Advancing Open Science
for more than 25 years
MDPI is a pioneer in scholarly open access publishing
and has supported academic communities since 1996.
Article
Development of 3D ZnO-CNT Support Structures Impregnated with Inorganic Salts
Membranes 2022, 12(6), 588; https://doi.org/10.3390/membranes12060588 (registering DOI) - 31 May 2022
Abstract
Carbon-based materials are promising candidates for enhancing thermal properties of phase change materials (PCMs) without lowering its energy storage capacity. Nowadays, researchers are trying to find a proper porous structure as PCMs support for thermal energy storage applications. In this context, the main [...] Read more.
Carbon-based materials are promising candidates for enhancing thermal properties of phase change materials (PCMs) without lowering its energy storage capacity. Nowadays, researchers are trying to find a proper porous structure as PCMs support for thermal energy storage applications. In this context, the main novelty of this paper consists in using a ZnO-CNT-based nanocomposite powder, prepared by an own hydrothermal method at high pressure, to obtain porous 3D printed support structures with embedding capacity of PCMs. The morphology of 3D structures, before and after impregnation with three PCMs inorganic salts (NaNO3, KNO3 and NaNO3:KNO3 mixture (1:1 vol% saturated solution) was investigated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). For structure impregnated with nitrates mixture, SEM cross-section morphology suggest that the inorganic salts impregnation started into micropores, continuing with the covering of the 3D structure surface and epitaxial growing of micro/nanostructured crystals, which led to reducing the distance between the structural strands. The variation of melting/crystallization points and associated enthalpies of impregnated PCMs and their stability during five repeated thermal cycles were studied by differential scanning calorimetry (DSC) and simultaneous DSC-thermogravimetry (DSC-TGA). From the second heating-cooling cycle, the 3D structures impregnated with NaNO3 and NaNO3-KNO3 mixture are thermally stable. Full article
(This article belongs to the Special Issue Multifunctional Hybrid Nanostructured Membranes)
Communication
A Ratiometric Selective Fluorescent Probe Derived from Pyrene for Cu2+ Detection
Chemosensors 2022, 10(6), 207; https://doi.org/10.3390/chemosensors10060207 - 31 May 2022
Abstract
A novel ratiometric Cu2+-selective probe was rationally constructed based on pyrene derivative. Compared to other tested metal ions, the probe presented the selective recognition for Cu2+ which could be detected by a significant turn-on fluorescent response at 393 nm and [...] Read more.
A novel ratiometric Cu2+-selective probe was rationally constructed based on pyrene derivative. Compared to other tested metal ions, the probe presented the selective recognition for Cu2+ which could be detected by a significant turn-on fluorescent response at 393 nm and 415 nm. Under the optimized conditions, a detection limit of 0.16 μM Cu2+ in aqueous media was found. Besides this, a 1:1 metal–ligand complex was confirmed by MS spectra and Job’s plot experiment, and the binding mode was also studied by 1H NMR experiment. Meanwhile, the fluorescence imaging in living cells was performed to detect Cu2+ with satisfactory results. Full article
(This article belongs to the Special Issue Fluorescent Sensors for Disease Diagnosis and Therapy)
Review
At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions
Cancers 2022, 14(11), 2745; https://doi.org/10.3390/cancers14112745 (registering DOI) - 31 May 2022
Abstract
When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced [...] Read more.
When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer. Full article
(This article belongs to the Section Molecular Cancer Biology)
Article
SlideSim: 3D Landslide Displacement Monitoring through a Physics-Based Simulation Approach to Self-Supervised Learning
Remote Sens. 2022, 14(11), 2644; https://doi.org/10.3390/rs14112644 (registering DOI) - 31 May 2022
Abstract
Displacement monitoring is a critical step to understand, manage, and mitigate potential landside hazard and risk. Remote sensing technology is increasingly used in landslide monitoring. While significant advances in data collection and processing have occurred, much of the analysis of remotely-sensed data applied [...] Read more.
Displacement monitoring is a critical step to understand, manage, and mitigate potential landside hazard and risk. Remote sensing technology is increasingly used in landslide monitoring. While significant advances in data collection and processing have occurred, much of the analysis of remotely-sensed data applied to landslides is still relatively simplistic, particularly for landslides that are slow moving and have not yet “failed”. To this end, this work presents a novel approach, SlideSim, which trains an optical flow predictor for the purpose of mapping 3D landslide displacement using sequential DEM rasters. SlideSim is capable of automated, self-supervised learning by building a synthetic dataset of displacement landslide DEM rasters and accompanying label data in the form of u/v pixel offset flow grids. The effectiveness, applicability, and reliability of SlideSim for landslide displacement monitoring is demonstrated with real-world data collected at a landslide on the Southern Oregon Coast, U.S.A. Results are compared with a detailed ground truth dataset with an End Point Error RMSE = 0.026 m. The sensitivity of SlideSim to the input DEM cell size, representation (hillshade, slope map, etc.), and data sources (e.g., TLS vs. UAS SfM) are rigorously evaluated. SlideSim is also compared to diverse methodologies from the literature to highlight the gap that SlideSim fills amongst current state-of-the-art approaches. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Geological Engineering)
Article
Life Cycle Assessment Perspective for Sectoral Adaptation to Climate Change: Environmental Impact Assessment of Pig Production
Land 2022, 11(6), 827; https://doi.org/10.3390/land11060827 (registering DOI) - 31 May 2022
Abstract
Growing demand for sustainably driven production systems, especially pork, requires a holistic or system thinking approach. Life Cycle Thinking (LCT) offers a robust methodological background as one of the approaches to achieving system analysis for a product along its lifecycle. On the other [...] Read more.
Growing demand for sustainably driven production systems, especially pork, requires a holistic or system thinking approach. Life Cycle Thinking (LCT) offers a robust methodological background as one of the approaches to achieving system analysis for a product along its lifecycle. On the other hand, Life Cycle Assessment (LCA) can perform state-of-art system analysis characterising its sustainability fronts as a compelling set of tools. Pork, as the most consumed meat across Europe (circa 34 kg per capita per year), compounded with the sector’s contribution to global greenhouse gases (GHG) doubling over the past decade necessitated this research. Our objective was to map hotspots along the value chain and recommend the best available practices for realising the sectoral contribution to carbon neutrality and climate change adaptation. To achieve the objective, we compared organic and conventional production systems by basing our analysis on Recipe midpoint 2016 (H) V1.13 as implemented in OpenLCA 1.10.2 using AGRIBALYSE® 3.0 datasets for eleven indicators. We found that producing 1 kg of pig meat under an organic production system had almost double the environmental impact of conventional systems for land use, water consumption, acidification, and ecotoxicity. Feed production and manure management are the significant hotspots accounting for over 90% of environmental impacts associated with 1 kg pig meat Liveweight (LW) production. Similarly, efficient conventional systems were less harmful to the environment in per capita unit of production and land use compared with organic ones in ten out of the eleven impacts evaluated. Implementing increased efficiency, reduced use of inputs for feed production, and innovative manure management practices with technological potential were some of the best practices the research recommended to realise minimal impacts on the identified hotspots. Full article
(This article belongs to the Special Issue Climate-Smart Agriculture and Rural Sustainability)
Review
Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink
Polymers 2022, 14(11), 2260; https://doi.org/10.3390/polym14112260 (registering DOI) - 31 May 2022
Abstract
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further [...] Read more.
Cellulose-based biodegradable hydrogel proves to be excellently suitable for the medical and water treatment industry based on the expressed properties such as its flexible structure and broad compatibility. Moreover, their potential to provide excellent waste management from the unutilized plant has triggered further study on the advanced biomaterial applications. To extend the use of cellulose-based hydrogel, additive manufacturing is a suitable technique for hydrogel fabrication in complex designs. Cellulose-based biomaterial ink used in 3D bioprinting can be further used for tissue engineering, drug delivery, protein study, microalgae, bacteria, and cell immobilization. This review includes a discussion on the techniques available for additive manufacturing, bio-based material, and the formation of a cellulose-based hydrogel. Full article
Article
Agronomic, Genetic and Quantitative Trait Characterization of Nightshade Accessions
Plants 2022, 11(11), 1489; https://doi.org/10.3390/plants11111489 (registering DOI) - 31 May 2022
Abstract
Nightshades are among many underutilized and neglected African indigenous leafy vegetable (AILVs) species, and if adequately exploited, they could improve food, nutrition and income among the rural population. Morphological characterization of available accessions is key for the breeder to identify and select superior [...] Read more.
Nightshades are among many underutilized and neglected African indigenous leafy vegetable (AILVs) species, and if adequately exploited, they could improve food, nutrition and income among the rural population. Morphological characterization of available accessions is key for the breeder to identify and select superior accessions as parents for utilization in breeding programs. Fifteen accessions of nightshade were evaluated for morpho-agronomic variation in an open field trial implemented in a randomized complete block design with three replicates across the two growing seasons. The accessions exhibited significant (p < 0.0001) differences in all quantitative traits. The data analysis showed that Scabrum (805.30 g/plant) followed by Ncampus (718.60 g/plant) produced the highest fresh leaf yield; for fruit fresh yield, the accession NigSN18 (1782.00 g/plant) recorded the highest, followed by ManTown (1507.90 g/plant). The accession N5547 had the tallest plants (66.83 cm), followed by accession Timbali (62.31 cm). The first four principal components (PCs) accounted for 86.82% of the total variation, which had an eigenvalue greater than 1. The cluster analysis grouped the accessions into 14 clusters based on their genetic similarity. Results of genetic studies revealed that phenotypic coefficient variation was higher than genotypic coefficient of variation for all parameters evaluated, indicating the environmental influence on the expression of these traits. Both GCV and PCV were higher for the largest leaf area, moderate to high for the remaining characters and low for leaf fresh yield per plant. High heritability coupled with genetic advance as a mean percentage (H2-70.59%, GAM-142. 4%), indicating the presence of additive gene effects. Hence, selection can be employed for the improvement of this trait in nightshades. The study revealed sufficient genetic variability in the nightshade accessions, which can be exploited for crop improvement. Full article
(This article belongs to the Special Issue Vegetables Breeding in South Africa)
Article
Towards Bioprospection of Commercial Materials of Mentha spicata L. Using a Combined Strategy of Metabolomics and Biological Activity Analyses
Molecules 2022, 27(11), 3559; https://doi.org/10.3390/molecules27113559 (registering DOI) - 31 May 2022
Abstract
Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint [...] Read more.
Spearmint (Mentha spicata L.) has been widely studied for its diversity of compounds for product generation. However, studies describing the chemical and biological characteristics of commercial spearmint materials from different origins are scarce. For this reason, this research aimed to bioprospecting spearmint from three origins: Colombia (Col), Mexico (Mex), and Egypt (Eg). We performed a biological activity analysis, such as FRAP, DPPH, and ABTS, inhibition potential of S. pyogenes, K. pneumoniae, E. coli, P. aeuroginosa, S. aureus, S aureus Methicillin-Resistant, and E. faecalis. Furthermore, we performed chemical assays, such as total polyphenol and rosmarinic acid, and untargeted metabolomics via HPLC-MS/MS. Finally, we developed a causality analysis to integrate biological activities with chemical analyses. We found significant differences between the samples for the total polyphenol and rosmarinic acid contents, FRAP, and inhibition analyses for Methicillin-Resistant S. aureus and E. faecalis. Also, clear metabolic differentiation was observed among the three commercial materials evaluated. These results allow us to propose data-driven uses for the three spearmint materials available in current markets. Full article
(This article belongs to the Special Issue Food Bioactive Compounds: Chemical Challenges and Opportunities)
Review
Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review
Membranes 2022, 12(6), 589; https://doi.org/10.3390/membranes12060589 (registering DOI) - 31 May 2022
Abstract
Carbon nanotube (CNT) is a prominent material for gas separation due to its inherent smoothness of walls, allowing rapid transport of gases compared to other inorganic fillers. It also possesses high mechanical strength, enabling membranes to operate at high pressure. Although it has [...] Read more.
Carbon nanotube (CNT) is a prominent material for gas separation due to its inherent smoothness of walls, allowing rapid transport of gases compared to other inorganic fillers. It also possesses high mechanical strength, enabling membranes to operate at high pressure. Although it has superior properties compared to other inorganic fillers, preparation of CNTs into a polymer matrix remains challenging due to the strong van der Waals forces of CNTs, which lead to agglomeration of CNTs. To utilize the full potential of CNTs, proper dispersion of CNTs must be addressed. In this paper, methods to improve the dispersion of CNTs using functionalization methods were discussed. Fabrication techniques for CNT mixed-matrix membrane (MMM) nanocomposites and their impact on gas separation performance were compared. This paper also reviewed the applications and potential of CNT MMMs in gas separation. Full article
(This article belongs to the Section Membrane Applications)
Article
Assessing the Tsetse Fly Microbiome Composition and the Potential Association of Some Bacteria Taxa with Trypanosome Establishment
Microorganisms 2022, 10(6), 1141; https://doi.org/10.3390/microorganisms10061141 (registering DOI) - 31 May 2022
Abstract
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations [...] Read more.
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies. Full article
(This article belongs to the Special Issue Microbiota in Insects)
Article
A Hybrid Algorithm for Noise Suppression of MEMS Accelerometer Based on the Improved VMD and TFPF
Micromachines 2022, 13(6), 891; https://doi.org/10.3390/mi13060891 (registering DOI) - 31 May 2022
Abstract
High-G MEMS accelerometer (HGMA) is a new type of sensor; it has been widely used in high precision measurement and control fields. Inevitably, the accelerometer output signal contains random noise caused by the accelerometer itself, the hardware circuit and other aspects. In order [...] Read more.
High-G MEMS accelerometer (HGMA) is a new type of sensor; it has been widely used in high precision measurement and control fields. Inevitably, the accelerometer output signal contains random noise caused by the accelerometer itself, the hardware circuit and other aspects. In order to denoise the HGMA’s output signal to improve the measurement accuracy, the improved VMD and TFPF hybrid denoising algorithm is proposed, which combines variational modal decomposition (VMD) and time-frequency peak filtering (TFPF). Firstly, VMD was optimized by the multi-objective particle swarm optimization (MOPSO), then the best decomposition parameters [kbest,abest] could be obtained, in which the permutation entropy (PE) and fuzzy entropy (FE) were selected for MOPSO as fitness functions. Secondly, the accelerometer voltage output signals were decomposed by the improved VMD, then some intrinsic mode functions (IMFs) were achieved. Thirdly, sample entropy (SE) was introduced to classify those IMFs into information-dominated IMFs or noise-dominated IMFs. Then, the short-window TFPF was selected for denoising information-dominated IMFs, while the long-window TFPF was selected for denoising noise-dominated IMFs, which can make denoising more targeted. After reconstruction, we obtained the accelerometer denoising signal. The denoising results of different denoising algorithms in the time and frequency domains were compared, and SNR and RMSE were taken as denoising indicators. The improved VMD and TFPF denoising method has a smaller signal distortion and stronger denoising ability, so it can be adopted to denoise the output signal of the High-G MEMS accelerometer to improve its accuracy. Full article
(This article belongs to the Special Issue MEMS Inertial Sensors)
Article
Identifying Spatiotemporal Heterogeneity of PM2.5 Concentrations and the Key Influencing Factors in the Middle and Lower Reaches of the Yellow River
Remote Sens. 2022, 14(11), 2643; https://doi.org/10.3390/rs14112643 (registering DOI) - 31 May 2022
Abstract
Fine particulate matter (PM2.5) is a harmful air pollutant that seriously affects public health and sustainable urban development. Previous studies analyzed the spatial pattern and driving factors of PM2.5 concentrations in different regions. However, the spatiotemporal heterogeneity of various influencing [...] Read more.
Fine particulate matter (PM2.5) is a harmful air pollutant that seriously affects public health and sustainable urban development. Previous studies analyzed the spatial pattern and driving factors of PM2.5 concentrations in different regions. However, the spatiotemporal heterogeneity of various influencing factors on PM2.5 was ignored. This study applies the geographically and temporally weighted regression (GTWR) model and geographic information system (GIS) analysis methods to investigate the spatiotemporal heterogeneity of PM2.5 concentrations and the influencing factors in the middle and lower reaches of the Yellow River from 2000 to 2017. The findings indicate that: (1) the annual average of PM2.5 concentrations in the middle and lower reaches of the Yellow River show an overall trend of first rising and then decreasing from 2000 to 2017. In addition, there are significant differences in inter-province PM2.5 pollution in the study area, the PM2.5 concentrations of Tianjin City, Shandong Province, and Henan Province were far higher than the overall mean value of the study area. (2) PM2.5 concentrations in western cities showed a declining trend, while it had a gradually rising trend in the middle and eastern cities of the study area. Meanwhile, the PM2.5 pollution showed the characteristics of path dependence and region locking. (3) the PM2.5 concentrations had significant spatial agglomeration characteristics from 2000 to 2017. The “High-High (H-H)” clusters were mainly concentrated in the southern Hebei Province and the northern Henan Province, and the “Low-Low (L-L)” clusters were concentrated in northwest marginal cities in the study area. (4) The influencing factors of PM2.5 have significant spatiotemporal non-stationary characteristics, and there are obvious differences in the direction and intensity of socio-economic and natural factors. Overall, the variable of temperature is one of the most important natural conditions to play a positive impact on PM2.5, while elevation makes a strong negative impact on PM2.5. Car ownership and population density are the main socio-economic influencing factors which make a positive effect on PM2.5, while the variable of foreign direct investment (FDI) plays a strong negative effect on PM2.5. The results of this study are useful for understanding the spatiotemporal distribution characteristics of PM2.5 concentrations and formulating policies to alleviate haze pollution by policymakers in the Yellow River Basin. Full article
(This article belongs to the Special Issue Remote Sensing of Interaction between Human and Natural Ecosystem)
Article
Ultrasound-Assisted Extraction of Nannochloropsis oculata with Ethanol and Betaine: 1,2-Propanediol Eutectic Solvent for Antioxidant Pigment-Rich Extracts Retaining Nutritious the Residual Biomass
Antioxidants 2022, 11(6), 1103; https://doi.org/10.3390/antiox11061103 (registering DOI) - 31 May 2022
Abstract
The aim of this study was the development of an efficient “green” extraction method of Nannochloropsis oculata to produce antioxidant extracts and nutritious residual biomass. Twenty-one extraction methods were evaluated by measuring the reactivity with the Folin–Ciocalteu reagent: ultrasonication or maceration at different [...] Read more.
The aim of this study was the development of an efficient “green” extraction method of Nannochloropsis oculata to produce antioxidant extracts and nutritious residual biomass. Twenty-one extraction methods were evaluated by measuring the reactivity with the Folin–Ciocalteu reagent: ultrasonication or maceration at different temperatures with different organic solvents, extraction at different pH values, enzyme-assisted extraction, encapsulation with β-cyclodextrin, and the use of natural deep eutectic solvents. Ultrasound-assisted extraction with ethanol or betaine: 1,2-propanediol in a molar ratio of 2:5 (BP) had optimal extractive capacity. Both extracts were evaluated with antioxidant assays and the ethanol extract exhibited significantly higher (at least twofold) values. The determination of carotenoids by LC-MS and HPLC-DAD revealed the dominance of violaxanthin and antheraxanthin and their fourfold higher concentrations in the ethanol extract. The 1H-NMR characterization of the ethanol extract confirmed the results of the colorimetric and chromatographic assays. The microalgal biomass was characterized before and after the extraction in terms of humidity, ash, carbohydrates, proteins, chlorophyll-a, carotenoids, and lipids; the identity and content of the latter were determined with gas chromatography. BP caused a smaller depletion of the lipids from the biomass compared to ethanol, but proteins, carbohydrates, and ash were at a higher content in the biomass obtained after ethanol extraction, whereas the biomass was dry and easy to handle. Although further optimization may take place for the scale-up of those procedures, our study paves the way for a green strategy for the valorization of microalgae in cosmetics without generating waste, since the remaining biomass can be used for aquafeed. Full article
Article
Influence of the Web Formation of a Basic Layer of Medical Textiles on Their Functionality
Polymers 2022, 14(11), 2258; https://doi.org/10.3390/polym14112258 (registering DOI) - 31 May 2022
Abstract
The aim of the present study was to determine the influence of the spunbond process and the meltblown process, as well as various combinations of the two processes, on the functional performance of layered nonwovens for medical purposes. In the present study, eight [...] Read more.
The aim of the present study was to determine the influence of the spunbond process and the meltblown process, as well as various combinations of the two processes, on the functional performance of layered nonwovens for medical purposes. In the present study, eight samples used in the medical field, mainly for medical masks, were analysed. The samples studied were laminated nonwovens produced by the spunbond and meltblown processes, and combinations of spunbond and meltblown processes. In order to determine the influence of the technological process used to produce a base layer of nonwoven fabrics on their functionality, measurements of tensile strength and extension, water vapour permeability, air permeability, porosity, and thermal conductivity were performed. In addition, the structural characteristics of selected samples were analysed, such as fibre diameter, thickness, mass, raw material composition, and surface openness. The aim of the present study was to find the optimal combination of spunbond and meltblown processes for medical textiles. Based on the research results, we can conclude that the five-layer composite in which three layers are made by spunbond (S) and two layers are made by meltblown (M) in combination as SSMMS from PP fibres has optimal air permeability, filtration of pollutants passing through a protective mask, water vapour permeability and thermal conductivity, and is optimal for use as a multilayer nonwoven fabric for medical masks. Multilayer SSMMS composites also have a lower weight, resulting in less energy and time required for recycling such textiles. Full article
(This article belongs to the Section Polymer Applications)
Article
High-Energy Long-Lived Emitting Mixed Excitons in Homopolymeric Adenine-Thymine DNA Duplexes
Molecules 2022, 27(11), 3558; https://doi.org/10.3390/molecules27113558 (registering DOI) - 31 May 2022
Abstract
The publication deals with polymeric pA·pT and oligomeric A20·T20 DNA duplexes whose fluorescence is studied by time-correlated single photon counting. It is shown that their emission on the nanosecond timescale is largely dominated by high-energy components peaking at a wavelength [...] Read more.
The publication deals with polymeric pA·pT and oligomeric A20·T20 DNA duplexes whose fluorescence is studied by time-correlated single photon counting. It is shown that their emission on the nanosecond timescale is largely dominated by high-energy components peaking at a wavelength shorter than 305 nm. Because of their anisotropy (0.02) and their sensitivity to base stacking, modulated by the duplex size and the ionic strength of the solution, these components are attributed to mixed ππ*/charge transfer excitons. As high-energy long-lived excited states may be responsible for photochemical reactions, their identification via theoretical studies is an important challenge. Full article
Article
Implementation of ANN-Based Auto-Adjustable for a Pneumatic Servo System Embedded on FPGA
Micromachines 2022, 13(6), 890; https://doi.org/10.3390/mi13060890 (registering DOI) - 31 May 2022
Abstract
Artificial intelligence techniques for pneumatic robot manipulators have become of deep interest in industrial applications, such as non-high voltage environments, clean operations, and high power-to-weight ratio tasks. The principal advantages of this type of actuator are the implementation of clean energies, low cost, [...] Read more.
Artificial intelligence techniques for pneumatic robot manipulators have become of deep interest in industrial applications, such as non-high voltage environments, clean operations, and high power-to-weight ratio tasks. The principal advantages of this type of actuator are the implementation of clean energies, low cost, and easy maintenance. The disadvantages of working with pneumatic actuators are that they have non-linear characteristics. This paper proposes an intelligent controller embedded in a programmable logic device to minimize the non-linearities of the air behavior into a 3-degrees-of-freedom robot with pneumatic actuators. In this case, the device is suitable due to several electric valves, direct current motors signals, automatic controllers, and several neural networks. For every degree of freedom, three neurons adjust the gains for each controller. The learning process is constantly tuning the gain value to reach the minimum of the mean square error. Results plot a more appropriate behavior for a transitive time when the neurons work with the automatic controllers with a minimum mean error of ±1.2 mm. Full article
(This article belongs to the Special Issue Artificial Intelligence Integration with Micro-Nano Systems)
Article
Research on Micro-Fault Detection and Multiple-Fault Isolation for Gas Sensor Arrays Based on Serial Principal Component Analysis
Electronics 2022, 11(11), 1755; https://doi.org/10.3390/electronics11111755 (registering DOI) - 31 May 2022
Abstract
Machine learning algorithms play an important role in fault detection and fault diagnosis of gas sensor arrays. Because the gas sensor array will see stability degradation and a shift in output signal amplitude under long-term operation, it is very important to detect the [...] Read more.
Machine learning algorithms play an important role in fault detection and fault diagnosis of gas sensor arrays. Because the gas sensor array will see stability degradation and a shift in output signal amplitude under long-term operation, it is very important to detect the abnormal output signal of the gas sensor array in time and achieve accurate fault location. In order to solve the problem of low detection accuracy of micro-faults in gas sensor arrays, this paper adopts the serial principal component analysis (SPCA) method, which combines the advantages of principal component analysis (PCA) in the linear part and the advantages of kernel principal component analysis (KPCA) in the nonlinear part. The experimental results show that this method is more sensitive to micro-faults and has better fault detection accuracy than the fault detection methods of PCA and KPCA. In addition, in order to solve the current problem of low accuracy of multiple-fault isolation, a SPCA-based reconstruction contribution fault isolation method is proposed in this paper. The experimental results show that this method has higher fault isolation accuracy than the method based on contribution graph. Full article
(This article belongs to the Section Artificial Intelligence)
Article
P2X Purinergic Receptors Are Multisensory Detectors for Micro-Environmental Stimuli That Control Migration of Tumoral Endothelium
Cancers 2022, 14(11), 2743; https://doi.org/10.3390/cancers14112743 (registering DOI) - 31 May 2022
Abstract
The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory [...] Read more.
The tumoral microenvironment often displays peculiar features, including accumulation of extracellular ATP, hypoxia, low pH-acidosis, as well as an imbalance in zinc (Zn2+) and calcium (Ca2+). We previously reported the ability of some purinergic agonists to exert an anti-migratory activity on tumor-derived human endothelial cells (TEC) only when applied at a high concentration. They also trigger calcium signals associated with release from intracellular stores and calcium entry from the external medium. Here, we provide evidence that high concentrations of BzATP (100 µM), a potent agonist of P2X receptors, decrease migration in TEC from different tumors, but not in normal microvascular ECs (HMEC). The same agonist evokes a calcium increase in TEC from the breast and kidney, as well as in HMEC, but not in TEC from the prostate, suggesting that the intracellular pathways responsible for the P2X-induced impairment of TEC migration could vary among different tumors. The calcium signal is mainly due to a long-lasting calcium entry from outside and is strictly dependent on the presence of the receptor occupancy. Low pH, as well as high extracellular Zn2+ and Ca2+, interfere with the response, a distinctive feature typically found in some P2X purinergic receptors. This study reveals that a BzATP-sensitive pathway impairs the migration of endothelial cells from different tumors through mechanisms finely tuned by environmental factors. Full article
Article
Remote Sensing of Instantaneous Drought Stress at Canopy Level Using Sun-Induced Chlorophyll Fluorescence and Canopy Reflectance
Remote Sens. 2022, 14(11), 2642; https://doi.org/10.3390/rs14112642 (registering DOI) - 31 May 2022
Abstract
Climate change amplifies the intensity and occurrence of dry periods leading to drought stress in vegetation. For monitoring vegetation stresses, sun-induced chlorophyll fluorescence (SIF) observations are a potential game-changer, as the SIF emission is mechanistically coupled to photosynthetic activity. Yet, the benefit of [...] Read more.
Climate change amplifies the intensity and occurrence of dry periods leading to drought stress in vegetation. For monitoring vegetation stresses, sun-induced chlorophyll fluorescence (SIF) observations are a potential game-changer, as the SIF emission is mechanistically coupled to photosynthetic activity. Yet, the benefit of SIF for drought stress monitoring is not yet understood. This paper analyses the impact of drought stress on canopy-scale SIF emission and surface reflectance over a lettuce and mustard stand with continuous field spectrometer measurements. Here, the SIF measurements are linked to the plant’s photosynthetic efficiency, whereas the surface reflectance can be used to monitor the canopy structure. The mustard canopy showed a reduction in the biochemical component of its SIF emission (the fluorescence emission efficiency at 760 nm—ϵ760) as a reaction to drought stress, whereas its structural component (the Fluorescence Correction Vegetation Index—FCVI) barely showed a reaction. The lettuce canopy showed both an increase in the variability of its surface reflectance at a sub-daily scale and a decrease in ϵ760 during a drought stress event. These reactions occurred simultaneously, suggesting that sun-induced chlorophyll fluorescence and reflectance-based indices sensitive to the canopy structure provide complementary information. The intensity of these reactions depend on both the soil water availability and the atmospheric water demand. This paper highlights the potential for SIF from the upcoming FLuorescence EXplorer (FLEX) satellite to provide a unique insight on the plant’s water status. At the same time, data on the canopy reflectance with a sub-daily temporal resolution are a promising additional stress indicator for certain species. Full article
Article
Quebracho Tannin Bio-Based Adhesives for Plywood
Polymers 2022, 14(11), 2257; https://doi.org/10.3390/polym14112257 (registering DOI) - 31 May 2022
Abstract
Wood-based products are traditionally bonded with synthetic adhesives. Resources availability and ecological concerns have drawn attention to bio-based sources. The use of tannin-based adhesives for engineered wood products has been known for decades, however, these formulations were hardly used for the gluing of [...] Read more.
Wood-based products are traditionally bonded with synthetic adhesives. Resources availability and ecological concerns have drawn attention to bio-based sources. The use of tannin-based adhesives for engineered wood products has been known for decades, however, these formulations were hardly used for the gluing of solid wood because their rigidity involved low performance. In this work, a completely bio-based formulation consisting of Quebracho (Schinopsis balancae) extract and furfural is characterized in terms of viscosity, gel time, and FT-IR spectroscopy. Further, the usability as an adhesive for beech (Fagus sylvatica) plywood with regard to press parameters (time and temperature) and its influence on physical (density and thickness) and mechanical properties (modulus of elasticity, modulus of rupture and tensile shear strength) were determined. These polyphenolic adhesives presented non-Newtonian behavior but still good spreading at room temperature as well as evident signs of crosslinking when exposed to 100 °C. Within the press temperature, a range of 125 °C to 140 °C gained suitable results with regard to mechanical properties. The modulus of elasticity of five layered 10 mm beech plywood ranged between 9,600 N/mm2 and 11,600 N/mm2, respectively, with 66 N/mm2 to 100 N/mm2 for the modulus of rupture. The dry state tensile shear strength of ~2.2 N/mm2 matched with other tannin-based formulations, but showed delamination after 24 h of water storage. The proposed quebracho tannin-furfural formulation can be a bio-based alternative adhesive for industrial applicability for special plywood products in a dry environment, and it offers new possibilities in terms of recyclability. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials II)
Article
Electro-Fenton-Based Technologies for Selectively Degrading Antibiotics in Aqueous Media
Catalysts 2022, 12(6), 602; https://doi.org/10.3390/catal12060602 (registering DOI) - 31 May 2022
Abstract
The viability of the Electro-Fenton (EF) process in the selective degradation of penicillin G (PenG) in complex solutions has been studied. The role of the anode material (boron-doped diamond (BDD) or mixed metal oxide (MMO)) and the cathode 3D support (foam or mesh), [...] Read more.
The viability of the Electro-Fenton (EF) process in the selective degradation of penicillin G (PenG) in complex solutions has been studied. The role of the anode material (boron-doped diamond (BDD) or mixed metal oxide (MMO)) and the cathode 3D support (foam or mesh), as well as the synergistic effect of UVC light irradiation (photoelectron-Fenton, PEF), have been evaluated. The results show that Pen G can be efficiently and selectively removed by EF, obtaining higher PenG removal rates when using the BDD anode (100%) than when using the MMO anode (75.5%). Additionally, mineralization is not favored under the experimental conditions tested (pH 3, 5 mA cm−2), since both aromatic and carboxylic acids accumulate in the reaction system as final products. In this regard, the EF-treated solution presents a high biological oxygen demand and a low percentage of Vibrio fischeri inhibition, which leads to high biodegradability and low toxicity of this final effluent. Furthermore, the combination with UVC radiation in the PEF process shows a clear synergistic effect on the degradation of penicillin G: 166.67% and 83.18% using MMO and BBD anodes, respectively. The specific energy required to attain the complete removal of PenG and high inhibition of the antibiotic effect is less than 0.05 Ah dm−3. This confirms that PEF can be efficiently used as a pretreatment of conventional wastewater treatment plants to decrease the chemical risk of complex solutions polluted with antibiotics. Full article
(This article belongs to the Special Issue Photo/Electrocatalysis for Wastewater Treatment)
Article
Extracellular Vesicle-Based Bronchoalveolar Lavage Fluid Liquid Biopsy for EGFR Mutation Testing in Advanced Non-Squamous NSCLC
Cancers 2022, 14(11), 2744; https://doi.org/10.3390/cancers14112744 (registering DOI) - 31 May 2022
Abstract
To overcome the limitations of the tissue biopsy and plasma cfDNA liquid biopsy, we performed the EV-based BALF liquid biopsy of 224 newly diagnosed stage III-IV NSCLC patients and compared it with tissue genotyping and 110 plasma liquid biopsies. Isolation of EVs from [...] Read more.
To overcome the limitations of the tissue biopsy and plasma cfDNA liquid biopsy, we performed the EV-based BALF liquid biopsy of 224 newly diagnosed stage III-IV NSCLC patients and compared it with tissue genotyping and 110 plasma liquid biopsies. Isolation of EVs from BALF was performed by ultracentrifugation. EGFR genotyping was performed through peptide nucleic acid clamping-assisted fluorescence melting curve analysis. Compared with tissue-based genotyping, BALF liquid biopsy demonstrated a sensitivity, specificity, and concordance rates of 97.8%, 96.9%, and 97.7%, respectively. The performance of BALF liquid biopsy was almost identical to that of standard tissue-based genotyping. In contrast, plasma cfDNA-based liquid biopsy (n = 110) demonstrated sensitivity, specificity, and concordance rates of 48.5%, 86.3%, and 63.6%, respectively. The mean turn-around time of BALF liquid biopsy was significantly shorter (2.6 days) than that of tissue-based genotyping (13.9 days; p < 0.001). Therefore, the use of EV-based BALF shortens the time for confirmation of EGFR mutation status for starting EGFR-TKI treatment and can hence potentially improve clinical outcomes. As a result, we suggest that EV-based BALF EGFR testing in advanced lung NSCLC is a highly accurate rapid method and can be used as an alternative method for lung tissue biopsy. Full article
(This article belongs to the Special Issue Liquid Biopsy: Current Status and Future Perspectives)
Article
Implementation of QbD Approach to the Analytical Method Development and Validation for the Estimation of Metformin Hydrochloride in Tablet Dosage Forms by HPLC
Pharmaceutics 2022, 14(6), 1187; https://doi.org/10.3390/pharmaceutics14061187 (registering DOI) - 31 May 2022
Abstract
The current studies entail quality by design (QbD)-enabled development of a simple, rapid, precise, accurate, and cost-effective high-performance liquid chromatographic method for estimation of metformin hydrochloride (M-HCl). Design of experiments (DoE) was applied for multivariate optimization of the experimental conditions of the HPLC [...] Read more.
The current studies entail quality by design (QbD)-enabled development of a simple, rapid, precise, accurate, and cost-effective high-performance liquid chromatographic method for estimation of metformin hydrochloride (M-HCl). Design of experiments (DoE) was applied for multivariate optimization of the experimental conditions of the HPLC method. Risk assessment was performed to identify the critical method parameters (CMPs) using Ishikawa diagram. The factor screening studies were performed using a two-factor three-levels design. Two independent factors, buffer pH and mobile phase composition, were used to design mathematical models. Central composite design (CCD) was used to study the response surface methodology and to study in depth the effects of these independent factors, thus evaluating the critical analytical attributes (CAAs), namely, retention time, peak area, and symmetry factor as the parameters of method robustness. Desirability function was used to simultaneously optimize the CAAs. The optimized and predicted data from contour diagram consisted of 0.02 M acetate buffer pH = 3/methanol in a ratio of 70/30 (v/v) as the mobile phase with a flow rate 1 mL/min. The separation was made on a Thermoscientific ODS HypersylTM chromatographic column (250 × 4.6 mm, 5 μm) with oven temperature 35 °C and UV detection at 235 nm. The optimized assay conditions were validated according to ICH guidelines. Hence, the results clearly showed that QbD approach could be successfully applied to optimize HPLC method for estimation of M-HCl. The method was applied both for the evaluation of M-HCl content in tablets, and for in vitro dissolution studies of M-HCl from conventional and prolonged-release tablets. Full article
Article
Optimising the Polyphenolic Content and Antioxidant Activity of Green Rooibos (Aspalathus linearis) Using Beta-Cyclodextrin Assisted Extraction
Molecules 2022, 27(11), 3556; https://doi.org/10.3390/molecules27113556 (registering DOI) - 31 May 2022
Abstract
Antioxidant activity associated with green rooibos infusions is attributed to the activity of polyphenols, particularly aspalathin and nothofagin. This study aimed to optimise β-cyclodextrin (β-CD)-assisted extraction of crude green rooibos (CGRE) via total polyphenolic content (TPC) and antioxidant activity assays. Response surface methodology [...] Read more.
Antioxidant activity associated with green rooibos infusions is attributed to the activity of polyphenols, particularly aspalathin and nothofagin. This study aimed to optimise β-cyclodextrin (β-CD)-assisted extraction of crude green rooibos (CGRE) via total polyphenolic content (TPC) and antioxidant activity assays. Response surface methodology (RSM) permitted optimisation of β-CD concentration (0–15 mM), temperature (40–90 °C) and time (15–60 min). Optimal extraction conditions were: 15 mM β-CD: 40 °C:60 min with a desirability of 0.985 yielding TPC of 398.25 mg GAE.g−1, metal chelation (MTC) of 93%, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging of 1689.7 µmol TE.g−1, ferric reducing antioxidant power (FRAP) of 2097.53 µmol AAE.g−1 and oxygen radical absorbance capacity (ORAC) of 11,162.82 TE.g−1. Aspalathin, hyperoside and orientin were the major flavonoids, with quercetin, luteolin and chrysoeriol detected in trace quantities. Differences (p < 0.05) between aqueous and β-CD assisted CGRE was only observed for aspalathin reporting the highest content of 172.25 mg.g−1 of dry matter for extracts produced at optimal extraction conditions. Positive, strong correlations between TPC and antioxidant assays were observed and exhibited regression coefficient (R2) between 0.929–0.978 at p < 0.001. These results demonstrated the capacity of β-CD in increasing polyphenol content of green rooibos. Full article
Show Figures

Graphical abstract

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop