSendBuf f er Menory

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any set
using Tot al SendBuf f er Menor y, SendBuf f er Menor y, or both.

e Tot al SendBuf f er Menory

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.14, “Configuring NDB Cluster Send Buffer
Parameters”.

See also Section 6.7, “Adding NDB Cluster Data Nodes Online”.

Redo log over-commit handling. It is possible to control a data node's handling of operations when
too much time is taken flushing redo logs to disk. This occurs when a given redo log flush takes longer
than RedoOver Conmi t Li mi t seconds, more than RedoOver Cormi t Count er times, causing any

236

Defining NDB Cluster Data Nodes

pending transactions to be aborted. When this happens, the API node that sent the transaction can handle
the operations that should have been committed either by queuing the operations and re-trying them,

or by aborting them, as determined by Def aul t Oper at i onRedoPr obl emAct i on. The data node
configuration parameters for setting the timeout and number of times it may be exceeded before the API
node takes this action are described in the following list:

e RedoOver Commi t Count er

Version (or later) NDB 8.0.13

Type or units numeric

Default 3

Range 1 - 4294967039 (OXFFFFFEFF)
Version (or later) NDB 8.0.19

Type or units numeric

Default 3

Range 1 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

When RedoOver Conmi t Li mi t is exceeded when trying to write a given redo log to disk this many
times or more, any transactions that were not committed as a result are aborted, and an API node where
any of these transactions originated handles the operations making up those transactions according to
its value for Def aul t Oper at i onRedoPr obl emAct i on (by either queuing the operations to be re-tried,
or aborting them).

e RedoOverComm tLimt

Version (or later) NDB 8.0.13

Type or units seconds

Default 20

Range 1 - 4294967039 (OXFFFFFEFF)
Version (or later) NDB 8.0.19

Type or units seconds

Default 20

Range 1 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter sets an upper limit in seconds for trying to write a given redo log to disk before
timing out. The number of times the data node tries to flush this redo log, but takes longer than
RedoOver Conmi t Li mi t, is kept and compared with RedoOver Conmi t Count er , and when
flushing takes too long more times than the value of that parameter, any transactions that were not
committed as a result of the flush timeout are aborted. When this occurs, the APl node where any of
these transactions originated handles the operations making up those transactions according to its
Def aul t Oper at i onRedoPr obl emAct i on setting (it either queues the operations to be re-tried, or
aborts them).

Controlling restart attempts. Itis possible to exercise finely-grained control over restart attempts by
data nodes when they fail to start using the MaxSt art Fai | Retri es and St art Fai | Ret r yDel ay data
node configuration parameters.

237

Defining NDB Cluster Data Nodes

MaxSt art Fai | Ret ri es limits the total number of retries made before giving up on starting the data
node, St art Fai | Ret r yDel ay sets the number of seconds between retry attempts. These parameters

are listed here:

 StartFail RetryDel ay

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Use this parameter to set the number of seconds between restart attempts by the data node in the event

on failure on startup. The default is O (no delay).

Both this parameter and MaxSt art Fai | Ret ri es are ignored unless St opOnEr r or is equal to 0.

e MaxStartFail Retries

Version (or later) NDB 8.0.13

Type or units unsigned

Default 3

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Use this parameter to limit the number restart attempts made by the data node in the event that it fails on

startup. The default is 3 attempts.

Both this parameter and St art Fai | Ret r yDel ay are ignored unless St opOnEr r or is equal to 0.

NDB index statistics parameters.
generation.

e | ndexSt at Aut oCr eat e

The parameters in the following list relate to NDB index statistics

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0,1

Version (or later) NDB 8.0.27
Type or units integer

Default 1

Range 0,1

Restart Type N (NDB 8.0.13)

Enable (set equal to 1) or disable (set equal to 0) automatic statistics collection when indexes are

created.

» | ndexSt at Aut oUpdat e

238

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0,1

Version (or later) NDB 8.0.27
Type or units integer

Default 1

Range 0,1

Restart Type N (NDB 8.0.13)

Enable (set equal to 1) or disable (set equal to 0) monitoring of indexes for changes, and
trigger automatic statistics updates when these are detected. The degree of change needed
to trigger the updates are determined by the settings for the | ndexSt at Tri gger Pct and

| ndexSt at Tri gger Scal e options.

e | ndexSt at SaveSi ze

Version (or later) NDB 8.0.13

Type or units bytes

Default 32768

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type IN (NDB 8.0.13)

Maximum space in bytes allowed for the saved statistics of any given index in the NDB system tables and

in the mysqgl d memory cache.

At least one sample is always produced, regardless of any size limit. This size is scaled by

| ndexSt at SaveScal e.

The size specified by | ndexSt at SaveSi ze is scaled by the value of | ndexSt at Tri gger Pct for a

large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
I ndexSt at Tri gger Pct equal to O disables the scaling effect.

* | ndexSt at SaveScal e

Version (or later) NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type IN (NDB 8.0.13)

The size specified by | ndexSt at SaveSi ze is scaled by the value of | ndexSt at Tri gger Pct for a

large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
| ndexSt at Tri gger Pct equal to O disables the scaling effect.

* I ndexSt at Tri gger Pct

‘Version (or later)

NDB 8.0.13

239

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining SQL and Other API Nodes in an NDB Cluster

Type or units percentage

Default 100

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type IN (NDB 8.0.13)

Percentage change in updates that triggers an index statistics update. The value is scaled by
| ndexSt at Tri gger Scal e. You can disable this trigger altogether by setting | ndexSt at Tri gger Pct

to 0.

* I ndexSt at Tri gger Scal e

Version (or later) NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type IN (NDB 8.0.13)

Scale | ndexSt at Tri gger Pct by this amount times 0.01 for a large index. A value of 0 disables

scaling.

» | ndexSt at Updat eDel ay

Version (or later) NDB 8.0.13

Type or units seconds

Default 60

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type IN (NDB 8.0.13)

Minimum delay in seconds between automatic index statistics updates for a given index. Setting this
variable to O disables any delay. The default is 60 seconds.

Restart types.
shown in the following table:

Table 4.9 NDB Cluster restart types

Information about the restart types used by the parameter descriptions in this section is

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be

shut down completely, then
restarted, to effect a change in this
parameter

| Initial

Data nodes must be restarted
using the --initial option

4.3.7 Defining SQL and Other API Nodes in an NDB Cluster

240

Defining SQL and Other API Nodes in an NDB Cluster

The [mysqgl d] and [api] sections inthe confi g. i ni file define the behavior of the MySQL servers
(SQL nodes) and other applications (APl nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysql d] section is used to indicate a MySQL server providing an SQL interface to
the cluster, and an [api] section is used for applications other than nysql d processes accessing cluster

data, but the two designations are actually synonymous; you can, for instance, list parameters for a MySQL
server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for NDB Cluster, see Section 4.3.9.1,
“MySQL Server Options for NDB Cluster”. For information about MySQL server
system variables relating to NDB Cluster, see Section 4.3.9.2, “NDB Cluster System

Variables”.
*ld
Version (or later) NDB 8.0.13
Type or units unsigned
Default [...]
Range 1-255
Restart Type IS (NDB 8.0.13)

The | d is an integer value used to identify the node in all cluster internal messages. The permitted range
of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless of the

type of node.

Note

In NDB 8.0, data node IDs must be less than 145. If you plan to deploy a large
number of data nodes, it is a good idea to limit the node IDs for API nodes (and
management nodes) to values greater than 144. (Previously, the maximum
supported value for a data node ID was 48.)

Nodel d is the preferred parameter name to use when identifying API nodes. (I d continues to be
supported for backward compatibility, but is now deprecated and generates a warning when used. It is

also subject to future removal.)

e Connecti onMap

Version (or later) NDB 8.0.13
Type or units string

Default [...]

Range

Restart Type N (NDB 8.0.13)

Specifies which data nodes to connect.

* Nodel d

!Version (or later)

!NDB 8.0.13

241

Defining SQL and Other API Nodes in an NDB Cluster

Type or units unsigned
Default [...]

Range 1-255

Restart Type IS (NDB 8.0.13)

The Nodel d is an integer value used to identify the node in all cluster internal messages. The permitted
range of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless
of the type of node.

Note

In NDB 8.0, data node IDs must be less than 145. If you plan to deploy a large
number of data nodes, it is a good idea to limit the node IDs for API nodes (and
management nodes) to values greater than 144. (Previously, the maximum
supported value for a data node ID was 48.)

Nodel d is the preferred parameter name to use when identifying management nodes. An alias, | d, was
used for this purpose in very old versions of NDB Cluster, and continues to be supported for backward
compatibility; it is now deprecated and generates a warning when used, and is subject to removal in a
future release of NDB Cluster.

Execut eOnConput er

Version (or later) NDB 8.0.13
Type or units name

Default [...]

Range

Deprecated Yes (in NDB 7.5)
Restart Type S (NDB 8.0.13)

This refers to the | d set for one of the computers (hosts) defined in a [conput er] section of the

configuration file.

Important

This parameter is deprecated, and is subject to removal in a future release. Use

the Host Nane parameter instead.

The node ID for this node can be given out only to connections that explicitly request it. A management
server that requests “any” node ID cannot use this one. This parameter can be used when running
multiple management servers on the same host, and Host Nane is not sufficient for distinguishing among
processes. Intended for use in testing.

e Host Nane

242

Version (or later) NDB 8.0.13

Type or units name or IP address
Default [...]

Range

Defining SQL and Other API Nodes in an NDB Cluster

| Restart Type N (NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the SQL node (API node) is to
reside. To specify a hostname, either this parameter or Execut eOnConput er is required.

If no Host Nane or Execut eOnConput er is specified in a given [nysql] or [api] section of the
config.ini file,then an SQL or API nhode may connect using the corresponding “slot” from any host
which can establish a network connection to the management server host machine. This differs from
the default behavior for data nodes, where | ocal host is assumed for Host Nane unless otherwise
specified.

Locat i onDomai nl d

Version (or later) NDB 8.0.13
Type or units integer

Default 0

Range 0-16

Restart Type S (NDB 8.0.13)

Assigns an SQL or other API node to a specific availability domain (also known as an availability zone)
within a cloud. By informing NDB which nodes are in which availability domains, performance can be
improved in a cloud environment in the following ways:

 If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

« Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

* The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

« The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

Locat i onDomei nl d takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

Ar bi trati onRank

Version (or later) NDB 8.0.13
Type or units 0-2

Default 0

Range 0-2

Restart Type N (NDB 8.0.13)

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A nhormal

243

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

Defining SQL and Other API Nodes in an NDB Cluster

configuration uses the management server as arbitrator, setting its Ar bi t r at i onRank to 1 (the default
for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

By setting Ar bi t r at i onRank to 0 on all management and SQL nodes, you can disable arbitration
completely. You can also control arbitration by overriding this parameter; to do so, setthe Arbi trati on
parameter in the [ndbd def aul t] section of the confi g. i ni global configuration file.

 ArbitrationDel ay

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests are delayed by the stated number of milliseconds. It is usually not necessary to

change this value.

» Bat chByteSi ze

Version (or later) NDB 8.0.13
Type or units bytes

Default 16K

Range 1K - 1M
Restart Type N (NDB 8.0.13)

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in terms
of number of records (Bat chSi ze) and in terms of bytes (Bat chByt eSi ze). The actual batch size is

limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this

parameter is set.

This parameter is measured in bytes. The default value is 16K.

e BatchSi ze

Version (or later) NDB 8.0.13
Type or units records
Default 256

Range 1-992

Restart Type N (NDB 8.0.13)

This parameter is measured in number of records and is by default set to 256. The maximum size is 992.

e ExtraSendBufferMenory

244

‘Version (or later)

NDB 8.0.13

Defining SQL and Other API Nodes in an NDB Cluster

Type or units bytes

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using Tot al SendBuf f er Menory, SendBuf f er Menory, or both.

Hear t beat ThreadPriority

Version (or later) NDB 8.0.13
Type or units string

Default [...]

Range

Restart Type N (NDB 8.0.13)

Use this parameter to set the scheduling policy and priority of heartbeat threads for management and
API nodes. The syntax for setting this parameter is shown here:

Heart beat ThreadPriority = policy[, priority]

policy:
{FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FI FO(first in, first in) or RR (round
robin). This followed optionally by the priority (an integer).

MaxScanBat chSi ze

Version (or later) NDB 8.0.13
Type or units bytes

Default 256K

Range 32K - 16M
Restart Type N (NDB 8.0.13)

The batch size is the size of each batch sent from each data node. Most scans are performed in parallel
to protect the MySQL Server from receiving too much data from many nodes in parallel; this parameter
sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16 MB.

Tot al SendBuf f er Menory

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 256K - 4294967039 (OXFFFFFEFF)

245

Defining SQL and Other API Nodes in an NDB Cluster

Restart Type N (NDB 8.0.13)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.14, “Configuring NDB Cluster Send Buffer
Parameters”.

e Aut oReconnect

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

This parameter is f al se by default. This forces disconnected API nodes (including MySQL Servers
acting as SQL nodes) to use a new connection to the cluster rather than attempting to re-use an existing
one, as re-use of connections can cause problems when using dynamically-allocated node IDs. (Bug
#45921)

Note
This parameter can be overridden using the NDB API. For more
information, see Ndb_cluster_connection::set_auto_reconnect(), and

Ndb_cluster_connection::get_auto_reconnect().

« Def aul t Oper ati onRedoPr obl emActi on

Version (or later) NDB 8.0.13
Type or units enumeration
Default QUEUE

Range ABORT, QUEUE
Restart Type N (NDB 8.0.13)

This parameter (along with RedoOver Conmmi t Li mi t and RedoOver Conmi t Count er) controls
the data node's handling of operations when too much time is taken flushing redo logs to disk. This
occurs when a given redo log flush takes longer than RedoOver Commi t Li mi t seconds, more than
RedoOver Conmi t Count er times, causing any pending transactions to be aborted.

When this happens, the node can respond in either of two ways, according to the value of
Def aul t Oper ati onRedoPr obl emAct i on, listed here:

« ABORT: Any pending operations from aborted transactions are also aborted.
* QUEUE: Pending operations from transactions that were aborted are queued up to be re-tried. This

the default. Pending operations are still aborted when the redo log runs out of space—that is, when
P_TAl L_PROBLEMerrors occur.

246

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-auto-reconnect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-auto-reconnect

Defining SQL and Other API Nodes in an NDB Cluster

Def aul t HashMapSi ze

Version (or later) NDB 8.0.13
Type or units buckets
Default 3840

Range 0 - 3840
Restart Type N (NDB 8.0.13)

The size of the table hash maps used by NDB is configurable using this parameter.
Def aul t HashMapSi ze can take any of three possible values (0, 240, 3840). These values and their

effects are described in the following table.

Table 4.10 DefaultHashMapSize parameter values

Value Description / Effect

0 Use the lowest value set, if any, for this parameter
among all data nodes and API nodes in the cluster;
if it is not set on any data or API node, use the
default value.

240 Old default hash map size

3840 Hash map size used by default in NDB 8.0

The original intended use for this parameter was to facilitate upgrades and downgrades to and from
older NDB Cluster versions, in which the hash map size differed, due to the fact that this change was
not otherwise backward compatible. This is not an issue when upgrading to or downgrading from NDB

Cluster 8.0.

Wan

Version (or later) NDB 8.0.13
Type or units boolean
Default false

Range true, false
Restart Type N (NDB 8.0.13)

Use WAN TCP setting as default.

Connect Backof f MaxTi ne

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to

. circumvent connection attempts to data nodes which have not yet begun to function in the cluster,as

well as moderate high traffic to management nodes. As long as the API node is not connected to any 247
new data nodes, the value of the St ar t Connect Backof f MaxTi me parameter is applied; otherwise,

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining SQL and Other API Nodes in an NDB Cluster

Connect Backof f MaxTi ne is used to determine the length of time in milliseconds to wait between
connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
Connect Backof f MaxTi ne milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up Hear t beat | nt er val DbApi for the API node to be notified that this has occurred.

e St art Connect Backof f MaxTi ne

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes. As long as the API node is not connected to any
new data nodes, the value of the St ar t Connect Backof f MaxTi nme parameter is applied; otherwise,
Connect Backof f MaxTi e is used to determine the length of time in milliseconds to wait between
connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
St art Connect Backof f MaxTi e milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up Hear t beat | nt er val DbApi for the API node to be notified that this has occurred.

API Node Debugging Parameters. You can use the Api Ver bose configuration parameter to enable
debugging output from a given APl node. This parameter takes an integer value. 0 is the default, and
disables such debugging; 1 enables debugging output to the cluster log; 2 adds DBDI CT debugging output
as well. (Bug #20638450) See also DUMP 1229.

You can also obtain information from a MySQL server running as an NDB Cluster SQL node using SHOW
STATUS in the nysql client, as shown here:

nmysqgl > SHOW STATUS LI KE ' ndb% ;

dimccocccoocccoocccosooccooocoooo diccocccoosoccoos +
| Variabl e_nane | Val ue |
dimccocccoocccoocccosooccooocoooo diccocccoosoccoos +
| Ndb_cl uster_node_id | 5

| Ndb_config_from host | 198.51.100.112

| Ndb_config_from port | 1186 |
| Ndb_nunber _of _storage_nodes | 4
dimccocccoocccoocccosooccooocoooo diccocccoosoccoos +

4 rows in set (0.02 sec)

248

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

Defining the System

For information about the status variables appearing in the output from this statement, see Section 4.3.9.3,
“NDB Cluster Status Variables”.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,

it is necessary to perform a rolling restart of all cluster nodes after adding new

[mysqgl d] or[api] sections tothe confi g.ini file (orfiles, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.11 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be

shut down completely, then
restarted, to effect a change in this
parameter

| Initial Data nodes must be restarted
using the --initial option

4.3.8 Defining the System

The [syst en] section is used for parameters applying to the cluster as a whole. The Nane system
parameter is used with MySQL Enterprise Monitor; Conf i gGener at i onNunber and Pr i mar yMaVNode
are not used in production environments. Except when using NDB Cluster with MySQL Enterprise Monitor,
is not necessary to have a [syst en] section in the confi g. i ni file.

More information about these parameters can be found in the following list:

» ConfigGenerationNunber

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Configuration generation number. This parameter is currently unused.

* Nanme

249

MySQL Server Options and Variables for NDB Cluster

Version (or later) NDB 8.0.13
Type or units string

Default [...]

Range

Restart Type N (NDB 8.0.13)

Set a name for the cluster. This parameter is required for deployments with MySQL Enterprise Monitor; it

is otherwise unused.

You can obtain the value of this parameter by checking the Ndb_syst em nane status variable. In NDB
API applications, you can also retrieve it using get _syst em nane() .

e Primar yMaGWode

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type N (NDB 8.0.13)

Node ID of the primary management node. This parameter is currently unused.

Restart types.
shown in the following table:

Table 4.12 NDB Cluster restart types

Information about the restart types used by the parameter descriptions in this section is

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be

shut down completely, then
restarted, to effect a change in this
parameter

| Initial

Data nodes must be restarted
usingthe --initial option

4.3.9 MySQL Server Options and Variables for NDB Cluster

This section provides information about MySQL server options, server and status variables that are specific
to NDB Cluster. For general information on using these, and for other options and variables not specific to

NDB Cluster, see The MySQL Server.

For NDB Cluster configuration parameters used in the cluster configuration file (usually named
confi g.ini), see Chapter 4, Configuration of NDB Cluster.

4.3.9.1 MySQL Server Options for NDB Cluster

250

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-system-name
https://dev.mysql.com/doc/refman/8.0/en/mysqld-server.html

MySQL Server Options and Variables for NDB Cluster

This section provides descriptions of nysql d server options relating to NDB Cluster. For information about
nysqgl d options not specific to NDB Cluster, and for general information about the use of options with
nysqgl d, see Server Command Options.

For information about command-line options used with other NDB Cluster processes, see Chapter 5, NDB
Cluster Programs.

e --ndbcl uster

Command-Line Format - -ndbcl ust er [=val ue]
Disabled by ski p- ndbcl ust er
Type Enumeration
Default Value ON
Valid Values OFF
FORCE

The NDBCLUSTER storage engine is necessary for using NDB Cluster. If a nysql d binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the - - ndbcl ust er
option to enable it. Use - - ski p- ndbcl ust er to explicitly disable the engine.

The - - ndbcl ust er option is ignored (and the NDB storage engine is not enabled) if - -i ni ti al i ze is
also used. (It is neither necessary nor desirable to use this option together with - -i ni ti al i ze.)

e --ndb-al | ow copyi ng-al ter-tabl e[ON| OFF]

Command-Line Format --ndb-al | ow copyi ng-al ter-
tabl e[={ OFF| ON}]

System Variable ndb_al | ow copying_alter _table

Scope Global, Session

Dynamic Yes

SET_VARHint Applies No

Type Boolean

Default Value ON

Let ALTER TABLE and other DDL statements use copying operations on NDB tables. Set to OFF to keep
this from happening; doing so may improve performance of critical applications.

e --ndb-applier-all ow skip-epoch

Command-Line Format --ndb- appl i er - al | ow ski p- epoch
Introduced 8.0.28-ndb-8.0.28

System Variable ndb_applier_all ow ski p_epoch
Scope Global

Dynamic No

SET_VARHint Applies No

e together with - - 3 [])] er)
effect when used alone. 251

https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_slave-skip-errors

MySQL Server Options and Variables for NDB Cluster

e --ndb-batch-si ze=#

Command-Line Format

--ndb-bat ch-si ze

System Variable

ndb_bat ch_si ze

Scope Global
Dynamic No
SET_VARHint Applies No

Type Integer
Default Value 32768
Minimum Value 0

Maximum Value (= 8.0.29-ndb-8.0.29) 2147483648
Maximum Value 2147483648
Maximum Value 2147483648
Maximum Value (< 8.0.28-ndb-8.0.28) 31536000

This sets the size in bytes that is used for NDB transaction batches.

e --ndb-cl uster-connecti on-pool =#

Command-Line Format

- -ndb- cl ust er - connect i on- pool

System Variable

ndb_cl ust er _connecti on_pool

System Variable

ndb_cl ust er _connecti on_pool

Scope Global
Scope Global
Dynamic No
Dynamic No
SET VAR Hint Applies No
SET_VARHint Applies No
Type Integer
Default Value 1
Minimum Value 1
Maximum Value 63

By setting this option to a value greater than 1 (the default), a nysql d process can use multiple
connections to the cluster, effectively mimicking several SQL nodes. Each connection requires its own
[api] or[nmysql d] section in the cluster configuration (confi g. i ni) file, and counts against the
maximum number of API connections supported by the cluster.

Suppose that you have 2 cluster host computers, each running an SQL node whose nysql d process
was started with - - ndb- cl ust er - connect i on- pool =4; this means that the cluster must have 8 API

252

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

slots available for these connections (instead of 2). All of these connections are set up when the SQL
node connects to the cluster, and are allocated to threads in a round-robin fashion.

This option is useful only when running nysql d on host machines having multiple CPUs, multiple cores,
or both. For best results, the value should be smaller than the total number of cores available on the host
machine. Setting it to a value greater than this is likely to degrade performance severely.

Important

Because each SQL node using connection pooling occupies multiple API node
slots—each slot having its own node ID in the cluster—you must not use a node
ID as part of the cluster connection string when starting any nysql d process that

employs connection pooling.

Setting a node ID in the connection string when using the - - ndb- cl ust er -
connect i on- pool option causes node ID allocation errors when the SQL node

attempts to connect to the cluster.

- -ndb- cl ust er - connect i on- pool - nodei ds=l i st

Command-Line Format

--ndb-cl ust er-connecti on- pool - nodei ds

System Variable

ndb_cl ust er _connecti on_pool nodei ds

Scope Global
Dynamic No
SET_VARHint Applies No
Type Set

Default Value

Specifies a comma-separated list of node IDs for connections to the cluster used by an SQL node. The
number of nodes in this list must be the same as the value set for the - - ndb- cl ust er - connect i on-

pool option.

- -ndb- bl ob-r ead- bat ch- byt es=byt es

Command-Line Format

- - ndb- bl ob- r ead- bat ch- byt es

System Variable

ndb_bl ob_read_bat ch_bytes

Scope Global, Session
Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536
Minimum Value 0

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data reads in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be read within the current
transaction, any pending BLOB read operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of

disabling BLOB read batching.

253

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

MySQL Server Options and Variables for NDB Cluster

Note

In NDB API applications, you can control BLOB write batching with the
set MaxPendi ngBl obReadByt es() and get MaxPendi ngBl obReadByt es()

methods.

* --ndb-bl ob-write-batch-bytes=bytes

Command-Line Format

- -ndb- bl ob-w it e- bat ch- byt es

System Variable

ndb_bl ob_wite_ batch _bytes

Scope Global, Session
Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536
Minimum Value 0

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data writes in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be written within the
current transaction, any pending BLOB write operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB write batching.

Note
In NDB API applications, you can control BLOB write

batching with the set MaxPendi ngBl obW it eByt es() and
get MaxPendi ngBl obW i t eByt es() methods.

» --ndb-connect string=connection_string

Command-Line Format --ndb-connect string

Type String

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 4.3.3, “NDB Cluster Connection Strings”, for syntax.

e --ndb-defaul t-col um-format =[FIl XED| DYNAM C]

Command-Line Format

- - ndb- def aul t - col um-f or mat ={ FI XED|
DYNAM C}

System Variable

ndb_default _col um_f or nat

Scope Global
Dynamic Yes
SET_VAR Hint Applies No

Type Enumeration

254

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobreadbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobreadbytes
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobwritebytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobwritebytes
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Default Value FI XED
Valid Values FI XED
DYNAM C

Sets the default COLUVN_FORVMAT and ROW FORVMAT for new tables (see CREATE TABLE Statement).

The default is FI XED.

e --ndb-deferred-constrai nts=[0] 1]

Command-Line Format

--ndb-deferred-constraints

System Variable

ndb_def erred_constraints

Scope Global, Session
Dynamic Yes

SET VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks on unique indexes are deferred until commit time, where such

checks are supported. O is the default.

This option is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is

intended primarily for use in testing.

e --ndb-schema-di st-tinmeout =#

Command-Line Format

--ndb-schema- di st -ti neout =#

Introduced

8.0.17-ndb-8.0.17

System Variable

ndb_schema_di st _ti neout

Scope Global
Dynamic No

SET VAR Hint Applies No

Type Integer
Default Value 120
Minimum Value 5
Maximum Value 1200
Unit seconds

Specifies the maximum time in seconds that this mysql d waits for a schema operation to complete

before marking it as having timed out.

e --ndb-di stribution=[KEYHASH| LI NHASH]

Command-Line Format

--ndb-di stri buti on={ KEYHASH| LI NHASH}

System Variable

ndb_di stri bution

255

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Scope Global

Dynamic Yes

SET VAR Hint Applies No

Type Enumeration

Default Value KEYHASH

Valid Values LI NHASH
KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LI NHASH (linear hashing). KEYHASH is the default.

--ndb-1 og- appl y- st at us

Command-Line Format --ndb- | og- appl y- st at us[={ OFF| ON}]
System Variable ndb_| og_appl y_st at us

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes a replica nmysql d to log any updates received from its immediate source to the

nysql . ndb_appl y_st at us table in its own binary log using its own server ID rather than the server
ID of the source. In a circular or chain replication setting, this allows such updates to propagate to

the mysql . ndb_appl y_st at us tables of any MySQL servers configured as replicas of the current

nysql d.

In a chain replication setup, using this option allows downstream (replica) clusters to be aware of their
positions relative to all of their upstream contributors (sourcess).

In a circular replication setup, this option causes changes to ndb_appl y_st at us tables to complete
the entire circuit, eventually propagating back to the originating NDB Cluster. This also allows a cluster
acting as a replication source to see when its changes (epochs) have been applied to the other clusters
in the circle.

This option has no effect unless the MySQL server is started with the - - ndbcl ust er option.

e --ndb-1 og-enpt y- epochs=[ON| OFF]

Command-Line Format --ndb- 1 og- enpt y- epochs[={ OFF| ON}]
System Variable ndb_I| og_enpty_epochs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

256

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Default Value OFF

Causes epochs during which there were no changes to be written to the ndb_appl y_st at us and
ndb_bi nl og_i ndex tables, even when | og_replica_updat es orl og_sl ave_updat es is enabled.

By default this option is disabled. Disabling - - ndb- | og- enpt y- epochs causes epoch transactions
with no changes not to be written to the binary log, although a row is still written even for an empty epoch
in ndb_bi nl og_i ndex.

Because - - ndb- | 0g- enpt y- epochs=1 causes the size of the ndb_bi nl og_i ndex table to increase
independently of the size of the binary log, users should be prepared to manage the growth of this table,
even if they expect the cluster to be idle a large part of the time.

e --ndb-1 og- enpt y- updat e=[ON| OFF]

Command-Line Format --ndb- 1 og- enpt y- updat e[={ OFF| ON}]
System Variable ndb_| og_enpty_updat e

Scope Global

Dynamic Yes

SET VAR Hint Applies No

Type Boolean

Default Value OFF

Causes updates that produced no changes to be written to the ndb_appl y_st at us and
ndb_bi nl og_i ndex tables, even when | og_replica_updates orl og_sl ave_updat es is enabled.

By default this option is disabled (OFF). Disabling - - ndb- | og- enpt y- updat e causes updates with no
changes not to be written to the binary log.

* --ndb-1 og- excl usi ve-reads=[0| 1]

Command-Line Format --ndb- 1 og- excl usi ve-reads[={ OFF| ON}]
System Variable ndb_| og_excl usi ve_reads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value 0

Starting the server with this option causes primary key reads to be logged with exclusive locks, which
allows for NDB Cluster Replication conflict detection and resolution based on read conflicts. You can
also enable and disable these locks at runtime by setting the value of the ndb_| og_excl usi ve_reads
system variable to 1 or 0, respectively. 0 (disable locking) is the default.

For more information, see Read conflict detection and resolution.

e --ndb-log-fail-term nate

Command-Line Format --ndb-log-fail-termnate
Introduced 8.0.21-ndb-8.0.21

257

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

System Variable ndb_log fail _term nate
Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value FALSE

When this option is specified, and complete logging of all found row events is not possible, the nysql d
process is terminated.

e --ndb-log-orig

Command-Line Format --ndb-1 og-ori g[={ OFF| ON}]
System Variable ndb_l og_orig

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Boolean

Default Value OFF

Log the originating server ID and epoch in the ndb_bi nl og_i ndex table.
Note

This makes it possible for a given epoch to have multiple rows in
ndb_bi nl og_i ndex, one for each originating epoch.

For more information, see Section 7.4, “NDB Cluster Replication Schema and Tables”.

e --ndb-1o0g-transaction-id

Command-Line Format --ndb-1 og-transacti on-i d[={ OFF| ON}]
System Variable ndb | og transaction_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes a replica nmysql d to write the NDB transaction ID in each row of the binary log. The default value
is FALSE.

This option is not supported in mainline MySQL Server 8.0. It is required to enable NDB Cluster
Replication conflict detection and resolution using the NDB$EPOCH TRANS() function (see NDB

258

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

$EPOCH_TRANS()). For more information, see Section 7.11, “NDB Cluster Replication Conflict
Resolution”.

The deprecated | og_bi n_use_v1 row event s system variable, which defaults to OFF, must not be
set to ONwhen you use - - ndb- | og-transaction-i d.

e --ndb-1 og-update-as-wite

Command-Line Format --ndb-1 og- updat e-as-writ e[={ OFF| ON}]
System Variable ndb_| og_update_as wite

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether updates on the source are written to the binary log as updates (OFF) or writes (ON). When this
option is used to the exclusion of - - ndb- | og- updat ed- onl y and - - ndb- | og- updat e- i ni nal ,
operations of different types are logged as described in the following list:

* | NSERT: Logged as a \RI TE_ROWevent with no before image; the after image is logged with all
columns.

UPDATE: Logged as a \\RI TE_ROWevent with no before image; the after image is logged with all
columns.

DELETE: Logged as a DELETE_ROWevent with all columns logged in the before image; the after image
is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

e --ndb-1 og- updat ed-onl y

Command-Line Format - -ndb- | og- updat ed- onl y[={ OFF| ON}]
System Variable ndb_| og _updated_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether nysql d writes complete rows (ON) or updates only (OFF) to the binary log. When this option
is used to the exclusion of - - ndb- | og- updat e-as-wri te and - - ndb- | og- updat e- m ni mal ,
operations of different types are logged as described in the following list:

« | NSERT: Logged as a \RI TE_ROWevent with no before image; the after image is logged with all
columns.

« UPDATE: Logged as an UPDATE_ROWevent with primary key columns and updated columns present in
both the before and after images.

259

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin_use_v1_row_events
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

e DELETE: Logged as a DELETE_ROWevent with primary key columns incuded in the before image; the
after image is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information about how these
options interact with one another.

- -ndb- | og- updat e- m ni nal

Command-Line Format - -ndb-1 og- updat e- m ni mal [={ OFF| ON}]
System Variable ndb_| og_updat e_m ni nal

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Log updates in a minimal fashion, by writing only the primary key values in the before image, and only
the changed columns in the after image. This may cause compatibility problems if replicating to storage
engines other than NDB. When this option is used to the exclusion of - - ndb- | og- updat ed- onl y and
--ndb- 1 og- updat e- as- wri t e, operations of different types are logged as described in the following
list:

* | NSERT: Logged as a \RI TE_ROWevent with no before image; the after image is logged with all
columns.

» UPDATE: Logged as an UPDATE_ROWevent with primary key columns in the before image; all columns
except primary key columns are logged in the after image.

* DELETE: Logged as a DELETE_ROWevent with all columns in the before image; the after image is not
logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

- - ndb- ngnd- host =host [: port]

Command-Line Format - -ndb- ngnd- host =host _name[: port _nuni
Type String
Default Value | ocal host: 1186

Can be used to set the host and port number of a single management server for the program to connect
to. If the program requires node IDs or references to multiple management servers (or both) in its
connection information, use the - - ndb- connect st ri ng option instead.

e --ndb-nodei d=#

Command-Line Format - -ndb- nodei d=#
Status Variable Ndb_cl uster_node_i d
Scope Global

260

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Dynamic No
Type Integer
Minimum Value 1
Maximum Value 255
Maximum Value 63

Set this MySQL server's node ID in an NDB Cluster.

The - - ndb- nodei d option overrides any node ID set with - - ndb- connect st ri ng, regardless of the
order in which the two options are used.

In addition, if - - ndb- nodei d is used, then either a matching node ID must be found in a [nysqgl d] or
[api] section of confi g. i ni, or there must be an “open” [mysql d] or[api] section in the file (that
is, a section without a Nodel d or | d parameter specified). This is also true if the node ID is specified as
part of the connection string.

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cl ust er _node_i d in the output of SHOW STATUS, and as cl ust er _node_i d in the
connect i on row of the output of SHONV ENG NE NDBCLUSTER STATUS.

For more information about node IDs for NDB Cluster SQL nodes, see Section 4.3.7, “Defining SQL and
Other API Nodes in an NDB Cluster”.

- - ndbi nf o={ ON| OFF| FORCE}

Command-Line Format - - ndbi nf o[=val ue] (= 8.0.13-ndb-8.0.13)
Introduced 8.0.13-ndb-8.0.13
Type Enumeration
Default Value ON
Valid Values ON
OFF
FORCE

Enables the plugin for the ndbi nf o information database. By default this is ON whenever NDBCLUSTER
is enabled.

e --ndb-optim zation-del ay=m | |iseconds

Command-Line Format --ndb- opti m zati on-del ay=#
System Variable ndb_optim zati on_del ay
Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100000

261

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Set the number of milliseconds to wait between sets of rows by OPTI M ZE TABLE statements on NDB

tables. The default is 10.

* --ndb-opti m zed- node- sel ecti on

Command-Line Format

--ndb- opti n zed- node-sel ection

Enable optimizations for selection of nodes for transactions. Enabled by default; use - - ski p- ndb-

optim zed- node-sel ecti on to disable.

e --ndb-transi d-mysql - connecti on- nap=st at e

Command-Line Format

--ndb-transi d-nysqgl - connecti on-
map[=st at e]

Type Enumeration
Default Value ON
Valid Values ON

OFF

FORCE

Enables or disables the plugin that handles the ndb_t ransi d_nysqgl connecti on_map table in
the | NFORVATI ON_SCHENA database. Takes one of the values ON, OFF, or FORCE. ON (the default)
enables the plugin. OFF disables the plugin, which makes ndb_t ransi d_nysql connecti on_nap
inaccessible. FORCE keeps the MySQL Server from starting if the plugin fails to load and start.

You can see whether the ndb_transi d_nysql _connecti on_nap table plugin is running by checking

the output of SHOW PLUG NS.

e --ndb-wait-connect ed=seconds

Command-Line Format

--ndb-wai t - connect ed=#

System Variable

ndb_wait _connect ed

Scope Global
Dynamic No
SET_VARHint Applies No

Type Integer
Default Value (= 8.0.27-ndb-8.0.27) 120
Default Value (< 8.0.26-ndb-8.0.26) 30

Default Value 30
Minimum Value 0
Maximum Value 31536000

This option sets the period of time that the MySQL server waits for connections to NDB Cluster
management and data nodes to be established before accepting MySQL client connections. The time is

specified in seconds. The default value is 30.

https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

e --ndb-wait -set up=seconds

Command-Line Format

--ndb-wai t - set up=#

System Variable

ndb_wait _setup

Scope Global
Dynamic No
SET_VARHint Applies No
Type Integer
Default Value (= 8.0.27-ndb-8.0.27) 120
Default Value (< 8.0.26-ndb-8.0.26) 30
Default Value 30
Default Value 15
Default Value 15
Minimum Value 0
Maximum Value 31536000

This variable shows the period of time that the MySQL server waits for the NDB storage engine to
complete setup before timing out and treating NDB as unavailable. The time is specified in seconds. The

default value is 30.

» --ski p-ndbcl uster

Command-Line Format

- - ski p- ndbcl ust er

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this storage
engine only if the - - ndbcl ust er option is given explicitly. See Section 4.1, “Quick Test Setup of NDB

Cluster”, for an example.

4.3.9.2 NDB Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific to NDB
Cluster and the NDB storage engine. For system variables not specific to NDB Cluster, see Server System
Variables. For general information on using system variables, see Using System Variables.

» ndb_aut oi ncrenent _prefetch_sz

Command-Line Format

--ndb- aut oi ncrenent - prefetch-sz=#

System Variable

ndb_aut oi ncrenent _prefetch_sz

Default Value (< 8.0.18-ndb-8.0.18)

Scope Global, Session
Dynamic Yes
SET_VAR Hint Applies No
Type Integer
Default Value (= 8.0.19-ndb-8.0.19) 512
1

1
S

N

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/using-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Maximum Value

65536

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization makes inserts faster, but decreases the likelihood of consecutive
autoincrement numbers being used in a batch of inserts.

This variable affects only the number of AUTO_| NCREMENT IDs that are fetched between statements;
within a given statement, at least 32 IDs are obtained at a time.

Important

This variable does not affect inserts performed using | NSERT ... SELECT.

ndb_cache _check_tine

Command-Line Format

--ndb-cache-check-ti ne=#

Deprecated

Yes

System Variable

ndb_cache_check_tine

Scope Global
Dynamic Yes
SET VAR Hint Applies No
Type Integer
Default Value 0

The number of milliseconds that elapse between checks of NDB Cluster SQL nodes by the MySQL
query cache. Setting this to 0 (the default and minimum value) means that the query cache checks for

validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is performed
once per second. A larger value means that the check is performed and possibly invalidated due to

updates on different SQL nodes less often. It is generally not desirable to set this to a value greater than

2000.

Note

The query cache ndb_cache_check_ti ne are deprecated in MySQL 5.7; the
query cache was removed in MySQL 8.0.

ndb_cl ear _apply_status

Command-Line Format

--ndb-cl ear - appl y- st at us[={ OFF| O\}]

System Variable

ndb_cl ear _apply_status

Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Boolean
Default Value ON

By the default, executing RESET SLAVE causes an NDB Cluster replica to purge all rows from its

264

ndb_appl y_st at us table. You can disable this by setting ndb_cl ear _appl y_st at us=0OFF.

https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html

MySQL Server Options and Variables for NDB Cluster

e ndb_conflict_role

Command-Line Format --ndb-conflict-rol e=val ue
Introduced 8.0.23-ndb-8.0.23
System Variable ndb_conflict _role
Scope Global
Dynamic Yes
SET_VARHint Applies No
Type Enumeration
Default Value NONE
Valid Values NONE
PRI MARY
SECONDARY
PASS

Determines the role of this SQL node (and NDB Cluster) in a circular (“active-active”) replication

setup. ndb_sl ave_conflict _rol e can take any one of the values PRI MARY, SECONDARY,

PASS, or NULL (the default). The replica SQL thread must be stopped before you can change

ndb_sl ave _conflict _rol e.In addition, it is not possible to change directly between PASS and either
of PRI MARY or SECONDARY directly; in such cases, you must ensure that the SQL thread is stopped,
then execute SET @aELOBAL. ndb_sl ave conflict _role = ' NONE first.

This variable replaces ndb_sl ave _conflict _rol e, which is deprecated as of NDB 8.0.23.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

 ndb_dat a_node_nei ghbour

Command-Line Format - - ndb- dat a- node- nei ghbour =#
System Variable ndb_dat a_node_nei ghbour
Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

Sets the ID of a “nearest” data node—that is, a preferred nonlocal data node is chosen to execute the
transaction, rather than one running on the same host as the SQL or API node. This used to ensure that

265

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/set-statement.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

when a fully replicated table is accessed, we access it on this data node, to ensure that the local copy of
the table is always used whenever possible. This can also be used for providing hints for transactions.

This can improve data access times in the case of a node that is physically closer than and thus has
higher network throughput than others on the same host.

See Setting NDB Comment Options, for further information.

Note

An equivalent method set _dat a_node_nei ghbour () is provided for use in

NDB API applications.

 ndb_dbg_check_shares

Command-Line Format

- - ndb- dbg- check- shar es=#

Introduced

8.0.13-ndb-8.0.13

System Variable

ndb_dbg_check_shares

Scope Global, Session
Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When set to 1, check that no shares are lingering. Available in debug builds only.

e ndb_defaul t _col um_f or mat

Command-Line Format

- - ndb- def aul t - col um-f or mat ={ FI XED|
DYNAM C}

System Variable

ndb_defaul t _col um_f or mat

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value FI XED

Valid Values FI XED
DYNAM C

Sets the default COLUMN_FORNVAT and ROW FORVAT for new tables (see CREATE TABLE Statement).

The default is FI XED.

* ndb_deferred_constraints

Command-Line Format

--ndb-def erred-constrai nt s=#

System Variable

ndb_def erred_constraints

266

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-data-node-neighbour
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

MySQL Server Options and Variables for NDB Cluster

Scope Global, Session
Dynamic Yes

SET VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks are deferred, where these are supported. O is the default.

This variable is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

ndb_di stri bution

Command-Line Format --ndb-di stri buti on={ KEYHASH| LI NHASH}
System Variable ndb_di stri bution
Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Enumeration
Default Value KEYHASH
Valid Values LI NHASH
KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LI NHASH (linear hashing). KEYHASH is the default.

ndb_event buffer_free percent

Command-Line Format --ndb-event buffer-free-percent =#
System Variable ndb_event buffer _free_percent
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 99

Sets the percentage of the maximum memory allocated to the event buffer (ndb_eventbuffer_max_alloc)
that should be available in event buffer after reaching the maximum, before starting to buffer again.

267

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

 ndb_eventbuffer_max_al |l oc

Command-Line Format - -ndb- event buf f er - max- al | oc=#
System Variable ndb_event buffer_max_al | oc
Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (= 8.0.26-ndb-8.0.26) 9223372036854775807
Maximum Value 9223372036854775807
Maximum Value 9223372036854775807
Maximum Value (< 8.0.25-ndb-8.0.25) 4294967295

Sets the maximum amount memory (in bytes) that can be allocated for buffering events by the NDB API.
0 means that no limit is imposed, and is the default.

 ndb_extra_l oggi ng

Command-Line Format ndb_extra_l oggi ng=#
System Variable ndb_extra_l oggi ng
Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Integer

Default Value 1

This variable enables recording in the MySQL error log of information specific to the NDB storage engine.

When this variable is set to 0, the only information specific to NDB that is written to the MySQL error log
relates to transaction handling. If it set to a value greater than 0 but less than 10, NDB table schema and
connection events are also logged, as well as whether or not conflict resolution is in use, and other NDB
errors and information. If the value is set to 10 or more, information about NDB internals, such as the
progress of data distribution among cluster nodes, is also written to the MySQL error log. The default is
1.

 ndb_force_send

Command-Line Format --ndb-f orce- send[={ OFF| ON}]
System Variable ndb_f orce_send

Scope Global, Session

Dynamic Yes

SET VAR Hint Applies No

Type Boolean

268

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Default Value ON

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

e ndb_fully replicated

Command-Line Format --ndb-fully-replicat ed[={ OFF| ON}]
System Variable ndb _fully replicated

Scope Global, Session

Dynamic Yes

SET VAR Hint Applies No

Type Boolean

Default Value OFF

Determines whether new NDB tables are fully replicated. This setting can be overridden for an individual
table using COMVENT="NDB_TABLE=FULLY_REPL| CATED=. . . " in a CREATE TABLE or ALTER
TABLE statement; see Setting NDB Comment Options, for syntax and other information.

 ndb_i ndex_stat enabl e

Command-Line Format - - ndb-i ndex- st at - enabl e[={ OFF| ON\}]
System Variable ndb_i ndex_stat_enabl e

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Use NDB index statistics in query optimization. The default is O\.

Prior to NDB 8.0.27, starting the server with - - ndb- i ndex- st at - enabl e set to OFF prevented the
creation of the index statistics tables. In NDB 8.0.27 and later, these tables are always created when the
server starts, regardless of this option's value.

 ndb_index_stat_option

Command-Line Format - -ndb-i ndex- st at - opti on=val ue

System Variable ndb_i ndex_stat_option

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value | oop_checkon=1000mns, | oop_i dl e=1000ns, | pop_bu
updat e_bat ch=1, read_bat ch=4, i dl e_bat ch£32, ch
check_del ay=1m del et e_bat ch=8, cl ean_del ay=0, «

269

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

error_del ay=1m evi ct _bat ch=8, evi ct _del ay=1m cacl
cache_|l owpct =90

This variable is used for providing tuning options for NDB index statistics generation. The list consist
of comma-separated name-value pairs of option names and values, and this list must not contain any
space characters.

Options not used when setting ndb_i ndex_st at _opti on are not changed from
their default values. For example, you can set ndb_i ndex_stat _option =
"1 oop_i dl e=1000ns, cache_lim t=32M .

Time values can be optionally suffixed with h (hours), m(minutes), or s (seconds). Millisecond values
can optionally be specified using s ; millisecond values cannot be specified using h, mj or s.) Integer
values can be suffixed with K, M or G

The names of the options that can be set using this variable are shown in the table that follows. The

table also provides brief descriptions of the options, their default values, and (where applicable) their
minimum and maximum values.

Table 4.13 ndb_index_stat_option options and values

Name Description Default/Units Minimum/Maximum
| oop_enabl e 1000 ms 0/4G
| oop_idle Time to sleep when idle |1000 ms 0/4G
| oop_busy Time to sleep when 100 ms 0/4G
more work is waiting
updat e_bat ch 1 0/4G
read_bat ch 4 1/4G
i dl e_bat ch 32 1/4G
check_bat ch 8 1/4G
check_del ay How often to check for {10 m 1/4G
new statistics
del ete_bat ch 8 0/4G
cl ean_del ay 1m 0/4G
error_batch 4 1/4G
error_del ay Im 1/4G
evi ct _batch 8 1/4G
evi ct _del ay Clean LRU cache, from |{1m 0/4G
read time
cache limt Maximum amount 32M 0/4G
of memory in bytes
used for cached
index statistics by this
mysql d; clean up the
cache when this is
exceeded.
cache_| owpct 90 0/100

270

MySQL Server Options and Variables for NDB Cluster

to 0. This option value is
also reset to 0 when this
is done.

Name Description Default/Units Minimum/Maximum
zero_total Setting this to 1 resets |0 0/1

all accumulating

counters in

ndb_i ndex_stat _status

e ndb_j oi n_pushdown

System Variable

ndb_j oi n_pushdown

Scope Global, Session
Dynamic Yes
SET_VARHint Applies No

Type Boolean
Default Value ON

This variable controls whether joins on NDB tables are pushed down to the NDB kernel (data nodes).

Previously, a join was handled using multiple accesses of NDB by the SQL node; however, when
ndb_j oi n_pushdown is enabled, a pushable join is sent in its entirety to the data nodes, where it

can be distributed among the data nodes and executed in parallel on multiple copies of the data, with

271

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

a single, merged result being returned to nysql d. This can reduce greatly the number of round trips
between an SQL node and the data nodes required to handle such a join.

By default, ndb_j oi n_pushdown is enabled.

Conditions for NDB pushdown joins. In order for a join to be pushable, it must meet the following
conditions:

1. Only columns can be compared, and all columns to be joined must use exactly the same data
type. This means that (for example) a join on an | NT column and a Bl G NT column also cannot be
pushed down.

Previously, expressions suchastl.a = t2.a + constant could not be pushed down. This
restriction is lifted in NDB 8.0. The result of any operations on any column to be compared must yield
the same type as the column itself.

Expressions comparing columns from the same table can also be pushed down. The columns (or
the result of any operations on those columns) must be of exactly the same type, including the same
signedness, length, character set and collation, precision, and scale, where these are applicable.

2. Queries referencing BLOB or TEXT columns are not supported.

3. Explicit locking is not supported; however, the NDB storage engine's characteristic implicit row-based
locking is enforced.

This means that a join using FOR UPDATE cannot be pushed down.

4. In order for a join to be pushed down, child tables in the join must be accessed using one of the r ef ,
eq_ref,or const access methods, or some combination of these methods.

Outer joined child tables can only be pushed using eq_r ef .

If the root of the pushed join is an eq_r ef or const, only child tables joined by eq_r ef can be
appended. (A table joined by r ef is likely to become the root of another pushed join.)

If the query optimizer decides on Usi ng j oi n cache for a candidate child table, that table cannot
be pushed as a child. However, it may be the root of another set of pushed tables.

5. Joins referencing tables explicitly partitioned by [LI NEAR] HASH, LI ST, or RANCE currently cannot
be pushed down.

You can see whether a given join can be pushed down by checking it with EXPLAI N; when the join can
be pushed down, you can see references to the pushed | oi n in the Ext r a column of the output, as
shown in this example:

nmysql > EXPLAI N

-> SELECT e.first_nanme, e.last_nane, t.title, d.dept_nane
- FROM enpl oyees e
-> JO N dept _enp de ON e. enp_no=de. enp_no
-> JO N departnments d ON d. dept _no=de. dept _no
-> JONtitles t ON e.enp_no=t.enp_no\G
EEEEEEEEEEEEEEEEEEEEEEEESESESE] 1 rOW EEEEEEEEEEEEEEEEEEEEEEEESESESE]
id: 1
sel ect _type: SIMLE
table: d
type: ALL
possi bl e_keys: PRI MARY
key: NULL

key | en: NULL

272

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_const
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_const
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/refman/8.0/en/explain.html

MySQL Server Options and Variables for NDB Cluster

ref:
rows:
Extra

NULL
9
Parent of 4 pushed join@

R R R R R R R R 2 r ow R R R R R R R R R R

id:

sel ect _type
tabl e:

type:
possi bl e_keys
key:

key_| en:

ref:

r ows:

Extra

1

S| MPLE

de

r ef

PRI MARY, enp_no, dept _no

dept _no

4

enpl oyees. d. dept _no

5305

Child of 'd" in pushed join@

R R R R R R R R 3 r ow R R R R R R R R

id:

sel ect _type
tabl e:

type:
possi bl e_keys
key:

key_| en:

ref:

r ows:

Extra

1

S| MPLE

e

eq_ref

PRI MARY

PRI MARY

4

enpl oyees. de. enp_no

1

Child of 'de' in pushed join@

R R R R R R R R R R R 4 r ow R R R R R R

id:

sel ect _type
tabl e:

type:
possi bl e_keys
key:

key_| en:

ref:

r ows:

Extra

1

S| MPLE

t

r ef

PRI MARY, enp_no

enp_no

4

enpl oyees. de. enp_no

19

Child of 'e' in pushed join@

4 rows in set (0.00 sec)

Note

If inner joined child tables are joined by r ef , and the result is ordered or grouped
by a sorted index, this index cannot provide sorted rows, which forces writing to a
sorted tempfile.

Two additional sources of information about pushed join performance are available:

1. The status variables Ndb_pushed_queri es_defi ned, Ndb_pushed_queri es_dr opped,
Ndb_pushed_queri es_execut ed, and Ndb_pushed_r eads.

2. The counters in the ndbi nf 0. count er s table that belong to the DBSPJ kernel block.

» ndb_| og _apply_status

Command-Line Format --ndb-1 og- appl y- st at us[={ OFF| ON}]
System Variable ndb_| og _apply_status

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Boolean

Default Value OFF

273

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

A read-only variable which shows whether the server was started with the - - ndb- | og- appl y- st at us

option.

« ndb_l og_bin

Command-Line Format

--ndb-1 og- bi n[={ OFF| ON}]

System Variable ndb_| og_bin
Scope Global, Session
Dynamic No
SET_VARHint Applies No

Type Boolean
Default Value (= 8.0.16-ndb-8.0.16) OFF

Default Value (< 8.0.15-ndb-8.0.15) ON

Causes updates to NDB tables to be written to the binary log. The setting for this variable has no effect if
binary logging is not already enabled on the server using | og_bi n. In NDB 8.0, ndb_| og_bi n defaults

to 0 (FALSE).

* ndb_| og_bi nl og_i ndex

Command-Line Format --ndb-1 og- bi nl og-i ndex[={ OFF| ON}]
System Variable ndb_I| og_bi nl og_i ndex

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Causes a mapping of epochs to positions in the binary log to be inserted into the ndb_bi nl og_i ndex
table. Setting this variable has no effect if binary logging is not already enabled for the server using

| og_bi n. (In addition, ndb_| og_bi n must not be disabled.) ndb_| og_bi nl og_i ndex defaults to 1
(ON); normally, there is never any need to change this value in a production environment.

* ndb_| og_enpty_epochs

Command-Line Format --ndb-1 og- enpt y- epochs[={ OFF| ON}]
System Variable ndb_I| og_enpty_epochs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to 0, epoch transactions with no changes are not written to the binary log,
although a row is still written even for an empty epoch in ndb_bi nl og_i ndex.

 ndb_| og_enpty_update

274

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Command-Line Format --ndb- 1 og- enpt y- updat e[={ OFF| ON}]
System Variable ndb_| og_enpty_update

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to ON (1), update transactions with no changes are written to the binary log,
evenwhen | og replica_updates orl og sl ave updat es is enabled.

* ndb_| og_excl usi ve_reads

Command-Line Format --ndb-1 og- excl usi ve-reads[={ OFF| ON}]
System Variable ndb_| og_excl usi ve_reads

Scope Global, Session

Dynamic Yes

SET_VARHint Applies No

Type Boolean

Default Value 0

This variable determines whether primary key reads are logged with exclusive locks, which allows for
NDB Cluster Replication conflict detection and resolution based on read conflicts. To enable these locks,
set the value of ndb_| og_excl usi ve_reads to 1. 0, which disables such locking, is the default.

For more information, see Read conflict detection and resolution.

e ndb_log orig

Command-Line Format --ndb-1 og-ori g[={ OFF| ON} |
System Variable ndb_l og_orig

Scope Global

Dynamic No

SET VAR Hint Applies No

Type Boolean

Default Value OFF

Shows whether the originating server ID and epoch are logged in the ndb_bi nl og_i ndex table. Set
using the - - ndb- | og- or i g server option.

e ndb_log transaction_id

System Variable ndb_| og_transaction_id
Scope Global
Dynamic No

275

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

SET_VAR Hint Applies No
Type Boolean
Default Value OFF

This read-only, Boolean system variable shows whether a replica nysql d writes NDB transaction IDs
in the binary log (required to use “active-active” NDB Cluster Replication with NDBSEPOCH_ TRANS()
conflict detection). To change the setting, use the - - ndb- | og-t ransacti on-i d option.

ndb_| og_transacti on_i d is not supported in mainline MySQL Server 8.0.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

ndb_rnet adat a_check

Command-Line Format - - ndb- et adat a- check[={ OFF| ON\}]
Introduced 8.0.16-ndb-8.0.16

System Variable ndb_net adat a_check

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

NDB uses a background thread to check for metadata changes each

ndb_rnet adat a_check_i nt er val seconds as compared with the MySQL data dictionary. This
metadata change detection thread can be disabled by setting ndb_net adat a_check to OFF. The
thread is enabled by default.

ndb_rnet adat a_check_i nt erval

Command-Line Format - - ndb- et adat a- check-i nt erval =#
Introduced 8.0.16-ndb-8.0.16

System Variable ndb_net adat a_check i nt erval
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 31536000

Unit seconds

NDB runs a metadata change detection thread in the background to determine when the NDB dictionary

has changed with respect to the MySQL data dictionary. By default,the interval between such checks is

60 seconds; this can be adjusted by setting the value of ndb_net adat a_check_i nt erval . To enable
or disable the thread, use ndb_net adat a_check.

276

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

* ndb_net adat a_sync

Introduced 8.0.19-ndb-8.0.19
System Variable ndb_ret adat a_sync
Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Boolean

Default Value fal se

Setting this variable causes the change monitor thread to override any values set for

ndb_rnet adat a_check or ndb_net adat a_check_i nt erval , and to enter a period of continuous
change detection. When the thread ascertains that there are no more changes to be detected,

it stalls until the binary logging thread has finished synchronization of all detected objects.

ndb_rnet adat a_sync is then setto f al se, and the change monitor thread reverts to the behavior
determined by the settings for ndb_net adat a_check and ndb_net adat a_check i nterval .

In NDB 8.0.22 and later, setting this variable to t r ue causes the list of excluded objects to be cleared,
and setting it to f al se clears the list of objects to be retried.

 ndb_optim zed_node_sel ecti on

Command-Line Format

--ndb- opti m zed- node-sel ecti on=#

System Variable

ndb_optini zed _node_sel ection

Scope Global
Dynamic No
SET VAR Hint Applies No
Type Integer
Default Value 3
Minimum Value 0
Maximum Value 3

There are two forms of optimized node selection, described here:

1. The SQL node uses promixity to determine the transaction coordinator; that is, the “closest” data
node to the SQL node is chosen as the transaction coordinator. For this purpose, a data node having
a shared memory connection with the SQL node is considered to be “closest” to the SQL node; the
next closest (in order of decreasing proximity) are: TCP connection to | ocal host, followed by TCP

connection from a host other than | ocal host .

2. The SQL thread uses distribution awareness to select the data node. That is, the data node housing
the cluster partition accessed by the first statement of a given transaction is used as the transaction

277

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

coordinator for the entire transaction. (This is effective only if the first statement of the transaction
accesses no more than one cluster partition.)

This option takes one of the integer values 0, 1, 2, or 3. 3 is the default. These values affect node
selection as follows:

¢ 0: Node selection is not optimized. Each data node is employed as the transaction coordinator 8 times
before the SQL thread proceeds to the next data node.

¢ 1: Proximity to the SQL node is used to determine the transaction coordinator.

« 2: Distribution awareness is used to select the transaction coordinator. However, if the first statement
of the transaction accesses more than one cluster partition, the SQL node reverts to the round-robin
behavior seen when this option is set to 0.

e 3: If distribution awareness can be employed to determine the transaction coordinator, then it is used;
otherwise proximity is used to select the transaction coordinator. (This is the default behavior.)

Proximity is determined as follows:
1. Start with the value set for the G- oup parameter (default 55).

2. For an API node sharing the same host with other API nodes, decrement the value by 1. Assuming
the default value for G- oup, the effective value for data nodes on same host as the API node is 54,
and for remote data nodes 55.

3. Setting ndb_dat a_node_nei ghbour further decreases the effective G oup value by 50, causing
this node to be regarded as the nearest node. This is needed only when all data nodes are on hosts
other than that hosts the API node and it is desirable to dedicate one of them to the API node. In
normal cases, the default adjustment described previously is sufficient.

Frequent changes in ndb_dat a_node_nei ghbour are not advisable, since this changes the state
of the cluster connection and thus may disrupt the selection algorithm for new transactions from each
thread until it stablilizes.

ndb_read_backup

Command-Line Format - -ndb- r ead- backup[={ OFF| ON}]
System Variable ndb_r ead_backup

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (= 8.0.19-ndb-8.0.19) ON

Default Value (< 8.0.18-ndb-8.0.18) OFF

Enable read from any fragment replica for any NDB table subsequently created; doing so greatly
improves the table read performance at a relatively small cost to writes.

If the SQL node and the data node use the same host name or IP address, this fact is detected
automatically, so that the preference is to send reads to the same host. If these nodes are on the same

278

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

host but use different IP addresses, you can tell the SQL node to use the correct data node by setting
the value of ndb_dat a_node_nei ghbour on the SQL node to the node ID of the data node.

To enable or disable read from any fragment replica for an individual table, you can set the NDB_TABLE
option READ_BACKUP for the table accordingly, in a CREATE TABLE or ALTER TABLE statement; see
Setting NDB Comment Options, for more information.

* ndb_recv_thread_activation_threshold

Command-Line Format

--ndb-recv-thread-activati on-
t hr eshol d=#

System Variable

ndb_recv_t hread_activation_threshol d

Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Integer
Default Value 8

Minimum Value

0 (M N_ACTI VATI ON_THRESHOLD)

Maximum Value

16 (MAX_ACTI VATI ON_THRESHOLD)

When this number of concurrently active threads is reached, the receive thread takes over polling of the

cluster connection.

This variable is global in scope. It can also be set at startup.

* ndb_recv_t hread_cpu_nask

Command-Line Format

--ndb-recv-t hread- cpu- mask=mask

System Variable

ndb_recv_t hread_cpu_nask

Scope Global
Dynamic Yes
SET_VARHint Applies No

Type Bitmap
Default Value [enpty]

CPU mask for locking receiver threads to specific CPUs. This is specified as a hexadecimal bitmask. For
example, 0x33 means that one CPU is used per receiver thread. An empty string is the default; setting
ndb_recv_t hread_cpu_nask to this value removes any receiver thread locks previously set.

This variable is global in scope. It can also be set at startup.

 ndb_report_thresh _binlog epoch slip

Command-Line Format

--ndb-report-thresh-binl og- epoch-
slip=#

System Variable

ndb_report _thresh_binlog_epoch_slip

Scope

Global

Dynamic

Yes 279

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

SET_VAR Hint Applies No
Type Integer
Default Value 10
Minimum Value 0
Maximum Value 256

This represents the threshold for the number of epochs completely buffered in the event buffer, but
not yet consumed by the binlog injector thread. When this degree of slippage (lag) is exceeded, an
event buffer status message is reported, with BUFFERED EPOCHS OVER_ THRESHCOLD supplied

as the reason (see Section 6.2.3, “Event Buffer Reporting in the Cluster Log”). Slip is increased
when an epoch is received from data nodes and buffered completely in the event buffer; it is
decreased when an epoch is consumed by the binlog injector thread, it is reduced. Empty epochs
are buffered and queued, and so included in this calculation only when this is enabled using the
Ndb: : set Event Buf f er QueueEnpt yEpoch() method from the NDB API.

e ndb_report_thresh_binl og mem usage

Command-Line Format

--ndb-report-thresh-binl og- mrem
usage=#

System Variable

ndb_report _thresh_bi nl og_mem usage

Scope Global
Dynamic Yes
SET_VARHint Applies No
Type Integer
Default Value 10
Minimum Value 0
Maximum Value 10

This is a threshold on the percentage of free memory remaining before reporting binary log status. For
example, a value of 10 (the default) means that if the amount of available memory for receiving binary
log data from the data nodes falls below 10%, a status message is sent to the cluster log.

 ndb_row checksum

System Variable

ndb_row checksum

Scope Global, Session
Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

Traditionally, NDB has created tables with row checksums, which checks for hardware issues at the
expense of performance. Setting ndb_r ow_checksumto O means that row checksums are not used
for new or altered tables, which has a significant impact on performance for all types of queries. This
variable is set to 1 by default, to provide backward-compatible behavior.

280

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

 ndb_schenma_di st _| ock_wait_ti neout

Command-Line Format - - ndb- schena- di st -1 ock-wai t -
ti meout =val ue

Introduced 8.0.18-ndb-8.0.18

System Variable ndb_schema_di st _| ock_wait _tineout

Scope Global

Dynamic Yes

SET_VARHint Applies No

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 1200

Unit seconds

Number of seconds to wait during schema distribution for the metadata lock taken on each SQL node in
order to change its local data dictionary to reflect the DDL statement change. After this time has elapsed,
a warning is returned to the effect that a given SQL node's data dictionary was not updated with the
change. This avoids having the binary logging thread wait an excessive length of time while handling

schema operations.

 ndb_scherma_di st _ti neout

Command-Line Format

--ndb- schemm- di st -ti neout =val ue

Introduced

8.0.16-ndb-8.0.16

System Variable

ndb_schema_di st _ti neout

Scope Global
Dynamic No
SET_VARHint Applies No

Type Integer
Default Value 120
Minimum Value 5
Maximum Value 1200
Unit seconds

Number of seconds to wait before detecting a timeout during schema distribution. This can indicate that
other SQL nodes are experiencing excessive activity, or that they are somehow being prevented from

acquiring necessary resources at this time.

 ndb_schena_di st _upgrade_al | owed

Command-Line Format

- -ndb- schema- di st - upgr ade-
al | owed=val ue

Introduced

8.0.17-ndb-8.0.17

System Variable

ndb_schena_di st _upgrade_al | owed

281

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Scope Global
Dynamic No

SET VAR Hint Applies No
Type Boolean
Default Value true

Allow upgrading of the schema distribution table when connecting to NDB. When true (the default), this
change is deferred until all SQL nodes have been upgraded to the same version of the NDB Cluster

software.

Note

The performance of the schema distribution may be somewhat degraded until the

upgrade has been performed.

* ndb_show foreign_key nock_tabl es

Command-Line Format

- -ndb- show- f or ei gn- key- nock-
t abl es[={ OFF| ON}]

System Variable

ndb_show forei gn_key nock tables

Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Boolean
Default Value OFF

Show the mock tables used by NDB to support f or ei gn_key checks=0. When this is enabled, extra
warnings are shown when creating and dropping the tables. The real (internal) name of the table can be

seen in the output of SHOW CREATE TABLE.

« ndb_slave _conflict _role

Command-Line Format

--ndb-sl ave-conflict-rol exval ue

Deprecated

8.0.23-ndb-8.0.23

System Variable

ndb_sl ave conflict _role

Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Enumeration
Default Value NONE
Valid Values NONE
PRI MARY
SECONDARY

282

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

PASS

Deprecated in NDB 8.0.23, and subject to removal in a future release. Use ndb_conflict_rol e

instead.

 ndb_tabl e_no_I| oggi ng

System Variable

ndb_tabl e _no | oggi ng

Scope Session
Dynamic Yes
SET VAR Hint Applies No
Type Boolean
Default Value OFF

When this variable is set to ON or 1, it causes NDB tables not to be checkpointed to disk. More
specifically, this setting applies to tables which are created or altered using ENG NE NDB when
ndb_tabl e _no | oggi ng is enabled, and continues to apply for the lifetime of the table, even if

ndb_tabl e _no | oggi ng is later changed. Suppose that A, B, C, and D are tables that we create (and
perhaps also alter), and that we also change the setting for ndb_t abl e_no_| oggi ng as shown here:

SET @@ndb_t abl e_no_l oggi ng = 1;

CREATE TABLE A ...

CREATE TABLE B . ..
CREATE TABLE C . ..

ENG NE NDB;

ENG NE MYl SAM
ENG NE MYl SAM

ALTER TABLE B ENG NE NDB;
SET @andb_t abl e_no_l oggi ng = O;

CREATE TABLE D ... ENG NE NDB;
ALTER TABLE C ENG NE NDB;

SET @@ndb_t abl e_no_l oggi ng = 1;

After the previous sequence of events, tables A and B are not checkpointed; A was created with ENG NE

NDB and B was altered to use NDB, both while ndb_t abl e _no_| oggi ng was enabled. However,

tables Cand D are logged; C was altered to use NDB and D was created using ENG NE NDB, both while
ndb_t abl e_no_I| oggi ng was disabled. Setting ndb_t abl e_no_I| oggi ng back to 1 or ON does not

cause table Cor Dto be checkpointed.

Note

ndb_t abl e _no_I| oggi ng has no effect on the creation of NDB table schema
files; to suppress these, use ndb_t abl e_t enpor ar y instead.

e ndb_tabl e_tenporary

System Variable

ndb_t abl e_tenporary

Scope Session
Dynamic Yes
SET VAR Hint Applies No

283

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Type Boolean

Default Value COFF

When set to ON or 1, this variable causes NDB tables not to be written to disk: This means that no table
schema files are created, and that the tables are not logged.

Note

Setting this variable currently has no effect. This is a known issue; see Bug
#34036.

ndb_use copying_alter _table

System Variable ndb_use_copying_al ter_tabl e
Scope Global, Session

Dynamic No

SET VAR Hint Applies No

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations. The
default value is OFF.

ndb_use exact count

System Variable ndb_use_exact _count
Scope Global, Session
Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this type of
query. The default value is OFF, which allows for faster queries overall.

ndb_use transactions

Command-Line Format --ndb-use-transacti ons[={ OFF| ON}]
System Variable ndb_use_transactions

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

You can disable NDB transaction support by setting this variable's values to OFF (not recommended).
The default is ON.

 ndb_version

System Variable ndb_versi on

284

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

Scope Global
Dynamic No
SET VAR Hint Applies No
Type String
Default Value

NDB engine version, as a composite integer.

* ndb_version_string

System Variable

ndb_version_string

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type String

Default Value

NDB engine version in ndb- x. y. z format.

* replica_all ow _batching

Command-Line Format

--replica-all ow bat chi ng[={ OFF| O\}]

Introduced

8.0.26-ndb-8.0.26

System Variable

replica_all ow batching

Scope Global
Dynamic Yes
SET_VAR Hint Applies No
Type Boolean
Default Value (= 8.0.30-ndb-8.0.30) ON
Default Value (< 8.0.29-ndb-8.0.29) OFF

Whether or not batched updates are enabled on NDB Cluster replicas. Beginning with NDB 8.0.26, you
should use repl i ca_al | ow_bat chi ng in place of sl ave_al | ow_bat chi ng, which is deprecated in

that release.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, repl i ca_al | ow_bat chi ng is enabled by default in

NDB 8.0.30 and later.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 8.0, it is present but does nothing. For more information, see Section 7.6, “Starting NDB Cluster

Replication (Single Replication Channel)”.

e ndb_replica_batch_size

Command-Line Format

--ndb-replica-batch-si ze=#

Introduced

8.0.30-ndb-8.0.30

285

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

MySQL Server Options and Variables for NDB Cluster

System Variable ndb_replica_batch_size
Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2147483648

Minimum Value 0

Maximum Value 2147483648

Determines the batch size in bytes used for writes applied on the replica. In NDB 8.0.30 and later, set
this variable rather than the - - ndb- bat ch- si ze option to apply this setting to the replica, exclusive of

any other sessions.

ndb_replica_blob_wite batch _bytes

Command-Line Format

--ndb-replica-bl ob-wite-batch-
byt es=#

Introduced

8.0.30-ndb-8.0.30

System Variable

ndb_replica_blob wite batch bytes

Scope Global
Dynamic Yes
SET_VAR Hint Applies No

Type Integer
Default Value 2147483648
Minimum Value 0

Maximum Value 2147483648

Control the batch write size used for blob data by the replication applier.

Beginning with NDB 8.0.30, you should set this variable rather than the - - ndb- bl ob-wri t e- bat ch-
byt es option to control the blob batch write size on the replica, exclusive of any other sessions. The
reason for this is that, when ndb_replica_bl ob_wite batch_ byt esis not set,the effective blob
batch size (that is, the maximum number of pending bytes to write for blob columns) is determined by the
maximum of the default value of ndb_replica_blob_wite_ batch_bytes and the value set for - -

ndb- bl ob-w i t e- bat ch- byt es.

Setting ndb_replica bl ob_wite batch_bytes to 0 means that NDB imposes no limit on the size

of blob batch writes on the replica.

e server _id_bits

Command-Line Format

--server-id-bits=#

System Variable

server_id bits

Scope Global
Dynamic No
SET VAR Hint Applies No

286

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Type Integer
Default Value 32
Minimum Value 7
Maximum Value 32

This variable indicates the number of least significant bits within the 32-bit ser ver _i d which actually
identify the server. Indicating that the server is actually identified by fewer than 32 bits makes it possible
for some of the remaining bits to be used for other purposes, such as storing user data generated by
applications using the NDB API's Event API within the AnyVal ue of an Qper ati onOpt i ons structure
(NDB Cluster uses the AnyVal ue to store the server ID).

When extracting the effective server ID from ser ver _i d for purposes such as detection of replication
loops, the server ignores the remaining bits. The server i d_bi t s variable is used to mask out any
irrelevant bits of ser ver _i d in the I/O and SQL threads when deciding whether an event should be
ignored based on the server ID.

This data can be read from the binary log by nysql bi nl og, provided that it is run with its own
server i d_bits variable set to 32 (the default).

If the value of ser ver _i d greater than or equal to 2 to the power of server i d_bi ts; otherwise,
nysql d refuses to start.

This system variable is supported only by NDB Cluster. It is not supported in the standard MySQL 8.0
Server.

sl ave_al | ow_bat chi ng

Command-Line Format --slave-al | ow bat chi ng[={ OFF| ON}]
Deprecated 8.0.26-ndb-8.0.26

System Variable sl ave_al | ow _bat chi ng

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (= 8.0.30-ndb-8.0.30) ON

Default Value (< 8.0.29-ndb-8.0.29) OFF

Whether or not batched updates are enabled on NDB Cluster replicas. Beginning with NDB 8.0.26, this
variable is deprecated, and you should use r epl i ca_al | ow_bat chi ng instead.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, repl i ca_al | ow_bat chi ng is ON by default in NDB
8.0.30 and later. Also beginning with NDB 8.0.30, a warning is issued whenever this variable is set to
OFF.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 8.0, it is present but does nothing. For more information, see Section 7.6, “Starting NDB Cluster
Replication (Single Replication Channel)”.

287

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-operationoptions
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

MySQL Server Options and Variables for NDB Cluster

e transaction_al | ow_bat chi ng

System Variable

transaction_al | ow_bat chi ng

Scope Session
Dynamic Yes
SET VAR Hint Applies No
Type Boolean
Default Value OFF

When set to 1 or ON, this variable enables batching of statements within the same transaction. To
use this variable, aut oconmi t must first be disabled by setting it to 0 or OFF; otherwise, setting

transaction_al | ow bat chi ng has no effect.

It is safe to use this variable with transactions that performs writes only, as having it enabled can lead to

reads from the “before” image. You should ensure that any pending transactions are committed (using
an explicit COVM T if desired) before issuing a SELECT.

Important

transaction_al | ow bat chi ng should not be used whenever there is the
possibility that the effects of a given statement depend on the outcome of a
previous statement within the same transaction.

This variable is currently supported for NDB Cluster only.

The system variables in the following list all relate to the ndbi nf o information database.

* ndbi nf o_dat abase

System Variable

ndbi nf o_dat abase

Scope Global
Dynamic No
SET_VARHint Applies No

Type String
Default Value ndbi nf o

Shows the name used for the NDB information database; the default is ndbi nf o. This is a read-only

variable whose value is determined at compile time.

e ndbi nf o_max_bhytes

Command-Line Format

- - ndbi nf o- max- byt es=#

System Variable

ndbi nf o_max_byt es

Scope Global, Session
Dynamic Yes
SET_VARHint Applies No

Type Integer

Default Value 0

288

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Used in testing and debugging only.

* ndbi nfo_max_rows

Command-Line Format

- - ndbi nf o- max-r ows=#

System Variable

ndbi nf o_max_r ows

Scope Global, Session
Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Used in testing and debugging only.

* ndbinfo_offline

System Variable

ndbi nfo_offline

Scope Global
Dynamic Yes
SET VAR Hint Applies No
Type Boolean
Default Value OFF

Place the ndbi nf o database into offline mode, in which tables and views can be opened even when
they do not actually exist, or when they exist but have different definitions in NDB. No rows are returned

from such tables (or views).

* ndbi nf o_show _hi dden

Command-Line Format

- - ndbi nf o- show hi dden[={ OFF| ON}]

System Variable

ndbi nf o_show_hi dden

Scope Global, Session
Dynamic Yes
SET_VARHint Applies No

Type Boolean
Default Value OFF

Valid Values ON

289

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

CFF

Whether or not the ndbi nf o database's underlying internal tables are shown in the nysql client. The
default is OFF.

Note
When ndbi nf o_show_hi dden is enabled, the internal tables are shown

in the ndbi nf o database only; they are not visible in TABLES or other
I NFORVATI ON_SCHENA tables, regardless of the variable's setting.

* ndbinfo_table_prefix

System Variable

ndbi nfo_t abl e_prefix

Scope Global
Dynamic No
SET VAR Hint Applies No
Type String
Default Value ndb$

The prefix used in naming the ndbinfo database's base tables (normally hidden, unless exposed by
setting ndbi nf o_show_hi dden). This is a read-only variable whose default value is ndb$; the prefix

itself is determined at compile time.

* ndbi nfo_version

System Variable

ndbi nf o_versi on

Scope Global
Dynamic No
SET_VAR Hint Applies No
Type String

Default Value

Shows the version of the ndbi nf o engine in use; read-only.
4.3.9.3 NDB Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to NDB Cluster
and the NDB storage engine. For status variables not specific to NDB Cluster, and for general information
on using status variables, see Server Status Variables.

e Handl er _di scover

The MySQL server can ask the NDBCLUSTER storage engine if it knows about a table with a given name.
This is called discovery. Handl er _di scover indicates the number of times that tables have been
discovered using this mechanism.

* Ndb_api _adaptive_send_deferred count

Number of adaptive send calls that were not actually sent.

290

https://dev.mysql.com/doc/refman/8.0/en/information-schema-tables-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _adaptive_send_def erred_count _sessi on
Number of adaptive send calls that were not actually sent.
For more information, see Section 6.13, “{NDB API Statistics Counters and Variables”.
Ndb_api _adaptive_send_deferred_count _replica
Number of adaptive send calls that were not actually sent by this replica.
For more information, see Section 6.13, “{NDB API Statistics Counters and Variables”.
Ndb_api _adaptive_send_deferred_count sl ave

Note

Deprecated in NDB 8.0.23; use
Ndb_api _adaptive_send_deferred_count _repli ca instead.

Number of adaptive send calls that were not actually sent by this replica.
For more information, see Section 6.13, “{NDB API Statistics Counters and Variables”.
Ndb_api _adapti ve_send_f orced_count
Number of adaptive send calls using forced-send sent by this MySQL Server (SQL node).
For more information, see Section 6.13, “{NDB API Statistics Counters and Variables”.
Ndb_api _adaptive_send_forced _count _session
Number of adaptive send calls using forced-send sent in this client session.
For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _adaptive_send forced count _replica
Number of adaptive send calls using forced-send sent by this replica.
For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _adaptive_send forced _count_sl ave

Note

Deprecated in NDB 8.0.23; use
Ndb_api _adaptive_send_forced_count replica instead.

Number of adaptive send calls using forced-send sent by this replica.
For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

Ndb_api adaptive_send_unforced count

Number of adaptive send calls without forced-send sent by this MySQL server (SQL node).

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

291

MySQL Server Options and Variables for NDB Cluster

 Ndb_api _adaptive_send_unforced_count _sessi on

Number of adaptive send calls without forced-send sent in this client session.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _adaptive_send unforced count replica

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _adaptive_send_unforced_count _sl ave

Note

Deprecated in NDB 8.0.23; use
Ndb_api _adapti ve_send_unforced_count _repli ca instead.

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
« Ndb_api _bytes_sent_count _sessi on

Amount of data (in bytes) sent to the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this mysql d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

* Ndb_api _bytes _sent _count _replica
Amount of data (in bytes) sent to the data nodes by this replica.
Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.
For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

* Ndb_api _bytes_sent _count _sl ave

Note

Deprecated in NDB 8.0.23; use Ndb_api _bytes_sent count _replica
instead.

Amount of data (in bytes) sent to the data nodes by this replica.
Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,

this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

292

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

 Ndb_api _bytes_sent _count
Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _bytes received count session
Amount of data (in bytes) received from the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this mysql d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _bytes_received_count _replica
Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
 Ndb_api _bytes_recei ved_count _sl ave
Note

Deprecated in NDB 8.0.23; use Ndb_api _bytes_recei ved_count _replica
instead.

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
 Ndb_api _bytes_recei ved_count
Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
» Ndb_api _event data count injector
The number of row change events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

293

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _event data_count
The number of row change events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _event nondat a_count _i nj ect or
The number of events received, other than row change events, by the NDB binary log injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _event _nondat a_count
The number of events received, other than row change events, by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _event bytes count i njector
The number of bytes of events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _event bytes_count
The number of bytes of events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

Ndb_api _pk_op_count _sessi on

The number of operations in this client session based on or using primary keys. This includes operations
on blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary

key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this mysql d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

294

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

 Ndb_api _pk_op_count _replica

The number of operations by this replica based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
 Ndb_api _pk_op_count _sl ave
Note
Deprecated in NDB 8.0.23; use Ndb_api _pk_op_count repli ca instead.
The number of operations by this replica based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary

key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

* Ndb_api _pk_op_count
The number of operations by this MySQL Server (SQL node) based on or using primary keys. This
includes operations on blob tables, implicit unlock operations, and auto-increment operations, as well as

user-visible primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
 Ndb_api _pruned_scan_count _sessi on
The number of scans in this client session that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this mysql d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _pruned_scan_count _replica
The number of scans by this replica that have been pruned to a single partition.
Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it

is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

295

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

* Ndb_api _pruned_scan_count _sl ave
Note

Deprecated in NDB 8.0.23; use Ndb_api _pruned_scan_count _replica
instead.

The number of scans by this replica that have been pruned to a single partition.
Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.
For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

* Ndb_api _pruned_scan_count

The number of scans by this MySQL Server (SQL node) that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _range_scan_count _sessi on
The number of range scans that have been started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqgl d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

« Ndb_api _range_scan_count _replica
The number of range scans that have been started by this replica.
Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.
For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

* Ndb_api _range_scan_count _sl ave

Note

Deprecated in NDB 8.0.23; use Ndb_api _range_scan_count _replica
instead.

The number of range scans that have been started by this replica.
Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it

is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

296

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

 Ndb_api _range_scan_count
The number of range scans that have been started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api read_row count session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unigue key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this nysql d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
* Ndb_api _read_row count _replica

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

« Ndb_api _read_row count _sl ave

Note
Deprecated in NDB 8.0.23; use Ndb_api _read_row count repl i ca instead.

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
 Ndb_api _read_row _count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

You should be aware that this value may not be completely accurate with regard to rows read by
SELECT COUNT(*) queries, due to the fact that, in this case, the MySQL server actually reads
pseudo-rows in the form [t abl e fragnment |D]: [nunber of rows in fragnent] and
sums the rows per fragment for all fragments in the table to derive an estimated count for all rows.
Ndb_api _read_r ow_count uses this estimate and not the actual number of rows in the table.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

297

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _scan_bat ch_count sessi on

The number of batches of rows received in this client session. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
relates to the current session only, and is not affected by any other clients of this nysql d.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _scan_bat ch_count _replica

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results from a
single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _scan_bat ch_count _sl ave
Note

Deprecated in NDB 8.0.23; use Ndb_api _scan_batch_count replica
instead.

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results from a
single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
Ndb_api _scan_bat ch_count

The number of batches of rows received by this MySQL Server (SQL node). 1 batch is defined as 1 set
of scan results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSI ON STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

298

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
h