
MySQL NDB Cluster 8.0

Abstract

This is the MySQL NDB Cluster 8.0 extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2022-05-09 (revision: 73149)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices ... ix
1 General Information ... 1
2 NDB Cluster Overview .. 5

2.1 NDB Cluster Core Concepts ... 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions 9
2.3 NDB Cluster Hardware, Software, and Networking Requirements .. 13
2.4 What is New in NDB Cluster ... 14
2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0 41
2.6 MySQL Server Using InnoDB Compared with NDB Cluster ... 47

2.6.1 Differences Between the NDB and InnoDB Storage Engines 47
2.6.2 NDB and InnoDB Workloads .. 48
2.6.3 NDB and InnoDB Feature Usage Summary .. 49

2.7 Known Limitations of NDB Cluster ... 50
2.7.1 Noncompliance with SQL Syntax in NDB Cluster ... 50
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits 53
2.7.3 Limits Relating to Transaction Handling in NDB Cluster ... 54
2.7.4 NDB Cluster Error Handling ... 57
2.7.5 Limits Associated with Database Objects in NDB Cluster ... 57
2.7.6 Unsupported or Missing Features in NDB Cluster .. 58
2.7.7 Limitations Relating to Performance in NDB Cluster .. 59
2.7.8 Issues Exclusive to NDB Cluster .. 59
2.7.9 Limitations Relating to NDB Cluster Disk Data Storage .. 60
2.7.10 Limitations Relating to Multiple NDB Cluster Nodes ... 60
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0 61

3 NDB Cluster Installation ... 63
3.1 Installation of NDB Cluster on Linux .. 65

3.1.1 Installing an NDB Cluster Binary Release on Linux .. 66
3.1.2 Installing NDB Cluster from RPM .. 68
3.1.3 Installing NDB Cluster Using .deb Files ... 72
3.1.4 Building NDB Cluster from Source on Linux .. 73

3.2 Installing NDB Cluster on Windows ... 74
3.2.1 Installing NDB Cluster on Windows from a Binary Release ... 74
3.2.2 Compiling and Installing NDB Cluster from Source on Windows 78
3.2.3 Initial Startup of NDB Cluster on Windows .. 78
3.2.4 Installing NDB Cluster Processes as Windows Services ... 81

3.3 Initial Configuration of NDB Cluster ... 83
3.4 Initial Startup of NDB Cluster .. 85
3.5 NDB Cluster Example with Tables and Data .. 86
3.6 Safe Shutdown and Restart of NDB Cluster ... 89
3.7 Upgrading and Downgrading NDB Cluster ... 90
3.8 The NDB Cluster Auto-Installer (No longer supported) .. 93

3.8.1 NDB Cluster Auto-Installer Requirements .. 93
3.8.2 Using the NDB Cluster Auto-Installer .. 95

4 Configuration of NDB Cluster ... 117
4.1 Quick Test Setup of NDB Cluster .. 117
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 120

4.2.1 NDB Cluster Data Node Configuration Parameters .. 120
4.2.2 NDB Cluster Management Node Configuration Parameters 127
4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters 128
4.2.4 Other NDB Cluster Configuration Parameters .. 129
4.2.5 NDB Cluster mysqld Option and Variable Reference .. 131

iii

MySQL NDB Cluster 8.0

4.3 NDB Cluster Configuration Files .. 141
4.3.1 NDB Cluster Configuration: Basic Example ... 142
4.3.2 Recommended Starting Configuration for NDB Cluster ... 145
4.3.3 NDB Cluster Connection Strings ... 148
4.3.4 Defining Computers in an NDB Cluster ... 149
4.3.5 Defining an NDB Cluster Management Server ... 150
4.3.6 Defining NDB Cluster Data Nodes .. 157
4.3.7 Defining SQL and Other API Nodes in an NDB Cluster .. 240
4.3.8 Defining the System ... 249
4.3.9 MySQL Server Options and Variables for NDB Cluster ... 250
4.3.10 NDB Cluster TCP/IP Connections ... 313
4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections 318
4.3.12 NDB Cluster Shared-Memory Connections .. 319
4.3.13 Data Node Memory Management ... 325
4.3.14 Configuring NDB Cluster Send Buffer Parameters .. 329

4.4 Using High-Speed Interconnects with NDB Cluster ... 330
5 NDB Cluster Programs .. 331

5.1 ndbd — The NDB Cluster Data Node Daemon .. 332
5.2 ndbinfo_select_all — Select From ndbinfo Tables ... 343
5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) 348
5.4 ndb_mgmd — The NDB Cluster Management Server Daemon .. 349
5.5 ndb_mgm — The NDB Cluster Management Client .. 361
5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 367
5.7 ndb_config — Extract NDB Cluster Configuration Information .. 373
5.8 ndb_delete_all — Delete All Rows from an NDB Table ... 386
5.9 ndb_desc — Describe NDB Tables ... 391
5.10 ndb_drop_index — Drop Index from an NDB Table .. 401
5.11 ndb_drop_table — Drop an NDB Table .. 406
5.12 ndb_error_reporter — NDB Error-Reporting Utility .. 410
5.13 ndb_import — Import CSV Data Into NDB ... 412
5.14 ndb_index_stat — NDB Index Statistics Utility .. 430
5.15 ndb_move_data — NDB Data Copy Utility ... 438
5.16 ndb_perror — Obtain NDB Error Message Information .. 444
5.17 ndb_print_backup_file — Print NDB Backup File Contents .. 447
5.18 ndb_print_file — Print NDB Disk Data File Contents ... 452
5.19 ndb_print_frag_file — Print NDB Fragment List File Contents .. 452
5.20 ndb_print_schema_file — Print NDB Schema File Contents .. 453
5.21 ndb_print_sys_file — Print NDB System File Contents .. 454
5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 454
5.23 ndb_restore — Restore an NDB Cluster Backup .. 457

5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster 485
5.23.2 Restoring to a different number of data nodes ... 486
5.23.3 Restoring from a backup taken in parallel .. 490

5.24 ndb_select_all — Print Rows from an NDB Table ... 491
5.25 ndb_select_count — Print Row Counts for NDB Tables .. 498
5.26 ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED) 502
5.27 ndb_show_tables — Display List of NDB Tables .. 506
5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator ... 511
5.29 ndb_top — View CPU usage information for NDB threads .. 514
5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status ... 520
5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster 526

6 Management of NDB Cluster ... 531
6.1 Commands in the NDB Cluster Management Client .. 533
6.2 NDB Cluster Log Messages .. 540

iv

MySQL NDB Cluster 8.0

6.2.1 NDB Cluster: Messages in the Cluster Log ... 540
6.2.2 NDB Cluster Log Startup Messages .. 555
6.2.3 Event Buffer Reporting in the Cluster Log ... 556
6.2.4 NDB Cluster: NDB Transporter Errors ... 557

6.3 Event Reports Generated in NDB Cluster .. 558
6.3.1 NDB Cluster Logging Management Commands ... 560
6.3.2 NDB Cluster Log Events .. 562
6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client 568

6.4 Summary of NDB Cluster Start Phases ... 571
6.5 Performing a Rolling Restart of an NDB Cluster ... 573
6.6 NDB Cluster Single User Mode ... 575
6.7 Adding NDB Cluster Data Nodes Online .. 576

6.7.1 Adding NDB Cluster Data Nodes Online: General Issues ... 576
6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure .. 578
6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example 579

6.8 Online Backup of NDB Cluster .. 587
6.8.1 NDB Cluster Backup Concepts ... 587
6.8.2 Using The NDB Cluster Management Client to Create a Backup 588
6.8.3 Configuration for NDB Cluster Backups ... 592
6.8.4 NDB Cluster Backup Troubleshooting ... 592
6.8.5 Taking an NDB Backup with Parallel Data Nodes .. 593

6.9 MySQL Server Usage for NDB Cluster .. 593
6.10 NDB Cluster Disk Data Tables .. 595

6.10.1 NDB Cluster Disk Data Objects .. 595
6.10.2 NDB Cluster Disk Data Storage Requirements .. 600

6.11 Online Operations with ALTER TABLE in NDB Cluster ... 601
6.12 Privilege Synchronization and NDB_STORED_USER ... 604
6.13 NDB API Statistics Counters and Variables .. 605
6.14 ndbinfo: The NDB Cluster Information Database ... 618

6.14.1 The ndbinfo arbitrator_validity_detail Table .. 623
6.14.2 The ndbinfo arbitrator_validity_summary Table .. 624
6.14.3 The ndbinfo backup_id Table .. 624
6.14.4 The ndbinfo blobs Table ... 625
6.14.5 The ndbinfo blocks Table ... 626
6.14.6 The ndbinfo cluster_locks Table .. 626
6.14.7 The ndbinfo cluster_operations Table .. 628
6.14.8 The ndbinfo cluster_transactions Table ... 629
6.14.9 The ndbinfo config_nodes Table ... 631
6.14.10 The ndbinfo config_params Table ... 631
6.14.11 The ndbinfo config_values Table ... 632
6.14.12 The ndbinfo counters Table .. 635
6.14.13 The ndbinfo cpudata Table ... 637
6.14.14 The ndbinfo cpudata_1sec Table .. 637
6.14.15 The ndbinfo cpudata_20sec Table ... 638
6.14.16 The ndbinfo cpudata_50ms Table ... 639
6.14.17 The ndbinfo cpuinfo Table .. 640
6.14.18 The ndbinfo cpustat Table .. 640
6.14.19 The ndbinfo cpustat_50ms Table .. 641
6.14.20 The ndbinfo cpustat_1sec Table ... 642
6.14.21 The ndbinfo cpustat_20sec Table .. 643
6.14.22 The ndbinfo dictionary_columns Table ... 644
6.14.23 The ndbinfo dictionary_tables Table .. 645
6.14.24 The ndbinfo dict_obj_info Table .. 647
6.14.25 The ndbinfo dict_obj_tree Table .. 648

v

MySQL NDB Cluster 8.0

6.14.26 The ndbinfo dict_obj_types Table .. 651
6.14.27 The ndbinfo disk_write_speed_base Table .. 652
6.14.28 The ndbinfo disk_write_speed_aggregate Table ... 652
6.14.29 The ndbinfo disk_write_speed_aggregate_node Table .. 653
6.14.30 The ndbinfo diskpagebuffer Table ... 654
6.14.31 The ndbinfo diskstat Table .. 656
6.14.32 The ndbinfo diskstats_1sec Table ... 657
6.14.33 The ndbinfo error_messages Table ... 658
6.14.34 The ndbinfo events Table ... 660
6.14.35 The ndbinfo files Table ... 660
6.14.36 The ndbinfo foreign_keys Table .. 661
6.14.37 The ndbinfo hash_maps Table .. 662
6.14.38 The ndbinfo hwinfo Table ... 662
6.14.39 The ndbinfo index_columns Table ... 663
6.14.40 The ndbinfo index_stats Table .. 664
6.14.41 The ndbinfo locks_per_fragment Table .. 664
6.14.42 The ndbinfo logbuffers Table .. 666
6.14.43 The ndbinfo logspaces Table .. 667
6.14.44 The ndbinfo membership Table ... 668
6.14.45 The ndbinfo memoryusage Table .. 670
6.14.46 The ndbinfo memory_per_fragment Table .. 671
6.14.47 The ndbinfo nodes Table .. 673
6.14.48 The ndbinfo operations_per_fragment Table .. 675
6.14.49 The ndbinfo pgman_time_track_stats Table ... 678
6.14.50 The ndbinfo processes Table .. 679
6.14.51 The ndbinfo resources Table .. 681
6.14.52 The ndbinfo restart_info Table .. 682
6.14.53 The ndbinfo server_locks Table .. 685
6.14.54 The ndbinfo server_operations Table .. 687
6.14.55 The ndbinfo server_transactions Table .. 689
6.14.56 The ndbinfo table_distribution_status Table ... 690
6.14.57 The ndbinfo table_fragments Table ... 691
6.14.58 The ndbinfo table_info Table ... 692
6.14.59 The ndbinfo table_replicas Table ... 693
6.14.60 The ndbinfo tc_time_track_stats Table .. 694
6.14.61 The ndbinfo threadblocks Table .. 696
6.14.62 The ndbinfo threads Table .. 696
6.14.63 The ndbinfo threadstat Table .. 697
6.14.64 The ndbinfo transporters Table ... 699

6.15 INFORMATION_SCHEMA Tables for NDB Cluster ... 701
6.16 NDB Cluster and the Performance Schema ... 702
6.17 Quick Reference: NDB Cluster SQL Statements ... 703
6.18 NDB Cluster Security Issues ... 710

6.18.1 NDB Cluster Security and Networking Issues .. 710
6.18.2 NDB Cluster and MySQL Privileges .. 714
6.18.3 NDB Cluster and MySQL Security Procedures ... 716

7 NDB Cluster Replication .. 719
7.1 NDB Cluster Replication: Abbreviations and Symbols ... 721
7.2 General Requirements for NDB Cluster Replication .. 721
7.3 Known Issues in NDB Cluster Replication .. 722
7.4 NDB Cluster Replication Schema and Tables ... 729
7.5 Preparing the NDB Cluster for Replication ... 737
7.6 Starting NDB Cluster Replication (Single Replication Channel) .. 739
7.7 Using Two Replication Channels for NDB Cluster Replication ... 741

vi

MySQL NDB Cluster 8.0

7.8 Implementing Failover with NDB Cluster Replication ... 742
7.9 NDB Cluster Backups With NDB Cluster Replication .. 744

7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source
Binary Log .. 747
7.9.2 Point-In-Time Recovery Using NDB Cluster Replication ... 750

7.10 NDB Cluster Replication: Bidirectional and Circular Replication ... 751
7.11 NDB Cluster Replication Conflict Resolution ... 756

A NDB Cluster FAQ ... 775

vii

viii

Preface and Legal Notices
Licensing information—MySQL NDB Cluster 8.0. If you are using a Commercial release of MySQL
NDB Cluster 8.0, see the MySQL NDB Cluster 8.0 Commercial Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Commercial release. If you are using a Community release of MySQL NDB Cluster 8.0,
see the MySQL NDB Cluster 8.0 Community Release License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this
Community release.

Legal Notices

Copyright © 1997, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

ix

https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf

Documentation Accessibility

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

x

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 General Information
MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 8.0 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster 8.0
users who build from source should use the sources provided for MySQL 8.0 and build with the options
required to provide NDB support. (Locations where the sources can be obtained are listed later in this
section.)

Important

MySQL NDB Cluster does not support InnoDB Cluster, which must be deployed
using MySQL Server 8.0 with the InnoDB storage engine as well as additional
applications that are not included in the NDB Cluster distribution. MySQL Server
8.0 binaries cannot be used with MySQL NDB Cluster. For more information about
deploying and using InnoDB Cluster, see MySQL AdminAPI. Section 2.6, “MySQL
Server Using InnoDB Compared with NDB Cluster”, discusses differences between
the NDB and InnoDB storage engines.

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysql.com/support/
supportedplatforms/cluster.html.

Availability. NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysql.com/downloads/cluster/.

NDB Cluster release numbers. NDB 8.0 follows the same release pattern as the MySQL Server 8.0
series of releases, beginning with MySQL 8.0.13 and MySQL NDB Cluster 8.0.13. In this Manual and other
MySQL documentation, we identify these and later NDB Cluster releases employing a version number that
begins with “NDB”. This version number is that of the NDBCLUSTER storage engine used in the NDB 8.0
release, and is the same as the MySQL 8.0 server version on which the NDB Cluster 8.0 release is based.

Version strings used in NDB Cluster software. The version string displayed by the mysql client
supplied with the MySQL NDB Cluster distribution uses this format:

mysql-mysql_server_version-cluster

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster release
is based. For all NDB Cluster 8.0 releases, this is 8.0.n, where n is the release number. Building from
source using -DWITH_NDBCLUSTER or the equivalent adds the -cluster suffix to the version string. (See
Section 3.1.4, “Building NDB Cluster from Source on Linux”, and Section 3.2.2, “Compiling and Installing
NDB Cluster from Source on Windows”.) You can see this format used in the mysql client, as shown here:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 8.0.29-cluster Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT VERSION()\G
*************************** 1. row ***************************
VERSION(): 8.0.29-cluster
1 row in set (0.00 sec)

1

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster

The first General Availability release of NDB Cluster using MySQL 8.0 is NDB 8.0.19, using MySQL 8.0.19.

The version string displayed by other NDB Cluster programs not normally included with the MySQL 8.0
distribution uses this format:

mysql-mysql_server_version ndb-ndb_engine_version

mysql_server_version represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 8.0 releases, this is 8.0.n, where n is the release number.
ndb_engine_version is the version of the NDB storage engine used by this release of the NDB Cluster
software. For all NDB 8.0 releases, this number is the same as the MySQL Server version. You can see
this format used in the output of the SHOW command in the ndb_mgm client, like this:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.0.10.6 (mysql-8.0.29 ndb-8.0.30, Nodegroup: 0, *)
id=2 @10.0.10.8 (mysql-8.0.29 ndb-8.0.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=3 @10.0.10.2 (mysql-8.0.29 ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=4 @10.0.10.10 (mysql-8.0.29 ndb-8.0.30)
id=5 (not connected, accepting connect from any host)

Compatibility with standard MySQL 8.0 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster (see
Section 2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome, but this also
means that you are very unlikely to be able to switch an existing application datastore—that currently uses,
for example, MyISAM or InnoDB—to use the NDB storage engine without allowing for the possibility of
changes in schemas, queries, and applications. A mysqld compiled without NDB support (that is, built
without -DWITH_NDBCLUSTER_STORAGE_ENGINE or its alias -DWITH_NDBCLUSTER) cannot function as
a drop-in replacement for a mysqld that is built with it.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed from
https://github.com/mysql/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are licensed
under the GPL. For information about obtaining MySQL sources using Git and building them yourself, see
Installing MySQL Using a Development Source Tree.

Note

As with MySQL Server 8.0, NDB Cluster 8.0 releases are built using CMake.

NDB Cluster 8.0 is available beginning with NDB 8.0.19 as a General Availability release, and is
recommended for new deployments. NDB Cluster 7.6 and 7.5 are previous GA releases still supported
in production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6. For similar
information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB Cluster 7.4 and 7.3 are
previous GA releases still supported in production, although we recommend that new deployments for
production use NDB Cluster 8.0; see MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

The contents of this chapter are subject to revision as NDB Cluster continues to evolve. Additional
information regarding NDB Cluster can be found on the MySQL website at http://www.mysql.com/products/
cluster/.

2

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/

Additional Resources. More information about NDB Cluster can be found in the following places:

• For answers to some commonly asked questions about NDB Cluster, see Appendix A, NDB Cluster
FAQ.

• The NDB Cluster Forum: https://forums.mysql.com/list.php?25.

• Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

3

https://forums.mysql.com/list.php?25
http://www.planetmysql.org/

4

Chapter 2 NDB Cluster Overview

Table of Contents
2.1 NDB Cluster Core Concepts ... 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions .. 9
2.3 NDB Cluster Hardware, Software, and Networking Requirements .. 13
2.4 What is New in NDB Cluster ... 14
2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0 41
2.6 MySQL Server Using InnoDB Compared with NDB Cluster ... 47

2.6.1 Differences Between the NDB and InnoDB Storage Engines .. 47
2.6.2 NDB and InnoDB Workloads .. 48
2.6.3 NDB and InnoDB Feature Usage Summary .. 49

2.7 Known Limitations of NDB Cluster ... 50
2.7.1 Noncompliance with SQL Syntax in NDB Cluster ... 50
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits 53
2.7.3 Limits Relating to Transaction Handling in NDB Cluster ... 54
2.7.4 NDB Cluster Error Handling ... 57
2.7.5 Limits Associated with Database Objects in NDB Cluster ... 57
2.7.6 Unsupported or Missing Features in NDB Cluster .. 58
2.7.7 Limitations Relating to Performance in NDB Cluster .. 59
2.7.8 Issues Exclusive to NDB Cluster .. 59
2.7.9 Limitations Relating to NDB Cluster Disk Data Storage .. 60
2.7.10 Limitations Relating to Multiple NDB Cluster Nodes ... 60
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0 .. 61

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing system.
The shared-nothing architecture enables the system to work with very inexpensive hardware, and with a
minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms such
as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine called NDB
(which stands for “Network DataBase”). In our documentation, the term NDB refers to the part of the setup
that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the combination of one or
more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

5

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Figure 2.1 NDB Cluster Components

All these programs work together to form an NDB Cluster (see Chapter 5, NDB Cluster Programs. When
data is stored by the NDB storage engine, the tables (and table data) are stored in the data nodes. Such
tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster. Thus, in a payroll
application storing data in a cluster, if one application updates the salary of an employee, all other MySQL
servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the mysqld server daemon, it differs in a number of critical
respects from the mysqld binary supplied with the MySQL 8.0 distributions, and the two versions of
mysqld are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage engine
and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,
this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling restarts
(in which all nodes are restarted in turn) are used in making configuration changes and software upgrades
(see Section 6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling restarts are also used as
part of the process of adding new data nodes online (see Section 6.7, “Adding NDB Cluster Data Nodes
Online”). For more information about data nodes, how they are organized in an NDB Cluster, and how
they handle and store NDB Cluster data, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”.

6

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Core Concepts

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality found
in the NDB Cluster management client and the ndb_restore program included in the NDB Cluster
distribution. For more information, see Section 6.8, “Online Backup of NDB Cluster”, and Section 5.23,
“ndb_restore — Restore an NDB Cluster Backup”. You can also use the standard MySQL functionality
provided for this purpose in mysqldump and the MySQL server. See mysqldump — A Database Backup
Program, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing options,
but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes on a
single computer; for a computer on which one or more cluster nodes are being run
we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there are at least three
nodes, one of each of these types:

• Management node: The role of this type of node is to manage the other nodes within the NDB Cluster,
performing such functions as providing configuration data, starting and stopping nodes, and running
backups. Because this node type manages the configuration of the other nodes, a node of this type
should be started first, before any other node. A management node is started with the command
ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are fragment
replicas, times the number of fragments (see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”). For example, with two fragment replicas, each having two fragments, you
need four data nodes. One fragment replica is sufficient for data storage, but provides no redundancy;
therefore, it is recommended to have two (or more) fragment replicas to provide redundancy, and thus
high availability. A data node is started with the command ndbd (see Section 5.1, “ndbd — The NDB
Cluster Data Node Daemon”) or ndbmtd (see Section 5.3, “ndbmtd — The NDB Cluster Data Node
Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we refer to
NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored on disk; see
Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

• SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node is a
traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a mysqld process
started with the --ndbcluster and --ndb-connectstring options, which are explained elsewhere
in this chapter, possibly with additional MySQL server options as well.

7

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Core Concepts

An SQL node is actually just a specialized type of API node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_restore utility that is used
to restore a cluster backup. It is possible to write such applications using the NDB API. For basic
information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes. The
use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and partitions
in NDB Cluster, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual
communication links between nodes. NDB Cluster is currently designed with the intention that data nodes
are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to provide a
single point of configuration, all configuration data for the cluster as a whole is located in one configuration
file.

The management server manages the cluster configuration file and the cluster log. Each node in the
cluster retrieves the configuration data from the management server, and so requires a way to determine
where the management server resides. When interesting events occur in the data nodes, the nodes
transfer information about these events to the management server, which then writes the information to the
cluster log.

In addition, there can be any number of cluster client processes or applications. These include standard
MySQL clients, NDB-specific API programs, and management clients. These are described in the next few
paragraphs.

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in PHP,
Perl, C, C++, Java, Python, and so on. Such client applications send SQL statements to and receive
responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that they interact
with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability
to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use jdbc:mysql:loadbalance:// URLs (improved in
Connector/J 5.1.7) to achieve load balancing transparently; for more information about using Connector/J
with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from the
NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster, using
the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes where an
SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector for
Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-relational
mapping persistence frameworks such as Hibernate and JPA that connect directly to NDBCLUSTER, and so
does not require access to a MySQL Server. See Java and NDB Cluster, and The ClusterJ API and Data
Object Model, for more information.

NDB Cluster also supports applications written in JavaScript using Node.js. The MySQL Connector for
JavaScript includes adapters for direct access to the NDB storage engine and as well as for the MySQL
Server. Applications using this Connector are typically event-driven and use a domain object model similar

8

https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html
https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

in many ways to that employed by ClusterJ. For more information, see MySQL NoSQL Connector for
JavaScript.

Management clients. These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),
showing node versions and status, starting and stopping backups, and so on. An example of this type
of program is the ndb_mgm management client supplied with NDB Cluster (see Section 5.5, “ndb_mgm
— The NDB Cluster Management Client”). Such applications can be written using the MGM API, a C-
language API that communicates directly with one or more NDB Cluster management servers. For more
information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as mysqld server options and variables
relating to NDB Cluster. MySQL Cluster Manager 1.4.8 provides experimental support for NDB 8.0. See
MySQL Cluster Manager 1.4.8 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so
on), priority, and severity. A complete listing of all reportable events may be found in Section 6.3, “Event
Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

• Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.

• Node log: A separate log which is also kept for each individual node.

Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which work
together to ensure that a consistent view of the cluster's data is maintained. These are shown in the
following list:

• Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take place
for all nodes in the cluster more or less concurrently. An LCP usually occurs every few minutes; the
precise interval varies, and depends upon the amount of data stored by the node, the level of cluster
activity, and other factors.

NDB 8.0 supports partial LCPs, which can significantly improve performance under some conditions.
See the descriptions of the EnablePartialLcp and RecoveryWork configuration parameters which
enable partial LCPs and control the amount of storage they use.

• Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global checkpoints,
see NDB Cluster Data Node File System Directory.

2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

9

https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

A number of concepts central to an understanding of this topic are discussed in the next few paragraphs.

Data node. An ndbd or ndbmtd process, which stores one or more fragment replicas—that is, copies of
the partitions (discussed later in this section) assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple data
node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an ndbd or
ndbmtd process; where mentioned, management nodes (ndb_mgmd processes) and SQL nodes (mysqld
processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores partitions, or sets of fragment
replicas (see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number of
data nodes and of the number of fragment replicas (NoOfReplicas configuration parameter), as shown
here:

[# of node groups] = [# of data nodes] / NoOfReplicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOfReplicas is set to 1 in the
config.ini file, 2 node groups if NoOfReplicas is set to 2, and 1 node group if NoOfReplicas is set
to 4. Fragment replicas are discussed later in this section; for more information about NoOfReplicas, see
Section 4.3.6, “Defining NDB Cluster Data Nodes”.

Note

All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping at
least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and the
number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDM threads]

When using data nodes running ndbmtd, the number of LDM threads is controlled by the setting for
MaxNoOfExecutionThreads. When using ndbd there is a single LDM thread, which means that there
are as many cluster partitions as nodes participating in the cluster. This is also the case when using
ndbmtd with MaxNoOfExecutionThreads set to 3 or less. (You should be aware that the number of
LDM threads increases with the value of this parameter, but not in a strictly linear fashion, and that there
are additional constraints on setting it; see the description of MaxNoOfExecutionThreads for more
information.)

NDB and user-defined partitioning. NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LINEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 * [number
of LDM threads] * [number of node groups], the number of node groups in an NDB Cluster
being determined as discussed previously in this section. When running ndbd for data node processes,
setting the number of LDM threads has no effect (since ThreadConfig applies only to ndbmtd);

10

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

in such cases, this value can be treated as though it were equal to 1 for purposes of performing this
calculation.

See Section 5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 2.7, “Known
Limitations of NDB Cluster”, and Partitioning Limitations Relating to Storage Engines.

Fragment replica. This is a copy of a cluster partition. Each node in a node group stores a fragment
replica. Also sometimes known as a partition replica. The number of fragment replicas is equal to the
number of nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several fragment
replicas.

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two node
groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node
group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires an
ndb_mgmd process for cluster management and at least one SQL node to access
the data stored by the cluster, these have been omitted from the figure for clarity.

Figure 2.2 NDB Cluster with Two Node Groups

11

https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

• Partition 0 is stored on node group 0; a primary fragment replica (primary copy) is stored on node 1, and
a backup fragment replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary fragment replica is
on node 3, and its backup fragment replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed from
that of Partition 0; for Partition 2, the primary fragment replica is stored on node 2, and the backup on
node 1.

• Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed from
those of partition 1. That is, its primary fragment replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node group
participating in the cluster has at least one node operating, the cluster has a complete copy of all data and
remains viable. This is illustrated in the next diagram.

Figure 2.3 Nodes Required for a 2x2 NDB Cluster

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at least
one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a single
node group fail, the combination consisting of the remaining two nodes in the other node group is not
sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide access to a
complete set of all NDB Cluster data.

The maximum number of node groups supported for a single NDB Cluster instance is 48.

12

NDB Cluster Hardware, Software, and Networking Requirements

2.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data storage
is done in memory. (It is possible to reduce this requirement using Disk Data tables—see Section 6.10,
“NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple and faster CPUs
can enhance performance. Memory requirements for other NDB Cluster processes are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require any
unusual modules, services, applications, or configuration to support NDB Cluster. For supported operating
systems, a standard installation should be sufficient. The MySQL software requirements are simple: all that
is needed is a production release of NDB Cluster. It is not strictly necessary to compile MySQL yourself
merely to be able to use NDB Cluster. We assume that you are using the binaries appropriate to your
platform, available from the NDB Cluster software downloads page at https://dev.mysql.com/downloads/
cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard topology,
and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or
router to provide network connectivity for the cluster as a whole. We strongly recommend that an NDB
Cluster be run on its own subnet which is not shared with machines not forming part of the cluster for the
following reasons:

• Security. Communications between NDB Cluster nodes are not encrypted or shielded in any way.
The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster on a
protected network. If you intend to use NDB Cluster for Web applications, the cluster should definitely
reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or elsewhere.

See Section 6.18.1, “NDB Cluster Security and Networking Issues”, for more information.

• Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB Cluster not only
helps protect against unauthorized access to NDB Cluster data, it also ensures that NDB Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single point
of failure; many device drivers support failover for such communication links.

Network communication and latency. NDB Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to execute
queries and updates. Communication latency between these processes can directly affect the observed
performance and latency of user queries. In addition, to maintain consistency and service despite the
silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat an extended
loss of communication from a node as node failure. This can lead to reduced redundancy. Recall that, to
maintain data consistency, an NDB Cluster shuts down when the last node in a node group fails. Thus, to
avoid increasing the risk of a forced shutdown, breaks in communication between nodes should be avoided
wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the failed
node. Data node recovery requires synchronization of the failed node's data from a surviving data node,
and re-establishment of disk-based redo and checkpoint logs, before the data node returns to service. This
recovery can take some time, during which the Cluster operates with reduced redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible if the
node is overloaded, has insufficient machine CPU due to sharing with other programs, or is experiencing
delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat the node that is
slow to respond as failed.

13

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in NDB Cluster

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as HeartbeatIntervalDbDb and HeartbeatIntervalDbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be expected
in a LAN environment (on the order of 100 µs), timeout parameters must be increased to ensure that any
allowed periods of latency periods are well within configured timeouts. Increasing timeouts in this way has
a corresponding effect on the worst-case time to detect failure and therefore time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer a
range of latencies, as well as redundancy with slower failover times. Individual link failures may require
route changes to propagate before end-to-end connectivity is restored. At the TCP level this can appear as
large latencies on individual channels. The worst-case observed TCP latency in these scenarios is related
to the worst-case time for the IP layer to reroute around the failures.

2.4 What is New in NDB Cluster

The following sections describe changes in the implementation of NDB Cluster in MySQL NDB Cluster
8.0 through 8.0.30, as compared to earlier release series. NDB Cluster 8.0 is available as a General
Availability (GA) release, beginning with NDB 8.0.19. NDB Cluster 7.6 and 7.5 are previous GA releases
still supported in production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6.
For similar information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB Cluster 7.4 and
7.3 are previous GA releases still supported in production, although we recommend that new deployments
for production use NDB Cluster 8.0; see MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

What is New in NDB Cluster 8.0

Major changes and new features in NDB Cluster 8.0 which are likely to be of interest are shown in the
following list:

• Compatibility enhancements. The following changes reduce longstanding nonessential differences
in NDB behavior as compared to that of other MySQL storage engines:

• Development in parallel with MySQL server. Beginning with this release, MySQL NDB Cluster
is being developed in parallel with the standard MySQL 8.0 server under a new unified release model
with the following features:

• NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree.

• The numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0.

• Building the source with NDB support appends -cluster to the version string returned by mysql -
V, as shown here:

$> mysql -V
mysql Ver 8.0.30-cluster for Linux on x86_64 (Source distribution)

NDB binaries continue to display both the MySQL Server version and the NDB engine version, like
this:

$> ndb_mgm -V
MySQL distrib mysql-8.0.29 ndb-8.0.30, for Linux (x86_64)

14

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

What is New in NDB Cluster 8.0

In MySQL Cluster NDB 8.0, these two version numbers are always the same.

To build the MySQL 8.0 source with NDB Cluster support, use the CMake option -
DWITH_NDBCLUSTER.

• Platform support notes. NDB 8.0 makes the following changes in platform support:

• NDBCLUSTER no longer supports 32-bit platforms. Beginning with NDB 8.0.21, the NDB build
process checks the system architecture and aborts if it is not a 64-bit platform.

• It is now possible to build NDB from source for 64-bit ARM CPUs. Currently, this support is source-
only, and we do not provide any precompiled binaries for this platform.

• Database and table names. NDB 8.0 removes the previous 63-byte limit on identifiers for
databases and tables. These identifiers can now use up to 64 bytes, as for such objects using other
MySQL storage engines. See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster
8.0”.

• Generated names for foreign keys. NDB now uses the pattern tbl_name_fk_N for naming
internally generated foreign keys. This is similar to the pattern used by InnoDB.

• Schema and metadata distribution and synchronization. NDB 8.0 makes use of the MySQL
data dictionary to distribute schema information to SQL nodes joining a cluster and to synchronize new
schema changes between existing SQL nodes. The following list describes individual enhancements
relating to this integration work:

• Schema distribution enhancements. The NDB schema distribution coordinator, which handles
schema operations and tracks their progress, has been extended in NDB 8.0 to ensure that resources
used during a schema operation are released at its conclusion. Previously, some of this work was
done by the schema distribution client; this has been changed due to the fact that the client did not
always have all needed state information, which could lead to resource leaks when the client decided
to abandon the schema operation prior to completion and without informing the coordinator.

To help fix this issue, schema operation timeout detection has been moved from the schema
distribution client to the coordinator, providing the coordinator with an opportunity to clean up
any resources used during the schema operation. The coordinator now checks ongoing schema
operations for timeout at regular intervals, and marks participants that have not yet completed a given
schema operation as failed when detecting timeout. It also provides suitable warnings whenever
a schema operation timeout occurs. (It should be noted that, after such a timeout is detected, the
schema operation itself continues.) Additional reporting is done by printing a list of active schema
operations at regular intervals whenever one or more of these operations is ongoing.

As an additional part of this work, a new mysqld option --ndb-schema-dist-timeout makes it
possible to set the length of time to wait until a schema operation is marked as having timed out.

• Disk data file distribution. NDB Cluster 8.0.14, uses the MySQL data dictionary to make sure that
disk data files and related constructs such as tablespaces and log file groups are correctly distributed
between all connected SQL nodes.

• Schema synchronization of tablespace objects. When a MySQL Server connects as an
SQL node to an NDB cluster, it checks its data dictionary against the information found in the NDB
dictionary.

Previously, the only NDB objects synchronized on connection of a new SQL node were databases
and tables; MySQL NDB Cluster 8.0 also implements schema synchronization of disk data objects

15

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

What is New in NDB Cluster 8.0

including tablespaces and log file groups. Among other benefits, this eliminates the possibility of a
mismatch between the MySQL data dictionary and the NDB dictionary following a native backup and
restore, in which tablespaces and log file groups were restored to the NDB dictionary, but not to the
MySQL Server's data dictionary.

It is also no longer possible to issue a CREATE TABLE statement that refers to a nonexistent
tablespace. Such a statement now fails with an error.

• Database DDL synchronization enhancements. Work done for NDB 8.0 insures that
synchronization of databases by newly joined (or rejoined) SQL nodes with those on existing SQL
nodes now makes proper use of the data dictionary so that any database-level operations (CREATE
DATABASE, ALTER DATABASE, or DROP DATABASE) that may have been misssed by this SQL node
are now correctly duplicated on it when it connects (or reconnects) to the cluster.

As part of the schema synchronization procedure performed when starting, an SQL node now
compares all databases on the cluster's data nodes with those in its own data dictionary, and if any
of these is found to be missing from the SQL node's data dictionary, the SQL Node installs it locally
by executing a CREATE DATABASE statement. A database thus created uses the default MySQL
Server database properties (such as those as determined by character_set_database and
collation_database) that are in effect on this SQL node at the time the statement is executed.

• NDB metadata change detection and synchronization. NDB 8.0 implements a new mechanism
for detection of updates to metadata for data objects such as tables, tablespaces, and log file groups
with the MySQL data dictionary. This is done using a thread, the NDB metadata change monitor
thread, which runs in the background and checks periodically for inconsistencies between the NDB
dictionary and the MySQL data dictionary.

The monitor performs metadata checks every 60 seconds by default. The polling interval can be
adjusted by setting the value of the ndb_metadata_check_interval system variable; polling can
be disabled altogether by setting the ndb_metadata_check system variable to OFF. The status
variable Ndb_metadata_detected_count shows the number of times since mysqld was last
started that inconsistencies have been detected.

NDB ensures that NDB database, table, log file group, and tablespace objects submitted by the
metadata change monitor thread during operations following startup are automatically checked for
mismatches and synchronized by the NDB binlog thread.

NDB 8.0 adds two status variables relating to automatic synchronization:
Ndb_metadata_synced_count shows the number of objects synchronized automatically;
Ndb_metadata_excluded_count indicates the number of objects for which synchronization has
failed (prior to NDB 8.0.22, this variable was named Ndb_metadata_blacklist_size). In addition,
you can see which objects have been synchronized by inspecting the cluster log.

Setting the ndb_metadata_sync system variable to true overrides any settings that have been
made for ndb_metadata_check_interval and ndb_metadata_check, causing the change
monitor thread to begin coninuous metadata change detection.

In NDB 8.0.22 and later, setting ndb_metadata_sync to true clears the list of objects for which
synchronization has failed previously, which means it is no longer necessary to discover individual

16

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database

What is New in NDB Cluster 8.0

tables or to re-trigger synchronization by reconnecting the SQL node to the cluster. In addition, setting
this variable to false clears the list of objects waiting to be retried.

Beginning with NDB 8.0.21, more detailed information about the current state of automatic
synchronization than can be obtained from log messages or status variables is provided by two new
tables added to the MySQL Performance Schema. The tables are listed here:

• ndb_sync_pending_objects: Contains information about database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary (and
which have not been excluded from automatic synchronization).

• ndb_sync_excluded_objects: Contains information about NDB database objects which have
been excluded because they cannot be synchronized between the NDB dictionary and the MySQL
data dictionary, and thus require manual intervention.

A row in one of these tables provides the database object's parent schema, name, and type. Types
of objects include schemas, tablespaces, log file groups, and tables. (If the object is a log file group
or tablespace, the parent schema is NULL.) In addition, the ndb_sync_excluded_objects table
shows the reason for which the object has been excluded.

These tables are present only if NDBCLUSTER storage engine support is enabled. For more
information about these tables, see Performance Schema NDB Cluster Tables.

• Changes in NDB table extra metadata. The extra metadata property of an NDB table is used
for storing serialized metadata from the MySQL data dictionary, rather than storing the binary
representation of the table as in previous versions. (This was a .frm file, no longer used by the
MySQL Server—see MySQL Data Dictionary.) As part of the work to support this change, the
available size of the table's extra metadata has been increased. This means that NDB tables created
in NDB Cluster 8.0 are not compatible with previous NDB Cluster releases. Tables created in previous
releases can be used with NDB 8.0, but cannot be opened afterwards by an earlier version.

This metadata is accessible using the NDB API methods getExtraMetadata() and
setExtraMetadata().

For more information, see Section 3.7, “Upgrading and Downgrading NDB Cluster”.

• On-the-fly upgrades of tables using .frm files. A table created in NDB 7.6 and earlier contains
metadata in the form of a compressed .frm file, which is no longer supported in MySQL 8.0. To
facilitate online upgrades to NDB 8.0, NDB performs on-the-fly translation of this metadata and writes
it into the MySQL Server's data dictionary, which enables the mysqld in NDB Cluster 8.0 to work with
the table without preventing subsequent use of the table by a previous version of the NDB software.

Important

Once a table's structure has been modified in NDB 8.0, its metadata is stored
using the data dictionary, and it can no longer be accessed by NDB 7.6 and
earlier.

This enhancement also makes it possible to restore an NDB backup made using an earlier version to a
cluster running NDB 8.0 (or later).

• Metadata consistency check error logging. As part of work previously done in NDB 8.0, the
metadata check performed as part of auto-synchronization between the representation of an NDB
table in the NDB dictionary and its counterpart in the MySQL data dictionary includes the table's

17

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-pending-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-excluded-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-excluded-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-cluster-tables.html
https://dev.mysql.com/doc/refman/8.0/en/data-dictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata

What is New in NDB Cluster 8.0

name, storage engine, and internal ID. Beginning with NDB 8.0.23, the range of properties checked is
expanded to include properties of the following data objects:

• Columns

• Indexes

• Foreign keys

In addition, details of any mismatches in metadata properties are now written to the MySQL server
error log. The formats used for the error log messages differ slightly depending on whether the
discrepancy is found on the table level or on the level of a column, index, or foreign key. The format
for a log error resulting from a table-level property mismatch is shown here, where property
is the property name, ndb_value is the property value as stored in the NDB dictionary, and
mysqld_value is the value of the property as stored in the MySQL data dictionary:

Diff in 'property' detected, 'ndb_value' != 'mysqld_value'

For mismatches in properties of columns, indexes, and foreign keys, the format is as follows, where
obj_type is one of column, index, or foreign key, and obj_name is the name of the object:

Diff in obj_type 'obj_name.property' detected, 'ndb_value' != 'mysqld_value'

Metadata checks are performed during automatic synchronization of NDB tables when they are
installed in the data dictionary of any mysqld acting as an SQL node in an NDB Cluster. If the
mysqld is debug-compiled, checks are also made whenever a CREATE TABLE statement is
executed, and whenever an NDB table is opened.

• Synchronization of user privileges with NDB_STORED_USER. A new mechanism for sharing
and synchronizing users, roles, and privileges between SQL nodes is available in NDB 8.0, using
the NDB_STORED_USER privilege. Distributed privileges as implemented in NDB 7.6 and earlier (see
Distributed Privileges Using Shared Grant Tables) are no longer supported.

Once a user account is created on an SQL node, the user and its privileges can be stored in NDB and
thus shared between all SQL nodes in the cluster by issuing a GRANT statement such as this one:

GRANT NDB_STORED_USER ON *.* TO 'jon'@'localhost';

NDB_STORED_USER always has global scope and must be granted using ON *.*. System reserved
accounts such as mysql.session@localhost or mysql.infoschema@localhost cannot be
assigned this privilege.

Roles can also be shared between SQL nodes by issuing the appropriate GRANT NDB_STORED_USER
statement. Assigning such a role to a user does not cause the user to be shared; the
NDB_STORED_USER privilege must be granted to each user explicitly.

A user or role having NDB_STORED_USER, along with its privileges, is shared with all SQL nodes as soon
as they join a given NDB Cluster. It is possible to make such changes from any connected SQL node,
but recommended practice is to do so from a designated SQL node only, since the order of execution
of statements affecting privileges from different SQL nodes cannot be guaranteed to be the same on all
SQL nodes.

Prior to NDB 8.0.27, changes to the privileges of a user or role were synchronized immediately with
all connected SQL nodes. Beginning with MySQL 8.0.27, an SQL node takes a global read lock when

18

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

What is New in NDB Cluster 8.0

updating privieleges, which keeps concurrent changes executed by multiple SQL nodes from causing a
deadlock.

Implications for upgrades. Due to changes in the MySQL server's privilege system (see Grant
Tables), privilege tables using the NDB storage engine do not function correctly in NDB 8.0. It is safe but
not necessary to retain such privilege tables created in NDB 7.6 or earlier, but they are no longer used
for access control. In NDB 8.0, a mysqld acting as an SQL node and detecting such tables in NDB writes
a warning to the MySQL server log, and creates InnoDB shadow tables local to itself; such shadow
tables are created on each MySQL server connected to the cluster. When performing an upgrade from
NDB 7.6 or earlier, the privilege tables using NDB can be removed safely using ndb_drop_table
once all MySQL servers acting as SQL nodes have been upgraded (see Section 3.7, “Upgrading and
Downgrading NDB Cluster”).

The ndb_restore utility's --restore-privilege-tables option is deprecated but continues to
be honored in NDB 8.0, and can still be used to restore distributed privilege tables present in a backup
taken from a previous release of NDB Cluster to a cluster running NDB 8.0. These tables are handled as
described in the preceeding paragraph.

Shared users and grants are stored in the ndb_sql_metadata table, which ndb_restore by default
does not restore in NDB 8.0; you can specify the --include-stored-grants option to cause it to do
so.

See Section 6.12, “Privilege Synchronization and NDB_STORED_USER”, for more information.

• INFORMATION_SCHEMA changes. The following changes are made in the display of information
regarding Disk Data files in the INFORMATION_SCHEMA.FILES table:

• Tablespaces and log file groups are no longer represented in the FILES table. (These constructs are
not actually files.)

• Each data file is now represented by a single row in the FILES table. Each undo log file is also now
represented in this table by one row only. (Previously, a row was displayed for each copy of each of
these files on each data node.)

In addition, INFORMATION_SCHEMA tables are now populated with tablespace statistics for MySQL
Cluster tables. (Bug #27167728)

• Error information with ndb_perror. The deprecated --ndb option for perror has been removed.
Instead, use ndb_perror to obtain error message information from NDB error codes. (Bug #81704, Bug
#81705, Bug #23523926, Bug #23523957)

• Condition pushdown enhancements. Previously, condition pushdown was limited to predicate
terms referring to column values from the same table to which the condition was being pushed. In
NDB 8.0, this restriction is removed such that column values from tables earlier in the query plan can
also be referred to from pushed conditions. NDB 8.0 supports joins comparing column expressions,
as well as comparisons between columns in the same table. Columns and column expressions to be
compared must be of exactly the same type; this means they must also be of the same signedness,
length, character set, precision, and scale, whenever these attributes apply.

Pushing down larger parts of a condition allows more rows to be filtered out by the data nodes, thereby
reducing the number of rows which mysqld must handle during join processing. Another benefit of these
enhancements is that filtering can be performed in parallel in the LDM threads, rather than in a single
mysqld process on an SQL node; this has the potential to improve query performance significantly.

Existing rules for type compatibility between column values being compared continue to apply (see
Engine Condition Pushdown Optimization).

19

https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html

What is New in NDB Cluster 8.0

These additional improvements are made in NDB 8.0.21:

• Antijoins produced by the MySQL Optimizer through the transformation of NOT EXISTS and NOT IN
queries (see Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations) can be
pushed down to the data nodes by NDB.

This can be done when there is no unpushed condition on the table, and the query fulfills any other
conditions which must be met for an outer join to be pushed down.

• NDB attempts to identify and evaluate a non-dependent scalar subquery before trying to retrieve any
rows from the table to which it is attached. When it can do so, the value obtained is used as part of a
pushed condition, instead of using the subquery which provided the value.

Beginning with NDB 8.0.27, conditions pushed as part of a pushed query can now refer to columns from
ancestor tables within the same pushed query, subject to the following conditions:

• Pushed conditions may include any of the comparison operators <, <=, >, >=, =, and <>.

• Values being compared must be of the same type, including length, precision, and scale.

• NULL handling is performed according to the comparison semantics specified by the ISO SQL
standard; any comparison with NULL returns NULL.

Consider the table created using the statement shown here:

CREATE TABLE t (
 x INT PRIMARY KEY,
 y INT
) ENGINE=NDB;

A query such as SELECT * FROM t AS a LEFT JOIN t AS b ON a.x=0 AND b.y>5 can now
use the engine condition pushdown optimization to push down the condition column y.

See Engine Condition Pushdown Optimization, for more information.

The NDB API methods branch_col_eq_param(), branch_col_ne_param(),
branch_col_lt_param(), branch_col_le_param(), branch_col_gt_param(),
and branch_col_ge_param() were added in NDB 8.0.27 as part of this work. These
NdbInterpretedCode can be used to compare column values with values of parameters.

In addition, NdbScanFilter::cmp_param(), also added in NDB 8.0.27, makes it possible to define
comparisons between column values and parameter values for use in performing scans.

• Increase in maximum row size. NDB 8.0 increases the maximum number of bytes that can be
stored in an NDBCLUSTER table from 14000 to 30000 bytes.

A BLOB or TEXT column continues to use 264 bytes of this total, as before.

The maximum offset for a fixed-width column of an NDB table is 8188 bytes; this is also unchanged from
previous releases.

See Section 2.7.5, “Limits Associated with Database Objects in NDB Cluster”, for more information.

• ndb_mgm SHOW command and single user mode. In NDB 8.0, when the cluster in single user
mode, the output of the management client SHOW command indicates which API or SQL node has
exclusive access while this mode is in effect.

20

https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-equal
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp-param
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

What is New in NDB Cluster 8.0

• Online column renames. Columns of NDB tables can now be renamed online, using
ALGORITHM=INPLACE. See Section 6.11, “Online Operations with ALTER TABLE in NDB Cluster”, for
more information.

• Improved ndb_mgmd startup times. Start times for management nodes daemon have been
significantly improved in NDB 8.0, in the following ways:

• Due to replacing the list data structure formerly used by ndb_mgmd for handling node properties from
configuration data with a hash table, overall startup times for the management server have been
decreased by a factor of 6 or more.

• In addition, in cases where data and SQL node host names not present in the management server's
hosts file are used in the cluster configuration file, ndb_mgmd start times can be up to 20 times
shorter than was previously the case.

• NDB API enhancements. NdbScanFilter::cmp() and several comparison methods of
NdbInterpretedCode can now be used to compare table column values with each other. The affected
NdbInterpretedCode methods are listed here:

• branch_col_eq()

• branch_col_ge()

• branch_col_gt()

• branch_col_le()

• branch_col_lt()

• branch_col_ne()

For all of the methods just listed, table column values to be compared much be of exactly matching
types, including with respect to length, precision, signedness, scale, character set, and collation, as
applicable.

See the descriptions of the individual API methods for more information.

• Offline multithreaded index builds. It is now possible to specify a set of cores to be used for I/O
threads performing offline multithreaded builds of ordered indexes, as opposed to normal I/O duties
such as file I/O， compression， or decompression. “Offline” in this context refers to building of ordered
indexes performed when the parent table is not being written to; such building takes place when an
NDB cluster performs a node or system restart, or as part of restoring a cluster from backup using
ndb_restore --rebuild-indexes.

In addition, the default behavior for offline index build work is modified to use all cores available to
ndbmtd, rather limiting itself to the core reserved for the I/O thread. Doing so can improve restart and
restore times and performance, availability, and the user experience.

This enhancement is implemented as follows:

1. The default value for BuildIndexThreads is changed from 0 to 128. This means that offline
ordered index builds are now multithreaded by default.

2. The default value for TwoPassInitialNodeRestartCopy is changed from false to true.
This means that an initial node restart first copies all data from a “live” node to one that is starting
—without creating any indexes—builds ordered indexes offline, and then again synchronizes its
data with the live node, that is, synchronizing twice and building indexes offline between the two

21

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne

What is New in NDB Cluster 8.0

synchonizations. This causes an initial node restart to behave more like the normal restart of a node,
and reduces the time required for building indexes.

3. A new thread type (idxbld) is defined for the ThreadConfig configuration parameter, to allow
locking of offline index build threads to specific CPUs.

In addition, NDB now distinguishes the thread types that are accessible to ThreadConfig by these two
criteria:

1. Whether the thread is an execution thread. Threads of types main, ldm, recv, rep, tc, and send
are execution threads; thread types io, watchdog, and idxbld are not.

2. Whether the allocation of the thread to a given task is permanent or temporary. Currently all thread
types except idxbld are permanent.

For additonal information, see the descriptions of the indicated parameters in the Manual. (Bug
#25835748, Bug #26928111)

• logbuffers table backup process information. When performing an NDB backup, the
ndbinfo.logbuffers table now displays information regarding buffer usage by the backup process
on each data node. This is implemented as rows reflecting two new log types in addition to REDO and
DD-UNDO. One of these rows has the log type BACKUP-DATA, which shows the amount of data buffer
used during backup to copy fragments to backup files. The other row has the log type BACKUP-LOG,
which displays the amount of log buffer used during the backup to record changes made after the
backup has started. One each of these log_type rows is shown in the logbuffers table for each data
node in the cluster. Rows having these two log types are present in the table only while an NDB backup
is currently in progress. (Bug #25822988)

• ndbinfo.processes table on Windows. The process ID of the monitor process used on Windows
platforms by RESTART to spawn and restart a mysqld is now shown in the processes table as an
angel_pid.

• String hashing improvements. Prior to NDB 8.0, all string hashing was based on first transforming
the string into a normalized form, then MD5-hashing the resulting binary image. This could give rise to
some performance problems, for the following reasons:

• The normalized string is always space padded to its full length. For a VARCHAR, this often involved
adding more spaces than there were characters in the original string.

• The string libraries were not optimized for this space padding, which added considerable overhead in
some use cases.

• The padding semantics varied between character sets, some of which were not padded to their full
length.

• The transformed string could become quite large, even without space padding; some Unicode 9.0
collations can transform a single code point into 100 bytes or more of character data.

• Subsequent MD5 hashing consisted mainly of padding with spaces, and was not particularly efficient,
possibly causing additional performance penalties by flushing significant portions of the L1 cache.

A collation provides its own hash function, which hashes the string directly without first creating a
normalized string. In addition, for a Unicode 9.0 collation, the hash is computed without padding. NDB

22

https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/char.html

What is New in NDB Cluster 8.0

now takes advantage of this built-in function whenever hashing a string identified as using a Unicode 9.0
collation.

Since, for other collations, there are existing databases which are hash partitioned on the transformed
string, NDB continues to employ the previous method for hashing strings that use these, to maintain
compatibility. (Bug #89590, Bug #89604, Bug #89609, Bug #27515000, Bug #27523758, Bug
#27522732)

• RESET MASTER changes. Because the MySQL Server now executes RESET MASTER with a global
read lock, the behavior of this statement when used with NDB Cluster has changed in the following two
respects:

• It is no longer guaranteed to be synonchrous; that is, it is now possible that a read coming immediately
before RESET MASTER is issued may not be logged until after the binary log has been rotated.

• It now behaves in exactly the same fashion, whether the statement is issued on the same SQL node
that is writing the binary log, or on a different SQL node in the same cluster.

Note

SHOW BINLOG EVENTS, FLUSH LOGS, and most data definition statements
continue, as they did in previous NDB versions, to operate in a synchronous
fashion.

• ndb_restore option usage. The --nodeid and --backupid options are now both required when
invoking ndb_restore.

• ndb_log_bin default. NDB 8.0 changes the default value of the ndb_log_bin system variable from
TRUE to FALSE.

• Dynamic transactional resource allocation. Allocation of resources in the transaction
coordinator is now performed using dynamic memory pools. This means that resource allocation
determined by data node configuration parameters such as MaxDMLOperationsPerTransaction,
MaxNoOfConcurrentIndexOperations, MaxNoOfConcurrentOperations,
MaxNoOfConcurrentScans, MaxNoOfConcurrentTransactions, MaxNoOfFiredTriggers,
MaxNoOfLocalScans, and TransactionBufferMemory is now done in such a way that, if the load
represented by each of these parameters is within the target load for all such resources, others of these
resources can be limited so as not to exceed the total resources available.

As part of this work, several new data node parameters controlling transactional resources in DBTC,
listed here, have been added:

• ReservedConcurrentIndexOperations

• ReservedConcurrentOperations

• ReservedConcurrentScans

• ReservedConcurrentTransactions

• ReservedFiredTriggers

• ReservedLocalScans

• ReservedTransactionBufferMemory.

See the descriptions of the parameters just listed for further information.

23

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

What is New in NDB Cluster 8.0

• Backups using multiple LDMs per data node. NDB backups can now be performed in a parallel
fashion on individual data nodes using multiple local data managers (LDMs). (Previously, backups were
done in parallel across data nodes, but were always serial within data node processes.) No special
syntax is required for the START BACKUP command in the ndb_mgm client to enable this feature, but all
data nodes must be using multiple LDMs. This means that data nodes must be running ndbmtd (ndbd
is single-threaded and thus always has only one LDM) and they must be configured to use multiple
LDMs before taking the backup; you can do this by choosing an appropriate setting for one of the multi-
threaded data node configuration parameters MaxNoOfExecutionThreads or ThreadConfig.

Backups using multiple LDMs create subdirectories, one per LDM, under the BACKUP/
BACKUP-backup_id/ directory. ndb_restore now detects these subdirectories automatically, and if
they exist, attempts to restore the backup in parallel; see Section 5.23.3, “Restoring from a backup taken
in parallel”, for details. (Single-threaded backups are restored as in previous versions of NDB.) It is also
possible to restore backups taken in parallel using an ndb_restore binary from a previous version of
NDB Cluster by modifying the usual restore procedure; Section 5.23.3.2, “Restoring a parallel backup
serially”, provides information on how to do this.

You can force the creation of single-threaded backups by setting the EnableMultithreadedBackup
data node parameter to 0 for all data nodes in the [ndbd default] section of the cluster's global
configuration file (config.ini).

• Binary configuration file enhancements. NDB 8.0 uses a new format for the management
server's binary configuration file. Previously, a maximum of 16381 sections could appear in the cluster
configuration file; now the maximum number of sections is 4G. This is intended to support larger
numbers of nodes in a cluster than was possible before this change.

Upgrades to the new format are relatively seamless, and should seldom if ever require manual
intervention, as the management server continues to be able to read the old format without issue. A
downgrade from NDB 8.0 to an older version of the NDB Cluster software requires manual removal of
any binary configuration files or, alternatively, starting the older management server binary with the --
initial option.

For more information, see Section 3.7, “Upgrading and Downgrading NDB Cluster”.

• Increased number of data nodes. NDB 8.0 increases the maximum number of data nodes
supported per cluster to 144 (previously, this was 48). Data nodes can now use node IDs in the range 1
to 144, inclusive.

Previously, the recommended node IDs for management nodes were 49 and 50. These are still
supported for management nodes, but using them as such limits the maximum number of data nodes
to 142; for this reason, it is now recommended that node IDs 145 and 146 are used for management
nodes.

As part of this work, the format used for the data node sysfile has been updated to version 2. This file
records information such as the last global checkpoint index, restart status, and node group membership
of each node (see NDB Cluster Data Node File System Directory).

• RedoOverCommitCounter and RedoOverCommitLimit changes. Due to ambiguities in the
semantics for setting them to 0, the minimum value for each of the data node configuration parameters
RedoOverCommitCounter and RedoOverCommitLimit has been increased to 1.

• ndb_autoincrement_prefetch_sz changes. The default value of the
ndb_autoincrement_prefetch_sz server system variable is increased to 512.

• Changes in parameter maxmimums and defaults. NDB 8.0 makes the following changes in
configuration parameter maximum and default values:

24

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

What is New in NDB Cluster 8.0

• The maximum for DataMemory is increased to 16 terabytes.

• The maximum for DiskPageBufferMemory is also increased to 16 terabytes.

• The default value for StringMemory is increased to 25%.

• The default for LcpScanProgressTimeout is increased to 180 seconds.

• Disk Data checkpointing improvements. NDB Cluster 8.0 provides a number of new
enhancements which help to reduce the latency of checkpoints of Disk Data tables and tablespaces
when using non-volatile memory devices such as solid-state drives and the NVMe specification for such
devices. These improvements include those in the following list:

• Avoiding bursts of checkpoint disk writes

• Speeding up checkpoints for disk data tablespaces when the redo log or the undo log becomes full

• Balancing checkpoints to disk and in-memory checkpoints against one other, when necessary

• Protecting disk devices from overload to help ensure low latency under high loads

As part of this work, two data node configuration parameters have been added. MaxDiskDataLatency
places a ceiling on the degree of latency permitted for disk access and causes transactions taking longer
than this length of time to be aborted. DiskDataUsingSameDisk makes it possible to take advantage
of housing Disk Data tablespaces on separate disks by increasing the rate at which checkpoints of such
tablespaces can be performed.

In addition, three new tables in the ndbinfo database provide information about Disk Data
performance:

• The diskstat table reports on writes to Disk Data tablespaces during the past second

• The diskstats_1sec table reports on writes to Disk Data tablespaces for each of the last 20
seconds

• The pgman_time_track_stats table reports on the latency of disk operations relating to Disk Data
tablespaces

• Memory allocation and TransactionMemory. A new TransactionMemory parameter simplifies
allocation of data node memory for transactions as part of the work done to pool transactional and Local

25

What is New in NDB Cluster 8.0

Data Manager (LDM) memory. This parameter is intended to replace several older transactional memory
parameters which have been deprecated.

Transaction memory can now be set in any of the three ways listed here:

• Several configuration parameters are incompatible with TransactionMemory. If any of these are set,
TransactionMemory cannot be set (see Parameters incompatible with TransactionMemory), and
the data node's transaction memory is determined as it was previous to NDB 8.0.

Note

Attempting to set TransactionMemory and any of these parameters
concurrently in the config.ini file prevents the management server from
starting.

• If TransactionMemory is set, this value is used for determining transaction memory.
TransactionMemory cannot be set if any of the incompatible parameters mentioned in the previous
item have also been set.

• If none of the incompatible parameters are set and TransactionMemory is also not set, transaction
memory is set by NDB.

For more information, see the description of TransactionMemory, as well as Section 4.3.13, “Data
Node Memory Management”.

• Support for additional fragment replicas. NDB 8.0 increases the maximum number of fragment
replicas supported in production from two to four. (Previously, it was possible to set NoOfReplicas to 3
or 4, but this was not officially supported or verified in testing.)

• Restoring by slices. Beginning with NDB 8.0.20, it is possible to divide a backup into roughly
equal portions (slices) and to restore these slices in parallel using two new options implemented for
ndb_restore:

• --num-slices determines the number of slices into which the backup should be divided.

• --slice-id provides the ID of the slice to be restored by the current instance of ndb_restore.

This makes it possible to employ multiple instances of ndb_restore to restore subsets of the backup in
parallel, potentially reducing the amount of time required to perform the restore operation.

For more information, see the description of the ndb_restore --num-slices option.

• Read from any fragment replica enabled. Read from any fragment replica is enabled by default
for all NDB tables. This means that the default value for the ndb_read_backup system variable is now
ON, and that the value of the NDB_TABLE comment option READ_BACKUP is 1 when creating a new NDB
table. Enabling read from any fragment replica significantly improves performance for reads from NDB
tables, with minimal impact on writes.

For more information, see the description of the ndb_read_backup system variable, and Setting NDB
Comment Options.

• ndb_blob_tool enhancements. Beginning with NDB 8.0.20, the ndb_blob_tool utility can detect
missing blob parts for which inline parts exist and replace these with placeholder blob parts (consisting
of space characters) of the correct length. To check whether there are missing blob parts, use the --

26

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

What is New in NDB Cluster 8.0

check-missing option with this program. To replace any missing blob parts with placeholders, use the
--add-missing option.

For more information, see Section 5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT columns of
NDB Cluster Tables”.

• ndbinfo versioning. NDB 8.0.20 and later supports versioning for ndbinfo tables, and maintains the
current definitions for its tables internally. At startup, NDB compares its supported ndbinfo version with
the version stored in the data dictionary. If the versions differ, NDB drops any old ndbinfo tables and
recreates them using the current definitions.

• Support for Fedora Linux. Beginning with NDB 8.0.20, Fedora Linux is a supported platform for
NDB Cluster Community releases and can be installed using the RPMs supplied for this purpose by
Oracle. These can be obtained from the NDB Cluster downloads page.

• NDB programs—NDBT dependency removal. The dependency of a number of NDB utility programs
on the NDBT library has been removed. This library is used internally for development, and is not
required for normal use; its inclusion in these programs could lead to unwanted issues when testing.

Affected programs are listed here, along with the NDB versions in which the dependency was removed:

• ndb_restore

• ndb_delete_all

• ndb_show_tables (NDB 8.0.20)

• ndb_waiter (NDB 8.0.20)

The principal effect of this change for users is that these programs no longer print NDBT_ProgramExit
- status following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading to the indicated versions.

• Pushdown of outer joins and semijoins. Work done in NDB 8.0.20 allows many outer joins and
semijoins, and not only those using a primary key or unique key lookup, to be pushed down to the data
nodes (see Engine Condition Pushdown Optimization).

Outer joins using scans which can now be pushed include those which meet the following conditions:

• There are no unpushed conditions on the table

• There are no unpushed conditions on other tables in the same join nest, or in upper join nests on
which it depends

• All other tables in the same join nest, or in upper join nests on which it depends, are also pushed

A semijoin that uses an index scan can now be pushed if it meets the the conditions just noted for a
pushed outer join, and it uses the firstMatch strategy (see Optimizing IN and EXISTS Subquery
Predicates with Semijoin Transformations).

When a join cannot be pushed, EXPLAIN should provide the reason or reasons.

• Foreign keys and lettercasing. NDB stores the names of foreign keys using the case with which they
were defined. Formerly, when the value of the lower_case_table_names system variable was set
to 0, it performed case-sensitive comparisons of foreign key names as used in SELECT and other SQL
statements with the names as stored. Beginning with NDB 8.0.20, such comparisons are now always
performed in a case-insensitive fashion, regardless of the value of lower_case_table_names.

27

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/select.html

What is New in NDB Cluster 8.0

• Multiple transporters. NDB 8.0.20 introduces support for multiple transporters to handle node-to-
node communication between pairs of data nodes. This facilitates higher rates of update operations for
each node group in the cluster, and helps avoid constraints imposed by system or other limitations on
inter-node communications using a single socket.

By default, NDB now uses a number of transporters based on the number of local data management
(LDM) threads or the number of transaction coordinator (TC) threads, whichever is greater. By default,
the number of transporters is equal to half of this number. While the default should perform well for most
workloads, it is possible to adjust the number of transporters employed by each node group by setting
the NodeGroupTransporters data node configuration parameter (also introduced in NDB 8.0.20),
up a maximum of the greater of the number of LDM threads or the number of TC threads. Setting it to 0
causes the number of transporters to be the same as the number of LDM threads.

• ndb_restore: primary key schema changes. NDB 8.0.21 (and later) supports different primary key
definitions for source and target tables when restoring an NDB native backup with ndb_restore when
it is run with the --allow-pk-changes option. Both increasing and decreasing the number of columns
making up the original primary key are supported.

When the primary key is extended with an additional column or columns, any columns added must
be defined as NOT NULL, and no values in any such columns may be changed during the time that
the backup is being taken. Because some applications set all column values in a row when updating
it, whether or not all values are actually changed, this can cause a restore operation to fail even if no
values in the column to be added to the primary key have changed. You can override this behavior
using the --ignore-extended-pk-updates option also added in NDB 8.0.21; in this case, you must
ensure that no such values are changed.

A column can be removed from the table's primary key whether or not this column remains part of the
table.

For more information, see the description of the --allow-pk-changes option for ndb_restore.

• Merging backups with ndb_restore. In some cases, it may be desirable to consolidate data
originally stored in different instances of NDB Cluster (all using the same schema) into a single
target NDB Cluster. This is now supported when using backups created in the ndb_mgm client (see
Section 6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and restoring them with
ndb_restore, using the --remap-column option added in NDB 8.0.21 along with --restore-data
(and possibly additional compatible options as needed or desired). --remap-column can be employed
to handle cases in which primary and unique key values are overlapping between source clusters, and
it is necessary that they do not overlap in the target cluster, as well as to preserve other relationships
between tables such as foreign keys.

--remap-column takes as its argument a string having the format db.tbl.col:fn:args, where
db, tbl, and col are, respectively, the names of the database, table, and column, fn is the name
of a remapping function, and args is one or more arguments to fn. There is no default value. Only
offset is supported as the function name, with args as the integer offset to be applied to the value of
the column when inserting it into the target table from the backup. This column must be one of INT or

28

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

What is New in NDB Cluster 8.0

BIGINT; the allowed range of the offset value is the same as the signed version of that type (this allows
the offset to be negative if desired).

The new option can be used multiple times in the same invocation of ndb_restore, so that you can
remap to new values multiple columns of the same table, different tables, or both. The offset value does
not have to be the same for all instances of the option.

In addition, two new options are provided for ndb_desc, also beginning in NDB 8.0.21:

• --auto-inc (short form -a): Includes the the next auto-increment value in the output, if the table has
an AUTO_INCREMENT column.

• --context (short form -x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

For more information and examples, see the description of the --remap-column option.

• Send thread improvements. As of NDB 8.0.20, each send thread now handles sends to a subset of
transporters, and each block thread now assists only one send thread, resulting in more send threads,
and thus better performance and data node scalability.

• Adaptive spin control using SpinMethod. A simple interface for setting up adaptive CPU spin on
platforms supporting it, using the SpinMethod data node parameter. This parameter (added in NDB
8.0.20, functional beginning with NDB 8.0.24) has four settings, one each for static spinning, cost-based
adaptive spinning, latency-optimized adaptive spinning, and adaptive spinning optimized for database
machines on which each thread has its own CPU. Each of these settings causes the data node to use a
set of predetermined values for one or more spin parameters which enable adaptive spinning, set spin
timing, and set spin overhead, as appropriate to a given scenario, thus obviating the need to set these
directly for common use cases.

For fine-tuning spin behavior, it is also possible to set these and additional spin parameters directly,
using the existing SchedulerSpinTimer data node configuration parameter as well as the following
DUMP commands in the ndb_mgm client:

• DUMP 104000 (SetSchedulerSpinTimerAll): Sets spin time for all threads

• DUMP 104001 (SetSchedulerSpinTimerThread): Sets spin time for a specified thread

• DUMP 104002 (SetAllowedSpinOverhead): Sets spin overhead as the number of units of CPU
time allowed to gain 1 unit of latency

• DUMP 104003 (SetSpintimePerCall): Sets the time for a call to spin

• DUMP 104004 (EnableAdaptiveSpinning): Enables or disables adpative spinning

NDB 8.0.20 also adds a new TCP configuration parameter TcpSpinTime which sets the time to spin for
a given TCP connection.

The ndb_top tool is also enhanced to provide spin time information per thread.

For additional information, see the description of the SpinMethod parameter, the listed DUMP
commands, and Section 5.29, “ndb_top — View CPU usage information for NDB threads”.

29

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104001.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104003.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html

What is New in NDB Cluster 8.0

• Disk Data and cluster restarts. Beginning with NDB 8.0.21, an initial restart of the cluster forces the
removal of all Disk Data objects such as tablespaces and log file groups, including any data files and
undo log files associated with these objects.

See Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

• Disk Data extent allocation. Beginning with NDB 8.0.20, allocation of extents in data files is done
in a round-robin fashion among all data files used by a given tablespace. This is expected to improve
distribution of data in cases where multiple storage devices are used for Disk Data storage.

For more information, see Section 6.10.1, “NDB Cluster Disk Data Objects”.

• --ndb-log-fail-terminate option. Beginning with NDB 8.0.21, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysqld with the
--ndb-log-fail-terminate option.

• AllowUnresolvedHostNames parameter. By default, a management node refuses to start when it
cannot resolve a host name present in the global configuration file, which can be problematic in some
environments such as Kubernetes. Beginning with NDB 8.0.22, it is possible to override this behavior by
setting AllowUnresolvedHostNames to true in the [tcp default] section of the cluster global
confugration file (config.ini file). Doing so causes such errors to be treated as warnings instead, and
to permit ndb_mgmd to continue starting

• Blob write performance enhancements. NDB 8.0.22 implements a number of improvements which
allow more efficient batching when modifying multiple blob columns in the same row, or when modifying
multiple rows containing blob columns in the same statement, by reducing the number of round trips
required between an SQL or other API node and the data nodes when applying these modifications. The
performance of many INSERT, UPDATE, and DELETE statements can thus be improved. Examples of
such statements are listed here, where table is an NDB table containing one or more Blob columns:

• INSERT INTO table VALUES ROW(1, blob_value1, blob_value2, ...), that is, insertion
of a row containing one or more Blob columns

• INSERT INTO table VALUES ROW(1, blob_value1), ROW(2, blob_value2), ROW(3,
blob_value3), ..., that is, insertion of multiple rows containing one or more Blob columns

• UPDATE table SET blob_column1 = blob_value1, blob_column2 =
blob_value2, ...

• UPDATE table SET blob_column = blob_value WHERE primary_key_column in
(value_list), where the primary key column is not a Blob type

• DELETE FROM table WHERE primary_key_column = value, where the primary key column is
not a Blob type

• DELETE FROM table WHERE primary_key_column IN (value_list), where the primary key
column is not a Blob type

Other SQL statements may benefit from these improvements as well. These include LOAD DATA
INFILE and CREATE TABLE ... SELECT In addition, ALTER TABLE table ENGINE =
NDB, where table uses a storage engine other than NDB prior to execution of the statement, may also
execute more efficiently.

This enhancement applies to statements affecting columns of MySQL type BLOB, MEDIUMBLOB,
LONGBLOB, TEXT, MEDIUMTEXT, and LONGTEXT. Statements which update TINYBLOB or TINYTEXT
columns (or both types) only are not affected by this work, and no changes in their performance should
be expected.

30

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

What is New in NDB Cluster 8.0

The performance of some SQL statements is not noticeably improved by this enhancement, due to the
fact that they require scans of table Blob columns, which breaks up batching. Such statements include
those of the types listed here:

• SELECT FROM table [WHERE key_column IN (blob_value_list)], where rows are
selected by matching on a primary key or unique key column which uses a Blob type

• UPDATE table SET blob_column = blob_value WHERE condition, using a condition
which does not depend on a unique value

• DELETE FROM table WHERE condition to delete rows containing one or more Blob columns,
using a condition which does not depend on a unique value

• A copying ALTER TABLE statement on a table which already used the NDB storage engine prior
to executing the statement, and whose rows contain one or more Blob columns before or after the
statement is executed (or both)

To take advantage of this improvement to its fullest extent, you may wish to increase the values used for
the --ndb-batch-size and --ndb-blob-write-batch-bytes options for mysqld, to minimize the
number of round trips required to modify blobs. For replication, it is also recommended that you enable
the slave_allow_batching system variable, which minimizes the number of round trips required by
the replica cluster to apply epoch transactions.

Note

Beginning with NDB 8.0.30, you should also use
ndb_replica_batch_size instead of --ndb-batch-size, and
ndb_replica_blob_write_batch_bytes rather than --ndb-blob-write-
batch-bytes. See the descriptions of these variables, as well as Section 7.5,
“Preparing the NDB Cluster for Replication”, for more information.

• Node.js update. Beginning with with NDB 8.0.22, the NDB adapter for Node.js is built using version
12.18.3, and only that version (or a later version of Node.js) is now supported.

• Encrypted backups. NDB 8.0.22 adds support for backup files encrypted using AES-256-CBC; this
is intended to protect against recovery of data from backups that have been accessed by unathorized
parties. When encrypted, backup data is protected by a user-supplied password. The password can be
any string consisting of up to 256 characters from the range of printable ASCII characters other than !,
', ", $, %, \, and ^. Retention of the password used to encrypt any given NDB Cluster backup must be
performed by the user or application; NDB does not save the password. The password can be empty,
although this is not recommended.

When taking an NDB Cluster backup, you can encrypt it by using ENCRYPT PASSWORD=password with
the management client START BACKUP command. Users of the MGM API can also initiate an encrypted
backup by calling ndb_mgm_start_backup4().

You can encrypt existing backup files using the ndbxfrm utility which is added to the NDB Cluster
distribution in the 8.0.22 release; this program can also be employed for decrypting encrypted backup
files. In addition, ndbxfrm can compress backup files and decompress compressed backup files using
the same method that is employed by NDB Cluster for creating backups when the CompressedBackup
configuration parameter is set to 1.

To restore from an encrypted backup, use ndb_restore with the options --decrypt and --backup-
password. Both options are required, along with any others that would be needed to restore the same

31

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-backup.html#mgm-ndb-mgm-start-backup4

What is New in NDB Cluster 8.0

backup if it were not encrypted. ndb_print_backup_file and ndbxfrm can also read encrypted files
using, respectively, -P password and --decrypt-password=password.

In all cases in which a password is supplied together with an option for encryption or decryption, the
password must be quoted; you can use either single or double quotation marks to delimit the password.

Beginning with NDB 8.0.24, several NDB programs, listed here, also support input of the password from
standard input, similarly to how this is done when logging in interactively with the mysql client using the
--password option (without including the password on the command line):

• For ndb_restore and ndb_print_backup_file, the --backup-password-from-stdin
option enables input of the password in a secure fashion, similar to how it is done by the mysql client'
--password option. For ndb_restore, use the option together with the --decrypt option; for
ndb_print_backup_file, use the option in place of the -P option.

• For ndb_mgm the option --backup-password-from-stdin, is supported together with --
execute "START BACKUP [options]" for starting a cluster backup from the system shell.

• Two ndbxfrm options, --encrypt-password-from-stdin and --decrypt-password-from-
stdin, cause similar behavior when using that program to encrypt or to decrypt a backup file.

See the descriptions of the programs just listed for more information.

It is also possible, beginning with NDB 8.0.22, to enforce encryption of backups by setting
RequireEncryptedBackup=1 in the [ndbd default] section of the cluster global configuration file.
When this is done, the ndb_mgm client rejects any attempt to perform a backup that is not encrypted.

Beginning with NDB 8.0.24, you can cause ndb_mgm to use encryption whenever it creates a backup by
starting it with --encrypt-backup. In this case, the user is prompted for a password when invoking
START BACKUP if none is supplied.

• IPv6 support. Beginning with NDB 8.0.22, IPv6 addressing is supported for connections to
management and data nodes; this includes connections between management and data nodes with SQL
nodes. When configuring a cluster, you can use numeric IPv6 addresses, host names which resolve to
IPv6 addresses or both.

For IPv6 addressing to work, the operating platform and network on which the cluster is deployed must
support IPv6. As when using IPv4 addressing, hostname resolution to IPv6 addresses must be provided
by the operating platform.

IPv4 addressing continues to be supported by NDB. Using IPv4 and IPv6 addresses concurrently is not
recommended, but can be made to work in the following cases:

• When the management node is configured with IPv6 and data nodes are configured with IPv4
addresses in the config.ini file: This works if --bind-address is not used with mgmd, and data
nodes are started with --ndb-connectstring set to the IPv4 address of the management nodes.

• When the management node is configured with IPv4 and data nodes are configured with IPv6
addresses in config.ini: Similarly to the other case, this works if --bind-address is not passed
to mgmd and data nodes are started with --ndb-connectstring set to the IPv6 address of the
management node.

These cases work because ndb_mgmd does not bind to any IP address by default.

To perform an upgrade from a version of NDB that does not support IPv6 addressing to one that does,
provided that the network supports IPv4 and IPv6, first perform the software upgrade; after this has been

32

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

What is New in NDB Cluster 8.0

done, you can update IPv4 addresses used in the config.ini file with IPv6 addresses. After this, to
cause the configuration changes to take effect and to make the cluster start using the IPv6 addresses, it
is necessary to perform a system restart of the cluster.

• Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_setup.py) is deprecated in NDB 8.0.22, and is removed in NDB 8.0.23 and later.
It is no longer supported.

• ndbmemcache deprecation and removal. ndbmemcache is no longer supported. ndbmemcache
was deprecated in NDB 8.0.22, and removed in NDB 8.0.23.

• ndbinfo backup_id table. NDB 8.0.24 adds a backup_id table to the ndbinfo information
database. This is intended to serve as a replacement for obtaining this information by using
ndb_select_all to dump the contents of the internal SYSTAB_0 tyable, which is error-prone and takes
an excessively long time to perform.

This table has a single column and row containing the ID of the most recent backup of the cluster taken
using the START BACKUP management client command. In the event that no backup of this cluster can
be found, the table contains a single row whose column value is 0.

• Table partitioning enhancements. NDB 8.0.23 introduces a new method for handling table
partitions and fragments, which can determine the number of local data managers (LDMs) for a given
data node independently of the number of redo log parts. This means that the number of LDMs can
now be highly variable. NDB can employ this method when the ClassicFragmentation data node
configuration parameter, also implemented in NDB 8.0.23, is set to false; when this is the case, the
number of LDMs is no longer used to determine how many partitions to create for a table per data node,
and the value of the PartitionsPerNode parameter (also introduced in NDB 8.0.23) determines this
number instead, which is also used for calculating the number of fragments used for a table.

When ClassicFragmentation has its default value true, then the traditional method of using the
number of LDMs is used to determine the number of fragments that a table should have.

For more information, see the descriptions of the new parameters referenced previously, in Multi-
Threading Configuration Parameters (ndbmtd).

• Terminology updates. To align with work begun in MySQL 8.0.21 and NDB 8.0.21, NDB 8.0.23
implements a number of changes in terminology, listed here:

• The system variable ndb_slave_conflict_role is now deprecated. It is replaced by
ndb_conflict_role.

• Many NDB status variables are deprecated. These variables, and their replacements, are shown in the
following table:

Table 2.1 Deprecated NDB status variables and their replacements

Deprecated variable Replacement

Ndb_api_adaptive_send_deferred_count_slaveNdb_api_adaptive_send_deferred_count_replica

Ndb_api_adaptive_send_forced_count_slaveNdb_api_adaptive_send_forced_count_replica

Ndb_api_adaptive_send_unforced_count_slaveNdb_api_adaptive_send_unforced_count_replica

Ndb_api_bytes_received_count_slave Ndb_api_bytes_received_count_replica

Ndb_api_bytes_sent_count_slave Ndb_api_bytes_sent_count_replica

Ndb_api_pk_op_count_slave Ndb_api_pk_op_count_replica

Ndb_api_pruned_scan_count_slave Ndb_api_pruned_scan_count_replica

33

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

What is New in NDB Cluster 8.0

Deprecated variable Replacement

Ndb_api_range_scan_count_slave Ndb_api_range_scan_count_replica

Ndb_api_read_row_count_slave Ndb_api_read_row_count_replica

Ndb_api_scan_batch_count_slave Ndb_api_scan_batch_count_replica

Ndb_api_table_scan_count_slave Ndb_api_table_scan_count_replica

Ndb_api_trans_abort_count_slave Ndb_api_trans_abort_count_replica

Ndb_api_trans_close_count_slave Ndb_api_trans_close_count_replica

Ndb_api_trans_commit_count_slave Ndb_api_trans_commit_count_replica

Ndb_api_trans_local_read_row_count_slaveNdb_api_trans_local_read_row_count_replica

Ndb_api_trans_start_count_slave Ndb_api_trans_start_count_replica

Ndb_api_uk_op_count_slave Ndb_api_uk_op_count_replica

Ndb_api_wait_exec_complete_count_slaveNdb_api_wait_exec_complete_count_replica

Ndb_api_wait_meta_request_count_slave Ndb_api_wait_meta_request_count_replica

Ndb_api_wait_nanos_count_slave Ndb_api_wait_nanos_count_replica

Ndb_api_wait_scan_result_count_slave Ndb_api_wait_scan_result_count_replica

Ndb_slave_max_replicated_epoch Ndb_replica_max_replicated_epoch

The deprecated status variables continue to be shown in the output of SHOW STATUS, but applications
should be updated as soon as possible not to rely upon them any longer, since their availability in
future release series is not guaranteed.

• The values ADD_TABLE_MASTER and ADD_TABLE_SLAVE previously shown in the
tab_copy_status column of the ndbinfo ndbinfo.table_distribution_status table
are deprecated. These are replaced by, respectively, the values ADD_TABLE_COORDINATOR and
ADD_TABLE_PARTICIPANT.

• The --help output of some NDB client and utility programs such as ndb_restore has been
modified.

• ThreadConfig enhancements. As of NDB 8.0.23, the configurability of the ThreadConfig
parameter has been extended with two new thread types, listed here:

• query: A query thread works (only) on READ COMMITTED queries. A query thread also acts as a
recovery thread. The number of query threads must be 0, 1, 2, or 3 times the number of LDM threads.
0 (the default, unless using ThreadConfig, or AutomaticThreadConfig is enabled) causes LDMs
to behave as they did prior to NDB 8.0.23.

34

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed

What is New in NDB Cluster 8.0

• recover: A recovery thread retrieves data from a local checkpoint. A recovery thread specified as
such never acts as a query thread.

It is also possible to combine the existing main and rep threads in either of two ways:

• Into a single thread by setting either one of these arguments to 0. When this is done, the resulting
combined thread is shown with the name main_rep in the ndbinfo.threads table.

• Together with the recv thread by setting both ldm and tc to 0, and setting recv to 1. In this case, the
combined thread is named main_rep_recv.

In addition, the maximum numbers of a number of existing thread types have been increased. The new
maximums, including those for query threads and recovery threads, are listed here:

• LDM: 332

• Query: 332

• Recovery: 332

• TC: 128

• Receive: 64

• Send: 64

• Main: 2

Maximums for other thread types remain unchanged.

Also, as the result of work done relating to this task, NDB now employs mutexes to protect job buffers
when using more than 32 block threads. While this can cause a slight decrease in performance (1 to
2 percent in most cases), it also significantly reduces the amount of memory required by very large
configurations. For example, a setup with 64 threads which used 2 GB of job buffer memory prior to NDB
8.0.23 should require only about 1 GB instead in NDB 8.0.23 and later. In our testing this has resulted in
an overall improvement on the order of 5 percent in the execution of very complex queries.

For further information, see the descriptions of the ThreadConfig parameter and the
ndbinfo.threads table.

• ThreadConfig thread count changes. As the result of work done in NDB 8.0.30, setting the value
of ThreadConfig requires including main, rep, recv, and ldm in the ThreadConfig value string
explicitly, in this and subsequent NDB Cluster releases. In addition, count=0 must be set explicitly
for each thread type (of main, rep, or ldm) that is not to be used, and setting count=1 for replication
threads (rep) requires also setting count=1 for main.

These changes can have a significant impact on upgrades of NDB clusters where this parameter is in
use; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more information.

• ndbmtd Thread Auto-Configuration. Beginning with NDB 8.0.23, it is possible to employ automatic
configuration of threads for multi-threaded data nodes using the ndbmtd configuration parameter
AutomaticThreadConfig. When this parameter is set to 1, NDB sets up thread assignments
automatically, based on the number of processors available to applications, for all thread supported
thread types, including the new query and recover thread types described in the previous item. If
the system does not limit the number of processors, you can do so if desired by setting NumCPUs (also
added in NDB 8.0.23). Otherwise, automatic thread configuration accommodates up to 1024 CPUs.

35

What is New in NDB Cluster 8.0

Automatic thread configuration occurs regardless of any values set for ThreadConfig or
MaxNoOfExecutionThreads in config.ini; this means that it is not necessary to set either of these
parameters.

In addition, NDB 8.0.23 implements a number of new ndbinfo information database tables providing
information about hardware and CPU availability, as well as CPU usage by NDB data nodes. These
tables are listed here:

• cpudata

• cpudata_1sec

• cpudata_20sec

• cpudata_50ms

• cpuinfo

• hwinfo

Some of these tables are not available on every platform supported by NDB Cluster; see the individual
descriptions of them for more information.

• Hierachical views of NDB database objects. The dict_obj_tree table, added to the ndbinfo
information database in NDB 8.0.24, can provide hierarchical and tree-like views of many NDB database
objects, including the following:

• Tables and associated indexes

• Tablespaces and associated data files

• Logfile groups and associated undo log files

For more information and examples, see Section 6.14.25, “The ndbinfo dict_obj_tree Table”.

• Index statistics enhancements. NDB 8.0.24 implements the following improvements in calculation
of index statistics:

• Index statistics were previously collected from one fragment only; this is changed such that this
extrapolation is extended to additional fragments.

• The algorithm used for very small tables, such as those having very few rows where results are
discarded, has been improved, so that estimates for such tables should be more accurate than
previously.

As of NDB 8.0.27, the index statistics tables are created and updated automatically by default,
IndexStatAutoCreate and IndexStatAutoUpdate both default to 1 (enabled) rather than 0
(disabled), and it is no longer necessary to run ANALYZE TABLE to update the statistics.

For additional information, see Section 6.13, “NDB API Statistics Counters and Variables”.

36

https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html

What is New in NDB Cluster 8.0

• Conversion between NULL and NOT NULL during restore operations. Beginning with NDB
8.0.26, ndb_restore can support restoring of NULL columns as NOT NULL and the reverse, using the
options listed here:

• To restore a NULL column as NOT NULL, use the --lossy-conversions option.

The column originally declared as NULL must not contain any NULL rows; if it does, ndb_restore
exits with an error.

• To restore a NOT NULL column as NULL, use the --promote-attributes option.

For more information, see the descriptions of the indicated ndb_restore options.

• SQL-compliant NULL comparison mode for NdbScanFilter. Traditionally, when making
comparisons involving NULL, NdbScanFilter treats NULL as equal to NULL (and thus considers NULL
== NULL to be TRUE). This is not the same as specified by the SQL Standard, which requires that any
comparison with NULL return NULL, including NULL == NULL.

Previously, it was not possible for an NDB API application to override this behavior; beginning with NDB
8.0.26, you can do so by calling NdbScanFilter::setSqlCmpSemantics() prior to creating a scan
filter. (Thus, this method is always invoked as a class method and not as an instance method.) Doing so
causes the next NdbScanFilter object to be created to employ SQL-compliant NULL comparison for
all comparison operations performed over the lifetime of the instance. You must invoke the method for
each NdbScanFilter object that should use SQL-compliant comparisons.

For more information, see NdbScanFilter::setSqlCmpSemantics().

• Deprecation of NDB API .FRM file methods. MySQL 8.0 and NDB 8.0 no longer use .FRM files for
storing table metadata. For this reason, the NDB API methods getFrmData(), getFrmLength(), and
setFrm() are deprecated as of NDB 8.0.27, and subject to removal in a future release. For reading and
writing table metadata, use getExtraMetadata() and setExtraMetadata() instead.

• Preference for IPv4 or IPv6 addressing. NDB 8.0.26 adds the PreferIPVersion configuration
parameter, which controls the addressing preference for DNS resolution. IPv4 (PreferIPVersion=4)
is the default. Because configuration retrieval in NDB requires that this preference be the same for
all TCP connections, you should set it only in the [tcp default] section of the cluster global
configuration (config.ini) file.

See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for more information.

• Logging enhancements. Previously, analysis of NDB Cluster data node and management node logs
could be hampered by the fact that different log messages used different formats, and that not all log
messages included timestamps. Such issues were due in part to the fact that logging was performed by
a number of different mechanisms, such as the functions printf, fprintf, ndbout, and ndbout_c,
overloading of the << operator, and so on.

We fix these problems by standardizing on the EventLogger mechanism, which is already present in
NDB, and which begins each log message with a timestamp in YYYY-MM-DD HH:MM:SS format.

See Section 6.3, “Event Reports Generated in NDB Cluster”, for more information about NDB Cluster
event logs and the EventLogger log message format.

• Copying ALTER TABLE improvements. Beginning with NDB 8.0.27, a copying ALTER TABLE on
an NDB table compares the fragment commit counts for the source table before and after performing

37

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmdata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmlength
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setfrm
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

What is New in NDB Cluster 8.0

the copy. This allows the SQL node executing this statement to determine whether there has been any
concurrent write activity to the table being altered; if so, the SQL node can then terminate the operation.

When concurrent writes are detected being made to the table being altered, the ALTER TABLE
statement is rejected with the error Detected change to data in source table
during copying ALTER TABLE. Alter aborted to avoid inconsistency
(ER_TABLE_DEF_CHANGED). Stopping the alter operation, rather than allowing it to proceed with
concurrent writes taking place, can help prevent silent data loss or corruption.

• ndbinfo index_stats table. NDB 8.0.28 adds the index_stats table, which provides basic
information about NDB index statistics. It is intended primarily for internal testing, but may be useful as a
supplement to ndb_index_stat.

• ndb_import --table option. Prior to NDB 8.0.28, ndb_import always imported the data read from
a CSV file into a table whose name was derived from the name of the file being read. NDB 8.0.28 adds
a --table option (short form: -t) for this program to specify the name of the target table directly, and
override the previous behavior.

The defult behavior for ndb_import remains to use the base name of the input file as the name of the
target table.

• ndb_import --missing-ai-column option. Beginning with NDB 8.0.29, ndb_import can import
data from a CSV file that contains empty values for an AUTO_INCREMENT column, using the --
missing-ai-column option introduced in that release. The option can be used with one or more tables
containing such a column.

In order for this option to work, the AUTO_INCREMENT column in the CSV file must not contain any
values. Otherwise, the import operation cannot proceed.

• ndb_import and empty lines. ndb_import has always rejected any empty lines encountered in an
incoming CSV file. NDB 8.0.30 adds support for importing empty lines into a single column, provided that
it is possible to convert the empty value into a column value.

• ndb_restore --with-apply-status option. Beginning with NDB 8.0.29, it is possible to restore the
ndb_apply_status table from an NDB backup, using ndb_restore with the --with-apply-
status option added in that release. To use this option, you must also use --restore-data when
invoking ndb_restore.

--with-apply-status restores all rows of the ndb_apply_status table except for the row
having server_id = 0; to restore this row, use --restore-epoch. For more information, see
ndb_apply_status Table, as the description of the --with-apply-status option.

• SQL access to tables with missing indexes. Prior to NDB 8.0.29, when a user query attempted
to open an NDB table with a missing or broken index, the MySQL server raised NDB error 4243 (Index
not found). This situation could arise when constraint violations or missing data make it impossible to
restore an index on an NDB table, and ndb_restore --disable-indexes was used to restore the
data without the index.

Beginning with NDB 8.0.29, an SQL query against an NDB table which has missing indexes
succeeds if the query does not use any of the missing indexes. Otherwise, the query is rejected with
ER_NOT_KEYFILE. In this case, you can use ALTER TABLE ... ALTER INDEX ... INVISIBLE to
keep the MySQL Optimizer from trying to use the index, or drop the index (and then possibly re-create it)
using the appropriate SQL statements.

• NDB API List::clear() method. The NDB API Dictionary methods listEvents(),
listIndexes(), and listObjects() each require a reference to a List object which is empty.

38

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_def_changed
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4243
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_keyfile
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html#alter-table-index
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listevents
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listindexes
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listobjects
https://dev.mysql.com/doc/ndbapi/en/ndb-list.html

What is New in NDB Cluster 8.0

Previously, reusing an existing List with any of these methods was problematic for this reason. NDB
8.0.29 makes this easier by implementing a clear() method which removes all data from the list.

As part of this work, the List class destructor now calls List::clear() before removing any
elements or attributes from the list.

• NDB dictionary tables in ndbinfo. NDB 8.0.29 introduces several new tables in the ndbinfo
database providing information from NdbDictionary that previously required the use of ndb_desc,
ndb_select_all, and other NDB utility programs.

Two of these tables are actually views. The hash_maps table provides information about hash maps
used by NDB; the files table shows information regarding files used for storing data on disk (see
Section 6.10, “NDB Cluster Disk Data Tables”).

The remaining six ndbinfo tables added in NDB 8.0.29 are base tables. These tables are not hidden
and are not named using the prefix ndb$. These tables are listed here, with descriptions of the objects
represented in each table:

• blobs: Blob tables used to store the variable-size parts of BLOB and TEXT columns

• dictionary_columns: Columns of NDB tables

• dictionary_tables: NDB tables

• events: Event subscriptions in the NDB API

• foreign_keys: Foreign keys on NDB tables

• index_columns: Indexes on NDB tables

NDB 8.0.29 also makes changes in the ndbinfo storage engine's implementation of primary keys to
improve compatibility with NdbDictionary.

• ndbcluster plugin and Performance Schema. As of NDB 8.0.29, ndbcluster plugin threads
are shown in the Performance Schema threads and setup_threads tables, making it possible
to obtain information about the performance of these threads. The three threads exposed in
performance_schema tables are listed here:

• ndb_binlog: Binary logging thread

• ndb_index_stat: Index statistics thread

• ndb_metadata: Metadata thread

See ndbcluster Plugin Threads, for more information and examples.

In NDB 8.0.30 and later, transaction batching memory usage is visible as memory/
ndbcluster/Thd_ndb::batch_mem_root in the Performance Schema
memory_summary_by_thread_by_event_name and setup_instruments tables. You can use
this information to see how much memory is being used by transactions. For additional information, see
Transaction Memory Usage.

39

https://dev.mysql.com/doc/ndbapi/en/ndb-list.html#ndb-list-clear
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-instruments-table.html

What is New in NDB Cluster 8.0

• Configurable blob inline size. Beginning with NDB 8.0.30, it is possible to set a blob column's inline
size as part of CREATE TABLE or ALTER TABLE. The maximum inline size supported by NDB Cluster is
29980 bytes.

For additional information and examples, see NDB_COLUMN Options, as well as String Type Storage
Requirements.

• replica_allow_batching enabled by default. Replica write batching improves NDB Cluster
Replication performance greatly, especially when replicating blob-type columns (TEXT, BLOB, and
JSON), and so generally should be enabled whenever using replication with NDB Cluster. For this
reason, beginning with NDB 8.0.30, the replica_allow_batching system variable is enabled by
default, and setting it to OFF raises a warning.

• Conflict resolution insert operation support. Prior to NDB 8.0.30, there were only two strategies
available for resolving primary key conflicts for update and delete operations, implemented as the
functions NDB$MAX() and NDB$MAX_DELETE_WIN(). Neither of these has any effect on write
operations, other than that a write operation with the same primary key as a previous write is always
rejected, and accepted and applied only if no operation having the same primary key already
exists. NDB 8.0.30 introduces two new conflict resolution functions NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS() that handle primary key conflicts between insert operations. These functions
handle conflicting writes as follows:

1. If there is no conflicting write, apply this one (this is the same as NDB$MAX()).

2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

For conflicting update and delete operations, NDB$MAX_INS() behaves as NDB$MAX() does, and NDB
$MAX_DEL_WIN_INS() behaves in the same way as NDB$MAX_DELETE_WIN().

This enhancement provides support for configuring conflict detection when handling conflicting
replicated write operations, so that a replicated INSERT with a higher timestamp column value is applied
idempotently, while a replicated INSERT with a lower timestamp column value is rejected.

As with the other conflict resolution functions, rejected operations can optionally be logged in an
exceptions table; rejected operations increment a counter (status variables Ndb_conflict_fn_max for
“greatest timestamp wins” and Ndb_conflict_fn_old for “same timestamp wins”).

For more information, see the descriptions of the new conflict resolution functions, and as well as
Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Replication applier batch size control. Previously, the size of batches used when writing to a
replica NDB Cluster was controlled by --ndb-batch-size, and the batch size used for writing blob
data to the replica was determined by ndb-blob-write-batch-bytes. One problem with this
arrangement was that the replica used the global values of these variables which meant that changing
either of them for the replica also affected the value used by all other sessions. In addition, it was not
possible to set different defaults for these values exclusive to the replica, which should preferably have a
higher default value than other sessions.

NDB 8.0.30 adds two new system variables which are specific to the replica applier.
ndb_replica_batch_size now controls the batch size used for the replica applier, and

40

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

ndb_replica_blob_write_batch_bytes variable now determines the blob write batch size used to
perform batch blob writes on the replica.

This change should improve the behavior of MySQL NDB Cluster Replication using default settings,
and lets the user fine tune NDB replication performance without affecting user threads, such as those
performing processing of SQL queries.

For more information, see the descriptions of the new variables. See also Section 7.5, “Preparing the
NDB Cluster for Replication”.

MySQL Cluster Manager 1.4.8 also provides experimental support for NDB Cluster 8.0. MySQL Cluster
Manager has an advanced command-line interface that can simplify many complex NDB Cluster
management tasks. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

2.5 Options, Variables, and Parameters Added, Deprecated or
Removed in NDB 8.0

• Parameters Introduced in NDB 8.0

• Parameters Deprecated in NDB 8.0

• Parameters Removed in NDB 8.0

• Options and Variables Introduced in NDB 8.0

• Options and Variables Deprecated in NDB 8.0

• Options and Variables Removed in NDB 8.0

The next few sections contain information about NDB node configuration parameters and NDB-specific
mysqld options and variables that have been added to, deprecated in, or removed from NDB 8.0.

Parameters Introduced in NDB 8.0

The following node configuration parameters have been added in NDB 8.0.

• AllowUnresolvedHostNames: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only. Added in
NDB 8.0.22.

• AutomaticThreadConfig: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation. Added in NDB
8.0.23.

• ClassicFragmentation: When true, use traditional table fragmentation; set false to enable flexible
distribution of fragments among LDMs. Disabled by AutomaticThreadConfig. Added in NDB 8.0.23.

• DiskDataUsingSameDisk: Set to false if Disk Data tablespaces are located on separate physical
disks. Added in NDB 8.0.19.

• EnableMultithreadedBackup: Enable multi-threaded backup. Added in NDB 8.0.16.

• EncryptedFileSystem: Encrypt local checkpoint and tablespace files. EXPERIMENTAL. Added in
NDB 8.0.29.

• KeepAliveSendInterval: Time between keep-alive signals on links between data nodes, in
milliseconds. Set to 0 to disable. Added in NDB 8.0.27.

41

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

Parameters Deprecated in NDB 8.0

• MaxDiskDataLatency: Maximum allowed mean latency of disk access (ms) before starting to abort
transactions. Added in NDB 8.0.19.

• NodeGroupTransporters: Number of transporters to use between nodes in same node group. Added
in NDB 8.0.20.

• NumCPUs: Specify number of CPUs to use with AutomaticThreadConfig. Added in NDB 8.0.23.

• PartitionsPerNode: Determines the number of table partitions created on each data node; not used
if ClassicFragmentation is enabled. Added in NDB 8.0.23.

• PreferIPVersion: Indicate DNS resolver preference for IP version 4 or 6. Added in NDB 8.0.26.

• RequireEncryptedBackup: Whether backups must be encrypted (1 = encryption required, otherwise
0). Added in NDB 8.0.22.

• ReservedConcurrentIndexOperations: Number of simultaneous index operations having
dedicated resources on one data node. Added in NDB 8.0.16.

• ReservedConcurrentOperations: Number of simultaneous operations having dedicated resources
in transaction coordinators on one data node. Added in NDB 8.0.16.

• ReservedConcurrentScans: Number of simultaneous scans having dedicated resources on one data
node. Added in NDB 8.0.16.

• ReservedConcurrentTransactions: Number of simultaneous transactions having dedicated
resources on one data node. Added in NDB 8.0.16.

• ReservedFiredTriggers: Number of triggers having dedicated resources on one data node. Added
in NDB 8.0.16.

• ReservedLocalScans: Number of simultaneous fragment scans having dedicated resources on one
data node. Added in NDB 8.0.16.

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Added in NDB 8.0.16.

• SpinMethod: Determines spin method used by data node; see documentation for details. Added in
NDB 8.0.20.

• TcpSpinTime: Time to spin before going to sleep when receiving. Added in NDB 8.0.20.

• TransactionMemory: Memory allocated for transactions on each data node. Added in NDB 8.0.19.

Parameters Deprecated in NDB 8.0

The following node configuration parameters have been deprecated in NDB 8.0.

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.
Deprecated in NDB 8.0.19.

• MaxAllocate: No longer used; has no effect. Deprecated in NDB 8.0.27.

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node. Deprecated in NDB 8.0.19.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster. Deprecated in NDB 8.0.19.

42

Parameters Removed in NDB 8.0

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.
Deprecated in NDB 8.0.19.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.
Deprecated in NDB 8.0.19.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node. Deprecated in
NDB 8.0.19.

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Deprecated in NDB 8.0.19.

• UndoDataBuffer: Unused; has no effect. Deprecated in NDB 8.0.27.

• UndoIndexBuffer: Unused; has no effect. Deprecated in NDB 8.0.27.

Parameters Removed in NDB 8.0

No node configuration parameters have been removed in NDB 8.0.

Options and Variables Introduced in NDB 8.0

The following system variables, status variables, and server options have been added in NDB 8.0.

• Ndb_api_adaptive_send_deferred_count_replica: Number of adaptive send calls not actually
sent by this replica. Added in NDB 8.0.23.

• Ndb_api_adaptive_send_forced_count_replica: Number of adaptive sends with forced-send
set sent by this replica. Added in NDB 8.0.23.

• Ndb_api_adaptive_send_unforced_count_replica: Number of adaptive sends without forced-
send sent by this replica. Added in NDB 8.0.23.

• Ndb_api_bytes_received_count_replica: Quantity of data (in bytes) received from data nodes
by this replica. Added in NDB 8.0.23.

• Ndb_api_bytes_sent_count_replica: Qunatity of data (in bytes) sent to data nodes by this replica.
Added in NDB 8.0.23.

• Ndb_api_pk_op_count_replica: Number of operations based on or using primary keys by this
replica. Added in NDB 8.0.23.

• Ndb_api_pruned_scan_count_replica: Number of scans that have been pruned to one partition
by this replica. Added in NDB 8.0.23.

• Ndb_api_range_scan_count_replica: Number of range scans that have been started by this
replica. Added in NDB 8.0.23.

• Ndb_api_read_row_count_replica: Total number of rows that have been read by this replica.
Added in NDB 8.0.23.

• Ndb_api_scan_batch_count_replica: Number of batches of rows received by this replica. Added
in NDB 8.0.23.

• Ndb_api_table_scan_count_replica: Number of table scans that have been started, including
scans of internal tables, by this replica. Added in NDB 8.0.23.

43

Options and Variables Introduced in NDB 8.0

• Ndb_api_trans_abort_count_replica: Number of transactions aborted by this replica. Added in
NDB 8.0.23.

• Ndb_api_trans_close_count_replica: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) by this replica. Added in NDB 8.0.23.

• Ndb_api_trans_commit_count_replica: Number of transactions committed by this replica. Added
in NDB 8.0.23.

• Ndb_api_trans_local_read_row_count_replica: Total number of rows that have been read by
this replica. Added in NDB 8.0.23.

• Ndb_api_trans_start_count_replica: Number of transactions started by this replica. Added in
NDB 8.0.23.

• Ndb_api_uk_op_count_replica: Number of operations based on or using unique keys by this
replica. Added in NDB 8.0.23.

• Ndb_api_wait_exec_complete_count_replica: Number of times thread has been blocked while
waiting for operation execution to complete by this replica. Added in NDB 8.0.23.

• Ndb_api_wait_meta_request_count_replica: Number of times thread has been blocked waiting
for metadata-based signal by this replica. Added in NDB 8.0.23.

• Ndb_api_wait_nanos_count_replica: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica. Added in NDB 8.0.23.

• Ndb_api_wait_scan_result_count_replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Added in NDB 8.0.23.

• Ndb_config_generation: Generation number of the current configuration of the cluster. Added in
NDB 8.0.24.

• Ndb_conflict_fn_max_del_win_ins: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations. Added in NDB
8.0.30.

• Ndb_conflict_fn_max_ins: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations. Added in NDB 8.0.30.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Added in NDB 8.0.18.

• Ndb_metadata_detected_count: Number of times NDB metadata change monitor thread has
detected changes. Added in NDB 8.0.16.

• Ndb_metadata_excluded_count: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize. Added in NDB 8.0.22.

• Ndb_metadata_synced_count: Number of NDB metadata objects which have been synchronized.
Added in NDB 8.0.18.

• Ndb_trans_hint_count_session: Number of transactions using hints that have been started in this
session. Added in NDB 8.0.17.

• ndb-applier-allow-skip-epoch: Lets replication applier skip epochs. Added in NDB 8.0.28.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible. Added in NDB 8.0.21.

44

Options and Variables Deprecated in NDB 8.0

• ndb-schema-dist-timeout: How long to wait before detecting timeout during schema distribution.
Added in NDB 8.0.17.

• ndb_conflict_role: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL thread
is stopped. See documentation for further information. Added in NDB 8.0.23.

• ndb_dbg_check_shares: Check for any lingering shares (debug builds only). Added in NDB 8.0.13.

• ndb_metadata_check: Enable auto-detection of NDB metadata changes with respect to MySQL data
dictionary; enabled by default. Added in NDB 8.0.16.

• ndb_metadata_check_interval: Interval in seconds to perform check for NDB metadata changes
with respect to MySQL data dictionary. Added in NDB 8.0.16.

• ndb_metadata_sync: Triggers immediate synchronization of all changes between NDB dictionary and
MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values to be
ignored. Resets to false when synchronization is complete. Added in NDB 8.0.19.

• ndb_replica_batch_size: Batch size in bytes for replica applier. Added in NDB 8.0.30.

• ndb_schema_dist_lock_wait_timeout: Time during schema distribution to wait for lock before
returning error. Added in NDB 8.0.18.

• ndb_schema_dist_timeout: Time to wait before detecting timeout during schema distribution. Added
in NDB 8.0.16.

• ndb_schema_dist_upgrade_allowed: Allow schema distribution table upgrade when connecting to
NDB. Added in NDB 8.0.17.

• ndbinfo: Enable ndbinfo plugin, if supported. Added in NDB 8.0.13.

• replica_allow_batching: Turns update batching on and off for replica. Added in NDB 8.0.26.

Options and Variables Deprecated in NDB 8.0

The following system variables, status variables, and options have been deprecated in NDB 8.0.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send set
sent by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes by
this replica. Deprecated in NDB 8.0.23.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition by
this replica. Deprecated in NDB 8.0.23.

45

Options and Variables Removed in NDB 8.0

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including scans
of internal tables, by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica. Deprecated in
NDB 8.0.23.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by this
replica. Deprecated in NDB 8.0.23.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica. Deprecated in
NDB 8.0.23.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this replica.
Deprecated in NDB 8.0.23.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting for
metadata-based signal by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica. Deprecated in NDB 8.0.23.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Deprecated in NDB 8.0.23.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Deprecated in NDB
8.0.21.

• Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected. Deprecated in NDB 8.0.23.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information. Deprecated in NDB 8.0.23.

• slave_allow_batching: Turns update batching on and off for replica. Deprecated in NDB 8.0.26.

Options and Variables Removed in NDB 8.0

The following system variables, status variables, and options have been removed in NDB 8.0.

46

MySQL Server Using InnoDB Compared with NDB Cluster

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Removed in NDB
8.0.22.

2.6 MySQL Server Using InnoDB Compared with NDB Cluster
MySQL Server offers a number of choices in storage engines. Since both NDB and InnoDB can serve
as transactional MySQL storage engines, users of MySQL Server sometimes become interested in NDB
Cluster. They see NDB as a possible alternative or upgrade to the default InnoDB storage engine in
MySQL 8.0. While NDB and InnoDB share common characteristics, there are differences in architecture
and implementation, so that some existing MySQL Server applications and usage scenarios can be a good
fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by NDB
8.0 with InnoDB used in MySQL 8.0. The next few sections provide a technical comparison. In many
instances, decisions about when and where to use NDB Cluster must be made on a case-by-case basis,
taking all factors into consideration. While it is beyond the scope of this documentation to provide specifics
for every conceivable usage scenario, we also attempt to offer some very general guidance on the relative
suitability of some common types of applications for NDB as opposed to InnoDB back ends.

NDB Cluster 8.0 uses a mysqld based on MySQL 8.0, including support for InnoDB 1.1. While it is
possible to use InnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible to
use programs or libraries from an NDB Cluster 8.0 distribution with MySQL Server 8.0, or the reverse.

While it is also true that some types of common business applications can be run either on NDB Cluster or
on MySQL Server (most likely using the InnoDB storage engine), there are some important architectural
and implementation differences. Section 2.6.1, “Differences Between the NDB and InnoDB Storage
Engines”, provides a summary of the these differences. Due to the differences, some usage scenarios
are clearly more suitable for one engine or the other; see Section 2.6.2, “NDB and InnoDB Workloads”.
This in turn has an impact on the types of applications that better suited for use with NDB or InnoDB. See
Section 2.6.3, “NDB and InnoDB Feature Usage Summary”, for a comparison of the relative suitability of
each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to
Use MEMORY or NDB Cluster.

See Alternative Storage Engines, for additional information about MySQL storage engines.

2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from InnoDB in a number of ways. For those unaccustomed to working with NDB,
unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign keys, table
limits, and other characteristics. These are shown in the following table:

Table 2.2 Differences between InnoDB and NDB storage engines

Feature InnoDB (MySQL 8.0) NDB 8.0

MySQL Server Version 8.0 8.0

InnoDB Version InnoDB 8.0.29 InnoDB 8.0.29

NDB Cluster Version N/A NDB 8.0.30/8.0.30

Storage Limits 64TB 128TB

Foreign Keys Yes Yes

Transactions All standard types READ COMMITTED

47

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed

NDB and InnoDB Workloads

Feature InnoDB (MySQL 8.0) NDB 8.0

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup
files can be compressed)

Large Row Support (> 14K) Supported for VARBINARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and TEXT
columns only (Using these types
to store very large amounts of
data can lower NDB performance)

Replication Support Asynchronous and
semisynchronous replication
using MySQL Replication; MySQL
Group Replication

Automatic synchronous
replication within an NDB Cluster;
asynchronous replication between
NDB Clusters, using MySQL
Replication (Semisynchronous
replication is not supported)

Scaleout for Read Operations Yes (MySQL Replication) Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA) Built-in, from InnoDB cluster Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

From MySQL Group Replication Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery 30 seconds or longer Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally be
stored on disk; both in-memory
and disk data storage are durable)

NoSQL Access to Storage Engine Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/REST)

Concurrent and Parallel Writes Yes Up to 48 writers, optimized for
concurrent writes

Conflict Detection and Resolution
(Multiple Sources)

Yes (MySQL Group Replication) Yes

Hash Indexes No Yes

Online Addition of Nodes Read/write replicas using MySQL
Group Replication

Yes (all node types)

Online Upgrades Yes (using replication) Yes

Online Schema Modifications Yes, as part of MySQL 8.0 Yes

2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-node
implementation, NDB Cluster also has specific constraints that may keep some workloads from performing

48

https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

NDB and InnoDB Feature Usage Summary

well. A number of major differences in behavior between the NDB and InnoDB storage engines with regard
to some common types of database-driven application workloads are shown in the following table::

Table 2.3 Differences between InnoDB and NDB storage engines, common types of data-driven
application workloads.

Workload InnoDB NDB Cluster (NDB)

High-Volume OLTP Applications Yes Yes

DSS Applications (data marts,
analytics)

Yes Limited (Join operations across
OLTP datasets not exceeding 3TB
in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly primary
key access); NDB Cluster 8.0
supports foreign keys

In-Network Telecoms Applications
(HLR, HSS, SDP)

No Yes

Session Management and
Caching

Yes Yes

E-Commerce Applications Yes Yes

User Profile Management, AAA
Protocol

Yes Yes

2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of InnoDB with NDB, some are clearly
more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each
feature is typically better suited.

Table 2.4 Supported application features according to the storage engine to which each feature is
typically better suited

Preferred application requirements for InnoDB Preferred application requirements for NDB

• Foreign keys

Note

NDB Cluster 8.0 supports
foreign keys

• Full table scans

• Very large databases, rows, or transactions

• Transactions other than READ COMMITTED

• Write scaling

• 99.999% uptime

• Online addition of nodes and online schema
operations

• Multiple SQL and NoSQL APIs (see NDB Cluster
APIs: Overview and Concepts)

• Real-time performance

• Limited use of BLOB columns

• Foreign keys are supported, although their use
may have an impact on performance at high
throughput

49

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Known Limitations of NDB Cluster

2.7 Known Limitations of NDB Cluster
In the sections that follow, we discuss known limitations in current releases of NDB Cluster as compared
with the features available when using the MyISAM and InnoDB storage engines. If you check the “Cluster”
category in the MySQL bugs database at http://bugs.mysql.com, you can find known bugs in the following
categories under “MySQL Server:” in the MySQL bugs database at http://bugs.mysql.com, which we intend
to correct in upcoming releases of NDB Cluster:

• NDB Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

• ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report
any discrepancies that you encounter to the MySQL bugs database using the instructions given in How to
Report Bugs or Problems. Any problem which we do not plan to fix in NDB Cluster 8.0, is added to the list.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0” for a list of issues in
earlier releases that have been resolved in NDB Cluster 8.0.

Note

Limitations and other issues specific to NDB Cluster Replication are described in
Section 7.3, “Known Issues in NDB Cluster Replication”.

2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as
described in the following list:

• Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that
uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the error Table
storage engine 'ndbcluster' does not support the create option 'TEMPORARY'.

• Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

• Column width. Attempting to create an index on an NDB table column whose width is greater than
3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such cases, a
warning Specified key was too long; max key length is 3072 bytes is issued, and a
SHOW CREATE TABLE statement shows the length of the index as 3072.

• TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the
TEXT or BLOB data types.

• FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for MyISAM and InnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

• USING HASH keys and NULL. Using nullable columns in unique keys and primary keys means
that queries using these columns are handled as full table scans. To work around this issue, make the
column NOT NULL, or re-create the index without the USING HASH option.

50

http://bugs.mysql.com
http://bugs.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Noncompliance with SQL Syntax in NDB Cluster

• Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072 bytes,
as described earlier in this section. Also see Section 2.7.6, “Unsupported or Missing Features in NDB
Cluster”, for additional information.)

• BIT columns. A BIT column cannot be a primary key, unique key, or index, nor can it be part of a
composite primary key, unique key, or index.

• AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can
handle a maximum of one AUTO_INCREMENT column per table, and this column must be indexed.
However, in the case of an NDB table with no explicit primary key, an AUTO_INCREMENT column is
automatically defined and used as a “hidden” primary key. For this reason, you cannot create an NDB
table having an AUTO_INCREMENT column and no explicit primary key.

The following CREATE TABLE statements do not work, as shown here:

No index on AUTO_INCREMENT column; table has no primary key
Raises ER_WRONG_AUTO_KEY
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT
 ->)
 -> ENGINE=NDB;
ERROR 1075 (42000): Incorrect table definition; there can be only one auto
column and it must be defined as a key

Index on AUTO_INCREMENT column; table has no primary key
Raises NDB error 4335
mysql> CREATE TABLE n (
 -> a INT,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
ERROR 1296 (HY000): Got error 4335 'Only one autoincrement column allowed per
table. Having a table without primary key uses an autoincr' from NDBCLUSTER

The following statement creates a table with a primary key, an AUTO_INCREMENT column, and an
index on this column, and succeeds:

Index on AUTO_INCREMENT column; table has a primary key
mysql> CREATE TABLE n (
 -> a INT PRIMARY KEY,
 -> b INT AUTO_INCREMENT,
 -> KEY k (b)
 ->)
 -> ENGINE=NDB;
Query OK, 0 rows affected (0.38 sec)

• Restrictions on foreign keys. Support for foreign key constraints in NDB 8.0 is comparable to that
provided by InnoDB, subject to the following restrictions:

• Every column referenced as a foreign key requires an explicit unique key, if it is not the table's primary
key.

• ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing
the old primary key) plus an insert of the new row (with a new primary key). This is not visible to the

51

https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_auto_key
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4335
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Noncompliance with SQL Syntax in NDB Cluster

NDB kernel, which views these two rows as being the same, and thus has no way of knowing that this
update should be cascaded.

• ON DELETE CASCADE is also not supported where the child table contains one or more columns of
any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

• SET DEFAULT is not supported. (Also not supported by InnoDB.)

• The NO ACTION keyword is accepted but treated as RESTRICT. NO ACTION, which is a standard
SQL keyword, is the default in MySQL 8.0. (Also the same as with InnoDB.)

• In earlier versions of NDB Cluster, when creating a table with foreign key referencing an index in
another table, it sometimes appeared possible to create the foreign key even if the order of the
columns in the indexes did not match, due to the fact that an appropriate error was not always
returned internally. A partial fix for this issue improved the error used internally to work in most cases;
however, it remains possible for this situation to occur in the event that the parent index is a unique
index. (Bug #18094360)

For more information, see FOREIGN KEY Constraints, and FOREIGN KEY Constraints.

• NDB Cluster and geometry data types.
Geometry data types (WKT and WKB) are supported for NDB tables. However, spatial indexes are not
supported.

• Character sets and binary log files. Currently, the ndb_apply_status and ndb_binlog_index
tables are created using the latin1 (ASCII) character set. Because names of binary logs are recorded
in this table, binary log files named using non-Latin characters are not referenced correctly in these
tables. This is a known issue, which we are working to fix. (Bug #50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any the
--basedir, --log-bin, or --log-bin-index options.

• Creating NDB tables with user-defined partitioning. Support for user-defined partitioning in NDB
Cluster is restricted to [LINEAR] KEY partitioning. Using any other partitioning type with ENGINE=NDB or
ENGINE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings. For
details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using the
table's primary key as the partitioning key. If no primary key is explicitly set for the table, the “hidden”
primary key automatically created by the NDB storage engine is used instead. For additional discussion
of these and related issues, see KEY Partitioning.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER table
not to meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTITION BY [LINEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. The maximum number of partitions that
can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node group.

52

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/8.0/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin-index
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html#partitioning-limitations-ndb
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limits and Differences of NDB Cluster from Standard MySQL Limits

(See Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information about NDB Cluster node groups.

DROP PARTITION not supported. It is not possible to drop partitions from NDB tables using
ALTER TABLE ... DROP PARTITION. The other partitioning extensions to ALTER TABLE—ADD
PARTITION, REORGANIZE PARTITION, and COALESCE PARTITION—are supported for NDB tables,
but use copying and so are not optimized. See Management of RANGE and LIST Partitions and ALTER
TABLE Statement.

Partition selection. Partition selection is not supported for NDB tables. See Partition Selection, for
more information.

• JSON data type. The MySQL JSON data type is supported for NDB tables in the mysqld supplied
with NDB 8.0.

An NDB table can have a maximum of 3 JSON columns.

The NDB API has no special provision for working with JSON data, which it views simply as BLOB data.
Handling data as JSON must be performed by the application.

2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not found
in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules hold
true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for
re-use by inserts on the same table only. However, this memory can be made available for general re-
use by performing OPTIMIZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 6.5, “Performing
a Rolling Restart of an NDB Cluster”.

• A DROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by this
table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See TRUNCATE
TABLE Statement.

• Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets limits.
See the complete list of configuration parameters in Section 4.3, “NDB Cluster Configuration Files”. Most
configuration parameters can be upgraded online. These hard limits include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

53

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-management-range-list.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-selection.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Limits Relating to Transaction Handling in NDB Cluster

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special
cases by running multiple transactions, and so are not subject to this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered indexes
in the cluster is determined by MaxNoOfOrderedIndexes, and the maximum number of ordered
indexes per table is 16.

• Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

• The maximum number of data nodes is 145. (In NDB 7.6 and earlier, this was 48.)

A data node must have a node ID in the range of 1 to 144, inclusive.

Management and API nodes may use node IDs in the range 1 to 255, inclusive.

• The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL nodes
(MySQL Servers), API nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

• The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit is
hard-coded.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0”, for more information.

2.7.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include the
following:

• Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COMMITTED transaction isolation level. (InnoDB, for example, supports READ COMMITTED, READ
UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) You should keep in mind that NDB
implements READ COMMITTED on a per-row basis; when a read request arrives at the data node storing
the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can observe
“before” values, “after” values, or both, for different rows among these, due to the fact that a given row
read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK IN SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

• Increased frequency of lock wait timeout errors, and reduced concurrency

• Increased transaction processing overhead due to reads requiring a commit phase

• Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoOfConcurrentOperations

54

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/8.0/en/select.html

Limits Relating to Transaction Handling in NDB Cluster

NDB uses READ COMMITTED for all reads unless a modifier such as LOCK IN SHARE MODE or FOR
UPDATE is used. LOCK IN SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

• Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value that
uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of the BLOB
or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives rise to two
related issues of which you should be aware whenever executing SELECT statements on tables that
contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COMMITTED transaction isolation level is converted to a read with read lock. This is done to
guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the BLOB or
TEXT data types and that is executed within a transaction, a shared read lock is held on the table for
the duration of the transaction—that is, until the transaction is either committed or aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables having
BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b INT NOT NULL,
 c INT NOT NULL,
 d TEXT,
 INDEX i(b),
 UNIQUE KEY u(c)
) ENGINE = NDB,

The following query on t causes a shared read lock, because it uses a unique key lookup:

SELECT * FROM t WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROM t WHERE b = 1;

SELECT * FROM t WHERE d = '1';

SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use table
scans, and the fourth, while using a primary key lookup, does not retrieve the value of any BLOB or
TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable, by
committing transactions as soon as possible afterward.

55

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Limits Relating to Transaction Handling in NDB Cluster

• Unique key lookups and transaction isolation. Unique indexes are implemented in NDB using a
hidden index table which is maintained internally. When a user-created NDB table is accessed using
a unique index, the hidden index table is first read to find the primary key that is then used to read the
user-created table. To avoid modification of the index during this double-read operation, the row found
in the hidden index table is locked. When a row referenced by a unique index in the user-created NDB
table is updated, the hidden index table is subject to an exclusive lock by the transaction in which the
update is performed. This means that any read operation on the same (user-created) NDB table must
wait for the update to complete. This is true even when the transaction level of the read operation is
READ COMMITTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unique index when performing the read. This can be done by using the IGNORE INDEX
index hint as part of the SELECT statement reading the table (see Index Hints). Because the MySQL
server creates a shadowing ordered index for every unique index created in NDB, this lets the ordered
index be read instead, and avoids unique index access locking. The resulting read is as consistent as a
committed read by primary key, returning the last committed value at the time the row is read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have higher
latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

• Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate key
or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as InnoDB that may roll back
individual statements.

• Transactions and memory usage.
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions require
very large amounts of memory. Because of this, the transactional behavior of a number of MySQL
statements is affected as described in the following list:

• TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to empty
the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great many
rows, you may find that performance is improved by using several DELETE FROM ... LIMIT ...
statements to “chunk” the delete operation. If your objective is to empty the table, then you may wish
to use TRUNCATE TABLE instead.

• LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.

Important

When executing a LOAD DATA statement, the NDB engine performs commits at
irregular intervals that enable better utilization of the communication network. It
is not possible to know ahead of time when such commits take place.

• ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the
creation of the copy is nontransactional. (In any case, this operation is rolled back when the copy is
deleted.)

56

https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

NDB Cluster Error Handling

• Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible to
guarantee the transactional consistency of the COUNT() function on the replica. In other words, when
performing on the source a series of statements (INSERT, DELETE, or both) that changes the number of
rows in a table within a single transaction, executing SELECT COUNT(*) FROM table queries on the
replica may yield intermediate results. This is due to the fact that SELECT COUNT(...) may perform
dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321 for more information.)

2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail.
These include the following cases:

• Temporary errors. When first starting a node, it is possible that you may see Error 1204 Temporary
failure, distribution changed and similar temporary errors.

• Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should
be done by retrying the transaction.

See also Section 2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

2.7.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER
storage engine:

• Number of database objects. The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

• Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

• Attributes per key. The maximum number of attributes per key is 32.

• Row size. In NDB 8.0, the maximum permitted size of any one row is 30000 bytes (increased from
14000 bytes in previous releases).

Each BLOB or TEXT column contributes 256 + 8 = 264 bytes to this total; this includes JSON columns.
See String Type Storage Requirements, as well as JSON Storage Requirements, for more information
relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting to
create a table that violates this limitation fails with NDB error 851 Maximum offset for fixed-
size columns exceeded. For memory-based columns, you can work around this limitation by using
a variable-width column type such as VARCHAR or defining the column as COLUMN_FORMAT=DYNAMIC;
this does not work with columns stored on disk. For disk-based columns, you may be able to do so
by reordering one or more of the table's disk-based columns such that the combined width of all but
the disk-based column defined last in the CREATE TABLE statement used to create the table does
not exceed 8188 bytes, less any possible rounding performed for some data types such as CHAR or
VARCHAR; otherwise it is necessary to use memory-based storage for one or more of the offending
column or columns instead.

• BIT column storage per table. The maximum combined width for all BIT columns used in a given
NDB table is 4096.

57

https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-json
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html

Unsupported or Missing Features in NDB Cluster

• FIXED column storage. NDB Cluster 8.0 supports a maximum of 128 TB per fragment of data in
FIXED columns.

2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to use
any of these features in NDB Cluster does not cause errors in or of itself; however, errors may occur in
applications that expects the features to be supported or enforced. Statements referencing such features,
even if effectively ignored by NDB, must be syntactically and otherwise valid.

• Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE INDEX, the
prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be syntactically
valid. For example, the following statement always fails with Error 1089 Incorrect prefix key;
the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique prefix keys, regardless of
storage engine:

CREATE TABLE t1 (
 c1 INT NOT NULL,
 c2 VARCHAR(100),
 INDEX i1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

• Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in MyISAM.

• Durability of commits. There are no durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

• Replication. Statement-based replication is not supported. Use --binlog-format=ROW (or --
binlog-format=MIXED) when setting up cluster replication. See Chapter 7, NDB Cluster Replication,
for more information.

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 8.0. Do not enable GTIDs when using the NDB storage engine, as this is very
likely to cause problems up to and including failure of NDB Cluster Replication.

Semisynchronous replication is not supported in NDB Cluster.

• Generated columns. The NDB storage engine does not support indexes on virtual generated
columns.

As with other storage engines, you can create an index on a stored generated column, but you should
bear in mind that NDB uses DataMemory for storage of the generated column as well as IndexMemory
for the index. See JSON columns and indirect indexing in NDB Cluster, for an example.

NDB Cluster writes changes in stored generated columns to the binary log, but does log not those made
to virtual columns. This should not effect NDB Cluster Replication or replication between NDB and other
MySQL storage engines.

Note

See Section 2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”, for
more information relating to limitations on transaction handling in NDB.

58

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/create-table-secondary-indexes.html#json-column-indirect-index-mysql-cluster
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limitations Relating to Performance in NDB Cluster

2.7.7 Limitations Relating to Performance in NDB Cluster

The following performance issues are specific to or especially pronounced in NDB Cluster:

• Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either MyISAM or
InnoDB.

• Reliability of Records in range. The Records in range statistic is available but is not completely
tested or officially supported. This may result in nonoptimal query plans in some cases. If necessary,
you can employ USE INDEX or FORCE INDEX to alter the execution plan. See Index Hints, for more
information on how to do this.

• Unique hash indexes. Unique hash indexes created with USING HASH cannot be used for
accessing a table if NULL is given as part of the key.

2.7.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

• Machine architecture. All machines used in the cluster must have the same architecture. That is, all
machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture of both.
For example, you cannot have a management node running on a PowerPC which directs a data node
that is running on an x86 machine. This restriction does not apply to machines simply running mysql or
other clients that may be accessing the cluster's SQL nodes.

• Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

• sql_log_bin has no effect on data operations; however, it is supported for schema operations.

• NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

• Only the following schema operations are logged in a cluster binary log which is not on the mysqld
executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

• CREATE TABLESPACE

• ALTER TABLESPACE

• DROP TABLESPACE

• CREATE LOGFILE GROUP

• ALTER LOGFILE GROUP

• DROP LOGFILE GROUP

59

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/drop-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/drop-logfile-group.html

Limitations Relating to NDB Cluster Disk Data Storage

• Schema operations. Schema operations (DDL statements) are rejected while any data node
restarts. Schema operations are also not supported while performing an online upgrade or downgrade.

• Number of fragment replicas. The number of fragment replicas, as determined by the
NoOfReplicas data node configuration parameter, is the number of copies of all data stored by NDB
Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no redundancy
is provided, and the loss of a data node entails loss of data. To guarantee redundancy, and thus
preservation of data even if a data node fails, set this parameter to 2, which is the default and
recommended value in production.

Setting NoOfReplicas to a value greater than 2 is supported (to a maximum of 4) but unnecessary to
guard against loss of data.

See also Section 2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following maximums
and minimums:

• Maximum number of tablespaces: 232 (4294967296)

• Maximum number of data files per tablespace: 216 (65536)

• The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See CREATE TABLESPACE Statement, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

• Data files use DataMemory. Usage is the same as for in-memory data.

• Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

• Extents require sufficient DiskPageBufferMemory; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and are
specific to the NDBCLUSTER storage engine:

• Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created separately
on each SQL node. See Stored routines and triggers in NDB Cluster.

• No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the SQL
node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true for a lock
issued by any statement that locks tables as part of its operations. (See next item for an example.)

60

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/stored-program-restrictions.html#stored-routines-ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock

Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM_Read or LM_Exclusive. For more information about how
to do this, see the description of NdbOperation::getLockHandle() in the NDB Cluster API Guide.

• ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers
(SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed table locks.)

Multiple management nodes.
When using multiple management servers:

• If any of the management servers are running on the same host, you must give nodes explicit IDs in
connection strings because automatic allocation of node IDs does not work across multiple management
servers on the same host. This is not required if every management server resides on a different host.

• When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server --reload and --initial startup options are ignored unless
the management server is the only one running. It also means that, when performing a rolling restart of
an NDB Cluster with multiple management nodes, the management server reads its own configuration
file if (and only if) it is the only management server running in this NDB Cluster. See Section 6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data node are not supported. Use of
these is liable to cause problems: In the event of a data node failure, an SQL node waits for confirmation
that the data node went down but never receives it because another route to that data node remains open.
This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards)
for a single data node, but these must be bound to the same address. This also
means that it not possible to use more than one [tcp] section per connection in
the config.ini file. See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for
more information.

2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

A number of limitations and related issues that existed in earlier versions of NDB Cluster have been
resolved in NDB 8.0. These are described briefly in the following list:

• Database and table names. In NDB 7.6 and earlier, when using the NDB storage engine, the
maximum allowed length both for database names and for table names was 63 characters, and a
statement using a database name or table name longer than this limit failed with an appropriate error. In
NDB 8.0, this restriction is lifted; identifiers for NDB databases and tables may now use up to 64 bytes, as
with other MySQL database and table names.

• IPv6 support. Prior to NDB 8.0.22, it was necessary for all network addresses used for connections
between nodes within an NDB Cluster to use or to be resolvable to IPv4 addresses. Beginning with NDB
8.0.22, NDB supports IPv6 addresses for all types of cluster nodes, as well as for applications that use
the NDB API or MGM API.

61

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

62

Chapter 3 NDB Cluster Installation

Table of Contents
3.1 Installation of NDB Cluster on Linux .. 65

3.1.1 Installing an NDB Cluster Binary Release on Linux .. 66
3.1.2 Installing NDB Cluster from RPM .. 68
3.1.3 Installing NDB Cluster Using .deb Files ... 72
3.1.4 Building NDB Cluster from Source on Linux .. 73

3.2 Installing NDB Cluster on Windows ... 74
3.2.1 Installing NDB Cluster on Windows from a Binary Release .. 74
3.2.2 Compiling and Installing NDB Cluster from Source on Windows ... 78
3.2.3 Initial Startup of NDB Cluster on Windows .. 78
3.2.4 Installing NDB Cluster Processes as Windows Services ... 81

3.3 Initial Configuration of NDB Cluster ... 83
3.4 Initial Startup of NDB Cluster .. 85
3.5 NDB Cluster Example with Tables and Data .. 86
3.6 Safe Shutdown and Restart of NDB Cluster ... 89
3.7 Upgrading and Downgrading NDB Cluster ... 90
3.8 The NDB Cluster Auto-Installer (No longer supported) .. 93

3.8.1 NDB Cluster Auto-Installer Requirements .. 93
3.8.2 Using the NDB Cluster Auto-Installer .. 95

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Chapter 4, Configuration of NDB Cluster provide more in-depth information
on a variety of clustering options and configuration, the result of following the guidelines and procedures
outlined here should be a usable NDB Cluster which meets the minimum requirements for availability and
safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB Cluster;
basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample database; and
performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's physical
and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 3.1 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

This setup is also shown in the following diagram:

63

Figure 3.1 NDB Cluster Multi-Computer Setup

Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric
IP addresses. However, if DNS resolution is available on your network, it is possible to use host names
in lieu of IP addresses in configuring Cluster. Alternatively, you can use the hosts file (typically /etc/
hosts for Linux and other Unix-like operating systems, C:\WINDOWS\system32\drivers\etc\hosts
on Windows, or your operating system's equivalent) for providing a means to do host lookup if such is
available.

Prior to NDB 8.0.22, all network addresses used for connections to or from data and management nodes
must use or be resolvable using IPv4. This includes addresses used by SQL nodes to contact the other
nodes. Beginning with NDB 8.0.22, NDB Cluster supports IPv6 for connections between any and all cluster
nodes.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set up
the system's own host name in the /etc/hosts during installation. Consider two machines with the host
names ndb1 and ndb2, both in the cluster network domain. Red Hat Linux (including some derivatives
such as CentOS and Fedora) places the following entries in these machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 ndb1.cluster ndb1 localhost.localdomain localhost

ndb2 /etc/hosts:
127.0.0.1 ndb2.cluster ndb2 localhost.localdomain localhost

SUSE Linux (including OpenSUSE) places these entries in the machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb1.cluster ndb1

64

Installation of NDB Cluster on Linux

ndb2 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb2.cluster ndb2

In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address
from DNS for ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains a
public address for ndb1.cluster. The result is that each data node connects to the management server,
but cannot tell when any other data nodes have connected, and so the data nodes appear to hang while
starting.

Caution

You cannot mix localhost and other host names or IP addresses in
config.ini. For these reasons, the solution in such cases (other than to use IP
addresses for all config.ini HostName entries) is to remove the fully qualified
host names from /etc/hosts and use these in config.ini for all cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop
PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-issue
Ethernet networking appliance such as a switch. (All machines should use network cards with the same
throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four machines
should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit Ethernet provides
better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less than
100 Mbps or which experiences a high degree of latency. For this reason (among
others), attempting to run an NDB Cluster over a wide area network such as the
Internet is not likely to be successful, and is not supported in production.

Sample data. We use the world database which is available for download from the MySQL website
(see https://dev.mysql.com/doc/index-other.html). We assume that each machine has sufficient memory
for running the operating system, required NDB Cluster processes, and (on the data nodes) storing the
database.

For general information about installing MySQL, see Installing and Upgrading MySQL. For information
about installation of NDB Cluster on Linux and other Unix-like operating systems, see Section 3.1,
“Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on Windows
operating systems, see Section 3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

3.1 Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating systems.
While the next few sections refer to a Linux operating system, the instructions and procedures given
there should be easily adaptable to other supported Unix-like platforms. For manual installation and setup
instructions specific to Windows systems, see Section 3.2, “Installing NDB Cluster on Windows”.

65

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html

Installing an NDB Cluster Binary Release on Linux

Each NDB Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (mysqld). Management nodes require the
management server daemon (ndb_mgmd); data nodes require the data node daemon (ndbd or ndbmtd). It
is not necessary to install the MySQL Server binary on management node hosts and data node hosts. It is
recommended that you also install the management client (ndb_mgm) on the management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded as
a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of these
installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 3.3, “Initial
Configuration of NDB Cluster”.

3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each cluster
host is to download the binary archive from the NDB Cluster downloads page. (For the most recent 64-bit
NDB 8.0 release, this is mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64.tar.gz.) We
assume that you have placed this file in each machine's /var/tmp directory.

If you require a custom binary, see Installing MySQL Using a Development Source Tree.

Note

After completing the installation, do not yet start any of the binaries. We show
you how to do so following the configuration of the nodes (see Section 3.3, “Initial
Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps as
the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysql user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new mysql user group, and then add a
mysql user to this group:

$> groupadd mysql
$> useradd -g mysql -s /bin/false mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they may
have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named mysql to the mysql directory.

Note

The actual file and directory names vary according to the NDB Cluster version
number.

$> cd /var/tmp
$> tar -C /usr/local -xzvf mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64.tar.gz
$> ln -s /usr/local/mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64 /usr/local/mysql

66

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html

Installing an NDB Cluster Binary Release on Linux

3. Change location to the mysql directory and set up the system databases using mysqld --
initialize as shown here:

$> cd mysql
$> mysqld --initialize

This generates a random password for the MySQL root account. If you do not want the random
password to be generated, you can substitute the --initialize-insecure option for --
initialize. In either case, you should review Initializing the Data Directory, for additional information
before performing this step. See also mysql_secure_installation — Improve MySQL Installation
Security.

4. Set the necessary permissions for the MySQL server and data directories:

$> chown -R root .
$> chown -R mysql data
$> chgrp -R mysql .

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when
the operating system is booted up:

$> cp support-files/mysql.server /etc/rc.d/init.d/
$> chmod +x /etc/rc.d/init.d/mysql.server
$> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version—for example,
in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as update-rc.d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to reside.

Data nodes. Installation of the data nodes does not require the mysqld binary. Only the NDB Cluster
data node executable ndbd (single-threaded) or ndbmtd (multithreaded) is required. These binaries can
also be found in the .tar.gz archive. Again, we assume that you have placed this archive in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily assuming
the system administrator account's privileges), perform the following steps to install the data node binaries
on the data node hosts:

1. Change location to the /var/tmp directory, and extract the ndbd and ndbmtd binaries from the
archive into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64
$> cp bin/ndbd /usr/local/bin/ndbd
$> cp bin/ndbmtd /usr/local/bin/ndbmtd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb*

The preceding steps should be repeated on each data node host.

67

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/data-directory-initialization.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html

Installing NDB Cluster from RPM

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbmtd in the preceding instructions. We recommend that you do
this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since this saves
time and trouble in the event that you later decide to change from one to the other.

Note

The data directory on each machine hosting a data node is /usr/local/mysql/
data. This piece of information is essential when configuring the management
node. (See Section 3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the mysqld binary.
Only the NDB Cluster management server (ndb_mgmd) is required; you most likely want to install the
management client (ndb_mgm) as well. Both of these binaries also be found in the .tar.gz archive.
Again, we assume that you have placed this archive in /var/tmp.

As system root, perform the following steps to install ndb_mgmd and ndb_mgm on the management node
host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the archive
into a suitable directory such as /usr/local/bin:

$> cd /var/tmp
$> tar -zxvf mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64.tar.gz
$> cd mysql-cluster-gpl-8.0.28-linux-glibc2.12-x86_64
$> cp bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chmod +x ndb_mgm*

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in our
example NDB Cluster.

3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster 8.0
node using RPM packages supplied by Oracle.

As an alternative to the method described in this section, Oracle provides MySQL Repositories for NDB
Cluster that are compatible with many common Linux distributions. Two repostories, listed here, are
available for RPM-based distributions:

• For distributions using yum or dnf, you can use the MySQL Yum Repository for NDB Cluster. See
Installing MySQL NDB Cluster Using the Yum Repository, for instructions and additional information.

• For SLES, you can use the MySQL SLES Repository for NDB Cluster. See Installing MySQL NDB
Cluster Using the SLES Repository, for instructions and additional information.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

mysql-cluster-community-data-node-8.0.28-1.el7.x86_64.rpm

68

https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install

Installing NDB Cluster from RPM

mysql-cluster-license-component-ver-rev.distro.arch.rpm

 license:= {commercial | community}

 component: {management-server | data-node | server | client | other—see text}

 ver: major.minor.release

 rev: major[.minor]

 distro: {el6 | el7 | sles12}

 arch: {i686 | x86_64}

license indicates whether the RPM is part of a Commercial or Community release of NDB Cluster. In the
remainder of this section, we assume for the examples that you are installing a Community release.

Possible values for component, with descriptions, can be found in the following table:

Table 3.2 Components of the NDB Cluster RPM distribution

Component Description

auto-installer (DEPRECATED) NDB Cluster Auto Installer program; see
Section 3.8, “The NDB Cluster Auto-Installer (No
longer supported)”, for usage

client MySQL and NDB client programs; includes mysql
client, ndb_mgm client, and other client tools

common Character set and error message information
needed by the MySQL server

data-node ndbd and ndbmtd data node binaries

devel Headers and library files needed for MySQL client
development

embedded Embedded MySQL server

embedded-compat Backwards-compatible embedded MySQL server

embedded-devel Header and library files for developing applications
for embedded MySQL

java JAR files needed for support of ClusterJ applications

libs MySQL client libraries

libs-compat Backwards-compatible MySQL client libraries

management-server The NDB Cluster management server (ndb_mgmd)

memcached Files needed to support ndbmemcache

minimal-debuginfo Debug information for package server-minimal;
useful when developing applications that use this
package or when debugging this package

ndbclient NDB client library for running NDB API and MGM
API applications (libndbclient)

ndbclient-devel Header and other files needed for developing NDB
API and MGM API applications

nodejs Files needed to set up Node.JS support for NDB
Cluster

69

Installing NDB Cluster from RPM

Component Description

server The MySQL server (mysqld) with NDB storage
engine support included, and associated MySQL
server programs

server-minimal Minimal installation of the MySQL server for NDB
and related tools

test mysqltest, other MySQL test programs, and
support files

A single bundle (.tar file) of all NDB Cluster RPMs for a given platform and architecture is also available.
The name of this file follows the pattern shown here:

mysql-cluster-license-ver-rev.distro.arch.rpm-bundle.tar

You can extract the individual RPM files from this file using tar or your preferred tool for extracting
archives.

The components required to install the three major types of NDB Cluster nodes are given in the following
list:

• Management node: management-server

• Data node: data-node

• SQL node: server and common

In addition, the client RPM should be installed to provide the ndb_mgm management client on at least
one management node. You may also wish to install it on SQL nodes, to have mysql and other MySQL
client programs available on these. We discuss installation of nodes by type later in this section.

ver represents the three-part NDB storage engine version number in 8.0.x format, shown as 8.0.28 in the
examples. rev provides the RPM revision number in major.minor format. In the examples shown in this
section, we use 1.1 for this value.

The distro (Linux distribution) is one of rhel5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5), el6
(Oracle Linux 6, Red Hat Enterprise Linux 6), el7 (Oracle Linux 7, Red Hat Enterprise Linux 7), or sles12
(SUSE Enterprise Linux 12). For the examples in this section, we assume that the host runs Oracle Linux
7, Red Hat Enterprise Linux 7, or the equivalent (el7).

arch is i686 for 32-bit RPMs and x86_64 for 64-bit versions. In the examples shown here, we assume a
64-bit platform.

The NDB Cluster version number in the RPM file names (shown here as 8.0.28) can vary according to
the version which you are actually using. It is very important that all of the Cluster RPMs to be installed
have the same version number. The architecture should also be appropriate to the machine on which the
RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs (x86_64) cannot be used
with 32-bit operating systems (use i686 for the latter).

Data nodes. On a computer that is to host an NDB Cluster data node it is necessary to install only
the data-node RPM. To do so, copy this RPM to the data node host, and run the following command
as the system root user, replacing the name shown for the RPM as necessary to match that of the RPM
downloaded from the MySQL website:

$> rpm -Uhv mysql-cluster-community-data-node-8.0.28-1.el7.x86_64.rpm

This installs the ndbd and ndbmtd data node binaries in /usr/sbin. Either of these can be used to run a
data node process on this host.

70

Installing NDB Cluster from RPM

SQL nodes. Copy the server and common RPMs to each machine to be used for hosting an NDB
Cluster SQL node (server requires common). Install the server RPM by executing the following
command as the system root user, replacing the name shown for the RPM as necessary to match the
name of the RPM downloaded from the MySQL website:

$> rpm -Uhv mysql-cluster-community-server-8.0.28-1.el7.x86_64.rpm

This installs the MySQL server binary (mysqld), with NDB storage engine support, in the /usr/sbin
directory. It also installs all needed MySQL Server support files and useful MySQL server programs,
including the mysql.server and mysqld_safe startup scripts (in /usr/share/mysql and /usr/bin,
respectively). The RPM installer should take care of general configuration issues (such as creating the
mysql user and group, if needed) automatically.

Important

You must use the versions of these RPMs released for NDB Cluster ; those
released for the standard MySQL server do not provide support for the NDB storage
engine.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

$> rpm -Uhv mysql-cluster-community-client-8.0.28-1.el7.x86_64.rpm

This installs the mysql client and other MySQL client programs, such as mysqladmin and mysqldump, to
/usr/bin.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
management-server RPM. Copy this RPM to the computer intended to host the management node,
and then install it by running the following command as the system root user (replace the name shown
for the RPM as necessary to match that of the management-server RPM downloaded from the MySQL
website):

$> rpm -Uhv mysql-cluster-community-management-server-8.0.28-1.el7.x86_64.rpm

This RPM installs the management server binary ndb_mgmd in the /usr/sbin directory. While this is the
only program actually required for running a management node, it is also a good idea to have the ndb_mgm
NDB Cluster management client available as well. You can obtain this program, as well as other NDB client
programs such as ndb_desc and ndb_config, by installing the client RPM as described previously.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about installing
MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster; see Section 3.3, “Initial Configuration of
NDB Cluster”, for the relevant information.

It is very important that all of the Cluster RPMs to be installed have the same version number. The
architecture designation should also be appropriate to the machine on which the RPM is to be
installed; in particular, you should keep in mind that 64-bit RPMs cannot be used with 32-bit operating
systems.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the server
RPM. To do so, copy this RPM to the data node host, and run the following command as the system root
user, replacing the name shown for the RPM as necessary to match that of the RPM downloaded from the
MySQL website:

$> rpm -Uhv MySQL-Cluster-server-gpl-8.0.28-1.sles11.i386.rpm

71

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html

Installing NDB Cluster Using .deb Files

Although this installs all NDB Cluster binaries, only the program ndbd or ndbmtd (both in /usr/sbin) is
actually needed to run an NDB Cluster data node.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the server RPM
by executing the following command as the system root user, replacing the name shown for the RPM as
necessary to match the name of the RPM downloaded from the MySQL website:

$> rpm -Uhv MySQL-Cluster-server-gpl-8.0.28-1.sles11.i386.rpm

This installs the MySQL server binary (mysqld) with NDB storage engine support in the /usr/sbin
directory, as well as all needed MySQL Server support files. It also installs the mysql.server and
mysqld_safe startup scripts (in /usr/share/mysql and /usr/bin, respectively). The RPM installer
should take care of general configuration issues (such as creating the mysql user and group, if needed)
automatically.

To administer the SQL node (MySQL server), you should also install the client RPM, as shown here:

$> rpm -Uhv MySQL-Cluster-client-gpl-8.0.28-1.sles11.i386.rpm

This installs the mysql client program.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the server RPM downloaded from the MySQL website):

$> rpm -Uhv MySQL-Cluster-server-gpl-8.0.28-1.sles11.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_mgmd (in the /
usr/sbin directory) is actually required for running a management node. The server RPM also installs
ndb_mgm, the NDB management client.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about installing
MySQL using RPMs supplied by Oracle. See Section 3.3, “Initial Configuration of NDB Cluster”, for
information about required post-installation configuration.

3.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the .deb files supplied by Oracle for this purpose.

Oracle also provides an NDB Cluster APT repository for Debian and other distributions. See Installing
MySQL NDB Cluster Using the APT Repository, for instructions and additional information.

Oracle provides .deb installer files for NDB Cluster for 32-bit and 64-bit platforms. For a Debian-based
system, only a single installer file is necessary. This file is named using the pattern shown here, according
to the applicable NDB Cluster version, Debian version, and architecture:

mysql-cluster-gpl-ndbver-debiandebianver-arch.deb

Here, ndbver is the 3-part NDB engine version number, debianver is the major version of Debian (8
or 9), and arch is one of i686 or x86_64. In the examples that follow, we assume you wish to install
NDB 8.0.28 on a 64-bit Debian 9 system; in this case, the installer file is named mysql-cluster-
gpl-8.0.28-debian9-x86_64.deb-bundle.tar.

Once you have downloaded the appropriate .deb file, you can untar it, and then install it from the
command line using dpkg, like this:

72

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install

Building NDB Cluster from Source on Linux

$> dpkg -i mysql-cluster-gpl-8.0.28-debian9-i686.deb

You can also remove it using dpkg as shown here:

$> dpkg -r mysql

The installer file should also be compatible with most graphical package managers that work with .deb
files, such as GDebi for the Gnome desktop.

The .deb file installs NDB Cluster under /opt/mysql/server-version/, where version is the 2-
part release series version for the included MySQL server. For NDB 8.0, this is always 5.7. The directory
layout is the same as that for the generic Linux binary distribution (see MySQL Installation Layout for
Generic Unix/Linux Binary Package), with the exception that startup scripts and configuration files are
found in support-files instead of share. All NDB Cluster executables, such as ndb_mgm, ndbd, and
ndb_mgmd, are placed in the bin directory.

3.1.4 Building NDB Cluster from Source on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs
in a few key respects discussed here. For general information about building MySQL from source, see
Installing MySQL from Source. For information about compiling NDB Cluster on Windows platforms, see
Section 3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysql.com/downloads/. The archived source file should
have a name similar to mysql-8.0.28.tar.gz. You can also obtain the sources from GitHub at https://
github.com/mysql/mysql-server.

Note

In previous versions, building of NDB Cluster from standard MySQL Server sources
was not supported. In MySQL 8.0 and NDB Cluster 8.0, this is no longer the case
—both products are now built from the same sources.

The WITH_NDBCLUSTER option for CMake causes the binaries for the management nodes, data
nodes, and other NDB Cluster programs to be built; it also causes mysqld to be compiled with NDB
storage engine support. This option (or one of its aliases WITH_NDBCLUSTER_STORAGE_ENGINE and
WITH_PLUGIN_NDBCLUSTER) is required when building NDB Cluster.

Important

The WITH_NDB_JAVA option is enabled by default. This means that, by default, if
CMake cannot find the location of Java on your system, the configuration process
fails; if you do not wish to enable Java and ClusterJ support, you must indicate
this explicitly by configuring the build using -DWITH_NDB_JAVA=OFF. Use
WITH_CLASSPATH to provide the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

After you have run make && make install (or your system's equivalent), the result is similar to what is
obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default make install, the
management server and management client binaries (ndb_mgmd and ndb_mgm) can be found in /usr/

73

https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options

Installing NDB Cluster on Windows

local/mysql/bin. Only ndb_mgmd is required to be present on a management node host; however,
it is also a good idea to have ndb_mgm present on the same host machine. Neither of these executables
requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or
ndbmtd. (mysqld, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory /usr/local/mysql/bin. For installing on multiple
data node hosts, only ndbd or ndbmtd need be copied to the other host machine or machines. (This
assumes that all data node hosts use the same architecture and operating system; otherwise you may
need to compile separately for each different platform.) The data node binary need not be in any particular
location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbmtd to be built
automatically; make install places the ndbmtd binary in the installation bin directory along with
mysqld, ndbd, and ndb_mgm.

SQL nodes. If you compile MySQL with clustering support, and perform the default installation (using
make install as the system root user), mysqld is placed in /usr/local/mysql/bin. Follow the
steps given in Installing MySQL from Source to make mysqld ready for use. If you want to run multiple
SQL nodes, you can use a copy of the same mysqld executable and its associated support files on
several machines. The easiest way to do this is to copy the entire /usr/local/mysql directory and all
directories and files contained within it to the other SQL node host or hosts, then repeat the steps from
Installing MySQL from Source on each machine. If you configure the build with a nondefault PREFIX
option, you must adjust the directory accordingly.

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in our
example NDB Cluster.

3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster 8.0
binaries for Windows can be obtained from https://dev.mysql.com/downloads/cluster/. For information
about installing NDB Cluster on Windows from a binary release provided by Oracle, see Section 3.2.1,
“Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this section
(see Chapter 3, NDB Cluster Installation), as shown in the following table:

Table 3.3 Network addresses of nodes in example cluster

Node IP Address

Management node (mgmd) 198.51.100.10

SQL node (mysqld) 198.51.100.20

Data node "A" (ndbd) 198.51.100.30

Data node "B" (ndbd) 198.51.100.40

74

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows from a Binary Release

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on it a
MySQL Server binary (mysqld.exe). You should also have the MySQL client (mysql.exe) on this host.
For management nodes and data nodes, it is not necessary to install the MySQL Server binary; however,
each management node requires the management server daemon (ndb_mgmd.exe); each data node
requires the data node daemon (ndbd.exe or ndbmtd.exe). For this example, we refer to ndbd.exe
as the data node executable, but you can install ndbmtd.exe, the multithreaded version of this program,
instead, in exactly the same way. You should also install the management client (ndb_mgm.exe) on the
management server host. This section covers the steps necessary to install the correct Windows binaries
for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with the
.exe file extension. However, it is not necessary to include the .exe extension
when invoking these programs from the command line. Therefore, we often simply
refer to these programs in this documentation as mysqld, mysql, ndb_mgmd, and
so on. You should understand that, whether we refer (for example) to mysqld or
mysqld.exe, either name means the same thing (the MySQL Server program).

For setting up an NDB Cluster using Oracles's no-install binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysql.com/
downloads/cluster/. This archive has a filename of the mysql-cluster-gpl-ver-winarch.zip,
where ver is the NDB storage engine version (such as 8.0.28), and arch is the architecture (32 for 32-
bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 8.0.28 archive for 64-bit Windows
systems is named mysql-cluster-gpl-8.0.28-win64.zip.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-bit
NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit version of
Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C:\Documents
and Settings\username\My Documents\Downloads on the computer having the IP address
198.51.100.20, where username is the name of the current user. (You can obtain this name using ECHO
%USERNAME% on the command line.) To install and run NDB Cluster executables as Windows services, this
user should be a member of the Administrators group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is adequate
for this task. (If you use a different archive program, be sure that it extracts all files and directories from
the archive, and that it preserves the archive's directory structure.) When you are asked for a destination
directory, enter C:\, which causes the Extraction Wizard to extract the archive to the directory C:\mysql-
cluster-gpl-ver-winarch. Rename this directory to C:\mysql.

It is possible to install the NDB Cluster binaries to directories other than C:\mysql\bin; however, if you
do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL Server
(SQL node) binary is installed to a location other than C:\mysql or C:\Program Files\MySQL\MySQL
Server 8.0, or if the SQL node's data directory is in a location other than C:\mysql\data or C:
\Program Files\MySQL\MySQL Server 8.0\data, extra configuration options must be used on the
command line or added to the my.ini or my.cnf file when starting the SQL node. For more information
about configuring a MySQL Server to run in a nonstandard location, see Installing MySQL on Microsoft
Windows Using a noinstall ZIP Archive.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options --ndbcluster and --ndb-connectstring. While you can specify these options on the

75

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/windows-install-archive.html
https://dev.mysql.com/doc/refman/8.0/en/windows-install-archive.html

Installing NDB Cluster on Windows from a Binary Release

command line, it is usually more convenient to place them in an option file. To do this, create a new text file
in Notepad or another text editor. Enter the following configuration information into this file:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine
ndb-connectstring=198.51.100.10 # location of management server

You can add other options used by this MySQL Server if desired (see Creating an Option File), but the file
must contain the options shown, at a minimum. Save this file as C:\mysql\my.ini. This completes the
installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one of
either ndbd.exe or ndbmtd.exe. For this example, we assume that you are using ndbd.exe, but the
same instructions apply when using ndbmtd.exe. On each computer where you wish to run a data node
(the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the directories C:
\mysql, C:\mysql\bin, and C:\mysql\cluster-data; then, on the computer where you downloaded
and extracted the no-install archive, locate ndbd.exe in the C:\mysql\bin directory. Copy this file
to the C:\mysql\bin directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of
the management server. You can supply this information on the command line using the --ndb-
connectstring or -c option when starting each data node process. However, it is usually preferable to
put this information in an option file. To do this, create a new text file in Notepad or another text editor and
enter the following text:

[mysql_cluster]
Options for data node process:
ndb-connectstring=198.51.100.10 # location of management server

Save this file as C:\mysql\my.ini on the data node host. Create another text file containing the same
information and save it on as C:mysql\my.ini on the other data node host, or copy the my.ini file from
the first data node host to the second one, making sure to place the copy in the second data node's C:
\mysql directory. Both data node hosts are now ready to be used in the NDB Cluster, which leaves only
the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an NDB
Cluster management node is the management server program ndb_mgmd.exe. However, in order to
administer the NDB Cluster once it has been started, you should also install the NDB Cluster management
client program ndb_mgm.exe on the same machine as the management server. Locate these two
programs on the machine where you downloaded and extracted the no-install archive; this should be
the directory C:\mysql\bin on the SQL node host. Create the directory C:\mysql\bin on the computer
having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_mgmd.exe:

1. A local configuration file to supply configuration data specific to the management node itself. Typically,
this file needs only to supply the location of the NDB Cluster global configuration file (see item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql_cluster]
Options for management node process
config-file=C:/mysql/bin/config.ini

Save this file as the text file C:\mysql\bin\my.ini.

76

https://dev.mysql.com/doc/refman/8.0/en/windows-create-option-file.html

Installing NDB Cluster on Windows from a Binary Release

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data nodes
(HostName configuration parameter). It is also advisable to include the following additional information:

• The IP address or hostname of any SQL nodes

• The data memory and index memory allocated to each data node (DataMemory and IndexMemory
configuration parameters)

• The number of fragment replicas, using the NoOfReplicas configuration parameter (see
Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

• The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the DataDir configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataDir=C:/mysql/cluster-data # Directory for each data node's data files
 # Forward slashes used in directory path,
 # rather than backslashes. This is correct;
 # see Important note in text
DataMemory=80M # Memory allocated to data storage
IndexMemory=18M # Memory allocated to index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example Cluster setup.

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=C:/mysql/bin/cluster-logs # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address

Save this file as the text file C:\mysql\bin\config.ini.

Important

A single backslash character (\) cannot be used when specifying directory paths in
program options or configuration files used by NDB Cluster on Windows. Instead,
you must either escape each backslash character with a second backslash (\\), or
replace the backslash with a forward slash character (/). For example, the following
line from the [ndb_mgmd] section of an NDB Cluster config.ini file does not
work:

DataDir=C:\mysql\bin\cluster-logs

77

Compiling and Installing NDB Cluster from Source on Windows

Instead, you may use either of the following:

DataDir=C:\\mysql\\bin\\cluster-logs # Escaped backslashes

DataDir=C:/mysql/bin/cluster-logs # Forward slashes

For reasons of brevity and legibility, we recommend that you use forward slashes
in directory paths used in NDB Cluster program options and configuration files on
Windows.

3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most users.
However, if you wish, it is also possible to compile NDB Cluster for Windows from source code. The
procedure for doing this is almost identical to the procedure used to compile the standard MySQL Server
binaries for Windows, and uses the same tools. However, there are two major differences:

• Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysql.com/downloads/. The archived source file should
have a name similar to mysql-8.0.28.tar.gz. You can also obtain the sources from GitHub at
https://github.com/mysql/mysql-server.

• You must configure the build using the WITH_NDBCLUSTER option in addition to any other build options
you wish to use with CMake. WITH_NDBCLUSTER_STORAGE_ENGINE and WITH_PLUGIN_NDBCLUSTER
are supported as aliases for WITH_NDBCLUSTER, and work in exactly the same way.

Important

The WITH_NDB_JAVA option is enabled by default. This means that, by default, if
CMake cannot find the location of Java on your system, the configuration process
fails; if you do not wish to enable Java and ClusterJ support, you must indicate this
explicitly by configuring the build using -DWITH_NDB_JAVA=OFF. (Bug #12379735)
Use WITH_CLASSPATH to provide the Java classpath if needed.

For more information about CMake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Installing MySQL Using a Standard Source Distribution provides the commands needed to perform this
task on Windows systems. The NDB Cluster binaries can be found in the bin directory of the resulting
archive, which is equivalent to the no-install archive, and which can be installed and configured in the
same manner. For more information, see Section 3.2.1, “Installing NDB Cluster on Windows from a Binary
Release”.

3.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial
start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the cluster.
Each cluster node process must be started separately, and on the host computer where it resides. The
management node should be started first, followed by the data nodes, and then finally by any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\mysql\bin> ndb_mgmd
2010-06-23 07:53:34 [MgmtSrvr] INFO -- NDB Cluster Management Server. mysql-8.0.29-ndb-8.0.30

78

https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/installing-source-distribution.html

Initial Startup of NDB Cluster on Windows

2010-06-23 07:53:34 [MgmtSrvr] INFO -- Reading cluster configuration from 'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB Cluster on
a Unix-like platform such as Linux, you may notice that the management node's default behavior in this
regard on Windows is effectively the opposite of its behavior on Unix systems, where it runs by default
as a Unix daemon process. This behavior is also true of NDB Cluster data node processes running on
Windows.) For this reason, do not close the window in which ndb_mgmd.exe is running; doing so kills
the management node process. (See Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”, where we show how to install and run NDB Cluster processes as Windows services.)

The required -f option tells the management node where to find the global configuration file
(config.ini). The long form of this option is --config-file.

Important

An NDB Cluster management node caches the configuration data that it reads
from config.ini; once it has created a configuration cache, it ignores the
config.ini file on subsequent starts unless forced to do otherwise. This
means that, if the management node fails to start due to an error in this file,
you must make the management node re-read config.ini after you have
corrected any errors in it. You can do this by starting ndb_mgmd.exe with the
--reload or --initial option on the command line. Either of these options
works to refresh the configuration cache.

It is not necessary or advisable to use either of these options in the
management node's my.ini file.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\mysql\bin> ndbd
2010-06-23 07:53:46 [ndbd] INFO -- Configuration fetched from 'localhost:1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown in the
preceding example, and is followed by additional lines of logging output. As with the management node
process, this is normal, because the data node is not running as a Windows service. For this reason, do
not close the console window in which the data node process is running; doing so kills ndbd.exe. (For
more information, see Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node host,
start the NDB Cluster management client ndb_mgm.exe, which should be in C:\mysql\bin on the
management node host. (Do not try to re-use the console window where ndb_mgmd.exe is running by
typing CTRL+C, as this kills the management node.) The resulting output should look like this:

C:\mysql\bin> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm>

When the prompt ndb_mgm> appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start by
entering ALL STATUS at the management client prompt. This command causes a running report of the
data nodes's startup sequence, which should look something like this:

ndb_mgm> ALL STATUS
Connected to Management Server at: localhost:1186
Node 2: starting (Last completed phase 3) (mysql-8.0.29-ndb-8.0.30)
Node 3: starting (Last completed phase 3) (mysql-8.0.29-ndb-8.0.30)

79

Initial Startup of NDB Cluster on Windows

Node 2: starting (Last completed phase 4) (mysql-8.0.29-ndb-8.0.30)
Node 3: starting (Last completed phase 4) (mysql-8.0.29-ndb-8.0.30)

Node 2: Started (version 8.0.30)
Node 3: Started (version 8.0.30)

ndb_mgm>

Note

Commands issued in the management client are not case-sensitive; we
use uppercase as the canonical form of these commands, but you are not
required to observe this convention when inputting them into the ndb_mgm
client. For more information, see Section 6.1, “Commands in the NDB Cluster
Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the speed
at which the data nodes are able to start, the release version number of the NDB Cluster software
you are using, and other factors. What is significant is that, when you see that both data nodes have
started, you are ready to start the SQL node.

You can leave ndb_mgm.exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after you
have started it.

4. On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:
\mysql\bin).

Start the SQL node by invoking mysqld.exe from the command line, as shown here:

C:\mysql\bin> mysqld --console

The --console option causes logging information to be written to the console, which can be helpful in
the event of problems. (Once you are satisfied that the SQL node is running in a satisfactory manner,
you can stop it and restart it out without the --console option, so that logging is performed normally.)

In the console window where the management client (ndb_mgm.exe) is running on the management
node host, enter the SHOW command, which should produce output similar to what is shown here:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 8.0.29-ndb-8.0.30)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 8.0.29-ndb-8.0.30)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysql.exe) using the SHOW ENGINE NDB STATUS statement.

80

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html#show-engine-ndb-status

Installing NDB Cluster Processes as Windows Services

You should now be ready to work with database objects and data using NDB Cluster 's NDBCLUSTER
storage engine. See Section 3.5, “NDB Cluster Example with Tables and Data”, for more information and
examples.

You can also install ndb_mgmd.exe, ndbd.exe, and ndbmtd.exe as Windows services. For information
on how to do this, see Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”).

3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes and
data nodes as Windows services, so that these processes are started and stopped automatically whenever
Windows is started or stopped. This also makes it possible to control these processes from the command
line with the appropriate SC START and SC STOP commands, or using the Windows graphical Services
utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_mgmd.exe from the command line
on the machine hosting the management node, using the --install option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --install
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndbd.exe" "--service=ndb_mgmd"'
Service successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should always
specify the complete path; otherwise the service installation may fail with the error
The system cannot find the file specified.

The --install option must be used first, ahead of any other options that might be specified for
ndb_mgmd.exe. However, it is preferable to specify such options in an options file instead. If your options
file is not in one of the default locations as shown in the output of ndb_mgmd.exe --help, you can
specify the location using the --config-file option.

Now you should be able to start and stop the management server like this:

C:\> SC START ndb_mgmd

C:\> SC STOP ndb_mgmd

Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C:\> NET START 'NDB Cluster Management Server'
The NDB Cluster Management Server service is starting.
The NDB Cluster Management Server service was started successfully.

C:\> NET STOP 'NDB Cluster Management Server'
The NDB Cluster Management Server service is stopping..
The NDB Cluster Management Server service was stopped successfully.

It is usually simpler to specify a short service name or to permit the default service name to be used when
installing the service, and then reference that name when starting or stopping the service. To specify a
service name other than ndb_mgmd, append it to the --install option, as shown in this example:

81

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Installing NDB Cluster Processes as Windows Services

C:\> C:\mysql\bin\ndb_mgmd.exe --install=mgmd1
Installing service 'NDB Cluster Management Server'
 as '"C:\mysql\bin\ndb_mgmd.exe" "--service=mgmd1"'
Service successfully installed.

Now you should be able to start or stop the service using the name you have specified, like this:

C:\> SC START mgmd1

C:\> SC STOP mgmd1

To remove the management node service, use SC DELETE service_name:

C:\> SC DELETE mgmd1

Alternatively, invoke ndb_mgmd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove
Removing service 'NDB Cluster Management Server'
Service successfully removed.

If you installed the service using a service name other than the default, pass the service name as the value
of the ndb_mgmd.exe --remove option, like this:

C:\> C:\mysql\bin\ndb_mgmd.exe --remove=mgmd1
Removing service 'mgmd1'
Service successfully removed.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar fashion,
using the --install option for ndbd.exe (or ndbmtd.exe), as shown here:

C:\> C:\mysql\bin\ndbd.exe --install
Installing service 'NDB Cluster Data Node Daemon' as '"C:\mysql\bin\ndbd.exe" "--service=ndbd"'
Service successfully installed.

Now you can start or stop the data node as shown in the following example:

C:\> SC START ndbd

C:\> SC STOP ndbd

To remove the data node service, use SC DELETE service_name:

C:\> SC DELETE ndbd

Alternatively, invoke ndbd.exe with the --remove option, as shown here:

C:\> C:\mysql\bin\ndbd.exe --remove
Removing service 'NDB Cluster Data Node Daemon'
Service successfully removed.

As with ndb_mgmd.exe (and mysqld.exe), when installing ndbd.exe as a Windows service, you can
also specify a name for the service as the value of --install, and then use it when starting or stopping
the service, like this:

C:\> C:\mysql\bin\ndbd.exe --install=dnode1
Installing service 'dnode1' as '"C:\mysql\bin\ndbd.exe" "--service=dnode1"'
Service successfully installed.

C:\> SC START dnode1

82

Initial Configuration of NDB Cluster

C:\> SC STOP dnode1

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C:\> SC DELETE dnode1

Alternatively, you can pass the service name as the value of the ndbd.exe --remove option, as shown
here:

C:\> C:\mysql\bin\ndbd.exe --remove=dnode1
Removing service 'dnode1'
Service successfully removed.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and removing
the service are done in a similar fashion, using mysqld --install, SC START, SC STOP, and SC
DELETE (or mysqld --remove). NET commands can also be used to start or stop a service. For additional
information, see Starting MySQL as a Windows Service.

3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to write
four configuration files, one per node host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the MySQL
server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage engine.

For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.

• The management node needs a config.ini file telling it how many fragment replicas to maintain, how
much memory to allocate for data and indexes on each data node, where to find the data nodes, where
to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The my.cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the /etc directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/my.cnf

Note

We show vi being used here to create the file, but any text editor should work just
as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine

[mysql_cluster]
Options for NDB Cluster processes:
ndb-connectstring=198.51.100.10 # location of management server

83

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_remove
https://dev.mysql.com/doc/refman/8.0/en/windows-start-service.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Initial Configuration of NDB Cluster

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [mysqld] and [mysql_cluster] sections
of the my.cnf file as shown previously, you cannot execute any CREATE TABLE
or ALTER TABLE statements without having actually started the cluster. Otherwise,
these statements fail with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to create
the directory in which the configuration file can be found and then to create the file itself. For example
(running as root):

$> mkdir /var/lib/mysql-cluster
$> cd /var/lib/mysql-cluster
$> vi config.ini

For our representative setup, the config.ini file should read as follows:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of fragment replicas
DataMemory=98M # How much memory to allocate for data storage

[ndb_mgmd]
Management process options:
HostName=198.51.100.10 # Hostname or IP address of management node
DataDir=/var/lib/mysql-cluster # Directory for management node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
HostName=198.51.100.30 # Hostname or IP address
NodeId=2 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[ndbd]
Options for data node "B":
HostName=198.51.100.40 # Hostname or IP address
NodeId=3 # Node ID for this data node
DataDir=/usr/local/mysql/data # Directory for this data node's data files

[mysqld]
SQL node options:
HostName=198.51.100.20 # Hostname or IP address
 # (additional mysqld connections can be
 # specified for this node for various
 # purposes such as running ndb_restore)

Note

The world database can be downloaded from https://dev.mysql.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you are
ready to proceed with starting the cluster and verifying that all processes are running. We discuss how this
is done in Section 3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their uses,
see Section 4.3, “NDB Cluster Configuration Files”, and Chapter 4, Configuration of NDB Cluster. For

84

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Initial Startup of NDB Cluster

configuration of NDB Cluster as relates to making backups, see Section 6.8.3, “Configuration for NDB
Cluster Backups”.

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. However, the cluster can automatically allocate ports for data nodes
from those that are already free.

3.4 Initial Startup of NDB Cluster
Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management
node process:

$> ndb_mgmd --initial -f /var/lib/mysql-cluster/config.ini

The first time that it is started, ndb_mgmd must be told where to find its configuration file, using the -f
or --config-file option. This option requires that --initial or --reload also be specified; see
Section 5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for details.

2. On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_mgm management node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

$> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @198.51.100.30 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=3 @198.51.100.40 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @198.51.100.10 (Version: 8.0.29-ndb-8.0.30)

[mysqld(API)] 1 node(s)
id=4 @198.51.100.20 (Version: 8.0.29-ndb-8.0.30)

The SQL node is referenced here as [mysqld(API)], which reflects the fact that the mysqld process is
acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the output
of SHOW is the address used by the SQL or API node to connect to the cluster data
nodes, and not to any management node.

85

NDB Cluster Example with Tables and Data

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 3.5, “NDB
Cluster Example with Tables and Data”, for a brief discussion.

3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify this,
use the ENGINE=NDBCLUSTER or ENGINE=NDB option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the
table to use NDBCLUSTER:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes up
space just as does any other table index. (It is not uncommon to encounter problems due to insufficient
memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open the
SQL script in a text editor and add the ENGINE option to any table creation statements, or replace any
existing ENGINE options. Suppose that you have the world sample database on another MySQL server
that does not support NDB Cluster, and you want to export the City table:

$> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file contains this table creation statement (and the INSERT statements
necessary to import the table data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are two
ways that this can be accomplished. One of these is to modify the table definition before importing it into
the Cluster database. Using the City table as an example, modify the ENGINE option of the definition as
follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (

86

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Example with Tables and Data

 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace all
instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER. If you do not
want to modify the file, you can use the unmodified file to create the tables, and then use ALTER TABLE to
change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

$> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the
SQL node is running (in this case, on the machine with the IP address 198.51.100.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the noncluster server
to export the database to a file named world.sql (for example, in the /tmp directory). Then modify the
table definitions as just described and import the file into the SQL node of the cluster like this:

$> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in the
usual way (specify the root password at the Enter password: prompt):

$> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 8.0.29-ndb-8.0.30

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong root password. For more
information, see Securing the Initial MySQL Account.

It is worth taking into account that NDB Cluster nodes do not make use of the MySQL privilege system
when accessing one another. Setting or changing MySQL user accounts (including the root account)
effects only applications that access the SQL node, not interaction between nodes. See Section 6.18.2,
“NDB Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

87

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/default-privileges.html

NDB Cluster Example with Tables and Data

mysql> USE world;
mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished in
the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |
+-----------+------------+
Bombay	10500000
Seoul	9981619
São Paulo	9968485
Shanghai	9696300
Jakarta	9604900
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

$>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to remember
that your application must access the SQL node, and not the management or data nodes. This brief
example shows how we might execute the SELECT statement just shown by using the PHP 5.X mysqli
extension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php
 # connect to SQL node:
 $link = new mysqli('198.51.100.20', 'root', 'root_password', 'world');
 # parameters for mysqli constructor are:
 # host, user, password, database

 if(mysqli_connect_errno())
 die("Connect failed: " . mysqli_connect_error());

 $query = "SELECT Name, Population
 FROM City
 ORDER BY Population DESC
 LIMIT 5";

 # if no errors...
 if($result = $link->query($query))
 {
?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
 <tbody>
 <tr>
 <th width="10%">City</th>
 <th>Population</th>
 </tr>
<?
 # then display the results...

88

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Safe Shutdown and Restart of NDB Cluster

 while($row = $result->fetch_object())
 printf("<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",
 $row->Name, $row->Population);
?>
 </tbody
</table>
<?
 # ...and verify the number of rows that were retrieved
 printf("<p>Affected rows: %d</p>\n", $link->affected_rows);
 }
 else
 # otherwise, tell us what went wrong
 echo mysqli_error();

 # free the result set and the mysqli connection object
 $result->close();
 $link->close();
?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the management
node:

$> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. The command
causes the ndb_mgm, ndb_mgmd, and any ndbd or ndbmtd processes to terminate gracefully.
Any SQL nodes can be terminated using mysqladmin shutdown and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC STOP
service_name or NET STOP service_name.

To restart the cluster on Unix platforms, run these commands:

• On the management host (198.51.100.10 in our example setup):

$> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (198.51.100.30 and 198.51.100.40):

$> ndbd

• Use the ndb_mgm client to verify that both data nodes have started successfully.

• On the SQL host (198.51.100.20):

$> mysqld_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows services
using the default service names (see Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”), you can restart the cluster as follows:

• On the management host (198.51.100.10 in our example setup), execute the following command:

89

Upgrading and Downgrading NDB Cluster

C:\> SC START ndb_mgmd

• On each of the data node hosts (198.51.100.30 and 198.51.100.40), execute the following
command:

C:\> SC START ndbd

• On the management node host, use the ndb_mgm client to verify that the management node and both
data nodes have started successfully (see Section 3.2.3, “Initial Startup of NDB Cluster on Windows”).

• On the SQL node host (198.51.100.20), execute the following command:

C:\> SC START mysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even
when making configuration changes, or performing upgrades to the cluster hardware or software (or both),
which require shutting down individual host machines, it is possible to do so without shutting down the
cluster as a whole by performing a rolling restart of the cluster. For more information about doing this, see
Section 6.5, “Performing a Rolling Restart of an NDB Cluster”.

3.7 Upgrading and Downgrading NDB Cluster

This section provides information about NDB Cluster software and table file compatibility between different
NDB Cluster 8.0 releases with regard to performing upgrades and downgrades as well as compatibility
matrices and notes. You should already be familiar with installing and configuring NDB Cluster prior to
attempting an upgrade or downgrade. See Chapter 4, Configuration of NDB Cluster.

Schema operations, including SQL DDL statements, cannot be performed while any data nodes are
restarting, and thus during an online upgrade or downgrade of the cluster. For other information regarding
the rolling restart procedure used to perform an online upgrade, see Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”.

Important

Compatibility between release versions is taken into account only with regard to
NDBCLUSTER in this section, and there are additional issues to be considered. See
Upgrading MySQL.

As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL
versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the NDB Cluster software.

The table shown here provides information on NDB Cluster upgrade and downgrade compatibility among
different releases of NDB 8.0. Additional notes about upgrades and downgrades to, from, or within the
NDB Cluster 8.0 release series can be found following the table.

90

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html

Upgrades and Downgrades, NDB Cluster 8.0

Upgrades and Downgrades, NDB Cluster 8.0

Figure 3.2 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 8.0

Version support. The following versions of NDB Cluster are supported for upgrades to GA releases of
NDB Cluster 8.0 (8.0.19 and later):

• NDB Cluster 7.6: NDB 7.6.4 and later

• NDB Cluster 7.5: NDB 7.5.4 and later

• NDB Cluster 7.4: NDB 7.4.6 and later

To upgrade from a release series previous to NDB 7.4, you must upgrade in stages, first to one of the
versions just listed, and then from that version to the latest NDB 8.0 release. In such cases, upgrading to
the latest NDB 7.6 release is recommended as the first step. For information about upgrades to NDB 7.6
from previous versions, see Upgrading and Downgrading NDB 7.6.

Known Issues. The following issues are known to occur when upgrading to or between NDB 8.0
releases:

• Online downgrades from NDB 8.0 to previous releases are not supported. Tables created in NDB 8.0
are not backwards compatible with previous releases. This is due to a change in usage of the extra
metadata property implemented by NDB tables to provide full support for the MySQL data dictionary.

For more information, see Changes in NDB table extra metadata. See also MySQL Data Dictionary.

• In NDB 8.0, the default values changed for log_bin (from 0 to 1) and ndb_log_bin (from 1 to 0). This
means that you must now explicitly set ndb_log_bin to 1 to enable binary logging.

• Distributed privileges shared between MySQL servers as implemented in prior release series (see
Distributed Privileges Using Shared Grant Tables) are not supported in NDB Cluster 8.0. When started,
the mysqld supplied with NDB 8.0 and later checks for the existence of any grant tables which use

91

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-upgrade-downgrade-7-6.html
https://dev.mysql.com/doc/refman/8.0/en/data-dictionary.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

Upgrades and Downgrades, NDB Cluster 8.0

the NDB storage engine; if it finds any, it creates local copies (“shadow tables”) of these using InnoDB.
This is true for each MySQL server connected to NDB Cluster. After this has been performed on all
MySQL servers acting as NDB Cluster SQL nodes, the NDB grant tables may be safely removed using
the ndb_drop_table utility supplied with the NDB Cluster distribution, like this:

ndb_drop_table -d mysql user db columns_priv tables_priv proxies_priv procs_priv

It is safe to retain the NDB grant tables, but they are not used for access control and are effectively
ignored.

For more information about the MySQL privileges system used in NDB 8.0, see Section 6.12, “Privilege
Synchronization and NDB_STORED_USER”, as well as Grant Tables.

• In NDB 8.0, the binary configuration file format has been enhanced to provide support for greater
numbers of nodes than in previous versions. The new format is not accessible to nodes running older
versions of NDB, although newer management servers can detect older nodes and communicate with
them using the appropriate format.

Upgrades to NDB 8.0 should not be problematic in this regard. When downgrading from NDB 8.0 to
previous versions, because older management servers cannot read the newer binary configuration
file format, some manual intervention is required. When performing such a downgrade, it is necessary
to remove any cached binary configuration files prior to starting the management using the older NDB
software version, and to have the plaintext configuration file available for the management server to
read. Alternatively, you can start the older management server using the --initial option (again, it is
necessary to have the config.ini available). If the cluster uses multiple management servers, one of
these two things must be done for each management server binary.

Also in connection with support for increased numbers of nodes, due to incompatible changes
implemented in NDB 8.0 in the data node LCP Sysfile, it is necessary, when performing an online
downgrade from NDB 8.0 to a prior NDB Cluster release, to restart all data nodes using the --initial
option.

Restarting the data nodes with --initial is also required when upgrading any release prior to NDB
7.6.4 to any NDB 8.0 release.

• Direct downgrades of clusters running more than 48 data nodes, or with data nodes using node IDs
greater than 48, to earlier NDB Cluster releases from NDB 8.0 are not supported. It is necessary in such
cases to reduce the number of data nodes, change the configurations for all data nodes such that they
use node IDs less than or equal to 48, or both, as required not to exceed the old maximums.

• If you are downgrading from NDB 8.0 to NDB 7.5 or NDB 7.4, you must set an explicit value for
IndexMemory in the cluster configuration file if none is already present. This is because NDB 8.0 does
not use this parameter (which was removed in NDB 7.6) and sets it to 0 by default, whereas it is required
in NDB 7.5 and NDB 7.4, in both of which the cluster refuses to start with Invalid configuration
received from Management Server... if IndexMemory is not set to a nonzero value.

Setting IndexMemory is not required for downgrades from NDB 8.0 to NDB 7.6.

• NDB 8.0.22 adds support for IPv6 addressing for management nodes and data nodes in the
config.ini file. To begin using IPv6 addresses as part of an upgrade, perform the following steps:

1. Perform an upgrade of the cluster to version 8.0.22 or a later version of the NDB Cluster software in
the usual manner.

2. Change the addresses used in the config.ini file to IPv6 addresses.

3. Perform a system restart of the cluster.

92

https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html

The NDB Cluster Auto-Installer (No longer supported)

• Due to changes in the internal mysql.ndb_schema table, if you upgrade to an NDB 8.0 release prior to
8.0.24, then you are advised to use ndb_schema_dist_upgrade_allowed = 0 to avoid unexpected
outages (Bug #30876990, Bug #31016905).

• If you are using multithreaded data nodes (ndbmtd) and the ThreadConfig configuration parameter,
you may need to make changes in the value set for this in the config.ini file when upgrading from a
previous release to NDB 8.0.30 or later. When upgrading from NDB 8.0.23 or earlier, any usage of main,
rep, recv, or ldm threads that was implicit in the earlier version must be explicitly set. When upgrading
from NDB 8.0.23 or later to NDB 8.0.30 or later, any usage of recv threads must be set explicitly in the
ThreadConfig string. In addition, to avoid using main, rep, or ldm threads in NDB 8.0.30 or later, you
must set the thread count for the given type to 0 explicitly.

An example follows.

NDB 8.0.22 and earlier:

• config.ini file contains ThreadConfig=ldm.

• This is interpreted by these versions of NDB as ThreadConfig=main,ldm,recv,rep.

• Required in config.ini to match effect in NDB 8.0.30 or later:
ThreadConfig=main,ldm,recv,rep.

NDB 8.0.23—8.0.29:

• config.ini file contains ThreadConfig=ldm.

• This is interpreted by these versions of NDB as ThreadConfig=ldm,recv.

• Required in config.ini to match effect in NDB 8.0.30 or later:
ThreadConfig=main={count=0},ldm,recv,rep={count=0}.

For more information, see the description of the ThreadConfig configuration parameter.

3.8 The NDB Cluster Auto-Installer (No longer supported)
Note

This feature has been removed from NDB Cluster, and is no longer supported. See
Section 2.4, “What is New in NDB Cluster”, for more information.

This section describes the web-based graphical configuration installer included as part of the NDB
Cluster distribution. Topics discussed include an overview of the installer and its parts, software and other
requirements for running the installer, navigating the GUI, and using the installer to set up and start or stop
an NDB Cluster on one or more host computers.

The NDB Cluster Auto-Installer is made up of two components. The front end is a GUI client implemented
as a Web page that loads and runs in a standard Web browser such as Firefox or Microsoft Internet
Explorer. The back end is a server process (ndb_setup.py) that runs on the local machine or on another
host to which you have access.

These two components (client and server) communicate with each other using standard HTTP requests
and responses. The back end can manage NDB Cluster software programs on any host where the back
end user has granted access. If the NDB Cluster software is on a different host, the back end relies on
SSH for access.

3.8.1 NDB Cluster Auto-Installer Requirements

93

NDB Cluster Auto-Installer Requirements

This section provides information on supported operating platforms and software, required software, and
other prerequisites for running the NDB Cluster Auto-Installer.

Supported platforms. The NDB Cluster Auto-Installer is available with NDB 8.0 distributions for recent
versions of Linux, Windows, Solaris, and macOS. For more detailed information about platform support for
NDB Cluster and the NDB Cluster Auto-Installer, see https://www.mysql.com/support/supportedplatforms/
cluster.html.

Supported web browsers. The web-based installer is supported with recent versions of Firefox
and Microsoft Internet Explorer. It should also work with recent versions of Opera, Safari, and Chrome,
although we have not thoroughly tested for compability with these browsers.

Required software—setup host. The following software must be installed on the host where the Auto-
Installer is run:

• Python 2.6 or higher. The Auto-Installer requires the Python interpreter and standard libraries. If
these are not already installed on the system, you may be able to add them using the system's package
manager. Otherwise, you can download them from http://python.org/download/.

• Paramiko 2 or higher. You can download this from http://www.lag.net/paramiko/ if it is not available
from your system's package manager.

• Pycrypto version 1.9 or higher. This cryptography module is required by Paramiko, and can be
iunstalled using pip install cryptography. If pip is not installed, and the module is not available
using your system's package manage, you can download it from https://www.dlitz.net/software/pycrypto/.

All of the software in the preceding list is included in the Windows version of the configuration tool, and
does not need to be installed separately.

Required software—remote hosts. The only software required for remote hosts where you wish
to deploy NDB Cluster nodes is the SSH server, which is usually installed by default on Linux and
Solaris systems. Several alternatives are available for Windows; for an overview of these, see http://
en.wikipedia.org/wiki/Comparison_of_SSH_servers.

 An additional requirement when using multiple hosts is that it is possible to authenticate to any of the
remote hosts using SSH and the proper keys or user credentials, as discussed in the next few paragraphs:

Authentication and security. Three basic security or authentication mechanisms for remote access
are available to the Auto-Installer, which we list and describe here:

• SSH. A secure shell connection is used to enable the back end to perform actions on remote hosts.
For this reason, an SSH server must be running on the remote host. In addition, the operating system
user running the installer must have access to the remote server, either with a user name and password,
or by using public and private keys.

Important

You should never use the system root account for remote access, as this is
extremely insecure. In addition, mysqld cannot normally be started by system
root. For these and other reasons, you should provide SSH credentials for a
regular user account on the target system, and not for system root. For more
information about this issue, see How to Run MySQL as a Normal User.

• HTTPS. Remote communication between the Web browser front end and the back end is not
encrypted by default, which means that information such as the user's SSH password is transmitted as
cleartext that is readable to anyone. For communication from a remote client to be encrypted, the back
end must have a certificate, and the front end must communicate with the back end using HTTPS rather
than HTTP. Enabling HTTPS is accomplished most easily through issuing a self-signed certificate. Once

94

https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
http://python.org/download/
http://www.lag.net/paramiko/
https://www.dlitz.net/software/pycrypto/
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
https://dev.mysql.com/doc/refman/8.0/en/changing-mysql-user.html

Using the NDB Cluster Auto-Installer

the certificate is issued, you must make sure that it is used. You can do this by starting ndb_setup.py
from the command line with the --use-https (-S) and --cert-file (-c) options.

A sample certificate file cfg.pem is included and is used by default. This file is located in the mcc
directory under the installation share directory; on Linux, the full path to the file is normally /usr/
share/mysql/mcc/cfg.pem. On Windows systems, this is usually C:\Program Files\MySQL
\MySQL Server 8.0\share\mcc\cfg.pem. Letting the default be used means that, for testing
purposes, you can simply start the installer with the -S option to use an HTTPS connection between the
browser and the back end.

The Auto-Installer saves the configuration file for a given cluster mycluster01 as mycluster01.mcc
in the home directory of the user invoking the ndb_setup.py executable. This file is encrypted with a
passphrase supplied by the user (using Fernet); because HTTP transmits the passphrase in the clear,
it is strongly recommended that you always use an HTTPS connection to access the Auto-Installer on a
remote host.

• Certificate-based authentication. The back end ndb_setup.py process can execute commands
on the local host as well as remote hosts. This means that anyone connecting to the back end can take
charge of how commands are executed. To reject unwanted connections to the back end, a certificate
may be required for authentication of the client. In this case, a certificate must be issued by the user,
installed in the browser, and made available to the back end for authentication purposes. You can enact
this requirement (together with or in place of password or key authentication) by starting ndb_setup.py
with the --ca-certs-file (-a) option.

 There is no need or requirement for secure authentication when the client browser is running on the same
host as the Auto-Installer back end.

See also Section 6.18, “NDB Cluster Security Issues”, which discusses security considerations to take into
account when deploying NDB Cluster, as well as Security, for more general MySQL security information.

3.8.2 Using the NDB Cluster Auto-Installer

The NDB Cluster Auto-Installer interface is made up of several pages, each corresponding to a step in the
process used to configure and deploy an NDB Cluster. These pages are listed here, in order:

• Welcome: Begin using the Auto-Installer by choosing either to configure a new NDB Cluster, or to
continue configuring an existing one.

• Define Cluster: Set basic information about the cluster as a whole, such as name, hosts, and load type.
Here you can also set the SSH authentication type for accessing remote hosts, if needed.

• Define Hosts: Identify the hosts where you intend to run NDB Cluster processes.

• Define Processes: Assign one or more processes of a given type or types to each cluster host.

• Define Parameters: Set configuration attributes for processes or types of processes.

• Deploy Configuration: Deploy the cluster with the configuration set previously; start and stop the
deployed cluster.

NDB Cluster Installer Settings and Help Menus

These menus are shown on all screens except for the Welcome screen. They provide access to installer
settings and information. The Settings menu is shown here in more detail:

95

https://cryptography.io/en/latest/fernet/
https://dev.mysql.com/doc/refman/8.0/en/security.html

Using the NDB Cluster Auto-Installer

Figure 3.3 NDB Cluster Auto-Installer Settings menu

The Settings menu has the following entries:

• Automatically save configuration as cookies: Save your configuration information—such as host
names, process data, and parameter values—as a cookie in the browser. When this option is chosen, all
information except any SSH password is saved. This means that you can quit and restart the browser,
and continue working on the same configuration from where you left off at the end of the previous
session. This option is enabled by default.

The SSH password is never saved; if you use one, you must supply it at the beginning of each new
session.

• Show advanced configuration options: Shows by default advanced configuration parameters where
available.

Once set, the advanced parameters continue to be used in the configuration file until they are explicitly
changed or reset. This is regardless of whether the advanced parameters are currently visible in the
installer; in other words, disabling the menu item does not reset the values of any of these parameters.

You can also toggle the display of advanced parameters for individual processes on the Define
Parameters screen.

This option is disabled by default.

• Automatically get resource information for new hosts: Query new hosts automatically for hardware
resource information to pre-populate a number of configuration options and values. In this case, the
suggested values are not mandatory, but they are used unless explicitly changed using the appropriate
editing options in the installer.

This option is enabled by default.

The installer Help menu is shown here:

96

Using the NDB Cluster Auto-Installer

Figure 3.4 NDB Cluster Auto-Installer Help menu

The Help menu provides several options, described in the following list:

• Contents: Show the built-in user guide. This is opened in a separate browser window, so that it can be
used simultaneously with the installer without interrupting workflow.

• Current page: Open the built-in user guide to the section describing the page currently displayed in the
installer.

• About: open a dialog displaying the installer name and the version number of the NDB Cluster
distribution with which it was supplied.

The Auto-Installer also provides context-sensitive help in the form of tooltips for most input widgets.

In addition, the names of most NDB configuration parameters are linked to their descriptions in the online
documentation. The documentation is displayed in a separate browser window.

The next section discusses starting the Auto-Installer. The sections immediately following it describe in
greater detail the purpose and function of each of these pages in the order listed previously.

Starting the NDB Cluster Auto-Installer

The Auto-Installer is provided together with the NDB Cluster software. Separate RPM and .deb packages
containing only the Auto-Installer are also available for many Linux distributions. (See Chapter 3, NDB
Cluster Installation.)

The present section explains how to start the installer. You can do by invoking the ndb_setup.py
executable.

User and privileges

You should run the ndb_setup.py as a normal user; no special privileges are
needed to do so. You should not run this program as the mysql user, or using the
system root or Administrator account; doing so may cause the installation to fail.

ndb_setup.py is found in the bin within the NDB Cluster installation directory; a typical location might
be /usr/local/mysql/bin on a Linux system or C:\Program Files\MySQL\MySQL Server
8.0\bin on a Windows system. This can vary according to where the NDB Cluster software is installed on
your system, and the installation method.

97

Using the NDB Cluster Auto-Installer

On Windows, you can also start the installer by running setup.bat in the NDB Cluster installation
directory. When invoked from the command line, this batch file accepts the same options as
ndb_setup.py.

ndb_setup.py can be started with any of several options that affect its operation, but it is usually
sufficient to allow the default settings be used, in which case you can start ndb_setup.py by either of the
following two methods:

1. Navigate to the NDB Cluster bin directory in a terminal and invoke it from the command line, without
any additional arguments or options, like this:

$> ndb_setup.py
Running out of install dir: /usr/local/mysql/bin
Starting web server on port 8081
URL is https://localhost:8081/welcome.html
deathkey=627876
Press CTRL+C to stop web server.
The application should now be running in your browser.
(Alternatively you can navigate to https://localhost:8081/welcome.html to start it)

This works regardless of operating platform.

2. Navigate to the NDB Cluster bin directory in a file browser (such as Windows Explorer on Windows, or
Konqueror, Dolphin, or Nautilus on Linux) and activate (usually by double-clicking) the ndb_setup.py
file icon. This works on Windows, and should work with most common Linux desktops as well.

On Windows, you can also navigate to the NDB Cluster installation directory and activate the setup.bat
file icon.

In either case, once ndb_setup.py is invoked, the Auto-Installer's Welcome screen should open in the
system's default web browser. If not, you should be able to open the page http://localhost:8081/
welcome.html or https://localhost:8081/welcome.html manually in the browser.

In some cases, you may wish to use non-default settings for the installer, such as specifying HTTPS
for connections, or a different port for the Auto-Installer's included web server to run on, in which case
you must invoke ndb_setup.py with one or more startup options with values overriding the necessary
defaults. The same startup options can be used on Windows systems with the setup.bat file supplied for
such platforms in the NDB Cluster software distribution. This can be done using the command line, but if
you want or need to start the installer from a desktop or file browser while employing one or more of these
options, it is also possible to create a script or batch file containing the proper invocation, then to double-
click its file icon in the file browser to start the installer. (On Linux systems, you might also need to make
the script file executable first.) If you plan to use the Auto-Installer from a remote host, you should start
using the -S option. For information about this and other advanced startup options for the NDB Cluster
Auto-Installer, see Section 5.26, “ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster
(DEPRECATED)”.

NDB Cluster Auto-Installer Welcome Screen

The Welcome screen is loaded in the default browser when ndb_setup.py is invoked. The first time the
Auto-Installer is run (or if for some other reason there are no existing configurations), this screen appears
as shown here:

98

Using the NDB Cluster Auto-Installer

Figure 3.5 The NDB Cluster Auto-Installer Welcome screen, first run

In this case, the only choice of cluster listed is for configuration of a new cluster, and both the View Cfg
and Continue buttons are inactive.

To create a new configuration, enter and confirm a passphrase in the text boxes provided. When this has
been done, you can click Continue to proceed to the Define Cluster screen where you can assign a name
to the new cluster.

If you have previously created one or more clusters with the Auto-Installer, they are listed by name. This
example shows an existing cluster named mycluster-1:

99

Using the NDB Cluster Auto-Installer

Figure 3.6 The NDB Cluster Auto-Installer Welcome screen, with previously created cluster
mycluster-1

To view the configuration for and work with a given cluster, select the radiobutton next to its name in the
list, then enter and confirm the passphrase that was used to create it. When you have done this correctly,
you can click View Cfg to view and edit this cluster's configuration.

NDB Cluster Auto-Installer Define Cluster Screen

The Define Cluster screen is appears following the Welcome screen, and is used for setting general
properties of the cluster. The layout of the Define Cluster screen is shown here:

100

Using the NDB Cluster Auto-Installer

Figure 3.7 The NDB Cluster Auto-Installer Define Cluster screen

This screen and subsequent screens also include Settings and Help menus which are described later in
this section; see NDB Cluster Installer Settings and Help Menus.

The Define Cluster screen allows you to set three sorts of properties for the cluster: cluster properties,
SSH properties, and installation properties.

Cluster properties that can be set on this screen are listed here:

• Cluster name: A name that identifies the cluster; in this example, this is mycluster-1. The name is set
on the previous screen and cannot be changed here.

• Host list: A comma-delimited list of one or more hosts where cluster processes should run. By default,
this is 127.0.0.1. If you add remote hosts to the list, you must be able to connect to them using the
credentials supplied as SSH properties.

• Application type: Choose one of the following:

1. Simple testing: Minimal resource usage for small-scale testing. This the default. Not intended for
production environments.

2. Web: Maximize performance for the given hardware.

3. Real-time: Maximize performance while maximizing sensitivity to timeouts in order to minimize the
time needed to detect failed cluster processes.

• Write load: Choose a level for the anticipated number of writes for the cluster as a whole. You can
choose any one of the following levels:

1. Low: The expected load includes fewer than 100 write transactions for second.

2. Medium: The expected load includes 100 to 1000 write transactions per second; this is the default.

101

Using the NDB Cluster Auto-Installer

3. High: The expected load includes more than 1000 write transactions per second.

SSH properties are described in the following list:

• Key-Based SSH: Check this box to use key-enabled login to the remote host. If checked, the key user
and passphrase must also be supplied; otherwise, a user and password for a remote login account are
needed.

• User: Name of user with remote login access.

• Password: Password for remote user.

• Key user: Name of the user for whom the key is valid, if not the same as the operating system user.

• Key passphrase: Passphrase for the key, if required.

• Key file: Path to the key file. The default is ~/.ssh/id_rsa.

The SSH properties set on this page apply to all hosts in the cluster. They can be overridden for a given
host by editing that hosts's properties on the Define Hosts screen.

Two installation properties can also be set on this screen:

• Install MySQL Cluster: This setting determines the source from which the Auto-Installer installs NDB
Cluster software, if any, on the cluster hosts. Possible values and their effects are listed here:

1. DOCKER: Try to install the MySQL Cluster Docker image from https://hub.docker.com/r/
mysql/mysql-cluster/ on each host

2. REPO: Try to install the NDB Cluster software from the MySQL Repositories on each host

3. BOTH: Try to install either the Docker image or the software from the repository on each host, giving
preference to the repository

4. NONE: Do not install the NDB Cluster software on the hosts; this is the default

• Open FW Ports: Check this check box to have the installer attempt to open ports required by NDB
CLuster processes on all hosts.

The next figure shows the Define Cluster page with settings for a small test cluster with all nodes running
on localhost:

102

https://repo.mysql.com/

Using the NDB Cluster Auto-Installer

Figure 3.8 The NDB Cluster Auto-Installer Define Cluster screen, with settings for a test cluster

After making the desired settings, you can save them to the configuration file and proceed to the Define
Hosts screen by clicking the Save & Next button.

If you exit the installer without saving, no changes are made to the configuration file.

NDB Cluster Auto-Installer Define Hosts Screen

The Define Hosts screen, shown here, provides a means of viewing and specifying several key properties
of each cluster host:

103

Using the NDB Cluster Auto-Installer

Figure 3.9 NDB Cluster Define Hosts screen, start

Properties shown include the following:

• Host: Name or IP address of this host

• Res.info: Shows OK if the installer was able to retrieve requested resource information from this host

• Platform: Operating system or platform

• Memory (MB): Amount of RAM on this host

• Cores: Number of CPU cores available on this host

• MySQL Cluster install directory: Path to directory where the NDB Cluster software is installed on this
host; defaults to /usr/local/bin

• MySQL Cluster data directory: Path to directory used for data by NDB Cluster processes on this host;
defaults to /var/lib/mysql-cluster.

• DiskFree: Free disk space in bytes

For hosts with multiple disks, only the space available on the disk used for the data directory is shown.

This screen also provides an extended view for each host that includes the following properties:

• FDQN: This host's fully qualified domain name, used by the installer to connect with it, distribute
configuration information to it, and start and stop cluster processes on it.

• Internal IP: The IP address used for communication with cluster processes running on this host by
processes running elsewhere.

• OS Details: Detailed operating system name and version information.

• Open FW: If this check box is enabled, the installer attempts to open ports in the host's firewall needed
by cluster processes.

• REPO URL: URL for MySQL NDB Cluster repository

104

Using the NDB Cluster Auto-Installer

• DOCKER URL: URL for MySQL NDB CLuster Docker images; for NDB 8.0, this is mysql/mysql-
cluster:8.0.

• Install: If this check box is enabled, the Auto-Installer attempts to install the NDB Cluster software on
this host

The extended view is shown here:

Figure 3.10 NDB Cluster Define Hosts screen, extended host info view

All cells in the display are editable, with the exceptions of those in the Host, Res.info, and FQDN columns.

Be aware that it may take some time for information to be retrieved from remote hosts. Fields for which no
value could be retrieved are indicated with an ellipsis (…). You can retry the fetching of resource information
from one or more hosts by selecting the hosts in the list and then clicking the Refresh selected host(s)
button.

Adding and Removing Hosts

You can add one or more hosts by clicking the Add Host button and entering the required properties
where indicated in the Add new host dialog, shown here:

105

Using the NDB Cluster Auto-Installer

Figure 3.11 NDB Cluster Add Host dialog

This dialog includes the following fields:

106

Using the NDB Cluster Auto-Installer

• Host name: A comma-separated list of one or more host names, IP addresses, or both. These must be
accessible from the host where the Auto-Installer is running.

• Host internal IP (VPN): If you are setting up the cluster to run on a VPN or other internal network, enter
the IP address or addresses used for contact by cluster nodes on other hosts.

• Key-based auth: If checked, enables key-based authentication. You can enter any additional needed
information in the User, Passphrase, and Key file fields.

• Ordinary login: If accessing this host using a password-based login, enter the appropriate information in
the User and Password fields.

• Open FW ports: Selecting this check box allows the installer try opening any ports needed by cluster
processes in this host's firewall.

• Configure installation: Checking this allows the Auto-Install to attempt to set up the NDB Cluster
software on this host.

To save the new host and its properties, click Add. If you wish to cancel without saving any changes, click
Cancel instead.

Similarly, you can remove one or more hosts using the button labelled Remove selected host(s). When
you remove a host, any process which was configured for that host is also removed.

Warning

Remove selected host(s) acts immediately. There is no confirmation dialog. If you
remove a host in error, you must re-enter its name and properties manually using
Add host.

If the SSH user credentials on the Define Cluster screen are changed, the Auto-Installer attempts to
refresh the resource information from any hosts for which information is missing.

You can edit the host's platform name, hardware resource information, installation directory, and data
directory by clicking the corresponding cell in the grid, by selecting one or more hosts and clicking the
button labelled Edit selected host(s). This causes a dialog box to appear, in which these fields can be
edited, as shown here:

107

Using the NDB Cluster Auto-Installer

Figure 3.12 NDB Cluster Auto-Installer Edit Hosts dialog

When more than one host is selected, any edited values are applied to all selected hosts.

Once you have entered all desired host information, you can use the Save & Next button to save the
information to the cluster's configuration file and proceed to the Define Processes screen, where you can
set up NDB Cluster processes on one or more hosts.

NDB Cluster Auto-Installer Define Processes Screen

The Define Processes screen, shown here, provides a way to assign NDB Cluster processes (nodes) to
cluster hosts:

108

Using the NDB Cluster Auto-Installer

Figure 3.13 NDB Cluster Auto-Installer Define Processes dialog

This screen contains a process tree showing cluster hosts and processes set up to run on each one, as
well as a panel which displays information about the item currently selected in the tree.

When this screen is accessed for the first time for a given cluster, a default set of processes is defined for
you, based on the number of hosts. If you later return to the Define Hosts screen, remove all hosts, and
add new hosts, this also causes a new default set of processes to be defined.

NDB Cluster processes are of the types described in this list:

• Management node. Performs administrative tasks such as stopping individual data nodes, querying
node and cluster status, and making backups. Executable: ndb_mgmd.

• Single-threaded data node. Stores data and executes queries. Executable: ndbd.

• Multi threaded data node. Stores data and executes queries with multiple worker threads executing
in parallel. Executable: ndbmtd.

• SQL node. MySQL server for executing SQL queries against NDB. Executable: mysqld.

• API node. A client accessing data in NDB by means of the NDB API or other low-level client API,
rather than by using SQL. See MySQL NDB Cluster API Developer Guide, for more information.

For more information about process (node) types, see Section 2.1, “NDB Cluster Core Concepts”.

Processes shown in the tree are numbered sequentially by type, for each host—for example, SQL node
1, SQL node 2, and so on—to simplify identification.

Each management node, data node, or SQL process must be assigned to a specific host, and is not
allowed to run on any other host. An API node may be assigned to a single host, but this is not required.
Instead, you can assign it to the special Any host entry which the tree also contains in addition to any

109

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/

Using the NDB Cluster Auto-Installer

other hosts, and which acts as a placeholder for processes that are allowed to run on any host. Only API
processes may use this Any host entry.

Adding processes. To add a new process to a given host, either right-click that host's entry in the tree,
then select the Add process popup when it appears, or select a host in the process tree, and press the
Add process button below the process tree. Performing either of these actions opens the add process
dialog, as shown here:

Figure 3.14 NDB Cluster Auto-Installer Add Process Dialog

Here you can select from among the available process types described earlier this section; you can also
enter an arbitrary process name to take the place of the suggested value, if desired.

Removing processes. To delete a process, select that process in the tree and use the Del process
button.

When you select a process in the process tree, information about that process is displayed in the
information panel, where you can change the process name and possibly its type. You can change a
multi-threaded data node (ndbmtd) to a single-threaded data node (ndbd), or the reverse, only; no other
process type changes are allowed. If you want to make a change between any other process types, you
must delete the original process first, then add a new process of the desired type.

NDB Cluster Auto-Installer Define Parameters Screen

Like the Define Processes screen, this screen includes a process tree; the Define Parameters process
tree is organized by process or node type, in groups labelled Management Layer, Data Layer, SQL
Layer, and API Layer. An information panel displays information regarding the item currently selected. The
Define Attributes screen is shown here:

110

Using the NDB Cluster Auto-Installer

Figure 3.15 NDB Cluster Auto-Installer Define Parameters screen

The check box labelled Show advanced configuration, when checked, makes advanced options for
data node and SQL node processes visible in the information pane. These options are set and used
whether or not they are visible. You can also enable this behavior globally by checking Show advanced
configuration options under Settings (see NDB Cluster Installer Settings and Help Menus).

You can edit attributes for a single process by selecting that process from the tree, or for all processes
of the same type in the cluster by selecting one of the Layer folders. A per-process value set for a given
attribute overrides any per-group setting for that attribute that would otherwise apply to the process in
question. An example of such an information panel (for an SQL process) is shown here:

111

Using the NDB Cluster Auto-Installer

Figure 3.16 Define Parameters—Process Attributes

Attributes whose values can be overridden are shown in the information panel with a button bearing a
plus sign. This + button activates an input widget for the attribute, enabling you to change its value. When
the value has been overridden, this button changes into a button showing an X. The X button undoes any
changes made to a given attribute, which immediately reverts to the predefined value.

All configuration attributes have predefined values calculated by the installer, based such factors as host
name, node ID, node type, and so on. In most cases, these values may be left as they are. If you are not
familiar with it already, it is highly recommended that you read the applicable documentation before making
changes to any of the attribute values. To make finding this information easier, each attribute name shown
in the information panel is linked to its description in the online NDB Cluster documentation.

NDB Cluster Auto-Installer Deploy Configuration Screen

This screen allows you to perform the following tasks:

• Review process startup commands and configuration files to be applied

• Distribute configuration files by creating any necessary files and directories on all cluster hosts—that is,
deploy the cluster as presently configured

• Start and stop the cluster

The Deploy Configuration screen is shown here:

112

Using the NDB Cluster Auto-Installer

Figure 3.17 NDB Cluster Auto-Installer Deploy Configuration screen

Like the Define Parameters screen, this screen features a process tree which is organized by process
type. Next to each process in the tree is a status icon indicating the current status of the process:
connected (CONNECTED), starting (STARTING), running (STARTED), stopping (STOPPING), or disconnected
(NO_CONTACT). The icon shows green if the process is connected or running; yellow if it is starting or
stopping; red if the process is stopped or cannot be contacted by the management server.

This screen also contains two information panels, one showing the startup command or commands needed
to start the selected process. (For some processes, more than one command may be required—for
example, if initialization is necessary.) The other panel shows the contents of the configuration file, if any,
for the given process.

This screen also contains four buttons, labelled as and performing the functions described in the following
list:

• Install cluster: Nonfunctional in this release; implementation intended for a future release.

• Deploy cluster: Verify that the configuration is valid. Create any directories required on the cluster
hosts, and distribute the configuration files onto the hosts. A progress bar shows how far the deployment
has proceeded, as shown here, and a dialog is pisplayed when the deployment has completed, as
shown here:

113

Using the NDB Cluster Auto-Installer

Figure 3.18 Cluster Deployment Process

114

Using the NDB Cluster Auto-Installer

• Start cluster: The cluster is deployed as with Deploy cluster, after which all cluster processes are
started in the correct order.

Starting these processes may take some time. If the estimated time to completion is too large, the
installer provides an opportunity to cancel or to continue of the startup procedure. A progress bar
indicates the current status of the startup procedure, as shown here:

Figure 3.19 Cluster Startup Process with Progress Bar

The process status icons next to the items shown in the process tree also update with the status of each
process.

A confirmation dialog is shown when the startup process has completed, as shown here:

Figure 3.20 Cluster Startup, Process Completed Dialog

• Stop cluster: After the cluster has been started, you can stop it using this. As with starting the cluster,
cluster shutdown is not instantaneous, and may require some time complete. A progress bar, similar

115

Using the NDB Cluster Auto-Installer

to that displayed during cluster startup, shows the approximate current status of the cluster shutdown
procedure, as do the process status icons adjoining the process tree. The progress bar is shown here:

Figure 3.21 Cluster Shutdown Process, with Progress Bar

A confirmation dialog indicates when the shutdown process is complete:

Figure 3.22 Cluster Shutdown, Process Completed Dialog

The Auto-Installer generates a config.ini file containing NDB node parameters for each management
node, as well as a my.cnf file containing the appropriate options for each mysqld process in the cluster.
No configuration files are created for data nodes or API nodes.

116

Chapter 4 Configuration of NDB Cluster

Table of Contents
4.1 Quick Test Setup of NDB Cluster .. 117
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 120

4.2.1 NDB Cluster Data Node Configuration Parameters .. 120
4.2.2 NDB Cluster Management Node Configuration Parameters .. 127
4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters 128
4.2.4 Other NDB Cluster Configuration Parameters .. 129
4.2.5 NDB Cluster mysqld Option and Variable Reference .. 131

4.3 NDB Cluster Configuration Files .. 141
4.3.1 NDB Cluster Configuration: Basic Example ... 142
4.3.2 Recommended Starting Configuration for NDB Cluster ... 145
4.3.3 NDB Cluster Connection Strings ... 148
4.3.4 Defining Computers in an NDB Cluster ... 149
4.3.5 Defining an NDB Cluster Management Server ... 150
4.3.6 Defining NDB Cluster Data Nodes .. 157
4.3.7 Defining SQL and Other API Nodes in an NDB Cluster .. 240
4.3.8 Defining the System ... 249
4.3.9 MySQL Server Options and Variables for NDB Cluster .. 250
4.3.10 NDB Cluster TCP/IP Connections ... 313
4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections ... 318
4.3.12 NDB Cluster Shared-Memory Connections .. 319
4.3.13 Data Node Memory Management ... 325
4.3.14 Configuring NDB Cluster Send Buffer Parameters ... 329

4.4 Using High-Speed Interconnects with NDB Cluster ... 330

A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the server
with the --ndbcluster option.

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node on
localhost. However, should you need to specify that its location is elsewhere, this can be done in
my.cnf, or with the mysql client. Before the NDB storage engine can be used, at least one management
node must be operational, as well as any desired data nodes.

For more information about --ndbcluster and other mysqld options specific to NDB Cluster, see
Section 4.3.9.1, “MySQL Server Options for NDB Cluster”.

For general information about installing NDB Cluster, see Chapter 3, NDB Cluster Installation.

4.1 Quick Test Setup of NDB Cluster
To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

117

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Quick Test Setup of NDB Cluster

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing the
following command as the system root user:

$> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 data node,
1 management server, and 3 MySQL servers.
The empty default sections are not required, and are shown only for
the sake of completeness.
Data nodes must provide a hostname but MySQL Servers are not required
to do so.
If you don't know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
Note: [db], [api], and [mgm] are aliases for [ndbd], [mysqld], and [ndb_mgmd],
respectively. [db] is deprecated and should not be used in new installations.

[ndbd default]
NoOfReplicas= 1

[mysqld default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini
file in its current working directory, so change location into the directory where the file is located and then
invoke ndb_mgmd:

$> cd /var/lib/mysql-cluster
$> ndb_mgmd

Then start a single data node by running ndbd:

$> ndbd

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you must to specify the path of
the ndb_mgmd and ndbd servers explicitly. (Normally, these can be found in /usr/
local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/mysql/
data), and make sure that the my.cnf file contains the option necessary to enable the NDB storage
engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

118

Quick Test Setup of NDB Cluster

$> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql ended,
check the server's .err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

$> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 8.0.29

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************
 Table: ctest
Create Table: CREATE TABLE `ctest` (
 `i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

$> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 8.0.29-ndb-8.0.30)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 8.0.29-ndb-8.0.30)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

119

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Overview of NDB Cluster Configuration Parameters, Options, and Variables

At this point, you have successfully set up a working NDB Cluster . You can now store data in the cluster
by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

4.2 Overview of NDB Cluster Configuration Parameters, Options,
and Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used in
the config.ini file to govern various aspects of node behavior, as well as of options and variables read
by mysqld from a my.cnf file or from the command line when run as an NDB Cluster process. Each of
the node parameter tables lists the parameters for a given type (ndbd, ndb_mgmd, mysqld, computer,
tcp, or shm). All tables include the data type for the parameter, option, or variable, as well as its default,
mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what type
of restart is required (node restart or system restart)—and whether the restart must be done with --
initial—to change the value of a given configuration parameter. When performing a node restart or
an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a rolling
restart). It is possible to update cluster configuration parameters marked as node online—that is, without
shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd process
with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without any
problems, although it is advisable to do so progressively, making such adjustments
in relatively small increments. Many of these can be increased online, using a
rolling restart.

However, decreasing the values of such parameters—whether this is done using
a node restart, node initial restart, or even a complete system restart of the
cluster—is not to be undertaken lightly; it is recommended that you do so only
after careful planning and testing. This is especially true with regard to those
parameters that relate to memory usage and disk space, such as MaxNoOfTables,
MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes. In addition, it
is the generally the case that configuration parameters relating to memory and disk
usage can be raised using a simple node restart, but they require an initial node
restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX_INT_RNIL and is equal to
0xFFFFFEFF, or 232 − 28 − 1.

4.2.1 NDB Cluster Data Node Configuration Parameters

120

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd default]
sections of a config.ini file for configuring NDB Cluster data nodes. For detailed descriptions and other
additional information about each of these parameters, see Section 4.3.6, “Defining NDB Cluster Data
Nodes”.

These parameters also apply to ndbmtd, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbmtd follows.

• Arbitration: How arbitration should be performed to avoid split-brain issues in event of node failure.

• ArbitrationTimeout: Maximum time (milliseconds) database partition waits for arbitration signal.

• BackupDataBufferSize: Default size of databuffer for backup (in bytes).

• BackupDataDir: Path to where to store backups. Note that string '/BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

• BackupDiskWriteSpeedPct: Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

• BackupLogBufferSize: Default size of log buffer for backup (in bytes).

• BackupMaxWriteSize: Maximum size of file system writes made by backup (in bytes).

• BackupMemory: Total memory allocated for backups per node (in bytes).

• BackupReportFrequency: Frequency of backup status reports during backup in seconds.

• BackupWriteSize: Default size of file system writes made by backup (in bytes).

• BatchSizePerLocalScan: Used to calculate number of lock records for scan with hold lock.

• BuildIndexThreads: Number of threads to use for building ordered indexes during system or node
restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0 disables
multithreaded building of ordered indexes.

• CompressedBackup: Use zlib to compress backups as they are written.

• CompressedLCP: Write compressed LCPs using zlib.

• ConnectCheckIntervalDelay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

• CrashOnCorruptedTuple: When enabled, forces node to shut down whenever it detects corrupted
tuple.

• DataDir: Data directory for this node.

• DataMemory: Number of bytes on each data node allocated for storing data; subject to available system
RAM and size of IndexMemory.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

• DictTrace: Enable DBDICT debugging; for NDB development.

• DiskDataUsingSameDisk: Set to false if Disk Data tablespaces are located on separate physical
disks.

• DiskIOThreadPool: Number of unbound threads for file access, applies to disk data only.

• Diskless: Run without using disk.

121

NDB Cluster Data Node Configuration Parameters

• DiskPageBufferEntries: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value.

• DiskPageBufferMemory: Number of bytes on each data node allocated for disk page buffer cache.

• DiskSyncSize: Amount of data written to file before synch is forced.

• EnablePartialLcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full checkpoints.

• EnableRedoControl: Enable adaptive checkpointing speed for controlling redo log usage.

• EncryptedFileSystem: Encrypt local checkpoint and tablespace files. EXPERIMENTAL.

• EventLogBufferSize: Size of circular buffer for NDB log events within data nodes.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• FileSystemPath: Path to directory where data node stores its data (directory must exist).

• FileSystemPathDataFiles: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

• FileSystemPathDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

• FileSystemPathUndoFiles: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value
of DataDir is used.

• FragmentLogFileSize: Size of each redo log file.

• HeartbeatIntervalDbApi: Time between API node-data node heartbeats. (API connection closed
after 3 missed heartbeats).

• HeartbeatIntervalDbDb: Time between data node-to-data node heartbeats; data node considered
dead after 3 missed heartbeats.

• HeartbeatOrder: Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

• HostName: Host name or IP address for this data node.

• IndexMemory: Number of bytes on each data node allocated for storing indexes; subject to available
system RAM and size of DataMemory.

• IndexStatAutoCreate: Enable/disable automatic statistics collection when indexes are created.

• IndexStatAutoUpdate: Monitor indexes for changes and trigger automatic statistics updates.

• IndexStatSaveScale: Scaling factor used in determining size of stored index statistics.

• IndexStatSaveSize: Maximum size in bytes for saved statistics per index.

• IndexStatTriggerPct: Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

122

NDB Cluster Data Node Configuration Parameters

• IndexStatTriggerScale: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

• IndexStatUpdateDelay: Minimum delay between automatic index statistics updates for given index.
0 means no delay.

• InitFragmentLogFiles: Initialize fragment logfiles (sparse/full).

• InitialLogFileGroup: Describes log file group that is created during initial start. See documentation
for format.

• InitialNoOfOpenFiles: Initial number of files open per data node. (One thread is created per file).

• InitialTablespace: Describes tablespace that is created during initial start. See documentation for
format.

• InsertRecoveryWork: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use.

• LateAlloc: Allocate memory after connection to management server has been established.

• LcpScanProgressTimeout: Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable.

• LockExecuteThreadToCPU: Comma-delimited list of CPU IDs.

• LockMaintThreadsToCPU: CPU ID indicating which CPU runs maintenance threads.

• LockPagesInMainMemory: 0=disable locking, 1=lock after memory allocation, 2=lock before memory
allocation.

• LogLevelCheckpoint: Log level of local and global checkpoint information printed to stdout.

• LogLevelCongestion: Level of congestion information printed to stdout.

• LogLevelConnection: Level of node connect/disconnect information printed to stdout.

• LogLevelError: Transporter, heartbeat errors printed to stdout.

• LogLevelInfo: Heartbeat and log information printed to stdout.

• LogLevelNodeRestart: Level of node restart and node failure information printed to stdout.

• LogLevelShutdown: Level of node shutdown information printed to stdout.

• LogLevelStartup: Level of node startup information printed to stdout.

• LogLevelStatistic: Level of transaction, operation, and transporter information printed to stdout.

• LongMessageBuffer: Number of bytes allocated on each data node for internal long messages.

• MaxAllocate: No longer used; has no effect.

• MaxBufferedEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

• MaxBufferedEpochBytes: Total number of bytes allocated for buffering epochs.

• MaxDiskDataLatency: Maximum allowed mean latency of disk access (ms) before starting to abort
transactions.

123

NDB Cluster Data Node Configuration Parameters

• MaxDiskWriteSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing.

• MaxDiskWriteSpeedOtherNodeRestart: Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting.

• MaxDiskWriteSpeedOwnRestart: Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting.

• MaxFKBuildBatchSize: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well.

• MaxDMLOperationsPerTransaction: Limit size of transaction; aborts transaction if it requires more
than this many DML operations. Set to 0 to disable.

• MaxLCPStartDelay: Time in seconds that LCP polls for checkpoint mutex (to allow other data nodes to
complete metadata synchronization), before putting itself in lock queue for parallel recovery of table data.

• MaxNoOfAttributes: Suggests total number of attributes stored in database (sum over all tables).

• MaxNoOfConcurrentIndexOperations: Total number of index operations that can execute
simultaneously on one data node.

• MaxNoOfConcurrentOperations: Maximum number of operation records in transaction coordinator.

• MaxNoOfConcurrentScans: Maximum number of scans executing concurrently on data node.

• MaxNoOfConcurrentSubOperations: Maximum number of concurrent subscriber operations.

• MaxNoOfConcurrentTransactions: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster.

• MaxNoOfFiredTriggers: Total number of triggers that can fire simultaneously on one data node.

• MaxNoOfLocalOperations: Maximum number of operation records defined on this data node.

• MaxNoOfLocalScans: Maximum number of fragment scans in parallel on this data node.

• MaxNoOfOpenFiles: Maximum number of files open per data node.(One thread is created per file).

• MaxNoOfOrderedIndexes: Total number of ordered indexes that can be defined in system.

• MaxNoOfSavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

• MaxNoOfSubscribers: Maximum number of subscribers.

• MaxNoOfSubscriptions: Maximum number of subscriptions (default 0 = MaxNoOfTables).

• MaxNoOfTables: Suggests total number of NDB tables stored in database.

• MaxNoOfTriggers: Total number of triggers that can be defined in system.

• MaxNoOfUniqueHashIndexes: Total number of unique hash indexes that can be defined in system.

• MaxParallelCopyInstances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

• MaxParallelScansPerFragment: Maximum number of parallel scans per fragment. Once this limit is
reached, scans are serialized.

124

NDB Cluster Data Node Configuration Parameters

• MaxReorgBuildBatchSize: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.

• MaxStartFailRetries: Maximum retries when data node fails on startup, requires StopOnError = 0.
Setting to 0 causes start attempts to continue indefinitely.

• MaxUIBuildBatchSize: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well.

• MemReportFrequency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

• MinDiskWriteSpeed: Minimum number of bytes per second that can be written by LCP and backup.

• MinFreePct: Percentage of memory resources to keep in reserve for restarts.

• NodeGroup: Node group to which data node belongs; used only during initial start of cluster.

• NodeGroupTransporters: Number of transporters to use between nodes in same node group.

• NodeId: Number uniquely identifying data node among all nodes in cluster.

• NoOfFragmentLogFiles: Number of 16 MB redo log files in each of 4 file sets belonging to data node.

• NoOfReplicas: Number of copies of all data in database.

• Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to 0 permits system to determine
use of interleaving by data node process; 1 means that it is determined by data node.

• ODirect: Use O_DIRECT file reads and writes when possible.

• ODirectSyncFlag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is not
enabled, InitFragmentLogFiles is set to SPARSE, or both.

• RealtimeScheduler: When true, data node threads are scheduled as real-time threads. Default is
false.

• RecoveryWork: Percentage of storage overhead for LCP files: greater value means less work in normal
operations, more work during recovery.

• RedoBuffer: Number of bytes on each data node allocated for writing redo logs.

• RedoOverCommitCounter: When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

• RedoOverCommitLimit: Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

• ReservedConcurrentIndexOperations: Number of simultaneous index operations having
dedicated resources on one data node.

• ReservedConcurrentOperations: Number of simultaneous operations having dedicated resources
in transaction coordinators on one data node.

• ReservedConcurrentScans: Number of simultaneous scans having dedicated resources on one data
node.

• ReservedConcurrentTransactions: Number of simultaneous transactions having dedicated
resources on one data node.

125

NDB Cluster Data Node Configuration Parameters

• ReservedFiredTriggers: Number of triggers having dedicated resources on one data node.

• ReservedLocalScans: Number of simultaneous fragment scans having dedicated resources on one
data node.

• ReservedTransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node.

• RestartOnErrorInsert: Control type of restart caused by inserting error (when StopOnError is
enabled).

• SchedulerExecutionTimer: Number of microseconds to execute in scheduler before sending.

• SchedulerResponsiveness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput.

• SchedulerSpinTimer: Number of microseconds to execute in scheduler before sleeping.

• ServerPort: Port used to set up transporter for incoming connections from API nodes.

• SharedGlobalMemory: Total number of bytes on each data node allocated for any use.

• SpinMethod: Determines spin method used by data node; see documentation for details.

• StartFailRetryDelay: Delay in seconds after start failure prior to retry; requires StopOnError = 0.

• StartFailureTimeout: Milliseconds to wait before terminating. (0=Wait forever).

• StartNoNodeGroupTimeout: Time to wait for nodes without nodegroup before trying to start
(0=forever).

• StartPartialTimeout: Milliseconds to wait before trying to start without all nodes. (0=Wait forever).

• StartPartitionedTimeout: Milliseconds to wait before trying to start partitioned. (0=Wait forever).

• StartupStatusReportFrequency: Frequency of status reports during startup.

• StopOnError: When set to 0, data node automatically restarts and recovers following node failures.

• StringMemory: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

• TcpBind_INADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

• TimeBetweenEpochs: Time between epochs (synchronization used for replication).

• TimeBetweenEpochsTimeout: Timeout for time between epochs. Exceeding causes node shutdown.

• TimeBetweenGlobalCheckpoints: Time between group commits of transactions to disk.

• TimeBetweenGlobalCheckpointsTimeout: Minimum timeout for group commit of transactions to
disk.

• TimeBetweenInactiveTransactionAbortCheck: Time between checks for inactive transactions.

• TimeBetweenLocalCheckpoints: Time between taking snapshots of database (expressed in base-2
logarithm of bytes).

• TimeBetweenWatchDogCheck: Time between execution checks inside data node.

• TimeBetweenWatchDogCheckInitial: Time between execution checks inside data node (early start
phases when memory is allocated).

126

NDB Cluster Management Node Configuration Parameters

• TotalSendBufferMemory: Total memory to use for all transporter send buffers..

• TransactionBufferMemory: Dynamic buffer space (in bytes) for key and attribute data allocated for
each data node.

• TransactionDeadlockDetectionTimeout: Time transaction can spend executing within data node.
This is time that transaction coordinator waits for each data node participating in transaction to execute
request. If data node takes more than this amount of time, transaction is aborted.

• TransactionInactiveTimeout: Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another part
(query, statement) of transaction. If application takes too much time, then transaction is aborted. Timeout
= 0 means that application never times out.

• TransactionMemory: Memory allocated for transactions on each data node.

• TwoPassInitialNodeRestartCopy: Copy data in 2 passes during initial node restart, which enables
multithreaded building of ordered indexes for such restarts.

• UndoDataBuffer: Unused; has no effect.

• UndoIndexBuffer: Unused; has no effect.

• UseShm: Use shared memory connections between this data node and API node also running on this
host.

The following parameters are specific to ndbmtd:

• AutomaticThreadConfig: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation.

• ClassicFragmentation: When true, use traditional table fragmentation; set false to enable flexible
distribution of fragments among LDMs. Disabled by AutomaticThreadConfig.

• EnableMultithreadedBackup: Enable multi-threaded backup.

• MaxNoOfExecutionThreads: For ndbmtd only, specify maximum number of execution threads.

• NoOfFragmentLogParts: Number of redo log file groups belonging to this data node.

• NumCPUs: Specify number of CPUs to use with AutomaticThreadConfig.

• PartitionsPerNode: Determines the number of table partitions created on each data node; not used
if ClassicFragmentation is enabled.

• ThreadConfig: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty string;
see documentation for syntax and other information.

4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_mgmd] or [mgm]
section of a config.ini file for configuring NDB Cluster management nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 4.3.5, “Defining an NDB
Cluster Management Server”.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

• ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order 1,
2.

127

NDB Cluster SQL Node and API Node Configuration Parameters

• DataDir: Data directory for this node.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatIntervalMgmdMgmd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

• HostName: Host name or IP address for this management node.

• Id: Number identifying management node. Now deprecated; use NodeId instead.

• LogDestination: Where to send log messages: console, system log, or specified log file.

• NodeId: Number uniquely identifying management node among all nodes in cluster.

• PortNumber: Port number to send commands to and fetch configuration from management server.

• PortNumberStats: Port number used to get statistical information from management server.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect. See
Section 4.3.5, “Defining an NDB Cluster Management Server”, for more information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [mysqld] and [api]
sections of a config.ini file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 4.3.7, “Defining
SQL and Other API Nodes in an NDB Cluster”.

• ApiVerbose: Enable NDB API debugging; for NDB development.

• ArbitrationDelay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.

• ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

• AutoReconnect: Specifies whether an API node should reconnect fully when disconnected from
cluster.

• BatchByteSize: Default batch size in bytes.

• BatchSize: Default batch size in number of records.

128

Other NDB Cluster Configuration Parameters

• ConnectBackoffMaxTime: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.

• ConnectionMap: Specifies which data nodes to connect.

• DefaultHashMapSize: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

• DefaultOperationRedoProblemAction: How operations are handled in event that
RedoOverCommitCounter is exceeded.

• ExecuteOnComputer: String referencing earlier defined COMPUTER.

• ExtraSendBufferMemory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

• HeartbeatThreadPriority: Set heartbeat thread policy and priority for API nodes; see manual for
allowed values.

• HostName: Host name or IP address for this SQL or API node.

• Id: Number identifying MySQL server or API node (Id). Now deprecated; use NodeId instead.

• MaxScanBatchSize: Maximum collective batch size for one scan.

• NodeId: Number uniquely identifying SQL node or API node among all nodes in cluster.

• StartConnectBackoffMaxTime: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this API node.

• TotalSendBufferMemory: Total memory to use for all transporter send buffers.

• wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see Section 4.3.9.1, “MySQL Server Options
for NDB Cluster”. For information about MySQL server system variables relating to NDB Cluster, see
Section 4.3.9.2, “NDB Cluster System Variables”.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [computer], [tcp], and
[shm] sections of a config.ini file for configuring NDB Cluster. For detailed descriptions and additional
information about individual parameters, see Section 4.3.10, “NDB Cluster TCP/IP Connections”, or
Section 4.3.12, “NDB Cluster Shared-Memory Connections”, as appropriate.

129

Other NDB Cluster Configuration Parameters

The following parameters apply to the config.ini file's [computer] section:

• HostName: Host name or IP address of this computer.

• Id: Unique identifier for this computer.

The following parameters apply to the config.ini file's [tcp] section:

• AllowUnresolvedHostNames: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only.

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by TCP connection.

• HostName2: Name or IP address of second of two computers joined by TCP connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

• NodeIdServer: Set server side of TCP connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

• PreferIPVersion: Indicate DNS resolver preference for IP version 4 or 6.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors.

• Proxy:

• ReceiveBufferMemory: Bytes of buffer for signals received by this node.

• SendBufferMemory: Bytes of TCP buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.

• TCP_MAXSEG_SIZE: Value used for TCP_MAXSEG.

• TCP_RCV_BUF_SIZE: Value used for SO_RCVBUF.

• TCP_SND_BUF_SIZE: Value used for SO_SNDBUF.

• TcpBind_INADDR_ANY: Bind InAddrAny instead of host name for server part of connection.

The following parameters apply to the config.ini file's [shm] section:

• Checksum: If checksum is enabled, all signals between nodes are checked for errors.

• Group: Used for group proximity; smaller value is interpreted as being closer.

• HostName1: Name or IP address of first of two computers joined by SHM connection.

• HostName2: Name or IP address of second of two computers joined by SHM connection.

• NodeId1: ID of node (data node, API node, or management node) on one side of connection.

• NodeId2: ID of node (data node, API node, or management node) on one side of connection.

130

NDB Cluster mysqld Option and Variable Reference

• NodeIdServer: Set server side of SHM connection.

• OverloadLimit: When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

• PreSendChecksum: If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors.

• SendBufferMemory: Bytes in shared memory buffer for signals sent from this node.

• SendSignalId: Sends ID in each signal. Used in trace files.

• ShmKey: Shared memory key; when set to 1, this is calculated by NDB.

• ShmSpinTime: When receiving, number of microseconds to spin before sleeping.

• ShmSize: Size of shared memory segment.

• Signum: Signal number to be used for signalling.

4.2.5 NDB Cluster mysqld Option and Variable Reference

The following list includes command-line options, system variables, and status variables applicable within
mysqld when it is running as an SQL node in an NDB Cluster. For a reference to all command-line
options, system variables, and status variables used with or relating to mysqld, see Server Option, System
Variable, and Status Variable Reference.

• Com_show_ndb_status: Count of SHOW NDB STATUS statements.

• Handler_discover: Number of times that tables have been discovered.

• ndb-applier-allow-skip-epoch: Lets replication applier skip epochs.

• ndb-batch-size: Size (in bytes) to use for NDB transaction batches.

• ndb-blob-read-batch-bytes: Specifies size in bytes that large BLOB reads should be batched into.
0 = no limit.

• ndb-blob-write-batch-bytes: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

• ndb-cluster-connection-pool: Number of connections to cluster used by MySQL.

• ndb-cluster-connection-pool-nodeids: Comma-separated list of node IDs for connections to
cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-pool.

• ndb-connectstring: Address of NDB management server distributing configuration information for
this cluster.

• ndb-default-column-format: Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns.

• ndb-deferred-constraints: Specifies that constraint checks on unique indexes (where these are
supported) should be deferred until commit time. Not normally needed or used; for testing purposes only.

• ndb-distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• ndb-log-apply-status: Cause MySQL server acting as replica to log mysql.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective only if
server is started with --ndbcluster option.

131

https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx

NDB Cluster mysqld Option and Variable Reference

• ndb-log-empty-epochs: When enabled, causes epochs in which there were no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-empty-update: When enabled, causes updates that produced no changes to be written to
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

• ndb-log-exclusive-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb-log-fail-terminate: Terminate mysqld process if complete logging of all found row events is
not possible.

• ndb-log-orig: Log originating server id and epoch in mysql.ndb_binlog_index table.

• ndb-log-transaction-id: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

• ndb-log-update-minimal: Log updates in minimal format.

• ndb-log-updated-only: Log complete rows (ON) or updates only (OFF).

• ndb-log-update-as-write: Toggles logging of updates on source between updates (OFF) and
writes (ON).

• ndb-mgmd-host: Set host (and port, if desired) for connecting to management server.

• ndb-nodeid: NDB Cluster node ID for this MySQL server.

• ndb-optimized-node-selection: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

• ndb-transid-mysql-connection-map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

• ndb-wait-connected: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

• ndb-wait-setup: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

• ndb-allow-copying-alter-table: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables.

• Ndb_api_adaptive_send_deferred_count: Number of adaptive send calls not actually sent by this
MySQL Server (SQL node).

• Ndb_api_adaptive_send_deferred_count_session: Number of adaptive send calls not actually
sent in this client session.

• Ndb_api_adaptive_send_deferred_count_replica: Number of adaptive send calls not actually
sent by this replica.

• Ndb_api_adaptive_send_deferred_count_slave: Number of adaptive send calls not actually
sent by this replica.

• Ndb_api_adaptive_send_forced_count: Number of adaptive sends with forced-send set sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_forced_count_session: Number of adaptive sends with forced-send
set in this client session.

132

NDB Cluster mysqld Option and Variable Reference

• Ndb_api_adaptive_send_forced_count_replica: Number of adaptive sends with forced-send
set sent by this replica.

• Ndb_api_adaptive_send_forced_count_slave: Number of adaptive sends with forced-send set
sent by this replica.

• Ndb_api_adaptive_send_unforced_count: Number of adaptive sends without forced-send sent by
this MySQL Server (SQL node).

• Ndb_api_adaptive_send_unforced_count_session: Number of adaptive sends without forced-
send in this client session.

• Ndb_api_adaptive_send_unforced_count_replica: Number of adaptive sends without forced-
send sent by this replica.

• Ndb_api_adaptive_send_unforced_count_slave: Number of adaptive sends without forced-
send sent by this replica.

• Ndb_api_bytes_received_count: Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

• Ndb_api_bytes_received_count_session: Quantity of data (in bytes) received from data nodes in
this client session.

• Ndb_api_bytes_received_count_replica: Quantity of data (in bytes) received from data nodes
by this replica.

• Ndb_api_bytes_received_count_slave: Quantity of data (in bytes) received from data nodes by
this replica.

• Ndb_api_bytes_sent_count: Quantity of data (in bytes) sent to data nodes by this MySQL Server
(SQL node).

• Ndb_api_bytes_sent_count_session: Quantity of data (in bytes) sent to data nodes in this client
session.

• Ndb_api_bytes_sent_count_replica: Qunatity of data (in bytes) sent to data nodes by this replica.

• Ndb_api_bytes_sent_count_slave: Qunatity of data (in bytes) sent to data nodes by this replica.

• Ndb_api_event_bytes_count: Number of bytes of events received by this MySQL Server (SQL
node).

• Ndb_api_event_bytes_count_injector: Number of bytes of event data received by NDB binary
log injector thread.

• Ndb_api_event_data_count: Number of row change events received by this MySQL Server (SQL
node).

• Ndb_api_event_data_count_injector: Number of row change events received by NDB binary log
injector thread.

• Ndb_api_event_nondata_count: Number of events received, other than row change events, by this
MySQL Server (SQL node).

• Ndb_api_event_nondata_count_injector: Number of events received, other than row change
events, by NDB binary log injector thread.

• Ndb_api_pk_op_count: Number of operations based on or using primary keys by this MySQL Server
(SQL node).

133

NDB Cluster mysqld Option and Variable Reference

• Ndb_api_pk_op_count_session: Number of operations based on or using primary keys in this client
session.

• Ndb_api_pk_op_count_replica: Number of operations based on or using primary keys by this
replica.

• Ndb_api_pk_op_count_slave: Number of operations based on or using primary keys by this replica.

• Ndb_api_pruned_scan_count: Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

• Ndb_api_pruned_scan_count_session: Number of scans that have been pruned to one partition in
this client session.

• Ndb_api_pruned_scan_count_replica: Number of scans that have been pruned to one partition
by this replica.

• Ndb_api_pruned_scan_count_slave: Number of scans that have been pruned to one partition by
this replica.

• Ndb_api_range_scan_count: Number of range scans that have been started by this MySQL Server
(SQL node).

• Ndb_api_range_scan_count_session: Number of range scans that have been started in this client
session.

• Ndb_api_range_scan_count_replica: Number of range scans that have been started by this
replica.

• Ndb_api_range_scan_count_slave: Number of range scans that have been started by this replica.

• Ndb_api_read_row_count: Total number of rows that have been read by this MySQL Server (SQL
node).

• Ndb_api_read_row_count_session: Total number of rows that have been read in this client
session.

• Ndb_api_read_row_count_replica: Total number of rows that have been read by this replica.

• Ndb_api_read_row_count_slave: Total number of rows that have been read by this replica.

• Ndb_api_scan_batch_count: Number of batches of rows received by this MySQL Server (SQL
node).

• Ndb_api_scan_batch_count_session: Number of batches of rows received in this client session.

• Ndb_api_scan_batch_count_replica: Number of batches of rows received by this replica.

• Ndb_api_scan_batch_count_slave: Number of batches of rows received by this replica.

• Ndb_api_table_scan_count: Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

• Ndb_api_table_scan_count_session: Number of table scans that have been started, including
scans of internal tables, in this client session.

• Ndb_api_table_scan_count_replica: Number of table scans that have been started, including
scans of internal tables, by this replica.

• Ndb_api_table_scan_count_slave: Number of table scans that have been started, including scans
of internal tables, by this replica.

134

NDB Cluster mysqld Option and Variable Reference

• Ndb_api_trans_abort_count: Number of transactions aborted by this MySQL Server (SQL node).

• Ndb_api_trans_abort_count_session: Number of transactions aborted in this client session.

• Ndb_api_trans_abort_count_replica: Number of transactions aborted by this replica.

• Ndb_api_trans_abort_count_slave: Number of transactions aborted by this replica.

• Ndb_api_trans_close_count: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this MySQL Server (SQL node).

• Ndb_api_trans_close_count_session: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) in this client session.

• Ndb_api_trans_close_count_replica: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_close_count_slave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica.

• Ndb_api_trans_commit_count: Number of transactions committed by this MySQL Server (SQL
node).

• Ndb_api_trans_commit_count_session: Number of transactions committed in this client session.

• Ndb_api_trans_commit_count_replica: Number of transactions committed by this replica.

• Ndb_api_trans_commit_count_slave: Number of transactions committed by this replica.

• Ndb_api_trans_local_read_row_count: Total number of rows that have been read by this MySQL
Server (SQL node).

• Ndb_api_trans_local_read_row_count_session: Total number of rows that have been read in
this client session.

• Ndb_api_trans_local_read_row_count_replica: Total number of rows that have been read by
this replica.

• Ndb_api_trans_local_read_row_count_slave: Total number of rows that have been read by this
replica.

• Ndb_api_trans_start_count: Number of transactions started by this MySQL Server (SQL node).

• Ndb_api_trans_start_count_session: Number of transactions started in this client session.

• Ndb_api_trans_start_count_replica: Number of transactions started by this replica.

• Ndb_api_trans_start_count_slave: Number of transactions started by this replica.

• Ndb_api_uk_op_count: Number of operations based on or using unique keys by this MySQL Server
(SQL node).

• Ndb_api_uk_op_count_session: Number of operations based on or using unique keys in this client
session.

• Ndb_api_uk_op_count_replica: Number of operations based on or using unique keys by this
replica.

• Ndb_api_uk_op_count_slave: Number of operations based on or using unique keys by this replica.

• Ndb_api_wait_exec_complete_count: Number of times thread has been blocked while waiting for
operation execution to complete by this MySQL Server (SQL node).

135

NDB Cluster mysqld Option and Variable Reference

• Ndb_api_wait_exec_complete_count_session: Number of times thread has been blocked while
waiting for operation execution to complete in this client session.

• Ndb_api_wait_exec_complete_count_replica: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

• Ndb_api_wait_exec_complete_count_slave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

• Ndb_api_wait_meta_request_count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_meta_request_count_session: Number of times thread has been blocked waiting
for metadata-based signal in this client session.

• Ndb_api_wait_meta_request_count_replica: Number of times thread has been blocked waiting
for metadata-based signal by this replica.

• Ndb_api_wait_meta_request_count_slave: Number of times thread has been blocked waiting for
metadata-based signal by this replica.

• Ndb_api_wait_nanos_count: Total time (in nanoseconds) spent waiting for some type of signal from
data nodes by this MySQL Server (SQL node).

• Ndb_api_wait_nanos_count_session: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes in this client session.

• Ndb_api_wait_nanos_count_replica: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

• Ndb_api_wait_nanos_count_slave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

• Ndb_api_wait_scan_result_count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

• Ndb_api_wait_scan_result_count_session: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

• Ndb_api_wait_scan_result_count_replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• Ndb_api_wait_scan_result_count_slave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

• ndb_autoincrement_prefetch_sz: NDB auto-increment prefetch size.

• ndb_cache_check_time: Number of milliseconds between checks of cluster SQL nodes made by
MySQL query cache.

• ndb_clear_apply_status: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

• Ndb_cluster_node_id: Node ID of this server when acting as NDB Cluster SQL node.

• Ndb_config_from_host: NDB Cluster management server host name or IP address.

• Ndb_config_from_port: Port for connecting to NDB Cluster management server.

• Ndb_config_generation: Generation number of the current configuration of the cluster.

136

NDB Cluster mysqld Option and Variable Reference

• Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDB$EPOCH() NDB
replication conflict detection function.

• Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication NDB
$EPOCH2() conflict detection function.

• Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDB$EPOCH2_TRANS() conflict detection function.

• Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

• Ndb_conflict_fn_max: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

• Ndb_conflict_fn_max_del_win: Number of times that NDB replication conflict resolution based on
outcome of NDB$MAX_DELETE_WIN() has been applied to update and delete operations.

• Ndb_conflict_fn_max_ins: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations.

• Ndb_conflict_fn_max_del_win_ins: Number of times that NDB replication conflict resolution
based on outcome of NDB$MAX_DEL_WIN_INS() has been applied to insert operations.

• Ndb_conflict_fn_old: Number of times in NDB replication "same timestamp wins" conflict resolution
has been applied.

• Ndb_conflict_last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

• Ndb_conflict_last_stable_epoch: Number of rows found to be in conflict by transactional conflict
function.

• Ndb_conflict_reflected_op_discard_count: Number of reflected operations that were not
applied due error during execution.

• Ndb_conflict_reflected_op_prepare_count: Number of reflected operations received that have
been prepared for execution.

• Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

• ndb_conflict_role: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL thread
is stopped. See documentation for further information.

• Ndb_conflict_trans_conflict_commit_count: Number of epoch transactions committed after
requiring transactional conflict handling.

• Ndb_conflict_trans_detect_iter_count: Number of internal iterations required to commit epoch
transaction. Should be (slightly) greater than or equal to Ndb_conflict_trans_conflict_commit_count.

• Ndb_conflict_trans_reject_count: Number of transactions rejected after being found in conflict
by transactional conflict function.

• Ndb_conflict_trans_row_conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

• Ndb_conflict_trans_row_reject_count: Total number of rows realigned after being found in
conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows
included in or dependent on conflicting transactions.

137

NDB Cluster mysqld Option and Variable Reference

• ndb_data_node_neighbour: Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables.

• ndb_default_column_format: Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables.

• ndb_deferred_constraints: Specifies that constraint checks should be deferred (where these are
supported). Not normally needed or used; for testing purposes only.

• ndb_dbg_check_shares: Check for any lingering shares (debug builds only).

• ndb-schema-dist-timeout: How long to wait before detecting timeout during schema distribution.

• ndb_distribution: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

• Ndb_epoch_delete_delete_count: Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist).

• ndb_eventbuffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

• ndb_eventbuffer_max_alloc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit).

• Ndb_execute_count: Number of round trips to NDB kernel made by operations.

• ndb_extra_logging: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

• ndb_force_send: Forces sending of buffers to NDB immediately, without waiting for other threads.

• ndb_fully_replicated: Whether new NDB tables are fully replicated.

• ndb_index_stat_enable: Use NDB index statistics in query optimization.

• ndb_index_stat_option: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

• ndb_join_pushdown: Enables pushing down of joins to data nodes.

• Ndb_last_commit_epoch_server: Epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session: Epoch most recently committed by this NDB client.

• ndb_log_apply_status: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its own
server ID.

• ndb_log_bin: Write updates to NDB tables in binary log. Effective only if binary logging is enabled with
--log-bin.

• ndb_log_binlog_index: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

• ndb_log_empty_epochs: When enabled, epochs in which there were no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

138

NDB Cluster mysqld Option and Variable Reference

• ndb_log_empty_update: When enabled, updates which produce no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

• ndb_log_exclusive_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

• ndb_log_orig: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

• ndb_log_transaction_id: Whether NDB transaction IDs are written into binary log (Read-only).

• ndb_metadata_check: Enable auto-detection of NDB metadata changes with respect to MySQL data
dictionary; enabled by default.

• Ndb_metadata_blacklist_size: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count.

• ndb_metadata_check_interval: Interval in seconds to perform check for NDB metadata changes
with respect to MySQL data dictionary.

• Ndb_metadata_detected_count: Number of times NDB metadata change monitor thread has
detected changes.

• Ndb_metadata_excluded_count: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize.

• ndb_metadata_sync: Triggers immediate synchronization of all changes between NDB dictionary and
MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values to be
ignored. Resets to false when synchronization is complete.

• Ndb_metadata_synced_count: Number of NDB metadata objects which have been synchronized.

• Ndb_number_of_data_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

• ndb-optimization-delay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

• ndb_optimized_node_selection: Determines how SQL node chooses cluster data node to use as
transaction coordinator.

• Ndb_pruned_scan_count: Number of scans executed by NDB since cluster was last started where
partition pruning could be used.

• Ndb_pushed_queries_defined: Number of joins that API nodes have attempted to push down to
data nodes.

• Ndb_pushed_queries_dropped: Number of joins that API nodes have tried to push down, but failed.

• Ndb_pushed_queries_executed: Number of joins successfully pushed down and executed on data
nodes.

• Ndb_pushed_reads: Number of reads executed on data nodes by pushed-down joins.

• ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable for
individual NDB tables.

139

NDB Cluster mysqld Option and Variable Reference

• ndb_recv_thread_activation_threshold: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads).

• ndb_recv_thread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details.

• Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected.

• ndb_replica_batch_size: Batch size in bytes for replica applier.

• ndb_report_thresh_binlog_epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5: Threshold
for number of epochs to lag behind before reporting binary log status.

• ndb_report_thresh_binlog_mem_usage: Threshold for percentage of free memory remaining
before reporting binary log status.

• ndb_row_checksum: When enabled, set row checksums; enabled by default.

• Ndb_scan_count: Total number of scans executed by NDB since cluster was last started.

• ndb_schema_dist_lock_wait_timeout: Time during schema distribution to wait for lock before
returning error.

• ndb_schema_dist_timeout: Time to wait before detecting timeout during schema distribution.

• ndb_schema_dist_upgrade_allowed: Allow schema distribution table upgrade when connecting to
NDB.

• ndb_show_foreign_key_mock_tables: Show mock tables used to support foreign_key_checks=0.

• ndb_slave_conflict_role: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

• Ndb_slave_max_replicated_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

• Ndb_system_name: Configured cluster system name; empty if server not connected to NDB.

• ndb_table_no_logging: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered to
use NDBCLUSTER persists for table's lifetime.

• ndb_table_temporary: NDB tables are not persistent on disk: no schema files are created and tables
are not logged.

• Ndb_trans_hint_count_session: Number of transactions using hints that have been started in this
session.

• ndb_use_copying_alter_table: Use copying ALTER TABLE operations in NDB Cluster.

• ndb_use_exact_count: Use exact row count when planning queries.

• ndb_use_transactions: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

140

NDB Cluster Configuration Files

• ndb_version: Shows build and NDB engine version as an integer.

• ndb_version_string: Shows build information including NDB engine version in ndb-x.y.z format.

• ndbcluster: Enable NDB Cluster (if this version of MySQL supports it). Disabled by --skip-
ndbcluster.

• ndbinfo: Enable ndbinfo plugin, if supported.

• ndbinfo_database: Name used for NDB information database; read only.

• ndbinfo_max_bytes: Used for debugging only.

• ndbinfo_max_rows: Used for debugging only.

• ndbinfo_offline: Put ndbinfo database into offline mode, in which no rows are returned from tables
or views.

• ndbinfo_show_hidden: Whether to show ndbinfo internal base tables in mysql client; default is OFF.

• ndbinfo_table_prefix: Prefix to use for naming ndbinfo internal base tables; read only.

• ndbinfo_version: ndbinfo engine version; read only.

• replica_allow_batching: Turns update batching on and off for replica.

• server_id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be less
than 2 to power of this value.

• skip-ndbcluster: Disable NDB Cluster storage engine.

• slave_allow_batching: Turns update batching on and off for replica.

• transaction_allow_batching: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

4.3 NDB Cluster Configuration Files
Configuring NDB Cluster requires working with two files:

• my.cnf: Specifies options for all NDB Cluster executables. This file, with which you should be familiar
with from previous work with MySQL, must be accessible by each executable running in the cluster.

• config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. config.ini contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between
all nodes in the cluster. For a quick reference to the sections that can appear in this file, and what sorts
of configuration parameters may be placed in each section, see Sections of the config.ini File.

Caching of configuration data. NDB uses stateful configuration. Rather than reading the global
configuration file every time the management server is restarted, the management server caches the
configuration the first time it is started, and thereafter, the global configuration file is read only when one of
the following conditions is true:

• The management server is started using the --initial option. When --initial is used, the global
configuration file is re-read, any existing cache files are deleted, and the management server creates a
new configuration cache.

141

NDB Cluster Configuration: Basic Example

• The management server is started using the --reload option. The --reload option causes
the management server to compare its cache with the global configuration file. If they differ, the
management server creates a new configuration cache; any existing configuration cache is preserved,
but not used. If the management server's cache and the global configuration file contain the same
configuration data, then the existing cache is used, and no new cache is created.

• The management server is started using --config-cache=FALSE. This disables --config-
cache (enabled by default), and can be used to force the management server to bypass configuration
caching altogether. In this case, the management server ignores any configuration files that may be
present, always reading its configuration data from the config.ini file instead.

• No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. The management server by default creates configuration cache files in
a directory named mysql-cluster in the MySQL installation directory. (If you build NDB Cluster from
source on a Unix system, the default location is /usr/local/mysql-cluster.) This can be overridden
at runtime by starting the management server with the --configdir option. Configuration cache files are
binary files named according to the pattern ndb_node_id_config.bin.seq_id, where node_id is the
management server's node ID in the cluster, and seq_id is a cache idenitifer. Cache files are numbered
sequentially using seq_id, in the order in which they are created. The management server uses the latest
cache file as determined by the seq_id.

Note

It is possible to roll back to a previous configuration by deleting later configuration
cache files, or by renaming an earlier cache file so that it has a higher seq_id.
However, since configuration cache files are written in a binary format, you should
not attempt to edit their contents by hand.

For more information about the --configdir, --config-cache, --initial, and --reload options
for the NDB Cluster management server, see Section 5.4, “ndb_mgmd — The NDB Cluster Management
Server Daemon”.

We are continuously making improvements in NDB Cluster configuration and attempting to simplify this
process. Although we strive to maintain backward compatibility, there may be times when introduce an
incompatible change. In such cases we try to let NDB Cluster users know in advance if a change is not
backward compatible. If you find such a change and we have not documented it, please report it in the
MySQL bugs database using the instructions given in How to Report Bugs or Problems.

4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you should update my.cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used in
config.ini global configuration files. Global configuration options are discussed
later in this section.

my.cnf
example additions to my.cnf for NDB Cluster
(valid in MySQL 8.0)

enable ndbcluster storage engine, and provide connection string for
management server host (default port is 1186)

142

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html

NDB Cluster Configuration: Basic Example

[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

provide location of cluster configuration file
IMPORTANT: When starting the management server with this option in the
configuration file, the use of --initial or --reload on the command line when
invoking ndb_mgmd is also required.
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.)

my.cnf
example additions to my.cnf for NDB Cluster
(works on all versions)

enable ndbcluster storage engine, and provide connection string for management
server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the NDBCLUSTER and ndb-
connectstring parameters in the [mysqld] in the my.cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE statements
without having actually started the cluster. Otherwise, these statements fail with an
error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be read
and used by all executables:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see Section 4.3.9.2, “NDB Cluster System
Variables”.

The NDB Cluster global configuration file is by convention named config.ini (but this is not required).
If needed, it is read by ndb_mgmd at startup and can be placed in any location that can be read by it. The
location and name of the configuration are specified using --config-file=path_name with ndb_mgmd
on the command line. This option has no default value, and is ignored if ndb_mgmd uses the configuration
cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded by
section headings (surrounded by square brackets), followed by the appropriate parameter names and
values. One deviation from the standard INI format is that the parameter name and value can be separated
by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another deviation is that
sections are not uniquely identified by section name. Instead, unique sections (such as two different nodes
of the same type) are identified by a unique ID specified as a parameter within the section.

143

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Configuration: Basic Example

Default values are defined for most parameters, and can also be specified in config.ini. To create a
default value section, simply add the word default to the section name. For example, an [ndbd] section
contains parameters that apply to a particular data node, whereas an [ndbd default] section contains
parameters that apply to all data nodes. Suppose that all data nodes should use the same data memory
size. To configure them all, create an [ndbd default] section that contains a DataMemory line to
specify the data memory size.

If used, the [ndbd default] section must precede any [ndbd] sections in the configuration file. This is
also true for default sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for
NoOfReplicas, which always had to be specified explicitly in the [ndbd
default] section. Although this parameter now has a default value of 2, which is
the recommended setting in most common usage scenarios, it is still recommended
practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes
This file is placed in the startup directory of ndb_mgmd (the
management server)
The first MySQL Server can be started from any host. The second
can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Note

The preceding example is intended as a minimal starting configuration for purposes
of familiarization with NDB Cluster , and is almost certain not to be sufficient for
production settings. See Section 4.3.2, “Recommended Starting Configuration for
NDB Cluster”, which provides a more complete example starting configuration.

Each node has its own section in the config.ini file. For example, this cluster has two data nodes, so
the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the config.ini
file; this causes the management server not to start because it cannot parse the
configuration file in such cases.

144

Recommended Starting Configuration for NDB Cluster

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in the
following list:

• [computer]: Defines cluster hosts. This is not required to configure a viable NDB Cluster, but be may
used as a convenience when setting up a large cluster. See Section 4.3.4, “Defining Computers in an
NDB Cluster”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 4.3.6, “Defining NDB Cluster Data
Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion
of SQL node configuration, see Section 4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information concerning
the configuration of management nodes, see Section 4.3.5, “Defining an NDB Cluster Management
Server”.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default transport
protocol. Normally, [tcp] or [tcp default] sections are not required to set up an NDB Cluster,
as the cluster handles this automatically; however, it may be necessary in some situations to override
the defaults provided by the cluster. See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for
information about available TCP/IP configuration parameters and how to use them. (You may also find
Section 4.3.11, “NDB Cluster TCP/IP Connections Using Direct Connections” to be of interest in some
cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 8.0, it is enabled by default,
but should still be considered experimental. For a discussion of SHM interconnects, see Section 4.3.12,
“NDB Cluster Shared-Memory Connections”.

• [sci]: Defines Scalable Coherent Interface connections between cluster data nodes. Not supported in
NDB 8.0.

You can define default values for each section. If used, a default section should come before any
other sections of that type. For example, an [ndbd default] section should appear in the configuration
file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server my.cnf or my.ini
files.

4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

• NDB Cluster software version

• Numbers of data nodes and SQL nodes

• Hardware

• Operating system

• Amount of data to be stored

• Size and type of load under which the cluster is to operate

145

Recommended Starting Configuration for NDB Cluster

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which can
vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are also likely to
be indicated when changes are made in the platform on which the cluster is run, or in applications that use
the NDB Cluster 's data. For these reasons, it is not possible to offer a single configuration that is ideal for
all usage scenarios. However, in this section, we provide a recommended base configuration.

Starting config.ini file. The following config.ini file is a recommended starting point for configuring
a cluster running NDB Cluster 8.0:

TCP PARAMETERS

[tcp default]
SendBufferMemory=2M
ReceiveBufferMemory=2M

Increasing the sizes of these 2 buffers beyond the default values
helps prevent bottlenecks due to slow disk I/O.

MANAGEMENT NODE PARAMETERS

[ndb_mgmd default]
DataDir=path/to/management/server/data/directory

It is possible to use a different data directory for each management
server, but for ease of administration it is preferable to be
consistent.

[ndb_mgmd]
HostName=management-server-A-hostname
NodeId=management-server-A-nodeid

[ndb_mgmd]
HostName=management-server-B-hostname
NodeId=management-server-B-nodeid

Using 2 management servers helps guarantee that there is always an
arbitrator in the event of network partitioning, and so is
recommended for high availability. Each management server must be
identified by a HostName. You may for the sake of convenience specify
a NodeId for any management server, although one is allocated
for it automatically; if you do so, it must be in the range 1-255
inclusive and must be unique among all IDs specified for cluster
nodes.

DATA NODE PARAMETERS

[ndbd default]
NoOfReplicas=2

Using two fragment replicas is recommended to guarantee availability of data;
using only one fragment replica does not provide any redundancy, which means
that the failure of a single data node causes the entire cluster to shut down.
It is also possible (but not required) in NDB 8.0 to use more than two
fragment replicas, although two fragment replicas are sufficient to provide
high availability.

LockPagesInMainMemory=1

On Linux and Solaris systems, setting this parameter locks data node
processes into memory. Doing so prevents them from swapping to disk,
which can severely degrade cluster performance.

DataMemory=3456M

The value provided for DataMemory assumes 4 GB RAM
per data node. However, for best results, you should first calculate

146

Recommended Starting Configuration for NDB Cluster

the memory that would be used based on the data you actually plan to
store (you may find the ndb_size.pl utility helpful in estimating
this), then allow an extra 20% over the calculated values. Naturally,
you should ensure that each data node host has at least as much
physical memory as the sum of these two values.

ODirect=1

Enabling this parameter causes NDBCLUSTER to try using O_DIRECT
writes for local checkpoints and redo logs; this can reduce load on
CPUs. We recommend doing so when using NDB Cluster on systems running
Linux kernel 2.6 or later.

NoOfFragmentLogFiles=300
DataDir=path/to/data/node/data/directory
MaxNoOfConcurrentOperations=100000

SchedulerSpinTimer=400
SchedulerExecutionTimer=100
RealTimeScheduler=1
Setting these parameters allows you to take advantage of real-time scheduling
of NDB threads to achieve increased throughput when using ndbd. They
are not needed when using ndbmtd; in particular, you should not set
RealTimeScheduler for ndbmtd data nodes.

TimeBetweenGlobalCheckpoints=1000
TimeBetweenEpochs=200
RedoBuffer=32M

CompressedLCP=1
CompressedBackup=1
Enabling CompressedLCP and CompressedBackup causes, respectively, local
checkpoint files and backup files to be compressed, which can result in a space
savings of up to 50% over noncompressed LCPs and backups.

MaxNoOfLocalScans=64
MaxNoOfTables=1024
MaxNoOfOrderedIndexes=256

[ndbd]
HostName=data-node-A-hostname
NodeId=data-node-A-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0
On systems with multiple CPUs, these parameters can be used to lock NDBCLUSTER
threads to specific CPUs

[ndbd]
HostName=data-node-B-hostname
NodeId=data-node-B-nodeid

LockExecuteThreadToCPU=1
LockMaintThreadsToCPU=0

You must have an [ndbd] section for every data node in the cluster;
each of these sections must include a HostName. Each section may
optionally include a NodeId for convenience, but in most cases, it is
sufficient to allow the cluster to allocate node IDs dynamically. If
you do specify the node ID for a data node, it must be in the range 1
to 144 inclusive and must be unique among all IDs specified for
cluster nodes.

SQL NODE / API NODE PARAMETERS

[mysqld]
HostName=sql-node-A-hostname

147

NDB Cluster Connection Strings

NodeId=sql-node-A-nodeid

[mysqld]

[mysqld]

Each API or SQL node that connects to the cluster requires a [mysqld]
or [api] section of its own. Each such section defines a connection
“slot”; you should have at least as many of these sections in the
config.ini file as the total number of API nodes and SQL nodes that
you wish to have connected to the cluster at any given time. There is
no performance or other penalty for having extra slots available in
case you find later that you want or need more API or SQL nodes to
connect to the cluster at the same time.
If no HostName is specified for a given [mysqld] or [api] section,
then any API or SQL node may use that slot to connect to the
cluster. You may wish to use an explicit HostName for one connection slot
to guarantee that an API or SQL node from that host can always
connect to the cluster. If you wish to prevent API or SQL nodes from
connecting from other than a desired host or hosts, then use a
HostName for every [mysqld] or [api] section in the config.ini file.
You can if you wish define a node ID (NodeId parameter) for any API or
SQL node, but this is not necessary; if you do so, it must be in the
range 1 to 255 inclusive and must be unique among all IDs specified
for cluster nodes.

Required my.cnf options for SQL nodes. MySQL servers acting as NDB Cluster SQL nodes must
always be started with the --ndbcluster and --ndb-connectstring options, either on the command
line or in my.cnf.

4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_mgmd), each node that is part of an NDB
Cluster requires a connection string that points to the management server's location. This connection
string is used in establishing a connection to the management server as well as in performing other tasks
depending on the node's role in the cluster. The syntax for a connection string is as follows:

[nodeid=node_id,]host-definition[, host-definition[, ...]]

host-definition:
 host_name[:port_number]

node_id is an integer greater than or equal to 1 which identifies a node in config.ini. host_name is
a string representing a valid Internet host name or IP address. port_number is an integer referring to a
TCP/IP port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,198.51.100.3:1200"
example 2 (short): "myhost1"

localhost:1186 is used as the default connection string value if none is provided. If port_num is
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers. An
NDB Cluster data or API node attempts to contact successive management servers on each host in the
order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes having
multiple network interfaces for connecting to management servers. A bind address consists of a hostname

148

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Defining Computers in an NDB Cluster

or network address and an optional port number. This enhanced syntax for connection strings is shown
here:

[nodeid=node_id,]
 [bind-address=host-definition,]
 host-definition[; bind-address=host-definition]
 host-definition[; bind-address=host-definition]
 [, ...]]

host-definition:
 host_name[:port_number]

If a single bind address is used in the connection string prior to specifying any management hosts,
then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection string
causes the node to use 198.51.100.242 regardless of the management server to which it connects:

bind-address=198.51.100.242, poseidon:1186, perch:1186

If a bind address is specified following a management host definition, then it is used only for connecting to
that management node. Consider the following connection string:

poseidon:1186;bind-address=localhost, perch:1186;bind-address=198.51.100.242

In this case, the node uses localhost to connect to the management server running on the host named
poseidon and 198.51.100.242 to connect to the management server running on the host named
perch.

You can specify a default bind address and then override this default for one or more specific management
hosts. In the following example, localhost is used for connecting to the management server running on
host poseidon; since 198.51.100.242 is specified first (before any management server definitions), it
is the default bind address and so is used for connecting to the management servers on hosts perch and
orca:

bind-address=198.51.100.242,poseidon:1186;bind-address=localhost,perch:1186,orca:2200

There are a number of different ways to specify the connection string:

• Each executable has its own command-line option which enables specifying the management server at
startup. (See the documentation for the respective executable.)

• It is also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb.cfg and place this file in
the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my.cnf file for each executable.

4.3.4 Defining Computers in an NDB Cluster

149

Defining an NDB Cluster Management Server

The [computer] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

• Id

Version (or later) NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type IS (NDB 8.0.13)

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management, API, or
data node. Unlike the case with node IDs, you cannot use NodeId in place of Id
in the [computer] section of the config.ini file.

• HostName

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

This is the computer's hostname or IP address.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.1 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.5 Defining an NDB Cluster Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an [ndb_mgmd
default] section. [mgm] and [mgm default] are older aliases for these, supported for backward
compatibility.

150

Defining an NDB Cluster Management Server

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present, the
default value localhost is assumed for both.

• Id

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 8.0.13)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 145. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 144.

The use of the Id parameter for identifying management nodes is deprecated in favor of NodeId.
Although Id continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

• NodeId

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 8.0.13)

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 145. If you plan to deploy a large number of
data nodes, it is a good idea to limit the node IDs for management nodes (and
API nodes) to values greater than 144.

NodeId is the preferred parameter name to use when identifying management nodes. Although the
older Id continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used; it is also subject to removal in a future NDB Cluster release.

• ExecuteOnComputer 151

Defining an NDB Cluster Management Server

Version (or later) NDB 8.0.13

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB 7.5)

Restart Type S (NDB 8.0.13)

This refers to the Id set for one of the computers defined in a [computer] section of the config.ini
file.

Important

This parameter is deprecated, and is subject to removal in a future release. Use
the HostName parameter instead.

• PortNumber

Version (or later) NDB 8.0.13

Type or units unsigned

Default 1186

Range 0 - 64K

Restart Type S (NDB 8.0.13)

This is the port number on which the management server listens for configuration requests and
management commands.

•

The node ID for this node can be given out only to connections that explicitly request it. A management
server that requests “any” node ID cannot use this one. This parameter can be used when running
multiple management servers on the same host, and HostName is not sufficient for distinguishing among
processes. Intended for use in testing.

• HostName

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the management node is to
reside. To specify a hostname other than localhost, either this parameter or ExecuteOnComputer is
required.

• LocationDomainId

Version (or later) NDB 8.0.13

Type or units integer

152

Defining an NDB Cluster Management Server

Default 0

Range 0 - 16

Restart Type S (NDB 8.0.13)

Assigns a management node to a specific availability domain (also known as an availability zone) within
a cloud. By informing NDB which nodes are in which availability domains, performance can be improved
in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

• LogDestination

Version (or later) NDB 8.0.13

Type or units {CONSOLE|SYSLOG|FILE}

Default FILE: filename=ndb_nodeid_cluster.log,
maxsize=1000000, maxfiles=6

Range ...

153

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

Defining an NDB Cluster Management Server

Restart Type N (NDB 8.0.13)

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSOLE, SYSLOG, and FILE—with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv, cron,
daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1, local2, local3,
local4, local5, local6, or local7.

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values can be
specified:

• filename: The name of the log file.

The default log file name used in such cases is ndb_nodeid_cluster.log.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a new
file. When this occurs, the old log file is renamed by appending .N to the file name, where N is the
next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where
node_id is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

• ArbitrationRank

Version (or later) NDB 8.0.13

Type or units 0-2

Default 1

Range 0 - 2

Restart Type N (NDB 8.0.13)

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL
nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node is never used as an arbitrator.

• 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

154

Defining an NDB Cluster Management Server

• 2: Indicates a low-priority node which is used as an arbitrator only if a node with a higher priority is not
available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its
ArbitrationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting ArbitrationRank to 0 on all management
and SQL nodes, or by setting the Arbitration parameter in the [ndbd default] section
of the config.ini global configuration file. Setting Arbitration causes any settings for
ArbitrationRank to be disregarded.

• ArbitrationDelay

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

An integer value which causes the management server's responses to arbitration requests to be delayed
by that number of milliseconds. By default, this value is 0; it is normally not necessary to change it.

• DataDir

Version (or later) NDB 8.0.13

Type or units path

Default .

Range ...

Restart Type N (NDB 8.0.13)

This specifies the directory where output files from the management server are placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,
this location can be overridden by setting the FILE parameter for LogDestination, as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

• PortNumberStats

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 0 - 64K

Restart Type N (NDB 8.0.13)

This parameter specifies the port number used to obtain statistical information from an NDB Cluster
management server. It has no default value.

• Wan

155

Defining an NDB Cluster Management Server

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

Use WAN TCP setting as default.

• HeartbeatThreadPriority

Version (or later) NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

Set the scheduling policy and priority of heartbeat threads for management and API nodes.

The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

• ExtraSendBufferMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 0 - 32G

Restart Type N (NDB 8.0.13)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using TotalSendBufferMemory, SendBufferMemory, or both.

• TotalSendBufferMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 256K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

156

Defining NDB Cluster Data Nodes

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.14, “Configuring NDB Cluster Send Buffer
Parameters”.

• HeartbeatIntervalMgmdMgmd

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the
connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait for
approximately 1600 ms before timing out.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.2 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd default] sections are used to configure the behavior of the cluster's data
nodes.

[ndbd] and [ndbd default] are always used as the section names whether you are using ndbd or
ndbmtd binaries for the data node processes.

157

Defining NDB Cluster Data Nodes

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is either one of ExecuteOnComputer or HostName; this must be defined in the
local [ndbd] section.

The parameter NoOfReplicas should be defined in the [ndbd default] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOfReplicas, but it is good practice to set it
explicitly.

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, HostName, NodeId and ExecuteOnComputer must be defined in the local [ndbd] section, and
not in any other section of config.ini. In other words, settings for these parameters are specific to one
data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix
to indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.)

Parameter names and values are case-insensitive, unless used in a MySQL Server my.cnf or my.ini
file, in which case they are case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later in
this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbmtd (the multithreaded version of ndbd). Three additional
data node configuration parameters—MaxNoOfExecutionThreads, ThreadConfig, and
NoOfFragmentLogParts—apply to ndbmtd only; these have no effect when used with ndbd. For more
information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 5.3, “ndbmtd —
The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes. The NodeId or Id value (that is, the data node identifier) can be allocated on
the command line when the node is started or in the configuration file.

• NodeId

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 48

Version (or later) NDB 8.0.18

Type or units unsigned

Default [...]

Range 1 - 144

Restart Type IS (NDB 8.0.13)

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 144 inclusive. Each node in the cluster must have a unique identifier.

NodeId is the only supported parameter name to use when identifying data nodes.

• ExecuteOnComputer

Version (or later) NDB 8.0.13

158

Defining NDB Cluster Data Nodes

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB 7.5)

Restart Type S (NDB 8.0.13)

This refers to the Id set for one of the computers defined in a [computer] section.

Important

This parameter is deprecated, and is subject to removal in a future release. Use
the HostName parameter instead.

•

The node ID for this node can be given out only to connections that explicitly request it. A management
server that requests “any” node ID cannot use this one. This parameter can be used when running
multiple management servers on the same host, and HostName is not sufficient for distinguishing among
processes. Intended for use in testing.

• HostName

Version (or later) NDB 8.0.13

Type or units name or IP address

Default localhost

Range ...

Restart Type N (NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the data node is to reside. To
specify a hostname other than localhost, either this parameter or ExecuteOnComputer is required.

• ServerPort

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 64K

Restart Type S (NDB 8.0.13)

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the same
port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd

159

Defining NDB Cluster Data Nodes

default] section of the config.ini file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_mgmd management port (the management server's PortNumber) so
outgoing connections to that port from any data nodes should always be
permitted.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• NodeGroup

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 0 - 65536

Restart Type IS (NDB 8.0.13)

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd default] section of the
config.ini file, and care must be taken not to assign nodes to node groups in such a way that an
invalid numbers of nodes are assigned to any node groups.

The NodeGroup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeGroup value for all cluster data nodes, only for
those nodes which are to be started and added to the cluster as a new node group at a later time. For
more information, see Section 6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

• LocationDomainId

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 16

Restart Type S (NDB 8.0.13)

Assigns a data node to a specific availability domain (also known as an availability zone) within a cloud.
By informing NDB which nodes are in which availability domains, performance can be improved in a
cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

160

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

Defining NDB Cluster Data Nodes

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

• NoOfReplicas

Version (or later) NDB 8.0.13

Type or units integer

Default 2

Range 1 - 2

Version (or later) NDB 8.0.19

Type or units integer

Default 2

Range 1 - 4

Restart Type IS (NDB 8.0.13)

This global parameter can be set only in the [ndbd default] section, and defines the number of
fragment replicas for each table stored in the cluster. This parameter also specifies the size of node
groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way of
example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data nodes
have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the second
node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the
same node groups are not placed on the same computer because a single hardware failure would cause
the entire cluster to fail.

If no node IDs are provided, the order of the data nodes is the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client's SHOW command.

The default value for NoOfReplicas is 2. This is the recommended value for most production
environments. In NDB 8.0, setting this parameter's value to 3 or 4 is fully tested and supported in
production.

Warning

Setting NoOfReplicas to 1 means that there is only a single copy of all Cluster
data; in this case, the loss of a single data node causes the cluster to fail because
there are no additional copies of the data stored by that node.

The number of data nodes in the cluster must be evenly divisible by the value of this parameter. For
example, if there are two data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3 and

161

Defining NDB Cluster Data Nodes

2/4 both yield fractional values; if there are four data nodes, then NoOfReplicas must be equal to 1, 2,
or 4.

• DataDir

Version (or later) NDB 8.0.13

Type or units path

Default .

Range ...

Restart Type IN (NDB 8.0.13)

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

• FileSystemPath

Version (or later) NDB 8.0.13

Type or units path

Default DataDir

Range ...

Restart Type IN (NDB 8.0.13)

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs (for
Disk Data tables), and data files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for NDB Cluster includes /var/lib/mysql-cluster, under
which a directory for the node's file system is created. The name of this subdirectory contains the node
ID. For example, if the node ID is 2, this subdirectory is named ndb_2_fs.

• BackupDataDir

Version (or later) NDB 8.0.13

Type or units path

Default FileSystemPath

Range ...

Restart Type IN (NDB 8.0.13)

This parameter specifies the directory in which backups are placed.

Important

The string '/BACKUP' is always appended to this value. For example, if you set
the value of BackupDataDir to /var/lib/cluster-data, then all backups
are stored under /var/lib/cluster-data/BACKUP. This also means that
the effective default backup location is the directory named BACKUP under the
location specified by the FileSystemPath parameter.

162

Defining NDB Cluster Data Nodes

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [ndbd] parameters specifying the size of memory segments used
to store the actual records and their indexes. In setting values for these, it is important to understand how
DataMemory is used, as it usually needs to be updated to reflect actual usage by the cluster.

Note

IndexMemory is deprecated, and subject to removal in a future version of NDB
Cluster. See the descriptions that follow for further information.

• DataMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 98M

Range 1M - 1T

Version (or later) NDB 8.0.19

Type or units bytes

Default 98M

Range 1M - 16T

Restart Type N (NDB 8.0.13)

This parameter defines the amount of space (in bytes) available for storing database records. The entire
amount specified by this value is allocated in memory, so it is extremely important that the machine has
sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. There is a
16-byte overhead on each record; an additional amount for each record is incurred because it is stored
in a 32KB page with 128 byte page overhead (see below). There is also a small amount wasted per
page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
DataMemory. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per attribute.

In NDB 8.0, the maximum record size is 30000 bytes.

Resources assigned to DataMemory are used for storing all data and indexes. (Any memory configured
as IndexMemory is automatically added to that used by DataMemory to form a common resource
pool.)

Currently, NDB Cluster can use a maximum of 512 MB for hash indexes per partition, which means
in some cases it is possible to get Table is full errors in MySQL client applications even when
ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. This can also pose
a problem with data node restarts on nodes that are heavily loaded with data.

You can control the number of partitions per local data manager for a given table by setting
the NDB_TABLE option PARTITION_BALANCE to one of the values FOR_RA_BY_LDM,
FOR_RA_BY_LDM_X_2, FOR_RA_BY_LDM_X_3, or FOR_RA_BY_LDM_X_4, for 1, 2, 3, or 4 partitions per
LDM, respectively, when creating the table (see Setting NDB Comment Options).

163

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

Defining NDB Cluster Data Nodes

Note

In previous versions of NDB Cluster it was possible to create extra partitions
for NDB Cluster tables and thus have more memory available for hash indexes
by using the MAX_ROWS option for CREATE TABLE. While still supported for
backward compatibility, using MAX_ROWS for this purpose is deprecated; you
should use PARTITION_BALANCE instead.

You can also use the MinFreePct configuration parameter to help avoid problems with node restarts.

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOfReplicas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except
by deleting the table. (This also means that DataMemory pages, once allocated to a given table, cannot
be used by other tables.) Performing a data node recovery also compresses the partition because all
records are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the DataMemory. There is also a reference to each copy in the ordered
table indexes. Unique hash indexes are updated only when the unique index columns are updated, in
which case a new entry in the index table is inserted and the old entry is deleted upon commit. For this
reason, it is also necessary to allocate enough memory to handle the largest transactions performed by
applications using the cluster. In any case, performing a few large transactions holds no advantage over
using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event of
transaction failure

• Large transactions use more memory

The default value for DataMemory in NDB 8.0 is 98MB. The minimum value is 1MB. There is no
maximum size, but in reality the maximum size has to be adapted so that the process does not start
swapping when the limit is reached. This limit is determined by the amount of physical RAM available on
the machine and by the amount of memory that the operating system may commit to any one process.
32-bit operating systems are generally limited to 2−4GB per process; 64-bit operating systems can use
more. For large databases, it may be preferable to use a 64-bit operating system for this reason.

• IndexMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 1M - 1T

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

The IndexMemory parameter is deprecated (and subject to future removal); any memory assigned to
IndexMemory is allocated instead to the same pool as DataMemory, which is solely responsible for all

164

https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Defining NDB Cluster Data Nodes

resources needed for storing data and indexes in memory. In NDB 8.0, the use of IndexMemory in the
cluster configuration file triggers a warning from the management server.

You can estimate the size of a hash index using this formula:

 size = ((fragments * 32K) + (rows * 18))
 * fragment_replicas

fragments is the number of fragments, fragment_replicas is the number of fragment replicas
(normally 2), and rows is the number of rows. If a table has one million rows, eight fragments, and two
fragment replicas, the expected index memory usage is calculated as shown here:

 ((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
 = (262144 + 18000000) * 2
 = 18262144 * 2 = 36524288 bytes = ~35MB

Index statistics for ordered indexes (when these are enabled) are stored in the
mysql.ndb_index_stat_sample table. Since this table has a hash index, this adds to index memory
usage. An upper bound to the number of rows for a given ordered index can be calculated as follows:

 sample_size= key_size + ((key_attributes + 1) * 4)

 sample_rows = IndexStatSaveSize
 * ((0.01 * IndexStatSaveScale * log2(rows * sample_size)) + 1)
 / sample_size

In the preceding formula, key_size is the size of the ordered index key in bytes, key_attributes is
the number ot attributes in the ordered index key, and rows is the number of rows in the base table.

Assume that table t1 has 1 million rows and an ordered index named ix1 on two four-byte integers.
Assume in addition that IndexStatSaveSize and IndexStatSaveScale are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

 sample_size = 8 + ((1 + 2) * 4) = 20 bytes

 sample_rows = 32K
 * ((0.01 * 100 * log2(1000000*20)) + 1)
 / 20
 = 32768 * ((1 * ~16.811) +1) / 20
 = 32768 * ~17.811 / 20
 = ~29182 rows

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 bytes.

In NDB 8.0, the minimum and default vaue for this parameter is 0 (zero).

• StringMemory

Version (or later) NDB 8.0.13

Type or units % or bytes

Default 25

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type S (NDB 8.0.13)

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [ndbd] or [ndbd default] section of the config.ini file. A value between 0 and
100 inclusive is interpreted as a percent of the maximum default value, which is calculated based on

165

Defining NDB Cluster Data Nodes

a number of factors including the number of tables, maximum table name size, maximum size of .FRM
files, MaxNoOfTriggers, maximum column name size, and maximum default column value.

A value greater than 100 is interpreted as a number of bytes.

The default value is 25—that is, 25 percent of the default maximum.

Under most circumstances, the default value should be sufficient, but when you have a great many NDB
tables (1000 or more), it is possible to get Error 773 Out of string memory, please modify
StringMemory config parameter: Permanent error: Schema error, in which case you
should increase this value. 25 (25 percent) is not excessive, and should prevent this error from recurring
in all but the most extreme conditions.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL,
 PRIMARY KEY(a),
 UNIQUE(b)
) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10
bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per
record. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the example table as well
8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary
key and the unique constraint. We also need 64MB for the records of the base table and the unique index
table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

Currently, the only partitioning algorithm is hashing and ordered indexes are local to each node. Thus,
ordered indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the sum of
all data memory and all index memory for each node group. Each node group is used to store replicated
information, so if there are four nodes with two fragment replicas, there are two node groups. Thus, the
total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all nodes.
Data distribution is even over all nodes in the cluster, so the maximum amount of space available for any
node can be no greater than that of the smallest node in the cluster.

DataMemory can be changed, but decreasing it can be risky; doing so can easily lead to a node or even
an entire NDB Cluster that is unable to restart due to there being insufficient memory space. Increasing
these values should be acceptable, but it is recommended that such upgrades are performed in the same
manner as a software upgrade, beginning with an update of the configuration file, and then restarting the
management server followed by restarting each data node in turn.

MinFreePct. A proportion (5% by default) of data node resources including DataMemory is kept in
reserve to insure that the data node does not exhaust its memory when performing a restart. This can be
adjusted using the MinFreePct data node configuration parameter (default 5).

166

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units unsigned

Default 5

Range 0 - 100

Restart Type N (NDB 8.0.13)

Updates do not increase the amount of index memory used. Inserts take effect immediately; however, rows
are not actually deleted until the transaction is committed.

Transaction parameters. The next few [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the
system. MaxNoOfConcurrentTransactions sets the number of parallel transactions possible in a
node. MaxNoOfConcurrentOperations sets the number of records that can be in update phase or
locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

MaxDMLOperationsPerTransaction sets the maximum number of DML operations that can be
performed in a given transaction.

• MaxNoOfConcurrentTransactions

Version (or later) NDB 8.0.13

Type or units integer

Default 4096

Range 32 - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

Each cluster data node requires a transaction record for each active transaction in the cluster. The task
of coordinating transactions is distributed among all of the data nodes. The total number of transaction
records in the cluster is the number of transactions in any given node times the number of nodes in the
cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by that
connection. This means that a reasonable minimum for the total number of transactions in the cluster
can be expressed as

TotalNoOfConcurrentTransactions =
 (maximum number of tables accessed in any single transaction + 1)
 * number of SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires 11
transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction records
are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction records total. Each
data node can be expected to handle TotalNoOfConcurrentTransactions / number of data nodes. For
an NDB Cluster having 4 data nodes, this would mean setting MaxNoOfConcurrentTransactions
on each data node to 1100 / 4 = 275. In addition, you should provide for failure recovery by ensuring
that a single node group can accommodate all concurrent transactions; in other words, that each

167

Defining NDB Cluster Data Nodes

data node's MaxNoOfConcurrentTransactions is sufficient to cover a number of transactions equal to
TotalNoOfConcurrentTransactions / number of node groups. If this cluster has a single node group,
then MaxNoOfConcurrentTransactions should be set to 1100 (the same as the total number of
concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOfConcurrentTransactions should always be no more than the value of
MaxNoOfConcurrentOperations.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions that
were ongoing in the failed node.

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must be
such that no more transactions occur than the lower of the old and new levels while this is taking place.

The default value is 4096.

• MaxNoOfConcurrentOperations

Version (or later) NDB 8.0.13

Type or units integer

Default 32K

Range 32 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

It is a good idea to adjust the value of this parameter according to the size and number of transactions.
When performing transactions which involve only a few operations and records, the default value for this
parameter is usually sufficient. Performing large transactions involving many records usually requires
that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously in
transactions, divided by the number of cluster data nodes. For example, in a cluster which has four data
nodes and which is expected to handle one million concurrent updates using transactions, you should
set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is suggested that
you set this parameter to a value that is high enough to permit an individual data node to handle the load
for its node group. In other words, you should set the value equal to total number of concurrent

168

Defining NDB Cluster Data Nodes

operations / number of node groups. (In the case where there is a single node group, this is
the same as the total number of concurrent operations for the entire cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoOfConcurrentOperations should always be greater than or equal to the value of
MaxNoOfConcurrentTransactions.

Read queries which set locks also cause operation records to be created. Some extra space is allocated
within individual nodes to accommodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second handles
the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in the
transaction coordinator as there are reads, updates, and deletes involved in the transaction. However,
the operation records of the are spread over all eight nodes. Thus, if it is necessary to configure
the system for one very large transaction, it is a good idea to configure the two parts separately.
MaxNoOfConcurrentOperations is always used to calculate the number of operation records in the
transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume
about 1KB per record.

• MaxNoOfLocalOperations

Version (or later) NDB 8.0.13

Type or units integer

Default UNDEFINED

Range 32 - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits systems
with many simultaneous transactions, none of them being very large. If there is a need to handle one
very large transaction at a time and there are many nodes, it is a good idea to override the default value
by explicitly specifying this parameter.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• MaxDMLOperationsPerTransaction

Version (or later) NDB 8.0.13

Type or units operations (DML) 169

Defining NDB Cluster Data Nodes

Default 4294967295

Range 32 - 4294967295

Restart Type N (NDB 8.0.13)

This parameter limits the size of a transaction. The transaction is aborted if it requires more than this
many DML operations. The minimum number of operations per transaction is 32; however, you can set
MaxDMLOperationsPerTransaction to 0 to disable any limitation on the number of DML operations
per transaction. The maximum (and default) is 4294967295.

The value of this parameter cannot exceed that set for MaxNoOfConcurrentOperations.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary
storage when executing a statement that is part of a Cluster transaction. All records are released when the
statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values
to enable better parallelism in the system, whereas users whose applications require relatively small
transactions can decrease the values to save memory.

• MaxNoOfConcurrentIndexOperations

Version (or later) NDB 8.0.13

Type or units integer

Default 8K

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

For queries using a unique hash index, another temporary set of operation records is used during
a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible and
can save memory if the DBA is certain that a high degree of parallelism is not required for the cluster.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• MaxNoOfFiredTriggers

Version (or later) NDB 8.0.13

Type or units integer

Default 4000

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.19

170

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In some
cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is short-
lived but can still require a large number of records in its pool for situations with many parallel write
operations on a base table containing a set of unique hash indexes.

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• TransactionBufferMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 1M

Range 1K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

The memory affected by this parameter is used for tracking operations fired when updating index tables
and reading unique indexes. This memory is used to store the key and column information for these
operations. It is only very rarely that the value for this parameter needs to be altered from the default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF_FILESIZE (found in ndb/src/kernel/blocks/Dbtc/
Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer for key information, ZDATABUF_FILESIZE
(also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is the module that handles
transaction coordination.

Transaction resource allocation parameters. The parameters in the following list are used to allocate
transaction resources in the transaction coordinator (DBTC). Leaving any one of these set to the default
(0) dedicates transaction memory for 25% of estimated total data node usage for the corresponding
resource. The actual maximum possible values for these parameters are typically limited by the amount of
memory available to the data node; setting them has no impact on the total amount of memory allocated
to the data node. In addition, you should keep in mind that they control numbers of reserved internal
records for the data node independent of any settings for MaxDMLOperationsPerTransaction,
MaxNoOfConcurrentIndexOperations, MaxNoOfConcurrentOperations,
MaxNoOfConcurrentScans, MaxNoOfConcurrentTransactions, MaxNoOfFiredTriggers,
MaxNoOfLocalScans, or TransactionBufferMemory (see Transaction parameters and Transaction
temporary storage).

• ReservedConcurrentIndexOperations

Version (or later) NDB 8.0.16

Type or units numeric

171

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

Defining NDB Cluster Data Nodes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous index operations having dedicated resources on one data node.

• ReservedConcurrentOperations

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous operations having dedicated resources in transaction coordinators on one data
node.

• ReservedConcurrentScans

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous scans having dedicated resources on one data node.

• ReservedConcurrentTransactions

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous transactions having dedicated resources on one data node.

• ReservedFiredTriggers

Version (or later) NDB 8.0.16

Type or units numeric

Default 0172

Defining NDB Cluster Data Nodes

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of triggers that have dedicated resources on one ndbd(DB) node.

• ReservedLocalScans

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Number of simultaneous fragment scans having dedicated resources on one data node.

• ReservedTransactionBufferMemory

Version (or later) NDB 8.0.16

Type or units numeric

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Added NDB 8.0.16

Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

Dynamic buffer space (in bytes) for key and attribute data allocated to each data node.

• TransactionMemory

Version (or later) NDB 8.0.19

Type or units bytes

Default 0

Range 0 - 16384G

Added NDB 8.0.19

Restart Type N (NDB 8.0.13)

This parameter determines the memory (in bytes) allocated for transactions on each data node. Setting
of transaction memory can be handled in any one of the three ways listed here:

• A number of configuration parameters are incompatible with TransactionMemory. If any of these
are set, transaction memory is calculated as it was previous to NDB 8.0. You should be aware
that it is not possible to set any of these parameters concurrently with TransactionMemory; if
you attempt to do so, the management server is unable to start (see Parameters incompatible with
TransactionMemory).

• If TransactionMemory is set, this value is used for determining transaction memory.

173

Defining NDB Cluster Data Nodes

• If neither any incompatible parameters are set nor TransactionMemory is set, transaction memory
is set by NDB to 10% of the value of the DataMemory configuration parameter.

Parameters incompatible with TransactionMemory. The following parameters cannot be used
concurrently with TransactionMemory and are deprecated in NDB 8.0:

• MaxNoOfConcurrentIndexOperations

• MaxNoOfFiredTriggers

• MaxNoOfLocalOperations

• MaxNoOfLocalScans

Explicitly setting any of the parameters just listed when TransactionMemory has also been set in the
cluster configuration file (config.ini) keeps the management node from starting.

For more information regarding resource allocation in NDB Cluster data nodes, see Section 4.3.13,
“Data Node Memory Management”.

Scans and buffering. There are additional [ndbd] parameters in the Dblqh module (in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include
ZATTRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

• BatchSizePerLocalScan

Version (or later) NDB 8.0.13

Type or units integer

Default 256

Range 1 - 992

Deprecated NDB 8.0.19

Restart Type N (NDB 8.0.13)

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

BatchSizePerLocalScan has a strong connection to the BatchSize defined in the SQL nodes.

Deprecated in NDB 8.0.

• LongMessageBuffer

Version (or later) NDB 8.0.13

Type or units bytes

Default 64M

Range 512K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

174

Defining NDB Cluster Data Nodes

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB.

This parameter seldom needs to be changed from the default.

• MaxFKBuildBatchSize

Version (or later) NDB 8.0.13

Type or units integer

Default 64

Range 16 - 512

Restart Type N (NDB 8.0.13)

Maximum scan batch size used for building foreign keys. Increasing the value set for this parameter may
speed up building of foreign key builds at the expense of greater impact to ongoing traffic.

• MaxNoOfConcurrentScans

Version (or later) NDB 8.0.13

Type or units integer

Default 256

Range 2 - 500

Restart Type N (NDB 8.0.13)

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter. Each
scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan record
in the node where the partition is located, the number of records being the value of this parameter
times the number of nodes. The cluster should be able to sustain MaxNoOfConcurrentScans scans
concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table scan.
The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on the
local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

• MaxNoOfLocalScans

Version (or later) NDB 8.0.13

Type or units integer

Default 4 * MaxNoOfConcurrentScans * [# of data nodes] +
2

Range 32 - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.19

175

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Specifies the number of local scan records if many scans are not fully parallelized. When the number of
local scan records is not provided, it is calculated as shown here:

4 * MaxNoOfConcurrentScans * [# data nodes] + 2

This parameter is deprecated in NDB 8.0, and is subject to removal in a future NDB Cluster release.
In addition, this parameter is incompatible with the TransactionMemory parameter; if you try to set
values for both parameters in the cluster configuration file (config.ini), the management server
refuses to start.

• MaxParallelCopyInstances

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 64

Restart Type N (NDB 8.0.13)

This parameter sets the parallelization used in the copy phase of a node restart or system restart, when
a node that is currently just starting is synchronised with a node that already has current data by copying
over any changed records from the node that is up to date. Because full parallelism in such cases can
lead to overload situations, MaxParallelCopyInstances provides a means to decrease it. This
parameter's default value 0. This value means that the effective parallelism is equal to the number of
LDM instances in the node just starting as well as the node updating it.

• MaxParallelScansPerFragment

Version (or later) NDB 8.0.13

Type or units bytes

Default 256

Range 1 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

• MaxReorgBuildBatchSize

Version (or later) NDB 8.0.13

Type or units integer

Default 64

Range 16 - 512

Restart Type N (NDB 8.0.13)

Maximum scan batch size used for reorganization of table partitions. Increasing the value set for this
parameter may speed up reorganization at the expense of greater impact to ongoing traffic.

• MaxUIBuildBatchSize

176

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units integer

Default 64

Range 16 - 512

Restart Type N (NDB 8.0.13)

Maximum scan batch size used for building unique keys. Increasing the value set for this parameter may
speed up such builds at the expense of greater impact to ongoing traffic.

Memory Allocation

MaxAllocate

Version (or later) NDB 8.0.13

Type or units unsigned

Default 32M

Range 1M - 1G

Deprecated NDB 8.0.27

Restart Type N (NDB 8.0.13)

This parameter was used in older versions of NDB Cluster, but has no effect in NDB 8.0. It is deprecated
as of NDB 8.0.27, and subject to removal in a future release.

Multiple Transporters

Beginning with version 8.0.20, NDB allocates multiple transporters for communication between pairs of data
nodes. The number of transporters so allocated can be influenced by setting an appropriate value for the
NodeGroupTransporters parameter introduced in that release.

NodeGroupTransporters

Version (or later) NDB 8.0.20

Type or units integer

Default 0

Range 0 - 32

Added NDB 8.0.20

Restart Type N (NDB 8.0.13)

This parameter determines the number of transporters used between nodes in the same node group. The
default value (0) means that the number of transporters used is the same as the number of LDMs in the
node. This should be sufficient for most use cases; thus it should seldom be necessary to change this
value from its default.

Setting NodeGroupTransporters to a number greater than the number of LDM threads or the number
of TC threads, whichever is higher, causes NDB to use the maximum of these two numbers of threads. This
means that a value greater than this is effectively ignored.

Hash Map Size

DefaultHashMapSize

177

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units LDM threads

Default 240

Range 0 - 3840

Restart Type N (NDB 8.0.13)

The original intended use for this parameter was to facilitate upgrades and especially downgrades to and
from very old releases with differing default hash map sizes. This is not an issue when upgrading from
NDB Cluster 7.3 (or later) to later versions.

Decreasing this parameter online after any tables have been created or modified with
DefaultHashMapSize equal to 3840 is not currently supported.

Logging and checkpointing. The following [ndbd] parameters control log and checkpoint behavior.

• FragmentLogFileSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 16M

Range 4M - 1G

Restart Type IN (NDB 8.0.13)

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log files
quickly enough before attempting to open new ones (only 2 fragment log files can be open at one time);
increasing the size of the fragment log files gives the cluster more time before having to open each new
fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOfFragmentLogFiles.

• InitialNoOfOpenFiles

Version (or later) NDB 8.0.13

Type or units files

Default 27

Range 20 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

• InitFragmentLogFiles

Version (or later) NDB 8.0.13

Type or units [see values]

Default SPARSE

178

Defining NDB Cluster Data Nodes

Range SPARSE, FULL

Restart Type IN (NDB 8.0.13)

By default, fragment log files are created sparsely when performing an initial start of a data node—that
is, depending on the operating system and file system in use, not all bytes are necessarily written to
disk. However, it is possible to override this behavior and force all bytes to be written, regardless of the
platform and file system type being used, by means of this parameter. InitFragmentLogFiles takes
either of two values:

• SPARSE. Fragment log files are created sparsely. This is the default value.

• FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting InitFragmentLogFiles=FULL may
help eliminate I/O errors on writes to the REDO log.

• EnablePartialLcp

Version (or later) NDB 8.0.13

Type or units boolean

Default true

Range ...

Restart Type N (NDB 8.0.13)

When true, enable partial local checkpoints: This means that each LCP records only part of the full
database, plus any records containing rows changed since the last LCP; if no rows have changed, the
LCP updates only the LCP control file and does not update any data files.

If EnablePartialLcp is disabled (false), each LCP uses only a single file and writes a full
checkpoint; this requires the least amount of disk space for LCPs, but increases the write load for
each LCP. The default value is enabled (true). The proportion of space used by partial LCPS can be
modified by the setting for the RecoveryWork configuration parameter.

For more information about files and directories used for full and partial LCPs, see NDB Cluster Data
Node File System Directory.

Setting this parameter to false also disables the calculation of disk write speed used by the adaptive
LCP control mechanism.

• LcpScanProgressTimeout

Version (or later) NDB 8.0.13

Type or units second

Default 60

Range 0 - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 8.0.19

Type or units second

Default 180

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

179

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

Defining NDB Cluster Data Nodes

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a given
amount of time has elapsed. This interval can be set using the LcpScanProgressTimeout data node
configuration parameter, which sets the maximum time for which the local checkpoint can be stalled
before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this parameter
to 0 disables the LCP fragment scan watchdog altogether.

• MaxNoOfOpenFiles

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 20 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

• MaxNoOfSavedMessages

Version (or later) NDB 8.0.13

Type or units integer

Default 25

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter sets the maximum number of errors written in the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated when,
for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

• MaxLCPStartDelay

Version (or later) NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 600

Restart Type N (NDB 8.0.13)

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial fashion.
In addition, recovery of dictionary and checkpoint information cannot be executed in parallel with
performing of local checkpoints. This means that, when starting or restarting many data nodes
concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can result in
longer node recovery times.

180

Defining NDB Cluster Data Nodes

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete, all
of the data nodes can recover table data in parallel, even while the local checkpoint is being executed.
To force such a delay, set MaxLCPStartDelay, which determines the number of seconds the cluster
can wait to begin a local checkpoint while data nodes continue to synchronize metadata. This parameter
should be set in the [ndbd default] section of the config.ini file, so that it is the same for all data
nodes. The maximum value is 600; the default is 0.

• NoOfFragmentLogFiles

Version (or later) NDB 8.0.13

Type or units integer

Default 16

Range 3 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 8.0.13)

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated
to REDO logging. Because the REDO log files are organized in a ring, it is extremely important that the
first and last log files in the set (sometimes referred to as the “head” and “tail” log files, respectively)
do not meet. When these approach one another too closely, the node begins aborting all transactions
encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until both required local checkpoints have been completed since
that log record was inserted. Checkpointing frequency is determined by its own set of configuration
parameters discussed elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of 1024MB.
The size of the individual log files is configurable using the FragmentLogFileSize parameter. In
scenarios requiring a great many updates, the value for NoOfFragmentLogFiles may need to be set
as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and
the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted with
internal error code 410 (Out of log file space temporarily). This condition prevails until a
checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using
--initial. If you wish to change this value for all data nodes in a running
cluster, you can do so using a rolling node restart (using --initial when
starting each data node).

• RecoveryWork

Version (or later) NDB 8.0.13

Type or units integer

Default 60

Range 25 - 100

181

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Percentage of storage overhead for LCP files. This parameter has an effect only when
EnablePartialLcp is true, that is, only when partial local checkpoints are enabled. A higher value
means:

• Fewer records are written for each LCP, LCPs use more space

• More work is needed during restarts

A lower value for RecoveryWork means:

• More records are written during each LCP, but LCPs require less space on disk.

• Less work during restart and thus faster restarts, at the expense of more work during normal
operations

For example, setting RecoveryWork to 60 means that the total size of an LCP is roughly 1 + 0.6 =
1.6 times the size of the data to be checkpointed. This means that 60% more work is required during
the restore phase of a restart compared to the work done during a restart that uses full checkpoints.
(This is more than compensated for during other phases of the restart such that the restart as a whole
is still faster when using partial LCPs than when using full LCPs.) In order not to fill up the redo log, it
is necessary to write at 1 + (1 / RecoveryWork) times the rate of data changes during checkpoints—
thus, when RecoveryWork = 60, it is necessary to write at approximately 1 + (1 / 0.6) = 2.67 times the
change rate. In other words, if changes are being written at 10 MByte per second, the checkpoint needs
to be written at roughly 26.7 MByte per second.

Setting RecoveryWork = 40 means that only 1.4 times the total LCP size is needed (and thus the
restore phase takes 10 to 15 percent less time. In this case, the checkpoint write rate is 3.5 times the
rate of change.

The NDB source distribution includes a test program for simulating LCPs. lcp_simulator.cc can be
found in storage/ndb/src/kernel/blocks/backup/. To compile and run it on Unix platforms,
execute the commands shown here:

$> gcc lcp_simulator.cc
$> ./a.out

This program has no dependencies other than stdio.h, and does not require a connection to an NDB
cluster or a MySQL server. By default, it simulates 300 LCPs (three sets of 100 LCPs, each consisting
of inserts, updates, and deletes, in turn), reporting the size of the LCP after each one. You can alter
the simulation by changing the values of recovery_work, insert_work, and delete_work in the
source and recompiling. For more information, see the source of the program.

• InsertRecoveryWork

Version (or later) NDB 8.0.13

Type or units integer

Default 40

Range 0 - 70

Restart Type N (NDB 8.0.13)

Percentage of RecoveryWork used for inserted rows. A higher value increases the number of writes
during a local checkpoint, and decreases the total size of the LCP. A lower value decreases the number

182

Defining NDB Cluster Data Nodes

of writes during an LCP, but results in more space being used for the LCP, which means that recovery
takes longer. This parameter has an effect only when EnablePartialLcp is true, that is, only when
partial local checkpoints are enabled.

• EnableRedoControl

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range ...

Restart Type N (NDB 8.0.13)

Enable adaptive checkpointing speed for controlling redo log usage. Set to false to disable (the
default). Setting EnablePartialLcp to false also disables the adaptive calculation.

When enabled, EnableRedoControl allows the data nodes greater flexibility with regard to the rate at
which they write LCPs to disk. More specifically, enabling this parameter means that higher write rates
can be employed, so that LCPs can complete and Redo logs be trimmed more quickly, thereby reducing
recovery time and disk space requirements. This functionality allows data nodes to make better use
of the higher rate of I/O and greater bandwidth available from modern solid-state storage devices and
protocols, such as solid-state drives (SSDs) using Non-Volatile Memory Express (NVMe).

The parameter currently defaults to false (disabled) due to the fact that NDB is still deployed widely on
systems whose I/O or bandwidth is constrained relative to those employing solid-state technology, such
as those using conventional hard disks (HDDs). In settings such as these, the EnableRedoControl
mechanism can easily cause the I/O subsystem to become saturated, increasing wait times for data
node input and output. In particular, this can cause issues with NDB Disk Data tables which have
tablespaces or log file groups sharing a constrained IO subsystem with data node LCP and redo log
files; such problems potentially include node or cluster failure due to GCP stop errors.

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used
to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes, events,
and replication between clusters.

Note

These act merely as “suggestions” to the cluster, and any that are not specified
revert to the default values shown.

• MaxNoOfAttributes

Version (or later) NDB 8.0.13

Type or units integer

Default 1000

Range 32 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter sets a suggested maximum number of attributes that can be defined in the cluster; like
MaxNoOfTables, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more

183

Defining NDB Cluster Data Nodes

tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOfAttributes attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is fully
replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (greatest_number_of_attributes)
has 100 attributes, a good starting point for the value of MaxNoOfAttributes would be 6 *
greatest_number_of_attributes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoOfTables. If this value is larger than the value obtained in the previous paragraph, you should
use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that this
number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOfAttributes by another multiple of MaxNoOfTables and test it again.

• MaxNoOfTables

Version (or later) NDB 8.0.13

Type or units integer

Default 128

Range 8 - 20320

Restart Type N (NDB 8.0.13)

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOfAttributes, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOfTables tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfOrderedIndexes

Version (or later) NDB 8.0.13184

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Defining NDB Cluster Data Nodes

Type or units integer

Default 128

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique index
and primary key has both an ordered index and a hash index. MaxNoOfOrderedIndexes sets the total
number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data per
node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfUniqueHashIndexes

Version (or later) NDB 8.0.13

Type or units integer

Default 64

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

For each unique index that is not a primary key, a special table is allocated that maps the unique key to
the primary key of the indexed table. By default, an ordered index is also defined for each unique index.
To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfTriggers

Version (or later) NDB 8.0.13

Type or units integer

Default 768

Range 0 - 4294967039 (0xFFFFFEFF)

185

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a single
trigger object. Backups also use three trigger objects for each normal table in the cluster.

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

• MaxNoOfSubscriptions

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage with
MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoOfSubscriptions is 0, which is treated as equal to MaxNoOfTables.
Each subscription consumes 108 bytes.

• MaxNoOfSubscribers

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter is of interest only when using NDB Cluster Replication. The default value is 0. Prior to
NDB 8.0.26, this was treated as 2 * MaxNoOfTables; beginning with NDB 8.0.26, it is treated as 2
* MaxNoOfTables + 2 * [number of API nodes]. There is one subscription per NDB table for
each of two MySQL servers (one acting as the replication source and the other as the replica). Each
subscriber uses 16 bytes of memory.

When using circular replication, multi-source replication, and other replication setups involving more than
2 MySQL servers, you should increase this parameter to the number of mysqld processes included in
replication (this is often, but not always, the same as the number of clusters). For example, if you have a
circular replication setup using three NDB Clusters, with one mysqld attached to each cluster, and each
of these mysqld processes acts as a source and as a replica, you should set MaxNoOfSubscribers
equal to 3 * MaxNoOfTables.

For more information, see Chapter 7, NDB Cluster Replication.

186

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

• MaxNoOfConcurrentSubOperations

Version (or later) NDB 8.0.13

Type or units unsigned

Default 256

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter sets a ceiling on the number of operations that can be performed by all API nodes in
the cluster at one time. The default value (256) is sufficient for normal operations, and might need to be
adjusted only in scenarios where there are a great many API nodes each performing a high volume of
operations concurrently.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1 or
Y, and as FALSE by setting them equal to 0 or N.

• CompressedLCP

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalent to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed local checkpoint to a cluster running a MySQL
version that does not support this feature.

The default value is 0 (disabled).

Prior to NDB 8.0.29, this parameter had no effect on Windows platforms (BUG#106075,
BUG#33727690).

• CrashOnCorruptedTuple

Version (or later) NDB 8.0.13

Type or units boolean

Default true

Range true, false

Restart Type N (NDB 8.0.13)

When this parameter is enabled (the default), it forces a data node to shut down whenever it encounters
a corrupted tuple. 187

Defining NDB Cluster Data Nodes

• Diskless

Version (or later) NDB 8.0.13

Type or units true|false (1|0)

Default false

Range true, false

Restart Type IS (NDB 8.0.13)

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed to disk
and that no logging occurs. Such tables exist only in main memory. A consequence of using diskless
tables is that neither the tables nor the records in those tables survive a crash. However, when operating
in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is
not possible.

Diskless is disabled by default.

• EncryptedFileSystem

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 1

Added NDB 8.0.29

Restart Type IN (NDB 8.0.13)

Encrypt LCP and tablespace files, including undo logs and redo logs. Disabled by default (0); set to 1 to
enable.

This feature is not currently supported in production, and should be considered experimental.

• LateAlloc

Version (or later) NDB 8.0.13

Type or units numeric

Default 1

Range 0 - 1

Restart Type N (NDB 8.0.13)

Allocate memory for this data node after a connection to the management server has been established.
Enabled by default.

• LockPagesInMainMemory

Version (or later) NDB 8.0.13

188

Defining NDB Cluster Data Nodes

Type or units numeric

Default 0

Range 0 - 2

Restart Type N (NDB 8.0.13)

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-time
characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

• 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then the data node
process making use of this parameter may have to be run as system root. (LockPagesInMainMemory
uses the mlockall function. From Linux kernel 2.6.9, unprivileged users can lock memory as limited by
max locked memory. For more information, see ulimit -l and http://linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or false
was the default setting, and disabled locking. 1 or true enabled locking of the
process after its memory was allocated. NDB Cluster 8.0 treats true or false
for the value of this parameter as an error.

Important

Beginning with glibc 2.10, glibc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear to
affect performance significantly.)

The glibc behavior is intended to be configurable via the MALLOC_ARENA_MAX
environment variable, but a bug in this mechanism prior to glibc 2.16 meant
that this variable could not be set to less than 8, so that the wasted memory
could not be reclaimed. (Bug #15907219; see also http://sourceware.org/bugzilla/
show_bug.cgi?id=13137 for more information concerning this issue.)

One possible workaround for this problem is to use the LD_PRELOAD
environment variable to preload a jemalloc memory allocation library to take
the place of that supplied with glibc.

• ODirect

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

189

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Enabling this parameter causes NDB to attempt using O_DIRECT writes for LCP, backups, and redo logs,
often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODirect if you are
using a 2.6 or later kernel.

ODirect is disabled by default.

• ODirectSyncFlag

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

When this parameter is enabled, redo log writes are performed such that each completed file system
write is handled as a call to fsync. The setting for this parameter is ignored if at least one of the
following conditions is true:

• ODirect is not enabled.

• InitFragmentLogFiles is set to SPARSE.

Disabled by default.

• RestartOnErrorInsert

Version (or later) NDB 8.0.13

Type or units error code

Default 2

Range 0 - 4

Restart Type N (NDB 8.0.13)

This feature is accessible only when building the debug version where it is possible to insert errors in the
execution of individual blocks of code as part of testing.

This feature is disabled by default.

• StopOnError

Version (or later) NDB 8.0.13

Type or units boolean

Default 1

Range 0, 1

190

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

This parameter specifies whether a data node process should exit or perform an automatic restart when
an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node process to
halt.

When an error is encountered and StopOnError is 0, the data node process is restarted.

Users of MySQL Cluster Manager should note that, when StopOnError equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart and
recovery. See Starting and Stopping the Agent on Linux, for more information.

• UseShm

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

Enable a shared memory connection between this data node and the API node also running on this host.
Set to 1 to enable.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions in
Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this are
mentioned where applicable.

• TimeBetweenWatchDogCheck

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 6000

Range 70 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It
can be specified on a per-node basis although there seems to be little reason for doing so.

The default timeout is 6000 milliseconds (6 seconds).

• TimeBetweenWatchDogCheckInitial

Version (or later) NDB 8.0.13

Type or units milliseconds

191

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-using-start-stop-agent-linux.html

Defining NDB Cluster Data Nodes

Default 6000

Range 70 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This is similar to the TimeBetweenWatchDogCheck parameter, except that
TimeBetweenWatchDogCheckInitial controls the amount of time that passes between execution
checks inside a storage node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

• StartPartialTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 30000

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster
may start only if all nodes are available.

• StartPartitionedTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTimeout is set to 0, the cluster waits indefinitely (232−1 ms, or approximately
49.71 days).

This parameter is overridden when performing an initial start or initial restart of the cluster.

• StartFailureTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

192

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10−15 minutes (that is, 600000 to 1000000
milliseconds) might be required to perform a node restart.

• StartNoNodeGroupTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 15000

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When a data node is configured with Nodegroup = 65536, is regarded as not being assigned to any
node group. When that is done, the cluster waits StartNoNodegroupTimeout milliseconds, then
treats such nodes as though they had been added to the list passed to the --nowait-nodes option,
and starts. The default value is 15000 (that is, the management server waits 15 seconds). Setting this
parameter equal to 0 means that the cluster waits indefinitely.

StartNoNodegroupTimeout must be the same for all data nodes in the cluster; for this reason, you
should always set it in the [ndbd default] section of the config.ini file, rather than for individual
data nodes.

See Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

• HeartbeatIntervalDbDb

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 5000

Range 10 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats cannot
be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for
discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

The default heartbeat interval is 5000 milliseconds (5 seconds). This parameter must not be changed
drastically and should not vary widely between nodes. If one node uses 5000 milliseconds and the node

193

Defining NDB Cluster Data Nodes

watching it uses 1000 milliseconds, obviously the node is declared dead very quickly. This parameter
can be changed during an online software upgrade, but only in small increments.

See also Network communication and latency, as well as the description of the
ConnectCheckIntervalDelay configuration parameter.

• HeartbeatIntervalDbApi

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until all
activities initiated by the previous MySQL instance have been completed. The three-heartbeat criteria for
this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data
nodes because each data node watches the MySQL servers connected to it, independently of all other
data nodes.

For more information, see Network communication and latency.

• HeartbeatOrder

Version (or later) NDB 8.0.13

Type or units numeric

Default 0

Range 0 - 65535

Restart Type S (NDB 8.0.13)

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors the
previous one. If a heartbeat is not detected by a given data node, this node declares the previous data
node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a data node
is dead is done globally; in other words; once a data node is declared dead, it is regarded as such by all
nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared to
heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or temporary
connection problem), such that a data node is declared dead, even though the node can still function as
part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data nodes
makes a difference as to whether or not a particular data node is declared dead. If this declaration

194

Defining NDB Cluster Data Nodes

occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and as thus to a
failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host1 and
host2, and that these data nodes make up 2 node groups, as shown in the following table:

Table 4.3 Four data nodes A, B, C, D running on two host computers host1, host2; each data
node belongs to one of two node groups.

Node Group Nodes Running on host1 Nodes Running on host2

Node Group 0: Node A Node B

Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order of
transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of the
heartbeat causes nodes A and D to be declared dead; in this case, each node group has one surviving
node, and the cluster survives.

The HeartbeatOrder configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for HeartbeatOrder is zero; allowing the default value to be used on
all data nodes causes the order of heartbeat transmission to be determined by NDB. If this parameter
is used, it must be set to a nonzero value (maximum 65535) for every data node in the cluster, and
this value must be unique for each data node; this causes the heartbeat transmission to proceed from
data node to data node in the order of their HeartbeatOrder values from lowest to highest (and
then directly from the data node having the highest HeartbeatOrder to the data node having the
lowest value, to complete the circle). The values need not be consecutive. For example, to force the
heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you could set the
HeartbeatOrder values as shown here:

Table 4.4 HeartbeatOrder values to force a heartbeat transition order of A->B->D->C->A.

Node HeartbeatOrder Value

A 10

B 20

C 30

D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster, you must
first set HeartbeatOrder for each data node in the cluster in the global configuration (config.ini)
file (or files). To cause the change to take effect, you must perform either of the following:

• A complete shutdown and restart of the entire cluster.

• 2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

• ConnectCheckIntervalDelay

Version (or later) NDB 8.0.13 195

https://dev.mysql.com/doc/ndb-internals/en/dump-command-908.html

Defining NDB Cluster Data Nodes

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter enables connection checking between data nodes after one of them has failed heartbeat
checks for 5 intervals of up to HeartbeatIntervalDbDb milliseconds.

Such a data node that further fails to respond within an interval of ConnectCheckIntervalDelay
milliseconds is considered suspect, and is considered dead after two such intervals. This can be useful
in setups with known latency issues.

The default value for this parameter is 0 (disabled).

• TimeBetweenLocalCheckpoints

Version (or later) NDB 8.0.13

Type or units number of 4-byte words, as base-2 logarithm

Default 20

Range 0 - 31

Restart Type N (NDB 8.0.13)

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new local
checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-byte
words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean 8MB, and
so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting TimeBetweenLocalCheckpoints
to 6 or less means that local checkpoints are executed continuously without pause, independent of the
cluster's workload.

• TimeBetweenGlobalCheckpoints

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 2000

Range 20 - 32000

Restart Type N (NDB 8.0.13)

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reasoning
behind this behavior is that having the transaction safely committed on at least two autonomous host
machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is handled
properly. To guarantee that this happens, all transactions taking place within a given interval are put into

196

Defining NDB Cluster Data Nodes

a global checkpoint, which can be thought of as a set of committed transactions that has been flushed to
disk. In other words, as part of the commit process, a transaction is placed in a global checkpoint group.
Later, this group's log records are flushed to disk, and then the entire group of transactions is safely
committed to disk on all computers in the cluster.

In NDB 8.0, we recommended when you are using solid-state disks (especially those employing
NVMe) with Disk Data tables that you reduce this value. In such cases, you should also ensure that
MaxDiskDataLatency is set to a proper level.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

• TimeBetweenGlobalCheckpointsTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 120000

Range 10 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter defines the minimum timeout between global checkpoints. The default is 120000
milliseconds.

• TimeBetweenEpochs

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 100

Range 0 - 32000

Restart Type N (NDB 8.0.13)

This parameter defines the interval between synchronization epochs for NDB Cluster Replication. The
default value is 100 milliseconds.

TimeBetweenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve the
performance of NDB Cluster Replication.

• TimeBetweenEpochsTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 256000

197

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node fails
to participate in a global checkpoint within the time determined by this parameter, the node is shut down.
The default value is 0; in other words, the timeout is disabled.

TimeBetweenEpochsTimeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP save
takes longer than 1 minute or a GCP commit takes longer than 10 seconds.

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts, commit
timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

• MaxBufferedEpochs

Version (or later) NDB 8.0.13

Type or units epochs

Default 100

Range 0 - 100000

Restart Type N (NDB 8.0.13)

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this number
causes a lagging subscriber to be disconnected.

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag enough
to cause disconnections, it is usually due to network or scheduling issues with regard to processes or
threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It may be desirable
to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory to
buffer data, and eventually shutting down. Instead, only the client is affected as a result of the disconnect
(by, for example gap events in the binary log), forcing the client to reconnect or restart the process.

• MaxBufferedEpochBytes

Version (or later) NDB 8.0.13

Type or units bytes

Default 26214400

Range 26214400 (0x01900000) - 4294967039
(0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

The total number of bytes allocated for buffering epochs by this node.

• TimeBetweenInactiveTransactionAbortCheck

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1000
198

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Range 1000 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Timeout handling is performed by checking a timer on each transaction once for every interval specified
by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction is checked for
timing out once per second.

The default value is 1000 milliseconds (1 second).

• TransactionInactiveTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 4294967039 (0xFFFFFEFF)

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to ensure
that no transaction keeps locks for too long, this parameter should be set to a relatively small value.
Setting it to 0 means that the application never times out. The unit is milliseconds.

• TransactionDeadlockDetectionTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 1200

Range 50 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster
to respond before continuing. This parameter sets the amount of time that the transaction can spend
executing within a data node, that is, the time that the transaction coordinator waits for each data node
participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another
node before aborting the transaction, and is important for both node failure handling and deadlock
detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds. 199

Defining NDB Cluster Data Nodes

• DiskSyncSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 4M

Range 32K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is done
to prevent write buffering, which can impede performance significantly. This parameter is not intended to
take the place of TimeBetweenLocalCheckpoints.

Note

When ODirect is enabled, it is not necessary to set DiskSyncSize; in fact, in
such cases its value is simply ignored.

The default value is 4M (4 megabytes).

• MaxDiskWriteSpeed

Version (or later) NDB 8.0.13

Type or units numeric

Default 20M

Range 1M - 1024G

Restart Type S (NDB 8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when no restarts (by this data node or any other data node) are taking place in this NDB
Cluster.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed while other
data nodes are restarting, use MaxDiskWriteSpeedOtherNodeRestart. The minimum speed for
disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOtherNodeRestart

Version (or later) NDB 8.0.13

Type or units numeric

Default 50M

Range 1M - 1024G

Restart Type S (NDB 8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations when one or more data nodes in this NDB Cluster are restarting, other than this node.

For setting the maximum rate of disk writes allowed while this data node is restarting, use
MaxDiskWriteSpeedOwnRestart. For setting the maximum rate of disk writes allowed when no data

200

Defining NDB Cluster Data Nodes

nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed for disk
writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MaxDiskWriteSpeedOwnRestart

Version (or later) NDB 8.0.13

Type or units numeric

Default 200M

Range 1M - 1024G

Restart Type S (NDB 8.0.13)

Set the maximum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations while this data node is restarting.

For setting the maximum rate of disk writes allowed while other data nodes are restarting, use
MaxDiskWriteSpeedOtherNodeRestart. For setting the maximum rate of disk writes allowed when
no data nodes are restarting anywhere in the cluster, use MaxDiskWriteSpeed. The minimum speed
for disk writes by all LCPs and backup operations can be adjusted by setting MinDiskWriteSpeed.

• MinDiskWriteSpeed

Version (or later) NDB 8.0.13

Type or units numeric

Default 10M

Range 1M - 1024G

Restart Type S (NDB 8.0.13)

Set the minimum rate for writing to disk, in bytes per second, by local checkpoints and backup
operations.

The maximum rates of disk writes allowed for LCPs and backups under various conditions are
adjustable using the parameters MaxDiskWriteSpeed, MaxDiskWriteSpeedOwnRestart, and
MaxDiskWriteSpeedOtherNodeRestart. See the descriptions of these parameters for more
information.

• ArbitrationTimeout

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 7500

Range 10 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

The default value is 7500 milliseconds (7.5 seconds).

• Arbitration

Version (or later) NDB 8.0.13

201

Defining NDB Cluster Data Nodes

Type or units enumeration

Default Default

Range Default, Disabled, WaitExternal

Restart Type N (NDB 8.0.13)

The Arbitration parameter enables a choice of arbitration schemes, corresponding to one of 3
possible values for this parameter:

• Default. This enables arbitration to proceed normally, as determined by the ArbitrationRank
settings for the management and API nodes. This is the default value.

• Disabled. Setting Arbitration = Disabled in the [ndbd default] section of the
config.ini file to accomplishes the same task as setting ArbitrationRank to 0 on all
management and API nodes. When Arbitration is set in this way, any ArbitrationRank
settings are ignored.

• WaitExternal. The Arbitration parameter also makes it possible to configure arbitration in such
a way that the cluster waits until after the time determined by ArbitrationTimeout has passed for
an external cluster manager application to perform arbitration instead of handling arbitration internally.
This can be done by setting Arbitration = WaitExternal in the [ndbd default] section
of the config.ini file. For best results with the WaitExternal setting, it is recommended that
ArbitrationTimeout be 2 times as long as the interval required by the external cluster manager to
perform arbitration.

Important

This parameter should be used only in the [ndbd default] section of the
cluster configuration file. The behavior of the cluster is unspecified when
Arbitration is set to different values for individual data nodes.

• RestartSubscriberConnectTimeout

Version (or later) NDB 8.0.13

Type or units ms

Default 12000

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter determines the time that a data node waits for subscribing API nodes to connect. Once
this timeout expires, any “missing” API nodes are disconnected from the cluster. To disable this timeout,
set RestartSubscriberConnectTimeout to 0.

While this parameter is specified in milliseconds, the timeout itself is resolved to the next-greatest whole
second.

• KeepAliveSendInterval

Version (or later) NDB 8.0.13

Type or units integer

Default 60000

Range 0 - 4294967039 (0xFFFFFEFF)
202

Defining NDB Cluster Data Nodes

Added NDB 8.0.27

Restart Type N (NDB 8.0.13)

Beginning with NDB 8.0.27, it is possible to enable and control the interval between keep-alive signals
sent between data nodes by setting this parameter. The default for KeepAliveSendInterval is 60000
milliseconds (one minute); setting it to 0 disables keep-alive signals. Values between 1 and 10 inclusive
are treated as 10.

This parameter may prove useful in environments which monitor and disconnect idle TCP connections,
possibly causing unnecessary data node failures when the cluster is idle.

The heartbeat interval between management nodes and data nodes is always 100 milliseconds, and is not
configurable.

Buffering and logging. Several [ndbd] configuration parameters enable the advanced user to have
more control over the resources used by node processes and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to the
fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

• UndoIndexBuffer

Version (or later) NDB 8.0.13

Type or units unsigned

Default 2M

Range 1M - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.27

Restart Type N (NDB 8.0.13)

This parameter formerly set the size of the undo index buffer, but has no effect in current versions of
NDB Cluster.

In NDB 8.0.27 and later, the use of this parameter in the cluster configuration file raises a deprecation
warning; you should expect it to be removed in a future NDB Cluster release.

• UndoDataBuffer

Version (or later) NDB 8.0.13

Type or units unsigned

Default 16M

Range 1M - 4294967039 (0xFFFFFEFF)

Deprecated NDB 8.0.27

Restart Type N (NDB 8.0.13)

This parameter formerly set the size of the undo data buffer, but has no effect in current versions of NDB
Cluster.

In NDB 8.0.27 and later, the use of this parameter in the cluster configuration file raises a deprecation
warning; you should expect it to be removed in a future NDB Cluster release.

• RedoBuffer

203

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units bytes

Default 32M

Range 1M - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the
data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuffer sets the size of the buffer in which the REDO log is written. The default value is 32MB; the
minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded). For this reason, you should exercise care if you attempt to decrease the value of
RedoBuffer as part of an online change in the cluster's configuration.

ndbmtd allocates a separate buffer for each LDM thread (see ThreadConfig). For example, with 4
LDM threads, an ndbmtd data node actually has 4 buffers and allocates RedoBuffer bytes to each
one, for a total of 4 * RedoBuffer bytes.

• EventLogBufferSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 8192

Range 0 - 64K

Restart Type S (NDB 8.0.13)

Controls the size of the circular buffer used for NDB log events within data nodes.

Controlling log messages. In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to stdout. For each event category, there are 16
possible event levels (numbered 0 through 15). Setting event reporting for a given event category to level
15 means all event reports in that category are sent to stdout; setting it to 0 means that no event reports
in that category are made.

By default, only the startup message is sent to stdout, with the remaining event reporting level defaults
being set to 0. The reason for this is that these messages are also sent to the management server's cluster
log.

An analogous set of levels can be set for the management client to determine which event levels to record
in the cluster log.

• LogLevelStartup

Version (or later) NDB 8.0.13

Type or units integer

Default 1

204

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated during startup of the process.

The default level is 1.

• LogLevelShutdown

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

• LogLevelStatistic

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

The default level is 0.

• LogLevelCheckpoint

Version (or later) NDB 8.0.13

Type or units log level

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by local and global checkpoints.

The default level is 0.

• LogLevelNodeRestart

Version (or later) NDB 8.0.13

Type or units integer

Default 0

205

Defining NDB Cluster Data Nodes

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated during node restart.

The default level is 0.

• LogLevelConnection

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

• LogLevelError

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by errors and warnings by the cluster as a whole. These errors
do not cause any node failure but are still considered worth reporting.

The default level is 0.

• LogLevelCongestion

Version (or later) NDB 8.0.13

Type or units level

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated by congestion. These errors do not cause node failure but are
still considered worth reporting.

The default level is 0.

• LogLevelInfo

Version (or later) NDB 8.0.13

Type or units integer
206

Defining NDB Cluster Data Nodes

Default 0

Range 0 - 15

Restart Type N (NDB 8.0.13)

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

• MemReportFrequency

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter controls how often data node memory usage reports are recorded in the cluster log; it is
an integer value representing the number of seconds between reports.

Each data node's data memory and index memory usage is logged as both a percentage and a number
of 32 KB pages of DataMemory, as set in the config.ini file. For example, if DataMemory is equal
to 100 MB, and a given data node is using 50 MB for data memory storage, the corresponding line in the
cluster log might look like this:

2006-12-24 01:18:16 [MgmSrvr] INFO -- Node 2: Data usage is 50%(1280 32K pages of total 2560)

MemReportFrequency is not a required parameter. If used, it can be set for all cluster data nodes in
the [ndbd default] section of config.ini, and can also be set or overridden for individual data
nodes in the corresponding [ndbd] sections of the configuration file. The minimum value—which is also
the default value—is 0, in which case memory reports are logged only when memory usage reaches
certain percentages (80%, 90%, and 100%), as mentioned in the discussion of statistics events in
Section 6.3.2, “NDB Cluster Log Events”.

• StartupStatusReportFrequency

Version (or later) NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When a data node is started with the --initial, it initializes the redo log file during Start Phase
4 (see Section 6.4, “Summary of NDB Cluster Start Phases”). When very large values are set for
NoOfFragmentLogFiles, FragmentLogFileSize, or both, this initialization can take a long
time.You can force reports on the progress of this process to be logged periodically, by means of the
StartupStatusReportFrequency configuration parameter. In this case, progress is reported in the
cluster log, in terms of both the number of files and the amount of space that have been initialized, as
shown here:

2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 1: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15557 207

Defining NDB Cluster Data Nodes

2009-06-20 16:39:23 [MgmSrvr] INFO -- Node 2: Local redo log file initialization status:
#Total files: 80, Completed: 60
#Total MBytes: 20480, Completed: 15570

These reports are logged each StartupStatusReportFrequency seconds during Start Phase 4. If
StartupStatusReportFrequency is 0 (the default), then reports are written to the cluster log only
when at the beginning and at the completion of the redo log file initialization process.

Data Node Debugging Parameters

The following parameters are intended for use during testing or debugging of data nodes, and not for use
in production.

• DictTrace

Version (or later) NDB 8.0.13

Type or units bytes

Default undefined

Range 0 - 100

Restart Type N (NDB 8.0.13)

It is possible to cause logging of traces for events generated by creating and dropping tables using
DictTrace. This parameter is useful only in debugging NDB kernel code. DictTrace takes an integer
value. 0 is the default, and means no logging is performed; 1 enables trace logging, and 2 enables
logging of additional DBDICT debugging output.

• WatchdogImmediateKill

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

You can cause threads to be killed immediately whenever watchdog issues occur by enabling the
WatchdogImmediateKill data node configuration parameter. This parameter should be used only
when debugging or troubleshooting, to obtain trace files reporting exactly what was occurring the instant
that execution ceased.

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

• BackupDataBufferSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 16M

Range 512K - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

208

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

Defining NDB Cluster Data Nodes

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer
is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to the level
specified as BackupWriteSize, the pages are sent to disk. While flushing data to disk, the backup
process can continue filling this buffer until it runs out of space. When this happens, the backup process
pauses the scan and waits until some disk writes have completed freeing up memory so that scanning
may continue.

The default value for this parameter is 16MB. The minimum is 512K.

• BackupDiskWriteSpeedPct

Version (or later) NDB 8.0.13

Type or units percent

Default 50

Range 0 - 90

Restart Type N (NDB 8.0.13)

During normal operation, data nodes attempt to maximize the disk write speed used for local
checkpoints and backups while remaining within the bounds set by MinDiskWriteSpeed and
MaxDiskWriteSpeed. Disk write throttling gives each LDM thread an equal share of the total budget.
This allows parallel LCPs to take place without exceeding the disk I/O budget. Because a backup is
executed by only one LDM thread, this effectively caused a budget cut, resulting in longer backup
completion times, and—if the rate of change is sufficiently high—in failure to complete the backup when
the backup log buffer fill rate is higher than the achievable write rate.

This problem can be addressed by using the BackupDiskWriteSpeedPct configuration parameter,
which takes a value in the range 0-90 (inclusive) which is interpreted as the percentage of the node's
maximum write rate budget that is reserved prior to sharing out the remainder of the budget among
LDM threads for LCPs. The LDM thread running the backup receives the whole write rate budget for the
backup, plus its (reduced) share of the write rate budget for local checkpoints.

The default value for this parameter is 50 (interpreted as 50%).

• BackupLogBufferSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 16M

Range 2M - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is used
for generating a log of all table writes made during execution of the backup. The same principles apply
for writing these pages as with the backup data buffer, except that when there is no more space in the
backup log buffer, the backup fails. For that reason, the size of the backup log buffer must be large
enough to handle the load caused by write activities while the backup is being made. See Section 6.8.3,
“Configuration for NDB Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer to

209

Defining NDB Cluster Data Nodes

become full. If the disk subsystem is not configured for the write load caused by applications, the cluster
is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck
rather than the disks or the network connections.

The default value for this parameter is 16MB.

• BackupMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 32M

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.4)

Restart Type N (NDB 8.0.13)

This parameter is deprecated, and subject to removal in a future version of NDB Cluster. Any setting
made for it is ignored.

• BackupReportFrequency

Version (or later) NDB 8.0.13

Type or units seconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter controls how often backup status reports are issued in the management client during a
backup, as well as how often such reports are written to the cluster log (provided cluster event logging
is configured to permit it—see Logging and checkpointing). BackupReportFrequency represents the
time in seconds between backup status reports.

The default value is 0.

• BackupWriteSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 256K

Range 32K - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

This parameter specifies the default size of messages written to disk by the backup log and backup data
buffers.

The default value for this parameter is 256KB.

• BackupMaxWriteSize

210

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units bytes

Default 1M

Range 256K - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

This parameter specifies the maximum size of messages written to disk by the backup log and backup
data buffers.

The default value for this parameter is 1MB.

• CompressedBackup

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

Enabling this parameter causes backup files to be compressed. The compression used is equivalent
to gzip --fast, and can save 50% or more of the space required on the data node to store
uncompressed backup files. Compressed backups can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd default] section of the config.ini file).

Important

You cannot restore a compressed backup to a cluster running a MySQL version
that does not support this feature.

The default value is 0 (disabled).

• RequireEncryptedBackup

Version (or later) NDB 8.0.22

Type or units integer

Default 0

Range 0 - 1

Added NDB 8.0.22

Restart Type N (NDB 8.0.13)

If set to 1, backups must be encrypted. While it is possible to set this parameter for each data node
individually, it is recommended that you set it in the [ndbd default] section of the config.ini
global configuration file. For more information about performing encrypted backups, see Section 6.8.2,
“Using The NDB Cluster Management Client to Create a Backup”.

Added in NDB 8.0.22.

211

Defining NDB Cluster Data Nodes

Note

The location of the backup files is determined by the BackupDataDir data node
configuration parameter.

Additional requirements. When specifying these parameters, the following relationships must hold
true. Otherwise, the data node cannot start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

NDB Cluster Realtime Performance Parameters

The [ndbd] parameters discussed in this section are used in scheduling and locking of threads to specific
CPUs on multiprocessor data node hosts.

Note

To make use of these parameters, the data node process must be run as system
root.

• BuildIndexThreads

Version (or later) NDB 8.0.13

Type or units numeric

Default 128

Range 0 - 128

Restart Type N (NDB 8.0.13)

This parameter determines the number of threads to create when rebuilding ordered indexes
during a system or node start, as well as when running ndb_restore --rebuild-indexes. It is
supported only when there is more than one fragment for the table per data node (for example, when
COMMENT="NDB_TABLE=PARTITION_BALANCE=FOR_RA_BY_LDM_X_2" is used with CREATE
TABLE).

Setting this parameter to 0 (the default) disables multithreaded building of ordered indexes.

This parameter is supported when using ndbd or ndbmtd.

You can enable multithreaded builds during data node initial restarts by setting the
TwoPassInitialNodeRestartCopy data node configuration parameter to TRUE.

• LockExecuteThreadToCPU

Version (or later) NDB 8.0.13

Type or units set of CPU IDs

Default 0

Range ...

Restart Type N (NDB 8.0.13)
212

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Defining NDB Cluster Data Nodes

When used with ndbd, this parameter (now a string) specifies the ID of the CPU assigned to handle
the NDBCLUSTER execution thread. When used with ndbmtd, the value of this parameter is a comma-
separated list of CPU IDs assigned to handle execution threads. Each CPU ID in the list should be an
integer in the range 0 to 65535 (inclusive).

The number of IDs specified should match the number of execution threads determined by
MaxNoOfExecutionThreads. However, there is no guarantee that threads are assigned to CPUs in
any given order when using this parameter. You can obtain more finely-grained control of this type using
ThreadConfig.

LockExecuteThreadToCPU has no default value.

• LockMaintThreadsToCPU

Version (or later) NDB 8.0.13

Type or units CPU ID

Default 0

Range 0 - 64K

Restart Type N (NDB 8.0.13)

This parameter specifies the ID of the CPU assigned to handle NDBCLUSTER maintenance threads.

The value of this parameter is an integer in the range 0 to 65535 (inclusive). There is no default value.

• Numa

Version (or later) NDB 8.0.13

Type or units numeric

Default 1

Range ...

Restart Type N (NDB 8.0.13)

This parameter determines whether Non-Uniform Memory Access (NUMA) is controlled by the operating
system or by the data node process, whether the data node uses ndbd or ndbmtd. By default, NDB
attempts to use an interleaved NUMA memory allocation policy on any data node where the host
operating system provides NUMA support.

Setting Numa = 0 means that the datanode process does not itself attempt to set a policy for memory
allocation, and permits this behavior to be determined by the operating system, which may be further
guided by the separate numactl tool. That is, Numa = 0 yields the system default behavior, which can
be customised by numactl. For many Linux systems, the system default behavior is to allocate socket-
local memory to any given process at allocation time. This can be problematic when using ndbmtd; this
is because nbdmtd allocates all memory at startup, leading to an imbalance, giving different access
speeds for different sockets, especially when locking pages in main memory.

Setting Numa = 1 means that the data node process uses libnuma to request interleaved memory
allocation. (This can also be accomplished manually, on the operating system level, using numactl.)
Using interleaved allocation in effect tells the data node process to ignore non-uniform memory access
but does not attempt to take any advantage of fast local memory; instead, the data node process tries to

213

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

avoid imbalances due to slow remote memory. If interleaved allocation is not desired, set Numa to 0 so
that the desired behavior can be determined on the operating system level.

The Numa configuration parameter is supported only on Linux systems where libnuma.so is available.

• RealtimeScheduler

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

Setting this parameter to 1 enables real-time scheduling of data node threads.

The default is 0 (scheduling disabled).

• SchedulerExecutionTimer

Version (or later) NDB 8.0.13

Type or units µs

Default 50

Range 0 - 11000

Restart Type N (NDB 8.0.13)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
being sent. Setting it to 0 minimizes the response time; to achieve higher throughput, you can increase
the value at the expense of longer response times.

The default is 50 μsec, which our testing shows to increase throughput slightly in high-load cases without
materially delaying requests.

• SchedulerResponsiveness

Version (or later) NDB 8.0.13

Type or units integer

Default 5

Range 0 - 10

Restart Type N (NDB 8.0.13)

Set the balance in the NDB scheduler between speed and throughput. This parameter takes an integer
whose value is in the range 0-10 inclusive, with 5 as the default. Higher values provide better response
times relative to throughput. Lower values provide increased throughput at the expense of longer
response times.

• SchedulerSpinTimer

Version (or later) NDB 8.0.13

Type or units µs

Default 0

214

Defining NDB Cluster Data Nodes

Range 0 - 500

Restart Type N (NDB 8.0.13)

This parameter specifies the time in microseconds for threads to be executed in the scheduler before
sleeping.

Starting with NDB 8.0.20, if SpinMethod is set, any setting for this parameter is ignored.

• SpinMethod

Version (or later) NDB 8.0.20

Type or units enumeration

Default StaticSpinning

Range CostBasedSpinning, LatencyOptimisedSpinning,
DatabaseMachineSpinning, StaticSpinning

Added NDB 8.0.20

Restart Type N (NDB 8.0.13)

This parameter is present beginning in NDB 8.0.20, but has no effect prior to NDB 8.0.24. It provides a
simple interface to control adaptive spinning on data nodes, with four possible values furnishing presets
for spin parameter values, as shown in the following list:

1. StaticSpinning (default): Sets EnableAdaptiveSpinning to false and
SchedulerSpinTimer to 0. (SetAllowedSpinOverhead is not relevant in this case.)

2. CostBasedSpinning: Sets EnableAdaptiveSpinning to true, SchedulerSpinTimer to 100,
and SetAllowedSpinOverhead to 200.

3. LatencyOptimisedSpinning: Sets EnableAdaptiveSpinning to true,
SchedulerSpinTimer to 200, and SetAllowedSpinOverhead to 1000.

4. DatabaseMachineSpinning: Sets EnableAdaptiveSpinning to true,
SchedulerSpinTimer to 500, and SetAllowedSpinOverhead to 10000. This is intended for use
in cases where threads own their own CPUs.

The spin parameters modified by SpinMethod are described in the following list:

• SchedulerSpinTimer: This is the same as the data node configuration parameter of that name. The
setting applied to this parameter by SpinMethod overrides any value set in the config.ini file.

• EnableAdaptiveSpinning: Enables or disables adaptive spinning. Disabling it causes spinning to
be performed without making any checks for CPU resources. This parameter cannot be set directly in
the cluster configuration file, and under most circumstances should not need to be, but can be enabled
directly using DUMP 104004 1 or disabled with DUMP 104004 0 in the ndb_mgm management
client.

• SetAllowedSpinOverhead: Sets the amount of CPU time to allow for gaining latency. This
parameter cannot be set directly in the config.ini file. In most cases, the setting applied by
SpinMethod should be satisfactory, but if it is necessary to change it directly, you can use DUMP

215

https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html

Defining NDB Cluster Data Nodes

104002 overhead to do so, where overhead is a value ranging from 0 to 10000, inclusive; see the
description of the indicated DUMP command for details.

On platforms lacking usable spin instructions, such as PowerPC and some SPARC platforms, spin time
is set to 0 in all situations, and values for SpinMethod other than StaticSpinning are ignored.

• TwoPassInitialNodeRestartCopy

Version (or later) NDB 8.0.13

Type or units boolean

Default true

Range true, false

Restart Type N (NDB 8.0.13)

Multithreaded building of ordered indexes can be enabled for initial restarts of data nodes by setting
this configuration parameter to true (the default value), which enables two-pass copying of data during
initial node restarts.

You must also set BuildIndexThreads to a nonzero value.

Multi-Threading Configuration Parameters (ndbmtd). ndbmtd runs by default as a single-threaded
process and must be configured to use multiple threads, using either of two methods, both of which require
setting configuration parameters in the config.ini file. The first method is simply to set an appropriate
value for the MaxNoOfExecutionThreads configuration parameter. A second method, makes it possible
to set up more complex rules for ndbmtd multithreading using ThreadConfig. The next few paragraphs
provide information about these parameters and their use with multithreaded data nodes.

Note

A backup using parallelism on the data nodes requires that multiple LDMs are in
use on all data nodes in the cluster prior to taking the backup. For more information,
see Section 6.8.5, “Taking an NDB Backup with Parallel Data Nodes”, as well as
Section 5.23.3, “Restoring from a backup taken in parallel”.

• AutomaticThreadConfig

Version (or later) NDB 8.0.23

Type or units boolean

Default false

Range true, false

Added NDB 8.0.23

Restart Type IS (NDB 8.0.13)

When set to 1, enables automatic thread configuration employing the number of CPUs available to
a data node taking into account any limits set by taskset, numactl, virtual machines, Docker, and
other such means of controlling which CPUs are available to a given application (on Windows platforms,
automatic thread configuration uses all CPUs which are online); alternatively, you can set NumCPUs
to the desired number of CPUs (up to 1024, the maximum number of CPUs that can be handled by
automatic thread configuration). Any settings for ThreadConfig and MaxNoOfExecutionThreads
are ignored. In addition, enabling this parameter automatically disables ClassicFragmentation.

• ClassicFragmentation

216

https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.23

Type or units boolean

Default true

Range true, false

Added NDB 8.0.23

Restart Type N (NDB 8.0.13)

When enabled (set to true), NDB distributes fragents among LDMs in the manner always used by NDB
prior to NDB 8.0.23; that is, the default number of partitions per node is equal to the minimum number of
local data manager (LDM) threads per data node.

For new clusters for which a downgrade to NDB 8.0.22 or earlier is never expected to occur, setting
ClassicFragmentation to false when first setting up the cluster is preferable; doing so causes
the number of partitions per node to be equal to the value of PartitionsPerNode, ensuring that all
partitions are spread out evenly between all LDMs.

This parameter and AutomaticThreadConfig are mutually exclusive; enabling
AutomaticThreadConfig automatically disables ClassicFragmentation.

• EnableMultithreadedBackup

Version (or later) NDB 8.0.13

Type or units unsigned

Default 1

Range 0 - 1

Added NDB 8.0.16

Restart Type N (NDB 8.0.13)

Enables multi-threaded backup. If each data node has at least 2 LDMs, all LDM threads participate in
the backup, which is created using one subdirectory per LDM thread, and each subdirectory containing
.ctl, .Data, and .log backup files.

This parameter is normally enabled (set to 1) for ndbmtd. To force a single-threaded backup that can
be restored easily using older versions of ndb_restore, disable multi-threaded backup by setting this
parameter to 0. This must be done for each data node in the cluster.

See Section 6.8.5, “Taking an NDB Backup with Parallel Data Nodes”, and Section 5.23.3, “Restoring
from a backup taken in parallel”, for more information.

• MaxNoOfExecutionThreads

Version (or later) NDB 8.0.13

Type or units integer

Default 2

Range 2 - 72

217

Defining NDB Cluster Data Nodes

Restart Type S (NDB 8.0.13)

This parameter directly controls the number of execution threads used by ndbmtd, up to a maximum of
72. Although this parameter is set in [ndbd] or [ndbd default] sections of the config.ini file, it is
exclusive to ndbmtd and does not apply to ndbd.

Enabling AutomaticThreadConfig causes any setting for this parameter to be ignored.

Setting MaxNoOfExecutionThreads sets the number of threads for each type as determined by a
matrix in the file storage/ndb/src/common/mt_thr_config.cpp. (Prior to NDB 8.0.30, this was
storage/ndb/src/kernel/vm/mt_thr_config.cpp.) This table shows these numbers of threads
for possible values of MaxNoOfExecutionThreads.

Table 4.5 MaxNoOfExecutionThreads values and the corresponding number of threads by thread
type (LQH, TC, Send, Receive).

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

0 .. 3 1 0 0 1

4 .. 6 2 0 0 1

7 .. 8 4 0 0 1

9 4 2 0 1

10 4 2 1 1

11 4 3 1 1

12 6 2 1 1

13 6 3 1 1

14 6 3 1 2

15 6 3 2 2

16 8 3 1 2

17 8 4 1 2

18 8 4 2 2

19 8 5 2 2

20 10 4 2 2

21 10 5 2 2

22 10 5 2 3

23 10 6 2 3

24 12 5 2 3

25 12 6 2 3

26 12 6 3 3

27 12 7 3 3

28 12 7 3 4

29 12 8 3 4

30 12 8 4 4

31 12 9 4 4

218

Defining NDB Cluster Data Nodes

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

32 16 8 3 3

33 16 8 3 4

34 16 8 4 4

35 16 9 4 4

36 16 10 4 4

37 16 10 4 5

38 16 11 4 5

39 16 11 5 5

40 20 10 4 4

41 20 10 4 5

42 20 11 4 5

43 20 11 5 5

44 20 12 5 5

45 20 12 5 6

46 20 13 5 6

47 20 13 6 6

48 24 12 5 5

49 24 12 5 6

50 24 13 5 6

51 24 13 6 6

52 24 14 6 6

53 24 14 6 7

54 24 15 6 7

55 24 15 7 7

56 24 16 7 7

57 24 16 7 8

58 24 17 7 8

59 24 17 8 8

60 24 18 8 8

61 24 18 8 9

62 24 19 8 9

63 24 19 9 9

64 32 16 7 7

65 32 16 7 8

66 32 17 7 8

67 32 17 8 8

68 32 18 8 8

219

Defining NDB Cluster Data Nodes

MaxNoOfExecutionThreads
Value

LDM Threads TC Threads Send Threads Receive Threads

69 32 18 8 9

70 32 19 8 9

71 32 20 8 9

72 32 20 8 10

There is always one SUMA (replication) thread.

NoOfFragmentLogParts should be set equal to the number of LDM threads used by ndbmtd,
as determined by the setting for this parameter. This ratio should not be any greater than 4:1; a
configuration in which this is the case is specifically disallowed.

The number of LDM threads also determines the number of partitions used by an NDB table that is not
explicitly partitioned; this is the number of LDM threads times the number of data nodes in the cluster.
(If ndbd is used on the data nodes rather than ndbmtd, then there is always a single LDM thread; in
this case, the number of partitions created automatically is simply equal to the number of data nodes.
See Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information.

Adding large tablespaces for Disk Data tables when using more than the default number of LDM threads
may cause issues with resource and CPU usage if the disk page buffer is insufficiently large; see the
description of the DiskPageBufferMemory configuration parameter, for more information.

The thread types are described later in this section (see ThreadConfig).

Setting this parameter outside the permitted range of values causes the management server to abort
on startup with the error Error line number: Illegal value value for parameter
MaxNoOfExecutionThreads.

For MaxNoOfExecutionThreads, a value of 0 or 1 is rounded up internally by NDB to 2, so that 2 is
considered this parameter's default and minimum value.

MaxNoOfExecutionThreads is generally intended to be set equal to the number of CPU threads
available, and to allocate a number of threads of each type suitable to typical workloads. It does not
assign particular threads to specified CPUs. For cases where it is desirable to vary from the settings
provided, or to bind threads to CPUs, you should use ThreadConfig instead, which allows you to
allocate each thread directly to a desired type, CPU, or both.

The multithreaded data node process always spawns, at a minimum, the threads listed here:

• 1 local query handler (LDM) thread

• 1 receive thread

220

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

• 1 subscription manager (SUMA or replication) thread

For a MaxNoOfExecutionThreads value of 8 or less, no TC threads are created, and TC handling is
instead performed by the main thread.

Changing the number of LDM threads normally requires a system restart, whether it is changed using
this parameter or ThreadConfig, but it is possible to effect the change using a node initial restart (NI)
provided the following two conditions are met:

• Each LDM thread handles a maximum of 8 fragments, and

• The total number of table fragments is an integer multiple of the number of LDM threads.

In NDB 8.0, an initial restart is not required to effect a change in this parameter, as it was in some older
versions of NDB Cluster.

• NoOfFragmentLogParts

Version (or later) NDB 8.0.13

Type or units numeric

Default 4

Range 4, 6, 8, 10, 12, 16, 20, 24, 32

Restart Type IN (NDB 8.0.13)

Set the number of log file groups for redo logs belonging to this ndbmtd. The value of this parameter
should be set equal to the number of LDM threads used by ndbmtd as determined by the setting for
MaxNoOfExecutionThreads. A configuration using more than 4 redo log parts per LDM is disallowed.

See the description of MaxNoOfExecutionThreads for more information.

• NumCPUs

Version (or later) NDB 8.0.23

Type or units integer

Default 0

Range 0 - 1024

Added NDB 8.0.23

Restart Type IS (NDB 8.0.13)

Cause automatic thread configuration to use only this many CPUs. Has no effect if
AutomaticThreadConfig is not enabled.

• PartitionsPerNode

Version (or later) NDB 8.0.23

Type or units integer

Default 2

Range 1 - 32

Added NDB 8.0.23
221

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Sets the number of partitions used on each node when creating a new NDB table. This makes it possible
to avoid splitting up tables into an excessive number of partitions when the number of local data
managers (LDMs) grows high.

While it is possible to set this parameter to different values on different data nodes and there are
no known issues with doing so, this is also not likely to be of any advantage; for this reason, it is
recommended simply to set it once, for all data nodes, in the [ndbd default] section of the global
config.ini file.

If ClassicFragmentation is enabled, any setting for this parameter is ignored. (Remember that
enabling AutomaticThreadConfig disables ClassicFragmentation.)

• ThreadConfig

Version (or later) NDB 8.0.13

Type or units string

Default ''

Range ...

Restart Type S (NDB 8.0.13)

This parameter is used with ndbmtd to assign threads of different types to different CPUs. Its value is a
string whose format has the following syntax:

ThreadConfig := entry[,entry[,...]]

entry := type={param[,param[,...]]}

type (NDB 8.0.22 and earlier) := ldm | main | recv | send | rep | io | tc | watchdog | idxbld

type (NDB 8.0.23 and later) := ldm | query | recover | main | recv | send | rep | io | tc | watchdog | idxbld

param := count=number
 | cpubind=cpu_list
 | cpuset=cpu_list
 | spintime=number
 | realtime={0|1}
 | nosend={0|1}
 | thread_prio={0..10}
 | cpubind_exclusive=cpu_list
 | cpuset_exclusive=cpu_list

The curly braces ({...}) surrounding the list of parameters are required, even if there is only one
parameter in the list.

A param (parameter) specifies any or all of the following information:

• The number of threads of the given type (count).

• The set of CPUs to which the threads of the given type are to be nonexclusively bound. This is
determined by either one of cpubind or cpuset). cpubind causes each thread to be bound

222

Defining NDB Cluster Data Nodes

(nonexclusively) to a CPU in the set; cpuset means that each thread is bound (nonexclusively) to the
set of CPUs specified.

On Solaris, you can instead specify a set of CPUs to which the threads of the given type are to be
bound exclusively. cpubind_exclusive causes each thread to be bound exclusively to a CPU in the
set; cpuset_exclsuive means that each thread is bound exclusively to the set of CPUs specified.

Only one of cpubind, cpuset, cpubind_exclusive, or cpuset_exclusive can be provided in a
single configuration.

• spintime determines the wait time in microseconds the thread spins before going to sleep.

The default value for spintime is the value of the SchedulerSpinTimer data node configuration
parameter.

spintime does not apply to I/O threads, watchdog, or offline index build threads, and so cannot be
set for these thread types.

• realtime can be set to 0 or 1. If it is set to 1, the threads run with real-time priority. This also means
that thread_prio cannot be set.

The realtime parameter is set by default to the value of the RealtimeScheduler data node
configuration parameter.

realtime cannot be set for offline index build threads.

• By setting nosend to 1, you can prevent a main, ldm, rep, or tc thread from assisting the send
threads. This parameter is 0 by default, and cannot be used with other types of threads.

• thread_prio is a thread priority level that can be set from 0 to 10, with 10 representing the greatest
priority. The default is 5. The precise effects of this parameter are platform-specific, and are described
later in this section.

The thread priority level cannot be set for offline index build threads.

thread_prio settings and effects by platform. The implementation of thread_prio differs
between Linux/FreeBSD, Solaris, and Windows. In the following list, we discuss its effects on each of
these platforms in turn:

• Linux and FreeBSD: We map thread_prio to a value to be supplied to the nice system call. Since
a lower niceness value for a process indicates a higher process priority, increasing thread_prio has
the effect of lowering the nice value.

Table 4.6 Mapping of thread_prio to nice values on Linux and FreeBSD

thread_prio value nice value

0 19

1 16

2 12

3 8

4 4

5 0

6 -4

223

Defining NDB Cluster Data Nodes

thread_prio value nice value

7 -8

8 -12

9 -16

10 -20

Some operating systems may provide for a maximum process niceness level of 20, but this is not
supported by all targeted versions; for this reason, we choose 19 as the maximum nice value that
can be set.

• Solaris: Setting thread_prio on Solaris sets the Solaris FX priority, with mappings as shown in the
following table:

Table 4.7 Mapping of thread_prio to FX priority on Solaris

thread_prio value Solaris FX priority

0 15

1 20

2 25

3 30

4 35

5 40

6 45

7 50

8 55

9 59

10 60

A thread_prio setting of 9 is mapped on Solaris to the special FX priority value 59, which means
that the operating system also attempts to force the thread to run alone on its own CPU core.

• Windows: We map thread_prio to a Windows thread priority value passed to the Windows API
SetThreadPriority() function. This mapping is shown in the following table:

Table 4.8 Mapping of thread_prio to Windows thread priority

thread_prio value Windows thread priority

0 - 1 THREAD_PRIORITY_LOWEST

2 - 3 THREAD_PRIORITY_BELOW_NORMAL

4 - 5 THREAD_PRIORITY_NORMAL

6 - 7 THREAD_PRIORITY_ABOVE_NORMAL

224

Defining NDB Cluster Data Nodes

thread_prio value Windows thread priority

8 - 10 THREAD_PRIORITY_HIGHEST

The type attribute represents an NDB thread type. The thread types supported, and the range of
permitted count values for each, are provided in the following list:

• ldm: Local query handler (DBLQH kernel block) that handles data. The more LDM threads that
are used, the more highly partitioned the data becomes. (Beginning with NDB 8.0.23, when
ClassicFragmentation is set to 0, the number of partitions is independent of the number of LDM
threads, and depends on the value of PartitionsPerNode instead.) Each LDM thread maintains its
own sets of data and index partitions, as well as its own redo log. Prior to NDB 8.0.23, the value set for
ldm must be one of the values 1, 2, 4, 6, 8, 12, 16, 24, or 32. In NDB 8.0.23 and later, it is possible to
set ldm to any value in the range 1 to 332 inclusive; it also becomes possible to set it to 0, provided
that main, rep, and tc are also 0, and that recv is set to 1; doing this causes ndbmtd to emulate
ndbd.

Each LDM thread is normally grouped with 1 query thread to form an LDM group. A set of 4 to 8 LDM
groups is grouped into a round robin groups. Each LDM thread can be assisted in execution by any
query or threads in the same round robin group. NDB attempts to form round robin groups such that all
threads in each round robin group are locked to CPUs that are attached to the same L3 cache, within
the limts of the range stated for a round orbin group's size.

Changing the number of LDM threads normally requires a system restart to be effective and safe for
cluster operations; this requirement is relaxed in certain cases, as explained later in this section. This
is also true when this is done using MaxNoOfExecutionThreads.

Adding large tablespaces (hundreds of gigabytes or more) for Disk Data tables when using
more than the default number of LDMs may cause issues with resource and CPU usage if
DiskPageBufferMemory is not sufficiently large.

As of NDB 8.0.30, ldm must be included in the ThreadConfig value string. This may affect upgrades
from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

• query (Added in NDB 8.0.23): A query thread is tied to an LDM and together with it forms an LDM
group; acts only on READ COMMITTED queries. The number of query threads must be set to 0, 1, 2, or
3 times the number of LDM threads. Query threads are not used, unless this is overridden by setting
query to a nonzero value, or by enabling the AutomaticThreadConfig parameter, in which case
LDMs behave as they did prior to NDB 8.0.23.

A query thread also acts as a recovery thread (see next item), although the reverse is not true.

Changing the number of query threads requires a node restart.

• recover (Added in NDB 8.0.23): A recovery thread restores data from a fragment as part of an LCP.

Changing the number of recovery threads requires a node restart.

• tc: Transaction coordinator thread (DBTC kernel block) containing the state of an ongoing transaction.
In NDB 8.0.23 and later, the maximum number of TC threads is 128; previously, this was 32.

Optimally, every new transaction can be assigned to a new TC thread. In most cases 1 TC thread per
2 LDM threads is sufficient to guarantee that this can happen. In cases where the number of writes
is relatively small when compared to the number of reads, it is possible that only 1 TC thread per 4
LQH threads is required to maintain transaction states. Conversely, in applications that perform a

225

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

Defining NDB Cluster Data Nodes

great many updates, it may be necessary for the ratio of TC threads to LDM threads to approach 1 (for
example, 3 TC threads to 4 LDM threads).

Setting tc to 0 causes TC handling to be done by the main thread. In most cases, this is effectively
the same as setting it to 1.

Range: 0-64 (NDB 8.0.22 and earlier: 0 - 32)

• main: Data dictionary and transaction coordinator (DBDIH and DBTC kernel blocks), providing schema
management. Prior to NDB 8.0.23, this was always handled by a single dedicated thread, beginning
ith NDB 8.0.23, it is also possible to specify zero or two main threads.

Range:

• NDB 8.0.22 and earlier: 1 only.

NDB 8.0.23 and later: 0-2.

Setting main to 0 and rep to 1 causes the main blocks to be placed into the rep thread; the
combined thread is shown in the ndbinfo.threads table as main_rep. This is effectively the
same as setting rep equal to 1 and main equal to 0.

It is also possible to set both main and rep to 0, in which case both threads are placed in the first
recv thread; the resulting combined thread is named main_rep_recv in the threads table.

As of NDB 8.0.30, main must be included in the ThreadConfig value string. This may affect
upgrades from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for
more information.

• recv: Receive thread (CMVMI kernel block). Each receive thread handles one or more sockets for
communicating with other nodes in an NDB Cluster, with one socket per node. NDB Cluster supports
multiple receive threads; the maximum is 16 such threads.

Range:

• NDB 8.0.22 and earlier: 1 - 16

• NDB 8.0.23 and later: 1 - 64

As of NDB 8.0.30, recv must be included in the ThreadConfig value string. This may affect
upgrades from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for
more information.

• send: Send thread (CMVMI kernel block). To increase throughput, it is possible to perform sends from
one or more separate, dedicated threads (maximum 8).

In NDB 8.0.20 and later, due to changes in the multithreading implementation, using many send
threads can have an adverse effect on scalability.

Previously, all threads handled their own sending directly; this can still be made to happen by setting
the number of send threads to 0 (this also happens when MaxNoOfExecutionThreads is set less

226

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-cmvmi.html

Defining NDB Cluster Data Nodes

than 10). While doing so can have an adeverse impact on throughput, it can also in some cases
provide decreased latency.

Range:

• NDB 8.0.22 and earlier: 0 - 16

• NDB 8.0.23 and later: 0 - 64

• rep: Replication thread (SUMA kernel block). Prior to NDB 8.0.23, asynchronous replication operations
are always handled by a single, dedicated thread. Beginning with NDB 8.0.23, this thread can be
combined with the main thread (see range information).

Range:

• NDB 8.0.22 and earlier: 1 only.

• NDB 8.0.23 and later: 0-1.

Setting rep to 0 and main to 1 causes the rep blocks to be placed into the main thread; the
combined thread is shown in the ndbinfo.threads table as main_rep. This is effectively the
same as setting main equal to 1 and rep equal to 0.

It is also possible to set both main and rep to 0, in which case both threads are placed in the first
recv thread; the resulting combined thread is named main_rep_recv in the threads table.

As of NDB 8.0.30, rep must be included in the ThreadConfig value string. This may affect upgrades
from previous releases; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more
information.

• io: File system and other miscellaneous operations. These are not demanding tasks, and are always
handled as a group by a single, dedicated I/O thread.

Range: 1 only.

• watchdog: Parameters settings associated with this type are actually applied to several threads, each
having a specific use. These threads include the SocketServer thread, which receives connection
setups from other nodes; the SocketClient thread, which attempts to set up connections to other
nodes; and the thread watchdog thread that checks that threads are progressing.

Range: 1 only.

• idxbld: Offline index build threads. Unlike the other thread types listed previously, which are
permanent, these are temporary threads which are created and used only during node or system

227

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

Defining NDB Cluster Data Nodes

restarts, or when running ndb_restore --rebuild-indexes. They may be bound to CPU sets
which overlap with CPU sets bound to permanent thread types.

thread_prio, realtime, and spintime values cannot be set for offline index build threads. In
addition, count is ignored for this type of thread.

If idxbld is not specified, the default behavior is as follows:

• Offline index build threads are not bound if the I/O thread is also not bound, and these threads use
any available cores.

• If the I/O thread is bound, then the offline index build threads are bound to the entire set of bound
threads, due to the fact that there should be no other tasks for these threads to perform.

Range: 0 - 1.

Changing ThreadCOnfig normally requires a system initial restart, but this requirement can be relaxed
under certain cirumstances:

• If, following the change, the number of LDM threads remains the same as before, nothing more than a
simple node restart (rolling restart, or N) is required to implement the change.

• Otherwise (that is, if the number of LDM threads changes), it is still possible to effect the change using
a node initial restart (NI) provided the following two conditions are met:

a. Each LDM thread handles a maximum of 8 fragments, and

b. The total number of table fragments is an integer multiple of the number of LDM threads.

In any other case, a system initial restart is needed to change this parameter.

NDB can distinguish between thread types by both of the following criteria:

• Whether the thread is an execution thread. Threads of type main, ldm, query (NDB 8.0.23 and later),
recv, rep, tc, and send are execution threads; io, recover (NDB 8.0.23 and later), watchdog,
and idxbld threads are not considered execution threads.

• Whether the allocation of threads to a given task is permanent or temporary. Currently all thread types
except idxbld are considered permanent; idxbld threads are regarded as temporary threads.

Simple examples:

Example 1.

ThreadConfig=ldm={count=2,cpubind=1,2},main={cpubind=12},rep={cpubind=11}

Example 2.

Threadconfig=main={cpubind=0},ldm={count=4,cpubind=1,2,5,6},io={cpubind=3}

It is usually desirable when configuring thread usage for a data node host to reserve one or more
number of CPUs for operating system and other tasks. Thus, for a host machine with 24 CPUs, you
might want to use 20 CPU threads (leaving 4 for other uses), with 8 LDM threads, 4 TC threads
(half the number of LDM threads), 3 send threads, 3 receive threads, and 1 thread each for schema
management, asynchronous replication, and I/O operations. (This is almost the same distribution of

228

Defining NDB Cluster Data Nodes

threads used when MaxNoOfExecutionThreads is set equal to 20.) The following ThreadConfig
setting performs these assignments, additionally binding all of these threads to specific CPUs:

ThreadConfig=ldm{count=8,cpubind=1,2,3,4,5,6,7,8},main={cpubind=9},io={cpubind=9}, \
rep={cpubind=10},tc{count=4,cpubind=11,12,13,14},recv={count=3,cpubind=15,16,17}, \
send{count=3,cpubind=18,19,20}

It should be possible in most cases to bind the main (schema management) thread and the I/O thread to
the same CPU, as we have done in the example just shown.

The following example incorporates groups of CPUs defined using both cpuset and cpubind, as well
as use of thread prioritization.

ThreadConfig=ldm={count=4,cpuset=0-3,thread_prio=8,spintime=200}, \
ldm={count=4,cpubind=4-7,thread_prio=8,spintime=200}, \
tc={count=4,cpuset=8-9,thread_prio=6},send={count=2,thread_prio=10,cpubind=10-11}, \
main={count=1,cpubind=10},rep={count=1,cpubind=11}

In this case we create two LDM groups; the first uses cpubind and the second uses cpuset.
thread_prio and spintime are set to the same values for each group. This means there are eight
LDM threads in total. (You should ensure that NoOfFragmentLogParts is also set to 8.) The four TC
threads use only two CPUs; it is possible when using cpuset to specify fewer CPUs than threads in the
group. (This is not true for cpubind.) The send threads use two threads using cpubind to bind these
threads to CPUs 10 and 11. The main and rep threads can reuse these CPUs.

This example shows how ThreadConfig and NoOfFragmentLogParts might be set up for a 24-CPU
host with hyperthreading, leaving CPUs 10, 11, 22, and 23 available for operating system functions and
interrupts:

NoOfFragmentLogParts=10
ThreadConfig=ldm={count=10,cpubind=0-4,12-16,thread_prio=9,spintime=200}, \
tc={count=4,cpuset=6-7,18-19,thread_prio=8},send={count=1,cpuset=8}, \
recv={count=1,cpuset=20},main={count=1,cpuset=9,21},rep={count=1,cpuset=9,21}, \
io={count=1,cpuset=9,21,thread_prio=8},watchdog={count=1,cpuset=9,21,thread_prio=9}

The next few examples include settings for idxbld. The first two of these demonstrate how a CPU
set defined for idxbld can overlap those specified for other (permanent) thread types, the first using
cpuset and the second using cpubind:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8},idxbld={cpuset=1-8}

ThreadConfig=main,ldm={count=1,cpubind=1},idxbld={count=1,cpubind=1}

The next example specifies a CPU for the I/O thread, but not for the index build threads:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8}

Since the ThreadConfig setting just shown locks threads to eight cores numbered 1 through 8, it is
equivalent to the setting shown here:

ThreadConfig=main,ldm={count=4,cpuset=1-4},tc={count=4,cpuset=5,6,7}, \
io={cpubind=8},idxbld={cpuset=1,2,3,4,5,6,7,8}

In order to take advantage of the enhanced stability that the use of ThreadConfig offers, it is
necessary to insure that CPUs are isolated, and that they not subject to interrupts, or to being
scheduled for other tasks by the operating system. On many Linux systems, you can do this by setting
IRQBALANCE_BANNED_CPUS in /etc/sysconfig/irqbalance to 0xFFFFF0, and by using the

229

Defining NDB Cluster Data Nodes

isolcpus boot option in grub.conf. For specific information, see your operating system or platform
documentation.

Disk Data Configuration Parameters. Configuration parameters affecting Disk Data behavior include
the following:

• DiskPageBufferEntries

Version (or later) NDB 8.0.13

Type or units 32K pages

Default 10

Range 1 - 1000

Version (or later) NDB 8.0.19

Type or units bytes

Default 64MB

Range 4MB - 16TB

Restart Type N (NDB 8.0.13)

This is the number of page entries (page references) to allocate. It is specified as a number of 32K
pages in DiskPageBufferMemory. The default is sufficient for most cases but you may need to
increase the value of this parameter if you encounter problems with very large transactions on Disk Data
tables. Each page entry requires approximately 100 bytes.

• DiskPageBufferMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 64M

Range 4M - 1T

Version (or later) NDB 8.0.19

Type or units bytes

Default 64M

Range 4M - 16T

Restart Type N (NDB 8.0.13)

This determines the amount of space used for caching pages on disk, and is set in the [ndbd] or [ndbd
default] section of the config.ini file.

Note

Previously, this parameter was specified as a number of 32 KB pages. In NDB
8.0, it is specified as a number of bytes.

If the value for DiskPageBufferMemory is set too low in conjunction with using more than the default
number of LDM threads in ThreadConfig (for example {ldm=6...}), problems can arise when
trying to add a large (for example 500G) data file to a disk-based NDB table, wherein the process takes
indefinitely long while occupying one of the CPU cores.

230

Defining NDB Cluster Data Nodes

This is due to the fact that, as part of adding a data file to a tablespace, extent pages are locked into
memory in an extra PGMAN worker thread, for quick metadata access. When adding a large file,
this worker has insufficient memory for all of the data file metadata. In such cases, you should either
increase DiskPageBufferMemory, or add smaller tablespace files. You may also need to adjust
DiskPageBufferEntries.

You can query the ndbinfo.diskpagebuffer table to help determine whether the value for this
parameter should be increased to minimize unnecessary disk seeks. See Section 6.14.30, “The ndbinfo
diskpagebuffer Table”, for more information.

• SharedGlobalMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 128M

Range 0 - 64T

Restart Type N (NDB 8.0.13)

This parameter determines the amount of memory that is used for log buffers, disk operations (such
as page requests and wait queues), and metadata for tablespaces, log file groups, UNDO files, and
data files. The shared global memory pool also provides memory used for satisfying the memory
requirements of the UNDO_BUFFER_SIZE option used with CREATE LOGFILE GROUP and ALTER
LOGFILE GROUP statements, including any default value implied for this options by the setting of the
InitialLogFileGroup data node configuration parameter. SharedGlobalMemory can be set in the
[ndbd] or [ndbd default] section of the config.ini configuration file, and is measured in bytes.

The default value is 128M.

• DiskIOThreadPool

Version (or later) NDB 8.0.13

Type or units threads

Default 2

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter determines the number of unbound threads used for Disk Data file access. Before
DiskIOThreadPool was introduced, exactly one thread was spawned for each Disk Data
file, which could lead to performance issues, particularly when using very large data files. With
DiskIOThreadPool, you can—for example—access a single large data file using several threads
working in parallel.

This parameter applies to Disk Data I/O threads only.

The optimum value for this parameter depends on your hardware and configuration, and includes these
factors:

• Physical distribution of Disk Data files. You can obtain better performance by placing data files,
undo log files, and the data node file system on separate physical disks. If you do this with some or all

231

https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

Defining NDB Cluster Data Nodes

of these sets of files, then you can (and should) set DiskIOThreadPool higher to enable separate
threads to handle the files on each disk.

In NDB 8.0, you should also disable DiskDataUsingSameDisk when using a separate disk or disks
for Disk Data files; this increases the rate at which checkpoints of Disk Data tablespaces can be
performed.

• Disk performance and types. The number of threads that can be accommodated for Disk
Data file handling is also dependent on the speed and throughput of the disks. Faster disks and
higher throughput allow for more disk I/O threads. Our test results indicate that solid-state disk
drives can handle many more disk I/O threads than conventional disks, and thus higher values for
DiskIOThreadPool.

Decreasing TimeBetweenGlobalCheckpoints is also recommended when using solid-state disk
drives, in particular those using NVMe. See also Disk Data latency parameters.

The default value for this parameter is 2.

• Disk Data file system parameters. The parameters in the following list make it possible to place
NDB Cluster Disk Data files in specific directories without the need for using symbolic links.

• FileSystemPathDD

Version (or later) NDB 8.0.13

Type or units filename

Default FileSystemPath

Range ...

Restart Type IN (NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data data files and undo log files are placed
in the indicated directory. This can be overridden for data files, undo log files, or both, by specifying
values for FileSystemPathDataFiles, FileSystemPathUndoFiles, or both, as explained for
these parameters. It can also be overridden for data files by specifying a path in the ADD DATAFILE
clause of a CREATE TABLESPACE or ALTER TABLESPACE statement, and for undo log files by
specifying a path in the ADD UNDOFILE clause of a CREATE LOGFILE GROUP or ALTER LOGFILE
GROUP statement. If FileSystemPathDD is not specified, then FileSystemPath is used.

If a FileSystemPathDD directory is specified for a given data node (including the case where the
parameter is specified in the [ndbd default] section of the config.ini file), then starting that
data node with --initial causes all files in the directory to be deleted.

• FileSystemPathDataFiles

Version (or later) NDB 8.0.13

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type IN (NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data data files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD DATAFILE clause of a CREATE TABLESPACE or

232

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html

Defining NDB Cluster Data Nodes

ALTER TABLESPACE statement used to create that data file. If FileSystemPathDataFiles is not
specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD has also
not been set).

If a FileSystemPathDataFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

• FileSystemPathUndoFiles

Version (or later) NDB 8.0.13

Type or units filename

Default FileSystemPathDD

Range ...

Restart Type IN (NDB 8.0.13)

If this parameter is specified, then NDB Cluster Disk Data undo log files are placed in the indicated
directory. This overrides any value set for FileSystemPathDD. This parameter can be overridden
for a given data file by specifying a path in the ADD UNDO clause of a CREATE LOGFILE GROUP or
ALTER LOGFILE GROUP statement used to create that data file. If FileSystemPathUndoFiles is
not specified, then FileSystemPathDD is used (or FileSystemPath, if FileSystemPathDD has
also not been set).

If a FileSystemPathUndoFiles directory is specified for a given data node (including the case
where the parameter is specified in the [ndbd default] section of the config.ini file), then
starting that data node with --initial causes all files in the directory to be deleted.

For more information, see Section 6.10.1, “NDB Cluster Disk Data Objects”.

• Disk Data object creation parameters. The next two parameters enable you—when starting the
cluster for the first time—to cause a Disk Data log file group, tablespace, or both, to be created without
the use of SQL statements.

• InitialLogFileGroup

Version (or later) NDB 8.0.13

Type or units string

Default [see documentation]

Range ...

Restart Type S (NDB 8.0.13)

This parameter can be used to specify a log file group that is created when performing an initial start of
the cluster. InitialLogFileGroup is specified as shown here:

InitialLogFileGroup = [name=name;] [undo_buffer_size=size;] file-specification-list

file-specification-list:
 file-specification[; file-specification[; ...]]

file-specification:

233

https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

Defining NDB Cluster Data Nodes

 filename:size

The name of the log file group is optional and defaults to DEFAULT-LG. The undo_buffer_size
is also optional; if omitted, it defaults to 64M. Each file-specification corresponds to an undo
log file, and at least one must be specified in the file-specification-list. Undo log files are
placed according to any values that have been set for FileSystemPath, FileSystemPathDD, and
FileSystemPathUndoFiles, just as if they had been created as the result of a CREATE LOGFILE
GROUP or ALTER LOGFILE GROUP statement.

Consider the following:

InitialLogFileGroup = name=LG1; undo_buffer_size=128M; undo1.log:250M; undo2.log:150M

This is equivalent to the following SQL statements:

CREATE LOGFILE GROUP LG1
 ADD UNDOFILE 'undo1.log'
 INITIAL_SIZE 250M
 UNDO_BUFFER_SIZE 128M
 ENGINE NDBCLUSTER;

ALTER LOGFILE GROUP LG1
 ADD UNDOFILE 'undo2.log'
 INITIAL_SIZE 150M
 ENGINE NDBCLUSTER;

This logfile group is created when the data nodes are started with --initial.

Resources for the initial log file group are added to the global memory pool along with those indicated
by the value of SharedGlobalMemory.

This parameter, if used, should always be set in the [ndbd default] section of the config.ini
file. The behavior of an NDB Cluster when different values are set on different data nodes is not
defined.

• InitialTablespace

Version (or later) NDB 8.0.13

Type or units string

Default [see documentation]

Range ...

Restart Type S (NDB 8.0.13)

This parameter can be used to specify an NDB Cluster Disk Data tablespace that is created when
performing an initial start of the cluster. InitialTablespace is specified as shown here:

InitialTablespace = [name=name;] [extent_size=size;] file-specification-list

The name of the tablespace is optional and defaults to DEFAULT-TS. The extent_size is also
optional; it defaults to 1M. The file-specification-list uses the same syntax as shown with
the InitialLogfileGroup parameter, the only difference being that each file-specification
used with InitialTablespace corresponds to a data file. At least one must be specified in the
file-specification-list. Data files are placed according to any values that have been set for

234

https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

Defining NDB Cluster Data Nodes

FileSystemPath, FileSystemPathDD, and FileSystemPathDataFiles, just as if they had
been created as the result of a CREATE TABLESPACE or ALTER TABLESPACE statement.

For example, consider the following line specifying InitialTablespace in the [ndbd default]
section of the config.ini file (as with InitialLogfileGroup, this parameter should always be
set in the [ndbd default] section, as the behavior of an NDB Cluster when different values are set
on different data nodes is not defined):

InitialTablespace = name=TS1; extent_size=8M; data1.dat:2G; data2.dat:4G

This is equivalent to the following SQL statements:

CREATE TABLESPACE TS1
 ADD DATAFILE 'data1.dat'
 EXTENT_SIZE 8M
 INITIAL_SIZE 2G
 ENGINE NDBCLUSTER;

ALTER TABLESPACE TS1
 ADD DATAFILE 'data2.dat'
 INITIAL_SIZE 4G
 ENGINE NDBCLUSTER;

This tablespace is created when the data nodes are started with --initial, and can be used
whenever creating NDB Cluster Disk Data tables thereafter.

• Disk Data latency parameters. The two parameters listed here can be used to improve handling of
latency issues with NDB Cluster Disk Data tables.

• MaxDiskDataLatency

Version (or later) NDB 8.0.19

Type or units ms

Default 0

Range 0 - 8000

Added NDB 8.0.19

Restart Type N (NDB 8.0.13)

This parameter controls the maximum allowed mean latency for disk access (maximum 8000
milliseconds). When this limit is reached, NDB begins to abort transactions in order to decrease
pressure on the Disk Data I/O subsystem. Use 0 to disable the latency check.

• DiskDataUsingSameDisk

Version (or later) NDB 8.0.19

Type or units boolean

Default true

Range ...

Added NDB 8.0.19

235

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html

Defining NDB Cluster Data Nodes

Restart Type N (NDB 8.0.13)

Set this parameter to false if your Disk Data tablespaces use one or more separate disks. Doing so
allows checkpoints to tablespaces to be executed at a higher rate than normally used for when disks
are shared.

When DiskDataUsingSameDisk is true, NDB decreases the rate of Disk Data checkpointing
whenever an in-memory checkpoint is in progress to help ensure that disk load remains constant.

Disk Data and GCP Stop errors. Errors encountered when using Disk Data tables such as Node
nodeid killed this node because GCP stop was detected (error 2303) are often referred
to as “GCP stop errors”. Such errors occur when the redo log is not flushed to disk quickly enough; this is
usually due to slow disks and insufficient disk throughput.

You can help prevent these errors from occurring by using faster disks, and by placing Disk Data files on a
separate disk from the data node file system. Reducing the value of TimeBetweenGlobalCheckpoints
tends to decrease the amount of data to be written for each global checkpoint, and so may provide some
protection against redo log buffer overflows when trying to write a global checkpoint; however, reducing
this value also permits less time in which to write the GCP, so this must be done with caution.

In addition to the considerations given for DiskPageBufferMemory as explained previously, it is
also very important that the DiskIOThreadPool configuration parameter be set correctly; having
DiskIOThreadPool set too high is very likely to cause GCP stop errors (Bug #37227).

GCP stops can be caused by save or commit timeouts; the TimeBetweenEpochsTimeout data node
configuration parameter determines the timeout for commits. However, it is possible to disable both types
of timeouts by setting this parameter to 0.

Parameters for configuring send buffer memory allocation. Send buffer memory is allocated
dynamically from a memory pool shared between all transporters, which means that the size of the send
buffer can be adjusted as necessary. (Previously, the NDB kernel used a fixed-size send buffer for every
node in the cluster, which was allocated when the node started and could not be changed while the
node was running.) The TotalSendBufferMemory and OverLoadLimit data node configuration
parameters permit the setting of limits on this memory allocation. For more information about the use of
these parameters (as well as SendBufferMemory), see Section 4.3.14, “Configuring NDB Cluster Send
Buffer Parameters”.

• ExtraSendBufferMemory

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any set
using TotalSendBufferMemory, SendBufferMemory, or both.

• TotalSendBufferMemory

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.14, “Configuring NDB Cluster Send Buffer
Parameters”.

See also Section 6.7, “Adding NDB Cluster Data Nodes Online”.

Redo log over-commit handling. It is possible to control a data node's handling of operations when
too much time is taken flushing redo logs to disk. This occurs when a given redo log flush takes longer
than RedoOverCommitLimit seconds, more than RedoOverCommitCounter times, causing any

236

Defining NDB Cluster Data Nodes

pending transactions to be aborted. When this happens, the API node that sent the transaction can handle
the operations that should have been committed either by queuing the operations and re-trying them,
or by aborting them, as determined by DefaultOperationRedoProblemAction. The data node
configuration parameters for setting the timeout and number of times it may be exceeded before the API
node takes this action are described in the following list:

• RedoOverCommitCounter

Version (or later) NDB 8.0.13

Type or units numeric

Default 3

Range 1 - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 8.0.19

Type or units numeric

Default 3

Range 1 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When RedoOverCommitLimit is exceeded when trying to write a given redo log to disk this many
times or more, any transactions that were not committed as a result are aborted, and an API node where
any of these transactions originated handles the operations making up those transactions according to
its value for DefaultOperationRedoProblemAction (by either queuing the operations to be re-tried,
or aborting them).

• RedoOverCommitLimit

Version (or later) NDB 8.0.13

Type or units seconds

Default 20

Range 1 - 4294967039 (0xFFFFFEFF)

Version (or later) NDB 8.0.19

Type or units seconds

Default 20

Range 1 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter sets an upper limit in seconds for trying to write a given redo log to disk before
timing out. The number of times the data node tries to flush this redo log, but takes longer than
RedoOverCommitLimit, is kept and compared with RedoOverCommitCounter, and when
flushing takes too long more times than the value of that parameter, any transactions that were not
committed as a result of the flush timeout are aborted. When this occurs, the API node where any of
these transactions originated handles the operations making up those transactions according to its
DefaultOperationRedoProblemAction setting (it either queues the operations to be re-tried, or
aborts them).

Controlling restart attempts. It is possible to exercise finely-grained control over restart attempts by
data nodes when they fail to start using the MaxStartFailRetries and StartFailRetryDelay data
node configuration parameters.

237

Defining NDB Cluster Data Nodes

MaxStartFailRetries limits the total number of retries made before giving up on starting the data
node, StartFailRetryDelay sets the number of seconds between retry attempts. These parameters
are listed here:

• StartFailRetryDelay

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Use this parameter to set the number of seconds between restart attempts by the data node in the event
on failure on startup. The default is 0 (no delay).

Both this parameter and MaxStartFailRetries are ignored unless StopOnError is equal to 0.

• MaxStartFailRetries

Version (or later) NDB 8.0.13

Type or units unsigned

Default 3

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Use this parameter to limit the number restart attempts made by the data node in the event that it fails on
startup. The default is 3 attempts.

Both this parameter and StartFailRetryDelay are ignored unless StopOnError is equal to 0.

NDB index statistics parameters. The parameters in the following list relate to NDB index statistics
generation.

• IndexStatAutoCreate

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0, 1

Version (or later) NDB 8.0.27

Type or units integer

Default 1

Range 0, 1

Restart Type N (NDB 8.0.13)

Enable (set equal to 1) or disable (set equal to 0) automatic statistics collection when indexes are
created.

• IndexStatAutoUpdate

238

Defining NDB Cluster Data Nodes

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0, 1

Version (or later) NDB 8.0.27

Type or units integer

Default 1

Range 0, 1

Restart Type N (NDB 8.0.13)

Enable (set equal to 1) or disable (set equal to 0) monitoring of indexes for changes, and
trigger automatic statistics updates when these are detected. The degree of change needed
to trigger the updates are determined by the settings for the IndexStatTriggerPct and
IndexStatTriggerScale options.

• IndexStatSaveSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 32768

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 8.0.13)

Maximum space in bytes allowed for the saved statistics of any given index in the NDB system tables and
in the mysqld memory cache.

At least one sample is always produced, regardless of any size limit. This size is scaled by
IndexStatSaveScale.

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatSaveScale

Version (or later) NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 8.0.13)

The size specified by IndexStatSaveSize is scaled by the value of IndexStatTriggerPct for a
large index, times 0.01. This is further multiplied by the logarithm to the base 2 of the index size. Setting
IndexStatTriggerPct equal to 0 disables the scaling effect.

• IndexStatTriggerPct

Version (or later) NDB 8.0.13

239

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining SQL and Other API Nodes in an NDB Cluster

Type or units percentage

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 8.0.13)

Percentage change in updates that triggers an index statistics update. The value is scaled by
IndexStatTriggerScale. You can disable this trigger altogether by setting IndexStatTriggerPct
to 0.

• IndexStatTriggerScale

Version (or later) NDB 8.0.13

Type or units percentage

Default 100

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 8.0.13)

Scale IndexStatTriggerPct by this amount times 0.01 for a large index. A value of 0 disables
scaling.

• IndexStatUpdateDelay

Version (or later) NDB 8.0.13

Type or units seconds

Default 60

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type IN (NDB 8.0.13)

Minimum delay in seconds between automatic index statistics updates for a given index. Setting this
variable to 0 disables any delay. The default is 60 seconds.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.9 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.7 Defining SQL and Other API Nodes in an NDB Cluster

240

Defining SQL and Other API Nodes in an NDB Cluster

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers
(SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL interface to
the cluster, and an [api] section is used for applications other than mysqld processes accessing cluster
data, but the two designations are actually synonymous; you can, for instance, list parameters for a MySQL
server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for NDB Cluster, see Section 4.3.9.1,
“MySQL Server Options for NDB Cluster”. For information about MySQL server
system variables relating to NDB Cluster, see Section 4.3.9.2, “NDB Cluster System
Variables”.

• Id

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 8.0.13)

The Id is an integer value used to identify the node in all cluster internal messages. The permitted range
of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless of the
type of node.

Note

In NDB 8.0, data node IDs must be less than 145. If you plan to deploy a large
number of data nodes, it is a good idea to limit the node IDs for API nodes (and
management nodes) to values greater than 144. (Previously, the maximum
supported value for a data node ID was 48.)

NodeId is the preferred parameter name to use when identifying API nodes. (Id continues to be
supported for backward compatibility, but is now deprecated and generates a warning when used. It is
also subject to future removal.)

• ConnectionMap

Version (or later) NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

Specifies which data nodes to connect.

• NodeId

Version (or later) NDB 8.0.13
241

Defining SQL and Other API Nodes in an NDB Cluster

Type or units unsigned

Default [...]

Range 1 - 255

Restart Type IS (NDB 8.0.13)

The NodeId is an integer value used to identify the node in all cluster internal messages. The permitted
range of values is 1 to 255 inclusive. This value must be unique for each node in the cluster, regardless
of the type of node.

Note

In NDB 8.0, data node IDs must be less than 145. If you plan to deploy a large
number of data nodes, it is a good idea to limit the node IDs for API nodes (and
management nodes) to values greater than 144. (Previously, the maximum
supported value for a data node ID was 48.)

NodeId is the preferred parameter name to use when identifying management nodes. An alias, Id, was
used for this purpose in very old versions of NDB Cluster, and continues to be supported for backward
compatibility; it is now deprecated and generates a warning when used, and is subject to removal in a
future release of NDB Cluster.

• ExecuteOnComputer

Version (or later) NDB 8.0.13

Type or units name

Default [...]

Range ...

Deprecated Yes (in NDB 7.5)

Restart Type S (NDB 8.0.13)

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the
configuration file.

Important

This parameter is deprecated, and is subject to removal in a future release. Use
the HostName parameter instead.

•

The node ID for this node can be given out only to connections that explicitly request it. A management
server that requests “any” node ID cannot use this one. This parameter can be used when running
multiple management servers on the same host, and HostName is not sufficient for distinguishing among
processes. Intended for use in testing.

• HostName

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...242

Defining SQL and Other API Nodes in an NDB Cluster

Restart Type N (NDB 8.0.13)

Specifying this parameter defines the hostname of the computer on which the SQL node (API node) is to
reside. To specify a hostname, either this parameter or ExecuteOnComputer is required.

If no HostName or ExecuteOnComputer is specified in a given [mysql] or [api] section of the
config.ini file, then an SQL or API node may connect using the corresponding “slot” from any host
which can establish a network connection to the management server host machine. This differs from
the default behavior for data nodes, where localhost is assumed for HostName unless otherwise
specified.

• LocationDomainId

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 16

Restart Type S (NDB 8.0.13)

Assigns an SQL or other API node to a specific availability domain (also known as an availability zone)
within a cloud. By informing NDB which nodes are in which availability domains, performance can be
improved in a cloud environment in the following ways:

• If requested data is not found on the same node, reads can be directed to another node in the same
availability domain.

• Communication between nodes in different availability domains are guaranteed to use NDB
transporters' WAN support without any further manual intervention.

• The transporter's group number can be based on which availability domain is used, such that also
SQL and other API nodes communicate with local data nodes in the same availability domain
whenever possible.

• The arbitrator can be selected from an availability domain in which no data nodes are present, or, if no
such availability domain can be found, from a third availability domain.

LocationDomainId takes an integer value between 0 and 16 inclusive, with 0 being the default; using
0 is the same as leaving the parameter unset.

• ArbitrationRank

Version (or later) NDB 8.0.13

Type or units 0-2

Default 0

Range 0 - 2

Restart Type N (NDB 8.0.13)

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal

243

https://docs.us-phoenix-1.oraclecloud.com/Content/General/Concepts/regions.htm

Defining SQL and Other API Nodes in an NDB Cluster

configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the default
for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

By setting ArbitrationRank to 0 on all management and SQL nodes, you can disable arbitration
completely. You can also control arbitration by overriding this parameter; to do so, set the Arbitration
parameter in the [ndbd default] section of the config.ini global configuration file.

• ArbitrationDelay

Version (or later) NDB 8.0.13

Type or units milliseconds

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests are delayed by the stated number of milliseconds. It is usually not necessary to
change this value.

• BatchByteSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 16K

Range 1K - 1M

Restart Type N (NDB 8.0.13)

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in terms
of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual batch size is
limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set.

This parameter is measured in bytes. The default value is 16K.

• BatchSize

Version (or later) NDB 8.0.13

Type or units records

Default 256

Range 1 - 992

Restart Type N (NDB 8.0.13)

This parameter is measured in number of records and is by default set to 256. The maximum size is 992.

• ExtraSendBufferMemory

Version (or later) NDB 8.0.13
244

Defining SQL and Other API Nodes in an NDB Cluster

Type or units bytes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that
has been set using TotalSendBufferMemory, SendBufferMemory, or both.

• HeartbeatThreadPriority

Version (or later) NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

Use this parameter to set the scheduling policy and priority of heartbeat threads for management and
API nodes. The syntax for setting this parameter is shown here:

HeartbeatThreadPriority = policy[, priority]

policy:
 {FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FIFO (first in, first in) or RR (round
robin). This followed optionally by the priority (an integer).

• MaxScanBatchSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 256K

Range 32K - 16M

Restart Type N (NDB 8.0.13)

The batch size is the size of each batch sent from each data node. Most scans are performed in parallel
to protect the MySQL Server from receiving too much data from many nodes in parallel; this parameter
sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

• TotalSendBufferMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 256K - 4294967039 (0xFFFFFEFF)

245

Defining SQL and Other API Nodes in an NDB Cluster

Restart Type N (NDB 8.0.13)

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.14, “Configuring NDB Cluster Send Buffer
Parameters”.

• AutoReconnect

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

This parameter is false by default. This forces disconnected API nodes (including MySQL Servers
acting as SQL nodes) to use a new connection to the cluster rather than attempting to re-use an existing
one, as re-use of connections can cause problems when using dynamically-allocated node IDs. (Bug
#45921)

Note

This parameter can be overridden using the NDB API. For more
information, see Ndb_cluster_connection::set_auto_reconnect(), and
Ndb_cluster_connection::get_auto_reconnect().

• DefaultOperationRedoProblemAction

Version (or later) NDB 8.0.13

Type or units enumeration

Default QUEUE

Range ABORT, QUEUE

Restart Type N (NDB 8.0.13)

This parameter (along with RedoOverCommitLimit and RedoOverCommitCounter) controls
the data node's handling of operations when too much time is taken flushing redo logs to disk. This
occurs when a given redo log flush takes longer than RedoOverCommitLimit seconds, more than
RedoOverCommitCounter times, causing any pending transactions to be aborted.

When this happens, the node can respond in either of two ways, according to the value of
DefaultOperationRedoProblemAction, listed here:

• ABORT: Any pending operations from aborted transactions are also aborted.

• QUEUE: Pending operations from transactions that were aborted are queued up to be re-tried. This
the default. Pending operations are still aborted when the redo log runs out of space—that is, when
P_TAIL_PROBLEM errors occur.

246

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-auto-reconnect
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-auto-reconnect

Defining SQL and Other API Nodes in an NDB Cluster

• DefaultHashMapSize

Version (or later) NDB 8.0.13

Type or units buckets

Default 3840

Range 0 - 3840

Restart Type N (NDB 8.0.13)

The size of the table hash maps used by NDB is configurable using this parameter.
DefaultHashMapSize can take any of three possible values (0, 240, 3840). These values and their
effects are described in the following table.

Table 4.10 DefaultHashMapSize parameter values

Value Description / Effect

0 Use the lowest value set, if any, for this parameter
among all data nodes and API nodes in the cluster;
if it is not set on any data or API node, use the
default value.

240 Old default hash map size

3840 Hash map size used by default in NDB 8.0

The original intended use for this parameter was to facilitate upgrades and downgrades to and from
older NDB Cluster versions, in which the hash map size differed, due to the fact that this change was
not otherwise backward compatible. This is not an issue when upgrading to or downgrading from NDB
Cluster 8.0.

• Wan

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

Use WAN TCP setting as default.

• ConnectBackoffMaxTime

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes. As long as the API node is not connected to any
new data nodes, the value of the StartConnectBackoffMaxTime parameter is applied; otherwise,

247

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Defining SQL and Other API Nodes in an NDB Cluster

ConnectBackoffMaxTime is used to determine the length of time in milliseconds to wait between
connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
ConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up HeartbeatIntervalDbApi for the API node to be notified that this has occurred.

• StartConnectBackoffMaxTime

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

In an NDB Cluster with many unstarted data nodes, the value of this parameter can be raised to
circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes. As long as the API node is not connected to any
new data nodes, the value of the StartConnectBackoffMaxTime parameter is applied; otherwise,
ConnectBackoffMaxTime is used to determine the length of time in milliseconds to wait between
connection attempts.

Time elapsed during node connection attempts is not taken into account when calculating elapsed
time for this parameter. The timeout is applied with approximately 100 ms resolution, starting with
a 100 ms delay; for each subsequent attempt, the length of this period is doubled until it reaches
StartConnectBackoffMaxTime milliseconds, up to a maximum of 100000 ms (100s).

Once the API node is connected to a data node and that node reports (in a heartbeat message) that it
has connected to other data nodes, connection attempts to those data nodes are no longer affected by
this parameter, and are made every 100 ms thereafter until connected. Once a data node has started, it
can take up HeartbeatIntervalDbApi for the API node to be notified that this has occurred.

API Node Debugging Parameters. You can use the ApiVerbose configuration parameter to enable
debugging output from a given API node. This parameter takes an integer value. 0 is the default, and
disables such debugging; 1 enables debugging output to the cluster log; 2 adds DBDICT debugging output
as well. (Bug #20638450) See also DUMP 1229.

You can also obtain information from a MySQL server running as an NDB Cluster SQL node using SHOW
STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+----------------+
| Variable_name | Value |
+-----------------------------+----------------+
Ndb_cluster_node_id	5
Ndb_config_from_host	198.51.100.112
Ndb_config_from_port	1186
Ndb_number_of_storage_nodes	4
+-----------------------------+----------------+
4 rows in set (0.02 sec)

248

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

Defining the System

For information about the status variables appearing in the output from this statement, see Section 4.3.9.3,
“NDB Cluster Status Variables”.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.11 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.8 Defining the System

The [system] section is used for parameters applying to the cluster as a whole. The Name system
parameter is used with MySQL Enterprise Monitor; ConfigGenerationNumber and PrimaryMGMNode
are not used in production environments. Except when using NDB Cluster with MySQL Enterprise Monitor,
is not necessary to have a [system] section in the config.ini file.

More information about these parameters can be found in the following list:

• ConfigGenerationNumber

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Configuration generation number. This parameter is currently unused.

• Name

249

MySQL Server Options and Variables for NDB Cluster

Version (or later) NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

Set a name for the cluster. This parameter is required for deployments with MySQL Enterprise Monitor; it
is otherwise unused.

You can obtain the value of this parameter by checking the Ndb_system_name status variable. In NDB
API applications, you can also retrieve it using get_system_name().

• PrimaryMGMNode

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Node ID of the primary management node. This parameter is currently unused.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.12 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.9 MySQL Server Options and Variables for NDB Cluster

This section provides information about MySQL server options, server and status variables that are specific
to NDB Cluster. For general information on using these, and for other options and variables not specific to
NDB Cluster, see The MySQL Server.

For NDB Cluster configuration parameters used in the cluster configuration file (usually named
config.ini), see Chapter 4, Configuration of NDB Cluster.

4.3.9.1 MySQL Server Options for NDB Cluster

250

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-get-system-name
https://dev.mysql.com/doc/refman/8.0/en/mysqld-server.html

MySQL Server Options and Variables for NDB Cluster

This section provides descriptions of mysqld server options relating to NDB Cluster. For information about
mysqld options not specific to NDB Cluster, and for general information about the use of options with
mysqld, see Server Command Options.

For information about command-line options used with other NDB Cluster processes, see Chapter 5, NDB
Cluster Programs.

• --ndbcluster

Command-Line Format --ndbcluster[=value]

Disabled by skip-ndbcluster

Type Enumeration

Default Value ON

Valid Values OFF

FORCE

The NDBCLUSTER storage engine is necessary for using NDB Cluster. If a mysqld binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the --ndbcluster
option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

The --ndbcluster option is ignored (and the NDB storage engine is not enabled) if --initialize is
also used. (It is neither necessary nor desirable to use this option together with --initialize.)

• --ndb-allow-copying-alter-table=[ON|OFF]

Command-Line Format --ndb-allow-copying-alter-
table[={OFF|ON}]

System Variable ndb_allow_copying_alter_table

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Let ALTER TABLE and other DDL statements use copying operations on NDB tables. Set to OFF to keep
this from happening; doing so may improve performance of critical applications.

• --ndb-applier-allow-skip-epoch

Command-Line Format --ndb-applier-allow-skip-epoch

Introduced 8.0.28-ndb-8.0.28

System Variable ndb_applier_allow_skip_epoch

Scope Global

Dynamic No

SET_VAR Hint Applies No

Use together with --slave-skip-errors to cause NDB to ignore skipped epoch transactions. Has no
effect when used alone. 251

https://dev.mysql.com/doc/refman/8.0/en/server-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_slave-skip-errors

MySQL Server Options and Variables for NDB Cluster

• --ndb-batch-size=#

Command-Line Format --ndb-batch-size

System Variable ndb_batch_size

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 32768

Minimum Value 0

Maximum Value (≥ 8.0.29-ndb-8.0.29) 2147483648

Maximum Value 2147483648

Maximum Value 2147483648

Maximum Value (≤ 8.0.28-ndb-8.0.28) 31536000

This sets the size in bytes that is used for NDB transaction batches.

• --ndb-cluster-connection-pool=#

Command-Line Format --ndb-cluster-connection-pool

System Variable ndb_cluster_connection_pool

System Variable ndb_cluster_connection_pool

Scope Global

Scope Global

Dynamic No

Dynamic No

SET_VAR Hint Applies No

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 63

By setting this option to a value greater than 1 (the default), a mysqld process can use multiple
connections to the cluster, effectively mimicking several SQL nodes. Each connection requires its own
[api] or [mysqld] section in the cluster configuration (config.ini) file, and counts against the
maximum number of API connections supported by the cluster.

Suppose that you have 2 cluster host computers, each running an SQL node whose mysqld process
was started with --ndb-cluster-connection-pool=4; this means that the cluster must have 8 API

252

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

slots available for these connections (instead of 2). All of these connections are set up when the SQL
node connects to the cluster, and are allocated to threads in a round-robin fashion.

This option is useful only when running mysqld on host machines having multiple CPUs, multiple cores,
or both. For best results, the value should be smaller than the total number of cores available on the host
machine. Setting it to a value greater than this is likely to degrade performance severely.

Important

Because each SQL node using connection pooling occupies multiple API node
slots—each slot having its own node ID in the cluster—you must not use a node
ID as part of the cluster connection string when starting any mysqld process that
employs connection pooling.

Setting a node ID in the connection string when using the --ndb-cluster-
connection-pool option causes node ID allocation errors when the SQL node
attempts to connect to the cluster.

• --ndb-cluster-connection-pool-nodeids=list

Command-Line Format --ndb-cluster-connection-pool-nodeids

System Variable ndb_cluster_connection_pool_nodeids

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Set

Default Value

Specifies a comma-separated list of node IDs for connections to the cluster used by an SQL node. The
number of nodes in this list must be the same as the value set for the --ndb-cluster-connection-
pool option.

• --ndb-blob-read-batch-bytes=bytes

Command-Line Format --ndb-blob-read-batch-bytes

System Variable ndb_blob_read_batch_bytes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data reads in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be read within the current
transaction, any pending BLOB read operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB read batching.

253

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

MySQL Server Options and Variables for NDB Cluster

Note

In NDB API applications, you can control BLOB write batching with the
setMaxPendingBlobReadBytes() and getMaxPendingBlobReadBytes()
methods.

• --ndb-blob-write-batch-bytes=bytes

Command-Line Format --ndb-blob-write-batch-bytes

System Variable ndb_blob_write_batch_bytes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 65536

Minimum Value 0

Maximum Value 4294967295

This option can be used to set the size (in bytes) for batching of BLOB data writes in NDB Cluster
applications. When this batch size is exceeded by the amount of BLOB data to be written within the
current transaction, any pending BLOB write operations are immediately executed.

The maximum value for this option is 4294967295; the default is 65536. Setting it to 0 has the effect of
disabling BLOB write batching.

Note

In NDB API applications, you can control BLOB write
batching with the setMaxPendingBlobWriteBytes() and
getMaxPendingBlobWriteBytes() methods.

• --ndb-connectstring=connection_string

Command-Line Format --ndb-connectstring

Type String

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 4.3.3, “NDB Cluster Connection Strings”, for syntax.

• --ndb-default-column-format=[FIXED|DYNAMIC]

Command-Line Format --ndb-default-column-format={FIXED|
DYNAMIC}

System Variable ndb_default_column_format

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

254

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobreadbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobreadbytes
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setmaxpendingblobwritebytes
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-getmaxpendingblobwritebytes
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Default Value FIXED

Valid Values FIXED

DYNAMIC

Sets the default COLUMN_FORMAT and ROW_FORMAT for new tables (see CREATE TABLE Statement).
The default is FIXED.

• --ndb-deferred-constraints=[0|1]

Command-Line Format --ndb-deferred-constraints

System Variable ndb_deferred_constraints

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks on unique indexes are deferred until commit time, where such
checks are supported. 0 is the default.

This option is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• --ndb-schema-dist-timeout=#

Command-Line Format --ndb-schema-dist-timeout=#

Introduced 8.0.17-ndb-8.0.17

System Variable ndb_schema_dist_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 120

Minimum Value 5

Maximum Value 1200

Unit seconds

Specifies the maximum time in seconds that this mysqld waits for a schema operation to complete
before marking it as having timed out.

• --ndb-distribution=[KEYHASH|LINHASH]

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

255

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value KEYHASH

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LINHASH (linear hashing). KEYHASH is the default.

• --ndb-log-apply-status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes a replica mysqld to log any updates received from its immediate source to the
mysql.ndb_apply_status table in its own binary log using its own server ID rather than the server
ID of the source. In a circular or chain replication setting, this allows such updates to propagate to
the mysql.ndb_apply_status tables of any MySQL servers configured as replicas of the current
mysqld.

In a chain replication setup, using this option allows downstream (replica) clusters to be aware of their
positions relative to all of their upstream contributors (sourcess).

In a circular replication setup, this option causes changes to ndb_apply_status tables to complete
the entire circuit, eventually propagating back to the originating NDB Cluster. This also allows a cluster
acting as a replication source to see when its changes (epochs) have been applied to the other clusters
in the circle.

This option has no effect unless the MySQL server is started with the --ndbcluster option.

• --ndb-log-empty-epochs=[ON|OFF]

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

256

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Default Value OFF

Causes epochs during which there were no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is enabled.

By default this option is disabled. Disabling --ndb-log-empty-epochs causes epoch transactions
with no changes not to be written to the binary log, although a row is still written even for an empty epoch
in ndb_binlog_index.

Because --ndb-log-empty-epochs=1 causes the size of the ndb_binlog_index table to increase
independently of the size of the binary log, users should be prepared to manage the growth of this table,
even if they expect the cluster to be idle a large part of the time.

• --ndb-log-empty-update=[ON|OFF]

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes updates that produced no changes to be written to the ndb_apply_status and
ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is enabled.

By default this option is disabled (OFF). Disabling --ndb-log-empty-update causes updates with no
changes not to be written to the binary log.

• --ndb-log-exclusive-reads=[0|1]

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value 0

Starting the server with this option causes primary key reads to be logged with exclusive locks, which
allows for NDB Cluster Replication conflict detection and resolution based on read conflicts. You can
also enable and disable these locks at runtime by setting the value of the ndb_log_exclusive_reads
system variable to 1 or 0, respectively. 0 (disable locking) is the default.

For more information, see Read conflict detection and resolution.

• --ndb-log-fail-terminate

Command-Line Format --ndb-log-fail-terminate

Introduced 8.0.21-ndb-8.0.21

257

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

System Variable ndb_log_fail_terminate

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value FALSE

When this option is specified, and complete logging of all found row events is not possible, the mysqld
process is terminated.

• --ndb-log-orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Log the originating server ID and epoch in the ndb_binlog_index table.

Note

This makes it possible for a given epoch to have multiple rows in
ndb_binlog_index, one for each originating epoch.

For more information, see Section 7.4, “NDB Cluster Replication Schema and Tables”.

• --ndb-log-transaction-id

Command-Line Format --ndb-log-transaction-id[={OFF|ON}]

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Causes a replica mysqld to write the NDB transaction ID in each row of the binary log. The default value
is FALSE.

This option is not supported in mainline MySQL Server 8.0. It is required to enable NDB Cluster
Replication conflict detection and resolution using the NDB$EPOCH_TRANS() function (see NDB

258

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

$EPOCH_TRANS()). For more information, see Section 7.11, “NDB Cluster Replication Conflict
Resolution”.

The deprecated log_bin_use_v1_row_events system variable, which defaults to OFF, must not be
set to ON when you use --ndb-log-transaction-id.

• --ndb-log-update-as-write

Command-Line Format --ndb-log-update-as-write[={OFF|ON}]

System Variable ndb_log_update_as_write

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether updates on the source are written to the binary log as updates (OFF) or writes (ON). When this
option is used to the exclusion of --ndb-log-updated-only and --ndb-log-update-minimal,
operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

UPDATE: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

DELETE: Logged as a DELETE_ROW event with all columns logged in the before image; the after image
is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-log-updated-only

Command-Line Format --ndb-log-updated-only[={OFF|ON}]

System Variable ndb_log_updated_only

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Whether mysqld writes complete rows (ON) or updates only (OFF) to the binary log. When this option
is used to the exclusion of --ndb-log-update-as-write and --ndb-log-update-minimal,
operations of different types are loǵged as described in the following list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns and updated columns present in
both the before and after images.

259

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin_use_v1_row_events
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

• DELETE: Logged as a DELETE_ROW event with primary key columns incuded in the before image; the
after image is not logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information about how these
options interact with one another.

• --ndb-log-update-minimal

Command-Line Format --ndb-log-update-minimal[={OFF|ON}]

System Variable ndb_log_update_minimal

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Log updates in a minimal fashion, by writing only the primary key values in the before image, and only
the changed columns in the after image. This may cause compatibility problems if replicating to storage
engines other than NDB. When this option is used to the exclusion of --ndb-log-updated-only and
--ndb-log-update-as-write, operations of different types are loǵged as described in the following
list:

• INSERT: Logged as a WRITE_ROW event with no before image; the after image is logged with all
columns.

• UPDATE: Logged as an UPDATE_ROW event with primary key columns in the before image; all columns
except primary key columns are logged in the after image.

• DELETE: Logged as a DELETE_ROW event with all columns in the before image; the after image is not
logged.

This option can be used for NDB Replication conflict resolution in combination with the other two NDB
logging options mentioned previously; see ndb_replication Table, for more information.

• --ndb-mgmd-host=host[:port]

Command-Line Format --ndb-mgmd-host=host_name[:port_num]

Type String

Default Value localhost:1186

Can be used to set the host and port number of a single management server for the program to connect
to. If the program requires node IDs or references to multiple management servers (or both) in its
connection information, use the --ndb-connectstring option instead.

• --ndb-nodeid=#

Command-Line Format --ndb-nodeid=#

Status Variable Ndb_cluster_node_id

Scope Global

260

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Dynamic No

Type Integer

Minimum Value 1

Maximum Value 255

Maximum Value 63

Set this MySQL server's node ID in an NDB Cluster.

The --ndb-nodeid option overrides any node ID set with --ndb-connectstring, regardless of the
order in which the two options are used.

In addition, if --ndb-nodeid is used, then either a matching node ID must be found in a [mysqld] or
[api] section of config.ini, or there must be an “open” [mysqld] or [api] section in the file (that
is, a section without a NodeId or Id parameter specified). This is also true if the node ID is specified as
part of the connection string.

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cluster_node_id in the output of SHOW STATUS, and as cluster_node_id in the
connection row of the output of SHOW ENGINE NDBCLUSTER STATUS.

For more information about node IDs for NDB Cluster SQL nodes, see Section 4.3.7, “Defining SQL and
Other API Nodes in an NDB Cluster”.

• --ndbinfo={ON|OFF|FORCE}

Command-Line Format --ndbinfo[=value] (≥ 8.0.13-ndb-8.0.13)

Introduced 8.0.13-ndb-8.0.13

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

Enables the plugin for the ndbinfo information database. By default this is ON whenever NDBCLUSTER
is enabled.

• --ndb-optimization-delay=milliseconds

Command-Line Format --ndb-optimization-delay=#

System Variable ndb_optimization_delay

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 100000

261

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Set the number of milliseconds to wait between sets of rows by OPTIMIZE TABLE statements on NDB
tables. The default is 10.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-transid-mysql-connection-map=state

Command-Line Format --ndb-transid-mysql-connection-
map[=state]

Type Enumeration

Default Value ON

Valid Values ON

OFF

FORCE

Enables or disables the plugin that handles the ndb_transid_mysql_connection_map table in
the INFORMATION_SCHEMA database. Takes one of the values ON, OFF, or FORCE. ON (the default)
enables the plugin. OFF disables the plugin, which makes ndb_transid_mysql_connection_map
inaccessible. FORCE keeps the MySQL Server from starting if the plugin fails to load and start.

You can see whether the ndb_transid_mysql_connection_map table plugin is running by checking
the output of SHOW PLUGINS.

• --ndb-wait-connected=seconds

Command-Line Format --ndb-wait-connected=#

System Variable ndb_wait_connected

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27-ndb-8.0.27) 120

Default Value (≤ 8.0.26-ndb-8.0.26) 30

Default Value 30

Minimum Value 0

Maximum Value 31536000

This option sets the period of time that the MySQL server waits for connections to NDB Cluster
management and data nodes to be established before accepting MySQL client connections. The time is
specified in seconds. The default value is 30.

262

https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

• --ndb-wait-setup=seconds

Command-Line Format --ndb-wait-setup=#

System Variable ndb_wait_setup

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.27-ndb-8.0.27) 120

Default Value (≤ 8.0.26-ndb-8.0.26) 30

Default Value 30

Default Value 15

Default Value 15

Minimum Value 0

Maximum Value 31536000

This variable shows the period of time that the MySQL server waits for the NDB storage engine to
complete setup before timing out and treating NDB as unavailable. The time is specified in seconds. The
default value is 30.

• --skip-ndbcluster

Command-Line Format --skip-ndbcluster

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this storage
engine only if the --ndbcluster option is given explicitly. See Section 4.1, “Quick Test Setup of NDB
Cluster”, for an example.

4.3.9.2 NDB Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific to NDB
Cluster and the NDB storage engine. For system variables not specific to NDB Cluster, see Server System
Variables. For general information on using system variables, see Using System Variables.

• ndb_autoincrement_prefetch_sz

Command-Line Format --ndb-autoincrement-prefetch-sz=#

System Variable ndb_autoincrement_prefetch_sz

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value (≥ 8.0.19-ndb-8.0.19) 512

Default Value (≤ 8.0.18-ndb-8.0.18) 1

Minimum Value 1
263

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/using-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Maximum Value 65536

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization makes inserts faster, but decreases the likelihood of consecutive
autoincrement numbers being used in a batch of inserts.

This variable affects only the number of AUTO_INCREMENT IDs that are fetched between statements;
within a given statement, at least 32 IDs are obtained at a time.

Important

This variable does not affect inserts performed using INSERT ... SELECT.

• ndb_cache_check_time

Command-Line Format --ndb-cache-check-time=#

Deprecated Yes

System Variable ndb_cache_check_time

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

The number of milliseconds that elapse between checks of NDB Cluster SQL nodes by the MySQL
query cache. Setting this to 0 (the default and minimum value) means that the query cache checks for
validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is performed
once per second. A larger value means that the check is performed and possibly invalidated due to
updates on different SQL nodes less often. It is generally not desirable to set this to a value greater than
2000.

Note

The query cache ndb_cache_check_time are deprecated in MySQL 5.7; the
query cache was removed in MySQL 8.0.

• ndb_clear_apply_status

Command-Line Format --ndb-clear-apply-status[={OFF|ON}]

System Variable ndb_clear_apply_status

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

By the default, executing RESET SLAVE causes an NDB Cluster replica to purge all rows from its
ndb_apply_status table. You can disable this by setting ndb_clear_apply_status=OFF.264

https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html

MySQL Server Options and Variables for NDB Cluster

• ndb_conflict_role

Command-Line Format --ndb-conflict-role=value

Introduced 8.0.23-ndb-8.0.23

System Variable ndb_conflict_role

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

PRIMARY

SECONDARY

PASS

Determines the role of this SQL node (and NDB Cluster) in a circular (“active-active”) replication
setup. ndb_slave_conflict_role can take any one of the values PRIMARY, SECONDARY,
PASS, or NULL (the default). The replica SQL thread must be stopped before you can change
ndb_slave_conflict_role. In addition, it is not possible to change directly between PASS and either
of PRIMARY or SECONDARY directly; in such cases, you must ensure that the SQL thread is stopped,
then execute SET @@GLOBAL.ndb_slave_conflict_role = 'NONE' first.

This variable replaces ndb_slave_conflict_role, which is deprecated as of NDB 8.0.23.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• ndb_data_node_neighbour

Command-Line Format --ndb-data-node-neighbour=#

System Variable ndb_data_node_neighbour

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 255

Sets the ID of a “nearest” data node—that is, a preferred nonlocal data node is chosen to execute the
transaction, rather than one running on the same host as the SQL or API node. This used to ensure that

265

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/set-statement.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

when a fully replicated table is accessed, we access it on this data node, to ensure that the local copy of
the table is always used whenever possible. This can also be used for providing hints for transactions.

This can improve data access times in the case of a node that is physically closer than and thus has
higher network throughput than others on the same host.

See Setting NDB Comment Options, for further information.

Note

An equivalent method set_data_node_neighbour() is provided for use in
NDB API applications.

• ndb_dbg_check_shares

Command-Line Format --ndb-dbg-check-shares=#

Introduced 8.0.13-ndb-8.0.13

System Variable ndb_dbg_check_shares

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When set to 1, check that no shares are lingering. Available in debug builds only.

• ndb_default_column_format

Command-Line Format --ndb-default-column-format={FIXED|
DYNAMIC}

System Variable ndb_default_column_format

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value FIXED

Valid Values FIXED

DYNAMIC

Sets the default COLUMN_FORMAT and ROW_FORMAT for new tables (see CREATE TABLE Statement).
The default is FIXED.

• ndb_deferred_constraints

Command-Line Format --ndb-deferred-constraints=#

System Variable ndb_deferred_constraints

266

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-data-node-neighbour
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

MySQL Server Options and Variables for NDB Cluster

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

Controls whether or not constraint checks are deferred, where these are supported. 0 is the default.

This variable is not normally needed for operation of NDB Cluster or NDB Cluster Replication, and is
intended primarily for use in testing.

• ndb_distribution

Command-Line Format --ndb-distribution={KEYHASH|LINHASH}

System Variable ndb_distribution

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value KEYHASH

Valid Values LINHASH

KEYHASH

Controls the default distribution method for NDB tables. Can be set to either of KEYHASH (key hashing) or
LINHASH (linear hashing). KEYHASH is the default.

• ndb_eventbuffer_free_percent

Command-Line Format --ndb-eventbuffer-free-percent=#

System Variable ndb_eventbuffer_free_percent

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 20

Minimum Value 1

Maximum Value 99

Sets the percentage of the maximum memory allocated to the event buffer (ndb_eventbuffer_max_alloc)
that should be available in event buffer after reaching the maximum, before starting to buffer again.

267

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

• ndb_eventbuffer_max_alloc

Command-Line Format --ndb-eventbuffer-max-alloc=#

System Variable ndb_eventbuffer_max_alloc

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0

Minimum Value 0

Maximum Value (≥ 8.0.26-ndb-8.0.26) 9223372036854775807

Maximum Value 9223372036854775807

Maximum Value 9223372036854775807

Maximum Value (≤ 8.0.25-ndb-8.0.25) 4294967295

Sets the maximum amount memory (in bytes) that can be allocated for buffering events by the NDB API.
0 means that no limit is imposed, and is the default.

• ndb_extra_logging

Command-Line Format ndb_extra_logging=#

System Variable ndb_extra_logging

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

This variable enables recording in the MySQL error log of information specific to the NDB storage engine.

When this variable is set to 0, the only information specific to NDB that is written to the MySQL error log
relates to transaction handling. If it set to a value greater than 0 but less than 10, NDB table schema and
connection events are also logged, as well as whether or not conflict resolution is in use, and other NDB
errors and information. If the value is set to 10 or more, information about NDB internals, such as the
progress of data distribution among cluster nodes, is also written to the MySQL error log. The default is
1.

• ndb_force_send

Command-Line Format --ndb-force-send[={OFF|ON}]

System Variable ndb_force_send

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean
268

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Default Value ON

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_fully_replicated

Command-Line Format --ndb-fully-replicated[={OFF|ON}]

System Variable ndb_fully_replicated

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Determines whether new NDB tables are fully replicated. This setting can be overridden for an individual
table using COMMENT="NDB_TABLE=FULLY_REPLICATED=..." in a CREATE TABLE or ALTER
TABLE statement; see Setting NDB Comment Options, for syntax and other information.

• ndb_index_stat_enable

Command-Line Format --ndb-index-stat-enable[={OFF|ON}]

System Variable ndb_index_stat_enable

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Use NDB index statistics in query optimization. The default is ON.

Prior to NDB 8.0.27, starting the server with --ndb-index-stat-enable set to OFF prevented the
creation of the index statistics tables. In NDB 8.0.27 and later, these tables are always created when the
server starts, regardless of this option's value.

• ndb_index_stat_option

Command-Line Format --ndb-index-stat-option=value

System Variable ndb_index_stat_option

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type String

Default Value loop_checkon=1000ms,loop_idle=1000ms,loop_busy=100ms,
update_batch=1,read_batch=4,idle_batch=32,check_batch=32,
check_delay=1m,delete_batch=8,clean_delay=0,error_batch=4,

269

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

error_delay=1m,evict_batch=8,evict_delay=1m,cache_limit=32M,
cache_lowpct=90

This variable is used for providing tuning options for NDB index statistics generation. The list consist
of comma-separated name-value pairs of option names and values, and this list must not contain any
space characters.

Options not used when setting ndb_index_stat_option are not changed from
their default values. For example, you can set ndb_index_stat_option =
'loop_idle=1000ms,cache_limit=32M'.

Time values can be optionally suffixed with h (hours), m (minutes), or s (seconds). Millisecond values
can optionally be specified using ms; millisecond values cannot be specified using h, m, or s.) Integer
values can be suffixed with K, M, or G.

The names of the options that can be set using this variable are shown in the table that follows. The
table also provides brief descriptions of the options, their default values, and (where applicable) their
minimum and maximum values.

Table 4.13 ndb_index_stat_option options and values

Name Description Default/Units Minimum/Maximum

loop_enable 1000 ms 0/4G

loop_idle Time to sleep when idle 1000 ms 0/4G

loop_busy Time to sleep when
more work is waiting

100 ms 0/4G

update_batch 1 0/4G

read_batch 4 1/4G

idle_batch 32 1/4G

check_batch 8 1/4G

check_delay How often to check for
new statistics

10 m 1/4G

delete_batch 8 0/4G

clean_delay 1 m 0/4G

error_batch 4 1/4G

error_delay 1 m 1/4G

evict_batch 8 1/4G

evict_delay Clean LRU cache, from
read time

1 m 0/4G

cache_limit Maximum amount
of memory in bytes
used for cached
index statistics by this
mysqld; clean up the
cache when this is
exceeded.

32 M 0/4G

cache_lowpct 90 0/100

270

MySQL Server Options and Variables for NDB Cluster

Name Description Default/Units Minimum/Maximum

zero_total Setting this to 1 resets
all accumulating
counters in
ndb_index_stat_status
to 0. This option value is
also reset to 0 when this
is done.

0 0/1

• ndb_join_pushdown

System Variable ndb_join_pushdown

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

This variable controls whether joins on NDB tables are pushed down to the NDB kernel (data nodes).
Previously, a join was handled using multiple accesses of NDB by the SQL node; however, when
ndb_join_pushdown is enabled, a pushable join is sent in its entirety to the data nodes, where it
can be distributed among the data nodes and executed in parallel on multiple copies of the data, with

271

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

a single, merged result being returned to mysqld. This can reduce greatly the number of round trips
between an SQL node and the data nodes required to handle such a join.

By default, ndb_join_pushdown is enabled.

Conditions for NDB pushdown joins. In order for a join to be pushable, it must meet the following
conditions:

1. Only columns can be compared, and all columns to be joined must use exactly the same data
type. This means that (for example) a join on an INT column and a BIGINT column also cannot be
pushed down.

Previously, expressions such as t1.a = t2.a + constant could not be pushed down. This
restriction is lifted in NDB 8.0. The result of any operations on any column to be compared must yield
the same type as the column itself.

Expressions comparing columns from the same table can also be pushed down. The columns (or
the result of any operations on those columns) must be of exactly the same type, including the same
signedness, length, character set and collation, precision, and scale, where these are applicable.

2. Queries referencing BLOB or TEXT columns are not supported.

3. Explicit locking is not supported; however, the NDB storage engine's characteristic implicit row-based
locking is enforced.

This means that a join using FOR UPDATE cannot be pushed down.

4. In order for a join to be pushed down, child tables in the join must be accessed using one of the ref,
eq_ref, or const access methods, or some combination of these methods.

Outer joined child tables can only be pushed using eq_ref.

If the root of the pushed join is an eq_ref or const, only child tables joined by eq_ref can be
appended. (A table joined by ref is likely to become the root of another pushed join.)

If the query optimizer decides on Using join cache for a candidate child table, that table cannot
be pushed as a child. However, it may be the root of another set of pushed tables.

5. Joins referencing tables explicitly partitioned by [LINEAR] HASH, LIST, or RANGE currently cannot
be pushed down.

You can see whether a given join can be pushed down by checking it with EXPLAIN; when the join can
be pushed down, you can see references to the pushed join in the Extra column of the output, as
shown in this example:

mysql> EXPLAIN
 -> SELECT e.first_name, e.last_name, t.title, d.dept_name
 -> FROM employees e
 -> JOIN dept_emp de ON e.emp_no=de.emp_no
 -> JOIN departments d ON d.dept_no=de.dept_no
 -> JOIN titles t ON e.emp_no=t.emp_no\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: d
 type: ALL
possible_keys: PRIMARY
 key: NULL
 key_len: NULL

272

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_const
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_const
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_eq_ref
https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/refman/8.0/en/explain.html

MySQL Server Options and Variables for NDB Cluster

 ref: NULL
 rows: 9
 Extra: Parent of 4 pushed join@1
*************************** 2. row ***************************
 id: 1
 select_type: SIMPLE
 table: de
 type: ref
possible_keys: PRIMARY,emp_no,dept_no
 key: dept_no
 key_len: 4
 ref: employees.d.dept_no
 rows: 5305
 Extra: Child of 'd' in pushed join@1
*************************** 3. row ***************************
 id: 1
 select_type: SIMPLE
 table: e
 type: eq_ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: employees.de.emp_no
 rows: 1
 Extra: Child of 'de' in pushed join@1
*************************** 4. row ***************************
 id: 1
 select_type: SIMPLE
 table: t
 type: ref
possible_keys: PRIMARY,emp_no
 key: emp_no
 key_len: 4
 ref: employees.de.emp_no
 rows: 19
 Extra: Child of 'e' in pushed join@1
4 rows in set (0.00 sec)

Note

If inner joined child tables are joined by ref, and the result is ordered or grouped
by a sorted index, this index cannot provide sorted rows, which forces writing to a
sorted tempfile.

Two additional sources of information about pushed join performance are available:

1. The status variables Ndb_pushed_queries_defined, Ndb_pushed_queries_dropped,
Ndb_pushed_queries_executed, and Ndb_pushed_reads.

2. The counters in the ndbinfo.counters table that belong to the DBSPJ kernel block.

• ndb_log_apply_status

Command-Line Format --ndb-log-apply-status[={OFF|ON}]

System Variable ndb_log_apply_status

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

273

https://dev.mysql.com/doc/refman/8.0/en/explain-output.html#jointype_ref
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

A read-only variable which shows whether the server was started with the --ndb-log-apply-status
option.

• ndb_log_bin

Command-Line Format --ndb-log-bin[={OFF|ON}]

System Variable ndb_log_bin

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.16-ndb-8.0.16) OFF

Default Value (≤ 8.0.15-ndb-8.0.15) ON

Causes updates to NDB tables to be written to the binary log. The setting for this variable has no effect if
binary logging is not already enabled on the server using log_bin. In NDB 8.0, ndb_log_bin defaults
to 0 (FALSE).

• ndb_log_binlog_index

Command-Line Format --ndb-log-binlog-index[={OFF|ON}]

System Variable ndb_log_binlog_index

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

Causes a mapping of epochs to positions in the binary log to be inserted into the ndb_binlog_index
table. Setting this variable has no effect if binary logging is not already enabled for the server using
log_bin. (In addition, ndb_log_bin must not be disabled.) ndb_log_binlog_index defaults to 1
(ON); normally, there is never any need to change this value in a production environment.

• ndb_log_empty_epochs

Command-Line Format --ndb-log-empty-epochs[={OFF|ON}]

System Variable ndb_log_empty_epochs

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to 0, epoch transactions with no changes are not written to the binary log,
although a row is still written even for an empty epoch in ndb_binlog_index.

• ndb_log_empty_update

274

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Command-Line Format --ndb-log-empty-update[={OFF|ON}]

System Variable ndb_log_empty_update

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to ON (1), update transactions with no changes are written to the binary log,
even when log_replica_updates or log_slave_updates is enabled.

• ndb_log_exclusive_reads

Command-Line Format --ndb-log-exclusive-reads[={OFF|ON}]

System Variable ndb_log_exclusive_reads

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value 0

This variable determines whether primary key reads are logged with exclusive locks, which allows for
NDB Cluster Replication conflict detection and resolution based on read conflicts. To enable these locks,
set the value of ndb_log_exclusive_reads to 1. 0, which disables such locking, is the default.

For more information, see Read conflict detection and resolution.

• ndb_log_orig

Command-Line Format --ndb-log-orig[={OFF|ON}]

System Variable ndb_log_orig

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Shows whether the originating server ID and epoch are logged in the ndb_binlog_index table. Set
using the --ndb-log-orig server option.

• ndb_log_transaction_id

System Variable ndb_log_transaction_id

Scope Global

Dynamic No

275

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

This read-only, Boolean system variable shows whether a replica mysqld writes NDB transaction IDs
in the binary log (required to use “active-active” NDB Cluster Replication with NDB$EPOCH_TRANS()
conflict detection). To change the setting, use the --ndb-log-transaction-id option.

ndb_log_transaction_id is not supported in mainline MySQL Server 8.0.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• ndb_metadata_check

Command-Line Format --ndb-metadata-check[={OFF|ON}]

Introduced 8.0.16-ndb-8.0.16

System Variable ndb_metadata_check

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

NDB uses a background thread to check for metadata changes each
ndb_metadata_check_interval seconds as compared with the MySQL data dictionary. This
metadata change detection thread can be disabled by setting ndb_metadata_check to OFF. The
thread is enabled by default.

• ndb_metadata_check_interval

Command-Line Format --ndb-metadata-check-interval=#

Introduced 8.0.16-ndb-8.0.16

System Variable ndb_metadata_check_interval

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 60

Minimum Value 0

Maximum Value 31536000

Unit seconds

NDB runs a metadata change detection thread in the background to determine when the NDB dictionary
has changed with respect to the MySQL data dictionary. By default,the interval between such checks is
60 seconds; this can be adjusted by setting the value of ndb_metadata_check_interval. To enable
or disable the thread, use ndb_metadata_check.

276

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

• ndb_metadata_sync

Introduced 8.0.19-ndb-8.0.19

System Variable ndb_metadata_sync

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value false

Setting this variable causes the change monitor thread to override any values set for
ndb_metadata_check or ndb_metadata_check_interval, and to enter a period of continuous
change detection. When the thread ascertains that there are no more changes to be detected,
it stalls until the binary logging thread has finished synchronization of all detected objects.
ndb_metadata_sync is then set to false, and the change monitor thread reverts to the behavior
determined by the settings for ndb_metadata_check and ndb_metadata_check_interval.

In NDB 8.0.22 and later, setting this variable to true causes the list of excluded objects to be cleared,
and setting it to false clears the list of objects to be retried.

• ndb_optimized_node_selection

Command-Line Format --ndb-optimized-node-selection=#

System Variable ndb_optimized_node_selection

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 3

Minimum Value 0

Maximum Value 3

There are two forms of optimized node selection, described here:

1. The SQL node uses promixity to determine the transaction coordinator; that is, the “closest” data
node to the SQL node is chosen as the transaction coordinator. For this purpose, a data node having
a shared memory connection with the SQL node is considered to be “closest” to the SQL node; the
next closest (in order of decreasing proximity) are: TCP connection to localhost, followed by TCP
connection from a host other than localhost.

2. The SQL thread uses distribution awareness to select the data node. That is, the data node housing
the cluster partition accessed by the first statement of a given transaction is used as the transaction

277

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

coordinator for the entire transaction. (This is effective only if the first statement of the transaction
accesses no more than one cluster partition.)

This option takes one of the integer values 0, 1, 2, or 3. 3 is the default. These values affect node
selection as follows:

• 0: Node selection is not optimized. Each data node is employed as the transaction coordinator 8 times
before the SQL thread proceeds to the next data node.

• 1: Proximity to the SQL node is used to determine the transaction coordinator.

• 2: Distribution awareness is used to select the transaction coordinator. However, if the first statement
of the transaction accesses more than one cluster partition, the SQL node reverts to the round-robin
behavior seen when this option is set to 0.

• 3: If distribution awareness can be employed to determine the transaction coordinator, then it is used;
otherwise proximity is used to select the transaction coordinator. (This is the default behavior.)

Proximity is determined as follows:

1. Start with the value set for the Group parameter (default 55).

2. For an API node sharing the same host with other API nodes, decrement the value by 1. Assuming
the default value for Group, the effective value for data nodes on same host as the API node is 54,
and for remote data nodes 55.

3. Setting ndb_data_node_neighbour further decreases the effective Group value by 50, causing
this node to be regarded as the nearest node. This is needed only when all data nodes are on hosts
other than that hosts the API node and it is desirable to dedicate one of them to the API node. In
normal cases, the default adjustment described previously is sufficient.

Frequent changes in ndb_data_node_neighbour are not advisable, since this changes the state
of the cluster connection and thus may disrupt the selection algorithm for new transactions from each
thread until it stablilizes.

• ndb_read_backup

Command-Line Format --ndb-read-backup[={OFF|ON}]

System Variable ndb_read_backup

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.19-ndb-8.0.19) ON

Default Value (≤ 8.0.18-ndb-8.0.18) OFF

Enable read from any fragment replica for any NDB table subsequently created; doing so greatly
improves the table read performance at a relatively small cost to writes.

If the SQL node and the data node use the same host name or IP address, this fact is detected
automatically, so that the preference is to send reads to the same host. If these nodes are on the same

278

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

host but use different IP addresses, you can tell the SQL node to use the correct data node by setting
the value of ndb_data_node_neighbour on the SQL node to the node ID of the data node.

To enable or disable read from any fragment replica for an individual table, you can set the NDB_TABLE
option READ_BACKUP for the table accordingly, in a CREATE TABLE or ALTER TABLE statement; see
Setting NDB Comment Options, for more information.

• ndb_recv_thread_activation_threshold

Command-Line Format --ndb-recv-thread-activation-
threshold=#

System Variable ndb_recv_thread_activation_threshold

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 8

Minimum Value 0 (MIN_ACTIVATION_THRESHOLD)

Maximum Value 16 (MAX_ACTIVATION_THRESHOLD)

When this number of concurrently active threads is reached, the receive thread takes over polling of the
cluster connection.

This variable is global in scope. It can also be set at startup.

• ndb_recv_thread_cpu_mask

Command-Line Format --ndb-recv-thread-cpu-mask=mask

System Variable ndb_recv_thread_cpu_mask

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Bitmap

Default Value [empty]

CPU mask for locking receiver threads to specific CPUs. This is specified as a hexadecimal bitmask. For
example, 0x33 means that one CPU is used per receiver thread. An empty string is the default; setting
ndb_recv_thread_cpu_mask to this value removes any receiver thread locks previously set.

This variable is global in scope. It can also be set at startup.

• ndb_report_thresh_binlog_epoch_slip

Command-Line Format --ndb-report-thresh-binlog-epoch-
slip=#

System Variable ndb_report_thresh_binlog_epoch_slip

Scope Global

Dynamic Yes 279

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 256

This represents the threshold for the number of epochs completely buffered in the event buffer, but
not yet consumed by the binlog injector thread. When this degree of slippage (lag) is exceeded, an
event buffer status message is reported, with BUFFERED_EPOCHS_OVER_THRESHOLD supplied
as the reason (see Section 6.2.3, “Event Buffer Reporting in the Cluster Log”). Slip is increased
when an epoch is received from data nodes and buffered completely in the event buffer; it is
decreased when an epoch is consumed by the binlog injector thread, it is reduced. Empty epochs
are buffered and queued, and so included in this calculation only when this is enabled using the
Ndb::setEventBufferQueueEmptyEpoch() method from the NDB API.

• ndb_report_thresh_binlog_mem_usage

Command-Line Format --ndb-report-thresh-binlog-mem-
usage=#

System Variable ndb_report_thresh_binlog_mem_usage

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 10

This is a threshold on the percentage of free memory remaining before reporting binary log status. For
example, a value of 10 (the default) means that if the amount of available memory for receiving binary
log data from the data nodes falls below 10%, a status message is sent to the cluster log.

• ndb_row_checksum

System Variable ndb_row_checksum

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 1

Minimum Value 0

Maximum Value 1

Traditionally, NDB has created tables with row checksums, which checks for hardware issues at the
expense of performance. Setting ndb_row_checksum to 0 means that row checksums are not used
for new or altered tables, which has a significant impact on performance for all types of queries. This
variable is set to 1 by default, to provide backward-compatible behavior.

280

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

• ndb_schema_dist_lock_wait_timeout

Command-Line Format --ndb-schema-dist-lock-wait-
timeout=value

Introduced 8.0.18-ndb-8.0.18

System Variable ndb_schema_dist_lock_wait_timeout

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 30

Minimum Value 0

Maximum Value 1200

Unit seconds

Number of seconds to wait during schema distribution for the metadata lock taken on each SQL node in
order to change its local data dictionary to reflect the DDL statement change. After this time has elapsed,
a warning is returned to the effect that a given SQL node's data dictionary was not updated with the
change. This avoids having the binary logging thread wait an excessive length of time while handling
schema operations.

• ndb_schema_dist_timeout

Command-Line Format --ndb-schema-dist-timeout=value

Introduced 8.0.16-ndb-8.0.16

System Variable ndb_schema_dist_timeout

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Integer

Default Value 120

Minimum Value 5

Maximum Value 1200

Unit seconds

Number of seconds to wait before detecting a timeout during schema distribution. This can indicate that
other SQL nodes are experiencing excessive activity, or that they are somehow being prevented from
acquiring necessary resources at this time.

• ndb_schema_dist_upgrade_allowed

Command-Line Format --ndb-schema-dist-upgrade-
allowed=value

Introduced 8.0.17-ndb-8.0.17

System Variable ndb_schema_dist_upgrade_allowed

281

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type Boolean

Default Value true

Allow upgrading of the schema distribution table when connecting to NDB. When true (the default), this
change is deferred until all SQL nodes have been upgraded to the same version of the NDB Cluster
software.

Note

The performance of the schema distribution may be somewhat degraded until the
upgrade has been performed.

• ndb_show_foreign_key_mock_tables

Command-Line Format --ndb-show-foreign-key-mock-
tables[={OFF|ON}]

System Variable ndb_show_foreign_key_mock_tables

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Show the mock tables used by NDB to support foreign_key_checks=0. When this is enabled, extra
warnings are shown when creating and dropping the tables. The real (internal) name of the table can be
seen in the output of SHOW CREATE TABLE.

• ndb_slave_conflict_role

Command-Line Format --ndb-slave-conflict-role=value

Deprecated 8.0.23-ndb-8.0.23

System Variable ndb_slave_conflict_role

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Enumeration

Default Value NONE

Valid Values NONE

PRIMARY

SECONDARY

282

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_foreign_key_checks
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

PASS

Deprecated in NDB 8.0.23, and subject to removal in a future release. Use ndb_conflict_role
instead.

• ndb_table_no_logging

System Variable ndb_table_no_logging

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When this variable is set to ON or 1, it causes NDB tables not to be checkpointed to disk. More
specifically, this setting applies to tables which are created or altered using ENGINE NDB when
ndb_table_no_logging is enabled, and continues to apply for the lifetime of the table, even if
ndb_table_no_logging is later changed. Suppose that A, B, C, and D are tables that we create (and
perhaps also alter), and that we also change the setting for ndb_table_no_logging as shown here:

SET @@ndb_table_no_logging = 1;

CREATE TABLE A ... ENGINE NDB;

CREATE TABLE B ... ENGINE MYISAM;
CREATE TABLE C ... ENGINE MYISAM;

ALTER TABLE B ENGINE NDB;

SET @@ndb_table_no_logging = 0;

CREATE TABLE D ... ENGINE NDB;
ALTER TABLE C ENGINE NDB;

SET @@ndb_table_no_logging = 1;

After the previous sequence of events, tables A and B are not checkpointed; A was created with ENGINE
NDB and B was altered to use NDB, both while ndb_table_no_logging was enabled. However,
tables C and D are logged; C was altered to use NDB and D was created using ENGINE NDB, both while
ndb_table_no_logging was disabled. Setting ndb_table_no_logging back to 1 or ON does not
cause table C or D to be checkpointed.

Note

ndb_table_no_logging has no effect on the creation of NDB table schema
files; to suppress these, use ndb_table_temporary instead.

• ndb_table_temporary

System Variable ndb_table_temporary

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

283

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Type Boolean

Default Value OFF

When set to ON or 1, this variable causes NDB tables not to be written to disk: This means that no table
schema files are created, and that the tables are not logged.

Note

Setting this variable currently has no effect. This is a known issue; see Bug
#34036.

• ndb_use_copying_alter_table

System Variable ndb_use_copying_alter_table

Scope Global, Session

Dynamic No

SET_VAR Hint Applies No

Forces NDB to use copying of tables in the event of problems with online ALTER TABLE operations. The
default value is OFF.

• ndb_use_exact_count

System Variable ndb_use_exact_count

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this type of
query. The default value is OFF, which allows for faster queries overall.

• ndb_use_transactions

Command-Line Format --ndb-use-transactions[={OFF|ON}]

System Variable ndb_use_transactions

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value ON

You can disable NDB transaction support by setting this variable's values to OFF (not recommended).
The default is ON.

• ndb_version

System Variable ndb_version

284

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value

NDB engine version, as a composite integer.

• ndb_version_string

System Variable ndb_version_string

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value

NDB engine version in ndb-x.y.z format.

• replica_allow_batching

Command-Line Format --replica-allow-batching[={OFF|ON}]

Introduced 8.0.26-ndb-8.0.26

System Variable replica_allow_batching

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.30-ndb-8.0.30) ON

Default Value (≤ 8.0.29-ndb-8.0.29) OFF

Whether or not batched updates are enabled on NDB Cluster replicas. Beginning with NDB 8.0.26, you
should use replica_allow_batching in place of slave_allow_batching, which is deprecated in
that release.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, replica_allow_batching is enabled by default in
NDB 8.0.30 and later.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 8.0, it is present but does nothing. For more information, see Section 7.6, “Starting NDB Cluster
Replication (Single Replication Channel)”.

• ndb_replica_batch_size

Command-Line Format --ndb-replica-batch-size=#

Introduced 8.0.30-ndb-8.0.30 285

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

MySQL Server Options and Variables for NDB Cluster

System Variable ndb_replica_batch_size

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2147483648

Minimum Value 0

Maximum Value 2147483648

Determines the batch size in bytes used for writes applied on the replica. In NDB 8.0.30 and later, set
this variable rather than the --ndb-batch-size option to apply this setting to the replica, exclusive of
any other sessions.

• ndb_replica_blob_write_batch_bytes

Command-Line Format --ndb-replica-blob-write-batch-
bytes=#

Introduced 8.0.30-ndb-8.0.30

System Variable ndb_replica_blob_write_batch_bytes

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 2147483648

Minimum Value 0

Maximum Value 2147483648

Control the batch write size used for blob data by the replication applier.

Beginning with NDB 8.0.30, you should set this variable rather than the --ndb-blob-write-batch-
bytes option to control the blob batch write size on the replica, exclusive of any other sessions. The
reason for this is that, when ndb_replica_blob_write_batch_bytesis not set,the effective blob
batch size (that is, the maximum number of pending bytes to write for blob columns) is determined by the
maximum of the default value of ndb_replica_blob_write_batch_bytes and the value set for --
ndb-blob-write-batch-bytes.

Setting ndb_replica_blob_write_batch_bytes to 0 means that NDB imposes no limit on the size
of blob batch writes on the replica.

• server_id_bits

Command-Line Format --server-id-bits=#

System Variable server_id_bits

Scope Global

Dynamic No

SET_VAR Hint Applies No

286

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Type Integer

Default Value 32

Minimum Value 7

Maximum Value 32

This variable indicates the number of least significant bits within the 32-bit server_id which actually
identify the server. Indicating that the server is actually identified by fewer than 32 bits makes it possible
for some of the remaining bits to be used for other purposes, such as storing user data generated by
applications using the NDB API's Event API within the AnyValue of an OperationOptions structure
(NDB Cluster uses the AnyValue to store the server ID).

When extracting the effective server ID from server_id for purposes such as detection of replication
loops, the server ignores the remaining bits. The server_id_bits variable is used to mask out any
irrelevant bits of server_id in the I/O and SQL threads when deciding whether an event should be
ignored based on the server ID.

This data can be read from the binary log by mysqlbinlog, provided that it is run with its own
server_id_bits variable set to 32 (the default).

If the value of server_id greater than or equal to 2 to the power of server_id_bits; otherwise,
mysqld refuses to start.

This system variable is supported only by NDB Cluster. It is not supported in the standard MySQL 8.0
Server.

• slave_allow_batching

Command-Line Format --slave-allow-batching[={OFF|ON}]

Deprecated 8.0.26-ndb-8.0.26

System Variable slave_allow_batching

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value (≥ 8.0.30-ndb-8.0.30) ON

Default Value (≤ 8.0.29-ndb-8.0.29) OFF

Whether or not batched updates are enabled on NDB Cluster replicas. Beginning with NDB 8.0.26, this
variable is deprecated, and you should use replica_allow_batching instead.

Allowing batched updates on the replica greatly improves performance, particularly when replicating
TEXT, BLOB, and JSON columns. For this reason, replica_allow_batching is ON by default in NDB
8.0.30 and later. Also beginning with NDB 8.0.30, a warning is issued whenever this variable is set to
OFF.

Setting this variable has an effect only when using replication with the NDB storage engine; in MySQL
Server 8.0, it is present but does nothing. For more information, see Section 7.6, “Starting NDB Cluster
Replication (Single Replication Channel)”.

287

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-operationoptions
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html

MySQL Server Options and Variables for NDB Cluster

• transaction_allow_batching

System Variable transaction_allow_batching

Scope Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

When set to 1 or ON, this variable enables batching of statements within the same transaction. To
use this variable, autocommit must first be disabled by setting it to 0 or OFF; otherwise, setting
transaction_allow_batching has no effect.

It is safe to use this variable with transactions that performs writes only, as having it enabled can lead to
reads from the “before” image. You should ensure that any pending transactions are committed (using
an explicit COMMIT if desired) before issuing a SELECT.

Important

transaction_allow_batching should not be used whenever there is the
possibility that the effects of a given statement depend on the outcome of a
previous statement within the same transaction.

This variable is currently supported for NDB Cluster only.

The system variables in the following list all relate to the ndbinfo information database.

• ndbinfo_database

System Variable ndbinfo_database

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value ndbinfo

Shows the name used for the NDB information database; the default is ndbinfo. This is a read-only
variable whose value is determined at compile time.

• ndbinfo_max_bytes

Command-Line Format --ndbinfo-max-bytes=#

System Variable ndbinfo_max_bytes

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 0288

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

Used in testing and debugging only.

• ndbinfo_max_rows

Command-Line Format --ndbinfo-max-rows=#

System Variable ndbinfo_max_rows

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Integer

Default Value 10

Used in testing and debugging only.

• ndbinfo_offline

System Variable ndbinfo_offline

Scope Global

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Place the ndbinfo database into offline mode, in which tables and views can be opened even when
they do not actually exist, or when they exist but have different definitions in NDB. No rows are returned
from such tables (or views).

• ndbinfo_show_hidden

Command-Line Format --ndbinfo-show-hidden[={OFF|ON}]

System Variable ndbinfo_show_hidden

Scope Global, Session

Dynamic Yes

SET_VAR Hint Applies No

Type Boolean

Default Value OFF

Valid Values ON

289

https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var

MySQL Server Options and Variables for NDB Cluster

OFF

Whether or not the ndbinfo database's underlying internal tables are shown in the mysql client. The
default is OFF.

Note

When ndbinfo_show_hidden is enabled, the internal tables are shown
in the ndbinfo database only; they are not visible in TABLES or other
INFORMATION_SCHEMA tables, regardless of the variable's setting.

• ndbinfo_table_prefix

System Variable ndbinfo_table_prefix

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value ndb$

The prefix used in naming the ndbinfo database's base tables (normally hidden, unless exposed by
setting ndbinfo_show_hidden). This is a read-only variable whose default value is ndb$; the prefix
itself is determined at compile time.

• ndbinfo_version

System Variable ndbinfo_version

Scope Global

Dynamic No

SET_VAR Hint Applies No

Type String

Default Value

Shows the version of the ndbinfo engine in use; read-only.

4.3.9.3 NDB Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to NDB Cluster
and the NDB storage engine. For status variables not specific to NDB Cluster, and for general information
on using status variables, see Server Status Variables.

• Handler_discover

The MySQL server can ask the NDBCLUSTER storage engine if it knows about a table with a given name.
This is called discovery. Handler_discover indicates the number of times that tables have been
discovered using this mechanism.

• Ndb_api_adaptive_send_deferred_count

Number of adaptive send calls that were not actually sent.

290

https://dev.mysql.com/doc/refman/8.0/en/information-schema-tables-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/optimizer-hints.html#optimizer-hints-set-var
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_session

Number of adaptive send calls that were not actually sent.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_replica

Number of adaptive send calls that were not actually sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_deferred_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_adaptive_send_deferred_count_replica instead.

Number of adaptive send calls that were not actually sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count

Number of adaptive send calls using forced-send sent by this MySQL Server (SQL node).

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_session

Number of adaptive send calls using forced-send sent in this client session.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_replica

Number of adaptive send calls using forced-send sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_forced_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_adaptive_send_forced_count_replica instead.

Number of adaptive send calls using forced-send sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count

Number of adaptive send calls without forced-send sent by this MySQL server (SQL node).

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

291

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_adaptive_send_unforced_count_session

Number of adaptive send calls without forced-send sent in this client session.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_replica

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_adaptive_send_unforced_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_adaptive_send_unforced_count_replica instead.

Number of adaptive send calls without forced-send sent by this replica.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_session

Amount of data (in bytes) sent to the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_replica

Amount of data (in bytes) sent to the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_sent_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_bytes_sent_count_replica
instead.

Amount of data (in bytes) sent to the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

292

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_bytes_sent_count

Amount of data (in bytes) sent to the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_session

Amount of data (in bytes) received from the data nodes in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_replica

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_bytes_received_count_replica
instead.

Amount of data (in bytes) received from the data nodes by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_bytes_received_count

Amount of data (in bytes) received from the data nodes by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count_injector

The number of row change events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

293

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_data_count

The number of row change events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count_injector

The number of events received, other than row change events, by the NDB binary log injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_nondata_count

The number of events received, other than row change events, by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count_injector

The number of bytes of events received by the NDB binlog injector thread.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_event_bytes_count

The number of bytes of events received by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_session

The number of operations in this client session based on or using primary keys. This includes operations
on blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
294

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_pk_op_count_replica

The number of operations by this replica based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_pk_op_count_replica instead.

The number of operations by this replica based on or using primary keys. This includes operations on
blob tables, implicit unlock operations, and auto-increment operations, as well as user-visible primary
key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_pk_op_count

The number of operations by this MySQL Server (SQL node) based on or using primary keys. This
includes operations on blob tables, implicit unlock operations, and auto-increment operations, as well as
user-visible primary key operations.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_session

The number of scans in this client session that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count_replica

The number of scans by this replica that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
295

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_pruned_scan_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_pruned_scan_count_replica
instead.

The number of scans by this replica that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_pruned_scan_count

The number of scans by this MySQL Server (SQL node) that have been pruned to a single partition.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_session

The number of range scans that have been started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_replica

The number of range scans that have been started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_range_scan_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_range_scan_count_replica
instead.

The number of range scans that have been started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
296

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_range_scan_count

The number of range scans that have been started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_replica

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_read_row_count_replica instead.

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

You should be aware that this value may not be completely accurate with regard to rows read by
SELECT COUNT(*) queries, due to the fact that, in this case, the MySQL server actually reads
pseudo-rows in the form [table fragment ID]:[number of rows in fragment] and
sums the rows per fragment for all fragments in the table to derive an estimated count for all rows.
Ndb_api_read_row_count uses this estimate and not the actual number of rows in the table.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

297

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_session

The number of batches of rows received in this client session. 1 batch is defined as 1 set of scan results
from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_replica

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results from a
single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_scan_batch_count_replica
instead.

The number of batches of rows received by this replica. 1 batch is defined as 1 set of scan results from a
single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_scan_batch_count

The number of batches of rows received by this MySQL Server (SQL node). 1 batch is defined as 1 set
of scan results from a single fragment.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

298

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_table_scan_count_session

The number of table scans that have been started in this client session, including scans of internal
tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_replica

The number of table scans that have been started by this replica, including scans of internal tables.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_table_scan_count_replica
instead.

The number of table scans that have been started by this replica, including scans of internal tables.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_table_scan_count

The number of table scans that have been started by this MySQL Server (SQL node), including scans of
internal tables,.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_session

The number of transactions aborted in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

299

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_trans_abort_count_replica

The number of transactions aborted by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_abort_count_replica
instead.

The number of transactions aborted by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_abort_count

The number of transactions aborted by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_session

The number of transactions closed in this client session. This value may be greater than the sum of
Ndb_api_trans_commit_count_session and Ndb_api_trans_abort_count_session, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_replica

The number of transactions closed by this replica. This value may be greater than the sum of
Ndb_api_trans_commit_count_replica and Ndb_api_trans_abort_count_replica, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count_slave

300

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_close_count_replica
instead.

The number of transactions closed by this replica. This value may be greater than the sum of
Ndb_api_trans_commit_count_replica and Ndb_api_trans_abort_count_replica, since
some transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_close_count

The number of transactions closed by this MySQL Server (SQL node). This value may be greater than
the sum of Ndb_api_trans_commit_count and Ndb_api_trans_abort_count, since some
transactions may have been rolled back.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_session

The number of transactions committed in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_replica

The number of transactions committed by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_commit_count_replica
instead.

The number of transactions committed by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

301

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_commit_count

The number of transactions committed by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_session

The total number of rows that have been read in this client session. This includes all rows read by any
primary key, unique key, or scan operation made in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_replica

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_trans_local_read_row_count_replica instead.

The total number of rows that have been read by this replica. This includes all rows read by any primary
key, unique key, or scan operation made by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_local_read_row_count

The total number of rows that have been read by this MySQL Server (SQL node). This includes all rows
read by any primary key, unique key, or scan operation made by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

302

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_trans_start_count_session

The number of transactions started in this client session.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_replica

The number of transactions started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_trans_start_count_replica
instead.

The number of transactions started by this replica.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_trans_start_count

The number of transactions started by this MySQL Server (SQL node).

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_session

The number of operations in this client session based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

303

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_uk_op_count_replica

The number of operations by this replica based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_uk_op_count_replica instead.

The number of operations by this replica based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_uk_op_count

The number of operations by this MySQL Server (SQL node) based on or using unique keys.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_session

The number of times a thread has been blocked in this client session while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count_replica

The number of times a thread has been blocked by this replica while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

304

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_wait_exec_complete_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_wait_exec_complete_count_replica instead.

The number of times a thread has been blocked by this replica while waiting for execution of an
operation to complete. This includes all execute() calls as well as implicit executes for blob and auto-
increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_exec_complete_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for
execution of an operation to complete. This includes all execute() calls as well as implicit executes for
blob and auto-increment operations not visible to clients.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_session

The number of times a thread has been blocked in this client session waiting for a metadata-based
signal, such as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_replica

The number of times a thread has been blocked by this replica waiting for a metadata-based signal, such
as is expected for DDL requests, new epochs, and seizure of transaction records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_wait_meta_request_count_replica instead.

The number of times a thread has been blocked by this replica waiting for a metadata-based signal, such
as is expected for DDL requests, new epochs, and seizure of transaction records.

305

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_meta_request_count

The number of times a thread has been blocked by this MySQL Server (SQL node) waiting for a
metadata-based signal, such as is expected for DDL requests, new epochs, and seizure of transaction
records.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_session

Total time (in nanoseconds) spent in this client session waiting for any type of signal from the data
nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_replica

Total time (in nanoseconds) spent by this replica waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_nanos_count_slave

Note

Deprecated in NDB 8.0.23; use Ndb_api_wait_nanos_count_replica
instead.

Total time (in nanoseconds) spent by this replica waiting for any type of signal from the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

306

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_api_wait_nanos_count

Total time (in nanoseconds) spent by this MySQL Server (SQL node) waiting for any type of signal from
the data nodes.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_session

The number of times a thread has been blocked in this client session while waiting for a scan-based
signal, such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
relates to the current session only, and is not affected by any other clients of this mysqld.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_replica

The number of times a thread has been blocked by this replica while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count_slave

Note

Deprecated in NDB 8.0.23; use
Ndb_api_wait_scan_result_count_replica instead.

The number of times a thread has been blocked by this replica while waiting for a scan-based signal,
such as when waiting for more results from a scan, or when waiting for a scan to close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope. If this MySQL server does not act as a replica, or does not use NDB tables,
this value is always 0.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.

• Ndb_api_wait_scan_result_count

The number of times a thread has been blocked by this MySQL Server (SQL node) while waiting for a
scan-based signal, such as when waiting for more results from a scan, or when waiting for a scan to
close.

Although this variable can be read using either SHOW GLOBAL STATUS or SHOW SESSION STATUS, it
is effectively global in scope.

For more information, see Section 6.13, “NDB API Statistics Counters and Variables”.
307

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_cluster_node_id

If the server is acting as an NDB Cluster node, then the value of this variable its node ID in the cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of an NDB Cluster, the value of this variable is the host name or IP address of the
Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is an empty string.

• Ndb_config_from_port

If the server is part of an NDB Cluster, the value of this variable is the number of the port through which it
is connected to the Cluster management server from which it gets its configuration data.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

• Ndb_config_generation

Shows the generation number of the cluster's current configuration. This can be used as an indicator to
determine whether the configuration of the cluster has changed since this SQL node last connected to
the cluster.

• Ndb_conflict_fn_epoch

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH() conflict resolution on a given mysqld since the last time it was restarted.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH_TRANS() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_epoch2

Shows the number of rows found to be in conflict in NDB Cluster Replication conflict resolution, when
using NDB$EPOCH2(), on the source designated as the primary since the last time it was restarted.

For more information, see NDB$EPOCH2().

• Ndb_conflict_fn_epoch2_trans

Used in NDB Cluster Replication conflict resolution, this variable shows the number of rows found to be
in conflict using NDB$EPOCH_TRANS2() conflict resolution on a given mysqld since the last time it was
restarted.

For more information, see NDB$EPOCH2_TRANS().

308

MySQL Server Options and Variables for NDB Cluster

• Ndb_conflict_fn_max

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that this mysqld was started.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_del_win

Shows the number of times that a row was rejected on the current SQL node due to NDB Cluster
Replication conflict resolution using NDB$MAX_DELETE_WIN(), since the last time that this mysqld was
started.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_del_win_ins

Shows the number of times that insertion of a row was rejected on the current SQL node due to NDB
Cluster Replication conflict resolution using NDB$MAX_DEL_WIN_INS(), since the last time that this
mysqld was started.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_max_ins

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not inserted on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that this mysqld was started.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_fn_old

Used in NDB Cluster Replication conflict resolution, this variable shows the number of times that a row
was not applied as the result of “same timestamp wins” conflict resolution on a given mysqld since the
last time it was restarted.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_last_conflict_epoch

The most recent epoch in which a conflict was detected on this replica. You can compare this value with
Ndb_replica_max_replicated_epoch; if Ndb_replica_max_replicated_epoch is greater
than Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

See Section 7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_reflected_op_discard_count

When using NDB Cluster Replication conflict resolution, this is the number of reflected operations that
were not applied on the secondary, due to encountering an error during execution.

See Section 7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

309

MySQL Server Options and Variables for NDB Cluster

• Ndb_conflict_reflected_op_prepare_count

When using conflict resolution with NDB Cluster Replication, this status variable contains the number of
reflected operations that have been defined (that is, prepared for execution on the secondary).

See Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_refresh_op_count

When using conflict resolution with NDB Cluster Replication, this gives the number of refresh operations
that have been prepared for execution on the secondary.

See Section 7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_last_stable_epoch

Number of rows found to be in conflict by a transactional conflict function

See Section 7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

• Ndb_conflict_trans_row_conflict_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of rows found
to be directly in-conflict by a transactional conflict function on a given mysqld since the last time it was
restarted.

Currently, the only transactional conflict detection function supported by NDB
Cluster is NDB$EPOCH_TRANS(), so this status variable is effectively the same as
Ndb_conflict_fn_epoch_trans.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_row_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the total number of rows
realigned due to being determined as conflicting by a transactional conflict detection function. This
includes not only Ndb_conflict_trans_row_conflict_count, but any rows in or dependent on
conflicting transactions.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_reject_count

Used in NDB Cluster Replication conflict resolution, this status variable shows the number of
transactions found to be in conflict by a transactional conflict detection function.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_conflict_trans_detect_iter_count

Used in NDB Cluster Replication conflict resolution, this shows the number of internal
iterations required to commit an epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

310

MySQL Server Options and Variables for NDB Cluster

• Ndb_conflict_trans_conflict_commit_count

Used in NDB Cluster Replication conflict resolution, this shows the number of epoch transactions
committed after they required transactional conflict handling.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_epoch_delete_delete_count

When using delete-delete conflict detection, this is the number of delete-delete conflicts detected, where
a delete operation is applied, but the indicated row does not exist.

• Ndb_execute_count

Provides the number of round trips to the NDB kernel made by operations.

• Ndb_last_commit_epoch_server

The epoch most recently committed by NDB.

• Ndb_last_commit_epoch_session

The epoch most recently committed by this NDB client.

• Ndb_metadata_detected_count

The number of times since this server was last started that the NDB metadata change detection thread
has discovered changes with respect to the MySQL data dictionary.

• Ndb_metadata_excluded_count

The number of metadata objects that the NDB binlog thread has been unable to synchronize on this SQL
node since it was last restarted.

Should an object be excluded, it is not again considered for automatic synchronization until the user
corrects the mismatch manually. This can be done by attempting to use the table with a statement such
as SHOW CREATE TABLE table, SELECT * FROM table, or any other statement that would trigger
table discovery.

Prior to NDB 8.0.22, this variable was named Ndb_metadata_blacklist_size.

• Ndb_metadata_synced_count

The number of NDB metadata objects which have been synchronized on this SQL node since it was last
restarted.

• Ndb_number_of_data_nodes

If the server is part of an NDB Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of an NDB Cluster, then the value of this variable is 0.

311

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL Server Options and Variables for NDB Cluster

• Ndb_pushed_queries_defined

The total number of joins pushed down to the NDB kernel for distributed handling on the data nodes.

Note

Joins tested using EXPLAIN that can be pushed down contribute to this number.

• Ndb_pushed_queries_dropped

The number of joins that were pushed down to the NDB kernel but that could not be handled there.

• Ndb_pushed_queries_executed

The number of joins successfully pushed down to NDB and executed there.

• Ndb_pushed_reads

The number of rows returned to mysqld from the NDB kernel by joins that were pushed down.

Note

Executing EXPLAIN on joins that can be pushed down to NDB does not add to
this number.

• Ndb_pruned_scan_count

This variable holds a count of the number of scans executed by NDBCLUSTER since the NDB Cluster
was last started where NDBCLUSTER was able to use partition pruning.

Using this variable together with Ndb_scan_count can be helpful in schema design to maximize the
ability of the server to prune scans to a single table partition, thereby involving replica only a single data
node.

• Ndb_replica_max_replicated_epoch

The most recently committed epoch on this replica. You can compare this value with
Ndb_conflict_last_conflict_epoch; if Ndb_replica_max_replicated_epoch is the greater
of the two, no conflicts have yet been detected.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

• Ndb_scan_count

This variable holds a count of the total number of scans executed by NDBCLUSTER since the NDB
Cluster was last started.

• Ndb_slave_max_replicated_epoch

Note

Deprecated in NDB 8.0.23; use Ndb_slave_max_replicated_epoch instead.

The most recently committed epoch on this replica. You can compare this value with
Ndb_conflict_last_conflict_epoch; if Ndb_slave_max_replicated_epoch is the greater of
the two, no conflicts have yet been detected.

For more information, see Section 7.11, “NDB Cluster Replication Conflict Resolution”.

312

https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster TCP/IP Connections

• Ndb_system_name

If this MySQL Server is connected to an NDB cluster, this read-only variable shows the cluster system
name. Otherwise, the value is an empty string.

• Ndb_trans_hint_count_session

The number of transactions using hints that have been started in the current session. Compare with
Ndb_api_trans_start_count_session to obtain the proportion of all NDB transactions able to use
hints.

4.3.10 NDB Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for all connections between nodes in an NDB Cluster. Normally
it is not necessary to define TCP/IP connections; NDB Cluster automatically sets up such connections for
all data nodes, management nodes, and SQL or API nodes.

Note

For an exception to this rule, see Section 4.3.11, “NDB Cluster TCP/IP Connections
Using Direct Connections”.

To override the default connection parameters, it is necessary to define a connection using one or more
[tcp] sections in the config.ini file. Each [tcp] section explicitly defines a TCP/IP connection
between two NDB Cluster nodes, and must contain at a minimum the parameters NodeId1 and NodeId2,
as well as any connection parameters to override.

It is also possible to change the default values for these parameters by setting them in the [tcp
default] section.

Important

Any [tcp] sections in the config.ini file should be listed last, following all other
sections in the file. However, this is not required for a [tcp default] section.
This requirement is a known issue with the way in which the config.ini file is
read by the NDB Cluster management server.

Connection parameters which can be set in [tcp] and [tcp default] sections of the config.ini file
are listed here:

• AllowUnresolvedHostNames

Version (or later) NDB 8.0.22

Type or units boolean

Default false

Range true, false

Added NDB 8.0.22

Restart Type N (NDB 8.0.13)

By default, when a management node fails to resolve a host name while trying to connect, this results in
a fatal error. This behavior can be overridden by setting AllowUnresolvedHostNames to true in the
[tcp default] section of the global configuration file (usually named config.ini), in which case
failure to resolve a host name is treated as a warning and ndb_mgmd startup continues uninterrupted.

313

NDB Cluster TCP/IP Connections

• Checksum

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

This parameter is disabled by default. When it is enabled (set to Y or 1), checksums for all messages are
calculated before they placed in the send buffer. This feature ensures that messages are not corrupted
while waiting in the send buffer, or by the transport mechanism.

• Group

When ndb_optimized_node_selection is enabled, node proximity is used in some cases to select
which node to connect to. This parameter can be used to influence proximity by setting it to a lower
value, which is interpreted as “closer”. See the description of the system variable for more information.

• HostName1

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• HostName2

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• NodeId1

Version (or later) NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 8.0.13)

314

NDB Cluster TCP/IP Connections

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 4.3.7, “Defining SQL and Other API Nodes in an
NDB Cluster”.

• NodeId2

Version (or later) NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 4.3.7, “Defining SQL and Other API Nodes in an
NDB Cluster”.

• NodeIdServer

Version (or later) NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 63

Restart Type N (NDB 8.0.13)

Set the server side of a TCP connection.

• OverloadLimit

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When more than this many unsent bytes are in the send buffer, the connection is considered overloaded.

This parameter can be used to determine the amount of unsent data that must be present in the send
buffer before the connection is considered overloaded. See Section 4.3.14, “Configuring NDB Cluster
Send Buffer Parameters”, for more information.

• PreferIPVersion

Version (or later) NDB 8.0.26

Type or units enumeration

Default 4

Range 4, 6 315

NDB Cluster TCP/IP Connections

Added NDB 8.0.26

Restart Type IS (NDB 8.0.13)

Determines the preference of DNS resolution for IP version 4 or version 6. Because the configuration
retrieval mechanism employed by NDB Cluster requires that all connections use the same preference,
this parameter should be set in the [tcp default] of the config.ini global configuration file.

• PreSendChecksum

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

If this parameter and Checksum are both enabled, perform pre-send checksum checks, and check all
TCP signals between nodes for errors. Has no effect if Checksum is not also enabled.

• Proxy

Version (or later) NDB 8.0.13

Type or units string

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

Set a proxy for the TCP connection.

• ReceiveBufferMemory

Version (or later) NDB 8.0.13

Type or units bytes

Default 2M

Range 16K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter is 2MB. The minimum possible value is 16KB; the theoretical
maximum is 4GB.

• SendBufferMemory

Version (or later) NDB 8.0.13

Type or units unsigned

Default 2M

Range 256K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

316

NDB Cluster TCP/IP Connections

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to define a
bigger send buffer.

If this parameter is set explicitly, then the memory is not dedicated to each transporter; instead, the
value used denotes the hard limit for how much memory (out of the total available memory—that is,
TotalSendBufferMemory) that may be used by a single transporter. For more information about
configuring dynamic transporter send buffer memory allocation in NDB Cluster, see Section 4.3.14,
“Configuring NDB Cluster Send Buffer Parameters”.

The default size of the send buffer is 2MB, which is the size recommended in most situations. The
minimum size is 64 KB; the theoretical maximum is 4 GB.

• SendSignalId

Version (or later) NDB 8.0.13

Type or units boolean

Default false (debug builds: true)

Range true, false

Restart Type N (NDB 8.0.13)

To be able to retrace a distributed message datagram, it is necessary to identify each message. When
this parameter is set to Y, message IDs are transported over the network. This feature is disabled by
default in production builds, and enabled in -debug builds.

• TcpBind_INADDR_ANY

Setting this parameter to TRUE or 1 binds IP_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

• TcpSpinTime

Version (or later) NDB 8.0.20

Type or units µsec

Default 0

Range 0 - 2000

Added NDB 8.0.20

Restart Type N (NDB 8.0.13)

Controls spin for a TCP transporter; no enable, set to a nonzero value. This works for both the data node
and management or SQL node side of the connection.

• TCP_MAXSEG_SIZE

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 2G

317

NDB Cluster TCP/IP Connections Using Direct Connections

Restart Type N (NDB 8.0.13)

Determines the size of the memory set during TCP transporter initialization. The default is recommended
for most common usage cases.

• TCP_RCV_BUF_SIZE

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type N (NDB 8.0.13)

Determines the size of the receive buffer set during TCP transporter initialization. The default and
minimum value is 0, which allows the operating system or platform to set this value. The default is
recommended for most common usage cases.

• TCP_SND_BUF_SIZE

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 2G

Restart Type N (NDB 8.0.13)

Determines the size of the send buffer set during TCP transporter initialization. The default and minimum
value is 0, which allows the operating system or platform to set this value. The default is recommended
for most common usage cases.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.14 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly the
crossover IP addresses of the data nodes so connected in the [tcp] section of the cluster config.ini
file.

318

NDB Cluster Shared-Memory Connections

In the following example, we envision a cluster with at least four hosts, one each for a management server,
an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.* subnet of a LAN.
In addition to the usual network connections, the two data nodes are connected directly using a standard
crossover cable, and communicate with one another directly using IP addresses in the 1.1.0.* address
range as shown:

Management Server
[ndb_mgmd]
Id=1
HostName=172.23.72.20

SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

Data Nodes
[ndbd]
Id=3
HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostName1 and HostName2 parameters are used only when specifying direct connections.

The use of direct TCP connections between data nodes can improve the cluster's overall efficiency by
enabling the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus cutting down
on the cluster's latency.

Note

To take the best advantage of direct connections in this fashion with more than two
data nodes, you must have a direct connection between each data node and every
other data node in the same node group.

4.3.12 NDB Cluster Shared-Memory Connections

Communications between NDB cluster nodes are normally handled using TCP/IP. The shared memory
(SHM) transporter is distinguished by the fact that signals are transmitted by writing in memory rather than
on a socket. The shared-memory transporter (SHM) can improve performance by negating up to 20% of
the overhead required by a TCP connection when running an API node (usually an SQL node) and a data
node together on the same host. You can enable a shared memory connection in either of the two ways
listed here:

• By setting the UseShm data node configuration parameter to 1, and setting HostName for the data node
and HostName for the API node to the same value.

• By using [shm] sections in the cluster configuration file, each containing settings for NodeId1 and
NodeId2. This method is described in more detail later in this section.

319

NDB Cluster Shared-Memory Connections

Suppose a cluster is running a data node which has node ID 1 and an SQL node having node ID 51 on
the same host computer at 10.0.0.1. To enable an SHM connection between these two nodes, all that is
necessary is to insure that the following entries are included in the cluster configuration file:

[ndbd]
NodeId=1
HostName=10.0.0.1
UseShm=1

[mysqld]
NodeId=51
HostName=10.0.0.1

Important

The two entries just shown are in addition to any other entries and parameter
settings needed by the cluster. A more complete example is shown later in this
section.

Before starting data nodes that use SHM connections, it is also necessary to make sure that the operating
system on each computer hosting such a data node has sufficient memory allocated to shared memory
segments. See the documentation for your operating platform for information regarding this. In setups
where multiple hosts are each running a data node and an API node, it is possible to enable shared
memory on all such hosts by setting UseShm in the [ndbd default] section of the configuration file.
This is shown in the example later in this section.

While not strictly required, tuning for all SHM connections in the cluster can be done by setting one or more
of the following parameters in the [shm default] section of the cluster configuration (config.ini) file:

• ShmSize: Shared memory size

• ShmSpinTime: Time in µs to spin before sleeping

• SendBufferMemory: Size of buffer for signals sent from this node, in bytes.

• SendSignalId: Indicates that a signal ID is included in each signal sent through the transporter.

• Checksum: Indicates that a checksum is included in each signal sent through the transporter.

• PreSendChecksum: Checks of the checksum are made prior to sending the signal; Checksum must
also be enabled for this to work

This example shows a simple setup with SHM connections definied on multiple hosts, in an NDB Cluster
using 3 computers listed here by host name, hosting the node types shown:

1. 10.0.0.0: The management server

2. 10.0.0.1: A data node and an SQL node

3. 10.0.0.2: A data node and an SQL node

In this scenario, each data node communicates with both the management server and the other data
node using TCP transporters; each SQL node uses a shared memory transporter to communicate with the
data nodes that is local to it, and a TCP transporter to communicate with the remote data node. A basic
configuration reflecting this setup is enabled by the config.ini file whose contents are shown here:

[ndbd default]
DataDir=/path/to/datadir
UseShm=1

[shm default]
ShmSize=8M

320

NDB Cluster Shared-Memory Connections

ShmSpintime=200
SendBufferMemory=4M

[tcp default]
SendBufferMemory=8M

[ndb_mgmd]
NodeId=49
Hostname=10.0.0.0
DataDir=/path/to/datadir

[ndbd]
NodeId=1
Hostname=10.0.0.1
DataDir=/path/to/datadir

[ndbd]
NodeId=2
Hostname=10.0.0.2
DataDir=/path/to/datadir

[mysqld]
NodeId=51
Hostname=10.0.0.1

[mysqld]
NodeId=52
Hostname=10.0.0.2

[api]
[api]

Parameters affecting all shared memory transporters are set in the [shm default] section; these can
be overridden on a per-connection basis in one or more [shm] sections. Each such section must be
associated with a given SHM connection using NodeId1 and NodeId2; the values required for these
parameters are the node IDs of the two nodes connected by the transporter. You can also identify the
nodes by host name using HostName1 and HostName2, but these parameters are not required.

The API nodes for which no host names are set use the TCP transporter to communicate with data nodes
independent of the hosts on which they are started; the parameters and values set in the [tcp default]
section of the configuration file apply to all TCP transporters in the cluster.

For optimum performance, you can define a spin time for the SHM transporter (ShmSpinTime parameter);
this affects both the data node receiver thread and the poll owner (receive thread or user thread) in NDB.

• Checksum

Version (or later) NDB 8.0.13

Type or units boolean

Default true

Range true, false

Restart Type N (NDB 8.0.13)

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled,
checksums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves as a
check against data being corrupted during transport.

• Group

321

NDB Cluster Shared-Memory Connections

Version (or later) NDB 8.0.13

Type or units unsigned

Default 35

Range 0 - 200

Restart Type N (NDB 8.0.13)

Determines the group proximity; a smaller value is interpreted as being closer. The default value is
sufficient for most conditions.

• HostName1

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• HostName2

Version (or later) NDB 8.0.13

Type or units name or IP address

Default [...]

Range ...

Restart Type N (NDB 8.0.13)

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• NodeId1

Version (or later) NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeId2

Version (or later) NDB 8.0.13322

NDB Cluster Shared-Memory Connections

Type or units numeric

Default [none]

Range 1 - 255

Restart Type N (NDB 8.0.13)

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeIdServer

Version (or later) NDB 8.0.13

Type or units numeric

Default [none]

Range 1 - 63

Restart Type N (NDB 8.0.13)

Identify the server end of a shared memory connection. By default, this is the node ID of the data node.

• OverloadLimit

Version (or later) NDB 8.0.13

Type or units bytes

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When more than this many unsent bytes are in the send buffer, the connection is considered overloaded.
See Section 4.3.14, “Configuring NDB Cluster Send Buffer Parameters”, and Section 6.14.64, “The
ndbinfo transporters Table”, for more information.

• PreSendChecksum

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

If this parameter and Checksum are both enabled, perform pre-send checksum checks, and check all
SHM signals between nodes for errors. Has no effect if Checksum is not also enabled.

• SendBufferMemory

Version (or later) NDB 8.0.13

Type or units integer

Default 2M

Range 256K - 4294967039 (0xFFFFFEFF) 323

NDB Cluster Shared-Memory Connections

Restart Type N (NDB 8.0.13)

Size (in bytes) of the shared memory buffer for signals sent from this node using a shared memory
connection.

• SendSignalId

Version (or later) NDB 8.0.13

Type or units boolean

Default false

Range true, false

Restart Type N (NDB 8.0.13)

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network as
well. This feature is disabled by default in production builds, and enabled in -debug builds.

• ShmKey

Version (or later) NDB 8.0.13

Type or units unsigned

Default 0

Range 0 - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value. If UseShm
is enabled, the shared memory key is calculated automatically by NDB.

• ShmSize

Version (or later) NDB 8.0.13

Type or units bytes

Default 4M

Range 64K - 4294967039 (0xFFFFFEFF)

Restart Type N (NDB 8.0.13)

Each SHM connection has a shared memory segment where messages between nodes are placed by
the sender and read by the reader. The size of this segment is defined by ShmSize. The default value is
4MB.

• ShmSpinTime

Version (or later) NDB 8.0.13

Type or units integer

Default 0

Range 0 - 2000
324

Data Node Memory Management

Restart Type N (NDB 8.0.13)

When receiving, the time to wait before sleeping, in microseconds.

• SigNum

Version (or later) NDB 8.0.13

Type or units unsigned

Default [...]

Range 0 - 4294967039 (0xFFFFFEFF)

Deprecated Yes (in NDB 7.6)

Restart Type N (NDB 8.0.13)

This parameter was used formerly to override operating system signal numbers; in NDB 8.0, it is no
longer used, and any setting for it is ignored.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.15 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be
shut down completely, then
restarted, to effect a change in this
parameter

I Initial Data nodes must be restarted
using the --initial option

4.3.13 Data Node Memory Management

All memory allocation for a data node is performed when the node is started. This ensures that the data
node can run in a stable manner without using swap memory, so that NDB can be used for latency-
sensitive (realtime) applications. The following types of memory are allocated on data node startup:

• Data memory

• Shared global memory

• Redo log buffers

• Job buffers

• Send buffers

• Page cache for disk data records

• Schema transaction memory

325

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Data Node Memory Management

• Transaction memory

• Undo log buffer

• Query memory

• Block objects

• Schema memory

• Block data structures

• Long signal memory

• Shared memory communication buffers

The NDB memory manager, which regulates most data node memory, handles the following memory
resources:

• Data Memory (DataMemory)

• Redo log buffers (RedoBuffer)

• Job buffers

• Send buffers (SendBufferMemory, TotalSendBufferMemory, ExtraSendBufferMemory,
ReservedSendBufferMemory)

• Disk Data record page cache (DiskPageBufferMemory, DiskPageBufferEntries)

• Transaction memory (TransactionMemory)

• Query memory

• Disk access records

• File buffers

Each of these resources is set up with a reserved memory area and a maximum memory area. The
reserved memory area can be used only by the resource for which it is reserved and cannot be shared
with other resources; a given resource can never allocate more than the maximum memory allowed for
the resource. A resource that has no maximum memory can expand to use all the shared memory in the
memory manager.

The size of the global shared memory for these resources is controlled by the SharedGlobalMemory
configuration parameter (default: 128 MB).

Data memory is always reserved and never acquires any memory from shared memory. It is controlled
using the DataMemory configuration parameter, whose maximum is 16384 GB. DataMemory is where
records are stored, including hash indexes (approximately 15 bytes per row), ordered indexes (10-12 bytes
per row per index), and row headers (16-32 bytes per row).

Redo log buffers also use reserved memory only; this is controlled by the RedoBuffer configuration
parameter, which sets the size of the redo log buffer per LDM thread. This means that the actual amount of
memory used is the value of this parameter multiplied by the number of LDM threads in the data node.

Job buffers use reserved memory only; the size of this memory is calculated by NDB, based on the
numbers of threads of various types.

326

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-reservedsendbuffermemory
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Data Node Memory Management

Send buffers have a reserved part but can also allocate an additional 25% of shared global memory. The
send buffer reserved size is calculated in two steps:

1. Use the value of the TotalSendBufferMemory configuration parameter (no default value) or the
sum of the individual send buffers used by all individual connections to the data node. A data node is
connected to all other data nodes, to all API nodes, and to all management nodes. This means that,
in a cluster with 2 data nodes, 2 management nodes, and 10 API nodes each data node has 13 node
connections. Since the default value for SendBufferMemory for a data node connection is 2 MByte,
this works out to 26 MB total.

2. To obtain the total reserved size for the send buffer, the value of the ExtraSendBufferMemory
configuration parameter, if any (default value 0). is added to the value obtained in the previous step.

In other words, if TotalSendBufferMemory has been set, the send buffer size is
TotalSendBufferMemory + ExtraSendBufferMemory; otherwise, the size of the
send buffer is equal to ([number of node connections] * SendBufferMemory) +
ExtraSendBufferMemory.

The page cache for disk data records uses a reserved resource only; the size of this resource is controlled
by the DiskPageBufferMemory configuration parameter (default 64 MB). Memory for 32 KB disk
page entries is also allocated; the number of these is determined by the DiskPageBufferEntries
configuration parameter (default 10).

Transaction memory has a reserved part that either is calculated by NDB, or is set explicitly using the
TransactionMemory configuration parameter, introduced in NDB 8.0 (previously, this value was always
calculated by NDB); transaction memory can also use an unlimited amount of shared global memory.
Transaction memory is used for all operational resources handling transactions, scans, locks, scan buffers,
and trigger operations. It also holds table rows as they are updated, before the next commit writes them to
data memory.

Previously, operational records used dedicated resources whose sizes were controlled by a number of
configuration parameters. In NDB 8.0, these are all allocated from a common transaction memory resource
and can also use resources from global shared memory. the size of this resource can be controlled using a
single TransactionMemory configuration parameter.

Reserved memory for undo log buffers can be set using the InitialLogFileGroup configuration
parameter. If an undo log buffer is created as part of a CREATE LOGFILE GROUP SQL statement, the
memory is taken from the transaction memory.

A number of resources relating to metadata for Disk Data resources also have no reserved part, and
use shared global memory only. Shared global shared memory is thus shared between send buffers,
transaction memory, and Disk Data metadata.

If TransactionMemory is not set, it is calculated based on the following parameters:

• MaxNoOfConcurrentOperations

• MaxNoOfConcurrentTransactions

• MaxNoOfFiredTriggers

• MaxNoOfLocalOperations

• MaxNoOfConcurrentIndexOperations

• MaxNoOfConcurrentScans

• MaxNoOfLocalScans

327

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html

Data Node Memory Management

• BatchSizePerLocalScan

• TransactionBufferMemory

When TransactionMemory is set explicitly, none of the configuration parameters just listed are used
to calculate memory size. In addition, the parameters MaxNoOfConcurrentIndexOperations,
MaxNoOfFiredTriggers, MaxNoOfLocalOperations, and MaxNoOfLocalScans are incompatible
with TransactionMemory and cannot be set concurrently with it; if TransactionMemory is set and any
of these four parameters are also set in the config.ini configuration file, the management server cannot
start. These four parameters are deprecated in NDB 8.0; expect them to be removed from a future release
of MySQL NDB Cluster.

The transaction memory resource contains a large number of memory pools. Each memory pool
represents an object type and contains a set of objects; each pool includes a reserved part allocated to
the pool at startup; this reserved memory is never returned to shared global memory. Reserved records
are found using a data structure having only a single level for fast retrieval, which means that a number of
records in each pool should be reserved. The number of reserved records in each pool has some impact
on performance and reserved memory allocation, but is generally necessary only in certain very advanced
use cases to set the reserved sizes explicitly.

The size of the reserved part of the pool can be controlled by setting the following configuration
parameters:

• ReservedConcurrentIndexOperations

• ReservedFiredTriggers

• ReservedConcurrentOperations

• ReservedLocalScans

• ReservedConcurrentTransactions

• ReservedConcurrentScans

• ReservedTransactionBufferMemory

If the parameters just listed are not set, the reserved setting is 25% of transaction memory. The number of
reserved records is per data node; these records are split among the threads handling them (LDM and TC
threads) on each node. In most cases, it is sufficient to set TransactionMemory alone, and to allow the
number of records in pools to be governed by its value.

MaxNoOfConcurrentScans limits the number of concurrent scans that can be active in each TC thread.
This is important in guarding against cluster overload.

MaxNoOfConcurrentOperations limits the number of operations that can be active at any one time
in updating transactions. (Simple reads are not affected by this parameter.) This number needs to be
limited because it is necessary to preallocate memory for node failure handling, and a resource must be
available for handling the maximum number of active operations in one TC thread when conmtending with
node failures. It is imperative that MaxNoOfConcurrentOperations be set to the same number on all
nodes (this can be done most easily by setting a value for it once, in the [ndbd default] section of
the config.ini global configuration file). While its value can be increased using a rolling restart (see
Section 6.5, “Performing a Rolling Restart of an NDB Cluster”), decreasing it in this way is not considered
safe due to the possibility of a node failure occurring during the rolling restart.

It is possible to limit the size of a single transaction in NDB Cluster through the
MaxDMLOperationsPerTransaction parameter. If this is not set, the size of one transaction is

328

Configuring NDB Cluster Send Buffer Parameters

limited by MaxNoOfConcurrentOperations since this parameter limits the total number of concurrent
operations per TC thread.

Schema memory size is controlled by the following set of configuration parameters:

• MaxNoOfSubscriptions

• MaxNoOfSubscribers

• MaxNoOfConcurrentSubOperations

• MaxNoOfAttributes

• MaxNoOfTables

• MaxNoOfOrderedIndexes

• MaxNoOfUniqueHashIndexes

• MaxNoOfTriggers

The number of nodes and the number of LDM threads also have a major impact on the size of schema
memory since the number of partitions in each table and each partition (and its fragment replicas) have to
be represented in schema memory.

In addition, a number of other records are allocated during startup. These are relatively small. Each block
in each thread contains block objects that use memory. This memory size is also normally quite small
compared to the other data node memory structures.

4.3.14 Configuring NDB Cluster Send Buffer Parameters

The NDB kernel employs a unified send buffer whose memory is allocated dynamically from a pool
shared by all transporters. This means that the size of the send buffer can be adjusted as necessary.
Configuration of the unified send buffer can accomplished by setting the following parameters:

• TotalSendBufferMemory. This parameter can be set for all types of NDB Cluster nodes—that
is, it can be set in the [ndbd], [mgm], and [api] (or [mysql]) sections of the config.ini file. It
represents the total amount of memory (in bytes) to be allocated by each node for which it is set for use
among all configured transporters. If set, its minimum is 256KB; the maximum is 4294967039.

To be backward-compatible with existing configurations, this parameter takes as its default value the
sum of the maximum send buffer sizes of all configured transporters, plus an additional 32KB (one page)
per transporter. The maximum depends on the type of transporter, as shown in the following table:

Table 4.16 Transporter types with maximum send buffer sizes

Transporter Maximum Send Buffer Size (bytes)

TCP SendBufferMemory (default = 2M)

SHM 20K

This enables existing configurations to function in close to the same way as they did with NDB Cluster
6.3 and earlier, with the same amount of memory and send buffer space available to each transporter.
However, memory that is unused by one transporter is not available to other transporters.

• OverloadLimit. This parameter is used in the config.ini file [tcp] section, and denotes the
amount of unsent data (in bytes) that must be present in the send buffer before the connection is

329

Using High-Speed Interconnects with NDB Cluster

considered overloaded. When such an overload condition occurs, transactions that affect the overloaded
connection fail with NDB API Error 1218 (Send Buffers overloaded in NDB kernel) until the
overload status passes. The default value is 0, in which case the effective overload limit is calculated as
SendBufferMemory * 0.8 for a given connection. The maximum value for this parameter is 4G.

• SendBufferMemory. This value denotes a hard limit for the amount of memory that may
be used by a single transporter out of the entire pool specified by TotalSendBufferMemory.
However, the sum of SendBufferMemory for all configured transporters may be greater than the
TotalSendBufferMemory that is set for a given node. This is a way to save memory when many
nodes are in use, as long as the maximum amount of memory is never required by all transporters at the
same time.

You can use the ndbinfo.transporters table to monitor send buffer memory usage, and to detect
slowdown and overload conditions that can adversely affect performance.

4.4 Using High-Speed Interconnects with NDB Cluster

Even before design of NDBCLUSTER began in 1996, it was evident that one of the major problems to be
encountered in building parallel databases would be communication between the nodes in the network. For
this reason, NDBCLUSTER was designed from the very beginning to permit the use of a number of different
data transport mechanisms. In this Manual, we use the term transporter for these.

The NDB Cluster codebase provides for four different transporters:

• TCP/IP using 100 Mbps or gigabit Ethernet, as discussed in Section 4.3.10, “NDB Cluster TCP/IP
Connections”.

• Direct (machine-to-machine) TCP/IP; although this transporter uses the same TCP/IP protocol as
mentioned in the previous item, it requires setting up the hardware differently and is configured
differently as well. For this reason, it is considered a separate transport mechanism for NDB Cluster. See
Section 4.3.11, “NDB Cluster TCP/IP Connections Using Direct Connections”, for details.

• Shared memory (SHM). For more information about SHM, see Section 4.3.12, “NDB Cluster Shared-
Memory Connections”.

• Scalable Coherent Interface (SCI).

Note

Using SCI transporters in NDB Cluster requires specialized hardware, software,
and MySQL binaries not available with NDB 8.0.

Most users today employ TCP/IP over Ethernet because it is ubiquitous. TCP/IP is also by far the best-
tested transporter for use with NDB Cluster.

Regardless of the transporter used, NDB attempts to make sure that communication with data node
processes is done using chunks that are as large as possible since this benefits all types of data
transmission.

330

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Chapter 5 NDB Cluster Programs

Table of Contents
5.1 ndbd — The NDB Cluster Data Node Daemon .. 332
5.2 ndbinfo_select_all — Select From ndbinfo Tables .. 343
5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded) .. 348
5.4 ndb_mgmd — The NDB Cluster Management Server Daemon ... 349
5.5 ndb_mgm — The NDB Cluster Management Client .. 361
5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 367
5.7 ndb_config — Extract NDB Cluster Configuration Information .. 373
5.8 ndb_delete_all — Delete All Rows from an NDB Table ... 386
5.9 ndb_desc — Describe NDB Tables ... 391
5.10 ndb_drop_index — Drop Index from an NDB Table .. 401
5.11 ndb_drop_table — Drop an NDB Table .. 406
5.12 ndb_error_reporter — NDB Error-Reporting Utility .. 410
5.13 ndb_import — Import CSV Data Into NDB ... 412
5.14 ndb_index_stat — NDB Index Statistics Utility .. 430
5.15 ndb_move_data — NDB Data Copy Utility ... 438
5.16 ndb_perror — Obtain NDB Error Message Information .. 444
5.17 ndb_print_backup_file — Print NDB Backup File Contents .. 447
5.18 ndb_print_file — Print NDB Disk Data File Contents ... 452
5.19 ndb_print_frag_file — Print NDB Fragment List File Contents .. 452
5.20 ndb_print_schema_file — Print NDB Schema File Contents .. 453
5.21 ndb_print_sys_file — Print NDB System File Contents .. 454
5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log 454
5.23 ndb_restore — Restore an NDB Cluster Backup .. 457

5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster 485
5.23.2 Restoring to a different number of data nodes ... 486
5.23.3 Restoring from a backup taken in parallel .. 490

5.24 ndb_select_all — Print Rows from an NDB Table ... 491
5.25 ndb_select_count — Print Row Counts for NDB Tables .. 498
5.26 ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED) 502
5.27 ndb_show_tables — Display List of NDB Tables .. 506
5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator .. 511
5.29 ndb_top — View CPU usage information for NDB threads .. 514
5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status ... 520
5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster 526

Using and managing an NDB Cluster requires several specialized programs, which we describe in this
chapter. We discuss the purposes of these programs in an NDB Cluster, how to use the programs, and
what startup options are available for each of them.

These programs include the NDB Cluster data, management, and SQL node processes (ndbd, ndbmtd,
ndb_mgmd, and mysqld) and the management client (ndb_mgm).

Information about the program ndb_setup.py (now deprecated), used to start the NDB Cluster Auto-
Installer, is also included in this section. You should be aware that Section 5.26, “ndb_setup.py — Start
browser-based Auto-Installer for NDB Cluster (DEPRECATED)”, contains information about the command-
line client only; for information about using the GUI installer spawned by this program to configure and
deploy an NDB Cluster, see The NDB Cluster Auto-Installer (NDB 7.5) (No longer supported).

331

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-install-auto.html

ndbd — The NDB Cluster Data Node Daemon

For information about using mysqld as an NDB Cluster process, see Section 6.9, “MySQL Server Usage
for NDB Cluster”.

Other NDB utility, diagnostic, and example programs are included with the NDB Cluster distribution. These
include ndb_restore, ndb_show_tables, and ndb_config. These programs are also covered in this
section.

The final portion of this section contains tables of options that are common to all the various NDB Cluster
programs.

5.1 ndbd — The NDB Cluster Data Node Daemon

ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine. This
is the process that empowers a data node to accomplish distributed transaction handling, node recovery,
checkpointing to disk, online backup, and related tasks.

In an NDB Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

Options that can be used with ndbd are shown in the following table. Additional descriptions follow the
table.

Table 5.1 Command-line options used with the program ndbd

Format Description Added, Deprecated, or
Removed

--bind-address=name Local bind address (Supported in all NDB releases
based on MySQL 8.0)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-delay=# Obsolete synonym for --connect-
retry-delay, which should be used
instead of this option

REMOVED: NDB 8.0.28

--connect-retries=# Set the number of times to retry
a connection before giving up;
0 means 1 attempt only (and
no retries); -1 means continue
retrying indefinitely

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Time to wait between attempts
to contact a management server,
in seconds; 0 means do not wait
between attempts

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--daemon,

-d

Start ndbd as daemon (default);
override with --nodaemon

(Supported in all NDB releases
based on MySQL 8.0)

332

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--foreground Run ndbd in foreground, provided
for debugging purposes (implies --
nodaemon)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--initial Perform initial start of ndbd,
including file system cleanup;
consult documentation before
using this option

(Supported in all NDB releases
based on MySQL 8.0)

--initial-start Perform partial initial start
(requires --nowait-nodes)

(Supported in all NDB releases
based on MySQL 8.0)

--install[=name] Used to install data node process
as Windows service; does not
apply on other platforms

(Supported in all NDB releases
based on MySQL 8.0)

--logbuffer-size=# Control size of log buffer; for
use when debugging with many
log messages being generated;
default is sufficient for normal
operations

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--nodaemon Do not start ndbd as daemon;
provided for testing purposes

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

333

ndbd — The NDB Cluster Data Node Daemon

Format Description Added, Deprecated, or
Removed

--nostart,

-n

Do not start ndbd immediately;
ndbd waits for command to start
from ndb_mgm

(Supported in all NDB releases
based on MySQL 8.0)

--nowait-nodes=list Do not wait for these data nodes
to start (takes comma-separated
list of node IDs); requires --ndb-
nodeid

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--remove[=name] Used to remove data node
process that was previously
installed as Windows service;
does not apply on other platforms

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Write extra debugging information
to node log

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

Note

All of these options also apply to the multithreaded version of this program
(ndbmtd) and you may substitute “ndbmtd” for “ndbd” wherever the latter occurs in
this section.

• --bind-address

Command-Line Format --bind-address=name

Type String

Default Value

Causes ndbd to bind to a specific network interface (host name or IP address). This option has no
default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-delay=#

334

ndbd — The NDB Cluster Data Node Daemon

Command-Line Format --connect-delay=#

Deprecated Yes (removed in 8.0.28-ndb-8.0.28)

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 3600

Determines the time to wait between attempts to contact a management server when starting (the
number of attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option is deprecated, and is subject to removal in a future release of NDB Cluster. Use --
connect-retry-delay instead.

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

Default Value 12

Minimum Value (≥ 8.0.28-ndb-8.0.28) -1

Minimum Value -1

Minimum Value -1

Minimum Value (≤ 8.0.27-ndb-8.0.27) 0

Maximum Value 65535

Set the number of times to retry a connection before giving up; 0 means 1 attempt only (and no retries).
The default is 12 attempts. The time to wait between attempts is controlled by the --connect-retry-
delay option.

Beginning with NDB 8.0.28, you can set this option to -1, in which case, the data node process continues
indefinitely to try to connect.

• --connect-retry-delay=#

Command-Line Format --connect-retry-delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value 4294967295

Determines the time to wait between attempts to contact a management server when starting (the time
between attempts is controlled by the --connect-retries option). The default is 5 seconds.

This option takes the place of the --connect-delay option, which is now deprecated and subject to
removal in a future release of NDB Cluster.

The short form -r for this option is deprecated as of NDB 8.0.28, and subject to removal in a future
release of NDB Cluster. Use the long form instead.

335

ndbd — The NDB Cluster Data Node Daemon

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndbd or ndbmtd to execute as a daemon process. This is the default behavior. --nodaemon
can be used to prevent the process from running as a daemon.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

336

ndbd — The NDB Cluster Data Node Daemon

• --foreground

Command-Line Format --foreground

Causes ndbd or ndbmtd to execute as a foreground process, primarily for debugging purposes. This
option implies the --nodaemon option.

This option has no effect when running ndbd or ndbmtd on Windows platforms.

• --help

Command-Line Format --help

Display help text and exit.

• --initial

Command-Line Format --initial

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery purposes by
earlier instances of ndbd. It also re-creates recovery log files. On some operating systems, this process
can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special
circumstances; this is because this option causes all files to be removed from the NDB Cluster file
system and all redo log files to be re-created. These circumstances are listed here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly fails.
In this case, be aware that this node can no longer be used to restore data due to the destruction of
the data files.

Warning

To avoid the possibility of eventual data loss, it is recommended that you not
use the --initial option together with StopOnError = 0. Instead, set
StopOnError to 0 in config.ini only after the cluster has been started, then
restart the data nodes normally—that is, without the --initial option. See
the description of the StopOnError parameter for a detailed explanation of this
issue. (Bug #24945638)

Use of this option prevents the StartPartialTimeout and StartPartitionedTimeout
configuration parameters from having any effect.

Important

This option does not affect backup files that have already been created by the
affected node.

Prior to NDB 8.0.21, the --initial option also did not affect any Disk Data
files. In NDB 8.0.21 and later, when used to perform an initial restart of the
cluster, the option causes the removal of all data files associated with Disk 337

ndbd — The NDB Cluster Data Node Daemon

Data tablespaces and undo log files associated with log file groups that existed
previously on this data node (see Section 6.10, “NDB Cluster Disk Data Tables”).

This option also has no effect on recovery of data by a data node that is just
starting (or restarting) from data nodes that are already running (unless they also
were started with --initial, as part of an initial restart). This recovery of data
occurs automatically, and requires no user intervention in an NDB Cluster that is
running normally.

It is permissible to use this option when starting the cluster for the very first time (that is, before any data
node files have been created); however, it is not necessary to do so.

• --initial-start

Command-Line Format --initial-start

This option is used when performing a partial initial start of the cluster. Each node should be started with
this option, as well as --nowait-nodes.

Suppose that you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish to
perform a partial initial start using only nodes 2, 4, and 5—that is, omitting node 3:

$> ndbd --ndb-nodeid=2 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=4 --nowait-nodes=3 --initial-start
$> ndbd --ndb-nodeid=5 --nowait-nodes=3 --initial-start

When using this option, you must also specify the node ID for the data node being started with the --
ndb-nodeid option.

Important

Do not confuse this option with the --nowait-nodes option for ndb_mgmd,
which can be used to enable a cluster configured with multiple management
servers to be started without all management servers being online.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes ndbd to be installed as a Windows service. Optionally, you can specify a name for the service;
if not set, the service name defaults to ndbd. Although it is preferable to specify other ndbd program
options in a my.ini or my.cnf configuration file, it is possible to use together with --install.
However, in such cases, the --install option must be specified first, before any other options are
given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the data node file system to be wiped and rebuilt every time the service is stopped and started. Extreme
care should also be taken if you intend to use any of the other ndbd options that affect the starting of
data nodes—including --initial-start, --nostart, and --nowait-nodes—together with --

338

ndbd — The NDB Cluster Data Node Daemon

install, and you should make absolutely certain you fully understand and allow for any possible
consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --logbuffer-size=#

Command-Line Format --logbuffer-size=#

Type Integer

Default Value 32768

Minimum Value 2048

Maximum Value 4294967295

Sets the size of the data node log buffer. When debugging with high amounts of extra logging, it is
possible for the log buffer to run out of space if there are too many log messages, in which case some
log messages can be lost. This should not occur during normal operations.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

339

ndbd — The NDB Cluster Data Node Daemon

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --nodaemon

Command-Line Format --nodaemon

Prevents ndbd or ndbmtd from executing as a daemon process. This option overrides the --daemon
option. This is useful for redirecting output to the screen when debugging the binary.

The default behavior for ndbd and ndbmtd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms, where it has no effect.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nostart, -n

Command-Line Format --nostart

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the management
server, obtains configuration data from it, and initializes communication objects. However, it does not
actually start the execution engine until specifically requested to do so by the management server. This
can be accomplished by issuing the proper START command in the management client (see Section 6.1,
“Commands in the NDB Cluster Management Client”).

• --nowait-nodes=node_id_1[, node_id_2[, ...]]

Command-Line Format --nowait-nodes=list

Type String

Default Value

This option takes a list of data nodes for which the cluster does not wait, prior to starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only half
of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd process
with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4 connect, and
does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect as it would
otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd (say, for
example, that the host machine for node 3 has suffered a hardware failure) then start nodes 2, 4, and 5
with --nowait-nodes=3. Then the cluster starts as soon as nodes 2, 4, and 5 connect, and does not
wait for node 3 to start.

340

ndbd — The NDB Cluster Data Node Daemon

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --remove[=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndbd

Causes an ndbd process that was previously installed as a Windows service to be removed. Optionally,
you can specify a name for the service to be uninstalled; if not set, the service name defaults to ndbd.

The --remove option has no effect on non-Windows platforms.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

Causes extra debug output to be written to the node log.

You can also use NODELOG DEBUG ON and NODELOG DEBUG OFF to enable and disable this extra
logging while the data node is running.

• --version

Command-Line Format --version

Display version information and exit.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the
config.ini configuration file.

These log files are listed below. node_id is and represents the node's unique identifier. For example,
ndb_2_error.log is the error log generated by the data node whose node ID is 2.

• ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a trace
file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909

341

ndbd — The NDB Cluster Data Node Daemon

TraceFile: ndb_2_trace.log.2
EOM

Listings of possible ndbd exit codes and messages generated when a data node process shuts down
prematurely can be found in Data Node Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is
it likely to be). Entries in the error log are not listed in chronological order;
rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus
overwritten in a cyclical and not sequential fashion.

• ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just before
the error occurred. This information is useful for analysis by the NDB Cluster development team.

It is possible to configure the number of these trace files that are created before old files are overwritten.
trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is created
only if ndbd is started as a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a daemon. It
also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to trace
all incoming, outgoing, and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this can
cause problems whereby the lock on the .pid file remains in effect even after the process has terminated.

To start ndbd, it may also be necessary to specify the host name of the management server and the port
on which it is listening. Optionally, one may also specify the node ID that the process is to use.

$> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 4.3.3, “NDB Cluster Connection Strings”, for additional information about this issue. For more
information about data node configuration parameters, see Section 4.3.6, “Defining NDB Cluster Data
Nodes”.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd using the Unix kill command, it is
necessary to kill both processes, beginning with the angel process. The preferred method of terminating an
ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other
activities. This thread is implemented asynchronously so that it can easily handle thousands of concurrent
actions. In addition, a watch-dog thread supervises the execution thread to make sure that it does not
hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open file.
Threads can also be used for transporter connections by the transporters in the ndbd process. In a multi-
processor system performing a large number of operations (including updates), the ndbd process can
consume up to 2 CPUs if permitted to do so.

342

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndbinfo_select_all — Select From ndbinfo Tables

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 8.0 in a production setting. See Section 2.7, “Known Limitations of NDB Cluster”.

5.2 ndbinfo_select_all — Select From ndbinfo Tables

ndbinfo_select_all is a client program that selects all rows and columns from one or more tables in
the ndbinfo database

Not all ndbinfo tables available in the mysql client can be read by this program. In addition,
ndbinfo_select_all can show information about some tables internal to ndbinfo which cannot be
accessed using SQL, including the tables and columns metadata tables.

To select from one or more ndbinfo tables using ndbinfo_select_all, it is necessary to supply the
names of the tables when invoking the program as shown here:

$> ndbinfo_select_all table_name1 [table_name2] [...]

For example:

$> ndbinfo_select_all logbuffers logspaces
== logbuffers ==
node_id log_type log_id log_part total used high
5 0 0 0 33554432 262144 0
6 0 0 0 33554432 262144 0
7 0 0 0 33554432 262144 0
8 0 0 0 33554432 262144 0
== logspaces ==
node_id log_type log_id log_part total used high
5 0 0 0 268435456 0 0
5 0 0 1 268435456 0 0
5 0 0 2 268435456 0 0
5 0 0 3 268435456 0 0
6 0 0 0 268435456 0 0
6 0 0 1 268435456 0 0
6 0 0 2 268435456 0 0
6 0 0 3 268435456 0 0
7 0 0 0 268435456 0 0
7 0 0 1 268435456 0 0
7 0 0 2 268435456 0 0
7 0 0 3 268435456 0 0
8 0 0 0 268435456 0 0
8 0 0 1 268435456 0 0
8 0 0 2 268435456 0 0
8 0 0 3 268435456 0 0
$>

Options that can be used with ndbinfo_select_all are shown in the following table. Additional
descriptions follow the table.

Table 5.2 Command-line options used with the program ndbinfo_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

343

ndbinfo_select_all — Select From ndbinfo Tables

Format Description Added, Deprecated, or
Removed

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection-string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=db_name,

-d

Name of database where table is
located

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delay=# Set delay in seconds between
loops

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--loops=#,

-l

Set number of times to perform
select

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection-
string,

-c

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection-string,

-c

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-

(Supported in all NDB releases
based on MySQL 8.0)

344

ndbinfo_select_all — Select From ndbinfo Tables

Format Description Added, Deprecated, or
Removed

optimized-node-selection to
disable

--parallelism=#,

-p

Set degree of parallelism (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

345

ndbinfo_select_all — Select From ndbinfo Tables

• --connect-string

Command-Line Format --connect-string=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delay=seconds

Command-Line Format --delay=#

Type Numeric

Default Value 5

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of seconds to wait between executing loops. Has no effect if --loops is set
to 0 or 1.

• --help

Command-Line Format --help

Display help text and exit.
346

ndbinfo_select_all — Select From ndbinfo Tables

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops=number, -l number

Command-Line Format --loops=#

Type Numeric

Default Value 1

Minimum Value 0

Maximum Value MAX_INT

This option sets the number of times to execute the select. Use --delay to set the time between loops.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection-string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection-string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

347

ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)

ndbmtd is a multithreaded version of ndbd, the process that is used to handle all the data in tables
using the NDBCLUSTER storage engine. ndbmtd is intended for use on host computers having multiple
CPU cores. Except where otherwise noted, ndbmtd functions in the same way as ndbd; therefore, in
this section, we concentrate on the ways in which ndbmtd differs from ndbd, and you should consult
Section 5.1, “ndbd — The NDB Cluster Data Node Daemon”, for additional information about running NDB
Cluster data nodes that apply to both the single-threaded and multithreaded versions of the data node
process.

Command-line options and configuration parameters used with ndbd also apply to ndbmtd. For more
information about these options and parameters, see Section 5.1, “ndbd — The NDB Cluster Data Node
Daemon”, and Section 4.3.6, “Defining NDB Cluster Data Nodes”, respectively.

ndbmtd is also file system-compatible with ndbd. In other words, a data node running ndbd can be
stopped, the binary replaced with ndbmtd, and then restarted without any loss of data. (However,
when doing this, you must make sure that MaxNoOfExecutionThreads is set to an apppriate value
before restarting the node if you wish for ndbmtd to run in multithreaded fashion.) Similarly, an ndbmtd
binary can be replaced with ndbd simply by stopping the node and then starting ndbd in place of the
multithreaded binary. It is not necessary when switching between the two to start the data node binary
using --initial.

Using ndbmtd differs from using ndbd in two key respects:

1. Because ndbmtd runs by default in single-threaded mode (that is, it behaves like ndbd), you
must configure it to use multiple threads. This can be done by setting an appropriate value in
the config.ini file for the MaxNoOfExecutionThreads configuration parameter or the
ThreadConfig configuration parameter. Using MaxNoOfExecutionThreads is simpler, but
ThreadConfig offers more flexibility. For more information about these configuration parameters and
their use, see Multi-Threading Configuration Parameters (ndbmtd).

348

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

ndb_mgmd — The NDB Cluster Management Server Daemon

2. Trace files are generated by critical errors in ndbmtd processes in a somewhat different fashion from
how these are generated by ndbd failures. These differences are discussed in more detail in the next
few paragraphs.

Like ndbd, ndbmtd generates a set of log files which are placed in the directory specified by DataDir in
the config.ini configuration file. Except for trace files, these are generated in the same way and have
the same names as those generated by ndbd.

In the event of a critical error, ndbmtd generates trace files describing what happened just prior to the
error' occurrence. These files, which can be found in the data node's DataDir, are useful for analysis
of problems by the NDB Cluster Development and Support teams. One trace file is generated for each
ndbmtd thread. The names of these files have the following pattern:

ndb_node_id_trace.log.trace_id_tthread_id,

In this pattern, node_id stands for the data node's unique node ID in the cluster, trace_id
is a trace sequence number, and thread_id is the thread ID. For example, in the event of the
failure of an ndbmtd process running as an NDB Cluster data node having the node ID 3 and with
MaxNoOfExecutionThreads equal to 4, four trace files are generated in the data node's data directory.
If the is the first time this node has failed, then these files are named ndb_3_trace.log.1_t1,
ndb_3_trace.log.1_t2, ndb_3_trace.log.1_t3, and ndb_3_trace.log.1_t4. Internally, these
trace files follow the same format as ndbd trace files.

The ndbd exit codes and messages that are generated when a data node process shuts down prematurely
are also used by ndbmtd. See Data Node Error Messages, for a listing of these.

Note

It is possible to use ndbd and ndbmtd concurrently on different data nodes in the
same NDB Cluster. However, such configurations have not been tested extensively;
thus, we cannot recommend doing so in a production setting at this time.

5.4 ndb_mgmd — The NDB Cluster Management Server Daemon

The management server is the process that reads the cluster configuration file and distributes this
information to all nodes in the cluster that request it. It also maintains a log of cluster activities.
Management clients can connect to the management server and check the cluster's status.

All options that can be used with ndb_mgmd are shown in the following table. Additional descriptions follow
the table.

Table 5.3 Command-line options used with the program ndb_mgmd

Format Description Added, Deprecated, or
Removed

--bind-address=host Local bind address (Supported in all NDB releases
based on MySQL 8.0)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--cluster-config-
suffix=name

Override defaults group suffix
when reading cluster_config
sections in my.cnf file; used in
testing

ADDED: NDB 8.0.24

349

https://dev.mysql.com/doc/ndb-internals/en/ndb-node-error-messages.html

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--config-cache[=TRUE|
FALSE]

Enable management server
configuration cache; true by
default

(Supported in all NDB releases
based on MySQL 8.0)

--config-file=file,

-f file

Specify cluster configuration file;
also specify --reload or --initial to
override configuration cache if
present

(Supported in all NDB releases
based on MySQL 8.0)

--configdir=directory,

--config-dir=directory

Specify cluster management
server configuration cache
directory

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--daemon,

-d

Run ndb_mgmd in daemon mode
(default)

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--initial Causes management server to
reload configuration data from
configuration file, bypassing
configuration cache

(Supported in all NDB releases
based on MySQL 8.0)

--install[=name] Used to install management
server process as Windows
service; does not apply on other
platforms

(Supported in all NDB releases
based on MySQL 8.0)

--interactive Run ndb_mgmd in interactive
mode (not officially supported in
production; for testing purposes
only)

(Supported in all NDB releases
based on MySQL 8.0)

350

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

--log-name=name Name to use when writing cluster
log messages applying to this
node

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--mycnf Read cluster configuration data
from my.cnf file

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--no-nodeid-checks Do not perform any node ID
checks

(Supported in all NDB releases
based on MySQL 8.0)

--nodaemon Do not run ndb_mgmd as a
daemon

(Supported in all NDB releases
based on MySQL 8.0)

--nowait-nodes=list Do not wait for management
nodes specified when starting this
management server; requires --
ndb-nodeid option

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--print-full-config,

-P

Print full configuration and exit (Supported in all NDB releases
based on MySQL 8.0)

--reload Causes management server to
compare configuration file with
configuration cache

(Supported in all NDB releases
based on MySQL 8.0)

--remove[=name] Used to remove management
server process that was previously
installed as Windows service,

(Supported in all NDB releases
based on MySQL 8.0)

351

ndb_mgmd — The NDB Cluster Management Server Daemon

Format Description Added, Deprecated, or
Removed

optionally specifying name of
service to be removed; does not
apply on other platforms

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--skip-config-file Do not use configuration file (Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Write additional information to log (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --bind-address=host

Command-Line Format --bind-address=host

Type String

Default Value [none]

Causes the management server to bind to a specific network interface (host name or IP address). This
option has no default value.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• cluster-config-suffix

Command-Line Format --cluster-config-suffix=name

Introduced 8.0.24-ndb-8.0.24

Type String

Default Value [none]

Override defaults group suffix when reading cluster configuration sections in my.cnf; used in testing.

• --config-cache

Command-Line Format --config-cache[=TRUE|FALSE]

Type Boolean

Default Value TRUE

This option, whose default value is 1 (or TRUE, or ON), can be used to disable the management server's
configuration cache, so that it reads its configuration from config.ini every time it starts (see
Section 4.3, “NDB Cluster Configuration Files”). You can do this by starting the ndb_mgmd process with
any one of the following options:

352

ndb_mgmd — The NDB Cluster Management Server Daemon

• --config-cache=0

• --config-cache=FALSE

• --config-cache=OFF

• --skip-config-cache

Using one of the options just listed is effective only if the management server has no stored configuration
at the time it is started. If the management server finds any configuration cache files, then the --
config-cache option or the --skip-config-cache option is ignored. Therefore, to disable
configuration caching, the option should be used the first time that the management server is started.
Otherwise—that is, if you wish to disable configuration caching for a management server that has
already created a configuration cache—you must stop the management server, delete any existing
configuration cache files manually, then restart the management server with --skip-config-cache
(or with --config-cache set equal to 0, OFF, or FALSE).

Configuration cache files are normally created in a directory named mysql-cluster under the
installation directory (unless this location has been overridden using the --configdir option). Each
time the management server updates its configuration data, it writes a new cache file. The files are
named sequentially in order of creation using the following format:

ndb_node-id_config.bin.seq-number

node-id is the management server's node ID; seq-number is a sequence number, beginning with
1. For example, if the management server's node ID is 5, then the first three configuration cache files
would, when they are created, be named ndb_5_config.bin.1, ndb_5_config.bin.2, and
ndb_5_config.bin.3.

If your intent is to purge or reload the configuration cache without actually disabling caching, you should
start ndb_mgmd with one of the options --reload or --initial instead of --skip-config-cache.

To re-enable the configuration cache, simply restart the management server, but without the --config-
cache or --skip-config-cache option that was used previously to disable the configuration cache.

ndb_mgmd does not check for the configuration directory (--configdir) or attempts to create one
when --skip-config-cache is used. (Bug #13428853)

• --config-file=filename, -f filename

Command-Line Format --config-file=file

Disabled by skip-config-file

Type File name

353

ndb_mgmd — The NDB Cluster Management Server Daemon

Default Value [none]

Instructs the management server as to which file it should use for its configuration file. By default,
the management server looks for a file named config.ini in the same directory as the ndb_mgmd
executable; otherwise the file name and location must be specified explicitly.

This option has no default value, and is ignored unless the management server is forced to read the
configuration file, either because ndb_mgmd was started with the --reload or --initial option, or
because the management server could not find any configuration cache.

The --config-file option is also read if ndb_mgmd was started with --config-cache=OFF. See
Section 4.3, “NDB Cluster Configuration Files”, for more information.

• --configdir=dir_name

Command-Line Format --configdir=directory

--config-dir=directory

Type File name

Default Value $INSTALLDIR/mysql-cluster

Specifies the cluster management server's configuration cache directory. --config-dir is an alias for
this option.

In NDB 8.0.27 and later, this must be an absolute path. Otherwise, the management server refuses to
start.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

354

ndb_mgmd — The NDB Cluster Management Server Daemon

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --daemon, -d

Command-Line Format --daemon

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

This option has no effect when running ndb_mgmd on Windows platforms.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

355

ndb_mgmd — The NDB Cluster Management Server Daemon

• --initial

Command-Line Format --initial

Configuration data is cached internally, rather than being read from the cluster global configuration file
each time the management server is started (see Section 4.3, “NDB Cluster Configuration Files”). Using
the --initial option overrides this behavior, by forcing the management server to delete any existing
cache files, and then to re-read the configuration data from the cluster configuration file and to build a
new cache.

This differs in two ways from the --reload option. First, --reload forces the server to check the
configuration file against the cache and reload its data only if the contents of the file are different from
the cache. Second, --reload does not delete any existing cache files.

If ndb_mgmd is invoked with --initial but cannot find a global configuration file, the management
server cannot start.

When a management server starts, it checks for another management server in the same NDB Cluster
and tries to use the other management server's configuration data. This behavior has implications
when performing a rolling restart of an NDB Cluster with multiple management nodes. See Section 6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

When used together with the --config-file option, the cache is cleared only if the configuration file is
actually found.

• --install[=name]

Command-Line Format --install[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Causes ndb_mgmd to be installed as a Windows service. Optionally, you can specify a name for the
service; if not set, the service name defaults to ndb_mgmd. Although it is preferable to specify other
ndb_mgmd program options in a my.ini or my.cnf configuration file, it is possible to use them together
with --install. However, in such cases, the --install option must be specified first, before any
other options are given, for the Windows service installation to succeed.

It is generally not advisable to use this option together with the --initial option, since this causes
the configuration cache to be wiped and rebuilt every time the service is stopped and started. Care
should also be taken if you intend to use any other ndb_mgmd options that affect the starting of the
management server, and you should make absolutely certain you fully understand and allow for any
possible consequences of doing so.

The --install option has no effect on non-Windows platforms.

• --interactive

Command-Line Format --interactive

Starts ndb_mgmd in interactive mode; that is, an ndb_mgm client session is started as soon as the
management server is running. This option does not start any other NDB Cluster nodes.

356

ndb_mgmd — The NDB Cluster Management Server Daemon

• --log-name=name

Command-Line Format --log-name=name

Type String

Default Value MgmtSrvr

Provides a name to be used for this node in the cluster log.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connection string. Syntax: [nodeid=id;][host=]hostname[:port]. Overrides entries in
NDB_CONNECTSTRING and my.cnf. Ignored if --config-file is specified; beginning with NDB
8.0.27, a warning is issued when both options are used.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

357

ndb_mgmd — The NDB Cluster Management Server Daemon

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-nodeid-checks

Command-Line Format --no-nodeid-checks

Do not perform any checks of node IDs.

• --nodaemon

Command-Line Format --nodaemon

Instructs ndb_mgmd not to start as a daemon process.

The default behavior for ndb_mgmd on Windows is to run in the foreground, making this option
unnecessary on Windows platforms.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nowait-nodes

Command-Line Format --nowait-nodes=list

Type Numeric

Default Value [none]

Minimum Value 1

Maximum Value 255

When starting an NDB Cluster is configured with two management nodes, each management server
normally checks to see whether the other ndb_mgmd is also operational and whether the other
management server's configuration is identical to its own. However, it is sometimes desirable to start
the cluster with only one management node (and perhaps to allow the other ndb_mgmd to be started
later). This option causes the management node to bypass any checks for any other management nodes
whose node IDs are passed to this option, permitting the cluster to start as though configured to use only
the management node that was started.

For purposes of illustration, consider the following portion of a config.ini file (where we have omitted
most of the configuration parameters that are not relevant to this example):

[ndbd]
NodeId = 1
HostName = 198.51.100.101

[ndbd]
NodeId = 2
HostName = 198.51.100.102

[ndbd]
NodeId = 3
HostName = 198.51.100.103

[ndbd]

358

ndb_mgmd — The NDB Cluster Management Server Daemon

NodeId = 4
HostName = 198.51.100.104

[ndb_mgmd]
NodeId = 10
HostName = 198.51.100.150

[ndb_mgmd]
NodeId = 11
HostName = 198.51.100.151

[api]
NodeId = 20
HostName = 198.51.100.200

[api]
NodeId = 21
HostName = 198.51.100.201

Assume that you wish to start this cluster using only the management server having node ID 10 and
running on the host having the IP address 198.51.100.150. (Suppose, for example, that the host
computer on which you intend to the other management server is temporarily unavailable due to
a hardware failure, and you are waiting for it to be repaired.) To start the cluster in this way, use a
command line on the machine at 198.51.100.150 to enter the following command:

$> ndb_mgmd --ndb-nodeid=10 --nowait-nodes=11

As shown in the preceding example, when using --nowait-nodes, you must also use the --ndb-
nodeid option to specify the node ID of this ndb_mgmd process.

You can then start each of the cluster's data nodes in the usual way. If you wish to start and use
the second management server in addition to the first management server at a later time without
restarting the data nodes, you must start each data node with a connection string that references both
management servers, like this:

$> ndbd -c 198.51.100.150,198.51.100.151

The same is true with regard to the connection string used with any mysqld processes that you wish to
start as NDB Cluster SQL nodes connected to this cluster. See Section 4.3.3, “NDB Cluster Connection
Strings”, for more information.

When used with ndb_mgmd, this option affects the behavior of the management node with regard to
other management nodes only. Do not confuse it with the --nowait-nodes option used with ndbd or
ndbmtd to permit a cluster to start with fewer than its full complement of data nodes; when used with
data nodes, this option affects their behavior only with regard to other data nodes.

Multiple management node IDs may be passed to this option as a comma-separated list. Each node
ID must be no less than 1 and no greater than 255. In practice, it is quite rare to use more than two
management servers for the same NDB Cluster (or to have any need for doing so); in most cases you
need to pass to this option only the single node ID for the one management server that you do not wish
to use when starting the cluster.

Note

When you later start the “missing” management server, its configuration must
match that of the management server that is already in use by the cluster.
Otherwise, it fails the configuration check performed by the existing management
server, and does not start.

359

ndb_mgmd — The NDB Cluster Management Server Daemon

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-full-config, -P

Command-Line Format --print-full-config

Shows extended information regarding the configuration of the cluster. With this option on the command
line the ndb_mgmd process prints information about the cluster setup including an extensive list of the
cluster configuration sections as well as parameters and their values. Normally used together with the --
config-file (-f) option.

• --reload

Command-Line Format --reload

NDB Cluster configuration data is stored internally rather than being read from the cluster global
configuration file each time the management server is started (see Section 4.3, “NDB Cluster
Configuration Files”). Using this option forces the management server to check its internal data store
against the cluster configuration file and to reload the configuration if it finds that the configuration file
does not match the cache. Existing configuration cache files are preserved, but not used.

This differs in two ways from the --initial option. First, --initial causes all cache files to be
deleted. Second, --initial forces the management server to re-read the global configuration file and
construct a new cache.

If the management server cannot find a global configuration file, then the --reload option is ignored.

When --reload is used, the management server must be able to communicate with data nodes and
any other management servers in the cluster before it attempts to read the global configuration file;
otherwise, the management server fails to start. This can happen due to changes in the networking
environment, such as new IP addresses for nodes or an altered firewall configuration. In such cases,
you must use --initial instead to force the exsiting cached configuration to be discarded and
reloaded from the file. See Section 6.5, “Performing a Rolling Restart of an NDB Cluster”, for additional
information.

• --remove{=name]

Command-Line Format --remove[=name]

Platform Specific Windows

Type String

Default Value ndb_mgmd

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --skip-config-file

Command-Line Format --skip-config-file

Do not read cluster configuration file; ignore --initial and --reload options if specified.

360

ndb_mgm — The NDB Cluster Management Client

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose, -v

Command-Line Format --verbose

Remove a management server process that has been installed as a Windows service, optionally
specifying the name of the service to be removed. Applies only to Windows platforms.

• --version

Command-Line Format --version

Display version information and exit.

It is not strictly necessary to specify a connection string when starting the management server. However, if
you are using more than one management server, a connection string should be provided and each node
in the cluster should specify its node ID explicitly.

See Section 4.3.3, “NDB Cluster Connection Strings”, for information about using connection strings.
Section 5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, describes other options for
ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the unique
node identifier.

• config.ini is the configuration file for the cluster as a whole. This file is created by the user and
read by the management server. Chapter 4, Configuration of NDB Cluster, discusses how to set up this
file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include checkpoint
startup and completion, node startup events, node failures, and levels of memory usage. A complete
listing of cluster events with descriptions may be found in Chapter 6, Management of NDB Cluster.

By default, when the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster log file.
(For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is named
using the number 4.) You can change the size and number of files, and other characteristics of the
cluster log, using the LogDestination configuration parameter.

• ndb_node_id_out.log is the file used for stdout and stderr when running the management server
as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

5.5 ndb_mgm — The NDB Cluster Management Client
The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in
providing a set of commands for checking the cluster's status, starting backups, and performing other
administrative functions. The management client accesses the management server using a C API.
Advanced users can also employ this API for programming dedicated management processes to perform
tasks similar to those performed by ndb_mgm.

361

ndb_mgm — The NDB Cluster Management Client

To start the management client, it is necessary to supply the host name and port number of the
management server:

$> ndb_mgm [host_name [port_num]]

For example:

$> ndb_mgm ndb_mgmd.mysql.com 1186

The default host name and port number are localhost and 1186, respectively.

All options that can be used with ndb_mgm are shown in the following table. Additional descriptions follow
the table.

Table 5.4 Command-line options used with the program ndb_mgm

Format Description Added, Deprecated, or
Removed

--backup-password-from-
stdin

Get decryption password in a
secure fashion from STDIN;
use together with --execute and
ndb_mgm START BACKUP
command

ADDED: NDB 8.0.24

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Set number of times to retry
connection before giving up; 0
means 1 attempt only (and no
retries)

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--encrypt-backup Cause START BACKUP to
encrypt whenever making a
backup, prompting for password if
not supplied by user

ADDED: NDB 8.0.24

--execute=command,

-e command

Execute command and exit (Supported in all NDB releases
based on MySQL 8.0)

--help, Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

362

ndb_mgm — The NDB Cluster Management Client

Format Description Added, Deprecated, or
Removed

-?

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--try-reconnect=#,

-t #

Set number of times to retry
connection before giving up;
synonym for --connect-retries

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --backup-password-from-stdin[=TRUE|FALSE]

Command-Line Format --backup-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

This option enables input of the backup password from the system shell (stdin) when using --
execute "START BACKUP" or similar to create a backup. Use of this option requires use of --
execute as well.

363

ndb_mgm — The NDB Cluster Management Client

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries=#

Command-Line Format --connect-retries=#

Type Numeric

Default Value 3

Minimum Value 0

Maximum Value 4294967295

This option specifies the number of times following the first attempt to retry a connection before giving up
(the client always tries the connection at least once). The length of time to wait per attempt is set using
--connect-retry-delay.

This option is synonymous with the --try-reconnect option, which is now deprecated.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

364

ndb_mgm — The NDB Cluster Management Client

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --encrypt-backup

Command-Line Format --encrypt-backup

Introduced 8.0.24-ndb-8.0.24

When used, this option causes all backups to be encrypted. To make this happen whenever ndb_mgm is
run, put the option in the [ndb_mgm] section of the my.cnf file.

• --execute=command, -e command

Command-Line Format --execute=command

This option can be used to send a command to the NDB Cluster management client from the system
shell. For example, either of the following is equivalent to executing SHOW in the management client:

$> ndb_mgm -e "SHOW"

$> ndb_mgm --execute="SHOW"

This is analogous to how the --execute or -e option works with the mysql command-line client. See
Using Options on the Command Line.

Note

If the management client command to be passed using this option contains any
space characters, then the command must be enclosed in quotation marks.
Either single or double quotation marks may be used. If the management client
command contains no space characters, the quotation marks are optional.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

365

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_execute
https://dev.mysql.com/doc/refman/8.0/en/command-line-options.html

ndb_mgm — The NDB Cluster Management Client

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: [nodeid=id;][host=]hostname[:port].
Overrides entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --try-reconnect=number

Command-Line Format --try-reconnect=#

366

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Deprecated Yes

Type Numeric

Type Integer

Default Value 12

Default Value 3

Minimum Value 0

Maximum Value 4294967295

If the connection to the management server is broken, the node tries to reconnect to it every 5 seconds
until it succeeds. By using this option, it is possible to limit the number of attempts to number before
giving up and reporting an error instead.

This option is deprecated and subject to removal in a future release. Use --connect-retries,
instead.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Additional information about using ndb_mgm can be found in Section 6.1, “Commands in the NDB Cluster
Management Client”.

5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of
NDB Cluster Tables

This tool can be used to check for and remove orphaned BLOB column parts from NDB tables, as well as
to generate a file listing any orphaned parts. It is sometimes useful in diagnosing and repairing corrupted or
damaged NDB tables containing BLOB or TEXT columns.

The basic syntax for ndb_blob_tool is shown here:

ndb_blob_tool [options] table [column, ...]

Unless you use the --help option, you must specify an action to be performed by including one or
more of the options --check-orphans, --delete-orphans, or --dump-file. These options cause
ndb_blob_tool to check for orphaned BLOB parts, remove any orphaned BLOB parts, and generate a
dump file listing orphaned BLOB parts, respectively, and are described in more detail later in this section.

You must also specify the name of a table when invoking ndb_blob_tool. In addition, you can optionally
follow the table name with the (comma-separated) names of one or more BLOB or TEXT columns from that
table. If no columns are listed, the tool works on all of the table's BLOB and TEXT columns. If you need to
specify a database, use the --database (-d) option.

The --verbose option provides additional information in the output about the tool's progress.

367

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

All options that can be used with ndb_mgmd are shown in the following table. Additional descriptions follow
the table.

Table 5.5 Command-line options used with the program ndb_blob_tool

Format Description Added, Deprecated, or
Removed

--add-missing Write dummy blob parts to take
place of those which are missing

ADDED: NDB 8.0.20

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--check-missing Check for blobs having inline parts
but missing one or more parts
from parts table

ADDED: NDB 8.0.20

--check-orphans Check for blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Database to find the table in (Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delete-orphans Delete blob parts having no
corresponding inline parts

(Supported in all NDB releases
based on MySQL 8.0)

--dump-file=file Write orphan keys to specified file (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".

(Supported in all NDB releases
based on MySQL 8.0)

368

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Format Description Added, Deprecated, or
Removed

Overrides entries in
NDB_CONNECTSTRING and
my.cnf

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Verbose output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --add-missing

Command-Line Format --add-missing

Introduced 8.0.20-ndb-8.0.20

For each inline part in NDB Cluster tables which has no corresponding BLOB part, write a dummy BLOB
part of the required length, consisting of spaces.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --check-missing

Command-Line Format --check-missing

Introduced 8.0.20-ndb-8.0.20

Check for inline parts in NDB Cluster tables which have no corresponding BLOB parts. 369

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --check-orphans

Command-Line Format --check-orphans

Check for BLOB parts in NDB Cluster tables which have no corresponding inline parts.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=db_name, -d

Command-Line Format --database=name

Type String

Default Value [none]

Specify the database to find the table in.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

370

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delete-orphans

Command-Line Format --delete-orphans

Remove BLOB parts from NDB Cluster tables which have no corresponding inline parts.

• --dump-file=file

Command-Line Format --dump-file=file

Type File name

Default Value [none]

Writes a list of orphaned BLOB column parts to file. The information written to the file includes the
table key and BLOB part number for each orphaned BLOB part.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.
371

ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

372

Example

Provide extra information in the tool's output regarding its progress.

• --version

Command-Line Format --version

Display version information and exit.

Example

First we create an NDB table in the test database, using the CREATE TABLE statement shown here:

USE test;

CREATE TABLE btest (
 c0 BIGINT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 c1 TEXT,
 c2 BLOB
) ENGINE=NDB;

Then we insert a few rows into this table, using a series of statements similar to this one:

INSERT INTO btest VALUES (NULL, 'x', REPEAT('x', 1000));

When run with --check-orphans against this table, ndb_blob_tool generates the following output:

$> ndb_blob_tool --check-orphans --verbose -d test btest
connected
processing 2 blobs
processing blob #0 c1 NDB$BLOB_19_1
NDB$BLOB_19_1: nextResult: res=1
total parts: 0
orphan parts: 0
processing blob #1 c2 NDB$BLOB_19_2
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=0
NDB$BLOB_19_2: nextResult: res=1
total parts: 10
orphan parts: 0
disconnected

NDBT_ProgramExit: 0 - OK

The tool reports that there are no NDB BLOB column parts associated with column c1, even though c1
is a TEXT column. This is due to the fact that, in an NDB table, only the first 256 bytes of a BLOB or TEXT
column value are stored inline, and only the excess, if any, is stored separately; thus, if there are no values
using more than 256 bytes in a given column of one of these types, no BLOB column parts are created by
NDB for this column. See Data Type Storage Requirements, for more information.

5.7 ndb_config — Extract NDB Cluster Configuration Information
This tool extracts current configuration information for data nodes, SQL nodes, and API nodes from one of
a number of sources: an NDB Cluster management node, or its config.ini or my.cnf file. By default,

373

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html

ndb_config — Extract NDB Cluster Configuration Information

the management node is the source for the configuration data; to override the default, execute ndb_config
with the --config-file or --mycnf option. It is also possible to use a data node as the source by
specifying its node ID with --config_from_node=node_id.

ndb_config can also provide an offline dump of all configuration parameters which can be used, along
with their default, maximum, and minimum values and other information. The dump can be produced in
either text or XML format; for more information, see the discussion of the --configinfo and --xml
options later in this section).

You can filter the results by section (DB, SYSTEM, or CONNECTIONS) using one of the options --nodes, --
system, or --connections.

All options that can be used with ndb_config are shown in the following table. Additional descriptions
follow the table.

Table 5.6 Command-line options used with the program ndb_config

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--cluster-config-
suffix=name

Override defaults group suffix
when reading cluster_config
sections in my.cnf file; used in
testing

ADDED: NDB 8.0.24

--config-file=file_name Set the path to config.ini file (Supported in all NDB releases
based on MySQL 8.0)

--config-from-node=# Obtain configuration data from the
node having this ID (must be a
data node)

(Supported in all NDB releases
based on MySQL 8.0)

--configinfo Dumps information about all NDB
configuration parameters in text
format with default, maximum, and
minimum values. Use with --xml to
obtain XML output

(Supported in all NDB releases
based on MySQL 8.0)

--connections Print information only about
connections specified in [tcp], [tcp
default], [sci], [sci default], [shm],
or [shm default] sections of cluster
configuration file. Cannot be used
with --system or --nodes

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

374

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--diff-default Print only configuration
parameters that have non-default
values

(Supported in all NDB releases
based on MySQL 8.0)

--fields=string,

-f

Field separator (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--host=name Specify host (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--mycnf Read configuration data from
my.cnf file

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--nodeid=# Get configuration of node with this
ID

(Supported in all NDB releases
based on MySQL 8.0)

--nodes Print node information ([ndbd] or
[ndbd default] section of cluster

(Supported in all NDB releases
based on MySQL 8.0)

375

ndb_config — Extract NDB Cluster Configuration Information

Format Description Added, Deprecated, or
Removed

configuration file) only. Cannot
be used with --system or --
connections

--query=string,

-q string

One or more query options
(attributes)

(Supported in all NDB releases
based on MySQL 8.0)

--query-all,

-a

Dumps all parameters and values
to a single comma-delimited string

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--rows=string,

-r string

Row separator (Supported in all NDB releases
based on MySQL 8.0)

--system Print SYSTEM section information
only (see ndb_config --configinfo
output). Cannot be used with --
nodes or --connections

(Supported in all NDB releases
based on MySQL 8.0)

--type=name Specify node type (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--configinfo --xml Use --xml with --configinfo
to obtain a dump of all NDB
configuration parameters in XML
format with default, maximum, and
minimum values

(Supported in all NDB releases
based on MySQL 8.0)

• cluster-config-suffix

Command-Line Format --cluster-config-suffix=name

Introduced 8.0.24-ndb-8.0.24

Type String

Default Value [none]

Override defaults group suffix when reading cluster configuration sections in my.cnf; used in testing.

376

ndb_config — Extract NDB Cluster Configuration Information

• --configinfo

The --configinfo option causes ndb_config to dump a list of each NDB Cluster configuration
parameter supported by the NDB Cluster distribution of which ndb_config is a part, including the
following information:

• A brief description of each parameter's purpose, effects, and usage

• The section of the config.ini file where the parameter may be used

• The parameter's data type or unit of measurement

• Where applicable, the parameter's default, minimum, and maximum values

• NDB Cluster release version and build information

By default, this output is in text format. Part of this output is shown here:

$> ndb_config --configinfo

****** SYSTEM ******

Name (String)
Name of system (NDB Cluster)
MANDATORY

PrimaryMGMNode (Non-negative Integer)
Node id of Primary ndb_mgmd(MGM) node
Default: 0 (Min: 0, Max: 4294967039)

ConfigGenerationNumber (Non-negative Integer)
Configuration generation number
Default: 0 (Min: 0, Max: 4294967039)

****** DB ******

MaxNoOfSubscriptions (Non-negative Integer)
Max no of subscriptions (default 0 == MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

MaxNoOfSubscribers (Non-negative Integer)
Max no of subscribers (default 0 == 2 * MaxNoOfTables)
Default: 0 (Min: 0, Max: 4294967039)

…

Use this option together with the --xml option to obtain output in XML format.

• --config-file=path-to-file

Command-Line Format --config-file=file_name

Type File name

Default Value

Gives the path to the management server's configuration file (config.ini). This may be a relative or
absolute path. If the management node resides on a different host from the one on which ndb_config
is invoked, then an absolute path must be used.

377

ndb_config — Extract NDB Cluster Configuration Information

• --config_from_node=#

Command-Line Format --config-from-node=#

Type Numeric

Default Value none

Minimum Value 1

Maximum Value 48

Obtain the cluster's configuration data from the data node that has this ID.

If the node having this ID is not a data node, ndb_config fails with an error. (To obtain configuration
data from the management node instead, simply omit this option.)

• --connections

Command-Line Format --connections

Tells ndb_config to print CONNECTIONS information only—that is, information about parameters found
in the [tcp], [tcp default], [shm], or [shm default] sections of the cluster configuration file
(see Section 4.3.10, “NDB Cluster TCP/IP Connections”, and Section 4.3.12, “NDB Cluster Shared-
Memory Connections”, for more information).

This option is mutually exclusive with --nodes and --system; only one of these 3 options can be used.

• --diff-default

Command-Line Format --diff-default

Print only configuration parameters that have non-default values.

• --fields=delimiter, -f delimiter

Command-Line Format --fields=string

Type String

Default Value

Specifies a delimiter string used to separate the fields in the result. The default is , (the comma
character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --host=hostname

Command-Line Format --host=name

Type String

378

ndb_config — Extract NDB Cluster Configuration Information

Default Value

Specifies the host name of the node for which configuration information is to be obtained.

Note

While the hostname localhost usually resolves to the IP address 127.0.0.1,
this may not necessarily be true for all operating platforms and configurations.
This means that it is possible, when localhost is used in config.ini, for
ndb_config --host=localhost to fail if ndb_config is run on a different
host where localhost resolves to a different address (for example, on some
versions of SUSE Linux, this is 127.0.0.2). In general, for best results, you
should use numeric IP addresses for all NDB Cluster configuration values relating
to hosts, or verify that all NDB Cluster hosts handle localhost in the same
fashion.

• --mycnf

Command-Line Format --mycnf

Read configuration data from the my.cnf file.

• --ndb-connectstring=connection_string, -c connection_string

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Specifies the connection string to use in connecting to the management server. The format for the
connection string is the same as described in Section 4.3.3, “NDB Cluster Connection Strings”, and
defaults to localhost:1186.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nodeid=node_id

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Specify the node ID of the node for which configuration information is to be obtained.

379

ndb_config — Extract NDB Cluster Configuration Information

• --nodes

Command-Line Format --nodes

Tells ndb_config to print information relating only to parameters defined in an [ndbd] or [ndbd
default] section of the cluster configuration file (see Section 4.3.6, “Defining NDB Cluster Data
Nodes”).

This option is mutually exclusive with --connections and --system; only one of these 3 options can
be used.

• --query=query-options, -q query-options

Command-Line Format --query=string

Type String

Default Value

This is a comma-delimited list of query options—that is, a list of one or more node attributes to be
returned. These include nodeid (node ID), type (node type—that is, ndbd, mysqld, or ndb_mgmd), and
any configuration parameters whose values are to be obtained.

For example, --query=nodeid,type,datamemory,datadir returns the node ID, node type,
DataMemory, and DataDir for each node.

Note

If a given parameter is not applicable to a certain type of node, than an empty
string is returned for the corresponding value. See the examples later in this
section for more information.

• --query-all, -a

Command-Line Format --query-all

Type String

Default Value

Returns a comma-delimited list of all query options (node attributes; note that this list is a single string.

• --rows=separator, -r separator

Command-Line Format --rows=string

Type String

Default Value

Specifies a separator string used to separate the rows in the result. The default is a space character.

Note

If the separator contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

380

ndb_config — Extract NDB Cluster Configuration Information

• --system

Command-Line Format --system

Tells ndb_config to print SYSTEM information only. This consists of system variables that cannot
be changed at run time; thus, there is no corresponding section of the cluster configuration file for
them. They can be seen (prefixed with ****** SYSTEM ******) in the output of ndb_config --
configinfo.

This option is mutually exclusive with --nodes and --connections; only one of these 3 options can
be used.

• --type=node_type

Command-Line Format --type=name

Type Enumeration

Default Value [none]

Valid Values ndbd

mysqld

ndb_mgmd

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd,
mysqld, or ndb_mgmd) are returned.

• --usage, --help, or -?

Command-Line Format --help

Causes ndb_config to print a list of available options, and then exit.

• --version, -V

Command-Line Format --version

Causes ndb_config to print a version information string, and then exit.

• --configinfo --xml

Command-Line Format --configinfo --xml

Cause ndb_config --configinfo to provide output as XML by adding this option. A portion of such
output is shown in this example:

$> ndb_config --configinfo --xml

<configvariables protocolversion="1" ndbversionstring="5.7.38-ndb-7.5.27"
 ndbversion="460032" ndbversionmajor="7" ndbversionminor="5"
 ndbversionbuild="0">
 <section name="SYSTEM">
 <param name="Name" comment="Name of system (NDB Cluster)" type="string"
 mandatory="true"/>
 <param name="PrimaryMGMNode" comment="Node id of Primary ndb_mgmd(MGM) node"
 type="unsigned" default="0" min="0" max="4294967039"/>
 <param name="ConfigGenerationNumber" comment="Configuration generation number"
 type="unsigned" default="0" min="0" max="4294967039"/>

381

ndb_config — Extract NDB Cluster Configuration Information

 </section>
 <section name="MYSQLD" primarykeys="NodeId">
 <param name="wan" comment="Use WAN TCP setting as default" type="bool"
 default="false"/>
 <param name="HostName" comment="Name of computer for this node"
 type="string" default=""/>
 <param name="Id" comment="NodeId" type="unsigned" mandatory="true"
 min="1" max="255" deprecated="true"/>
 <param name="NodeId" comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>
 <param name="ExecuteOnComputer" comment="HostName" type="string"
 deprecated="true"/>

 …

 </section>

 …

</configvariables>

Note

Normally, the XML output produced by ndb_config --configinfo --xml
is formatted using one line per element; we have added extra whitespace in
the previous example, as well as the next one, for reasons of legibility. This
should not make any difference to applications using this output, since most XML
processors either ignore nonessential whitespace as a matter of course, or can
be instructed to do so.

The XML output also indicates when changing a given parameter requires that data nodes be restarted
using the --initial option. This is shown by the presence of an initial="true" attribute in the
corresponding <param> element. In addition, the restart type (system or node) is also shown; if a
given parameter requires a system restart, this is indicated by the presence of a restart="system"
attribute in the corresponding <param> element. For example, changing the value set for the Diskless
parameter requires a system initial restart, as shown here (with the restart and initial attributes
highlighted for visibility):

<param name="Diskless" comment="Run wo/ disk" type="bool" default="false"
 restart="system" initial="true"/>

Currently, no initial attribute is included in the XML output for <param> elements corresponding to
parameters which do not require initial restarts; in other words, initial="false" is the default, and
the value false should be assumed if the attribute is not present. Similarly, the default restart type is
node (that is, an online or “rolling” restart of the cluster), but the restart attribute is included only if
the restart type is system (meaning that all cluster nodes must be shut down at the same time, then
restarted).

Deprecated parameters are indicated in the XML output by the deprecated attribute, as shown here:

<param name="NoOfDiskPagesToDiskAfterRestartACC" comment="DiskCheckpointSpeed"
 type="unsigned" default="20" min="1" max="4294967039" deprecated="true"/>

In such cases, the comment refers to one or more parameters that supersede the deprecated
parameter. Similarly to initial, the deprecated attribute is indicated only when the parameter

382

ndb_config — Extract NDB Cluster Configuration Information

is deprecated, with deprecated="true", and does not appear at all for parameters which are not
deprecated. (Bug #21127135)

Parameters that are required are indicated with mandatory="true", as shown here:

<param name="NodeId"
 comment="Number identifying application node (mysqld(API))"
 type="unsigned" mandatory="true" min="1" max="255"/>

In much the same way that the initial or deprecated attribute is displayed only for a parameter
that requires an intial restart or that is deprecated, the mandatory attribute is included only if the given
parameter is actually required.

Important

The --xml option can be used only with the --configinfo option. Using --
xml without --configinfo fails with an error.

Unlike the options used with this program to obtain current configuration data, --configinfo and --
xml use information obtained from the NDB Cluster sources when ndb_config was compiled. For this
reason, no connection to a running NDB Cluster or access to a config.ini or my.cnf file is required
for these two options.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix). 383

ndb_config — Extract NDB Cluster Configuration Information

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

384

Examples

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

Combining other ndb_config options (such as --query or --type) with --configinfo (with or
without the --xml option is not supported. Currently, if you attempt to do so, the usual result is that
all other options besides --configinfo or --xml are simply ignored. However, this behavior is not
guaranteed and is subject to change at any time. In addition, since ndb_config, when used with the --
configinfo option, does not access the NDB Cluster or read any files, trying to specify additional options
such as --ndb-connectstring or --config-file with --configinfo serves no purpose.

Examples

1. To obtain the node ID and type of each node in the cluster:

$> ./ndb_config --query=nodeid,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the ID and type of each node with a colon
character (:), and the --rows options to place the values for each node on a new line in the output.

2. To produce a connection string that can be used by data, SQL, and API nodes to connect to the
management server:

385

ndb_delete_all — Delete All Rows from an NDB Table

$> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini \
--query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
198.51.100.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows the
values for each node's ID and host name, as well as the values set for its DataMemory and DataDir
parameters:

$> ./ndb_config --type=ndbd --query=nodeid,host,datamemory,datadir -f ' : ' -r '\n'
1 : 198.51.100.193 : 83886080 : /usr/local/mysql/cluster-data
2 : 198.51.100.112 : 83886080 : /usr/local/mysql/cluster-data
3 : 198.51.100.176 : 83886080 : /usr/local/mysql/cluster-data
4 : 198.51.100.119 : 83886080 : /usr/local/mysql/cluster-data

In this example, we used the short options -f and -r for setting the field delimiter and row separator,
respectively, as well as the short option -q to pass a list of parameters to be obtained.

4. To exclude results from any host except one in particular, use the --host option:

$> ./ndb_config --host=198.51.100.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --nodeid option.

5.8 ndb_delete_all — Delete All Rows from an NDB Table
ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster than
DELETE or even TRUNCATE TABLE.

Usage
ndb_delete_all -c connection_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

Options that can be used with ndb_delete_all are shown in the following table. Additional descriptions
follow the table.

Table 5.7 Command-line options used with the program ndb_delete_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

386

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

Usage

Format Description Added, Deprecated, or
Removed

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of the database in which
the table is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--diskscan Perform disk scan (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--transactional,

-t

Perform delete in one single
transaction; possible to run out of
operations when used

(Supported in all NDB releases
based on MySQL 8.0)

--tupscan Perform tuple scan (Supported in all NDB releases
based on MySQL 8.0)

387

Usage

Format Description Added, Deprecated, or
Removed

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.388

Usage

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database containing the table to delete from.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --diskscan

Command-Line Format --diskscan

Run a disk scan.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

389

Usage

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --transactional, -t

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations
available to the cluster to be exceeded.

• --tupscan

390

ndb_desc — Describe NDB Tables

Run a tuple scan.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

In NDB 7.6 and earlier, this program printed NDBT_ProgramExit - status upon completion of its run,
due to an unnecessary dependency on the NDBT testing library. This dependency has been removed in
NDB 8.0, eliminating the extraneous output.

5.9 ndb_desc — Describe NDB Tables
ndb_desc provides a detailed description of one or more NDB tables.

Usage
ndb_desc -c connection_string tbl_name -d db_name [options]

ndb_desc -c connection_string index_name -d db_name -t tbl_name

Additional options that can be used with ndb_desc are listed later in this section.

Sample Output

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT NOT NULL,
 weight_gm INT NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) ENGINE=NDB;

INSERT INTO fish VALUES
 (NULL, 'guppy', 35, 2), (NULL, 'tuna', 2500, 150000),
 (NULL, 'shark', 3000, 110000), (NULL, 'manta ray', 1500, 50000),
 (NULL, 'grouper', 900, 125000), (NULL ,'puffer', 250, 2500);

Output from ndb_desc:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 2
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80

391

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Sample Output

Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 337
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-2
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY DYNAMIC
length_mm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
weight_gm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space
0 2 2 32768 32768 0 0
1 4 4 32768 32768 0 0

NDBT_ProgramExit: 0 - OK

Information about multiple tables can be obtained in a single invocation of ndb_desc by using their names,
separated by spaces. All of the tables must be in the same database.

You can obtain additional information about a specific index using the --table (short form: -t) option and
supplying the name of the index as the first argument to ndb_desc, as shown here:

$> ./ndb_desc uk -d test -t fish
-- uk --
Version: 2
Base table: fish
Number of attributes: 1
Logging: 0
Index type: OrderedIndex
Index status: Retrieved
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
-- IndexTable 10/uk --
Version: 2
Fragment type: FragUndefined
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: yes
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 0
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 2
ForceVarPart: 0

392

Sample Output

PartitionCount: 2
FragmentCount: 2
FragmentCountType: ONE_PER_LDM_PER_NODE
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
-- Attributes --
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
NDB$TNODE Unsigned [64] PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
-- Indexes --
PRIMARY KEY(NDB$TNODE) - UniqueHashIndex

NDBT_ProgramExit: 0 - OK

When an index is specified in this way, the --extra-partition-info and --extra-node-info
options have no effect.

The Version column in the output contains the table's schema object version. For information about
interpreting this value, see NDB Schema Object Versions.

Three of the table properties that can be set using NDB_TABLE comments embedded in CREATE TABLE
and ALTER TABLE statements are also visible in ndb_desc output. The table's FRAGMENT_COUNT_TYPE
is always shown in the FragmentCountType column. READ_ONLY and FULLY_REPLICATED, if set to 1,
are shown in the Table options column. You can see this after executing the following ALTER TABLE
statement in the mysql client:

mysql> ALTER TABLE fish COMMENT='NDB_TABLE=READ_ONLY=1,FULLY_REPLICATED=1';
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1296 | Got error 4503 'Table property is FRAGMENT_COUNT_TYPE=ONE_PER_LDM_PER_NODE but not in comment' from NDB |
+---------+------+---+
1 row in set (0.00 sec)

The warning is issued because READ_ONLY=1 requires that the table's fragment count type is (or be set
to) ONE_PER_LDM_PER_NODE_GROUP; NDB sets this automatically in such cases. You can check that the
ALTER TABLE statement has the desired effect using SHOW CREATE TABLE:

mysql> SHOW CREATE TABLE fish\G
*************************** 1. row ***************************
 Table: fish
Create Table: CREATE TABLE `fish` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(20) NOT NULL,
 `length_mm` int(11) NOT NULL,
 `weight_gm` int(11) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `uk` (`name`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
COMMENT='NDB_TABLE=READ_BACKUP=1,FULLY_REPLICATED=1'
1 row in set (0.01 sec)

Because FRAGMENT_COUNT_TYPE was not set explicitly, its value is not shown in the comment text printed
by SHOW CREATE TABLE. ndb_desc, however, displays the updated value for this attribute. The Table
options column shows the binary properties just enabled. You can see this in the output shown here
(emphasized text):

$> ./ndb_desc -c localhost fish -d test -p
-- fish --

393

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-schema-object-versions.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

Sample Output

Version: 4
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 380
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 1
FragmentCount: 1
FragmentCountType: ONE_PER_LDM_PER_NODE_GROUP
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options: readbackup, fullyreplicated
HashMap: DEFAULT-HASHMAP-3840-1
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(20;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY DYNAMIC
length_mm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
weight_gm Int NOT NULL AT=FIXED ST=MEMORY DYNAMIC
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space

NDBT_ProgramExit: 0 - OK

For more information about these table properties, see Setting NDB Comment Options.

The Extent_space and Free extent_space columns are applicable only to NDB tables having
columns on disk; for tables having only in-memory columns, these columns always contain the value 0.

To illustrate their use, we modify the previous example. First, we must create the necessary Disk Data
objects, as shown here:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDB;

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDB;

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDB;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M
 ENGINE NDB;

394

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

Sample Output

(For more information on the statements just shown and the objects created by them, see Section 6.10.1,
“NDB Cluster Disk Data Objects”, as well as CREATE LOGFILE GROUP Statement, and CREATE
TABLESPACE Statement.)

Now we can create and populate a version of the fish table that stores 2 of its columns on disk (deleting
the previous version of the table first, if it already exists):

DROP TABLE IF EXISTS fish;

CREATE TABLE fish (
 id INT NOT NULL AUTO_INCREMENT,
 name VARCHAR(20) NOT NULL,
 length_mm INT NOT NULL,
 weight_gm INT NOT NULL,

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) TABLESPACE ts_1 STORAGE DISK
ENGINE=NDB;

INSERT INTO fish VALUES
 (NULL, 'guppy', 35, 2), (NULL, 'tuna', 2500, 150000),
 (NULL, 'shark', 3000, 110000), (NULL, 'manta ray', 1500, 50000),
 (NULL, 'grouper', 900, 125000), (NULL ,'puffer', 250, 2500);

When run against this version of the table, ndb_desc displays the following output:

$> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 1
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 1001
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 2
FragmentCount: 2
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options: readbackup
HashMap: DEFAULT-HASHMAP-3840-2
Tablespace id: 16
Tablespace: ts_1
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
name Varchar(80;utf8mb4_0900_ai_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
length_mm Int NOT NULL AT=FIXED ST=DISK
weight_gm Int NOT NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex
uk(name) - OrderedIndex
uk$unique(name) - UniqueHashIndex
-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory Extent_space Free extent_space
0 2 2 32768 32768 1048576 1044440

395

https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html

Sample Output

1 4 4 32768 32768 1048576 1044400

NDBT_ProgramExit: 0 - OK

This means that 1048576 bytes are allocated from the tablespace for this table on each partition, of which
1044440 bytes remain free for additional storage. In other words, 1048576 - 1044440 = 4136 bytes per
partition is currently being used to store the data from this table's disk-based columns. The number of
bytes shown as Free extent_space is available for storing on-disk column data from the fish table
only; for this reason, it is not visible when selecting from the INFORMATION_SCHEMA.FILES table.

Tablespace id and Tablespace are displayed for Disk Data tables beginning with NDB 8.0.21.

For fully replicated tables, ndb_desc shows only the nodes holding primary partition fragment replicas;
nodes with copy fragment replicas (only) are ignored. You can obtain such information, using the
mysql client, from the table_distribution_status, table_fragments, table_info, and
table_replicas tables in the ndbinfo database.

All options that can be used with ndb_desc are shown in the following table. Additional descriptions follow
the table.

Table 5.8 Command-line options used with the program ndb_desc

Format Description Added, Deprecated, or
Removed

--auto-inc,

-a

Show next value for
AUTO_INCREMENT oolumn if
table has one

ADDED: NDB 8.0.21

--blob-info,

-b

Include partition information for
BLOB tables in output. Requires
that the -p option also be used

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--context,

-x

Show extra information for table
such as database, schema, name,
and internal ID

ADDED: NDB 8.0.21

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

396

https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

Sample Output

Format Description Added, Deprecated, or
Removed

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--extra-node-info,

-n

Include partition-to-data-node
mappings in output; requires --
extra-partition-info

(Supported in all NDB releases
based on MySQL 8.0)

--extra-partition-info,

-p

Display information about
partitions

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--retries=#,

-r #

Number of times to retry the
connection (once per second)

(Supported in all NDB releases
based on MySQL 8.0)

--table=name,

-t name

Specify the table in which to find
an index. When this option is
used, -p and -n have no effect and
are ignored

(Supported in all NDB releases
based on MySQL 8.0)

--unqualified, Use unqualified table names (Supported in all NDB releases
based on MySQL 8.0)

397

Sample Output

Format Description Added, Deprecated, or
Removed

-u

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --auto-inc, -a

Show the next value for a table's AUTO_INCREMENT column, if it has one.

• --blob-info, -b

Include information about subordinate BLOB and TEXT columns.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

398

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Sample Output

Same as --ndb-connectstring.

• --context, -x

Show additional contextual information for the table such as schema, database name, table name, and
the table's internal ID.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=db_name, -d

Specify the database in which the table should be found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --extra-node-info, -n

Include information about the mappings between table partitions and the data nodes upon which they
reside. This information can be useful for verifying distribution awareness mechanisms and supporting
more efficient application access to the data stored in NDB Cluster.

Use of this option also requires the use of the --extra-partition-info (-p) option.

• --extra-partition-info, -p

Print additional information about the table's partitions.

• --help

399

Sample Output

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

400

ndb_drop_index — Drop Index from an NDB Table

Command-Line Format --print-defaults

Print program argument list and exit.

• --retries=#, -r

Try to connect this many times before giving up. One connect attempt is made per second.

• --table=tbl_name, -t

Specify the table in which to look for an index.

• --unqualified, -u

Use unqualified table names.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Table indexes listed in the output are ordered by ID.

5.10 ndb_drop_index — Drop Index from an NDB Table
ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this utility
only as an example for writing NDB API applications—see the Warning later in this section for details.

Usage
ndb_drop_index -c connection_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

Options that can be used with ndb_drop_index are shown in the following table. Additional descriptions
follow the table.

Table 5.9 Command-line options used with the program ndb_drop_index

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

401

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

402

Usage

Format Description Added, Deprecated, or
Removed

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

403

Usage

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

404

Usage

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

Warning

Operations performed on Cluster table indexes using the NDB API are not visible to
MySQL and make the table unusable by a MySQL server. If you use this program
to drop an index, then try to access the table from an SQL node, an error results, as
shown here:

$> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

405

ndb_drop_table — Drop an NDB Table

NDBT_ProgramExit: 0 - OK

$> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.7.38-ndb-7.5.27

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 5.11, “ndb_drop_table — Drop an NDB Table”) to drop the table.

5.11 ndb_drop_table — Drop an NDB Table
ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a storage
engine other than NDB, the attempt fails with the error 723: No such table exists.) This operation
is extremely fast; in some cases, it can be an order of magnitude faster than using a MySQL DROP TABLE
statement on an NDB table.

Usage
ndb_drop_table -c connection_string tbl_name -d db_name

Options that can be used with ndb_drop_table are shown in the following table. Additional descriptions
follow the table.

Table 5.10 Command-line options used with the program ndb_drop_table

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

406

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

-c connection_string

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

407

Usage

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table resides.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

408

Usage

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

409

ndb_error_reporter — NDB Error-Reporting Utility

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

5.12 ndb_error_reporter — NDB Error-Reporting Utility
ndb_error_reporter creates an archive from data node and management node log files that can be
used to help diagnose bugs or other problems with a cluster. It is highly recommended that you make use
of this utility when filing reports of bugs in NDB Cluster.

Options that can be used with ndb_error_reporter are shown in the following table. Additional
descriptions follow the table.

Table 5.11 Command-line options used with the program ndb_error_reporter

Format Description Added, Deprecated, or
Removed

--connection-timeout=# Number of seconds to wait when
connecting to nodes before timing
out

(Supported in all NDB releases
based on MySQL 8.0)

410

Usage

Format Description Added, Deprecated, or
Removed

--dry-scp Disable scp with remote hosts;
used in testing only

(Supported in all NDB releases
based on MySQL 8.0)

--fs Include file system data in error
report; can use a large amount of
disk space

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--skip-nodegroup=# Skip all nodes in the node group
having this ID

(Supported in all NDB releases
based on MySQL 8.0)

Usage

ndb_error_reporter path/to/config-file [username] [options]

This utility is intended for use on a management node host, and requires the path to the management host
configuration file (usually named config.ini). Optionally, you can supply the name of a user that is able
to access the cluster's data nodes using SSH, to copy the data node log files. ndb_error_reporter
then includes all of these files in archive that is created in the same directory in which it is run. The archive
is named ndb_error_report_YYYYMMDDhhmmss.tar.bz2, where YYYYMMDDhhmmss is a datetime
string.

 ndb_error_reporter also accepts the options listed here:

• --connection-timeout=timeout

Command-Line Format --connection-timeout=#

Type Integer

Default Value 0

Wait this many seconds when trying to connect to nodes before timing out.

• --dry-scp

Command-Line Format --dry-scp

Run ndb_error_reporter without using scp from remote hosts. Used for testing only.

• --help

Command-Line Format --help

Display help text and exit.

• --fs

Command-Line Format --fs

Copy the data node file systems to the management host and include them in the archive. 411

ndb_import — Import CSV Data Into NDB

Because data node file systems can be extremely large, even after being compressed, we ask that you
please do not send archives created using this option to Oracle unless you are specifically requested to
do so.

• --skip-nodegroup=nodegroup_id

Command-Line Format --connection-timeout=#

Type Integer

Default Value 0

Skip all nodes belong to the node group having the supplied node group ID.

5.13 ndb_import — Import CSV Data Into NDB
ndb_import imports CSV-formatted data, such as that produced by mysqldump --tab, directly into NDB
using the NDB API. ndb_import requires a connection to an NDB management server (ndb_mgmd) to
function; it does not require a connection to a MySQL Server.

Usage
ndb_import db_name file_name options

ndb_import requires two arguments. db_name is the name of the database where the table into which
to import the data is found; file_name is the name of the CSV file from which to read the data; this
must include the path to this file if it is not in the current directory. The name of the file must match that of
the table; the file's extension, if any, is not taken into consideration. Options supported by ndb_import
include those for specifying field separators, escapes, and line terminators, and are described later in this
section.

Prior to NDB 8.0.30, ndb_import rejects any empty lines which it reads from the CSV file. Beginning
with NDB 8.0.30, when importing a single column, an empty value that can be used as the column value,
ndb_import handles it in the same manner as a LOAD DATA statement does.

ndb_import must be able to connect to an NDB Cluster management server; for this reason, there must
be an unused [api] slot in the cluster config.ini file.

To duplicate an existing table that uses a different storage engine, such as InnoDB, as an NDB table, use
the mysql client to perform a SELECT INTO OUTFILE statement to export the existing table to a CSV
file, then to execute a CREATE TABLE LIKE statement to create a new table having the same structure
as the existing table, then perform ALTER TABLE ... ENGINE=NDB on the new table; after this, from
the system shell, invoke ndb_import to load the data into the new NDB table. For example, an existing
InnoDB table named myinnodb_table in a database named myinnodb can be exported into an NDB
table named myndb_table in a database named myndb as shown here, assuming that you are already
logged in as a MySQL user with the appropriate privileges:

1. In the mysql client:

mysql> USE myinnodb;

mysql> SELECT * INTO OUTFILE '/tmp/myndb_table.csv'
 > FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'
 > LINES TERMINATED BY '\n'
 > FROM myinnodbtable;

mysql> CREATE DATABASE myndb;

mysql> USE myndb;

412

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_tab
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-like.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Usage

mysql> CREATE TABLE myndb_table LIKE myinnodb.myinnodb_table;

mysql> ALTER TABLE myndb_table ENGINE=NDB;

mysql> EXIT;
Bye
$>

Once the target database and table have been created, a running mysqld is no longer required. You
can stop it using mysqladmin shutdown or another method before proceeding, if you wish.

2. In the system shell:

if you are not already in the MySQL bin directory:
$> cd path-to-mysql-bin-dir

$> ndb_import myndb /tmp/myndb_table.csv --fields-optionally-enclosed-by='"' \
 --fields-terminated-by="," --fields-escaped-by='\\'

The output should resemble what is shown here:

job-1 import myndb.myndb_table from /tmp/myndb_table.csv
job-1 [running] import myndb.myndb_table from /tmp/myndb_table.csv
job-1 [success] import myndb.myndb_table from /tmp/myndb_table.csv
job-1 imported 19984 rows in 0h0m9s at 2277 rows/s
jobs summary: defined: 1 run: 1 with success: 1 with failure: 0
$>

All options that can be used with ndb_import are shown in the following table. Additional descriptions
follow the table.

Table 5.12 Command-line options used with the program ndb_import

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on any fatal error;
used for debugging

(Supported in all NDB releases
based on MySQL 8.0)

--ai-increment=# For table with hidden PK, specify
autoincrement increment. See
mysqld

(Supported in all NDB releases
based on MySQL 8.0)

--ai-offset=# For table with hidden PK, specify
autoincrement offset. See mysqld

(Supported in all NDB releases
based on MySQL 8.0)

--ai-prefetch-sz=# For table with hidden PK, specify
number of autoincrement values
that are prefetched. See mysqld

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

413

Usage

Format Description Added, Deprecated, or
Removed

--connections=# Number of cluster connections to
create

(Supported in all NDB releases
based on MySQL 8.0)

--continue When job fails, continue to next
job

(Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--csvopt=opts Shorthand option for setting
typical CSV option values. See
documentation for syntax and
other information

(Supported in all NDB releases
based on MySQL 8.0)

--db-workers=# Number of threads, per data node,
executing database operations

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--errins-type=name Error insert type, for testing
purposes; use "list" to obtain all
possible values

(Supported in all NDB releases
based on MySQL 8.0)

--errins-delay=# Error insert delay in milliseconds;
random variation is added

(Supported in all NDB releases
based on MySQL 8.0)

--fields-enclosed-by=char Same as FIELDS ENCLOSED
BY option for LOAD DATA
statements. For CSV input this is
same as using --fields-optionally-
enclosed-by

(Supported in all NDB releases
based on MySQL 8.0)

--fields-escaped-by=char Same as FIELDS ESCAPED BY
option for LOAD DATA statements

(Supported in all NDB releases
based on MySQL 8.0)

--fields-optionally-
enclosed-by=char

Same as FIELDS OPTIONALLY
ENCLOSED BY option for LOAD
DATA statements

(Supported in all NDB releases
based on MySQL 8.0)

--fields-terminated-
by=char

Same as FIELDS TERMINATED
BY option for LOAD DATA
statements

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--idlesleep=# Number of milliseconds to sleep
waiting for more to do

(Supported in all NDB releases
based on MySQL 8.0)

--idlespin=# Number of times to retry before
idlesleep

(Supported in all NDB releases
based on MySQL 8.0)

--ignore-lines=# Ignore first # lines in input file.
Used to skip a non-data header

(Supported in all NDB releases
based on MySQL 8.0)

414

Usage

Format Description Added, Deprecated, or
Removed

--input-type=name Input type: random or csv (Supported in all NDB releases
based on MySQL 8.0)

--input-workers=# Number of threads processing
input. Must be 2 or more if --input-
type is csv

(Supported in all NDB releases
based on MySQL 8.0)

--keep-state State files (except non-empty
*.rej files) are normally removed
on job completion. Using this
option causes all state files to be
preserved instead

(Supported in all NDB releases
based on MySQL 8.0)

--lines-terminated-
by=char

Same as LINES TERMINATED
BY option for LOAD DATA
statements

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--max-rows=# Import only this number of input
data rows; default is 0, which
imports all rows

(Supported in all NDB releases
based on MySQL 8.0)

--missing-ai-
column='name'

Indicates that auto-increment
values are missing from CSV file
to be imported.

ADDED: NDB 8.0.30

--monitor=# Periodically print status of running
job if something has changed
(status, rejected rows, temporary
errors). Value 0 disables. Value
1 prints any change seen. Higher
values reduce status printing
exponentially up to some pre-
defined limit

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-

(Supported in all NDB releases
based on MySQL 8.0)

415

Usage

Format Description Added, Deprecated, or
Removed

optimized-node-selection to
disable

--no-asynch Run database operations as
batches, in single transactions

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--no-hint Tells transaction coordinator not
to use distribution key hint when
selecting data node

(Supported in all NDB releases
based on MySQL 8.0)

--opbatch=# A db execution batch is a set of
transactions and operations sent
to NDB kernel. This option limits
NDB operations (including blob
operations) in a db execution
batch. Therefore it also limits
number of asynch transactions.
Value 0 is not valid

(Supported in all NDB releases
based on MySQL 8.0)

--opbytes=# Limit bytes in execution batch
(default 0 = no limit)

(Supported in all NDB releases
based on MySQL 8.0)

--output-type=name Output type: ndb is default, null
used for testing

(Supported in all NDB releases
based on MySQL 8.0)

--output-workers=# Number of threads processing
output or relaying database
operations

(Supported in all NDB releases
based on MySQL 8.0)

--pagesize=# Align I/O buffers to given size (Supported in all NDB releases
based on MySQL 8.0)

--pagecnt=# Size of I/O buffers as multiple
of page size. CSV input worker
allocates double-sized buffer

(Supported in all NDB releases
based on MySQL 8.0)

--polltimeout=# Timeout per poll for completed
asynchonous transactions;
polling continues until all polls are
completed, or error occurs

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--rejects=# Limit number of rejected rows
(rows with permanent error) in
data load. Default is 0 which
means that any rejected row
causes a fatal error. The row
exceeding the limit is also added
to *.rej

(Supported in all NDB releases
based on MySQL 8.0)

--resume If job aborted (temporary error,
user interrupt), resume with rows
not yet processed

(Supported in all NDB releases
based on MySQL 8.0)

416

Usage

Format Description Added, Deprecated, or
Removed

--rowbatch=# Limit rows in row queues (default
0 = no limit); must be 1 or more if
--input-type is random

(Supported in all NDB releases
based on MySQL 8.0)

--rowbytes=# Limit bytes in row queues (0 = no
limit)

(Supported in all NDB releases
based on MySQL 8.0)

--state-dir=path Where to write state files; currect
directory is default

(Supported in all NDB releases
based on MySQL 8.0)

--stats Save performance related options
and internal statistics in *.sto and
*.stt files. These files are kept on
successful completion even if --
keep-state is not used

(Supported in all NDB releases
based on MySQL 8.0)

--table=name,

-t name

Name of target to import data into;
default is base name of input file

ADDED: NDB 8.0.28

--tempdelay=# Number of milliseconds to sleep
between temporary errors

(Supported in all NDB releases
based on MySQL 8.0)

--temperrors=# Number of times a transaction
can fail due to a temporary error,
per execution batch; 0 means
any temporary error is fatal. Such
errors do not cause any rows to
be written to .rej file

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose[=#],

-v [#]

Enable verbose output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --abort-on-error

Command-Line Format --abort-on-error

Dump core on any fatal error; used for debugging only.

• --ai-increment=#

Command-Line Format --ai-increment=#

Type Integer

Default Value 1

Minimum Value 1

417

Usage

Maximum Value 4294967295

For a table with a hidden primary key, specify the autoincrement increment, like the
auto_increment_increment system variable does in the MySQL Server.

• --ai-offset=#

Command-Line Format --ai-offset=#

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

For a table with hidden primary key, specify the autoincrement offset. Similar to the
auto_increment_offset system variable.

• --ai-prefetch-sz=#

Command-Line Format --ai-prefetch-sz=#

Type Integer

Default Value 1024

Minimum Value 1

Maximum Value 4294967295

For a table with a hidden primary key, specify the number of autoincrement values that are prefetched.
Behaves like the ndb_autoincrement_prefetch_sz system variable does in the MySQL Server.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connections=#

Command-Line Format --connections=#

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

Number of cluster connections to create.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

418

https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset

Usage

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --continue

Command-Line Format --continue

When a job fails, continue to the next job.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --csvopt=string

Command-Line Format --csvopt=opts

Type String

419

Usage

Default Value [none]

Provides a shortcut method for setting typical CSV import options. The argument to this option is a string
consisting of one or more of the following parameters:

• c: Fields terminated by comma

• d: Use defaults, except where overridden by another parameter

• n: Lines terminated by \n

• q: Fields optionally enclosed by double quote characters (")

• r: Line terminated by \r

In NDB 8.0.28 and later, the order of parameters used in the argument to this option is handled such that
the rightmost parameter always takes precedence over any potentially conflicting parameters which have
already been used in the same argument value. This also applies to any duplicate instances of a given
parameter. Prior to NDB 8.0.28, the order of the parameters made no difference, other than that, when
both n and r were specified, the one occurring last (rightmost) was the parameter which actually took
effect.

This option is intended for use in testing under conditions in which it is difficult to transmit escapes or
quotation marks.

• --db-workers=#

Command-Line Format --db-workers=#

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 4294967295

Number of threads, per data node, executing database operations.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

420

Usage

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --errins-type=name

Command-Line Format --errins-type=name

Type Enumeration

Default Value [none]

Valid Values stopjob

stopall

sighup

sigint

list

Error insert type; use list as the name value to obtain all possible values. This option is used for testing
purposes only.

• --errins-delay=#

Command-Line Format --errins-delay=#

Type Integer

Default Value 1000

Minimum Value 0

Maximum Value 4294967295

Unit ms

Error insert delay in milliseconds; random variation is added. This option is used for testing purposes
only.

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Type String

Default Value [none]

This works in the same way as the FIELDS ENCLOSED BY option does for the LOAD DATA statement,
specifying a character to be interpeted as quoting field values. For CSV input, this is the same as --
fields-optionally-enclosed-by.

• --fields-escaped-by=name

Command-Line Format --fields-escaped-by=char

421

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Usage

Type String

Default Value \

Specify an escape character in the same way as the FIELDS ESCAPED BY option does for the SQL
LOAD DATA statement.

• --fields-optionally-enclosed-by=char

Command-Line Format --fields-optionally-enclosed-by=char

Type String

Default Value [none]

This works in the same way as the FIELDS OPTIONALLY ENCLOSED BY option does for the LOAD
DATA statement, specifying a character to be interpeted as optionally quoting field values. For CSV input,
this is the same as --fields-enclosed-by.

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

Type String

Default Value \t

This works in the same way as the FIELDS TERMINATED BY option does for the LOAD DATA
statement, specifying a character to be interpeted as the field separator.

• --help

Command-Line Format --help

Display help text and exit.

• --idlesleep=#

Command-Line Format --idlesleep=#

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 4294967295

Unit ms

Number of milliseconds to sleep waiting for more work to perform.

• --idlespin=#

Command-Line Format --idlespin=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

422

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Usage

Number of times to retry before sleeping.

• --ignore-lines=#

Command-Line Format --ignore-lines=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Cause ndb_import to ignore the first # lines of the input file. This can be employed to skip a file header
that does not contain any data.

• --input-type=name

Command-Line Format --input-type=name

Type Enumeration

Default Value csv

Valid Values random

csv

Set the type of input type. The default is csv; random is intended for testing purposes only. .

• --input-workers=#

Command-Line Format --input-workers=#

Type Integer

Default Value 4

Minimum Value 1

Maximum Value 4294967295

Set the number of threads processing input.

• --keep-state

Command-Line Format --keep-state

By default, ndb_import removes all state files (except non-empty *.rej files) when it completes a job.
Specify this option (nor argument is required) to force the program to retain all state files instead.

• --lines-terminated-by=name

Command-Line Format --lines-terminated-by=char

Type String

Default Value \n

This works in the same way as the LINES TERMINATED BY option does for the LOAD DATA statement,
specifying a character to be interpeted as end-of-line.

423

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Usage

• --log-level=#

Command-Line Format --log-level=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 2

Performs internal logging at the given level. This option is intended primarily for internal and
development use.

In debug builds of NDB only, the logging level can be set using this option to a maximum of 4.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --max-rows=#

Command-Line Format --max-rows=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Import only this number of input data rows; the default is 0, which imports all rows.

• --missing-ai-column

Command-Line Format --missing-ai-column='name'

Introduced 8.0.30-ndb-8.0.30

Type Boolean

Default Value FALSE

This option can be employed when importing a single table, or multiple tables. When used, it indicates
that the CSV file being imported does not contain any values for an AUTO_INCREMENT column, and that
ndb_import should supply them; if the option is used and the AUTO_INCREMENT column contains any
values, the import operation cannot proceed.

• --monitor=#

Command-Line Format --monitor=#

Type Integer

Default Value 2

424

Usage

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Periodically print the status of a running job if something has changed (status, rejected rows, temporary
errors). Set to 0 to disable this reporting. Setting to 1 prints any change that is seen. Higher values
reduce the frequency of this status reporting.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-asynch

Command-Line Format --no-asynch

Run database operations as batches, in single transactions.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

425

Usage

• --no-hint

Command-Line Format --no-hint

Do not use distribution key hinting to select a data node.

• --opbatch=#

Command-Line Format --opbatch=#

Type Integer

Default Value 256

Minimum Value 1

Maximum Value 4294967295

Unit bytes

Set a limit on the number of operations (including blob operations), and thus the number of
asynchronous transactions, per execution batch.

• --opbytes=#

Command-Line Format --opbytes=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Set a limit on the number of bytes per execution batch. Use 0 for no limit.

• --output-type=name

Command-Line Format --output-type=name

Type Enumeration

Default Value ndb

Valid Values null

Set the output type. ndb is the default. null is used only for testing.

• --output-workers=#

Command-Line Format --output-workers=#

Type Integer

Default Value 2

Minimum Value 1

Maximum Value 4294967295

Set the number of threads processing output or relaying database operations.

• --pagesize=#

426

Usage

Command-Line Format --pagesize=#

Type Integer

Default Value 4096

Minimum Value 1

Maximum Value 4294967295

Unit bytes

Align I/O buffers to the given size.

• --pagecnt=#

Command-Line Format --pagecnt=#

Type Integer

Default Value 64

Minimum Value 1

Maximum Value 4294967295

Set the size of I/O buffers as multiple of page size. The CSV input worker allocates buffer that is doubled
in size.

• --polltimeout=#

Command-Line Format --polltimeout=#

Type Integer

Default Value 1000

Minimum Value 1

Maximum Value 4294967295

Unit ms

Set a timeout per poll for completed asynchonous transactions; polling continues until all polls are
completed, or until an error occurs.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rejects=#

Command-Line Format --rejects=#

Type Integer

Default Value 0

Minimum Value 0

427

Usage

Maximum Value 4294967295

Limit the number of rejected rows (rows with permanent errors) in the data load. The default is 0, which
means that any rejected row causes a fatal error. Any rows causing the limit to be exceeded are added
to the .rej file.

The limit imposed by this option is effective for the duration of the current run. A run restarted using --
resume is considered a “new” run for this purpose.

• --resume

Command-Line Format --resume

If a job is aborted (due to a temporary db error or when interrupted by the user), resume with any rows
not yet processed.

• --rowbatch=#

Command-Line Format --rowbatch=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Unit rows

Set a limit on the number of rows per row queue. Use 0 for no limit.

• --rowbytes=#

Command-Line Format --rowbytes=#

Type Integer

Default Value 262144

Minimum Value 0

Maximum Value 4294967295

Unit bytes

Set a limit on the number of bytes per row queue. Use 0 for no limit.

• --stats

Command-Line Format --stats

Save information about options related to performance and other internal statistics in files named *.sto
and *.stt. These files are always kept on successful completion (even if --keep-state is not also
specified).

• --state-dir=name

Command-Line Format --state-dir=path

Type String

428

Usage

Default Value .

Where to write the state files (tbl_name.map, tbl_name.rej, tbl_name.res, and tbl_name.stt)
produced by a run of the program; the default is the current directory.

• --table=name

Command-Line Format --table=name

Introduced 8.0.28-ndb-8.0.28

Type String

Default Value [input file base name]

By default, ndb_import attempts to import data into a table whose name is the base name of the CSV
file from which the data is being read. Beginning with NDB 8.0.28, you can override the choice of table
name by specifying it using the --table option (short form -t).

• --tempdelay=#

Command-Line Format --tempdelay=#

Type Integer

Default Value 10

Minimum Value 0

Maximum Value 4294967295

Unit ms

Number of milliseconds to sleep between temporary errors.

• --temperrors=#

Command-Line Format --temperrors=#

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 4294967295

Number of times a transaction can fail due to a temporary error, per execution batch. The default is 0,
which means that any temporary error is fatal. Temporary errors do not cause any rows to be added to
the .rej file.

• --verbose, -v

Command-Line Format --verbose[=#]

Type Boolean

Default Value false

Enable verbose output.

429

ndb_index_stat — NDB Index Statistics Utility

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

As with LOAD DATA, options for field and line formatting much match those used to create the CSV
file, whether this was done using SELECT INTO ... OUTFILE, or by some other means. There is no
equivalent to the LOAD DATA statement STARTING WITH option.

5.14 ndb_index_stat — NDB Index Statistics Utility
ndb_index_stat provides per-fragment statistical information about indexes on NDB tables. This includes
cache version and age, number of index entries per partition, and memory consumption by indexes.

Usage

To obtain basic index statistics about a given NDB table, invoke ndb_index_stat as shown here, with
the name of the table as the first argument and the name of the database containing this table specified
immediately following it, using the --database (-d) option:

ndb_index_stat table -d database

In this example, we use ndb_index_stat to obtain such information about an NDB table named mytable
in the test database:

$> ndb_index_stat -d test mytable
table:City index:PRIMARY fragCount:2
sampleVersion:3 loadTime:1399585986 sampleCount:1994 keyBytes:7976
query cache: valid:1 sampleCount:1994 totalBytes:27916
times in ms: save: 7.133 sort: 1.974 sort per sample: 0.000

NDBT_ProgramExit: 0 - OK

sampleVersion is the version number of the cache from which the statistics data is taken. Running
ndb_index_stat with the --update option causes sampleVersion to be incremented.

loadTime shows when the cache was last updated. This is expressed as seconds since the Unix Epoch.

sampleCount is the number of index entries found per partition. You can estimate the total number of
entries by multiplying this by the number of fragments (shown as fragCount).

sampleCount can be compared with the cardinality of SHOW INDEX or
INFORMATION_SCHEMA.STATISTICS, although the latter two provide a view of the table as a whole,
while ndb_index_stat provides a per-fragment average.

keyBytes is the number of bytes used by the index. In this example, the primary key is an integer, which
requires four bytes for each index, so keyBytes can be calculated in this case as shown here:

 keyBytes = sampleCount * (4 bytes per index) = 1994 * 4 = 7976

This information can also be obtained using the corresponding column definitions from
INFORMATION_SCHEMA.COLUMNS (this requires a MySQL Server and a MySQL client application).

430

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-index.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-statistics-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-columns-table.html

Options

totalBytes is the total memory consumed by all indexes on the table, in bytes.

Timings shown in the preceding examples are specific to each invocation of ndb_index_stat.

The --verbose option provides some additional output, as shown here:

$> ndb_index_stat -d test mytable --verbose
random seed 1337010518
connected
loop 1 of 1
table:mytable index:PRIMARY fragCount:4
sampleVersion:2 loadTime:1336751773 sampleCount:0 keyBytes:0
read stats
query cache created
query cache: valid:1 sampleCount:0 totalBytes:0
times in ms: save: 20.766 sort: 0.001
disconnected

NDBT_ProgramExit: 0 - OK

$>

If the only output from the program is NDBT_ProgramExit: 0 - OK, this may indicate that no statistics
yet exist. To force them to be created (or updated if they already exist), invoke ndb_index_stat with the
--update option, or execute ANALYZE TABLE on the table in the mysql client.

Options

The following table includes options that are specific to the NDB Cluster ndb_index_stat utility.
Additional descriptions are listed following the table.

Table 5.13 Command-line options used with the program ndb_index_stat

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database containing
table

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

431

https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html

Options

Format Description Added, Deprecated, or
Removed

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delete Delete index statistics for table,
stopping any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 8.0)

--dump Print query cache (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--loops=# Set the number of times to
perform given command; default is
0

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--query=# Perform random range queries on
first key attr (must be int unsigned)

(Supported in all NDB releases
based on MySQL 8.0)

--sys-drop Drop any statistics tables and
events in NDB kernel (all statistics
are lost)

(Supported in all NDB releases
based on MySQL 8.0)

--sys-create Create all statistics tables and
events in NDB kernel, if none of
them already exist

(Supported in all NDB releases
based on MySQL 8.0)

432

Options

Format Description Added, Deprecated, or
Removed

--sys-create-if-not-exist Create any statistics tables and
events in NDB kernel that do not
already exist

(Supported in all NDB releases
based on MySQL 8.0)

--sys-create-if-not-valid Create any statistics tables or
events that do not already exist
in the NDB kernel, after dropping
any that are invalid

(Supported in all NDB releases
based on MySQL 8.0)

--sys-check Verify that NDB system index
statistics and event tables exist

(Supported in all NDB releases
based on MySQL 8.0)

--sys-skip-tables Do not apply sys-* options to
tables

(Supported in all NDB releases
based on MySQL 8.0)

--sys-skip-events Do not apply sys-* options to
events

(Supported in all NDB releases
based on MySQL 8.0)

--update Update index statistics for table,
restarting any auto-update
previously configured

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Turn on verbose output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5 433

Options

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=name, -d name

Command-Line Format --database=name

Type String

Default Value [none]

Minimum Value

Maximum Value

The name of the database that contains the table being queried.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

434

Options

Also read groups with concat(group, suffix).

• --delete

Command-Line Format --delete

Delete the index statistics for the given table, stopping any auto-update that was previously configured.

• --dump

Command-Line Format --dump

Dump the contents of the query cache.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops=#

Command-Line Format --loops=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Repeat commands this number of times (for use in testing).

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

435

Options

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --query=#

Command-Line Format --query=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value MAX_INT

Perform random range queries on first key attribute (must be int unsigned).

• --sys-drop

Command-Line Format --sys-drop

Drop all statistics tables and events in the NDB kernel. This causes all statistics to be lost.

• --sys-create

Command-Line Format --sys-create

Create all statistics tables and events in the NDB kernel. This works only if none of them exist previously.

436

Options

• --sys-create-if-not-exist

Command-Line Format --sys-create-if-not-exist

Create any NDB system statistics tables or events (or both) that do not already exist when the program
is invoked.

• --sys-create-if-not-valid

Command-Line Format --sys-create-if-not-valid

Create any NDB system statistics tables or events that do not already exist, after dropping any that are
invalid.

• --sys-check

Command-Line Format --sys-check

Verify that all required system statistics tables and events exist in the NDB kernel.

• --sys-skip-tables

Command-Line Format --sys-skip-tables

Do not apply any --sys-* options to any statistics tables.

• --sys-skip-events

Command-Line Format --sys-skip-events

Do not apply any --sys-* options to any events.

• --update

Command-Line Format --update

Update the index statistics for the given table, and restart any auto-update that was previously
configured.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Turn on verbose output.

• --version

Command-Line Format --version

Display version information and exit.

437

ndb_move_data — NDB Data Copy Utility

ndb_index_stat system options. The following options are used to generate and update the statistics
tables in the NDB kernel. None of these options can be mixed with statistics options (see ndb_index_stat
statistics options).

• --sys-drop

• --sys-create

• --sys-create-if-not-exist

• --sys-create-if-not-valid

• --sys-check

• --sys-skip-tables

• --sys-skip-events

ndb_index_stat statistics options. The options listed here are used to generate index statistics. They
work with a given table and database. They cannot be mixed with system options (see ndb_index_stat
system options).

• --database

• --delete

• --update

• --dump

• --query

5.15 ndb_move_data — NDB Data Copy Utility
ndb_move_data copies data from one NDB table to another.

Usage

The program is invoked with the names of the source and target tables; either or both of these may be
qualified optionally with the database name. Both tables must use the NDB storage engine.

ndb_move_data options source target

Options that can be used with ndb_move_data are shown in the following table. Additional descriptions
follow the table.

Table 5.14 Command-line options used with the program ndb_move_data

Format Description Added, Deprecated, or
Removed

--abort-on-error Dump core on permanent error
(debug option)

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-dir=path Directory where character sets are (Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

438

Usage

Format Description Added, Deprecated, or
Removed

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--drop-source Drop source table after all rows
have been moved

(Supported in all NDB releases
based on MySQL 8.0)

--error-insert Insert random temporary errors
(used in testing)

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-missing-columns Ignore extra columns in source or
target table

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--lossy-conversions,

-l

Allow attribute data to be
truncated when converted to
smaller type

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-

(Supported in all NDB releases
based on MySQL 8.0)

439

Usage

Format Description Added, Deprecated, or
Removed

optimized-node-selection to
disable

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--promote-attributes,

-A

Allow attribute data to be
converted to larger type

(Supported in all NDB releases
based on MySQL 8.0)

--staging-tries=x[,y[,z]] Specify tries on temporary errors;
format is x[,y[,z]] where x=max
tries (0=no limit), y=min delay
(ms), z=max delay (ms)

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose Enable verbose messages (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --abort-on-error

Command-Line Format --abort-on-error

Dump core on permanent error (debug option).

• --character-sets-dir=name

Command-Line Format --character-sets-dir=path

Type String

Default Value [none]

Directory where character sets are.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

440

Usage

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=dbname, -d

Command-Line Format --database=name

Type String

Default Value TEST_DB

Name of the database in which the table is found.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

441

Usage

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --drop-source

Command-Line Format --drop-source

Drop source table after all rows have been moved.

• --error-insert

Command-Line Format --error-insert

Insert random temporary errors (testing option).

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

Ignore extra columns in source or target table.

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -l

Command-Line Format --lossy-conversions

Allow attribute data to be truncated when converted to a smaller type.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

442

Usage

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --promote-attributes, -A

Command-Line Format --promote-attributes

Allow attribute data to be converted to a larger type.

• --staging-tries=x[,y[,z]]

Command-Line Format --staging-tries=x[,y[,z]]

Type String

Default Value 0,1000,60000

Specify tries on temporary errors. Format is x[,y[,z]] where x=max tries (0=no limit), y=min delay (ms),
z=max delay (ms).

443

ndb_perror — Obtain NDB Error Message Information

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose

Enable verbose messages.

• --version

Command-Line Format --version

Display version information and exit.

5.16 ndb_perror — Obtain NDB Error Message Information

ndb_perror shows information about an NDB error, given its error code. This includes the error
message, the type of error, and whether the error is permanent or temporary. This is intended as a drop-in
replacement for perror --ndb, which is no longer supported.

Usage

ndb_perror [options] error_code

ndb_perror does not need to access a running NDB Cluster, or any nodes (including SQL nodes). To
view information about a given NDB error, invoke the program, using the error code as an argument, like
this:

$> ndb_perror 323
NDB error code 323: Invalid nodegroup id, nodegroup already existing: Permanent error: Application error

To display only the error message, invoke ndb_perror with the --silent option (short form -s), as
shown here:

$> ndb_perror -s 323
Invalid nodegroup id, nodegroup already existing: Permanent error: Application error

Like perror, ndb_perror accepts multiple error codes:

$> ndb_perror 321 1001
NDB error code 321: Invalid nodegroup id: Permanent error: Application error
NDB error code 1001: Illegal connect string

Additional program options for ndb_perror are described later in this section.

ndb_perror replaces perror --ndb, which is no longer supported by NDB Cluster. To make
substitution easier in scripts and other applications that might depend on perror for obtaining NDB error
information, ndb_perror supports its own “dummy” --ndb option, which does nothing.

The following table includes all options that are specific to the NDB Cluster program ndb_perror.
Additional descriptions follow the table.444

https://dev.mysql.com/doc/refman/8.0/en/perror.html#option_perror_ndb

Additional Options

Table 5.15 Command-line options used with the program ndb_perror

Format Description Added, Deprecated, or
Removed

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb For compatibility with applications
depending on old versions of
perror; does nothing

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--silent,

-s

Show error message only (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Print program version information
and exit

(Supported in all NDB releases
based on MySQL 8.0)

--verbose,

-v

Verbose output; disable with --
silent

(Supported in all NDB releases
based on MySQL 8.0)

Additional Options

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

445

Additional Options

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help, -?

Command-Line Format --help

Display program help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --ndb

Command-Line Format --ndb

For compatibility with applications depending on old versions of perror that use that program's --ndb
option. The option when used with ndb_perror does nothing, and is ignored by it.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --silent, -s

Command-Line Format --silent

Show error message only.

• --version, -V

Command-Line Format --version

Print program version information and exit.

• --verbose, -v

446

https://dev.mysql.com/doc/refman/8.0/en/perror.html#option_perror_ndb

ndb_print_backup_file — Print NDB Backup File Contents

Command-Line Format --verbose

Verbose output; disable with --silent.

5.17 ndb_print_backup_file — Print NDB Backup File Contents

ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Table 5.16 Command-line options used with the program ndb_print_backup_file

Format Description Added, Deprecated, or
Removed

--backup-
password=password,

-P password

Use this password to decrypt file ADDED: NDB 8.0.22

--backup-password-from-
stdin

Get decryption password in a
secure fashion from STDIN

ADDED: NDB 8.0.24

--control-directory-
number=#,

-c #

Control directory number ADDED: NDB 8.0.24

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--fragment-id=#,

-f #

Fragment ID ADDED: NDB 8.0.24

--help,

--usage,

-h,

-?

Print usage information ADDED: NDB 8.0.24

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--no-print-rows,

-u

Do not print rows ADDED: NDB 8.0.24

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--print-header-words,

-h

Print header words ADDED: NDB 8.0.24

447

Usage

Format Description Added, Deprecated, or
Removed

--print-restored-rows Print restored rows ADDED: NDB 8.0.24

--print-rows,

-U

Print rows. Enabled by default;
disable with --no-print-rows

ADDED: NDB 8.0.24

--print-rows-per-page Print rows per page ADDED: NDB 8.0.24

--rowid-file=path,

-n path

File containing row ID to check for ADDED: NDB 8.0.24

--show-ignored-rows,

-i

Show ignored rows ADDED: NDB 8.0.24

--table-id=#,

-t #

Table ID; used with --print-
restored rows

ADDED: NDB 8.0.24

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose[=#],

-v

Verbosity level ADDED: NDB 8.0.24

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

Usage
ndb_print_backup_file [-P password] file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log file)
found in a cluster backup directory. These files are found in the data node's backup directory under the
subdirectory BACKUP-#, where # is the sequence number for the backup. For more information about
cluster backup files and their contents, see Section 6.8.1, “NDB Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

In NDB 8.0, this program can also be used to read undo log files.

Options

Prior to NDB 8.0.24, ndb_print_backup_file supported only the -P option. Beginning with NDB
8.0.24, the program supports a number of options, which are described in the following list.

• --backup-password

Command-Line Format --backup-password=password

Introduced 8.0.22-ndb-8.0.22

448

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Options

Type String

Default Value [none]

Specify the password needed to decrypt an encrypted backup.

The long form of this option is available beginning with NDB 8.0.24.

• --backup-password-from-stdin

Command-Line Format --backup-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

Allow input of the password from standard input, similar to entering a password after invoking mysql --
password with no password supplied.

• --control-directory-number

Command-Line Format --control-directory-number=#

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value 0

Control file directory number. Used together with --print-restored-rows.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --fragment-id

Command-Line Format --fragment-id=#

449

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

Options

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value 0

Fragment ID. Used together with --print-restored-rows.

• --help

Command-Line Format --help

--usage

Introduced 8.0.24-ndb-8.0.24

Print program usage information.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --no-print-rows

Command-Line Format --no-print-rows

Introduced 8.0.24-ndb-8.0.24

Do not include rows in output.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-header-words

Command-Line Format --print-header-words

Introduced 8.0.24-ndb-8.0.24

Include header words in output.

• --print-restored-rows

Command-Line Format --print-restored-rows

450

Options

Introduced 8.0.24-ndb-8.0.24

Include restored rows in output, using the file LCP/c/TtFf.ctl, for which the values are set as follows:

• c is the control file number set using --control-directory-number

• t is the table ID set using --table-id

• f is the fragment ID set using --fragment-id

• --print-rows

Command-Line Format --print-rows

Introduced 8.0.24-ndb-8.0.24

Print rows. This option is enabled by default; to disable it, use --no-print-rows.

• --print-rows-per-page

Command-Line Format --print-rows-per-page

Introduced 8.0.24-ndb-8.0.24

Print rows per page.

• --rowid-file

Command-Line Format --rowid-file=path

Introduced 8.0.24-ndb-8.0.24

Type File name

Default Value [none]

File to check for row ID.

• --show-ignored-rows

Command-Line Format --show-ignored-rows

Introduced 8.0.24-ndb-8.0.24

Show ignored rows.

• --table-id

Command-Line Format --table-id=#

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value [none]

Table ID. Used together with --print-restored-rows.

• --usage

Command-Line Format --usage

451

ndb_print_file — Print NDB Disk Data File Contents

Display help text and exit; same as --help.

• --verbose

Command-Line Format --verbose[=#]

Introduced 8.0.24-ndb-8.0.24

Type Integer

Default Value 0

Verbosity level of output. A greater value indicates increased verbosity.

• --version

Command-Line Format --version

Display version information and exit.

5.18 ndb_print_file — Print NDB Disk Data File Contents
ndb_print_file obtains information from an NDB Cluster Disk Data file.

Usage
ndb_print_file [-v] [-q] file_name+

file_name is the name of an NDB Cluster Disk Data file. Multiple filenames are accepted, separated by
spaces.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_file must be run on an NDB Cluster data node, since it accesses the data node file system
directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

ndb_print_file supports the following options:

• -v: Make output verbose.

• -q: Suppress output (quiet mode).

• --help, -h, -?: Print help message.

For more information, see Section 6.10, “NDB Cluster Disk Data Tables”.

5.19 ndb_print_frag_file — Print NDB Fragment List File Contents
ndb_print_frag_file obtains information from a cluster fragment list file. It is intended for use in
helping to diagnose issues with data node restarts.

Usage
ndb_print_frag_file file_name

452

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Additional Options

file_name is the name of a cluster fragment list file, which matches the pattern SX.FragList, where X
is a digit in the range 2-9 inclusive, and are found in the data node file system of the data node having the
node ID nodeid, in directories named ndb_nodeid_fs/DN/DBDIH/, where N is 1 or 2. Each fragment
file contains records of the fragments belonging to each NDB table. For more information about cluster
fragment files, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file, ndb_print_sys_file, and ndb_print_schema_file (and unlike
most of the other NDB utilities that are intended to be run on a management server host or to connect to a
management server), ndb_print_frag_file must be run on a cluster data node, since it accesses the
data node file system directly. Because it does not make use of the management server, this utility can be
used when the management server is not running, and even when the cluster has been completely shut
down.

Additional Options

None.

Sample Output
$> ndb_print_frag_file /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList
Filename: /usr/local/mysqld/data/ndb_3_fs/D1/DBDIH/S2.FragList with size 8192
noOfPages = 1 noOfWords = 182
Table Data

Num Frags: 2 NoOfReplicas: 2 hashpointer: 4294967040
kvalue: 6 mask: 0x00000000 method: HashMap
Storage is on Logged and checkpointed, survives SR
------ Fragment with FragId: 0 --------
Preferred Primary: 2 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 0
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
------ Fragment with FragId: 1 --------
Preferred Primary: 3 numStoredReplicas: 2 numOldStoredReplicas: 0 distKey: 0 LogPartId: 1
-------Stored Replica----------
Replica node is: 3 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid
-------Stored Replica----------
Replica node is: 2 initialGci: 2 numCrashedReplicas = 0 nextLcpNo = 1
LcpNo[0]: maxGciCompleted: 1 maxGciStarted: 2 lcpId: 1 lcpStatus: valid
LcpNo[1]: maxGciCompleted: 0 maxGciStarted: 0 lcpId: 0 lcpStatus: invalid

5.20 ndb_print_schema_file — Print NDB Schema File Contents
ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage
ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see
NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)

453

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Additional Options

ndb_print_schema_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

5.21 ndb_print_sys_file — Print NDB System File Contents

ndb_print_sys_file obtains diagnostic information from an NDB Cluster system file.

Usage
ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data node's
data directory (DataDir); the path under this directory to system files matches the pattern ndb_#_fs/D#/
DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the same number). For
more information, see NDB Cluster Data Node File System Directory.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

5.22 ndb_redo_log_reader — Check and Print Content of Cluster
Redo Log

Reads a redo log file, checking it for errors, printing its contents in a human-readable format, or both.
ndb_redo_log_reader is intended for use primarily by NDB Cluster developers and Support personnel
in debugging and diagnosing problems.

This utility remains under development, and its syntax and behavior are subject to change in future NDB
Cluster releases.

The C++ source files for ndb_redo_log_reader can be found in the directory /storage/ndb/src/
kernel/blocks/dblqh/redoLogReader.

Options that can be used with ndb_redo_log_reader are shown in the following table. Additional
descriptions follow the table.

Table 5.17 Command-line options used with the program ndb_redo_log_reader

Format Description Added, Deprecated, or
Removed

-dump Print dump info (Supported in all NDB releases
based on MySQL 8.0)

454

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

-filedescriptors Print file descriptors only (Supported in all NDB releases
based on MySQL 8.0)

--help Print usage information (has no
short form)

(Supported in all NDB releases
based on MySQL 8.0)

-lap Provide lap info, with max GCI
started and completed

(Supported in all NDB releases
based on MySQL 8.0)

-mbyte # Starting megabyte (Supported in all NDB releases
based on MySQL 8.0)

-mbyteheaders Show only first page header of
each megabyte in file

(Supported in all NDB releases
based on MySQL 8.0)

-nocheck Do not check records for errors (Supported in all NDB releases
based on MySQL 8.0)

-noprint Do not print records (Supported in all NDB releases
based on MySQL 8.0)

-page # Start with this page (Supported in all NDB releases
based on MySQL 8.0)

-pageheaders Show page headers only (Supported in all NDB releases
based on MySQL 8.0)

-pageindex # Start with this page index (Supported in all NDB releases
based on MySQL 8.0)

-twiddle Bit-shifted dump (Supported in all NDB releases
based on MySQL 8.0)

Usage
ndb_redo_log_reader file_name [options]

file_name is the name of a cluster redo log file. redo log files are located in the numbered directories
under the data node's data directory (DataDir); the path under this directory to the redo log files matches
the pattern ndb_nodeid_fs/D#/DBLQH/S#.FragLog. nodeid is the data node's node ID. The two
instances of # each represent a number (not necessarily the same number); the number following D
is in the range 8-39 inclusive; the range of the number following S varies according to the value of the
NoOfFragmentLogFiles configuration parameter, whose default value is 16; thus, the default range
of the number in the file name is 0-15 inclusive. For more information, see NDB Cluster Data Node File
System Directory.

The name of the file to be read may be followed by one or more of the options listed here:

• -dump

Command-Line Format -dump

Print dump info.

• Command-Line Format -filedescriptors

-filedescriptors: Print file descriptors only.

• Command-Line Format --help

455

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

Usage

--help: Print usage information.

• -lap

Command-Line Format -lap

Provide lap info, with max GCI started and completed.

• Command-Line Format -mbyte #

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 15

-mbyte #: Starting megabyte.

is an integer in the range 0 to 15, inclusive.

• Command-Line Format -mbyteheaders

-mbyteheaders: Show only the first page header of every megabyte in the file.

• Command-Line Format -noprint

-noprint: Do not print the contents of the log file.

• Command-Line Format -nocheck

-nocheck: Do not check the log file for errors.

• Command-Line Format -page #

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 31

-page #: Start at this page.

is an integer in the range 0 to 31, inclusive.

• Command-Line Format -pageheaders

-pageheaders: Show page headers only.

• Command-Line Format -pageindex #

Type Integer

Default Value 12

Minimum Value 12

Maximum Value 8191

456

ndb_restore — Restore an NDB Cluster Backup

-pageindex #: Start at this page index.

is an integer between 12 and 8191, inclusive.

• -twiddle

Command-Line Format -twiddle

Bit-shifted dump.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_redo_log_reader must be run on a cluster data node, since it accesses the data node file system
directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

5.23 ndb_restore — Restore an NDB Cluster Backup
The NDB Cluster restoration program is implemented as a separate command-line utility ndb_restore,
which can normally be found in the MySQL bin directory. This program reads the files created as a result
of the backup and inserts the stored information into the database.

In NDB 7.6 and earlier, this program printed NDBT_ProgramExit - status upon completion of its run,
due to an unnecessary dependency on the NDBT testing library. This dependency has been removed in
NDB 8.0, eliminating the extraneous output.

ndb_restore must be executed once for each of the backup files that were created by the START
BACKUP command used to create the backup (see Section 6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”). This is equal to the number of data nodes in the cluster at the time that the
backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in
single user mode, unless you are restoring multiple data nodes in parallel. See
Section 6.6, “NDB Cluster Single User Mode”, for more information.

Options that can be used with ndb_restore are shown in the following table. Additional descriptions
follow the table.

Table 5.18 Command-line options used with the program ndb_restore

Format Description Added, Deprecated, or
Removed

--allow-pk-changes[=0|1] Allow changes to set of columns
making up table's primary key

ADDED: NDB 8.0.21

--append Append data to tab-delimited file (Supported in all NDB releases
based on MySQL 8.0)

--backup-
password=password

Supply a password for decrypting
an encrypted backup with --
decrypt; see documentation for
allowed values

ADDED: NDB 8.0.22

--backup-password-from-
stdin

Get decryption password in a
secure fashion from STDIN; use
together with --decrypt option

ADDED: NDB 8.0.24

457

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--backup-path=path Path to backup files directory (Supported in all NDB releases
based on MySQL 8.0)

--backupid=#,

-b #

Restore from backup having this
ID

(Supported in all NDB releases
based on MySQL 8.0)

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--
connect=connection_string,

-c connection_string

Alias for --connectstring (Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--decrypt Decrypt an encrypted backup;
requires --backup-password

ADDED: NDB 8.0.22

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--disable-indexes Causes indexes from backup to
be ignored; may decrease time
needed to restore data

(Supported in all NDB releases
based on MySQL 8.0)

--dont-ignore-systab-0,

-f

Do not ignore system table during
restore; experimental only; not for
production use

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-databases=list List of one or more databases
to exclude (includes those not
named)

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-intermediate-
sql-tables[=TRUE|FALSE]

Do not restore any intermediate
tables (having names prefixed
with '#sql-') that were left over
from copying ALTER TABLE
operations; specify FALSE to
restore such tables

(Supported in all NDB releases
based on MySQL 8.0)

458

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--exclude-missing-columns Causes columns from backup
version of table that are missing
from version of table in database
to be ignored

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-missing-tables Causes tables from backup that
are missing from database to be
ignored

(Supported in all NDB releases
based on MySQL 8.0)

--exclude-tables=list List of one or more tables to
exclude (includes those in same
database that are not named);
each table reference must include
database name

(Supported in all NDB releases
based on MySQL 8.0)

--fields-enclosed-by=char Fields are enclosed by this
character

(Supported in all NDB releases
based on MySQL 8.0)

--fields-optionally-
enclosed-by

Fields are optionally enclosed by
this character

(Supported in all NDB releases
based on MySQL 8.0)

--fields-terminated-
by=char

Fields are terminated by this
character

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--hex Print binary types in hexadecimal
format

(Supported in all NDB releases
based on MySQL 8.0)

--ignore-extended-pk-
updates[=0|1]

Ignore log entries containing
updates to columns now included
in extended primary key

ADDED: NDB 8.0.21

--include-databases=list List of one or more databases
to restore (excludes those not
named)

(Supported in all NDB releases
based on MySQL 8.0)

--include-stored-grants Restore shared users and grants
to ndb_sql_metadata table

ADDED: NDB 8.0.19

--include-tables=list List of one or more tables to
restore (excludes those in same
database that are not named);
each table reference must include
database name

(Supported in all NDB releases
based on MySQL 8.0)

--lines-terminated-
by=char

Lines are terminated by this
character

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--lossy-conversions,

-L

Allow lossy conversions of
column values (type demotions or
changes in sign) when restoring
data from backup

(Supported in all NDB releases
based on MySQL 8.0)

459

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--no-binlog If mysqld is connected and using
binary logging, do not log restored
data

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--no-restore-disk-objects,

-d

Do not restore objects relating to
Disk Data

(Supported in all NDB releases
based on MySQL 8.0)

--no-upgrade,

-u

Do not upgrade array type for
varsize attributes which do not
already resize VAR data, and do
not change column attributes

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodegroup-map=map,

-z

Specify node group map; unused,
unsupported

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--nodeid=#,

-n #

ID of node where backup was
taken

(Supported in all NDB releases
based on MySQL 8.0)

--num-slices=# Number of slices to apply when
restoring by slice

ADDED: NDB 8.0.20

--parallelism=#,

-p #

Number of parallel transactions to
use while restoring data

(Supported in all NDB releases
based on MySQL 8.0)

--preserve-trailing-
spaces,

-P

Allow preservation of trailing
spaces (including padding) when
promoting fixed-width string types
to variable-width types

(Supported in all NDB releases
based on MySQL 8.0)

460

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--print Print metadata, data, and log to
stdout (equivalent to --print-meta
--print-data --print-log)

(Supported in all NDB releases
based on MySQL 8.0)

--print-data Print data to stdout (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--print-log Print log to stdout (Supported in all NDB releases
based on MySQL 8.0)

--print-meta Print metadata to stdout (Supported in all NDB releases
based on MySQL 8.0)

--print-sql-log Write SQL log to stdout (Supported in all NDB releases
based on MySQL 8.0)

--progress-frequency=# Print status of restore each given
number of seconds

(Supported in all NDB releases
based on MySQL 8.0)

--promote-attributes,

-A

Allow attributes to be promoted
when restoring data from backup

(Supported in all NDB releases
based on MySQL 8.0)

--rebuild-indexes Causes multithreaded rebuilding
of ordered indexes found in
backup; number of threads
used is determined by setting
BuildIndexThreads

(Supported in all NDB releases
based on MySQL 8.0)

--remap-column=string Apply offset to value of specified
column using indicated function
and arguments. Format is
[db].[tbl].[col]:[fn]:[args]; see
documentation for details

ADDED: NDB 8.0.21

--restore-data,

-r

Restore table data and logs into
NDB Cluster using NDB API

(Supported in all NDB releases
based on MySQL 8.0)

--restore-epoch,

-e

Restore epoch info into
status table; useful on replica
cluster for starting replication;
updates or inserts row in
mysql.ndb_apply_status with ID 0

(Supported in all NDB releases
based on MySQL 8.0)

--restore-meta,

-m

Restore metadata to NDB Cluster
using NDB API

(Supported in all NDB releases
based on MySQL 8.0)

--restore-privilege-
tables

Restore MySQL privilege tables
that were previously moved to
NDB

DEPRECATED: NDB 8.0.16

--rewrite-database=string Restore to differently named
database; format is olddb,newdb

(Supported in all NDB releases
based on MySQL 8.0)

--skip-broken-objects Ignore missing blob tables in
backup file

(Supported in all NDB releases
based on MySQL 8.0)

461

ndb_restore — Restore an NDB Cluster Backup

Format Description Added, Deprecated, or
Removed

--skip-table-check,

-s

Skip table structure check during
restore

(Supported in all NDB releases
based on MySQL 8.0)

--skip-unknown-objects Causes schema objects not
recognized by ndb_restore to be
ignored when restoring backup
made from newer NDB version to
older version

(Supported in all NDB releases
based on MySQL 8.0)

--slice-id=# Slice ID, when restoring by slices ADDED: NDB 8.0.20

--tab=path,

-T path

Creates a tab-separated .txt file
for each table in path provided

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--verbose=# Level of verbosity in output (Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--with-apply-status Restore the ndb_apply_status
table. Requires --restore-data

ADDED: NDB 8.0.29

• --allow-pk-changes

Command-Line Format --allow-pk-changes[=0|1]

Introduced 8.0.21-ndb-8.0.21

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When this option is set to 1, ndb_restore allows the primary keys in a table definition to differ from that
of the same table in the backup. This may be desirable when backing up and restoring between different
schema versions with primary key changes on one or more tables, and it appears that performing
the restore operation using ndb_restore is simpler or mor efficient than issuing many ALTER TABLE
statements after restoring table schemas and data.

The following changes in primary key definitions are supported by --allow-pk-changes:

• Extending the primary key: A non-nullable column that exists in the table schema in the backup
becomes part of the table's primary key in the database.

Important

When extending a table's primary key, any columns which become part of
primary key must not be updated while the backup is being taken; any such
updates discovered by ndb_restore cause the restore operation to fail, even

462

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

ndb_restore — Restore an NDB Cluster Backup

when no change in value takes place. In some cases, it may be possible to
override this behavior using the --ignore-extended-pk-updates option;
see the description of this option for more information.

• Contracting the primary key (1): A column that is already part of the table's primary key in the
backup schema is no longer part of the primary key, but remains in the table.

• Contracting the primary key (2): A column that is already part of the table's primary key in the
backup schema is removed from the table entirely.

These differences can be combined with other schema differences supported by ndb_restore,
including changes to blob and text columns requiring the use of staging tables.

Basic steps in a typical scenario using primary key schema changes are listed here:

1. Restore table schemas using ndb_restore --restore-meta

2. Alter schema to that desired, or create it

3. Back up the desired schema

4. Run ndb_restore --disable-indexes using the backup from the previous step, to drop indexes
and constraints

5. Run ndb_restore --allow-pk-changes (possibly along with --ignore-extended-pk-
updates, --disable-indexes, and possibly other options as needed) to restore all data

6. Run ndb_restore --rebuild-indexes using the backup made with the desired schema, to
rebuild indexes and constraints

When extending the primary key, it may be necessary for ndb_restore to use a temporary secondary
unique index during the restore operation to map from the old primary key to the new one. Such an index
is created only when necessary to apply events from the backup log to a table which has an extended
primary key. This index is named NDB$RESTORE_PK_MAPPING, and is created on each table requiring
it; it can be shared, if necessary, by multiple instances of ndb_restore instances running in parallel.
(Running ndb_restore --rebuild-indexes at the end of the restore process causes this index to
be dropped.)

• --append

Command-Line Format --append

When used with the --tab and --print-data options, this causes the data to be appended to any
existing files having the same names.

• --backup-path=dir_name

Command-Line Format --backup-path=path

Type Directory name

Default Value ./

The path to the backup directory is required; this is supplied to ndb_restore using the --backup-
path option, and must include the subdirectory corresponding to the ID backup of the backup to be
restored. For example, if the data node's DataDir is /var/lib/mysql-cluster, then the backup
directory is /var/lib/mysql-cluster/BACKUP, and the backup files for the backup with the ID 3 can

463

ndb_restore — Restore an NDB Cluster Backup

be found in /var/lib/mysql-cluster/BACKUP/BACKUP-3. The path may be absolute or relative
to the directory in which the ndb_restore executable is located, and may be optionally prefixed with
backup-path=.

It is possible to restore a backup to a database with a different configuration than it was created from.
For example, suppose that a backup with backup ID 12, created in a cluster with two storage nodes
having the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore
must be run twice—once for each storage node in the cluster where the backup was taken. However,
ndb_restore cannot always restore backups made from a cluster running one version of MySQL to a
cluster running a different MySQL version.

Important

It is not possible to restore a backup made from a newer version of NDB Cluster
using an older version of ndb_restore. You can restore a backup made from
a newer version of MySQL to an older cluster, but you must use a copy of
ndb_restore from the newer NDB Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running NDB
Cluster 7.5.27 to a cluster running NDB Cluster 7.4.37, you must use the
ndb_restore that comes with the NDB Cluster 7.5.27 distribution.

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient
number of cluster connections available. That is, when restoring to multiple nodes in parallel, you must
have an [api] or [mysqld] section in the cluster config.ini file available for each concurrent
ndb_restore process. However, the data files must always be applied before the logs.

• --backup-password=password

Command-Line Format --backup-password=password

Introduced 8.0.22-ndb-8.0.22

Type String

Default Value [none]

This option specifies a password to be used when decrypting an encrypted backup with the --decrypt
option. This must be the same password that was used to encrypt the backup.

The password can be up to 256 characters in length, and must be enclosed by single or double
quotation marks. It can contain any of the ASCII characters having character codes 32, 35, 38, 40-91,
93, 95, and 97-126; in other words, it can use any printable ASCII characters except for !, ', ", $, %, \,
and ^.

In MySQL 8.0.24 and later, it is possible to omit the password, in which case ndb_restore waits for it
to be supplied from stdin, as when using --backup-password-from-stdin.

• --backup-password-from-stdin[=TRUE|FALSE]

Command-Line Format --backup-password-from-stdin

Introduced 8.0.24-ndb-8.0.24

When used in place of --backup-password, this option enables input of the backup password from
the system shell (stdin), similar to how this is done when supplying the password interactively to
mysql when using the --password without supplying the password on the command line.

464

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

ndb_restore — Restore an NDB Cluster Backup

• --backupid=#, -b

Command-Line Format --backupid=#

Type Numeric

Default Value none

This option is used to specify the ID or sequence number of the backup, and is the same number
shown by the management client in the Backup backup_id completed message displayed upon
completion of a backup. (See Section 6.8.2, “Using The NDB Cluster Management Client to Create a
Backup”.)

Important

When restoring cluster backups, you must be sure to restore all data nodes from
backups having the same backup ID. Using files from different backups results at
best in restoring the cluster to an inconsistent state, and is likely to fail altogether.

In NDB 8.0, this option is required.

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect, -c

Command-Line Format --connect=connection_string

Type String

Default Value localhost:1186

Alias for --ndb-connectstring.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0
465

ndb_restore — Restore an NDB Cluster Backup

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --decrypt

Command-Line Format --decrypt

Introduced 8.0.22-ndb-8.0.22

Decrypt an encrypted backup using the password supplied by the --backup-password option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --disable-indexes

Command-Line Format --disable-indexes

466

ndb_restore — Restore an NDB Cluster Backup

Disable restoration of indexes during restoration of the data from a native NDB backup. Afterwards, you
can restore indexes for all tables at once with multithreaded building of indexes using --rebuild-
indexes, which should be faster than rebuilding indexes concurrently for very large tables.

In NDB 8.0.27 and later, this option also drops any foreign keys specified in the backup.

Prior to NDB 8.0.29, attempting to access from MySQL an NDB table for which one or more indexes
could not be found was always rejected with error 4243 Index not found. Beginning with NDB
8.0.29, it is possible for MySQL to open such a table, provided the query does not use any of the
affected indexes; otherwise the query is rejected with ER_NOT_KEYFILE. In the latter case, you can
temporarily work around the problem by executing an ALTER TABLE statement such as this one:

ALTER TABLE tbl ALTER INDEX idx INVISIBLE;

This causes MySQL to ignore the index idx on table tbl. See Primary Keys and Indexes, for more
information.

• --dont-ignore-systab-0, -f

Command-Line Format --dont-ignore-systab-0

Normally, when restoring table data and metadata, ndb_restore ignores the copy of the NDB system
table that is present in the backup. --dont-ignore-systab-0 causes the system table to be
restored. This option is intended for experimental and development use only, and is not recommended in
a production environment.

• --exclude-databases=db-list

Command-Line Format --exclude-databases=list

Type String

Default Value

Comma-delimited list of one or more databases which should not be restored.

This option is often used in combination with --exclude-tables; see that option's description for
further information and examples.

• --exclude-intermediate-sql-tables[=TRUE|FALSE]

Command-Line Format --exclude-intermediate-sql-
tables[=TRUE|FALSE]

Type Boolean

Default Value TRUE

When performing copying ALTER TABLE operations, mysqld creates intermediate tables (whose
names are prefixed with #sql-). When TRUE, the --exclude-intermediate-sql-tables option
keeps ndb_restore from restoring such tables that may have been left over from these operations.
This option is TRUE by default.

467

https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4243
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_keyfile
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html#alter-table-index
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

ndb_restore — Restore an NDB Cluster Backup

• --exclude-missing-columns

Command-Line Format --exclude-missing-columns

It is possible to restore only selected table columns using this option, which causes ndb_restore to
ignore any columns missing from tables being restored as compared to the versions of those tables
found in the backup. This option applies to all tables being restored. If you wish to apply this option only
to selected tables or databases, you can use it in combination with one or more of the --include-* or
--exclude-* options described elsewhere in this section to do so, then restore data to the remaining
tables using a complementary set of these options.

• --exclude-missing-tables

Command-Line Format --exclude-missing-tables

It is possible to restore only selected tables using this option, which causes ndb_restore to ignore any
tables from the backup that are not found in the target database.

• --exclude-tables=table-list

Command-Line Format --exclude-tables=list

Type String

Default Value

List of one or more tables to exclude; each table reference must include the database name. Often used
together with --exclude-databases.

When --exclude-databases or --exclude-tables is used, only those databases or tables named
by the option are excluded; all other databases and tables are restored by ndb_restore.

This table shows several invocations of ndb_restore usng --exclude-* options (other options
possibly required have been omitted for clarity), and the effects these options have on restoring from an
NDB Cluster backup:

Table 5.19 Several invocations of ndb_restore using --exclude-* options, and the effects these
options have on restoring from an NDB Cluster backup.

Option Result

--exclude-databases=db1 All tables in all databases except db1 are restored;
no tables in db1 are restored

--exclude-databases=db1,db2 (or --
exclude-databases=db1 --exclude-
databases=db2)

All tables in all databases except db1 and db2 are
restored; no tables in db1 or db2 are restored

--exclude-tables=db1.t1 All tables except t1 in database db1 are restored;
all other tables in db1 are restored; all tables in all
other databases are restored

--exclude-tables=db1.t2,db2.t1 (or
--exclude-tables=db1.t2 --exclude-
tables=db2.t1)

All tables in database db1 except for t2 and
all tables in database db2 except for table t1
are restored; no other tables in db1 or db2 are

468

ndb_restore — Restore an NDB Cluster Backup

Option Result
restored; all tables in all other databases are
restored

You can use these two options together. For example, the following causes all tables in all databases
except for databases db1 and db2, and tables t1 and t2 in database db3, to be restored:

$> ndb_restore [...] --exclude-databases=db1,db2 --exclude-tables=db3.t1,db3.t2

(Again, we have omitted other possibly necessary options in the interest of clarity and brevity from the
example just shown.)

You can use --include-* and --exclude-* options together, subject to the following rules:

• The actions of all --include-* and --exclude-* options are cumulative.

• All --include-* and --exclude-* options are evaluated in the order passed to ndb_restore, from
right to left.

• In the event of conflicting options, the first (rightmost) option takes precedence. In other words, the first
option (going from right to left) that matches against a given database or table “wins”.

For example, the following set of options causes ndb_restore to restore all tables from database db1
except db1.t1, while restoring no other tables from any other databases:

--include-databases=db1 --exclude-tables=db1.t1

However, reversing the order of the options just given simply causes all tables from database db1 to
be restored (including db1.t1, but no tables from any other database), because the --include-
databases option, being farthest to the right, is the first match against database db1 and thus takes
precedence over any other option that matches db1 or any tables in db1:

--exclude-tables=db1.t1 --include-databases=db1

• --fields-enclosed-by=char

Command-Line Format --fields-enclosed-by=char

Type String

Default Value

Each column value is enclosed by the string passed to this option (regardless of data type; see the
description of --fields-optionally-enclosed-by).

• --fields-optionally-enclosed-by

Command-Line Format --fields-optionally-enclosed-by

Type String

Default Value

The string passed to this option is used to enclose column values containing character data (such as
CHAR, VARCHAR, BINARY, TEXT, or ENUM).

• --fields-terminated-by=char

Command-Line Format --fields-terminated-by=char

469

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html

ndb_restore — Restore an NDB Cluster Backup

Type String

Default Value \t (tab)

The string passed to this option is used to separate column values. The default value is a tab character
(\t).

• --help

Command-Line Format --help

Display help text and exit.

• --hex

Command-Line Format --hex

If this option is used, all binary values are output in hexadecimal format.

• --ignore-extended-pk-updates

Command-Line Format --ignore-extended-pk-updates[=0|1]

Introduced 8.0.21-ndb-8.0.21

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1

When using --allow-pk-changes, columns which become part of a table's primary key must not
be updated while the backup is being taken; such columns should keep the same values from the
time values are inserted into them until the rows containing the values are deleted. If ndb_restore
encounters updates to these columns when restoring a backup, the restore fails. Because some
applications may set values for all columns when updating a row, even when some column values are
not changed, the backup may include log events appearing to update columns which are not in fact
modified. In such cases you can set --ignore-extended-pk-updates to 1, forcing ndb_restore
to ignore such updates.

Important

When causing these updates to be ignored, the user is responsible for ensuring
that there are no updates to the values of any columns that become part of the
primary key.

For more information, see the description of --allow-pk-changes.

• --include-databases=db-list

Command-Line Format --include-databases=list

Type String

Default Value

Comma-delimited list of one or more databases to restore. Often used together with --include-
tables; see the description of that option for further information and examples.

470

ndb_restore — Restore an NDB Cluster Backup

• --include-stored-grants

Command-Line Format --include-stored-grants

Introduced 8.0.19-ndb-8.0.19

In NDB 8.0, ndb_restore does not by default restore shared users and grants (see Section 6.12,
“Privilege Synchronization and NDB_STORED_USER”) to the ndb_sql_metadata table. Specifying
this option causes it to do so.

• --include-tables=table-list

Command-Line Format --include-tables=list

Type String

Default Value

Comma-delimited list of tables to restore; each table reference must include the database name.

When --include-databases or --include-tables is used, only those databases or tables named
by the option are restored; all other databases and tables are excluded by ndb_restore, and are not
restored.

The following table shows several invocations of ndb_restore using --include-* options (other
options possibly required have been omitted for clarity), and the effects these have on restoring from an
NDB Cluster backup:

Table 5.20 Several invocations of ndb_restore using --include-* options, and their effects on
restoring from an NDB Cluster backup.

Option Result

--include-databases=db1 Only tables in database db1 are restored; all tables
in all other databases are ignored

--include-databases=db1,db2 (or --
include-databases=db1 --include-
databases=db2)

Only tables in databases db1 and db2 are
restored; all tables in all other databases are
ignored

--include-tables=db1.t1 Only table t1 in database db1 is restored; no other
tables in db1 or in any other database are restored

471

ndb_restore — Restore an NDB Cluster Backup

Option Result

--include-tables=db1.t2,db2.t1 (or
--include-tables=db1.t2 --include-
tables=db2.t1)

Only the table t2 in database db1 and the table
t1 in database db2 are restored; no other tables in
db1, db2, or any other database are restored

You can also use these two options together. For example, the following causes all tables in databases
db1 and db2, together with the tables t1 and t2 in database db3, to be restored (and no other
databases or tables):

$> ndb_restore [...] --include-databases=db1,db2 --include-tables=db3.t1,db3.t2

(Again we have omitted other, possibly required, options in the example just shown.)

It also possible to restore only selected databases, or selected tables from a single database, without
any --include-* (or --exclude-*) options, using the syntax shown here:

ndb_restore other_options db_name,[db_name[,...] | tbl_name[,tbl_name][,...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

• --lines-terminated-by=char

Command-Line Format --lines-terminated-by=char

Type String

Default Value \n (linebreak)

Specifies the string used to end each line of output. The default is a linefeed character (\n).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --lossy-conversions, -L

Command-Line Format --lossy-conversions

This option is intended to complement the --promote-attributes option. Using --lossy-
conversions allows lossy conversions of column values (type demotions or changes in sign) when
restoring data from backup. With some exceptions, the rules governing demotion are the same as for

472

ndb_restore — Restore an NDB Cluster Backup

MySQL replication; see Replication of Columns Having Different Data Types, for information about
specific type conversions currently supported by attribute demotion.

Beginning with NDB 8.0.26, this option also makes it possible to restore a NULL column as NOT NULL.
The column must not contain any NULL entries; otherwise ndb_restore stops with an error.

ndb_restore reports any truncation of data that it performs during lossy conversions once per attribute
and column.

• --no-binlog

Command-Line Format --no-binlog

This option prevents any connected SQL nodes from writing data restored by ndb_restore to their
binary logs.

• --no-restore-disk-objects, -d

Command-Line Format --no-restore-disk-objects

This option stops ndb_restore from restoring any NDB Cluster Disk Data objects, such as tablespaces
and log file groups; see Section 6.10, “NDB Cluster Disk Data Tables”, for more information about these.

• --no-upgrade, -u

Command-Line Format --no-upgrade

When using ndb_restore to restore a backup, VARCHAR columns created using the old fixed format
are resized and recreated using the variable-width format now employed. This behavior can be
overridden by specifying --no-upgrade.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodegroup-map=map, -z

Command-Line Format --ndb-nodegroup-map=map

Intended for restoring a backup taken from one node group to a different node group, but never
completely implemented; unsupported.

473

https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html#replication-features-different-data-types
https://dev.mysql.com/doc/refman/8.0/en/char.html

ndb_restore — Restore an NDB Cluster Backup

All code supporting this option was removed in NDB 8.0.27; in this and later versions, any value set for it
is ignored, and the option itself does nothing.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --nodeid=#, -n

Command-Line Format --nodeid=#

Type Numeric

Default Value none

Specify the node ID of the data node on which the backup was taken.

When restoring to a cluster with different number of data nodes from that where the backup was taken,
this information helps identify the correct set or sets of files to be restored to a given node. (In such
cases, multiple files usually need to be restored to a single data node.) See Section 5.23.2, “Restoring to
a different number of data nodes”, for additional information and examples.

In NDB 8.0, this option is required.

• --num-slices=#

Command-Line Format --num-slices=#

Introduced 8.0.20-ndb-8.0.20

Type Integer

Default Value 1

Minimum Value 1

Maximum Value 1024

When restoring a backup by slices, this option sets the number of slices into which to divide the backup.
This allows multiple instances of ndb_restore to restore disjoint subsets in parallel, potentially
reducing the amount of time required to perform the restore operation.

474

ndb_restore — Restore an NDB Cluster Backup

A slice is a subset of the data in a given backup; that is, it is a set of fragments having the same slice ID,
specified using the --slice-id option. The two options must always be used together, and the value
set by --slice-id must always be less than the number of slices.

ndb_restore encounters fragments and assigns each one a fragment counter. When restoring by
slices, a slice ID is assigned to each fragment; this slice ID is in the range 0 to 1 less than the number
of slices. For a table that is not a BLOB table, the slice to which a given fragment belongs is determined
using the formula shown here:

[slice_ID] = [fragment_counter] % [number_of_slices]

For a BLOB table, a fragment counter is not used; the fragment number is used instead, along with the ID
of the main table for the BLOB table (recall that NDB stores BLOB values in a separate table internally). In
this case, the slice ID for a given fragment is calculated as shown here:

[slice_ID] =
([main_table_ID] + [fragment_ID]) % [number_of_slices]

Thus, restoring by N slices means running N instances of ndb_restore, all with --num-slices=N
(along with any other necessary options) and one each with --slice-id=1, --slice-id=2, --
slice-id=3, and so on through slice-id=N-1.

Example. Assume that you want to restore a backup named BACKUP-1, found in the default directory
/var/lib/mysql-cluster/BACKUP/BACKUP-3 on the node file system on each data node, to a
cluster with four data nodes having the node IDs 1, 2, 3, and 4. To perform this operation using five
slices, execute the sets of commands shown in the following list:

1. Restore the cluster metadata using ndb_restore as shown here:

$> ndb_restore -b 1 -n 1 -m --disable-indexes --backup-path=/home/ndbuser/backups

2. Restore the cluster data to the data nodes invoking ndb_restore as shown here:

$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 1 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 2 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 3 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=0 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=1 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=2 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=3 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1
$> ndb_restore -b 1 -n 4 -r --num-slices=5 --slice-id=4 --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

All of the commands just shown in this step can be executed in parallel, provided there are enough
slots for connections to the cluster (see the description for the --backup-path option).

475

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

ndb_restore — Restore an NDB Cluster Backup

3. Restore indexes as usual, as shown here:

$> ndb_restore -b 1 -n 1 --rebuild-indexes --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

4. Finally, restore the epoch, using the command shown here:

$> ndb_restore -b 1 -n 1 --restore-epoch --backup-path=/var/lib/mysql-cluster/BACKUP/BACKUP-1

You should use slicing to restore the cluster data only; it is not necessary to employ --num-slices
or --slice-id when restoring the metadata, indexes, or epoch information. If either or both of these
options are used with the ndb_restore options controlling restoration of these, the program ignores
them.

The effects of using the --parallelism option on the speed of restoration are independent of those
produced by slicing or parallel restoration using multiple instances of ndb_restore (--parallelism
specifies the number of parallel transactions executed by a single ndb_restore thread), but it can
be used together with either or both of these. You should be aware that increasing --parallelism
causes ndb_restore to impose a greater load on the cluster; if the system can handle this, restoration
should complete even more quickly.

The value of --num-slices is not directly dependent on values relating to hardware such as number of
CPUs or CPU cores, amount of RAM, and so forth, nor does it depend on the number of LDMs.

It is possible to employ different values for this option on different data nodes as part of the same
restoration; doing so should not in and of itself produce any ill effects.

• --parallelism=#, -p

Command-Line Format --parallelism=#

Type Numeric

Default Value 128

Minimum Value 1

Maximum Value 1024

ndb_restore uses single-row transactions to apply many rows concurrently. This parameter
determines the number of parallel transactions (concurrent rows) that an instance of ndb_restore tries
to use. By default, this is 128; the minimum is 1, and the maximum is 1024.

The work of performing the inserts is parallelized across the threads in the data nodes involved. This
mechanism is employed for restoring bulk data from the .Data file—that is, the fuzzy snapshot of the
data; it is not used for building or rebuilding indexes. The change log is applied serially; index drops and
builds are DDL operations and handled separately. There is no thread-level parallelism on the client side
of the restore.

• --preserve-trailing-spaces, -P

Command-Line Format --preserve-trailing-spaces

Cause trailing spaces to be preserved when promoting a fixed-width character data type to its variable-
width equivalent—that is, when promoting a CHAR column value to VARCHAR, or a BINARY column value

476

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html

ndb_restore — Restore an NDB Cluster Backup

to VARBINARY. Otherwise, any trailing spaces are dropped from such column values when they are
inserted into the new columns.

Note

Although you can promote CHAR columns to VARCHAR and BINARY columns to
VARBINARY, you cannot promote VARCHAR columns to CHAR or VARBINARY
columns to BINARY.

• --print

Command-Line Format --print

Causes ndb_restore to print all data, metadata, and logs to stdout. Equivalent to using the --
print-data, --print-meta, and --print-log options together.

Note

Use of --print or any of the --print_* options is in effect performing a dry
run. Including one or more of these options causes any output to be redirected
to stdout; in such cases, ndb_restore makes no attempt to restore data or
metadata to an NDB Cluster.

• --print-data

Command-Line Format --print-data

Cause ndb_restore to direct its output to stdout. Often used together with one or more of --tab, --
fields-enclosed-by, --fields-optionally-enclosed-by, --fields-terminated-by, --
hex, and --append.

TEXT and BLOB column values are always truncated. Such values are truncated to the first 256 bytes in
the output. This cannot currently be overridden when using --print-data.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --print-log

Command-Line Format --print-log

Cause ndb_restore to output its log to stdout.

• --print-meta

Command-Line Format --print-meta

Print all metadata to stdout.

477

https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

ndb_restore — Restore an NDB Cluster Backup

• print-sql-log

Command-Line Format --print-sql-log

Log SQL statements to stdout. Use the option to enable; normally this behavior is disabled. The option
checks before attempting to log whether all the tables being restored have explicitly defined primary
keys; queries on a table having only the hidden primary key implemented by NDB cannot be converted to
valid SQL.

This option does not work with tables having BLOB columns.

• --progress-frequency=N

Command-Line Format --progress-frequency=#

Type Numeric

Default Value 0

Minimum Value 0

Maximum Value 65535

Print a status report each N seconds while the backup is in progress. 0 (the default) causes no status
reports to be printed. The maximum is 65535.

• --promote-attributes, -A

Command-Line Format --promote-attributes

ndb_restore supports limited attribute promotion in much the same way that it is supported by MySQL
replication; that is, data backed up from a column of a given type can generally be restored to a column
using a “larger, similar” type. For example, data from a CHAR(20) column can be restored to a column
declared as VARCHAR(20), VARCHAR(30), or CHAR(30); data from a MEDIUMINT column can be
restored to a column of type INT or BIGINT. See Replication of Columns Having Different Data Types,
for a table of type conversions currently supported by attribute promotion.

Beginning with NDB 8.0.26, this option also makes it possible to restore a NOT NULL column as NULL.

Attribute promotion by ndb_restore must be enabled explicitly, as follows:

1. Prepare the table to which the backup is to be restored. ndb_restore cannot be used to re-create
the table with a different definition from the original; this means that you must either create the table
manually, or alter the columns which you wish to promote using ALTER TABLE after restoring the
table metadata but before restoring the data.

2. Invoke ndb_restore with the --promote-attributes option (short form -A) when restoring the
table data. Attribute promotion does not occur if this option is not used; instead, the restore operation
fails with an error.

When converting between character data types and TEXT or BLOB, only conversions between character
types (CHAR and VARCHAR) and binary types (BINARY and VARBINARY) can be performed at the same

478

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html#replication-features-different-data-types
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html

ndb_restore — Restore an NDB Cluster Backup

time. For example, you cannot promote an INT column to BIGINT while promoting a VARCHAR column
to TEXT in the same invocation of ndb_restore.

Converting between TEXT columns using different character sets is not supported, and is expressly
disallowed.

When performing conversions of character or binary types to TEXT or BLOB with ndb_restore, you
may notice that it creates and uses one or more staging tables named table_name$STnode_id.
These tables are not needed afterwards, and are normally deleted by ndb_restore following a
successful restoration.

• --rebuild-indexes

Command-Line Format --rebuild-indexes

Enable multithreaded rebuilding of the ordered indexes while restoring a native NDB backup. The number
of threads used for building ordered indexes by ndb_restore with this option is controlled by the
BuildIndexThreads data node configuration parameter and the number of LDMs.

It is necessary to use this option only for the first run of ndb_restore; this causes all ordered indexes
to be rebuilt without using --rebuild-indexes again when restoring subsequent nodes. You should
use this option prior to inserting new rows into the database; otherwise, it is possible for a row to be
inserted that later causes a unique constraint violation when trying to rebuild the indexes.

Building of ordered indices is parallelized with the number of LDMs by default. Offline index builds
performed during node and system restarts can be made faster using the BuildIndexThreads data
node configuration parameter; this parameter has no effect on dropping and rebuilding of indexes by
ndb_restore, which is performed online.

Rebuilding of unique indexes uses disk write bandwidth for redo logging and local checkpointing. An
insufficient amount of this bandwith can lead to redo buffer overload or log overload errors. In such
cases you can run ndb_restore --rebuild-indexes again; the process resumes at the point where
the error occurred. You can also do this when you have encountered temporary errors. You can repeat
execution of ndb_restore --rebuild-indexes indefinitely; you may be able to stop such errors by
reducing the value of --parallelism. If the problem is insufficient space, you can increase the size of
the redo log (FragmentLogFileSize node configuration parameter), or you can increase the speed at
which LCPs are performed (MaxDiskWriteSpeed and related parameters), in order to free space more
quickly.

• --remap-column=db.tbl.col:fn:args

Command-Line Format --remap-column=string

Introduced 8.0.21-ndb-8.0.21

Type String

479

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

ndb_restore — Restore an NDB Cluster Backup

Default Value [none]

When used together with --restore-data, this option applies a function to the value of the indicated
column. Values in the argument string are listed here:

• db: Database name, following any renames performed by --rewrite-database.

• tbl: Table name.

• col: Name of the column to be updated. This column must be of type INT or BIGINT. The column
can also be but is not required to be UNSIGNED.

• fn: Function name; currently, the only supported name is offset.

• args: Arguments supplied to the function. Currently, only a single argument, the size of the offset
to be added by the offset function, is supported. Negative values are supported. The size of the
argument cannot exceed that of the signed variant of the column's type; for example, if col is an INT
column, then the allowed range of the argument passed to the offset function is -2147483648 to
2147483647 (see Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT).

If applying the offset value to the column would cause an overflow or underflow, the restore operation
fails. This could happen, for example, if the column is a BIGINT, and the option attempts to apply
an offset value of 8 on a row in which the column value is 4294967291, since 4294967291 + 8 =
4294967299 > 4294967295.

This option can be useful when you wish to merge data stored in multiple source instances of
NDB Cluster (all using the same schema) into a single destination NDB Cluster, using NDB native
backup (see Section 6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and
ndb_restore to merge the data, where primary and unique key values are overlapping between source
clusters, and it is necessary as part of the process to remap these values to ranges that do not overlap.
It may also be necessary to preserve other relationships between tables. To fulfill such requirements, it
is possible to use the option multiple times in the same invocation of ndb_restore to remap columns of
different tables, as shown here:

$> ndb_restore --restore-data --remap-column=hr.employee.id:offset:1000 \
 --remap-column=hr.manager.id:offset:1000 --remap-column=hr.firstaiders.id:offset:1000

(Other options not shown here may also be used.)

--remap-column can also be used to update multiple columns of the same table. Combinations of
multiple tables and columns are possible. Different offset values can also be used for different columns
of the same table, like this:

$> ndb_restore --restore-data --remap-column=hr.employee.salary:offset:10000 \
 --remap-column=hr.employee.hours:offset:-10

When source backups contain duplicate tables which should not be merged, you can handle this by
using --exclude-tables, --exclude-databases, or by some other means in your application.

Information about the structure and other characteristics of tables to be merged can obtained using SHOW
CREATE TABLE; the ndb_desc tool; and MAX(), MIN(), LAST_INSERT_ID(), and other MySQL
functions.

Replication of changes from merged to unmerged tables, or from unmerged to merged tables, in
separate instances of NDB Cluster is not supported.

480

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_max
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id

ndb_restore — Restore an NDB Cluster Backup

• --restore-data, -r

Command-Line Format --restore-data

Output NDB table data and logs.

• --restore-epoch, -e

Command-Line Format --restore-epoch

Add (or restore) epoch information to the cluster replication status table. This is useful for
starting replication on an NDB Cluster replica. When this option is used, the row in the
mysql.ndb_apply_status having 0 in the id column is updated if it already exists; such a row
is inserted if it does not already exist. (See Section 7.9, “NDB Cluster Backups With NDB Cluster
Replication”.)

• --restore-meta, -m

Command-Line Format --restore-meta

This option causes ndb_restore to print NDB table metadata.

The first time you run the ndb_restore restoration program, you also need to restore the metadata.
In other words, you must re-create the database tables—this can be done by running it with the --
restore-meta (-m) option. Restoring the metadata need be done only on a single data node; this is
sufficient to restore it to the entire cluster.

In older versions of NDB Cluster, tables whose schemas were restored using this option used the same
number of partitions as they did on the original cluster, even if it had a differing number of data nodes
from the new cluster. In NDB 8.0, when restoring metadata, this is no longer an issue; ndb_restore
now uses the default number of partitions for the target cluster, unless the number of local data manager
threads is also changed from what it was for data nodes in the original cluster.

When using this option in NDB 8.0, it is recommended that auto synchronization be disabled by setting
ndb_metadata_check=OFF until ndb_restore has completed restoring the metadata, after which it
can it turned on again to synchronize objects newly created in the NDB dictionary.

Note

The cluster should have an empty database when starting to restore a backup.
(In other words, you should start the data nodes with --initial prior to
performing the restore.)

• --restore-privilege-tables

Command-Line Format --restore-privilege-tables

Deprecated 8.0.16-ndb-8.0.16

ndb_restore does not by default restore distributed MySQL privilege tables created in releases of NDB
Cluster prior to version 8.0, which does not support distrubuted privileges as implemented in NDB 7.6
and earlier. This option causes ndb_restore to restore them.

In NDB 8.0, such tables are not used for access control; as part of the MySQL server's upgrade process,
the server creates InnoDB copies of these tables local to itself. For more information, see Section 3.7,
“Upgrading and Downgrading NDB Cluster”, as well as Grant Tables.

481

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html

ndb_restore — Restore an NDB Cluster Backup

• --rewrite-database=olddb,newdb

Command-Line Format --rewrite-database=string

Type String

Default Value none

This option makes it possible to restore to a database having a different name from that used in the
backup. For example, if a backup is made of a database named products, you can restore the data it
contains to a database named inventory, use this option as shown here (omitting any other options
that might be required):

$> ndb_restore --rewrite-database=product,inventory

The option can be employed multiple times in a single invocation of ndb_restore. Thus it is
possible to restore simultaneously from a database named db1 to a database named db2 and from
a database named db3 to one named db4 using --rewrite-database=db1,db2 --rewrite-
database=db3,db4. Other ndb_restore options may be used between multiple occurrences of --
rewrite-database.

In the event of conflicts between multiple --rewrite-database options, the last --rewrite-
database option used, reading from left to right, is the one that takes effect. For example, if --
rewrite-database=db1,db2 --rewrite-database=db1,db3 is used, only --rewrite-
database=db1,db3 is honored, and --rewrite-database=db1,db2 is ignored. It is also possible
to restore from multiple databases to a single database, so that --rewrite-database=db1,db3 --
rewrite-database=db2,db3 restores all tables and data from databases db1 and db2 into database
db3.

Important

When restoring from multiple backup databases into a single target database
using --rewrite-database, no check is made for collisions between table or
other object names, and the order in which rows are restored is not guaranteed.
This means that it is possible in such cases for rows to be overwritten and
updates to be lost.

• --skip-broken-objects

Command-Line Format --skip-broken-objects

This option causes ndb_restore to ignore corrupt tables while reading a native NDB backup, and to
continue restoring any remaining tables (that are not also corrupted). Currently, the --skip-broken-
objects option works only in the case of missing blob parts tables.

• --skip-table-check, -s

Command-Line Format --skip-table-check

It is possible to restore data without restoring table metadata. By default when doing this, ndb_restore
fails with an error if a mismatch is found between the table data and the table schema; this option
overrides that behavior.

Some of the restrictions on mismatches in column definitions when restoring data using ndb_restore
are relaxed; when one of these types of mismatches is encountered, ndb_restore does not stop with
an error as it did previously, but rather accepts the data and inserts it into the target table while issuing a482

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

ndb_restore — Restore an NDB Cluster Backup

warning to the user that this is being done. This behavior occurs whether or not either of the options --
skip-table-check or --promote-attributes is in use. These differences in column definitions
are of the following types:

• Different COLUMN_FORMAT settings (FIXED, DYNAMIC, DEFAULT)

• Different STORAGE settings (MEMORY, DISK)

• Different default values

• Different distribution key settings

• --skip-unknown-objects

Command-Line Format --skip-unknown-objects

This option causes ndb_restore to ignore any schema objects it does not recognize while reading a
native NDB backup. This can be used for restoring a backup made from a cluster running (for example)
NDB 7.6 to a cluster running NDB Cluster 7.5.

• --slice-id=#

Command-Line Format --slice-id=#

Introduced 8.0.20-ndb-8.0.20

Type Integer

Default Value 0

Minimum Value 0

Maximum Value 1023

When restoring by slices, this is the ID of the slice to restore. This option is always used together with --
num-slices, and its value must be always less than that of --num-slices.

For more information, see the description of the --num-slices elsewhere in this section.

• --tab=dir_name, -T dir_name

Command-Line Format --tab=path

Type Directory name

Causes --print-data to create dump files, one per table, each named tbl_name.txt. It requires as
its argument the path to the directory where the files should be saved; use . for the current directory.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --verbose=#

Command-Line Format --verbose=#

Type Numeric

Default Value 1

483

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

ndb_restore — Restore an NDB Cluster Backup

Minimum Value 0

Maximum Value 255

Sets the level for the verbosity of the output. The minimum is 0; the maximum is 255. The default value
is 1.

• --version

Command-Line Format --version

Display version information and exit.

• --with-apply-status

Command-Line Format --with-apply-status

Introduced 8.0.29-ndb-8.0.29

Restore all rows from the backup's ndb_apply_status table (except for the row having server_id =
0, which is generated using --restore-epoch). This option requires that --restore-data also be
used.

If the ndb_apply_status table from the backeup already contains a row with server_id =
0, ndb_restore --with-apply-status deletes it. For this reason, we recommend that you
use ndb_restore --restore-epoch after invoking ndb_restore with the --with-apply-
status option. You can also use --restore-epoch concurrently with the last of any invocations of
ndb_restore --with-apply-status used to restore the cluster.

For more information, see ndb_apply_status Table.

Typical options for this utility are shown here:

ndb_restore [-c connection_string] -n node_id -b backup_id \
 [-m] -r --backup-path=/path/to/backup/files

Normally, when restoring from an NDB Cluster backup, ndb_restore requires at a minimum the --
nodeid (short form: -n), --backupid (short form: -b), and --backup-path options.

The -c option is used to specify a connection string which tells ndb_restore where to locate the cluster
management server (see Section 4.3.3, “NDB Cluster Connection Strings”). If this option is not used,
then ndb_restore attempts to connect to a management server on localhost:1186. This utility acts
as a cluster API node, and so requires a free connection “slot” to connect to the cluster management
server. This means that there must be at least one [api] or [mysqld] section that can be used by it
in the cluster config.ini file. It is a good idea to keep at least one empty [api] or [mysqld] section
in config.ini that is not being used for a MySQL server or other application for this reason (see
Section 4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”).

In NDB 8.0.22 and later, ndb_restore can decrypt an encrypted backup using --decrypt and --
backup-password. Both options must be specified to perform decryption. See the documentation for the
START BACKUP management client command for information on creating encrypted backups.

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the ndb_mgm
management client. You can also accomplish this from a system shell, as shown here:

$> ndb_mgm -e "SHOW"

484

Restoring an NDB Backup to a Different Version of NDB Cluster

Error reporting.
ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may able
to recover from them, and reports Restore successful, but encountered temporary error,
please look at configuration in such cases.

Important

After using ndb_restore to initialize an NDB Cluster for use in circular replication,
binary logs on the SQL node acting as the replica are not automatically created,
and you must cause them to be created manually. To cause the binary logs to be
created, issue a SHOW TABLES statement on that SQL node before running START
SLAVE. This is a known issue in NDB Cluster.

5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster

The following two sections provide information about restoring a native NDB backup to a different version
of NDB Cluster from the version in which the backup was taken.

In addition, you should consult Section 3.7, “Upgrading and Downgrading NDB Cluster”, for other issues
you may encounter when attempting to restore an NDB backup to a cluster running a different version of
the NDB software.

It is also advisable to review What is New in NDB Cluster 8.0, as well as Changes in MySQL 8.0, for other
changes between NDB 8.0 and previous versions of NDB Cluster that may be relevant to your particular
circumstances.

5.23.1.1 Restoring an NDB backup to a previous version of NDB Cluster

You may encounter issues when restoring a backup taken from a later version of NDB Cluster to a
previous one, due to the use of features which do not exist in the earlier version. Some of these issues are
listed here:

• utf8mb4_ai_ci character set. Tables created in NDB 8.0 by default use the utf8mb4_ai_ci
character set, which is not available in NDB 7.6 and earlier, and so cannot be read by an ndb_restore
binary from one of these earlier versions. In such cases, it is necessary to alter any tables using
utf8mb4_ai_ci so that they use a character set supported in the older version prior to performing the
backup.

• Table metadata format. Due to changes in how the MySQL Server and NDB handle table metadata,
tables created or altered using the included MySQL server binary from NDB 8.0 cannot be restored
using ndb_restore to NDB 7.6 or an earlier version of NDB Cluster. Such tables use .sdi files which
are not understood by older versions of mysqld.

A backup taken in NDB 8.0 of tables which were created in NDB 7.6 or earlier, and which have not been
altered since upgrading to NDB 8.0, should be restorable to older versions of NDB Cluster.

Since it is possible to restore metadata and table data separately, you can in such cases restore the
table schemas from a dump made using mysqldump, or by executing the necessary CREATE TABLE
statements manually, then import only the table data using ndb_restore with the --restore-data
option.

• Multi-threaded backups. Multi-threaded backups taken in NDB 8.0 can be restored to an cluster
running an earlier version of NDB in either of the following two ways:

• Using an ndb_restore binary from NDB 8.0, perform a parallel restore. See Section 5.23.3.1,
“Restoring a parallel backup in parallel”.

485

https://dev.mysql.com/doc/refman/8.0/en/show-tables.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/start-slave.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Restoring to a different number of data nodes

• Restore the backups serially; in this case, a later version of ndb_restore is not required. See
Section 5.23.3.2, “Restoring a parallel backup serially”.

• Encrypted backups. Encrypted backups created in NDB 8.0.22 and later cannot be restored using
ndb_restore from NDB 8.0.21 or earlier.

• NDB_STORED_USER privilege. The NDB_STORED_USER privilege is supported only in NDB 8.0.

• Maximum number of data nodes. NDB Cluster 8.0 supports up to 144 data nodes, while earlier
versions support a maximum of only 48 data nodes. See Section 5.23.2.1, “Restoring to Fewer Nodes
Than the Original”, for information with situations in which this incompatibility causes an issue.

5.23.1.2 Restoring an NDB backup to a later version of NDB Cluster

In general, it should be possible to restore a backup created using the ndb_mgm client START BACKUP
command in an older version of NDB to a newer version, provided that you use the ndb_restore binary
that comes with the newer version. (It may be possible to use the older version of ndb_restore, but this
is not recommended.) Additional potential issues are listed here:

• When restoring the metadata from a backup (--restore-meta option), ndb_restore normally
attempts to reproduce the captured table schema exactly as it was when the backup was taken.

Tables created in versions of NDB prior to 8.0 use .frm files for their metadata. These files can be read
by the mysqld in NDB 8.0, which can use the information contained therein to create the .sdi files
used by the MySQL data dictionary in later versions.

• When restoring an older backup to a newer version of NDB, it may not be possible to take advantage
of newer features such as hashmap partitioning, greater number of hashmap buckets, read backup,
and different partitioning layouts. For this reason, it may be preferable to restore older schemas using
mysqldump and the mysql client, which allows NDB to make use of the new schema features.

• Tables using the old temporal types which did not support fractional seconds (used prior to MySQL
5.6.4 and NDB 7.3.31) cannot be restored to NDB 8.0 using ndb_restore. You can check such tables
using CHECK TABLE, and then upgrade them to the newer temporal column format, if necessary, using
REPAIR TABLE in the mysql client; this must be done prior to taking the backup. See Preparing Your
Installation for Upgrade, for more information.

You also also restore such tables using a dump created with mysqldump.

• Distributed grant tables created in NDB 7.6 and earlier are not supported in NDB 8.0. Such tables can be
restored to an NDB 8.0 cluster, but they have no effect on access control.

5.23.2 Restoring to a different number of data nodes

It is possible to restore from an NDB backup to a cluster having a different number of data nodes than
the original from which the backup was taken. The following two sections discuss, respectively, the cases
where the target cluster has a lesser or greater number of data nodes than the source of the backup.

5.23.2.1 Restoring to Fewer Nodes Than the Original

You can restore to a cluster having fewer data nodes than the original provided that the larger number of
nodes is an even multiple of the smaller number. In the following example, we use a backup taken on a
cluster having four data nodes to a cluster having two data nodes.

1. The management server for the original cluster is on host host10. The original cluster has four data
nodes, with the node IDs and host names shown in the following extract from the management server's
config.ini file:

486

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/check-table.html
https://dev.mysql.com/doc/refman/8.0/en/repair-table.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html
https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Restoring to a different number of data nodes

[ndbd]
NodeId=2
HostName=host2

[ndbd]
NodeId=4
HostName=host4

[ndbd]
NodeId=6
HostName=host6

[ndbd]
NodeId=8
HostName=host8

We assume that each data node was originally started with ndbmtd --ndb-
connectstring=host10 or the equivalent.

2. Perform a backup in the normal manner. See Section 6.8.2, “Using The NDB Cluster Management
Client to Create a Backup”, for information about how to do this.

3. The files created by the backup on each data node are listed here, where N is the node ID and B is the
backup ID.

• BACKUP-B-0.N.Data

• BACKUP-B.N.ctl

• BACKUP-B.N.log

These files are found under BackupDataDir/BACKUP/BACKUP-B, on each data node. For the rest of
this example, we assume that the backup ID is 1.

Have all of these files available for later copying to the new data nodes (where they can be accessed
on the data node's local file system by ndb_restore). It is simplest to copy them all to a single
location; we assume that this is what you have done.

4. The management server for the target cluster is on host host20, and the target has two data nodes,
with the node IDs and host names shown, from the management server config.ini file on host20:

[ndbd]
NodeId=3
hostname=host3

[ndbd]
NodeId=5
hostname=host5

Each of the data node processes on host3 and host5 should be started with ndbmtd -c host20 --
initial or the equivalent, so that the new (target) cluster starts with clean data node file systems.

487

Restoring to a different number of data nodes

5. Copy two different sets of two backup files to each of the target data nodes. For this example, copy the
backup files from nodes 2 and 4 from the original cluster to node 3 in the target cluster. These files are
listed here:

• BACKUP-1-0.2.Data

• BACKUP-1.2.ctl

• BACKUP-1.2.log

• BACKUP-1-0.4.Data

• BACKUP-1.4.ctl

• BACKUP-1.4.log

Then copy the backup files from nodes 6 and 8 to node 5; these files are shown in the following list:

• BACKUP-1-0.6.Data

• BACKUP-1.6.ctl

• BACKUP-1.6.log

• BACKUP-1-0.8.Data

• BACKUP-1.8.ctl

• BACKUP-1.8.log

For the remainder of this example, we assume that the respective backup files have been saved to the
directory /BACKUP-1 on each of nodes 3 and 5.

6. On each of the two target data nodes, you must restore from both sets of backups. First, restore the
backups from nodes 2 and 4 to node 3 by invoking ndb_restore on host3 as shown here:

$> ndb_restore -c host20 --nodeid=2 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=4 --backupid=1 --restore-data --backup-path=/BACKUP-1

Then restore the backups from nodes 6 and 8 to node 5 by invoking ndb_restore on host5, like this:

$> ndb_restore -c host20 --nodeid=6 --backupid=1 --restore-data --backup-path=/BACKUP-1

$> ndb_restore -c host20 --nodeid=8 --backupid=1 --restore-data --backup-path=/BACKUP-1

5.23.2.2 Restoring to More Nodes Than the Original

The node ID specified for a given ndb_restore command is that of the node in the original backup and
not that of the data node to restore it to. When performing a backup using the method described in this
section, ndb_restore connects to the management server and obtains a list of data nodes in the cluster
the backup is being restored to. The restored data is distributed accordingly, so that the number of nodes
in the target cluster does not need to be to be known or calculated when performing the backup.

Note

When changing the total number of LCP threads or LQH threads per node group,
you should recreate the schema from backup created using mysqldump.

488

Restoring to a different number of data nodes

1. Create the backup of the data. You can do this by invoking the ndb_mgm client START BACKUP
command from the system shell, like this:

$> ndb_mgm -e "START BACKUP 1"

This assumes that the desired backup ID is 1.

2. Create a backup of the schema. This step is necessary only if the total number of LCP threads or LQH
threads per node group is changed.

$> mysqldump --no-data --routines --events --triggers --databases > myschema.sql

Important

Once you have created the NDB native backup using ndb_mgm, you must not
make any schema changes before creating the backup of the schema, if you do
so.

3. Copy the backup directory to the new cluster. For example if the backup you want to restore has ID
1 and BackupDataDir = /backups/node_nodeid, then the path to the backup on this node is /
backups/node_1/BACKUP/BACKUP-1. Inside this directory there are three files, listed here:

• BACKUP-1-0.1.Data

• BACKUP-1.1.ctl

• BACKUP-1.1.log

You should copy the entire directory to the new node.

If you needed to create a schema file, copy this to a location on an SQL node where it can be read by
mysqld.

There is no requirement for the backup to be restored from a specific node or nodes.

To restore from the backup just created, perform the following steps:

1. Restore the schema.

• If you created a separate schema backup file using mysqldump, import this file using the mysql
client, similar to what is shown here:

$> mysql < myschema.sql

When importing the schema file, you may need to specify the --user and --password options
(and possibly others) in addition to what is shown, in order for the mysql client to be able to connect
to the MySQL server.

• If you did not need to create a schema file, you can re-create the schema using ndb_restore --
restore-meta (short form -m), similar to what is shown here:

$> ndb_restore --nodeid=1 --backupid=1 --restore-meta --backup-path=/backups/node_1/BACKUP/BACKUP-1

ndb_restore must be able to contact the management server; add the --ndb-connectstring
option if and as needed to make this possible.

2. Restore the data. This needs to be done once for each data node in the original cluster, each time
using that data node's node ID. Assuming that there were 4 data nodes originally, the set of commands
required would look something like this:

489

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_user
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

Restoring from a backup taken in parallel

ndb_restore --nodeid=1 --backupid=1 --restore-data --backup-path=/backups/node_1/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=2 --backupid=1 --restore-data --backup-path=/backups/node_2/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=3 --backupid=1 --restore-data --backup-path=/backups/node_3/BACKUP/BACKUP-1 --disable-indexes
ndb_restore --nodeid=4 --backupid=1 --restore-data --backup-path=/backups/node_4/BACKUP/BACKUP-1 --disable-indexes

These can be run in parallel.

Be sure to add the --ndb-connectstring option as needed.

3. Rebuild the indexes. These were disabled by the --disable-indexes option used in the commands
just shown. Recreating the indexes avoids errors due to the restore not being consistent at all points.
Rebuilding the indexes can also improve performance in some cases. To rebuild the indexes, execute
the following command once, on a single node:

$> ndb_restore --nodeid=1 --backupid=1 --backup-path=/backups/node_1/BACKUP/BACKUP-1 --rebuild-indexes

As mentioned previously, you may need to add the --ndb-connectstring option, so that
ndb_restore can contact the management server.

5.23.3 Restoring from a backup taken in parallel

NDB Cluster 8.0 supports parallel backups on each data node using ndbmtd with multiple LDMs (see
Section 6.8.5, “Taking an NDB Backup with Parallel Data Nodes”). The next two sections describe how to
restore backups that were taken in this fashion.

5.23.3.1 Restoring a parallel backup in parallel

Restoring a parallel backup in parallel requires an ndb_restore binary from an NDB 8.0 distribution. The
process is not substantially different from that outlined in the general usage section under the description
of the ndb_restore program, and consists of executing ndb_restore twice, similarly to what is shown
here:

$> ndb_restore -n 1 -b 1 -m --backup-path=path/to/backup_dir/BACKUP/BACKUP-backup_id
$> ndb_restore -n 1 -b 1 -r --backup-path=path/to/backup_dir/BACKUP/BACKUP-backup_id

backup_id is the ID of the backup to be restored. In the general case, no additional special arguments
are required; ndb_restore always checks for the existence of parallel subdirectories under the directory
indicated by the --backup-path option and restores the metadata (serially) and then the table data (in
parallel).

5.23.3.2 Restoring a parallel backup serially

It is possible to restore a backup that was made using parallelism on the data nodes in serial fashion. To
do this, invoke ndb_restore with --backup-path pointing to the subdirectories created by each LDM
under the main backup directory, once to any one of the subdirectories to restore the metadata (it does not
matter which one, since each subdirectory contains a complete copy of the metadata), then to each of the
subdirectories in turn to restore the data. Suppose that we want to restore the backup having backup ID
100 that was taken with four LDMs, and that the BackupDataDir is /opt. To restore the metadata in this
case, we can invoke ndb_restore like this:

$> ndb_restore -n 1 -b 1 -m --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-1-OF-4

To restore the table data, execute ndb_restore four times, each time using one of the subdirectories in
turn, as shown here:

$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-1-OF-4
$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-2-OF-4
$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-3-OF-4
$> ndb_restore -n 1 -b 1 -r --backup-path=opt/BACKUP/BACKUP-100/BACKUP-100-PART-4-OF-4

490

ndb_select_all — Print Rows from an NDB Table

You can employ the same technique to restore a parallel backup to an older version of NDB Cluster (7.6
or earlier) that does not support parallel backups, using the ndb_restore binary supplied with the older
version of the NDB Cluster software.

5.24 ndb_select_all — Print Rows from an NDB Table
ndb_select_all prints all rows from an NDB table to stdout.

Usage
ndb_select_all -c connection_string tbl_name -d db_name [> file_name]

Options that can be used with ndb_select_all are shown in the following table. Additional descriptions
follow the table.

Table 5.21 Command-line options used with the program ndb_select_all

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--delimiter=char,

-D char

Set column delimiter (Supported in all NDB releases
based on MySQL 8.0)

--descending,

-z

Sort resultset in descending order
(requires --order)

(Supported in all NDB releases
based on MySQL 8.0)

--disk Print disk references (useful
only for Disk Data tables having
unindexed columns)

(Supported in all NDB releases
based on MySQL 8.0)

--gci Include GCI in output (Supported in all NDB releases
based on MySQL 8.0)

491

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

--gci64 Include GCI and row epoch in
output

(Supported in all NDB releases
based on MySQL 8.0)

--header[=value],

-h

Print header (set to 0|FALSE to
disable headers in output)

(Supported in all NDB releases
based on MySQL 8.0)

--lock=#,

-l #

Lock type (Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--nodata Do not print table column data (Supported in all NDB releases
based on MySQL 8.0)

--order=index,

-o index

Sort resultset according to index
having this name

(Supported in all NDB releases
based on MySQL 8.0)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--rowid Print row ID (Supported in all NDB releases
based on MySQL 8.0)

492

Usage

Format Description Added, Deprecated, or
Removed

--tupscan,

-t

Scan in tup order (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--useHexFormat,

-x

Output numbers in hexadecimal
format

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

493

Usage

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database=dbname, -d dbname

Name of the database in which the table is found. The default value is TEST_DB.

• --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--order)
option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by this
delimiter.

The default delimiter is the tab character.

• --disk

Adds a disk reference column to the output. The column is nonempty only for Disk Data tables having
nonindexed columns.

• --gci

Adds a GCI column to the output showing the global checkpoint at which each row was last updated.
See Chapter 2, NDB Cluster Overview, and Section 6.3.2, “NDB Cluster Log Events”, for more
information about checkpoints.

494

Usage

• --gci64

Adds a ROW$GCI64 column to the output showing the global checkpoint at which each row was last
updated, as well as the number of the epoch in which this update occurred.

• --help

Command-Line Format --help

Display help text and exit.

• --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --header=FALSE

Excludes column headers from the output.

• --nodata

Causes any table data to be omitted.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

495

Usage

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --order=index_name, -o index_name

Orders the output according to the index named index_name.

Note

This is the name of an index, not of a column; the index must have been explicitly
named when created.

• parallelism=#, -p #

Specifies the degree of parallelism.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

• --tupscan, -t

Scan the table in the order of the tuples.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.
496

Sample Output

• --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

• --version

Command-Line Format --version

Display version information and exit.

Sample Output

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name |
+----+-----------+
3	shark
6	puffer
2	tuna
4	manta ray
5	grouper
1	guppy
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

$> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

All string values are enclosed by square brackets ([...]) in the output of ndb_select_all. For another
example, consider the table created and populated as shown here:

CREATE TABLE dogs (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 breed VARCHAR(50) NOT NULL,
 PRIMARY KEY pk (id),
 KEY ix (name)
)
TABLESPACE ts STORAGE DISK
ENGINE=NDBCLUSTER;

INSERT INTO dogs VALUES
 ('', 'Lassie', 'collie'),
 ('', 'Scooby-Doo', 'Great Dane'),
 ('', 'Rin-Tin-Tin', 'Alsatian'),
 ('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

$> ./ndb_select_all -d ctest1 dogs -o ix -z --gci --disk

497

https://dev.mysql.com/doc/refman/8.0/en/select.html

ndb_select_count — Print Row Counts for NDB Tables

GCI id name breed DISK_REF
834461 2 [Scooby-Doo] [Great Dane] [m_file_no: 0 m_page: 98 m_page_idx: 0]
834878 4 [Rosscoe] [Mutt] [m_file_no: 0 m_page: 98 m_page_idx: 16]
834463 3 [Rin-Tin-Tin] [Alsatian] [m_file_no: 0 m_page: 34 m_page_idx: 0]
835657 1 [Lassie] [Collie] [m_file_no: 0 m_page: 66 m_page_idx: 0]
4 rows returned

NDBT_ProgramExit: 0 - OK

5.25 ndb_select_count — Print Row Counts for NDB Tables

ndb_select_count prints the number of rows in one or more NDB tables. With a single table, the result is
equivalent to that obtained by using the MySQL statement SELECT COUNT(*) FROM tbl_name.

Usage

ndb_select_count [-c connection_string] -ddb_name tbl_name[, tbl_name2[, ...]]

Options that can be used with ndb_select_count are shown in the following table. Additional
descriptions follow the table.

Table 5.22 Command-line options used with the program ndb_select_count

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Name of database in which table
is found

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--lock=#, Lock type (Supported in all NDB releases
based on MySQL 8.0)

498

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

-l #

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--parallelism=#,

-p #

Degree of parallelism (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

499

Usage

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

500

Usage

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

501

Sample Output

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

You can obtain row counts from multiple tables in the same database by listing the table names separated
by spaces when invoking this command, as shown under Sample Output.

Sample Output
$> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

NDBT_ProgramExit: 0 - OK

5.26 ndb_setup.py — Start browser-based Auto-Installer for NDB
Cluster (DEPRECATED)

Note

This feature is deprecated and should be avoided. It is subject to removal in a future
version of NDB Cluster.

ndb_setup.py starts the NDB Cluster Auto-Installer and opens the installer's Start page in the default
Web browser.

Important

This program is intended to be invoked as a normal user, and not with the mysql,
system root or other administrative account.

This section describes usage of and program options for the command-line tool only. For information about
using the Auto-Installer GUI that is spawned when ndb_setup.py is invoked, see The NDB Cluster Auto-
Installer (NDB 7.5) (No longer supported).

Usage

All platforms:

ndb_setup.py [options]

Additionally, on Windows platforms only:

502

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-install-auto.html

Usage

setup.bat [options]

The following table includes all options that are supported by the NDB Cluster installation and configuration
program ndb_setup.py. Additional descriptions follow the table.

Table 5.23 Command-line options used with the program ndb_setup.py

Format Description Added, Deprecated, or
Removed

--browser-start-page=path,

-s path

Page that web browser opens
when starting

(Supported in all NDB releases
based on MySQL 8.0)

--ca-certs-file=path,

-a path

File containing list of client
certificates allowed to connect to
server

(Supported in all NDB releases
based on MySQL 8.0)

--cert-file=path,

-c path

File containing X509 certificate
identifying server

(Supported in all NDB releases
based on MySQL 8.0)

--debug-level=level,

-d level

Python logging module debug
level; one of DEBUG, INFO,
WARNING (default), ERROR, or
CRITICAL

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-h

Print help message (Supported in all NDB releases
based on MySQL 8.0)

--key-file=path,

-k path

Specify file containing private key
(if not included in --cert-file)

(Supported in all NDB releases
based on MySQL 8.0)

--no-browser,

-n

Do not open start page in browser,
merely start tool

(Supported in all NDB releases
based on MySQL 8.0)

--port=#,

-p #

Specify port used by web server (Supported in all NDB releases
based on MySQL 8.0)

--server-log-file=path,

-o path

Log requests to this file; use '-' to
force logging to stderr instead

(Supported in all NDB releases
based on MySQL 8.0)

--server-name=host,

-N host

Name of server to connect to (Supported in all NDB releases
based on MySQL 8.0)

--use-http,

-H

Use unencrypted (HTTP) client/
server connection

(Supported in all NDB releases
based on MySQL 8.0)

--use-https,

-S

Use encrypted (HTTPS) client/
server connection

(Supported in all NDB releases
based on MySQL 8.0)

• --browser-start-page=file, -s

Command-Line Format --browser-start-page=path

Type String

503

Usage

Default Value index.html

Specify the file to open in the browser as the installation and configuration Start page. The default is
index.html.

• --ca-certs-file=file, -a

Command-Line Format --ca-certs-file=path

Type File name

Default Value [none]

Specify a file containing a list of client certificates which are allowed to connect to the server. The default
is an empty string, which means that no client authentication is used.

• --cert-file=file, -c

Command-Line Format --cert-file=path

Type File name

Default Value /usr/share/mysql/mcc/cfg.pem

Specify a file containing an X509 certificate which identifies the server. It is possible for the certificate to
be self-signed. The default is cfg.pem.

• --debug-level=level, -d

Command-Line Format --debug-level=level

Type Enumeration

Default Value WARNING

Valid Values WARNING

DEBUG

INFO

ERROR

CRITICAL

Set the Python logging module debug level. This is one of DEBUG, INFO, WARNING, ERROR, or
CRITICAL. WARNING is the default.

• --help, -h

Command-Line Format --help

Print a help message.

• --key-file=file, -d

Command-Line Format --key-file=path

Type File name

Default Value [none]

504

Usage

Specify a file containing the private key if this is not included in the X509 certificate file (--cert-file).
The default is an empty string, which means that no such file is used.

• --no-browser, -n

Command-Line Format --no-browser

Start the installation and configuration tool, but do not open the Start page in a browser.

• --port=#, -p

Command-Line Format --port=#

Type Numeric

Default Value 8081

Minimum Value 1

Maximum Value 65535

Set the port used by the web server. The default is 8081.

• --server-log-file=file, -o

Command-Line Format --server-log-file=path

Type File name

Default Value ndb_setup.log

Valid Values ndb_setup.log

- (Log to stderr)

Log requests to this file. The default is ndb_setup.log. To specify logging to stderr, rather than to a
file, use a - (dash character) for the file name.

• --server-name=host, -N

Command-Line Format --server-name=host

Type String

Default Value localhost

Specify the host name or IP address for the browser to use when connecting. The default is localhost.

• --use-http, -H

Command-Line Format --use-http

Make the browser use HTTP to connect with the server. This means that the connection is unencrypted
and not secured in any way.

• --use-https, -S

Command-Line Format --use-https

Make the browser use a secure (HTTPS) connection with the server.

505

ndb_show_tables — Display List of NDB Tables

5.27 ndb_show_tables — Display List of NDB Tables

ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes not
only both user-created tables and NDB system tables, but NDB-specific indexes, internal triggers, and NDB
Cluster Disk Data objects as well.

Options that can be used with ndb_show_tables are shown in the following table. Additional descriptions
follow the table.

Table 5.24 Command-line options used with the program ndb_show_tables

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--database=name,

-d name

Specifies database in which table
is found; database name must be
followed by table name

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--loops=#,

-l #

Number of times to repeat output (Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

506

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--parsable,

-p

Return output suitable for MySQL
LOAD DATA statement

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--show-temp-status Show table temporary flag (Supported in all NDB releases
based on MySQL 8.0)

--type=#,

-t #

Limit output to objects of this type (Supported in all NDB releases
based on MySQL 8.0)

--unqualified,

-u

Do not qualify table names (Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

Usage
ndb_show_tables [-c connection_string]

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

507

Usage

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --database, -d

Specifies the name of the database in which the desired table is found. If this option is given, the name
of a table must follow the database name.

If this option has not been specified, and no tables are found in the TEST_DB database,
ndb_show_tables issues a warning.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String508

Usage

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --help

Command-Line Format --help

Display help text and exit.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --loops, -l

Specifies the number of times the utility should execute. This is 1 when this option is not specified, but if
you do use the option, you must supply an integer argument for it.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

Command-Line Format --ndb-nodeid=#

Type Integer

509

Usage

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --show-temp-status

If specified, this causes temporary tables to be displayed.

• --type, -t

Can be used to restrict the output to one type of object, specified by an integer type code as shown here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• --unqualified, -u

If specified, this causes unqualified object names to be displayed.

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

510

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

• --version

Command-Line Format --version

Display version information and exit.

Note

Only user-created NDB Cluster tables may be accessed from MySQL; system
tables such as SYSTAB_0 are not visible to mysqld. However, you can
examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 5.24, “ndb_select_all — Print Rows from an NDB
Table”).

Prior to NDB 8.0.20, this program printed NDBT_ProgramExit - status upon completion of its run,
due to an unnecessary dependency on the NDBT testing library. This dependency has been removed,
eliminating the extraneous output.

5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This is a Perl script that can be used to estimate the amount of space that would be required by a MySQL
database if it were converted to use the NDBCLUSTER storage engine. Unlike the other utilities discussed
in this section, it does not require access to an NDB Cluster (in fact, there is no reason for it to do so).
However, it does need to access the MySQL server on which the database to be tested resides.

Requirements

• A running MySQL server. The server instance does not have to provide support for NDB Cluster.

• A working installation of Perl.

• The DBI module, which can be obtained from CPAN if it is not already part of your Perl installation.
(Many Linux and other operating system distributions provide their own packages for this library.)

• A MySQL user account having the necessary privileges. If you do not wish to use an existing account,
then creating one using GRANT USAGE ON db_name.*—where db_name is the name of the database
to be examined—is sufficient for this purpose.

ndb_size.pl can also be found in the MySQL sources in storage/ndb/tools.

Options that can be used with ndb_size.pl are shown in the following table. Additional descriptions
follow the table.

Table 5.25 Command-line options used with the program ndb_size.pl

Format Description Added, Deprecated, or
Removed

--database=string Database or databases to
examine; a comma-delimited list;
default is ALL (use all databases
found on server)

(Supported in all NDB releases
based on MySQL 8.0)

--hostname=string Specify host and optional port in
host[:port] format

(Supported in all NDB releases
based on MySQL 8.0)

511

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Usage

Format Description Added, Deprecated, or
Removed

--socket=path Specify socket to connect to (Supported in all NDB releases
based on MySQL 8.0)

--user=string Specify MySQL user name (Supported in all NDB releases
based on MySQL 8.0)

--password=password Specify MySQL user password (Supported in all NDB releases
based on MySQL 8.0)

--format=string Set output format (text or HTML) (Supported in all NDB releases
based on MySQL 8.0)

--excludetables=list Skip any tables in comma-
separated list

(Supported in all NDB releases
based on MySQL 8.0)

--excludedbs=list Skip any databases in comma-
separated list

(Supported in all NDB releases
based on MySQL 8.0)

--savequeries=path Saves all queries on database into
file specified

(Supported in all NDB releases
based on MySQL 8.0)

--loadqueries=path Loads all queries from file
specified; does not connect to
database

(Supported in all NDB releases
based on MySQL 8.0)

--real_table_name=string Designates table to handle unique
index size calculations

(Supported in all NDB releases
based on MySQL 8.0)

Usage
perl ndb_size.pl [--database={db_name|ALL}] [--hostname=host[:port]] [--socket=socket] \
 [--user=user] [--password=password] \
 [--help|-h] [--format={html|text}] \
 [--loadqueries=file_name] [--savequeries=file_name]

By default, this utility attempts to analyze all databases on the server. You can specify a single database
using the --database option; the default behavior can be made explicit by using ALL for the name
of the database. You can also exclude one or more databases by using the --excludedbs option
with a comma-separated list of the names of the databases to be skipped. Similarly, you can cause
specific tables to be skipped by listing their names, separated by commas, following the optional --
excludetables option. A host name can be specified using --hostname; the default is localhost.
You can specify a port in addition to the host using host:port format for the value of --hostname.
The default port number is 3306. If necessary, you can also specify a socket; the default is /var/lib/
mysql.sock. A MySQL user name and password can be specified the corresponding options shown.
It also possible to control the format of the output using the --format option; this can take either of the
values html or text, with text being the default. An example of the text output is shown here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock
ndb_size.pl report for database: 'test' (1 tables)
--
Connected to: DBI:mysql:host=localhost;mysql_socket=/tmp/mysql.sock

Including information for versions: 4.1, 5.0, 5.1

test.t1

DataMemory for Columns (* means varsized DataMemory):
 Column Name Type Varsized Key 4.1 5.0 5.1
 HIDDEN_NDB_PKEY bigint PRI 8 8 8
 c2 varchar(50) Y 52 52 4*

512

Usage

 c1 int(11) 4 4 4
 -- -- --
Fixed Size Columns DM/Row 64 64 12
 Varsize Columns DM/Row 0 0 4

DataMemory for Indexes:
 Index Name Type 4.1 5.0 5.1
 PRIMARY BTREE 16 16 16
 -- -- --
 Total Index DM/Row 16 16 16

IndexMemory for Indexes:
 Index Name 4.1 5.0 5.1
 PRIMARY 33 16 16
 -- -- --
 Indexes IM/Row 33 16 16

Summary (for THIS table):
 4.1 5.0 5.1
 Fixed Overhead DM/Row 12 12 16
 NULL Bytes/Row 4 4 4
 DataMemory/Row 96 96 48
 (Includes overhead, bitmap and indexes)

 Varsize Overhead DM/Row 0 0 8
 Varsize NULL Bytes/Row 0 0 4
 Avg Varside DM/Row 0 0 16

 No. Rows 0 0 0

 Rows/32kb DM Page 340 340 680
Fixedsize DataMemory (KB) 0 0 0

Rows/32kb Varsize DM Page 0 0 2040
 Varsize DataMemory (KB) 0 0 0

 Rows/8kb IM Page 248 512 512
 IndexMemory (KB) 0 0 0

Parameter Minimum Requirements

* indicates greater than default

 Parameter Default 4.1 5.0 5.1
 DataMemory (KB) 81920 0 0 0
 NoOfOrderedIndexes 128 1 1 1
 NoOfTables 128 1 1 1
 IndexMemory (KB) 18432 0 0 0
 NoOfUniqueHashIndexes 64 0 0 0
 NoOfAttributes 1000 3 3 3
 NoOfTriggers 768 5 5 5

For debugging purposes, the Perl arrays containing the queries run by this script can be read from the
file specified using can be saved to a file using --savequeries; a file containing such arrays to be read
during script execution can be specified using --loadqueries. Neither of these options has a default
value.

To produce output in HTML format, use the --format option and redirect the output to a file, as shown
here:

$> ndb_size.pl --database=test --socket=/tmp/mysql.sock --format=html > ndb_size.html

(Without the redirection, the output is sent to stdout.)

The output from this script includes the following information:

513

ndb_top — View CPU usage information for NDB threads

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes,
MaxNoOfOrderedIndexes, and MaxNoOfTriggers configuration parameters required to
accommodate the tables analyzed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes defined
in the database.

• The IndexMemory and DataMemory required per table and table row.

5.29 ndb_top — View CPU usage information for NDB threads

ndb_top displays running information in the terminal about CPU usage by NDB threads on an NDB
Cluster data node. Each thread is represented by two rows in the output, the first showing system
statistics, the second showing the measured statistics for the thread.

ndb_top is available beginning with MySQL NDB Cluster 7.6.3.

Usage

ndb_top [-h hostname] [-t port] [-u user] [-p pass] [-n node_id]

ndb_top connects to a MySQL Server running as an SQL node of the cluster. By default, it attempts to
connect to a mysqld running on localhost and port 3306, as the MySQL root user with no password
specified. You can override the default host and port using, respectively, --host (-h) and --port (-t).
To specify a MySQL user and password, use the --user (-u) and --passwd (-p) options. This user must
be able to read tables in the ndbinfo database (ndb_top uses information from ndbinfo.cpustat and
related tables).

For more information about MySQL user accounts and passwords, see Access Control and Account
Management.

Output is available as plain text or an ASCII graph; you can specify this using the --text (-x) and --
graph (-g) options, respectively. These two display modes provide the same information; they can be
used concurrently. At least one display mode must be in use.

Color display of the graph is supported and enabled by default (--color or -c option). With color support
enabled, the graph display shows OS user time in blue, OS system time in green, and idle time as blank.
For measured load, blue is used for execution time, yellow for send time, red for time spent in send
buffer full waits, and blank spaces for idle time. The percentage shown in the graph display is the sum of
percentages for all threads which are not idle. Colors are not currently configurable; you can use grayscale
instead by using --skip-color.

The sorted view (--sort, -r) is based on the maximum of the measured load and the load reported by
the OS. Display of these can be enabled and disabled using the --measured-load (-m) and --os-load
(-o) options. Display of at least one of these loads must be enabled.

The program tries to obtain statistics from a data node having the node ID given by the --node-id (-n)
option; if unspecified, this is 1. ndb_top cannot provide information about other types of nodes.

The view adjusts itself to the height and width of the terminal window; the minimum supported width is 76
characters.

Once started, ndb_top runs continuously until forced to exit; you can quit the program using Ctrl-C. The
display updates once per second; to set a different delay interval, use --sleep-time (-s).

514

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-programs-ndb-top.html#option_ndb_top_passwd
https://dev.mysql.com/doc/refman/8.0/en/access-control.html
https://dev.mysql.com/doc/refman/8.0/en/access-control.html

Usage

Note

ndb_top is available on macOS, Linux, and Solaris. It is not currently supported on
Windows platforms.

The following table includes all options that are specific to the NDB Cluster program ndb_top. Additional
descriptions follow the table.

Table 5.26 Command-line options used with the program ndb_top

Format Description Added, Deprecated, or
Removed

--color,

-c

Show ASCII graphs in color; use --
skip-colors to disable

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--graph,

-g

Display data using graphs; use --
skip-graphs to disable

(Supported in all NDB releases
based on MySQL 8.0)

--help Show program usage information (Supported in all NDB releases
based on MySQL 8.0)

--host=string,

-h string

Host name or IP address of
MySQL Server to connect to

(Supported in all NDB releases
based on MySQL 8.0)

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--measured-load,

-m

Show measured load by thread (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--node-id=#,

-n #

Watch node having this node ID (Supported in all NDB releases
based on MySQL 8.0)

--os-load,

-o

Show load measured by operating
system

(Supported in all NDB releases
based on MySQL 8.0)

--password=password,

-p password

Connect using this password (Supported in all NDB releases
based on MySQL 8.0)

--port=#,

-P # (>=7.6.6)

Port number to use when
connecting to MySQL Server

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

515

Additional Options

Format Description Added, Deprecated, or
Removed

--sleep-time=#,

-s #

Time to wait between display
refreshes, in seconds

(Supported in all NDB releases
based on MySQL 8.0)

--socket=path,

-S path

Socket file to use for connection (Supported in all NDB releases
based on MySQL 8.0)

--sort,

-r

Sort threads by usage; use --skip-
sort to disable

(Supported in all NDB releases
based on MySQL 8.0)

--text,

-t (>=7.6.6)

Display data using text (Supported in all NDB releases
based on MySQL 8.0)

--usage Show program usage information;
same as --help

(Supported in all NDB releases
based on MySQL 8.0)

--user=name,

-u name

Connect as this MySQL user (Supported in all NDB releases
based on MySQL 8.0)

Additional Options

• --color, -c

Command-Line Format --color

Show ASCII graphs in color; use --skip-colors to disable.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

516

Additional Options

• --graph, -g

Command-Line Format --graph

Display data using graphs; use --skip-graphs to disable. This option or --text must be true; both
options may be true.

• --help, -?

Command-Line Format --help

Show program usage information.

• --host[=name], -h

Command-Line Format --host=string

Type String

Default Value localhost

Host name or IP address of MySQL Server to connect to.

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --measured-load, -m

Command-Line Format --measured-load

Show measured load by thread. This option or --os-load must be true; both options may be true.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --node-id[=#], -n

Command-Line Format --node-id=#

Type Integer

Default Value 1

Watch the data node having this node ID. 517

Additional Options

• --os-load, -o

Command-Line Format --os-load

Show load measured by operating system. This option or --measured-load must be true; both options
may be true.

• --password[=password], -p

Command-Line Format --password=password

Type String

Default Value NULL

Connect to a MySQL Server using this password and the MySQL user specified by --user.

This password is associated with a MySQL user account only, and is not related in any way to the
password used with encrypted NDB backups.

• --port[=#], -P

Command-Line Format --port=#

Type Integer

Default Value 3306

Port number to use when connecting to MySQL Server.

(Formerly, the short form for this option was -t, which was repurposed as the short form of --text.)

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --sleep-time[=seconds], -s

Command-Line Format --sleep-time=#

Type Integer

Default Value 1

Time to wait between display refreshes, in seconds.

• --socket=path/to/file, -S

Command-Line Format --socket=path

Type Path name

Default Value [none]

Use the specified socket file for the connection.518

Additional Options

• --sort, -r

Command-Line Format --sort

Sort threads by usage; use --skip-sort to disable.

• --text, -t

Command-Line Format --text

Display data using text. This option or --graph must be true; both options may be true.

(The short form for this option was -x in previous versions of NDB Cluster, but this is no longer
supported.)

• --usage

Command-Line Format --usage

Display help text and exit; same as --help.

• --user[=name], -u

Command-Line Format --user=name

Type String

Default Value root

Connect as this MySQL user. Normally requires a password supplied by the --password option.

Sample Output. The next figure shows ndb_top running in a terminal window on a Linux system with
an ndbmtd data node under a moderate load. Here, the program has been invoked using ndb_top -n8 -
x to provide both text and graph output:

Figure 5.1 ndb_top Running in Terminal

Beginning with NDB 8.0.20, ndb_top also shows spin times for threads, displayed in green.

519

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status
ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until either
the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it waits for
the cluster to achieve STARTED status, in which all nodes have started and connected to the cluster. This
can be overridden using the --no-contact and --not-started options.

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the node
has received a START or RESTART command from the management server, but has not yet acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user mode.

Options that can be used with ndb_waiter are shown in the following table. Additional descriptions follow
the table.

Table 5.27 Command-line options used with the program ndb_waiter

Format Description Added, Deprecated, or
Removed

--character-sets-dir=path Directory containing character
sets

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retries=# Number of times to retry
connection before giving up

(Supported in all NDB releases
based on MySQL 8.0)

--connect-retry-delay=# Number of seconds to wait
between attempts to contact
management server

(Supported in all NDB releases
based on MySQL 8.0)

--connect-
string=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--core-file Write core file on error; used in
debugging

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--help,

-?

Display help text and exit (Supported in all NDB releases
based on MySQL 8.0)

520

ndb_waiter — Wait for NDB Cluster to Reach a Given Status

Format Description Added, Deprecated, or
Removed

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--ndb-
connectstring=connection_string,

-c connection_string

Set connect string for
connecting to ndb_mgmd.
Syntax: "[nodeid=id;]
[host=]hostname[:port]".
Overrides entries in
NDB_CONNECTSTRING and
my.cnf

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-mgmd-
host=connection_string,

-c connection_string

Same as --ndb-connectstring (Supported in all NDB releases
based on MySQL 8.0)

--ndb-nodeid=# Set node ID for this node,
overriding any ID set by --ndb-
connectstring

(Supported in all NDB releases
based on MySQL 8.0)

--ndb-optimized-node-
selection

Enable optimizations for selection
of nodes for transactions. Enabled
by default; use --skip-ndb-
optimized-node-selection to
disable

(Supported in all NDB releases
based on MySQL 8.0)

--no-contact,

-n

Wait for cluster to reach NO
CONTACT state

(Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--not-started Wait for cluster to reach NOT
STARTED state

(Supported in all NDB releases
based on MySQL 8.0)

--nowait-nodes=list List of nodes not to be waited for (Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--single-user Wait for cluster to enter single
user mode

(Supported in all NDB releases
based on MySQL 8.0)

--timeout=#,

-t #

Wait this many seconds, then
exit whether or not cluster has
reached desired state

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Display help text and exit; same
as --help

(Supported in all NDB releases
based on MySQL 8.0)

--version,

-V

Display version information and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--wait-nodes=list,

-w list

List of nodes to be waited for (Supported in all NDB releases
based on MySQL 8.0)

521

Usage

Usage

ndb_waiter [-c connection_string]

Additional Options

• --character-sets-dir

Command-Line Format --character-sets-dir=path

Directory containing character sets.

• --connect-retries

Command-Line Format --connect-retries=#

Type Integer

Default Value 12

Minimum Value 0

Maximum Value 12

Number of times to retry connection before giving up.

• --connect-retry-delay

Command-Line Format --connect-retry-delay=#

Type Integer

Default Value 5

Minimum Value 0

Maximum Value 5

Number of seconds to wait between attempts to contact management server.

• --connect-string

Command-Line Format --connect-string=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --core-file

Command-Line Format --core-file

Write core file on error; used in debugging.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String
522

Additional Options

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --help

Command-Line Format --help

Display help text and exit.

• --ndb-connectstring

Command-Line Format --ndb-connectstring=connection_string

Type String

Default Value [none]

Set connect string for connecting to ndb_mgmd. Syntax: "[nodeid=id;][host=]hostname[:port]". Overrides
entries in NDB_CONNECTSTRING and my.cnf.

• --ndb-mgmd-host

Command-Line Format --ndb-mgmd-host=connection_string

Type String

Default Value [none]

Same as --ndb-connectstring.

• --ndb-nodeid

523

Additional Options

Command-Line Format --ndb-nodeid=#

Type Integer

Default Value [none]

Set node ID for this node, overriding any ID set by --ndb-connectstring.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Enable optimizations for selection of nodes for transactions. Enabled by default; use --skip-ndb-
optimized-node-selection to disable.

• --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

• --nowait-nodes=list

When this option is used, ndb_waiter does not wait for the nodes whose IDs are listed. The list is
comma-delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --nowait-nodes=1,3,7-9

Important

Do not use this option together with the --wait-nodes option.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds. The
default is 120 seconds (1200 reporting cycles).

• --single-user

The program waits for the cluster to enter single user mode.

• --usage

524

Additional Options

Command-Line Format --usage

Display help text and exit; same as --help.

• --version

Command-Line Format --version

Display version information and exit.

• --wait-nodes=list, -w list

When this option is used, ndb_waiter waits only for the nodes whose IDs are listed. The list is comma-
delimited; ranges can be indicated by dashes, as shown here:

$> ndb_waiter --wait-nodes=2,4-6,10

Important

Do not use this option together with the --nowait-nodes option.

Sample Output. Shown here is the output from ndb_waiter when run against a 4-node cluster in
which two nodes have been shut down and then started again manually. Duplicate reports (indicated by
...) are omitted.

$> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING

525

ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

Note

If no connection string is specified, then ndb_waiter tries to connect to a
management on localhost, and reports Connecting to mgmsrv at (null).

Prior to NDB 8.0.20, this program printed NDBT_ProgramExit - status upon completion of its run,
due to an unnecessary dependency on the NDBT testing library. This dependency has been removed,
eliminating the extraneous output.

5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files
Created by NDB Cluster

The ndbxfrm utility, introduced in NDB 8.0.22, can be used to decompress, decrypt, and output
information about files created by NDB Cluster that are compressed, encrypted, or both. It can also be
used to compress or encrypt files.

Table 5.28 Command-line options used with the program ndbxfrm

Format Description Added, Deprecated, or
Removed

--compress,

-c

Compress file ADDED: NDB 8.0.22

--decrypt-
password=password

Use this password to decrypt file ADDED: NDB 8.0.22

--decrypt-password-from-
stdin

Get decryption password in a
secure fashion from STDIN

ADDED: NDB 8.0.24

--defaults-extra-
file=path

Read given file after global files
are read

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-group-
suffix=string

Also read groups with
concat(group, suffix)

(Supported in all NDB releases
based on MySQL 8.0)

--defaults-file=path Read default options from given
file only

(Supported in all NDB releases
based on MySQL 8.0)

--encrypt-block-size=# Size of input data chunks
encrypted as a unit. Used with
XTS, set to zero for CBC mode

ADDED: NDB 8.0.29

526

Usage

Format Description Added, Deprecated, or
Removed

--encrypt-cipher=# Encryption cipher: 1 for CBC, 2 for
XTS

ADDED: NDB 8.0.29

--encrypt-kdf-iter-
count=#,

-k #

Number of iterations used in key
definition

ADDED: NDB 8.0.22

--encrypt-
password=password

Use this password to encrypt file ADDED: NDB 8.0.22

--encrypt-password-from-
stdin

Get encryption password in a
secure fashion from STDIN

ADDED: NDB 8.0.24

--help,

-?

Print usage information ADDED: NDB 8.0.22

--info,

-i

Print file information ADDED: NDB 8.0.22

--login-path=path Read given path from login file (Supported in all NDB releases
based on MySQL 8.0)

--no-defaults Do not read default options from
any option file other than login file

(Supported in all NDB releases
based on MySQL 8.0)

--print-defaults Print program argument list and
exit

(Supported in all NDB releases
based on MySQL 8.0)

--usage,

-?

Prints usage information; synonym
for --help

ADDED: NDB 8.0.22

--version,

-V

Output version information ADDED: NDB 8.0.22

Usage
ndbxfrm --info file[file ...]

ndbxfrm --compress input_file output_file

ndbxfrm --decrypt-password=password input_file output_file

ndbxfrm [--encrypt-ldf-iter-count=#] --encrypt-password=password input_file output_file

input_file and output_file cannot be the same file.

Options

• --compress, -c

Compresses the input file, using the same compression method as is used for compressing NDB Cluster
backups, and writes the output to an output file. To decompress a compressed NDB backup file that is
not encrypted, it is necessary only to invoke ndbxfrm using the names of the compressed file and an
output file (with no options required).

• --decrypt-password=password

527

Options

Decrypts a file encrypted by NDB using the password supplied.

• --decrypt-password-from-stdin[=TRUE|FALSE]

Decrypts a file encrypted by NDB, using a password supplied from standard input. This is similar to
entering a password after invoking mysql --password with no password following the option.

• --defaults-extra-file

Command-Line Format --defaults-extra-file=path

Type String

Default Value [none]

Read given file after global files are read.

• --defaults-file

Command-Line Format --defaults-file=path

Type String

Default Value [none]

Read default options from given file only.

• --defaults-group-suffix

Command-Line Format --defaults-group-suffix=string

Type String

Default Value [none]

Also read groups with concat(group, suffix).

• --encrypt-block-size=#

Size of input data chunks that are encrypted as a unit. Used with XTS; set to 0 (the default) for CBC
mode.

• --encrypt-cipher=#

Cipher used for encryption. Set to 1 for CBC mode (the default), or 2 for XTS.

• --encrypt-kdf-iter-count=#, -k #

When encrypting a file, specifies the number of iterations to use for the encryption key. Requires the --
encrypt-password option.

528

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

Options

• --encrypt-password=password

Encrypts the backup file using the password supplied by the option. The password must meet the
requirements listed here:

• Uses any of the printable ASCII characters except !, ', ", $, %, \, `, and ^

• Is no more than 256 characters in length

• Is enclosed by single or double quotation marks

• --encrypt-password-from-stdin[=TRUE|FALSE]

Encrypts a file using a password supplied from standard input. This is similar to entering a password is
entered after invoking mysql --password with no password following the option.

• --help, -?

Prints usage information for the program.

• --info, -i

Prints the following information about one or more input files:

• The name of the file

• Whether the file is compressed (compression=yes or compression=no)

• Whether the file is encrypted (encryption=yes or encryption=no)

Example:

$> ndbxfrm -i BACKUP-10-0.5.Data BACKUP-10.5.ctl BACKUP-10.5.log
File=BACKUP-10-0.5.Data, compression=no, encryption=yes
File=BACKUP-10.5.ctl, compression=no, encryption=yes
File=BACKUP-10.5.log, compression=no, encryption=yes

• --login-path

Command-Line Format --login-path=path

Type String

Default Value [none]

Read given path from login file.

• --no-defaults

Command-Line Format --no-defaults

Do not read default options from any option file other than login file.

• --print-defaults

Command-Line Format --print-defaults

Print program argument list and exit.

• --usage, -?

529

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

Options

Synonym for --help.

• --version, -V

Prints out version information.

ndbxfrm can encrypt backups created by any version of NDB Cluster. The .Data, .ctl, and .log files
comprising the backup must be encrypted separately, and these files must be encrypted separately for
each data node. Once encrypted, such backups can be decrypted only by ndbxfrm, ndb_restore, or
ndb_print_backup from NDB Cluster 8.0.22 or later.

An encrypted file can be re-encrypted with a new password using the --encrypt-password and --
decrypt-password options together, like this:

ndbxfrm --decrypt-password=old --encrypt-password=new input_file output_file

In the example just shown, old and new are the old and new passwords, respectively; both of these
must be quoted. The input file is decrypted and then encrypted as the output file. The input file itself is
not changed; if you do not want it to be accessible using the old password, you must remove the input file
manually.

530

Chapter 6 Management of NDB Cluster

Table of Contents
6.1 Commands in the NDB Cluster Management Client .. 533
6.2 NDB Cluster Log Messages .. 540

6.2.1 NDB Cluster: Messages in the Cluster Log ... 540
6.2.2 NDB Cluster Log Startup Messages ... 555
6.2.3 Event Buffer Reporting in the Cluster Log ... 556
6.2.4 NDB Cluster: NDB Transporter Errors ... 557

6.3 Event Reports Generated in NDB Cluster .. 558
6.3.1 NDB Cluster Logging Management Commands ... 560
6.3.2 NDB Cluster Log Events .. 562
6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client 568

6.4 Summary of NDB Cluster Start Phases ... 571
6.5 Performing a Rolling Restart of an NDB Cluster ... 573
6.6 NDB Cluster Single User Mode ... 575
6.7 Adding NDB Cluster Data Nodes Online .. 576

6.7.1 Adding NDB Cluster Data Nodes Online: General Issues ... 576
6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure .. 578
6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example .. 579

6.8 Online Backup of NDB Cluster .. 587
6.8.1 NDB Cluster Backup Concepts ... 587
6.8.2 Using The NDB Cluster Management Client to Create a Backup 588
6.8.3 Configuration for NDB Cluster Backups ... 592
6.8.4 NDB Cluster Backup Troubleshooting ... 592
6.8.5 Taking an NDB Backup with Parallel Data Nodes .. 593

6.9 MySQL Server Usage for NDB Cluster .. 593
6.10 NDB Cluster Disk Data Tables .. 595

6.10.1 NDB Cluster Disk Data Objects .. 595
6.10.2 NDB Cluster Disk Data Storage Requirements .. 600

6.11 Online Operations with ALTER TABLE in NDB Cluster ... 601
6.12 Privilege Synchronization and NDB_STORED_USER ... 604
6.13 NDB API Statistics Counters and Variables .. 605
6.14 ndbinfo: The NDB Cluster Information Database .. 618

6.14.1 The ndbinfo arbitrator_validity_detail Table .. 623
6.14.2 The ndbinfo arbitrator_validity_summary Table .. 624
6.14.3 The ndbinfo backup_id Table .. 624
6.14.4 The ndbinfo blobs Table ... 625
6.14.5 The ndbinfo blocks Table ... 626
6.14.6 The ndbinfo cluster_locks Table .. 626
6.14.7 The ndbinfo cluster_operations Table .. 628
6.14.8 The ndbinfo cluster_transactions Table ... 629
6.14.9 The ndbinfo config_nodes Table ... 631
6.14.10 The ndbinfo config_params Table ... 631
6.14.11 The ndbinfo config_values Table ... 632
6.14.12 The ndbinfo counters Table .. 635
6.14.13 The ndbinfo cpudata Table ... 637
6.14.14 The ndbinfo cpudata_1sec Table .. 637
6.14.15 The ndbinfo cpudata_20sec Table .. 638
6.14.16 The ndbinfo cpudata_50ms Table ... 639
6.14.17 The ndbinfo cpuinfo Table .. 640

531

6.14.18 The ndbinfo cpustat Table .. 640
6.14.19 The ndbinfo cpustat_50ms Table .. 641
6.14.20 The ndbinfo cpustat_1sec Table ... 642
6.14.21 The ndbinfo cpustat_20sec Table .. 643
6.14.22 The ndbinfo dictionary_columns Table ... 644
6.14.23 The ndbinfo dictionary_tables Table .. 645
6.14.24 The ndbinfo dict_obj_info Table .. 647
6.14.25 The ndbinfo dict_obj_tree Table .. 648
6.14.26 The ndbinfo dict_obj_types Table .. 651
6.14.27 The ndbinfo disk_write_speed_base Table .. 652
6.14.28 The ndbinfo disk_write_speed_aggregate Table ... 652
6.14.29 The ndbinfo disk_write_speed_aggregate_node Table .. 653
6.14.30 The ndbinfo diskpagebuffer Table ... 654
6.14.31 The ndbinfo diskstat Table .. 656
6.14.32 The ndbinfo diskstats_1sec Table ... 657
6.14.33 The ndbinfo error_messages Table ... 658
6.14.34 The ndbinfo events Table ... 660
6.14.35 The ndbinfo files Table ... 660
6.14.36 The ndbinfo foreign_keys Table .. 661
6.14.37 The ndbinfo hash_maps Table .. 662
6.14.38 The ndbinfo hwinfo Table ... 662
6.14.39 The ndbinfo index_columns Table ... 663
6.14.40 The ndbinfo index_stats Table .. 664
6.14.41 The ndbinfo locks_per_fragment Table .. 664
6.14.42 The ndbinfo logbuffers Table .. 666
6.14.43 The ndbinfo logspaces Table .. 667
6.14.44 The ndbinfo membership Table ... 668
6.14.45 The ndbinfo memoryusage Table .. 670
6.14.46 The ndbinfo memory_per_fragment Table ... 671
6.14.47 The ndbinfo nodes Table .. 673
6.14.48 The ndbinfo operations_per_fragment Table .. 675
6.14.49 The ndbinfo pgman_time_track_stats Table ... 678
6.14.50 The ndbinfo processes Table .. 679
6.14.51 The ndbinfo resources Table .. 681
6.14.52 The ndbinfo restart_info Table .. 682
6.14.53 The ndbinfo server_locks Table .. 685
6.14.54 The ndbinfo server_operations Table .. 687
6.14.55 The ndbinfo server_transactions Table .. 689
6.14.56 The ndbinfo table_distribution_status Table ... 690
6.14.57 The ndbinfo table_fragments Table ... 691
6.14.58 The ndbinfo table_info Table ... 692
6.14.59 The ndbinfo table_replicas Table .. 693
6.14.60 The ndbinfo tc_time_track_stats Table .. 694
6.14.61 The ndbinfo threadblocks Table .. 696
6.14.62 The ndbinfo threads Table .. 696
6.14.63 The ndbinfo threadstat Table .. 697
6.14.64 The ndbinfo transporters Table ... 699

6.15 INFORMATION_SCHEMA Tables for NDB Cluster ... 701
6.16 NDB Cluster and the Performance Schema ... 702
6.17 Quick Reference: NDB Cluster SQL Statements ... 703
6.18 NDB Cluster Security Issues ... 710

6.18.1 NDB Cluster Security and Networking Issues .. 710
6.18.2 NDB Cluster and MySQL Privileges .. 714
6.18.3 NDB Cluster and MySQL Security Procedures ... 716

532

Commands in the NDB Cluster Management Client

Managing an NDB Cluster involves a number of tasks, the first of which is to configure and start NDB
Cluster. This is covered in Chapter 4, Configuration of NDB Cluster, and Chapter 5, NDB Cluster
Programs.

The next few sections cover the management of a running NDB Cluster.

For information about security issues relating to management and deployment of an NDB Cluster, see
Section 6.18, “NDB Cluster Security Issues”.

There are essentially two methods of actively managing a running NDB Cluster. The first of these is
through the use of commands entered into the management client whereby cluster status can be checked,
log levels changed, backups started and stopped, and nodes stopped and started. The second method
involves studying the contents of the cluster log ndb_node_id_cluster.log; this is usually found in the
management server's DataDir directory, but this location can be overridden using the LogDestination
option. (Recall that node_id represents the unique identifier of the node whose activity is being logged.)
The cluster log contains event reports generated by ndbd. It is also possible to send cluster log entries to a
Unix system log.

Some aspects of the cluster's operation can be also be monitored from an SQL node using the SHOW
ENGINE NDB STATUS statement.

More detailed information about NDB Cluster operations is available in real time through an SQL interface
using the ndbinfo database. For more information, see Section 6.14, “ndbinfo: The NDB Cluster
Information Database”.

NDB statistics counters provide improved monitoring using the mysql client. These counters, implemented
in the NDB kernel, relate to operations performed by or affecting Ndb objects, such as starting, closing,
and aborting transactions; primary key and unique key operations; table, range, and pruned scans; blocked
threads waiting for various operations to complete; and data and events sent and received by NDB Cluster.
The counters are incremented by the NDB kernel whenever NDB API calls are made or data is sent to or
received by the data nodes.

mysqld exposes the NDB API statistics counters as system status variables, which can be identified from
the prefix common to all of their names (Ndb_api_). The values of these variables can be read in the
mysql client from the output of a SHOW STATUS statement, or by querying either the Performance Schema
session_status or global_status table. By comparing the values of the status variables before and
after the execution of an SQL statement that acts on NDB tables, you can observe the actions taken on the
NDB API level that correspond to this statement, which can be beneficial for monitoring and performance
tuning of NDB Cluster.

MySQL Cluster Manager provides an advanced command-line interface that simplifies many otherwise
complex NDB Cluster management tasks, such as starting, stopping, or restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as mysqld server options and variables
relating to NDB Cluster. MySQL Cluster Manager version 1.4.8 provides experimental support for NDB 8.0.
See MySQL Cluster Manager 1.4.8 User Manual, for more information.

6.1 Commands in the NDB Cluster Management Client
In addition to the central configuration file, a cluster may also be controlled through a command-line
interface available through the management client ndb_mgm. This is the primary administrative interface to
a running cluster.

Commands for the event logs are given in Section 6.3, “Event Reports Generated in NDB Cluster”;
commands for creating backups and restoring from them are provided in Section 6.8, “Online Backup of
NDB Cluster”.

533

https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

Commands in the NDB Cluster Management Client

Using ndb_mgm with MySQL Cluster Manager. MySQL Cluster Manager 1.4.8 provides
expermental support for NDB 8.0. MySQL Cluster Manager handles starting and stopping processes and
tracks their states internally, so it is not necessary to use ndb_mgm for these tasks for an NDB Cluster that
is under MySQL Cluster Manager control. It is recommended not to use the ndb_mgm command-line client
that comes with the NDB Cluster distribution to perform operations that involve starting or stopping nodes.
These include but are not limited to the START, STOP, RESTART, and SHUTDOWN commands. For more
information, see MySQL Cluster Manager Process Commands.

The management client has the following basic commands. In the listing that follows, node_id denotes
either a data node ID or the keyword ALL, which indicates that the command should be applied to all of the
cluster's data nodes.

• CONNECT connection-string

Connects to the management server indicated by the connection string. If the client is already connected
to this server, the client reconnects.

• CREATE NODEGROUP nodeid[, nodeid, ...]

Creates a new NDB Cluster node group and causes data nodes to join it.

This command is used after adding new data nodes online to an NDB Cluster, and causes them to
join a new node group and thus to begin participating fully in the cluster. The command takes as its
sole parameter a comma-separated list of node IDs—these are the IDs of the nodes just added and
started, and that are to join the new node group. The list must contain no duplicate IDs; beginning with
NDB 8.0.26, the presence of any duplicates causes the command to return an error. The number of
nodes in the list must be the same as the number of nodes in each node group that is already part of the
cluster (each NDB Cluster node group must have the same number of nodes). In other words, if the NDB
Cluster consists of 2 node groups having 2 data nodes each, then the new node group must also have 2
data nodes.

The node group ID of the new node group created by this command is determined automatically, and
always the next highest unused node group ID in the cluster; it is not possible to set it manually.

For more information, see Section 6.7, “Adding NDB Cluster Data Nodes Online”.

• DROP NODEGROUP nodegroup_id

Drops the NDB Cluster node group with the given nodegroup_id.

This command can be used to drop a node group from an NDB Cluster. DROP NODEGROUP takes as its
sole argument the node group ID of the node group to be dropped.

DROP NODEGROUP acts only to remove the data nodes in the effected node group from that node
group. It does not stop data nodes, assign them to a different node group, or remove them from the
cluster's configuration. A data node that does not belong to a node group is indicated in the output of
the management client SHOW command with no nodegroup in place of the node group ID, like this
(indicated using bold text):

id=3 @10.100.2.67 (8.0.29-ndb-8.0.30, no nodegroup)

DROP NODEGROUP works only when all data nodes in the node group to be dropped are completely
empty of any table data and table definitions. Since there is currently no way using ndb_mgm or the
mysql client to remove all data from a specific data node or node group, this means that the command
succeeds only in the two following cases:

534

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-process-commands.html

Commands in the NDB Cluster Management Client

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER
TABLE ... REORGANIZE PARTITION statements in the mysql client.

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because this removes only the table data; the data
nodes continue to store an NDBCLUSTER table's definition until a DROP TABLE statement is issued
that causes the table metadata to be dropped.

For more information about DROP NODEGROUP, see Section 6.7, “Adding NDB Cluster Data Nodes
Online”.

• ENTER SINGLE USER MODE node_id

Enters single user mode, whereby only the MySQL server identified by the node ID node_id is
permitted to access the database.

The ndb_mgm client provides a clear acknowledgement that this command has been issued and has
taken effect, as shown here:

ndb_mgm> ENTER SINGLE USER MODE 100
Single user mode entered
Access is granted for API node 100 only.

In addition, the API or SQL node having exclusive access when in single user mode is indicated in the
output of the SHOW command, like this:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=5 @127.0.0.1 (mysql-8.0.30 ndb-8.0.30, single user mode, Nodegroup: 0, *)
id=6 @127.0.0.1 (mysql-8.0.30 ndb-8.0.30, single user mode, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @127.0.0.1 (mysql-8.0.30 ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=100 @127.0.0.1 (mysql-8.0.30 ndb-8.0.30, allowed single user)
id=101 (not connected, accepting connect from any host)

• EXIT SINGLE USER MODE

Exits single user mode, enabling all SQL nodes (that is, all running mysqld processes) to access the
database.

Note

It is possible to use EXIT SINGLE USER MODE even when not in single user
mode, although the command has no effect in this case.

• HELP

Displays information on all available commands.

535

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html

Commands in the NDB Cluster Management Client

• node_id NODELOG DEBUG {ON|OFF}

Toggles debug logging in the node log, as though the effected data node or nodes had been started with
the --verbose option. NODELOG DEBUG ON starts debug logging; NODELOG DEBUG OFF switches
debug logging off.

• PROMPT [prompt]

Changes the prompt shown by ndb_mgm to the string literal prompt.

prompt should not be quoted (unless you want the prompt to include the quotation marks). Unlike the
case with the mysql client, special character sequences and escapes are not recognized. If called
without an argument, the command resets the prompt to the default value (ndb_mgm>).

Some examples are shown here:

ndb_mgm> PROMPT mgm#1:
mgm#1: SHOW
Cluster Configuration
...
mgm#1: PROMPT mymgm >
mymgm > PROMPT 'mymgm:'
'mymgm:' PROMPT mymgm:
mymgm: PROMPT
ndb_mgm> EXIT
$>

Note that leading spaces and spaces within the prompt string are not trimmed. Trailing spaces are
removed.

• QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

• node_id REPORT report-type

Displays a report of type report-type for the data node identified by node_id, or for all data nodes
using ALL.

Currently, there are three accepted values for report-type:

• BackupStatus provides a status report on a cluster backup in progress

• MemoryUsage displays how much data memory and index memory is being used by each data node
as shown in this example:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)

536

Commands in the NDB Cluster Management Client

Node 2: Index usage is 0%(108 8K pages of total 12832)

This information is also available from the ndbinfo.memoryusage table.

• EventLog reports events from the event log buffers of one or more data nodes.

report-type is case-insensitive and “fuzzy”; for MemoryUsage, you can use MEMORY (as shown in the
prior example), memory, or even simply MEM (or mem). You can abbreviate BackupStatus in a similar
fashion.

• node_id RESTART [-n] [-i] [-a] [-f]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the node's
file system is deleted and recreated. The effect is the same as that obtained from stopping the data node
process and then starting it again using ndbd --initial from the system shell.

Note

Backup files and Disk Data files are not removed when this option is used.

Using the -n option causes the data node process to be restarted, but the data node is not actually
brought online until the appropriate START command is issued. The effect of this option is the same as
that obtained from stopping the data node and then starting it again using ndbd --nostart or ndbd -n
from the system shell.

Using the -a causes all current transactions relying on this node to be aborted. No GCP check is done
when the node rejoins the cluster.

Normally, RESTART fails if taking the node offline would result in an incomplete cluster. The -f option
forces the node to restart without checking for this. If this option is used and the result is an incomplete
cluster, the entire cluster is restarted.

• SHOW

Displays basic information about the cluster and cluster nodes. For all nodes, the output includes the
node's ID, type, and NDB software version. If the node is connected, its IP address is also shown;
otherwise the output shows not connected, accepting connect from ip_address, with any
host used for nodes that are permitted to connect from any address.

In addition, for data nodes, the output includes starting if the node has not yet started, and shows
the node group of which the node is a member. If the data node is acting as the master node, this is
indicated with an asterisk (*).

Consider a cluster whose configuration file includes the information shown here (possible additional
settings are omitted for clarity):

[ndbd default]
DataMemory= 128G
NoOfReplicas= 2

[ndb_mgmd]
NodeId=50
HostName=198.51.100.150

[ndbd]
NodeId=5
HostName=198.51.100.10

537

Commands in the NDB Cluster Management Client

DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=6
HostName=198.51.100.20
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=7
HostName=198.51.100.30
DataDir=/var/lib/mysql-cluster

[ndbd]
NodeId=8
HostName=198.51.100.40
DataDir=/var/lib/mysql-cluster

[mysqld]
NodeId=100
HostName=198.51.100.100

[api]
NodeId=101

After this cluster (including one SQL node) has been started, SHOW displays the following output:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 4 node(s)
id=5 @198.51.100.10 (mysql-8.0.30 ndb-8.0.30, Nodegroup: 0, *)
id=6 @198.51.100.20 (mysql-8.0.30 ndb-8.0.30, Nodegroup: 0)
id=7 @198.51.100.30 (mysql-8.0.30 ndb-8.0.30, Nodegroup: 1)
id=8 @198.51.100.40 (mysql-8.0.30 ndb-8.0.30, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=50 @198.51.100.150 (mysql-8.0.30 ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=100 @198.51.100.100 (mysql-8.0.30 ndb-8.0.30)
id=101 (not connected, accepting connect from any host)

The output from this command also indicates when the cluster is in single user mode (see the
description of the ENTER SINGLE USER MODE command, as well as Section 6.6, “NDB Cluster Single
User Mode”). In NDB 8.0, it also indicates which API or SQL node has exclusive access when this mode
is in effect; this works only when all data nodes and management nodes connected to the cluster are
running NDB 8.0.

• SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this has
been done, use EXIT or QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

538

Commands in the NDB Cluster Management Client

• node_id START

Brings online the data node identified by node_id (or all data nodes).

ALL START works on all data nodes only, and does not affect management nodes.

Important

To use this command to bring a data node online, the data node must have been
started using --nostart or -n.

• node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

Possible node status values include UNKNOWN, NO_CONTACT, NOT_STARTED, STARTING, STARTED,
SHUTTING_DOWN, and RESTARTING.

The output from this command also indicates when the cluster is in single user mode.

• node_id STOP [-a] [-f]

Stops the data or management node identified by node_id.

Note

ALL STOP works to stop all data nodes only, and does not affect management
nodes.

A node affected by this command disconnects from the cluster, and its associated ndbd or ndb_mgmd
process terminates.

The -a option causes the node to be stopped immediately, without waiting for the completion of any
pending transactions.

Normally, STOP fails if the result would cause an incomplete cluster. The -f option forces the node to
shut down without checking for this. If this option is used and the result is an incomplete cluster, the
cluster immediately shuts down.

Warning

Use of the -a option also disables the safety check otherwise performed when
STOP is invoked to insure that stopping the node does not cause an incomplete
cluster. In other words, you should exercise extreme care when using the -a
option with the STOP command, due to the fact that this option makes it possible
for the cluster to undergo a forced shutdown because it no longer has a complete
copy of all data stored in NDB.

Additional commands. A number of other commands available in the ndb_mgm client are described
elsewhere, as shown in the following list:

• START BACKUP is used to perform an online backup in the ndb_mgm client; the ABORT BACKUP
command is used to cancel a backup already in progress. For more information, see Section 6.8, “Online
Backup of NDB Cluster”.

• The CLUSTERLOG command is used to perform various logging functions. See Section 6.3, “Event
Reports Generated in NDB Cluster”, for more information and examples. NODELOG DEBUG activates or
deactivates debug printouts in node logs, as described previously in this section.

539

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Log Messages

• For testing and diagnostics work, the client supports a DUMP command which can be used to execute
internal commands on the cluster. It should never be used in a production setting unless directed to do
so by MySQL Support. For more information, see NDB Cluster Management Client DUMP Commands.

6.2 NDB Cluster Log Messages
This section contains information about the messages written to the cluster log in response to different
cluster log events. It provides additional, more specific information on NDB transporter errors.

6.2.1 NDB Cluster: Messages in the Cluster Log

The following table lists the most common NDB cluster log messages. For information about the cluster
log, log events, and event types, see Section 6.3, “Event Reports Generated in NDB Cluster”. These log
messages also correspond to log event types in the MGM API; see The Ndb_logevent_type Type, for
related information of interest to Cluster API developers.

Table 6.1 Common NDB cluster log messages

Log Message Description Event Name Event Type Priority Severity

Node
mgm_node_id:
Node
data_node_id
Connected

The data node
having node ID
node_id has
connected to the
management
server (node
mgm_node_id).

Connected Connection 8 INFO

Node
mgm_node_id:
Node
data_node_id
Disconnected

The data node
having node ID
data_node_id
has
disconnected
from the
management
server (node
mgm_node_id).

Disconnected Connection 8 ALERT

Node
data_node_id:
Communication
to Node
api_node_id
closed

The API node
or SQL node
having node ID
api_node_id
is no longer
communicating
with data node
data_node_id.

CommunicationClosedConnection 8 INFO

Node
data_node_id:
Communication
to Node
api_node_id
opened

The API node
or SQL node
having node ID
api_node_id
is now
communicating
with data node
data_node_id.

CommunicationOpenedConnection 8 INFO

Node
mgm_node_id:

The API node
having node ID

ConnectedApiVersionConnection 8 INFO

540

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/mgm-types.html#mgm-ndb-logevent-type

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
Node
api_node_id:
API version

api_node_id
has connected
to management
node
mgm_node_id
using NDB
API version
version
(generally the
same as the
MySQL version
number).

Node
node_id:
Global
checkpoint
gci started

A global
checkpoint with
the ID gci has
been started;
node node_id
is the master
responsible
for this global
checkpoint.

GlobalCheckpointStartedCheckpoint 9 INFO

Node
node_id:
Global
checkpoint
gci
completed

The global
checkpoint
having the ID
gci has been
completed;
node node_id
was the master
responsible
for this global
checkpoint.

GlobalCheckpointCompletedCheckpoint 10 INFO

Node
node_id:
Local
checkpoint
lcp started.
Keep GCI =
current_gci
oldest
restorable
GCI =
old_gci

The local
checkpoint
having
sequence ID
lcp has been
started on node
node_id. The
most recent GCI
that can be used
has the index
current_gci,
and the oldest
GCI from which
the cluster can
be restored
has the index
old_gci.

LocalCheckpointStartedCheckpoint 7 INFO

Node
node_id:
Local

The local
checkpoint
having

LocalCheckpointCompletedCheckpoint 8 INFO

541

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
checkpoint
lcp
completed

sequence ID
lcp on node
node_id has
been completed.

Node
node_id:
Local
Checkpoint
stopped in
CALCULATED_KEEP_GCI

The node
was unable to
determine the
most recent
usable GCI.

LCPStoppedInCalcKeepGciCheckpoint 0 ALERT

Node
node_id:
Table ID =
table_id,
fragment
ID =
fragment_id
has
completed
LCP on Node
node_id
maxGciStarted:
started_gci
maxGciCompleted:
completed_gci

A table fragment
has been
checkpointed
to disk on node
node_id. The
GCI in progress
has the index
started_gci,
and the most
recent GCI
to have been
completed
has the index
completed_gci.

LCPFragmentCompletedCheckpoint 11 INFO

Node
node_id:
ACC Blocked
num_1 and
TUP Blocked
num_2 times
last second

Undo logging
is blocked
because the log
buffer is close to
overflowing.

UndoLogBlockedCheckpoint 7 INFO

Node
node_id:
Start
initiated
version

Data node
node_id,
running
NDB version
version, is
beginning its
startup process.

NDBStartStartedStartUp 1 INFO

Node
node_id:
Started
version

Data node
node_id,
running
NDB version
version,
has started
successfully.

NDBStartCompletedStartUp 1 INFO

Node
node_id:
STTORRY
received

The node has
received a
signal indicating
that a cluster

STTORRYRecievedStartUp 15 INFO

542

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
after
restart
finished

restart has
completed.

Node
node_id:
Start
phase phase
completed
(type)

The node has
completed start
phase phase
of a type start.
For a listing of
start phases,
see Section 6.4,
“Summary of
NDB Cluster
Start Phases”.
(type is one
of initial,
system, node,
initial
node, or
<Unknown>.)

StartPhaseCompletedStartUp 4 INFO

Node
node_id:
CM_REGCONF
president =
president_id,
own Node =
own_id, our
dynamic id =
dynamic_id

Node
president_id
has been
selected as
“president”.
own_id and
dynamic_id
should always
be the same
as the ID
(node_id) of
the reporting
node.

CM_REGCONF StartUp 3 INFO

Node
node_id:
CM_REGREF
from Node
president_id
to our Node
node_id.
Cause =
cause

The reporting
node (ID
node_id)
was unable to
accept node
president_id
as president.
The cause of
the problem
is given as
one of Busy,
Election
with wait
= false, Not
president,
Election
without
selecting
new

CM_REGREF StartUp 8 INFO

543

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
candidate,
or No such
cause.

Node
node_id:
We are Node
own_id with
dynamic ID
dynamic_id,
our left
neighbor is
Node id_1,
our right is
Node id_2

The node has
discovered its
neighboring
nodes in the
cluster (node
id_1 and
node id_2).
node_id,
own_id, and
dynamic_id
should always
be the same;
if they are not,
this indicates
a serious
misconfiguration
of the cluster
nodes.

FIND_NEIGHBOURSStartUp 8 INFO

Node
node_id:
type
shutdown
initiated

The node has
received a
shutdown signal.
The type of
shutdown is
either Cluster
or Node.

NDBStopStartedStartUp 1 INFO

Node
node_id:
Node
shutdown
completed
[, action]
[Initiated
by signal
signal.]

The node has
been shut down.
This report
may include an
action, which
if present is one
of restarting,
no start,
or initial.
The report may
also include a
reference to an
NDB Protocol
signal;
for possible
signals, refer to
Operations and
Signals.

NDBStopCompletedStartUp 1 INFO

Node
node_id:
Forced node
shutdown
completed

The node has
been forcibly
shut down. The
action (one of
restarting,

NDBStopForcedStartUp 1 ALERT

544

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
[, action].
[Occurred
during
startphase
start_phase.]
[Initiated
by signal.]
[Caused
by error
error_code:
'error_message(error_classification).
error_status'.
[(extra info
extra_code)]]

no start,
or initial)
subsequently
being taken,
if any, is also
reported. If
the shutdown
occurred while
the node
was starting,
the report
includes the
start_phase
during which the
node failed. If
this was a result
of a signal
sent to the node,
this information
is also provided
(see Operations
and Signals,
for more
information).
If the error
causing the
failure is known,
this is also
included;
for more
information
about NDB error
messages and
classifications,
see NDB Cluster
API Errors.

Node
node_id:
Node
shutdown
aborted

The node
shutdown
process was
aborted by the
user.

NDBStopAbortedStartUp 1 INFO

Node
node_id:
StartLog:
[GCI Keep:
keep_pos
LastCompleted:
last_pos
NewestRestorable:
restore_pos]

This reports
global
checkpoints
referenced
during a node
start. The redo
log prior to
keep_pos
is dropped.
last_pos is

StartREDOLog StartUp 4 INFO

545

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-operations-signals.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-errors.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
the last global
checkpoint in
which data node
the participated;
restore_pos
is the global
checkpoint
which is actually
used to restore
all data nodes.

startup_message
[Listed
separately; see
below.]

There are a
number of
possible startup
messages that
can be logged
under different
circumstances.
These are listed
separately; see
Section 6.2.2,
“NDB Cluster
Log Startup
Messages”.

StartReport StartUp 4 INFO

Node
node_id:
Node restart
completed
copy of
dictionary
information

Copying of
data dictionary
information to
the restarted
node has been
completed.

NR_CopyDict NodeRestart 8 INFO

Node
node_id:
Node restart
completed
copy of
distribution
information

Copying of data
distribution
information to
the restarted
node has been
completed.

NR_CopyDistr NodeRestart 8 INFO

Node
node_id:
Node restart
starting
to copy the
fragments to
Node node_id

Copy of
fragments to
starting data
node node_id
has begun

NR_CopyFragsStartedNodeRestart 8 INFO

Node
node_id:
Table ID =
table_id,
fragment
ID =

Fragment
fragment_id
from table
table_id has
been copied

NR_CopyFragDoneNodeRestart 10 INFO

546

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
fragment_id
have been
copied to
Node node_id

to data node
node_id

Node
node_id:
Node restart
completed
copying the
fragments to
Node node_id

Copying of all
table fragments
to restarting
data node
node_id has
been completed

NR_CopyFragsCompletedNodeRestart 8 INFO

Node
node_id:
Node
node1_id
completed
failure
of Node
node2_id

Data node
node1_id has
detected the
failure of data
node node2_id

NodeFailCompletedNodeRestart 8 ALERT

All nodes
completed
failure of
Node node_id

All (remaining)
data nodes have
detected the
failure of data
node node_id

NodeFailCompletedNodeRestart 8 ALERT

Node
failure of
node_idblock
completed

The failure
of data node
node_id has
been detected in
the blockNDB
kernel block,
where block
is 1 of DBTC,
DBDICT,
DBDIH, or
DBLQH; for more
information, see
NDB Kernel
Blocks

NodeFailCompletedNodeRestart 8 ALERT

Node
mgm_node_id:
Node
data_node_id
has failed.
The Node
state at
failure was
state_code

A data node
has failed. Its
state at the
time of failure
is described by
an arbitration
state code
state_code:
possible state
code values can
be found in the
file include/

NODE_FAILREP NodeRestart 8 ALERT

547

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
kernel/
signaldata/
ArbitSignalData.hpp.

President
restarts
arbitration
thread
[state=state_code]
or Prepare
arbitrator
node node_id
[ticket=ticket_id]
or Receive
arbitrator
node node_id
[ticket=ticket_id]
or Started
arbitrator
node node_id
[ticket=ticket_id]
or Lost
arbitrator
node node_id
- process
failure
[state=state_code]
or Lost
arbitrator
node
node_id -
process exit
[state=state_code]
or Lost
arbitrator
node
node_id -
error_message
[state=state_code]

This is a report
on the current
state and
progress of
arbitration in
the cluster.
node_id is the
node ID of the
management
node or SQL
node selected
as the arbitrator.
state_code
is an arbitration
state code,
as found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.
When an error
has occurred, an
error_message,
also defined in
ArbitSignalData.hpp,
is provided.
ticket_id
is a unique
identifier handed
out by the
arbitrator when
it is selected to
all the nodes
that participated
in its selection;
this is used to
ensure that each
node requesting
arbitration was
one of the nodes
that took part
in the selection
process.

ArbitState NodeRestart 6 INFO

Arbitration
check lost
- less than
1/2 nodes
left or

This message
reports on
the result of
arbitration.
In the event

ArbitResult NodeRestart 2 ALERT

548

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
Arbitration
check won
- all node
groups and
more than
1/2 nodes
left or
Arbitration
check won -
node group
majority or
Arbitration
check lost
- missing
node group
or Network
partitioning
-
arbitration
required or
Arbitration
won -
positive
reply
from node
node_id or
Arbitration
lost -
negative
reply from
node node_id
or Network
partitioning
- no
arbitrator
available
or Network
partitioning
- no
arbitrator
configured or
Arbitration
failure -
error_message
[state=state_code]

of arbitration
failure, an
error_message
and an
arbitration
state_code
are provided;
definitions for
both of these
are found in
include/
kernel/
signaldata/
ArbitSignalData.hpp.

Node
node_id: GCP
Take over
started

This node is
attempting
to assume
responsibility for
the next global
checkpoint (that
is, it is becoming

GCP_TakeoverStartedNodeRestart 7 INFO

549

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
the master
node)

Node
node_id: GCP
Take over
completed

This node has
become the
master, and
has assumed
responsibility for
the next global
checkpoint

GCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id: LCP
Take over
started

This node is
attempting
to assume
responsibility
for the next
set of local
checkpoints
(that is, it is
becoming the
master node)

LCP_TakeoverStartedNodeRestart 7 INFO

Node
node_id: LCP
Take over
completed

This node has
become the
master, and
has assumed
responsibility
for the next
set of local
checkpoints

LCP_TakeoverCompletedNodeRestart 7 INFO

Node
node_id:
Trans.
Count =
transactions,
Commit Count
= commits,
Read Count
= reads,
Simple Read
Count =
simple_reads,
Write Count
= writes,
AttrInfo
Count =
AttrInfo_objects,
Concurrent
Operations =
concurrent_operations,
Abort Count
= aborts,
Scans =
scans, Range

This report of
transaction
activity is given
approximately
once every 10
seconds

TransReportCountersStatistic 8 INFO

550

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
scans =
range_scans

Node
node_id:
Operations=operations

Number of
operations
performed
by this node,
provided
approximately
once every 10
seconds

OperationReportCountersStatistic 8 INFO

Node
node_id:
Table
with ID =
table_id
created

A table having
the table ID
shown has been
created

TableCreated Statistic 7 INFO

Node
node_id:
Mean loop
Counter in
doJob last
8192 times =
count

JobStatistic Statistic 9 INFO

Mean send
size to Node
= node_id
last 4096
sends =
bytes bytes

This node is
sending an
average of
bytes bytes per
send to node
node_id

SendBytesStatisticStatistic 9 INFO

Mean receive
size to Node
= node_id
last 4096
sends =
bytes bytes

This node is
receiving an
average of
bytes of data
each time it
receives data
from node
node_id

ReceiveBytesStatisticStatistic 9 INFO

Node
node_id:
Data
usage is
data_memory_percentage%
(data_pages_used
32K pages
of total
data_pages_total)
/ Node
node_id:
Index
usage is

This report
is generated
when a DUMP
1000 command
is issued in
the cluster
management
client

MemoryUsage Statistic 5 INFO

551

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
index_memory_percentage%
(index_pages_used
8K pages
of total
index_pages_total)

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A transporter
error occurred
while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB
Transporter
Errors, in
MySQL NDB
Cluster Internals
Manual

TransporterErrorError 2 ERROR

Node
node1_id:
Transporter
to node
node2_id
reported
error
error_code:
error_message

A warning of
a potential
transporter
problem while
communicating
with node
node2_id;
for a listing
of transporter
error codes
and messages,
see NDB
Transporter
Errors, for more
information

TransporterWarningError 8 WARNING

Node
node1_id:
Node
node2_id
missed
heartbeat
heartbeat_id

This node
missed a
heartbeat from
node node2_id

MissedHeartbeatError 8 WARNING

Node
node1_id:
Node
node2_id
declared
dead due

This node has
missed at least
3 heartbeats
from node
node2_id, and
so has declared
that node “dead”

DeadDueToHeartbeatError 8 ALERT

552

https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-transporter-errors.html

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
to missed
heartbeat

Node
node1_id:
Node Sent
Heartbeat
to node =
node2_id

This node
has sent a
heartbeat to
node node2_id

SentHeartbeatInfo 12 INFO

Node
node_id:
Event buffer
status
(object_id):
used=bytes_used
(percent_used%
of alloc)
alloc=bytes_allocated
max=bytes_available
latest_consumed_epoch=latest_consumed_epoch
latest_buffered_epoch=latest_buffered_epoch
report_reason=report_reason

This report is
seen during
heavy event
buffer usage,
for example,
when many
updates are
being applied in
a relatively short
period of time;
the report shows
the number of
bytes and the
percentage of
event buffer
memory used,
the bytes
allocated and
percentage
still available,
and the latest
buffered and
consumed
epochs;
for more
information, see
Section 6.2.3,
“Event Buffer
Reporting in the
Cluster Log”

EventBufferStatus2Info 7 INFO

Node
node_id:
Entering
single user
mode, Node
node_id:
Entered
single user
mode Node
API_node_id
has
exclusive
access, Node

These reports
are written to the
cluster log when
entering and
exiting single
user mode;
API_node_id
is the node ID of
the API or SQL
having exclusive
access to the
cluster (for more
information, see

SingleUser Info 7 INFO

553

NDB Cluster: Messages in the Cluster Log

Log Message Description Event Name Event Type Priority Severity
node_id:
Entering
single user
mode

Section 6.6,
“NDB Cluster
Single User
Mode”); the
message
Unknown
single
user report
API_node_id
indicates an
error has taken
place and
should never be
seen in normal
operation

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id

A backup has
been started
using the
management
node having
mgm_node_id;
this message is
also displayed
in the cluster
management
client when the
START BACKUP
command is
issued; for more
information, see
Section 6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

BackupStartedBackup 7 INFO

Node
node_id:
Backup
backup_id
started
from node
mgm_node_id
completed.
StartGCP:
start_gcp
StopGCP:
stop_gcp
#Records:
records
#LogRecords:

The backup
having the ID
backup_id has
been completed;
for more
information, see
Section 6.8.2,
“Using The
NDB Cluster
Management
Client to Create
a Backup”

BackupCompletedBackup 7 INFO

554

NDB Cluster Log Startup Messages

Log Message Description Event Name Event Type Priority Severity
log_records
Data:
data_bytes
bytes Log:
log_bytes
bytes

Node
node_id:
Backup
request from
mgm_node_id
failed
to start.
Error:
error_code

The backup
failed to start; for
error codes, see
MGM API Errors

BackupFailedToStartBackup 7 ALERT

Node
node_id:
Backup
backup_id
started from
mgm_node_id
has been
aborted.
Error:
error_code

The backup
was terminated
after starting,
possibly due to
user intervention

BackupAbortedBackup 7 ALERT

6.2.2 NDB Cluster Log Startup Messages

Possible startup messages with descriptions are provided in the following list:

• Initial start, waiting for %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting until nodes: %s connects, nodes [all: %s connected: %s no-wait: %s]

• Waiting %u sec for nodes %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting for non partitioned start, nodes [all: %s connected: %s missing: %s
no-wait: %s]

• Waiting %u sec for non partitioned start, nodes [all: %s connected: %s
missing: %s no-wait: %s]

• Initial start with nodes %s [missing: %s no-wait: %s]

• Start with all nodes %s

• Start with nodes %s [missing: %s no-wait: %s]

• Start potentially partitioned with nodes %s [missing: %s no-wait: %s]

• Unknown startreport: 0x%x [%s %s %s %s]

555

https://dev.mysql.com/doc/ndbapi/en/mgm-errors.html

Event Buffer Reporting in the Cluster Log

6.2.3 Event Buffer Reporting in the Cluster Log

NDB uses one or more memory buffers for events received from the data nodes. There is one such buffer
for each Ndb object subscribing to table events, which means that there are usually two buffers for each
mysqld performing binary logging (one buffer for schema events, and one for data events). Each buffer
contains epochs made up of events. These events consist of operation types (insert, update, delete) and
row data (before and after images plus metadata).

NDB generates messages in the cluster log to describe the state of these buffers. Although these reports
appear in the cluster log, they refer to buffers on API nodes (unlike most other cluster log messages, which
are generated by data nodes).

Event buffer logging reports in the cluster log use the format shown here:

Node node_id: Event buffer status (object_id):
used=bytes_used (percent_used% of alloc)
alloc=bytes_allocated (percent_alloc% of max) max=bytes_available
latest_consumed_epoch=latest_consumed_epoch
latest_buffered_epoch=latest_buffered_epoch
report_reason=report_reason

The fields making up this report are listed here, with descriptions:

• node_id: ID of the node where the report originated.

• object_id: ID of the Ndb object where the report originated.

• bytes_used: Number of bytes used by the buffer.

• percent_used: Percentage of allocated bytes used.

• bytes_allocated: Number of bytes allocated to this buffer.

• percent_alloc: Percentage of available bytes used; not printed if ndb_eventbuffer_max_alloc is
equal to 0 (unlimited).

• bytes_available: Number of bytes available; this is 0 if ndb_eventbuffer_max_alloc is 0
(unlimited).

• latest_consumed_epoch: The epoch most recently consumed to completion. (In NDB API
applications, this is done by calling nextEvent().)

• latest_buffered_epoch: The epoch most recently buffered (completely) in the event buffer.

• report_reason: The reason for making the report. Possible reasons are shown later in this section.

Possible reasons for reporting are described in the following list:

• ENOUGH_FREE_EVENTBUFFER: The event buffer has sufficient space.

LOW_FREE_EVENTBUFFER: The event buffer is running low on free space.

The threshold free percentage level triggering these reports can be adjusted by setting the
ndb_report_thresh_binlog_mem_usage server variable.

• BUFFERED_EPOCHS_OVER_THRESHOLD: Whether the number of buffered epochs has exceeded
the configured threshold. This number is the difference between the latest epoch that has been
received in its entirety and the epoch that has most recently been consumed (in NDB API applications,
this is done by calling nextEvent() or nextEvent2()). The report is generated every second
until the number of buffered epochs goes below the threshold, which can be adjusted by setting the

556

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2

NDB Cluster: NDB Transporter Errors

ndb_report_thresh_binlog_epoch_slip server variable. You can also adjust the threshold in
NDB API applications by calling setEventBufferQueueEmptyEpoch().

• PARTIALLY_DISCARDING: Event buffer memory is exhausted—that is, 100% of
ndb_eventbuffer_max_alloc has been used. Any partially buffered epoch is buffered to completion
even is usage exceeds 100%, but any new epochs received are discarded. This means that a gap has
occurred in the event stream.

• COMPLETELY_DISCARDING: No epochs are buffered.

• PARTIALLY_BUFFERING: The buffer free percentage following the gap has risen to the threshold, which
can be set in the mysql client using the ndb_eventbuffer_free_percent server system variable or
in NDB API applications by calling set_eventbuffer_free_percent(). New epochs are buffered.
Epochs that could not be completed due to the gap are discarded.

• COMPLETELY_BUFFERING: All epochs received are being buffered, which means that there is sufficient
event buffer memory. The gap in the event stream has been closed.

6.2.4 NDB Cluster: NDB Transporter Errors

This section lists error codes, names, and messages that are written to the cluster log in the event of
transporter errors.

0x00 TE_NO_ERROR

No error

0x01 TE_ERROR_CLOSING_SOCKET

Error found during closing of socket

0x02 TE_ERROR_IN_SELECT_BEFORE_ACCEPT

Error found before accept. The transporter will retry

0x03 TE_INVALID_MESSAGE_LENGTH

Error found in message (invalid message length)

0x04 TE_INVALID_CHECKSUM

Error found in message (checksum)

0x05 TE_COULD_NOT_CREATE_SOCKET

Error found while creating socket(can't create
socket)

0x06 TE_COULD_NOT_BIND_SOCKET

Error found while binding server socket

0x07 TE_LISTEN_FAILED

Error found while listening to server socket

0x08 TE_ACCEPT_RETURN_ERROR

Error found during accept(accept return error)

557

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent

Event Reports Generated in NDB Cluster

0x0b TE_SHM_DISCONNECT

The remote node has disconnected

0x0c TE_SHM_IPC_STAT

Unable to check shm segment

0x0d TE_SHM_UNABLE_TO_CREATE_SEGMENT

Unable to create shm segment

0x0e TE_SHM_UNABLE_TO_ATTACH_SEGMENT

Unable to attach shm segment

0x0f TE_SHM_UNABLE_TO_REMOVE_SEGMENT

Unable to remove shm segment

0x10 TE_TOO_SMALL_SIGID

Sig ID too small

0x11 TE_TOO_LARGE_SIGID

Sig ID too large

0x12 TE_WAIT_STACK_FULL

Wait stack was full

0x13 TE_RECEIVE_BUFFER_FULL

Receive buffer was full

0x14 TE_SIGNAL_LOST_SEND_BUFFER_FULL

Send buffer was full,and trying to force send fails

0x15 TE_SIGNAL_LOST

Send failed for unknown reason(signal lost)

0x16 TE_SEND_BUFFER_FULL

The send buffer was full, but sleeping for a while
solved

0x21 TE_SHM_IPC_PERMANENT

Shm ipc Permanent error

Note

Transporter error codes 0x17 through 0x20 and 0x22 are reserved for SCI
connections, which are not supported in this version of NDB Cluster, and so are not
included here.

6.3 Event Reports Generated in NDB Cluster

558

Event Reports Generated in NDB Cluster

In this section, we discuss the types of event logs provided by NDB Cluster, and the types of events that
are logged.

NDB Cluster provides two types of event log:

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log
recommended for most uses because it provides logging information for an entire cluster in a single
location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id is
the node ID of the management server) in the management server's DataDir.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead
of being saved to a file, as determined by the values set for the DataDir and LogDestination
configuration parameters. See Section 4.3.5, “Defining an NDB Cluster Management Server”, for more
information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where node_id
is the node's node ID) in the node's DataDir. Node event logs are generated for both management
nodes and data nodes.

Node logs are intended to be used only during application development, or for debugging application
code.

Both types of event logs can be set to log different subsets of events.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 0 to 15 inclusive, where 0 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ON, DEBUG, INFO, WARNING, ERROR,
CRITICAL, ALERT, or ALL. (This is also sometimes referred to as the log level.)

Both the cluster log and the node log can be filtered on these properties.

The format used in a log message generated by NDB Cluster (as of NDB 8.0.26) is as shown here:

timestamp [node_type] level -- Node node_id: message

Each line in the log, or log message, contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format. The timestamp value currently resolves to whole
seconds only; fractional seconds are not supported.

• The node_type, or type of node or application which is performing the logging. In the cluster log, this is
always [MgmSrvr]; in the data node log, it is always [ndbd]. [NdbApi] and other values are possible
in logs generated by NDB API applications and tools.

• The level of the event, sometimes also referred to as its severity level or log level. See earlier in this
section, as well as Section 6.3.1, “NDB Cluster Logging Management Commands”, for more information
about severity levels.

559

NDB Cluster Logging Management Commands

• The ID of the node reporting the event (node_id).

• A message containing a description of the event. The most common types of events to appear in the log
are connections and disconnections between different nodes in the cluster, and when checkpoints occur.
In some cases, the description may contain status or other information.

A sample from an actual cluster log is shown here:

2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 5 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 5 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 6 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 6 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: President restarts arbitration thread [state=1]
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 7 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 7 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 8 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 8 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 9 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 9 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 50 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 50 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Start phase 101 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Start phase 101 completed (system restart)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Started (mysql-8.0.30 ndb-8.0.30)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Started (mysql-8.0.30 ndb-8.0.30)
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 5: Node 50: API mysql-8.0.30 ndb-8.0.30
2021-06-10 10:01:07 [MgmtSrvr] INFO -- Node 6: Node 50: API mysql-8.0.30 ndb-8.0.30
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 6: Prepare arbitrator node 50 [ticket=75fd00010fa8b608]
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 5: Started arbitrator node 50 [ticket=75fd00010fa8b608]
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 6: Communication to Node 100 opened
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 6: Communication to Node 101 opened
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 5: Communication to Node 100 opened
2021-06-10 10:01:08 [MgmtSrvr] INFO -- Node 5: Communication to Node 101 opened
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Alloc node id 100 succeeded
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Nodeid 100 allocated for API at 127.0.0.1
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 100: mysqld --server-id=1
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 5: Node 100 Connected
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 6: Node 100 Connected
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 5: Node 100: API mysql-8.0.30 ndb-8.0.30
2021-06-10 10:01:36 [MgmtSrvr] INFO -- Node 6: Node 100: API mysql-8.0.30 ndb-8.0.30

For additional information, see Section 6.3.2, “NDB Cluster Log Events”.

6.3.1 NDB Cluster Logging Management Commands

ndb_mgm supports a number of management commands related to the cluster log and node logs. In the
listing that follows, node_id denotes either a storage node ID or the keyword ALL, which indicates that the
command should be applied to all of the cluster's data nodes.

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

560

NDB Cluster Logging Management Commands

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category threshold. If
an event has a priority with a value lower than or equal to the priority threshold, it is reported in the cluster
log.

Note

Events are reported per data node, and that the threshold can be set to different
values on different nodes.

Table 6.2 Cluster log categories, with default threshold setting

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

The STATISTICS category can provide a great deal of useful data. See Section 6.3.3, “Using
CLUSTERLOG STATISTICS in the NDB Cluster Management Client”, for more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority of
3 is not logged unless the threshold for STARTUP is set to 3 or higher. Only events with priority 3 or lower
are sent if the threshold is 3.

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and
LOG_NOTICE, which are not used or mapped.

Table 6.3 Event severity levels

Severity Level Value Severity Description

1 ALERT A condition that should be
corrected immediately, such as a
corrupted system database

2 CRITICAL Critical conditions, such as device
errors or insufficient resources

3 ERROR Conditions that should be
corrected, such as configuration
errors

561

NDB Cluster Log Events

Severity Level Value Severity Description

4 WARNING Conditions that are not errors, but
that might require special handling

5 INFO Informational messages

6 DEBUG Debugging messages used for
NDBCLUSTER development

Event severity levels can be turned on or off (using CLUSTERLOG FILTER—see above). If a severity level
is turned on, then all events with a priority less than or equal to the category thresholds are logged. If the
severity level is turned off then no events belonging to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This means
that, in an NDB Cluster with multiple management servers, using a CLUSTERLOG
command in an instance of ndb_mgm connected to one management server affects
only logs generated by that management server but not by any of the others. This
also means that, should one of the management servers be restarted, only logs
generated by that management server are affected by the resetting of log levels
caused by the restart.

6.3.2 NDB Cluster Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”, respectively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Table 6.4 Events associated with connections between cluster nodes

Event Priority Severity Level Description

Connected 8 INFO Data nodes connected

Disconnected 8 ALERT Data nodes disconnected

CommunicationClosed 8 INFO SQL node or data node
connection closed

CommunicationOpened 8 INFO SQL node or data node
connection open

ConnectedApiVersion 8 INFO Connection using API
version

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

562

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Log Events

Table 6.5 Events associated with checkpoints

Event Priority Severity Level Description

GlobalCheckpointStarted9 INFO Start of GCP: REDO log
is written to disk

GlobalCheckpointCompleted10 INFO GCP finished

LocalCheckpointStarted7 INFO Start of LCP: data written
to disk

LocalCheckpointCompleted7 INFO LCP completed normally

LCPStoppedInCalcKeepGci0 ALERT LCP stopped

LCPFragmentCompleted11 INFO LCP on a fragment has
been completed

UndoLogBlocked 7 INFO UNDO logging blocked;
buffer near overflow

RedoStatus 7 INFO Redo status

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its
success or failure. They also provide information relating to the progress of the startup process, including
information concerning logging activities.

Table 6.6 Events relating to the startup of a node or cluster

Event Priority Severity Level Description

NDBStartStarted 1 INFO Data node start phases
initiated (all nodes
starting)

NDBStartCompleted 1 INFO Start phases completed,
all data nodes

STTORRYRecieved 15 INFO Blocks received after
completion of restart

StartPhaseCompleted 4 INFO Data node start phase X
completed

CM_REGCONF 3 INFO Node has been
successfully included into
the cluster; shows the
node, managing node,
and dynamic ID

CM_REGREF 8 INFO Node has been refused
for inclusion in the
cluster; cannot be
included in cluster due
to misconfiguration,
inability to establish
communication, or other
problem

FIND_NEIGHBOURS 8 INFO Shows neighboring data
nodes

563

NDB Cluster Log Events

Event Priority Severity Level Description

NDBStopStarted 1 INFO Data node shutdown
initiated

NDBStopCompleted 1 INFO Data node shutdown
complete

NDBStopForced 1 ALERT Forced shutdown of data
node

NDBStopAborted 1 INFO Unable to shut down data
node normally

StartREDOLog 4 INFO New redo log started;
GCI keep X, newest
restorable GCI Y

StartLog 10 INFO New log started; log part
X, start MB Y, stop MB Z

UNDORecordsExecuted 15 INFO Undo records executed

StartReport 4 INFO Report started

LogFileInitStatus 7 INFO Log file initialization
status

LogFileInitCompStatus7 INFO Log file completion status

StartReadLCP 10 INFO Start read for local
checkpoint

ReadLCPComplete 10 INFO Read for local checkpoint
completed

RunRedo 8 INFO Running the redo log

RebuildIndex 10 INFO Rebuilding indexes

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the node
restart process.

Table 6.7 Events relating to restarting a node

Event Priority Severity Level Description

NR_CopyDict 7 INFO Completed copying of
dictionary information

NR_CopyDistr 7 INFO Completed copying
distribution information

NR_CopyFragsStarted 7 INFO Starting to copy
fragments

NR_CopyFragDone 10 INFO Completed copying a
fragment

NR_CopyFragsCompleted7 INFO Completed copying all
fragments

NodeFailCompleted 8 ALERT Node failure phase
completed

564

NDB Cluster Log Events

Event Priority Severity Level Description

NODE_FAILREP 8 ALERT Reports that a node has
failed

ArbitState 6 INFO Report whether an
arbitrator is found or not;
there are seven different
possible outcomes when
seeking an arbitrator,
listed here:

• Management server
restarts arbitration
thread [state=X]

• Prepare arbitrator node
X [ticket=Y]

• Receive arbitrator node
X [ticket=Y]

• Started arbitrator node
X [ticket=Y]

• Lost arbitrator node
X - process failure
[state=Y]

• Lost arbitrator node X -
process exit [state=Y]

• Lost arbitrator node X
<error msg> [state=Y]

ArbitResult 2 ALERT Report arbitrator results;
there are eight different
possible results for
arbitration attempts,
listed here:

• Arbitration check failed:
less than 1/2 nodes left

• Arbitration check
succeeded: node
group majority

• Arbitration check failed:
missing node group

• Network partitioning:
arbitration required

• Arbitration succeeded:
affirmative response
from node X

565

NDB Cluster Log Events

Event Priority Severity Level Description
• Arbitration failed:

negative response
from node X

• Network partitioning:
no arbitrator available

• Network partitioning:
no arbitrator configured

GCP_TakeoverStarted 7 INFO GCP takeover started

GCP_TakeoverCompleted7 INFO GCP takeover complete

LCP_TakeoverStarted 7 INFO LCP takeover started

LCP_TakeoverCompleted7 INFO LCP takeover complete
(state = X)

ConnectCheckStarted 6 INFO Connection check started

ConnectCheckCompleted6 INFO Connection check
completed

NodeFailRejected 6 ALERT Node failure phase failed

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of transactions
and other operations, amount of data sent or received by individual nodes, and memory usage.

Table 6.8 Events of a statistical nature

Event Priority Severity Level Description

TransReportCounters 8 INFO Report transaction
statistics, including
numbers of transactions,
commits, reads, simple
reads, writes, concurrent
operations, attribute
information, and aborts

OperationReportCounters8 INFO Number of operations

TableCreated 7 INFO Report number of tables
created

JobStatistic 9 INFO Mean internal job
scheduling statistics

ThreadConfigLoop 9 INFO Number of thread
configuration loops

SendBytesStatistic 9 INFO Mean number of bytes
sent to node X

ReceiveBytesStatistic9 INFO Mean number of bytes
received from node X

MemoryUsage 5 INFO Data and index memory
usage (80%, 90%, and
100%)

566

NDB Cluster Log Events

Event Priority Severity Level Description

MTSignalStatistics 9 INFO Multithreaded signals

SCHEMA Events

These events relate to NDB Cluster schema operations.

Table 6.9 Events relating to NDB Cluster schema operations

Event Priority Severity Level Description

CreateSchemaObject 8 INFO Schema objected created

AlterSchemaObject 8 INFO Schema object updated

DropSchemaObject 8 INFO Schema object dropped

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally
indicates that a major malfunction or failure has occurred.

Table 6.10 Events relating to cluster errors and warnings

Event Priority Severity Level Description

TransporterError 2 ERROR Transporter error

TransporterWarning 8 WARNING Transporter warning

MissedHeartbeat 8 WARNING Node X missed heartbeat
number Y

DeadDueToHeartbeat 8 ALERT Node X declared “dead”
due to missed heartbeat

WarningEvent 2 WARNING General warning event

SubscriptionStatus 4 WARNING Change in subscription
status

INFO Events

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Table 6.11 Information events

Event Priority Severity Level Description

SentHeartbeat 12 INFO Sent heartbeat

CreateLogBytes 11 INFO Create log: Log part, log
file, size in MB

InfoEvent 2 INFO General informational
event

EventBufferStatus 7 INFO Event buffer status

EventBufferStatus2 7 INFO Improved event buffer
status information

567

Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

Note

SentHeartbeat events are available only if NDB Cluster was compiled with
VM_TRACE enabled.

SINGLEUSER Events

These events are associated with entering and exiting single user mode.

Table 6.12 Events relating to single user mode

Event Priority Severity Level Description

SingleUser 7 INFO Entering or exiting single
user mode

BACKUP Events

These events provide information about backups being created or restored.

Table 6.13 Backup events

Event Priority Severity Level Description

BackupStarted 7 INFO Backup started

BackupStatus 7 INFO Backup status

BackupCompleted 7 INFO Backup completed

BackupFailedToStart 7 ALERT Backup failed to start

BackupAborted 7 ALERT Backup aborted by user

RestoreStarted 7 INFO Started restoring from
backup

RestoreMetaData 7 INFO Restoring metadata

RestoreData 7 INFO Restoring data

RestoreLog 7 INFO Restoring log files

RestoreCompleted 7 INFO Completed restoring from
backup

SavedEvent 7 INFO Event saved

6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. Counters providing information about the state of the cluster are updated at 5-
second reporting intervals by the transaction coordinator (TC) and the local query handler (LQH), and
written to the cluster log.

Transaction coordinator statistics. Each transaction has one transaction coordinator, which is chosen
by one of the following methods:

• In a round-robin fashion

• By communication proximity

• By supplying a data placement hint when the transaction is started

568

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

Note

You can determine which TC selection method is used for transactions started from
a given SQL node using the ndb_optimized_node_selection system variable.

All operations within the same transaction use the same transaction coordinator, which reports the
following statistics:

• Trans count. This is the number transactions started in the last interval using this TC as the
transaction coordinator. Any of these transactions may have committed, have been aborted, or remain
uncommitted at the end of the reporting interval.

Note

Transactions do not migrate between TCs.

• Commit count. This is the number of transactions using this TC as the transaction coordinator that
were committed in the last reporting interval. Because some transactions committed in this reporting
interval may have started in a previous reporting interval, it is possible for Commit count to be greater
than Trans count.

• Read count. This is the number of primary key read operations using this TC as the transaction
coordinator that were started in the last reporting interval, including simple reads. This count also
includes reads performed as part of unique index operations. A unique index read operation generates 2
primary key read operations—1 for the hidden unique index table, and 1 for the table on which the read
takes place.

• Simple read count. This is the number of simple read operations using this TC as the transaction
coordinator that were started in the last reporting interval.

• Write count. This is the number of primary key write operations using this TC as the transaction
coordinator that were started in the last reporting interval. This includes all inserts, updates, writes and
deletes, as well as writes performed as part of unique index operations.

Note

A unique index update operation can generate multiple PK read and write
operations on the index table and on the base table.

• AttrInfoCount. This is the number of 32-bit data words received in the last reporting interval for
primary key operations using this TC as the transaction coordinator. For reads, this is proportional to the
number of columns requested. For inserts and updates, this is proportional to the number of columns
written, and the size of their data. For delete operations, this is usually zero.

Unique index operations generate multiple PK operations and so increase this count. However, data
words sent to describe the PK operation itself, and the key information sent, are not counted here.
Attribute information sent to describe columns to read for scans, or to describe ScanFilters, is also not
counted in AttrInfoCount.

• Concurrent Operations. This is the number of primary key or scan operations using this TC as the
transaction coordinator that were started during the last reporting interval but that were not completed.
Operations increment this counter when they are started and decrement it when they are completed; this
occurs after the transaction commits. Dirty reads and writes—as well as failed operations—decrement
this counter.

The maximum value that Concurrent Operations can have is the maximum number of operations
that a TC block can support; currently, this is (2 * MaxNoOfConcurrentOperations) + 16 +

569

Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

MaxNoOfConcurrentTransactions. (For more information about these configuration parameters,
see the Transaction Parameters section of Section 4.3.6, “Defining NDB Cluster Data Nodes”.)

• Abort count. This is the number of transactions using this TC as the transaction coordinator that
were aborted during the last reporting interval. Because some transactions that were aborted in the last
reporting interval may have started in a previous reporting interval, Abort count can sometimes be
greater than Trans count.

• Scans. This is the number of table scans using this TC as the transaction coordinator that were
started during the last reporting interval. This does not include range scans (that is, ordered index
scans).

• Range scans. This is the number of ordered index scans using this TC as the transaction coordinator
that were started in the last reporting interval.

• Local reads. This is the number of primary-key read operations performed using a transaction
coordinator on a node that also holds the primary fragment replica of the record. This count can also be
obtained from the LOCAL_READS counter in the ndbinfo.counters table.

• Local writes. This contains the number of primary-key read operations that were performed using a
transaction coordinator on a node that also holds the primary fragment replica of the record. This count
can also be obtained from the LOCAL_WRITES counter in the ndbinfo.counters table.

Local query handler statistics (Operations). There is 1 cluster event per local query handler block
(that is, 1 per data node process). Operations are recorded in the LQH where the data they are operating
on resides.

Note

A single transaction may operate on data stored in multiple LQH blocks.

The Operations statistic provides the number of local operations performed by this LQH block in the
last reporting interval, and includes all types of read and write operations (insert, update, write, and delete
operations). This also includes operations used to replicate writes. For example, in a cluster with two
fragment replicas, the write to the primary fragment replica is recorded in the primary LQH, and the write to
the backup is recorded in the backup LQH. Unique key operations may result in multiple local operations;
however, this does not include local operations generated as a result of a table scan or ordered index
scan, which are not counted.

Process scheduler statistics. In addition to the statistics reported by the transaction coordinator and
local query handler, each ndbd process has a scheduler which also provides useful metrics relating to the
performance of an NDB Cluster. This scheduler runs in an infinite loop; during each loop the scheduler
performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

Process scheduler statistics include the following:

570

Summary of NDB Cluster Start Phases

• Mean Loop Counter. This is the number of loops executed in the third step from the preceding
list. This statistic increases in size as the utilization of the TCP/IP buffer improves. You can use this to
monitor changes in performance as you add new data node processes.

• Mean send size and Mean receive size. These statistics enable you to gauge the efficiency of,
respectively writes and reads between nodes. The values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum value is 64K.

To cause all cluster log statistics to be logged, you can use the following command in the NDB
management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become very
verbose, and to grow quite rapidly in size, in direct proportion to the number of
cluster nodes and the amount of activity in the NDB Cluster.

For more information about NDB Cluster management client commands relating to logging and reporting,
see Section 6.3.1, “NDB Cluster Logging Management Commands”.

6.4 Summary of NDB Cluster Start Phases

This section provides a simplified outline of the steps involved when NDB Cluster data nodes are started.
More complete information can be found in NDB Cluster Start Phases, in the NDB Internals Guide.

These phases are the same as those reported in the output from the node_id STATUS command in the
management client (see Section 6.1, “Commands in the NDB Cluster Management Client”). These start
phases are also reported in the start_phase column of the ndbinfo.nodes table.

Start types. There are several different startup types and modes, as shown in the following list:

• Initial start. The cluster starts with a clean file system on all data nodes. This occurs either when the
cluster started for the very first time, or when all data nodes are restarted using the --initial option.

Note

Disk Data files are not removed when restarting a node using --initial.

• System restart. The cluster starts and reads data stored in the data nodes. This occurs when
the cluster has been shut down after having been in use, when it is desired for the cluster to resume
operations from the point where it left off.

• Node restart. This is the online restart of a cluster node while the cluster itself is running.

• Initial node restart. This is the same as a node restart, except that the node is reinitialized and
started with a clean file system.

Setup and initialization (phase -1). Prior to startup, each data node (ndbd process) must be initialized.
Initialization consists of the following steps:

1. Obtain a node ID

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

571

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html

Summary of NDB Cluster Start Phases

4. Allocate memory according to settings obtained from the configuration file

When a data node or SQL node first connects to the management node, it reserves a cluster node ID. To
make sure that no other node allocates the same node ID, this ID is retained until the node has managed
to connect to the cluster and at least one ndbd reports that this node is connected. This retention of the
node ID is guarded by the connection between the node in question and ndb_mgmd.

After each data node has been initialized, the cluster startup process can proceed. The stages which the
cluster goes through during this process are listed here:

• Phase 0. The NDBFS and NDBCNTR blocks start. Data node file systems are cleared on those data
nodes that were started with --initial option.

• Phase 1. In this stage, all remaining NDB kernel blocks are started. NDB Cluster connections are
set up, inter-block communications are established, and heartbeats are started. In the case of a node
restart, API node connections are also checked.

Note

When one or more nodes hang in Phase 1 while the remaining node or nodes
hang in Phase 2, this often indicates network problems. One possible cause
of such issues is one or more cluster hosts having multiple network interfaces.
Another common source of problems causing this condition is the blocking of
TCP/IP ports needed for communications between cluster nodes. In the latter
case, this is often due to a misconfigured firewall.

• Phase 2. The NDBCNTR kernel block checks the states of all existing nodes. The master node is
chosen, and the cluster schema file is initialized.

• Phase 3. The DBLQH and DBTC kernel blocks set up communications between them. The startup type
is determined; if this is a restart, the DBDIH block obtains permission to perform the restart.

• Phase 4. For an initial start or initial node restart, the redo log files are created. The number of these
files is equal to NoOfFragmentLogFiles.

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5. Most of the database-related portion of a data node start is performed during this phase. For
an initial start or system restart, a local checkpoint is executed, followed by a global checkpoint. Periodic
checks of memory usage begin during this phase, and any required node takeovers are performed.

• Phase 6. In this phase, node groups are defined and set up.

• Phase 7. The arbitrator node is selected and begins to function. The next backup ID is set, as is the
backup disk write speed. Nodes reaching this start phase are marked as Started. It is now possible for
API nodes (including SQL nodes) to connect to the cluster.

• Phase 8. If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9. The node internal startup variables are reset.

572

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbfs.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

Performing a Rolling Restart of an NDB Cluster

• Phase 100 (OBSOLETE). Formerly, it was at this point during a node restart or initial node restart
that API nodes could connect to the node and begin to receive events. Currently, this phase is empty.

• Phase 101. At this point in a node restart or initial node restart, event delivery is handed over to the
node joining the cluster. The newly-joined node takes over responsibility for delivering its primary data to
subscribers. This phase is also referred to as SUMA handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For a
node restart or initial node restart, completion of the startup process means that the node may now act as
a transaction coordinator.

6.5 Performing a Rolling Restart of an NDB Cluster
This section discusses how to perform a rolling restart of an NDB Cluster installation, so called because
it involves stopping and starting (or restarting) each node in turn, so that the cluster itself remains
operational. This is often done as part of a rolling upgrade or rolling downgrade, where high availability
of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where we refer to
upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable. These are described in the next
few paragraphs.

Configuration change.
To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or setting a
configuration parameter to a new value.

NDB Cluster software upgrade or downgrade. To upgrade the cluster to a newer version of the NDB
Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling upgrade”
(or “rolling downgrade”, when reverting to an older version of NDB Cluster).

Change on node host. To make changes in the hardware or operating system on which one or more
NDB Cluster node processes are running.

System reset (cluster reset).
To reset the cluster because it has reached an undesirable state. In such cases it is often desirable to
reload the data and metadata of one or more data nodes. This can be done in any of three ways:

• Start each data node process (ndbd or possibly ndbmtd) with the --initial option, which forces the
data node to clear its file system and to reload all NDB Cluster data and metadata from the other data
nodes.

Beginning with NDB 8.0.21, this also forces the removal of all Disk Data objects and files associated with
those objects.

• Create a backup using the ndb_mgm client START BACKUP command prior to performing the restart.
Following the upgrade, restore the node or nodes using ndb_restore.

See Section 6.8, “Online Backup of NDB Cluster”, and Section 5.23, “ndb_restore — Restore an NDB
Cluster Backup”, for more information.

• Use mysqldump to create a backup prior to the upgrade; afterward, restore the dump using LOAD
DATA.

Resource Recovery.
To free memory previously allocated to a table by successive INSERT and DELETE operations, for re-use
by other NDB Cluster tables.

The process for performing a rolling restart may be generalized as follows:

573

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Performing a Rolling Restart of an NDB Cluster

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them. (See
Rolling restarts with multiple management servers.)

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn.

Some node configuration parameters can be updated by issuing RESTART for each of the data nodes
in the ndb_mgm client following the previous step. Other parameters require that the data node be
stopped completely using the management client STOP command, then started again from a system
shell by invoking the ndbd or ndbmtd executable as appropriate. (A shell command such as kill can
also be used on most Unix systems to stop a data node process, but the STOP command is preferred
and usually simpler.)

Note

On Windows, you can also use SC STOP and SC START commands, NET
STOP and NET START commands, or the Windows Service Manager to
stop and start nodes which have been installed as Windows services (see
Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”).

The type of restart required is indicated in the documentation for each node configuration parameter.
See Section 4.3, “NDB Cluster Configuration Files”.

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn.

NDB Cluster supports a somewhat flexible order for upgrading nodes. When upgrading an NDB Cluster,
you may upgrade API nodes (including SQL nodes) before upgrading the management nodes, data nodes,
or both. In other words, you are permitted to upgrade the API and SQL nodes in any order. This is subject
to the following provisions:

• This functionality is intended for use as part of an online upgrade only. A mix of node binaries from
different NDB Cluster releases is neither intended nor supported for continuous, long-term use in a
production setting.

• All management nodes must be upgraded before any data nodes are upgraded. This remains true
regardless of the order in which you upgrade the cluster's API and SQL nodes.

• Features specific to the “new” version must not be used until all management nodes and data nodes
have been upgraded.

This also applies to any MySQL Server version change that may apply, in addition to the NDB engine
version change, so do not forget to take this into account when planning the upgrade. (This is true for
online upgrades of NDB Cluster in general.)

It is not possible for any API node to perform schema operations (such as data definition statements)
during a node restart. Due in part to this limitation, schema operations are also not supported during an
online upgrade or downgrade.

Rolling restarts with multiple management servers. When performing a rolling restart of an NDB
Cluster with multiple management nodes, you should keep in mind that ndb_mgmd checks to see if any
other management node is running, and, if so, tries to use that node's configuration data. To keep this from
occurring, and to force ndb_mgmd to re-read its configuration file, perform the following steps:

1. Stop all NDB Cluster ndb_mgmd processes.

2. Update all config.ini files.

3. Start a single ndb_mgmd with --reload, --initial, or both options as desired.

574

NDB Cluster Single User Mode

4. If you started the first ndb_mgmd with the --initial option, you must also start any remaining
ndb_mgmd processes using --initial.

Regardless of any other options used when starting the first ndb_mgmd, you should not start any
remaining ndb_mgmd processes after the first one using --reload.

5. Complete the rolling restarts of the data nodes and API nodes as normal.

When performing a rolling restart to update the cluster's configuration, you can use the
config_generation column of the ndbinfo.nodes table to keep track of which data nodes have been
successfully restarted with the new configuration. See Section 6.14.47, “The ndbinfo nodes Table”.

6.6 NDB Cluster Single User Mode
Single user mode enables the database administrator to restrict access to the database system to a single
API node, such as a MySQL server (SQL node) or an instance of ndb_restore. When entering single
user mode, connections to all other API nodes are closed gracefully and all running transactions are
aborted. No new transactions are permitted to start.

Once the cluster has entered single user mode, only the designated API node is granted access to the
database.

You can use the ALL STATUS command in the ndb_mgm client to see when the cluster has entered single
user mode. You can also check the status column of the ndbinfo.nodes table (see Section 6.14.47,
“The ndbinfo nodes Table”, for more information).

Example:

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose node
ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other type
of node is rejected.

Note

When the preceding command is invoked, all transactions running on the
designated node are aborted, the connection is closed, and the server must be
restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single user
mode to normal mode. API nodes—such as MySQL Servers—waiting for a connection (that is, waiting for
the cluster to become ready and available), are again permitted to connect. The API node denoted as the
single-user node continues to run (if still connected) during and after the state change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command

575

Adding NDB Cluster Data Nodes Online

3. Restart the cluster's data nodes

• Method 2:

Restart storage nodes prior to entering single user mode.

6.7 Adding NDB Cluster Data Nodes Online
This section describes how to add NDB Cluster data nodes “online”—that is, without needing to shut down
the cluster completely and restart it as part of the process.

Important

Currently, you must add new data nodes to an NDB Cluster as part of a new node
group. In addition, it is not possible to change the number of fragment replicas (or
the number of nodes per node group) online.

6.7.1 Adding NDB Cluster Data Nodes Online: General Issues

This section provides general information about the behavior of and current limitations in adding NDB
Cluster nodes online.

Redistribution of Data. The ability to add new nodes online includes a means to reorganize
NDBCLUSTER table data and indexes so that they are distributed across all data nodes, including the new
ones, by means of the ALTER TABLE ... REORGANIZE PARTITION statement. Table reorganization
of both in-memory and Disk Data tables is supported. This redistribution does not currently include unique
indexes (only ordered indexes are redistributed).

The redistribution for NDBCLUSTER tables already existing before the new data nodes were added is not
automatic, but can be accomplished using simple SQL statements in mysql or another MySQL client
application. However, all data and indexes added to tables created after a new node group has been
added are distributed automatically among all cluster data nodes, including those added as part of the new
node group.

Partial starts. It is possible to add a new node group without all of the new data nodes being started.
It is also possible to add a new node group to a degraded cluster—that is, a cluster that is only partially
started, or where one or more data nodes are not running. In the latter case, the cluster must have enough
nodes running to be viable before the new node group can be added.

Effects on ongoing operations. Normal DML operations using NDB Cluster data are not prevented
by the creation or addition of a new node group, or by table reorganization. However, it is not possible
to perform DDL concurrently with table reorganization—that is, no other DDL statements can be issued
while an ALTER TABLE ... REORGANIZE PARTITION statement is executing. In addition, during
the execution of ALTER TABLE ... REORGANIZE PARTITION (or the execution of any other DDL
statement), it is not possible to restart cluster data nodes.

Failure handling. Failures of data nodes during node group creation and table reorganization are
handled as shown in the following table:

Table 6.14 Data node failure handling during node group creation and table reorganization

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

Node group creation • If a node other than
the master fails:

• If a node other than
the master fails:

• If the execution
of CREATE

576

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Adding NDB Cluster Data Nodes Online: General Issues

Failure during Failure in “Old” data
node

Failure in “New” data
node

System Failure

The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The
creation of the node
group is rolled back

The creation of the
node group is always
rolled forward.

• If the master fails:

• If the internal
commit point has
been reached:
The creation of the
node group is rolled
forward.

• If the internal
commit point
has not yet been
reached. The
creation of the node
group is rolled back

NODEGROUP has
reached the internal
commit point:
When restarted, the
cluster includes the
new node group.
Otherwise it without.

• If the execution
of CREATE
NODEGROUP has
not yet reached the
internal commit
point: When
restarted, the cluster
does not include the
new node group.

Table reorganization • If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If a node other
than the master
fails: The table
reorganization is
always rolled forward.

• If the master fails:

• If the internal
commit point
has been
reached: The
table reorganization
is rolled forward.

• If the internal
commit point
has not yet been
reached. The
table reorganization
is rolled back.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION statement
has reached the
internal commit
point: When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
the “new” data nodes.

• If the execution of
an ALTER TABLE ...
REORGANIZE
PARTITION statement
has not yet reached
the internal commit
point: When the
cluster is restarted,
the data and indexes
belonging to table
are distributed using
only the “old” data
nodes.

Dropping node groups. The ndb_mgm client supports a DROP NODEGROUP command, but it is possible
to drop a node group only when no data nodes in the node group contain any data. Since there is currently
no way to “empty” a specific data node or node group, this command works only the following two cases:

1. After issuing CREATE NODEGROUP in the ndb_mgm client, but before issuing any ALTER TABLE ...
REORGANIZE PARTITION statements in the mysql client.

577

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Adding NDB Cluster Data Nodes Online: Basic procedure

2. After dropping all NDBCLUSTER tables using DROP TABLE.

TRUNCATE TABLE does not work for this purpose because the data nodes continue to store the table
definitions.

6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure

In this section, we list the basic steps required to add new data nodes to an NDB Cluster. This procedure
applies whether you are using ndbd or ndbmtd binaries for the data node processes. For a more detailed
example, see Section 6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

Assuming that you already have a running NDB Cluster, adding data nodes online requires the following
steps:

1. Edit the cluster configuration config.ini file, adding new [ndbd] sections corresponding to the
nodes to be added. In the case where the cluster uses multiple management servers, these changes
need to be made to all config.ini files used by the management servers.

You must be careful that node IDs for any new data nodes added in the config.ini file do not
overlap node IDs used by existing nodes. In the event that you have API nodes using dynamically
allocated node IDs and these IDs match node IDs that you want to use for new data nodes, it is
possible to force any such API nodes to “migrate”, as described later in this procedure.

2. Perform a rolling restart of all NDB Cluster management servers.

Important

All management servers must be restarted with the --reload or --initial
option to force the reading of the new configuration.

3. Perform a rolling restart of all existing NDB Cluster data nodes. It is not necessary (or usually even
desirable) to use --initial when restarting the existing data nodes.

If you are using API nodes with dynamically allocated IDs matching any node IDs that you wish to
assign to new data nodes, you must restart all API nodes (including SQL nodes) before restarting any
of the data nodes processes in this step. This causes any API nodes with node IDs that were previously
not explicitly assigned to relinquish those node IDs and acquire new ones.

4. Perform a rolling restart of any SQL or API nodes connected to the NDB Cluster.

5. Start the new data nodes.

The new data nodes may be started in any order. They can also be started concurrently, as long as
they are started after the rolling restarts of all existing data nodes have been completed, and before
proceeding to the next step.

6. Execute one or more CREATE NODEGROUP commands in the NDB Cluster management client to create
the new node group or node groups to which the new data nodes belong.

7. Redistribute the cluster's data among all data nodes, including the new ones. Normally this is done by
issuing an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION statement in the
mysql client for each NDBCLUSTER table.

Exception: For tables created using the MAX_ROWS option, this statement does not work; instead, use
ALTER TABLE ... ALGORITHM=INPLACE MAX_ROWS=... to reorganize such tables. You should
also bear in mind that using MAX_ROWS to set the number of partitions in this fashion is deprecated,

578

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Adding NDB Cluster Data Nodes Online: Detailed Example

and you should use PARTITION_BALANCE instead; see Setting NDB Comment Options, for more
information.

Note

This needs to be done only for tables already existing at the time the new node
group is added. Data in tables created after the new node group is added is
distributed automatically; however, data added to any given table tbl that
existed before the new nodes were added is not distributed using the new nodes
until that table has been reorganized.

8. ALTER TABLE ... REORGANIZE PARTITION ALGORITHM=INPLACE reorganizes partitions but
does not reclaim the space freed on the “old” nodes. You can do this by issuing, for each NDBCLUSTER
table, an OPTIMIZE TABLE statement in the mysql client.

This works for space used by variable-width columns of in-memory NDB tables. OPTIMIZE TABLE is
not supported for fixed-width columns of in-memory tables; it is also not supported for Disk Data tables.

You can add all the nodes desired, then issue several CREATE NODEGROUP commands in succession to
add the new node groups to the cluster.

6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

In this section we provide a detailed example illustrating how to add new NDB Cluster data nodes online,
starting with an NDB Cluster having 2 data nodes in a single node group and concluding with a cluster
having 4 data nodes in 2 node groups.

Starting configuration. For purposes of illustration, we assume a minimal configuration, and that the
cluster uses a config.ini file containing only the following information:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Note

We have left a gap in the sequence between data node IDs and other nodes. This
make it easier later to assign node IDs that are not already in use to data nodes
which are newly added.

579

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html

Adding NDB Cluster Data Nodes Online: Detailed Example

We also assume that you have already started the cluster using the appropriate command line or my.cnf
options, and that running SHOW in the management client produces output similar to what is shown here:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.29-ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.29-ndb-8.0.30)
id=21 @198.51.100.21 (8.0.29-ndb-8.0.30)

Finally, we assume that the cluster contains a single NDBCLUSTER table created as shown here:

USE n;

CREATE TABLE ips (
 id BIGINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 country_code CHAR(2) NOT NULL,
 type CHAR(4) NOT NULL,
 ip_address VARCHAR(15) NOT NULL,
 addresses BIGINT UNSIGNED DEFAULT NULL,
 date BIGINT UNSIGNED DEFAULT NULL
) ENGINE NDBCLUSTER;

The memory usage and related information shown later in this section was generated after inserting
approximately 50000 rows into this table.

Note

In this example, we show the single-threaded ndbd being used for the data node
processes. You can also apply this example, if you are using the multithreaded
ndbmtd by substituting ndbmtd for ndbd wherever it appears in the steps that
follow.

Step 1: Update configuration file. Open the cluster global configuration file in a text editor and
add [ndbd] sections corresponding to the 2 new data nodes. (We give these data nodes IDs 3 and 4,
and assume that they are to be run on host machines at addresses 198.51.100.3 and 198.51.100.4,
respectively.) After you have added the new sections, the contents of the config.ini file should look like
what is shown here, where the additions to the file are shown in bold type:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]

580

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Adding NDB Cluster Data Nodes Online: Detailed Example

Id = 3
HostName = 198.51.100.3

[ndbd]
Id = 4
HostName = 198.51.100.4

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

Once you have made the necessary changes, save the file.

Step 2: Restart the management server. Restarting the cluster management server requires that you
issue separate commands to stop the management server and then to start it again, as follows:

1. Stop the management server using the management client STOP command, as shown here:

ndb_mgm> 10 STOP
Node 10 has shut down.
Disconnecting to allow Management Server to shutdown

$>

2. Because shutting down the management server causes the management client to terminate, you must
start the management server from the system shell. For simplicity, we assume that config.ini is
in the same directory as the management server binary, but in practice, you must supply the correct
path to the configuration file. You must also supply the --reload or --initial option so that the
management server reads the new configuration from the file rather than its configuration cache. If
your shell's current directory is also the same as the directory where the management server binary is
located, then you can invoke the management server as shown here:

$> ndb_mgmd -f config.ini --reload
2008-12-08 17:29:23 [MgmSrvr] INFO -- NDB Cluster Management Server. 8.0.29-ndb-8.0.30
2008-12-08 17:29:23 [MgmSrvr] INFO -- Reading cluster configuration from 'config.ini'

If you check the output of SHOW in the management client after restarting the ndb_mgm process, you should
now see something like this:

-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.29-ndb-8.0.30, Nodegroup: 0)
id=3 (not connected, accepting connect from 198.51.100.3)
id=4 (not connected, accepting connect from 198.51.100.4)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.29-ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.29-ndb-8.0.30)
id=21 @198.51.100.21 (8.0.29-ndb-8.0.30)

581

Adding NDB Cluster Data Nodes Online: Detailed Example

Step 3: Perform a rolling restart of the existing data nodes. This step can be accomplished entirely
within the cluster management client using the RESTART command, as shown here:

ndb_mgm> 1 RESTART
Node 1: Node shutdown initiated
Node 1: Node shutdown completed, restarting, no start.
Node 1 is being restarted

ndb_mgm> Node 1: Start initiated (version 8.0.30)
Node 1: Started (version 8.0.30)

ndb_mgm> 2 RESTART
Node 2: Node shutdown initiated
Node 2: Node shutdown completed, restarting, no start.
Node 2 is being restarted

ndb_mgm> Node 2: Start initiated (version 8.0.30)

ndb_mgm> Node 2: Started (version 8.0.30)

Important

After issuing each X RESTART command, wait until the management client reports
Node X: Started (version ...) before proceeding any further.

You can verify that all existing data nodes were restarted using the updated configuration by checking the
ndbinfo.nodes table in the mysql client.

Step 4: Perform a rolling restart of all cluster API nodes. Shut down and restart each MySQL server
acting as an SQL node in the cluster using mysqladmin shutdown followed by mysqld_safe (or
another startup script). This should be similar to what is shown here, where password is the MySQL root
password for a given MySQL server instance:

$> mysqladmin -uroot -ppassword shutdown
081208 20:19:56 mysqld_safe mysqld from pid file
/usr/local/mysql/var/tonfisk.pid ended
$> mysqld_safe --ndbcluster --ndb-connectstring=198.51.100.10 &
081208 20:20:06 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
081208 20:20:06 mysqld_safe Starting mysqld daemon with databases
from /usr/local/mysql/var

Of course, the exact input and output depend on how and where MySQL is installed on the system, as well
as which options you choose to start it (and whether or not some or all of these options are specified in a
my.cnf file).

Step 5: Perform an initial start of the new data nodes. From a system shell on each of the hosts for
the new data nodes, start the data nodes as shown here, using the --initial option:

$> ndbd -c 198.51.100.10 --initial

Note

Unlike the case with restarting the existing data nodes, you can start the new data
nodes concurrently; you do not need to wait for one to finish starting before starting
the other.

Wait until both of the new data nodes have started before proceeding with the next step. Once the new
data nodes have started, you can see in the output of the management client SHOW command that they do
not yet belong to any node group (as indicated with bold type here):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186

582

Adding NDB Cluster Data Nodes Online: Detailed Example

Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.29-ndb-8.0.30, Nodegroup: 0)
id=3 @198.51.100.3 (8.0.29-ndb-8.0.30, no nodegroup)
id=4 @198.51.100.4 (8.0.29-ndb-8.0.30, no nodegroup)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.29-ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.29-ndb-8.0.30)
id=21 @198.51.100.21 (8.0.29-ndb-8.0.30)

Step 6: Create a new node group. You can do this by issuing a CREATE NODEGROUP command in the
cluster management client. This command takes as its argument a comma-separated list of the node IDs
of the data nodes to be included in the new node group, as shown here:

ndb_mgm> CREATE NODEGROUP 3,4
Nodegroup 1 created

By issuing SHOW again, you can verify that data nodes 3 and 4 have joined the new node group (again
indicated in bold type):

ndb_mgm> SHOW
Connected to Management Server at: 198.51.100.10:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @198.51.100.1 (8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=2 @198.51.100.2 (8.0.29-ndb-8.0.30, Nodegroup: 0)
id=3 @198.51.100.3 (8.0.29-ndb-8.0.30, Nodegroup: 1)
id=4 @198.51.100.4 (8.0.29-ndb-8.0.30, Nodegroup: 1)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @198.51.100.10 (8.0.29-ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=20 @198.51.100.20 (8.0.29-ndb-8.0.30)
id=21 @198.51.100.21 (8.0.29-ndb-8.0.30)

Step 7: Redistribute cluster data. When a node group is created, existing data and indexes are not
automatically distributed to the new node group's data nodes, as you can see by issuing the appropriate
REPORT command in the management client:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(177 32K pages of total 3200)
Node 1: Index usage is 0%(108 8K pages of total 12832)
Node 2: Data usage is 5%(177 32K pages of total 3200)
Node 2: Index usage is 0%(108 8K pages of total 12832)
Node 3: Data usage is 0%(0 32K pages of total 3200)
Node 3: Index usage is 0%(0 8K pages of total 12832)
Node 4: Data usage is 0%(0 32K pages of total 3200)
Node 4: Index usage is 0%(0 8K pages of total 12832)

By using ndb_desc with the -p option, which causes the output to include partitioning information, you
can see that the table still uses only 2 partitions (in the Per partition info section of the output,
shown here in bold text):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 1
Fragment type: 9

583

Adding NDB Cluster Data Nodes Online: Detailed Example

K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 340
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
FragmentCount: 2
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 26086 26086 1572864 557056
1 26329 26329 1605632 557056

NDBT_ProgramExit: 0 - OK

You can cause the data to be redistributed among all of the data nodes by performing, for each NDB table,
an ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION statement in the mysql
client.

Important

ALTER TABLE ... ALGORITHM=INPLACE, REORGANIZE PARTITION does not
work on tables that were created with the MAX_ROWS option. Instead, use ALTER
TABLE ... ALGORITHM=INPLACE, MAX_ROWS=... to reorganize such tables.

Keep in mind that using MAX_ROWS to set the number of partitions per table is
deprecated, and you should use PARTITION_BALANCE instead; see Setting NDB
Comment Options, for more information.

After issuing the statement ALTER TABLE ips ALGORITHM=INPLACE, REORGANIZE PARTITION, you
can see using ndb_desc that the data for this table is now stored using 4 partitions, as shown here (with
the relevant portions of the output in bold type):

$> ndb_desc -c 198.51.100.10 -d n ips -p
-- ips --
Version: 16777217
Fragment type: 9
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 6
Number of primary keys: 1
Length of frm data: 341
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0

584

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

Adding NDB Cluster Data Nodes Online: Detailed Example

ForceVarPart: 1
FragmentCount: 4
TableStatus: Retrieved
-- Attributes --
id Bigint PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY AUTO_INCR
country_code Char(2;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
type Char(4;latin1_swedish_ci) NOT NULL AT=FIXED ST=MEMORY
ip_address Varchar(15;latin1_swedish_ci) NOT NULL AT=SHORT_VAR ST=MEMORY
addresses Bigunsigned NULL AT=FIXED ST=MEMORY
date Bigunsigned NULL AT=FIXED ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
PRIMARY(id) - OrderedIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
0 12981 52296 1572864 557056
1 13236 52515 1605632 557056
2 13105 13105 819200 294912
3 13093 13093 819200 294912

NDBT_ProgramExit: 0 - OK

Note

Normally, ALTER TABLE table_name [ALGORITHM=INPLACE,] REORGANIZE
PARTITION is used with a list of partition identifiers and a set of partition definitions
to create a new partitioning scheme for a table that has already been explicitly
partitioned. Its use here to redistribute data onto a new NDB Cluster node group is
an exception in this regard; when used in this way, no other keywords or identifiers
follow REORGANIZE PARTITION.

For more information, see ALTER TABLE Statement.

In addition, for each table, the ALTER TABLE statement should be followed by an OPTIMIZE TABLE to
reclaim wasted space. You can obtain a list of all NDBCLUSTER tables using the following query against the
INFORMATION_SCHEMA.TABLES table:

SELECT TABLE_SCHEMA, TABLE_NAME
 FROM INFORMATION_SCHEMA.TABLES
 WHERE ENGINE = 'NDBCLUSTER';

Note

The INFORMATION_SCHEMA.TABLES.ENGINE value for an NDB Cluster table is
always NDBCLUSTER, regardless of whether the CREATE TABLE statement used to
create the table (or ALTER TABLE statement used to convert an existing table from
a different storage engine) used NDB or NDBCLUSTER in its ENGINE option.

You can see after performing these statements in the output of ALL REPORT MEMORY that the data and
indexes are now redistributed between all cluster data nodes, as shown here:

ndb_mgm> ALL REPORT MEMORY

Node 1: Data usage is 5%(176 32K pages of total 3200)
Node 1: Index usage is 0%(76 8K pages of total 12832)
Node 2: Data usage is 5%(176 32K pages of total 3200)
Node 2: Index usage is 0%(76 8K pages of total 12832)
Node 3: Data usage is 2%(80 32K pages of total 3200)
Node 3: Index usage is 0%(51 8K pages of total 12832)
Node 4: Data usage is 2%(80 32K pages of total 3200)
Node 4: Index usage is 0%(50 8K pages of total 12832)

585

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-tables-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Adding NDB Cluster Data Nodes Online: Detailed Example

Note

Since only one DDL operation on NDBCLUSTER tables can be executed at a time,
you must wait for each ALTER TABLE ... REORGANIZE PARTITION statement
to finish before issuing the next one.

It is not necessary to issue ALTER TABLE ... REORGANIZE PARTITION statements for NDBCLUSTER
tables created after the new data nodes have been added; data added to such tables is distributed among
all data nodes automatically. However, in NDBCLUSTER tables that existed prior to the addition of the
new nodes, neither existing nor new data is distributed using the new nodes until these tables have been
reorganized using ALTER TABLE ... REORGANIZE PARTITION.

Alternative procedure, without rolling restart. It is possible to avoid the need for a rolling restart
by configuring the extra data nodes, but not starting them, when first starting the cluster. We assume, as
before, that you wish to start with two data nodes—nodes 1 and 2—in one node group and later to expand
the cluster to four data nodes, by adding a second node group consisting of nodes 3 and 4:

[ndbd default]
DataMemory = 100M
IndexMemory = 100M
NoOfReplicas = 2
DataDir = /usr/local/mysql/var/mysql-cluster

[ndbd]
Id = 1
HostName = 198.51.100.1

[ndbd]
Id = 2
HostName = 198.51.100.2

[ndbd]
Id = 3
HostName = 198.51.100.3
Nodegroup = 65536

[ndbd]
Id = 4
HostName = 198.51.100.4
Nodegroup = 65536

[mgm]
HostName = 198.51.100.10
Id = 10

[api]
Id=20
HostName = 198.51.100.20

[api]
Id=21
HostName = 198.51.100.21

The data nodes to be brought online at a later time (nodes 3 and 4) can be configured with NodeGroup =
65536, in which case nodes 1 and 2 can each be started as shown here:

$> ndbd -c 198.51.100.10 --initial

The data nodes configured with NodeGroup = 65536 are treated by the management server as though
you had started nodes 1 and 2 using --nowait-nodes=3,4 after waiting for a period of time determined
by the setting for the StartNoNodeGroupTimeout data node configuration parameter. By default, this is
15 seconds (15000 milliseconds).

586

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Online Backup of NDB Cluster

Note

StartNoNodegroupTimeout must be the same for all data nodes in the cluster;
for this reason, you should always set it in the [ndbd default] section of the
config.ini file, rather than for individual data nodes.

When you are ready to add the second node group, you need only perform the following additional steps:

1. Start data nodes 3 and 4, invoking the data node process once for each new node:

$> ndbd -c 198.51.100.10 --initial

2. Issue the appropriate CREATE NODEGROUP command in the management client:

ndb_mgm> CREATE NODEGROUP 3,4

3. In the mysql client, issue ALTER TABLE ... REORGANIZE PARTITION and OPTIMIZE TABLE
statements for each existing NDBCLUSTER table. (As noted elsewhere in this section, existing NDB
Cluster tables cannot use the new nodes for data distribution until this has been done.)

6.8 Online Backup of NDB Cluster

The next few sections describe how to prepare for and then to create an NDB Cluster backup using the
functionality for this purpose found in the ndb_mgm management client. To distinguish this type of backup
from a backup made using mysqldump, we sometimes refer to it as a “native” NDB Cluster backup. (For
information about the creation of backups with mysqldump, see mysqldump — A Database Backup
Program.) Restoration of NDB Cluster backups is done using the ndb_restore utility provided with
the NDB Cluster distribution; for information about ndb_restore and its use in restoring NDB Cluster
backups, see Section 5.23, “ndb_restore — Restore an NDB Cluster Backup”.

NDB 8.0 makes it possible to create backups using multiple LDMs to achieve parallelism on the data
nodes. See Section 6.8.5, “Taking an NDB Backup with Parallel Data Nodes”.

6.8.1 NDB Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata. The names and definitions of all database tables

• Table records. The data actually stored in the database tables at the time that the backup was made

• Transaction log. A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table definitions
(for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header that
states the tables to which the records belong. Following the list of records there is a footer containing a
checksum for all records.

587

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html

Using The NDB Cluster Management Client to Create a Backup

• BACKUP-backup_id.node_id.log

A log file containing records of committed transactions. Only transactions on tables stored in the backup
are stored in the log. Nodes involved in the backup save different records because different nodes host
different database fragments.

In the listing just shown, backup_id stands for the backup identifier and node_id is the unique identifier
for the node creating the file.

The location of the backup files is determined by the BackupDataDir parameter.

6.8.2 Using The NDB Cluster Management Client to Create a Backup

Before starting a backup, make sure that the cluster is properly configured for performing one. (See
Section 6.8.3, “Configuration for NDB Cluster Backups”.)

The START BACKUP command is used to create a backup, and has the syntax shown here:

START BACKUP [backup_id]
 [encryption_option]
 [wait_option]
 [snapshot_option]

encryption_option:
ENCRYPT [PASSWORD=password]

password:
{'password_string' | "password_string"}

wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT

snapshot_option:
SNAPSHOTSTART | SNAPSHOTEND

Successive backups are automatically identified sequentially, so the backup_id, an integer greater
than or equal to 1, is optional; if it is omitted, the next available value is used. If an existing backup_id
value is used, the backup fails with the error Backup failed: file already exists. If used, the
backup_id must follow immediately after the START BACKUP keywords, before any other options are
used.

In NDB 8.0.22 and later, START BACKUP supports the creation of encrypted backups using ENCRYPT
PASSWORD=password. The password must meet all of the following requirements:

• Uses any of the printable ASCII characters except !, ', ", $, %, \, and ^

• Is no more than 256 characters in length

• Is enclosed by single or double quotation marks

When ENCRYPT PASSWORD='password' is used, the backup data record and log files written by each
data node are encrypted with a key derived from the user-provided password and a randomly-generated
salt using a key derivation function (KDF) that employs the PBKDF2-SHA256 algorithm to generate a
symmetric encryption key for that file. This function has the form shown here:

key = KDF(random_salt, password)

The key so generated is then used to encrypt the backup data using AES 256 CBC inline, and symmetric
encryption is employed for encrypting the backup fileset (with the generated key).

588

Using The NDB Cluster Management Client to Create a Backup

Note

NDB Cluster never saves the user-furnished password or generated encryption key.

Starting with NDB 8.0.24, the PASSWORD option can be omitted from encryption_option. In this case,
the management client prompts the user for a password.

It is possible using PASSWORD to set an empty password ('' or ""), but this is not recommended.

An encrypted backup can be decrypted using any of the following commands:

• ndb_restore --decrypt --backup-password=password

• ndbxfrm --decrypt-password=password input_file output_file

• ndb_print_backup_file -P password file_name

NDB 8.0.24 and later supports the additional commands listed here:

• ndb_restore --decrypt --backup-password-from-stdin

• ndbxfrm --decrypt-password-from-stdin input_file output_file

• ndb_print_backup_file --backup-password=password file_name

• ndb_print_backup_file --backup-password-from-stdin file_name

• ndb_mgm --backup-password-from-stdin --execute "START BACKUP ..."

See the descriptions of these programs for more information, such as additional options that may be
required.

The wait_option can be used to determine when control is returned to the management client after a
START BACKUP command is issued, as shown in the following list:

• If NOWAIT is specified, the management client displays a prompt immediately, as seen here:

ndb_mgm> START BACKUP NOWAIT
ndb_mgm>

In this case, the management client can be used even while it prints progress information from the
backup process.

• With WAIT STARTED the management client waits until the backup has started before returning control
to the user, as shown here:

ndb_mgm> START BACKUP WAIT STARTED
Waiting for started, this may take several minutes
Node 2: Backup 3 started from node 1
ndb_mgm>

• WAIT COMPLETED causes the management client to wait until the backup process is complete before
returning control to the user.

WAIT COMPLETED is the default.

 A snapshot_option can be used to determine whether the backup matches the state of the cluster
when START BACKUP was issued, or when it was completed. SNAPSHOTSTART causes the backup to
match the state of the cluster when the backup began; SNAPSHOTEND causes the backup to reflect the
state of the cluster when the backup was finished. SNAPSHOTEND is the default, and matches the behavior
found in previous NDB Cluster releases.

589

Using The NDB Cluster Management Client to Create a Backup

Note

If you use the SNAPSHOTSTART option with START BACKUP, and the
CompressedBackup parameter is enabled, only the data and control files are
compressed—the log file is not compressed.

If both a wait_option and a snapshot_option are used, they may be specified in either order. For
example, all of the following commands are valid, assuming that there is no existing backup having 4 as its
ID:

START BACKUP WAIT STARTED SNAPSHOTSTART
START BACKUP SNAPSHOTSTART WAIT STARTED
START BACKUP 4 WAIT COMPLETED SNAPSHOTSTART
START BACKUP SNAPSHOTEND WAIT COMPLETED
START BACKUP 4 NOWAIT SNAPSHOTSTART

The procedure for creating a backup consists of the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2. Execute the START BACKUP command. This produces several lines of output indicating the progress of
the backup, as shown here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1
Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes
ndb_mgm>

3. When the backup has started the management client displays this message:

Backup backup_id started from node node_id

backup_id is the unique identifier for this particular backup. This identifier is saved in the cluster
log, if it has not been configured otherwise. node_id is the identifier of the management server
that is coordinating the backup with the data nodes. At this point in the backup process the cluster
has received and processed the backup request. It does not mean that the backup has finished. An
example of this statement is shown here:

Node 2: Backup 1 started from node 1

4. The management client indicates with a message like this one that the backup has started:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier for
this particular backup, and node_id is the node ID of the management server that is coordinating the
backup with the data nodes. This output is accompanied by additional information including relevant
global checkpoints, the number of records backed up, and the size of the data, as shown here:

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes

It is also possible to perform a backup from the system shell by invoking ndb_mgm with the -e or --
execute option, as shown in this example:

$> ndb_mgm -e "START BACKUP 6 WAIT COMPLETED SNAPSHOTSTART"

590

Using The NDB Cluster Management Client to Create a Backup

When using START BACKUP in this way, you must specify the backup ID.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the
config.ini file using the BackupDataDir configuration parameter. The backup files created for a
backup with a given backup_id are stored in a subdirectory named BACKUP-backup_id in the backup
directory.

Cancelling backups. To cancel or abort a backup that is already in progress, perform the following
steps:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the
management client when the backup was started (in the message Backup backup_id started
from node management_node_id).

3. The management client acknowledges the abort request with Abort of backup backup_id
ordered.

Note

At this point, the management client has not yet received a response from the
cluster data nodes to this request, and the backup has not yet actually been
aborted.

4. After the backup has been aborted, the management client reports this fact in a manner similar to what
is shown here:

Node 1: Backup 3 started from 5 has been aborted.
 Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error

In this example, we have shown sample output for a cluster with 4 data nodes, where the sequence
number of the backup to be aborted is 3, and the management node to which the cluster management
client is connected has the node ID 5. The first node to complete its part in aborting the backup reports
that the reason for the abort was due to a request by the user. (The remaining nodes report that the
backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP
command in any particular order.

The Backup backup_id started from node management_node_id has been aborted
messages mean that the backup has been terminated and that all files relating to this backup have
been removed from the cluster file system.

It is also possible to abort a backup in progress from a system shell using this command:

591

Configuration for NDB Cluster Backups

$> ndb_mgm -e "ABORT BACKUP backup_id"

Note

If there is no backup having the ID backup_id running when an ABORT BACKUP is
issued, the management client makes no response, nor is it indicated in the cluster
log that an invalid abort command was sent.

6.8.3 Configuration for NDB Cluster Backups

Five configuration parameters are essential for backup:

• BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

• BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

• BackupMemory

The total memory allocated in a data node for backups. This should be the sum of the memory allocated
for the backup data buffer and the backup log buffer.

• BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup log
buffer.

• BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the backup
log buffer.

In addition, CompressedBackup causes NDB to use compression when creating and writing to backup
files.

More detailed information about these parameters can be found in Backup Parameters.

You can also set a location for the backup files using the BackupDataDir configuration parameter. The
default is FileSystemPath/BACKUP/BACKUP-backup_id.

In NDB 8.0.22 and later, you can enforce encryption of backup files by enabling
RequireEncryptedBackup. When this parameter is set to 1, backups cannot be created without
specifying ENCRYPT PASSWORD=password as part of a START BACKUP command.

6.8.4 NDB Cluster Backup Troubleshooting

If an error code is returned when issuing a backup request, the most likely cause is insufficient memory or
disk space. You should check that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and their
sum is greater than 4MB, then you must also set BackupMemory as well.

592

Taking an NDB Backup with Parallel Data Nodes

You should also make sure that there is sufficient space on the hard drive partition of the backup target.

NDB does not support repeatable reads, which can cause problems with the restoration process. Although
the backup process is “hot”, restoring an NDB Cluster from backup is not a 100% “hot” process. This is due
to the fact that, for the duration of the restore process, running transactions get nonrepeatable reads from
the restored data. This means that the state of the data is inconsistent while the restore is in progress.

6.8.5 Taking an NDB Backup with Parallel Data Nodes

It is possible in NDB 8.0 to take a backup with multiple local data managers (LDMs) acting in parallel on
the data nodes. For this to work, all data nodes in the cluster must use multiple LDMs, and each data node
must use the same number of LDMs. This means that all data nodes must run ndbmtd (ndbd is single-
threaded and thus always has only one LDM) and they must be configured to use multiple LDMs before
taking the backup; ndbmtd by default runs in single-threaded mode. You can cause them to use multiple
LDMs by choosing an appropriate setting for one of the multi-threaded data node configuration parameters
MaxNoOfExecutionThreads or ThreadConfig. Keep in mind that changing these parameters requires
a restart of the cluster; this can be a rolling restart. In addition, the EnableMultithreadedBackup
parameter must be set to 1 for each data node (this is the default).

Depending on the number of LDMs and other factors, you may also need to increase
NoOfFragmentLogParts. If you are using large Disk Data tables, you may also need to increase
DiskPageBufferMemory. As with single-threaded backups, you may also want or need to make
adjustments to settings for BackupDataBufferSize, BackupMemory, and other configuration
parameters relating to backups (see Backup parameters).

Once all data nodes are using multiple LDMs, you can take the parallel backup using the START BACKUP
command in the NDB management client just as you would if the data nodes were running ndbd (or
ndbmtd in single-threaded mode); no additional or special syntax is required, and you can specify a
backup ID, wait option, or snapshot option in any combination as needed or desired.

Backups using multiple LDMs create subdirectories, one per LDM, under the directory BACKUP/
BACKUP-backup_id/ (which in turn resides under the BackupDataDir) on each data node; these
subdirectories are named BACKUP-backup_id-PART-1-OF-N/, BACKUP-backup_id-PART-2-
OF-N/, and so on, up to BACKUP-backup_id-PART-N-OF-N/, where backup_id is the backup ID used
for this backup and N is the number of LDMs per data node. Each of these subdirectories contains the
usual backup files BACKUP-backup_id-0.node_id.Data, BACKUP-backup_id.node_id.ctl, and
BACKUP-backup_id.node_id.log, where node_id is the node ID of this data node.

ndb_restore automatically checks for the presence of the subdirectories just described; if it finds them,
it attempts to restore the backup in parallel. For information about restoring backups taken with multiple
LDMs, see Section 5.23.3, “Restoring from a backup taken in parallel”.

To force creation of a single-threaded backup that can easily be imported by ndb_restore from an NDB
release prior to 8.0, you can set EnableMultithreadedBackup = 0 for all data nodes (you can do
this by setting the parameter in the [ndbd default] section of the config.ini global configuration
file). It is also possible to restore a parallel backup to a cluster running an older version of NDB. See
Section 5.23.1.1, “Restoring an NDB backup to a previous version of NDB Cluster”, for more information.

6.9 MySQL Server Usage for NDB Cluster

mysqld is the traditional MySQL server process. To be used with NDB Cluster, mysqld needs to
be built with support for the NDB storage engine, as it is in the precompiled binaries available from
https://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke CMake with the -
DWITH_NDBCLUSTER=1 option to include support for NDB.

593

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster

MySQL Server Usage for NDB Cluster

For more information about compiling NDB Cluster from source, see Section 3.1.4, “Building NDB
Cluster from Source on Linux”, and Section 3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

(For information about mysqld options and variables, in addition to those discussed in this section, which
are relevant to NDB Cluster, see Section 4.3.9, “MySQL Server Options and Variables for NDB Cluster”.)

If the mysqld binary has been built with Cluster support, the NDBCLUSTER storage engine is still disabled
by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDBCLUSTER storage engine enabled is to issue
the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES as the
Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row displayed in
the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED in this row, you
need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of information:

• The MySQL server's own cluster node ID

• The host name or IP address for the management server

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connection string either on the
command line when starting mysqld or in my.cnf. The connection string contains the host name or IP
address where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides, and
the management server listens for cluster messages on port 1186:

$> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 4.3.3, “NDB Cluster Connection Strings”, for more information on connection strings.

Given this information, the MySQL server can act as a full participant in the cluster. (We often refer to a
mysqld process running in this manner as an SQL node.) It is fully aware of all cluster data nodes as well
as their status, and establishes connections to all data nodes. In this case, it is able to use any data node
as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege, then
the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db:
Command: Daemon
 Time: 1
 State: Waiting for event from ndbcluster
 Info: NULL

594

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process

NDB Cluster Disk Data Tables

Important

To participate in an NDB Cluster, the mysqld process must be started with both
the options --ndbcluster and --ndb-connectstring (or their equivalents in
my.cnf). If mysqld is started with only the --ndbcluster option, or if it is unable
to contact the cluster, it is not possible to work with NDB tables, nor is it possible to
create any new tables regardless of storage engine. The latter restriction is a safety
measure intended to prevent the creation of tables having the same names as NDB
tables while the SQL node is not connected to the cluster. If you wish to create
tables using a different storage engine while the mysqld process is not participating
in an NDB Cluster, you must restart the server without the --ndbcluster option.

6.10 NDB Cluster Disk Data Tables
NDB Cluster supports storing nonindexed columns of NDB tables on disk, rather than in RAM. Column data
and logging metadata are kept in data files and undo log files, conceptualized as tablespaces and log file
groups, as described in the next section—see Section 6.10.1, “NDB Cluster Disk Data Objects”.

NDB Cluster Disk Data performance can be influenced by a number of configuration parameters. For
information about these parameters and their effects, see Disk Data Configuration Parameters, and Disk
Data and GCP Stop errors.

You should also set the DiskDataUsingSameDisk data node configuration parameter to false when
using separate disks for Disk Data files.

See also Disk Data file system parameters.

NDB 8.0 provides improved support when using Disk Data tables with solid-state drives, in particular those
using NVMe. See the following documentation for more information:

• Disk Data latency parameters

• Section 6.14.31, “The ndbinfo diskstat Table”

• Section 6.14.32, “The ndbinfo diskstats_1sec Table”

• Section 6.14.49, “The ndbinfo pgman_time_track_stats Table”

6.10.1 NDB Cluster Disk Data Objects

NDB Cluster Disk Data storage is implemented using the following objects:

• Tablespace: Acts as containers for other Disk Data objects. A tablespace contains one or more data files
and one or more undo log file groups.

• Data file: Stores column data. A data file is assigned directly to a tablespace.

• Undo log file: Contains undo information required for rolling back transactions. Assigned to an undo log
file group.

• log file group: Contains one or more undo log files. Assigned to a tablespace.

Undo log files and data files are actual files in the file system of each data node; by default they are placed
in ndb_node_id_fs in the DataDir specified in the NDB Cluster config.ini file, and where node_id
is the data node's node ID. It is possible to place these elsewhere by specifying either an absolute or
relative path as part of the filename when creating the undo log or data file. Statements that create these
files are shown later in this section.

595

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Disk Data Objects

Undo log files are used only by Disk Data tables, and are not needed or used by NDB tables that are stored
in memory only.

NDB Cluster tablespaces and log file groups are not implemented as files.

Although not all Disk Data objects are implemented as files, they all share the same namespace. This
means that each Disk Data object must be uniquely named (and not merely each Disk Data object of a
given type). For example, you cannot have a tablespace and a log file group both named dd1.

Assuming that you have already set up an NDB Cluster with all nodes (including management and SQL
nodes), the basic steps for creating an NDB Cluster table on disk are as follows:

1. Create a log file group, and assign one or more undo log files to it (an undo log file is also sometimes
referred to as an undofile).

2. Create a tablespace; assign the log file group, as well as one or more data files, to the tablespace.

3. Create a Disk Data table that uses this tablespace for data storage.

Each of these tasks can be accomplished using SQL statements in the mysql client or other MySQL client
application, as shown in the example that follows.

1. We create a log file group named lg_1 using CREATE LOGFILE GROUP. This log file group is to be
made up of two undo log files, which we name undo_1.log and undo_2.log, whose initial sizes are
16 MB and 12 MB, respectively. (The default initial size for an undo log file is 128 MB.) Optionally, you
can also specify a size for the log file group's undo buffer, or permit it to assume the default value of 8
MB. In this example, we set the UNDO buffer's size at 2 MB. A log file group must be created with an
undo log file; so we add undo_1.log to lg_1 in this CREATE LOGFILE GROUP statement:

CREATE LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_1.log'
 INITIAL_SIZE 16M
 UNDO_BUFFER_SIZE 2M
 ENGINE NDBCLUSTER;

To add undo_2.log to the log file group, use the following ALTER LOGFILE GROUP statement:

ALTER LOGFILE GROUP lg_1
 ADD UNDOFILE 'undo_2.log'
 INITIAL_SIZE 12M
 ENGINE NDBCLUSTER;

Some items of note:

• The .log file extension used here is not required. We employ it merely to make the log files easily
recognizable.

• Every CREATE LOGFILE GROUP and ALTER LOGFILE GROUP statement must include an ENGINE
option. The only permitted values for this option are NDBCLUSTER and NDB.

Important

There can exist at most one log file group in the same NDB Cluster at any
given time.

• When you add an undo log file to a log file group using ADD UNDOFILE 'filename', a file with
the name filename is created in the ndb_node_id_fs directory within the DataDir of each data
node in the cluster, where node_id is the node ID of the data node. Each undo log file is of the size
specified in the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the ALTER

596

https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html

NDB Cluster Disk Data Objects

LOGFILE GROUP statement just shown creates 4 undo log files, 1 each on in the data directory of
each of the 4 data nodes; each of these files is named undo_2.log and each file is 12 MB in size.

• UNDO_BUFFER_SIZE is limited by the amount of system memory available.

• See CREATE LOGFILE GROUP Statement, and ALTER LOGFILE GROUP Statement, for more
information about these statements.

2. Now we can create a tablespace—an abstract container for files used by Disk Data tables to store
data. A tablespace is associated with a particular log file group; when creating a new tablespace, you
must specify the log file group it uses for undo logging. You must also specify at least one data file; you
can add more data files to the tablespace after the tablespace is created. It is also possible to drop data
files from a tablespace (see example later in this section).

Assume that we wish to create a tablespace named ts_1 which uses lg_1 as its log file group. We
want the tablespace to contain two data files, named data_1.dat and data_2.dat, whose initial
sizes are 32 MB and 48 MB, respectively. (The default value for INITIAL_SIZE is 128 MB.) We can
do this using two SQL statements, as shown here:

CREATE TABLESPACE ts_1
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP lg_1
 INITIAL_SIZE 32M
 ENGINE NDBCLUSTER;

ALTER TABLESPACE ts_1
 ADD DATAFILE 'data_2.dat'
 INITIAL_SIZE 48M;

The CREATE TABLESPACE statement creates a tablespace ts_1 with the data file data_1.dat,
and associates ts_1 with log file group lg_1. The ALTER TABLESPACE adds the second data file
(data_2.dat).

Some items of note:

• As is the case with the .log file extension used in this example for undo log files, there is no special
significance for the .dat file extension; it is used merely for easy recognition.

• When you add a data file to a tablespace using ADD DATAFILE 'filename', a file with the name
filename is created in the ndb_node_id_fs directory within the DataDir of each data node in
the cluster, where node_id is the node ID of the data node. Each data file is of the size specified in
the SQL statement. For example, if an NDB Cluster has 4 data nodes, then the ALTER TABLESPACE
statement just shown creates 4 data files, 1 each in the data directory of each of the 4 data nodes;
each of these files is named data_2.dat and each file is 48 MB in size.

• NDB reserves 4% of each tablespace for use during data node restarts. This space is not available for
storing data.

• CREATE TABLESPACE statements must contain an ENGINE clause; only tables using the same
storage engine as the tablespace can be created in the tablespace. For ALTER TABLESPACE, an
ENGINE clause is accepted but is deprecated and subject to removal in a future release. For NDB
tablespaces, the only permitted values for this option are NDBCLUSTER and NDB.

• In NDB 8.0.20 and later, allocation of extents is performed in round-robin fashion among all data files
used by a given tablespace.

• For more information about the CREATE TABLESPACE and ALTER TABLESPACE statements, see
CREATE TABLESPACE Statement, and ALTER TABLESPACE Statement.

597

https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html

NDB Cluster Disk Data Objects

3. Now it is possible to create a table whose unindexed columns are stored on disk using files in
tablespace ts_1:

CREATE TABLE dt_1 (
 member_id INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 last_name VARCHAR(50) NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 dob DATE NOT NULL,
 joined DATE NOT NULL,
 INDEX(last_name, first_name)
)
 TABLESPACE ts_1 STORAGE DISK
 ENGINE NDBCLUSTER;

TABLESPACE ts_1 STORAGE DISK tells the NDB storage engine to use tablespace ts_1 for data
storage on disk.

Once table ts_1 has been created as shown, you can perform INSERT, SELECT, UPDATE, and
DELETE statements on it just as you would with any other MySQL table.

It is also possible to specify whether an individual column is stored on disk or in memory by using a
STORAGE clause as part of the column's definition in a CREATE TABLE or ALTER TABLE statement.
STORAGE DISK causes the column to be stored on disk, and STORAGE MEMORY causes in-memory
storage to be used. See CREATE TABLE Statement, for more information.

You can obtain information about the NDB disk data files and undo log files just created by querying the
FILES table in the INFORMATION_SCHEMA database, as shown here:

mysql> SELECT
 FILE_NAME AS File, FILE_TYPE AS Type,
 TABLESPACE_NAME AS Tablespace, TABLE_NAME AS Name,
 LOGFILE_GROUP_NAME AS 'File group',
 FREE_EXTENTS AS Free, TOTAL_EXTENTS AS Total
 FROM INFORMATION_SCHEMA.FILES
 WHERE ENGINE='ndbcluster';
+--------------+----------+------------+------+------------+------+---------+
| File | Type | Tablespace | Name | File group | Free | Total |
+--------------+----------+------------+------+------------+------+---------+
./undo_1.log	UNDO LOG	lg_1	NULL	lg_1	0	4194304
./undo_2.log	UNDO LOG	lg_1	NULL	lg_1	0	3145728
./data_1.dat	DATAFILE	ts_1	NULL	lg_1	32	32
./data_2.dat	DATAFILE	ts_1	NULL	lg_1	48	48
+--------------+----------+------------+------+------------+------+---------+
4 rows in set (0.00 sec)

For more information and examples, see The INFORMATION_SCHEMA FILES Table.

Indexing of columns implicitly stored on disk. For table dt_1 as defined in the example just shown,
only the dob and joined columns are stored on disk. This is because there are indexes on the id,
last_name, and first_name columns, and so data belonging to these columns is stored in RAM. Only
nonindexed columns can be held on disk; indexes and indexed column data continue to be stored in
memory. This tradeoff between the use of indexes and conservation of RAM is something you must keep
in mind as you design Disk Data tables.

You cannot add an index to a column that has been explicitly declared STORAGE DISK, without first
changing its storage type to MEMORY; any attempt to do so fails with an error. A column which implicitly
uses disk storage can be indexed; when this is done, the column's storage type is changed to MEMORY
automatically. By “implicitly”, we mean a column whose storage type is not declared, but which is which
inherited from the parent table. In the following CREATE TABLE statement (using the tablespace ts_1
defined previously), columns c2 and c3 use disk storage implicitly:

598

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

NDB Cluster Disk Data Objects

mysql> CREATE TABLE ti (
 -> c1 INT PRIMARY KEY,
 -> c2 INT,
 -> c3 INT,
 -> c4 INT
 ->)
 -> STORAGE DISK
 -> TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;
Query OK, 0 rows affected (1.31 sec)

Because c2, c3, and c4 are themselves not declared with STORAGE DISK, it is possible to index them.
Here, we add indexes to c2 and c3, using, respectively, CREATE INDEX and ALTER TABLE:

mysql> CREATE INDEX i1 ON ti(c2);
Query OK, 0 rows affected (2.72 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> ALTER TABLE ti ADD INDEX i2(c3);
Query OK, 0 rows affected (0.92 sec)
Records: 0 Duplicates: 0 Warnings: 0

SHOW CREATE TABLE confirms that the indexes were added.

mysql> SHOW CREATE TABLE ti\G
*************************** 1. row ***************************
 Table: ti
Create Table: CREATE TABLE `ti` (
 `c1` int(11) NOT NULL,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 `c4` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`),
 KEY `i1` (`c2`),
 KEY `i2` (`c3`)
) /*!50100 TABLESPACE `ts_1` STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

You can see using ndb_desc that the indexed columns (emphasized text) now use in-memory rather than
on-disk storage:

$> ./ndb_desc -d test t1
-- t1 --
Version: 33554433
Fragment type: HashMapPartition
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 4
Number of primary keys: 1
Length of frm data: 317
Max Rows: 0
Row Checksum: 1
Row GCI: 1
SingleUserMode: 0
ForceVarPart: 1
PartitionCount: 4
FragmentCount: 4
PartitionBalance: FOR_RP_BY_LDM
ExtraRowGciBits: 0
ExtraRowAuthorBits: 0
TableStatus: Retrieved
Table options:
HashMap: DEFAULT-HASHMAP-3840-4
-- Attributes --

599

https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html

NDB Cluster Disk Data Storage Requirements

c1 Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
c2 Int NULL AT=FIXED ST=MEMORY
c3 Int NULL AT=FIXED ST=MEMORY
c4 Int NULL AT=FIXED ST=DISK
-- Indexes --
PRIMARY KEY(c1) - UniqueHashIndex
i2(c3) - OrderedIndex
PRIMARY(c1) - OrderedIndex
i1(c2) - OrderedIndex

NDBT_ProgramExit: 0 - OK

Performance note. The performance of a cluster using Disk Data storage is greatly improved if Disk
Data files are kept on a separate physical disk from the data node file system. This must be done for each
data node in the cluster to derive any noticeable benefit.

You can use absolute and relative file system paths with ADD UNDOFILE and ADD DATAFILE; relative
paths are calculated with respect to the data node's data directory.

A log file group, a tablespace, and any Disk Data tables using these must be created in a particular order.
This is also true for dropping these objects, sibject to the following constraints:

• A log file group cannot be dropped as long as any tablespaces use it.

• A tablespace cannot be dropped as long as it contains any data files.

• You cannot drop any data files from a tablespace as long as there remain any tables which are using the
tablespace.

• It is not possible to drop files created in association with a different tablespace other than the one with
which the files were created.

For example, to drop all the objects created so far in this section, you can use the following statements:

mysql> DROP TABLE dt_1;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_2.dat'
 -> ENGINE NDBCLUSTER;

mysql> ALTER TABLESPACE ts_1
 -> DROP DATAFILE 'data_1.dat'
 -> ENGINE NDBCLUSTER;

mysql> DROP TABLESPACE ts_1
 -> ENGINE NDBCLUSTER;

mysql> DROP LOGFILE GROUP lg_1
 -> ENGINE NDBCLUSTER;

These statements must be performed in the order shown, except that the two ALTER TABLESPACE ...
DROP DATAFILE statements may be executed in either order.

6.10.2 NDB Cluster Disk Data Storage Requirements

 The following items apply to Disk Data storage requirements:

• Variable-length columns of Disk Data tables take up a fixed amount of space. For each row, this is equal
to the space required to store the largest possible value for that column.

For general information about calculating these values, see Data Type Storage Requirements.

600

https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html

Online Operations with ALTER TABLE in NDB Cluster

You can obtain an estimate the amount of space available in data files and undo log files by
querying the INFORMATION_SCHEMA.FILES table. For more information and examples, see The
INFORMATION_SCHEMA FILES Table.

Note

The OPTIMIZE TABLE statement does not have any effect on Disk Data tables.

• In a Disk Data table, the first 256 bytes of a TEXT or BLOB column are stored in memory; only the
remainder is stored on disk.

• Each row in a Disk Data table uses 8 bytes in memory to point to the data stored on disk. This means
that, in some cases, converting an in-memory column to the disk-based format can actually result in
greater memory usage. For example, converting a CHAR(4) column from memory-based to disk-based
format increases the amount of DataMemory used per row from 4 to 8 bytes.

Important

Starting the cluster with the --initial option does not remove Disk Data files.
You must remove these manually prior to performing an initial restart of the cluster.

Performance of Disk Data tables can be improved by minimizing the number of disk seeks by making sure
that DiskPageBufferMemory is of sufficient size. You can query the diskpagebuffer table to help
determine whether the value for this parameter needs to be increased.

6.11 Online Operations with ALTER TABLE in NDB Cluster
MySQL NDB Cluster 8.0 supports online table schema changes using the standard ALTER TABLE syntax
employed by the MySQL Server (ALGORITHM=DEFAULT|INPLACE|COPY), and described elsewhere.

Note

Some older releases of NDB Cluster used a syntax specific to NDB for online ALTER
TABLE operations. That syntax has since been removed.

Operations that add and drop indexes on variable-width columns of NDB tables occur online. Online
operations are noncopying; that is, they do not require that indexes be re-created. They do not lock the
table being altered from access by other API nodes in an NDB Cluster (but see Limitations of NDB online
operations, later in this section). Such operations do not require single user mode for NDB table alterations
made in an NDB cluster with multiple API nodes; transactions can continue uninterrupted during online
DDL operations.

ALGORITHM=INPLACE can be used to perform online ADD COLUMN, ADD INDEX (including CREATE
INDEX statements), and DROP INDEX operations on NDB tables. Online renaming of NDB tables is also
supported.

Previously, columns of NDB tables could not be renamed online; this limitation is removed in NDB 8.0.

Currently you cannot add disk-based columns to NDB tables online. This means that, if you wish to add an
in-memory column to an NDB table that uses a table-level STORAGE DISK option, you must declare the
new column as using memory-based storage explicitly. For example—assuming that you have already
created tablespace ts1—suppose that you create table t1 as follows:

mysql> CREATE TABLE t1 (
 > c1 INT NOT NULL PRIMARY KEY,
 > c2 VARCHAR(30)
 >)
 > TABLESPACE ts1 STORAGE DISK

601

https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limitations of NDB online operations

 > ENGINE NDB;
Query OK, 0 rows affected (1.73 sec)
Records: 0 Duplicates: 0 Warnings: 0

You can add a new in-memory column to this table online as shown here:

mysql> ALTER TABLE t1
 > ADD COLUMN c3 INT COLUMN_FORMAT DYNAMIC STORAGE MEMORY,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected (1.25 sec)
Records: 0 Duplicates: 0 Warnings: 0

This statement fails if the STORAGE MEMORY option is omitted:

mysql> ALTER TABLE t1
 > ADD COLUMN c4 INT COLUMN_FORMAT DYNAMIC,
 > ALGORITHM=INPLACE;
ERROR 1846 (0A000): ALGORITHM=INPLACE is not supported. Reason:
Adding column(s) or add/reorganize partition not supported online. Try
ALGORITHM=COPY.

If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed automatically,
but a warning is issued, as shown here:

mysql> ALTER ONLINE TABLE t1 ADD COLUMN c4 INT STORAGE MEMORY;
Query OK, 0 rows affected, 1 warning (1.17 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: DYNAMIC column c4 with STORAGE DISK is not supported, column will
become FIXED

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t1` (
 `c1` int(11) NOT NULL,
 `c2` varchar(30) DEFAULT NULL,
 `c3` int(11) /*!50606 STORAGE MEMORY */ /*!50606 COLUMN_FORMAT DYNAMIC */ DEFAULT NULL,
 `c4` int(11) /*!50606 STORAGE MEMORY */ DEFAULT NULL,
 PRIMARY KEY (`c1`)
) /*!50606 TABLESPACE ts_1 STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.03 sec)

Note

The STORAGE and COLUMN_FORMAT keywords are supported only in NDB Cluster;
in any other version of MySQL, attempting to use either of these keywords in a
CREATE TABLE or ALTER TABLE statement results in an error.

It is also possible to use the statement ALTER TABLE ... REORGANIZE PARTITION,
ALGORITHM=INPLACE with no partition_names INTO (partition_definitions) option on NDB
tables. This can be used to redistribute NDB Cluster data among new data nodes that have been added
to the cluster online. This does not perform any defragmentation, which requires an OPTIMIZE TABLE or
null ALTER TABLE statement. For more information, see Section 6.7, “Adding NDB Cluster Data Nodes
Online”.

Limitations of NDB online operations

Online DROP COLUMN operations are not supported.

602

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Limitations of NDB online operations

Online ALTER TABLE, CREATE INDEX, or DROP INDEX statements that add columns or add or drop
indexes are subject to the following limitations:

• A given online ALTER TABLE can use only one of ADD COLUMN, ADD INDEX, or DROP INDEX. One
or more columns can be added online in a single statement; only one index may be created or dropped
online in a single statement.

• The table being altered is not locked with respect to API nodes other than the one on which an online
ALTER TABLE ADD COLUMN, ADD INDEX, or DROP INDEX operation (or CREATE INDEX or DROP
INDEX statement) is run. However, the table is locked against any other operations originating on the
same API node while the online operation is being executed.

• The table to be altered must have an explicit primary key; the hidden primary key created by the NDB
storage engine is not sufficient for this purpose.

• The storage engine used by the table cannot be changed online.

• The tablespace used by the table cannot be changed online. Beginning with NDB 8.0.21, a statement
such as ALTER TABLE ndb_table ... ALGORITHM=INPLACE, TABLESPACE=new_tablespace
is specifically disallowed. (Bug #99269, Bug #31180526)

• When used with NDB Cluster Disk Data tables, it is not possible to change the storage type (DISK or
MEMORY) of a column online. This means, that when you add or drop an index in such a way that the
operation would be performed online, and you want the storage type of the column or columns to be
changed, you must use ALGORITHM=COPY in the statement that adds or drops the index.

Columns to be added online cannot use the BLOB or TEXT type, and must meet the following criteria:

• The columns must be dynamic; that is, it must be possible to create them using COLUMN_FORMAT
DYNAMIC. If you omit the COLUMN_FORMAT DYNAMIC option, the dynamic column format is employed
automatically.

• The columns must permit NULL values and not have any explicit default value other than NULL. Columns
added online are automatically created as DEFAULT NULL, as can be seen here:

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW CREATE TABLE t1\G
*************************** 1. row ***************************
 Table: t1
Create Table: CREATE TABLE `t2` (
 `c1` int(11) NOT NULL AUTO_INCREMENT,
 `c2` int(11) DEFAULT NULL,
 `c3` int(11) DEFAULT NULL,
 PRIMARY KEY (`c1`)
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

• The columns must be added following any existing columns. If you attempt to add a column online
before any existing columns or using the FIRST keyword, the statement fails with an error.

• Existing table columns cannot be reordered online.

603

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/drop-index.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/drop-index.html
https://dev.mysql.com/doc/refman/8.0/en/drop-index.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

Privilege Synchronization and NDB_STORED_USER

For online ALTER TABLE operations on NDB tables, fixed-format columns are converted to dynamic when
they are added online, or when indexes are created or dropped online, as shown here (repeating the
CREATE TABLE and ALTER TABLE statements just shown for the sake of clarity):

mysql> CREATE TABLE t2 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY
 >) ENGINE=NDB;
Query OK, 0 rows affected (1.44 sec)

mysql> ALTER TABLE t2
 > ADD COLUMN c2 INT,
 > ADD COLUMN c3 INT,
 > ALGORITHM=INPLACE;
Query OK, 0 rows affected, 2 warnings (0.93 sec)

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
*************************** 2. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c3' to DYNAMIC to enable online ADD COLUMN
2 rows in set (0.00 sec)

Only the column or columns to be added online must be dynamic. Existing columns need not be; this
includes the table's primary key, which may also be FIXED, as shown here:

mysql> CREATE TABLE t3 (
 > c1 INT NOT NULL AUTO_INCREMENT PRIMARY KEY COLUMN_FORMAT FIXED
 >) ENGINE=NDB;
Query OK, 0 rows affected (2.10 sec)

mysql> ALTER TABLE t3 ADD COLUMN c2 INT, ALGORITHM=INPLACE;
Query OK, 0 rows affected, 1 warning (0.78 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> SHOW WARNINGS;
*************************** 1. row ***************************
 Level: Warning
 Code: 1478
Message: Converted FIXED field 'c2' to DYNAMIC to enable online ADD COLUMN
1 row in set (0.00 sec)

Columns are not converted from FIXED to DYNAMIC column format by renaming operations. For more
information about COLUMN_FORMAT, see CREATE TABLE Statement.

The KEY, CONSTRAINT, and IGNORE keywords are supported in ALTER TABLE statements using
ALGORITHM=INPLACE.

Setting MAX_ROWS to 0 using an online ALTER TABLE statement is disallowed. You must use a copying
ALTER TABLE to perform this operation. (Bug #21960004)

6.12 Privilege Synchronization and NDB_STORED_USER
NDB 8.0 introduces a new mechanism for sharing and synchronizing users, roles, and privileges between
SQL nodes connected to an NDB Cluster. This can be enabled by granting the NDB_STORED_USER
privilege. See the description of the privilege for usage information.

NDB_STORED_USER is printed in the output of SHOW GRANTS as with any other privilege, as shown here:

mysql> SHOW GRANTS for 'jon'@'localhost';

604

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/show-grants.html

NDB API Statistics Counters and Variables

+---+
| Grants for jon@localhost |
+---+
| GRANT USAGE ON *.* TO `jon`@`localhost` |
| GRANT NDB_STORED_USER ON *.* TO `jon`@`localhost` |
+---+

You can also verify that privileges are shared for this account using the ndb_select_all utility supplied
with NDB Cluster, like this (some output wrapped to preserve formatting):

$> ndb_select_all -d mysql ndb_sql_metadata | grep '`jon`@`localhost`'
12 "'jon'@'localhost'" 0 [NULL] "GRANT USAGE ON *.* TO `jon`@`localhost`"
11 "'jon'@'localhost'" 0 2 "CREATE USER `jon`@`localhost`
IDENTIFIED WITH 'caching_sha2_password' AS
0x2441243030352466014340225A107D590E6E653B5D587922306102716D752E6656772F3038512F
6C5072776D30376D37347A384B557A4C564F70495158656A31382E45324E33
REQUIRE NONE PASSWORD EXPIRE DEFAULT ACCOUNT UNLOCK PASSWORD HISTORY DEFAULT
PASSWORD REUSE INTERVAL DEFAULT PASSWORD REQUIRE CURRENT DEFAULT"
12 "'jon'@'localhost'" 1 [NULL] "GRANT NDB_STORED_USER ON *.* TO `jon`@`localhost`"

ndb_sql_metadata is a special NDB table that is not visible using the mysql or other MySQL client.

A statement granting the NDB_STORED_USER privilege, such as GRANT NDB_STORED_USER ON
. TO 'cluster_app_user'@'localhost', works by directing NDB to create a snapshot using
the queries SHOW CREATE USER cluster_app_user@localhost and SHOW GRANTS FOR
cluster_app_user@localhost, then storing the results in ndb_sql_metadata. Any other SQL nodes
are then requested to read and apply the snapshot. Whenever a MySQL server starts up and joins the
cluster as an SQL node it executes these stored CREATE USER and GRANT statements as part of the
cluster schema synchronization process.

Whenever an SQL statement is executed on an SQL node other than the one where it originated, the
statement is run in a utility thread of the NDBCLUSTER storage engine; this is done within a security
environment equivalent to that of the MySQL replication replica applier thread.

Beginning with NDB 8.0.27, an SQL node performing a change to user privileges takes a global lock before
doing so, which prevents deadlocks by concurrent ACL operations on different SQL nodes. Prior to NDB
8.0.27, changes to users with NDB_STORED_USER were updated in a completely asynchronous fashion,
without any locks being taken.

You should keep in mind that, because shared schema change operations are performed synchronously,
the next shared schema change following a change to any shared user or users serves as a
synchronization point. Any pending user changes run to completion before the schema change distribution
can begin; after this the schema change itself runs synchronously. For example, if a DROP DATABASE
statement follows a DROP USER of a distributed user, the drop of the database cannot take place until the
drop of the user has completed on all SQL nodes.

In the event that multiple GRANT, REVOKE, or other user administration statements from multiple SQL
nodes cause privileges for a given user to diverge on different SQL nodes, you can fix this problem by
issuing GRANT NDB_STORED_USER for this user on an SQL node where the privileges are known to
be correct; this causes a new snapshot of the privileges to be taken and synchronized to the other SQL
nodes.

NDB Cluster 8.0 does not support distribution of MySQL users and privileges across SQL nodes in an NDB
Cluster by altering the MySQL privilege tables such that they used the NDB storage engine as in NDB 7.6
and earlier releases (see Distributed Privileges Using Shared Grant Tables). For information about the
impact of this change on upgrades to NDB 8.0 from a previous release, see Section 3.7, “Upgrading and
Downgrading NDB Cluster”.

6.13 NDB API Statistics Counters and Variables

605

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

NDB API Statistics Counters and Variables

A number of types of statistical counters relating to actions performed by or affecting Ndb objects are
available. Such actions include starting and closing (or aborting) transactions; primary key and unique key
operations; table, range, and pruned scans; threads blocked while waiting for the completion of various
operations; and data and events sent and received by NDBCLUSTER. The counters are incremented
inside the NDB kernel whenever NDB API calls are made or data is sent to or received by the data nodes.
mysqld exposes these counters as system status variables; their values can be read in the output of
SHOW STATUS, or by querying the Performance Schema session_status or global_status table.
By comparing the values before and after statements operating on NDB tables, you can observe the
corresponding actions taken on the API level, and thus the cost of performing the statement.

You can list all of these status variables using the following SHOW STATUS statement:

mysql> SHOW STATUS LIKE 'ndb_api%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count	297
Ndb_api_wait_scan_result_count	0
Ndb_api_wait_meta_request_count	321
Ndb_api_wait_nanos_count	228438645
Ndb_api_bytes_sent_count	33988
Ndb_api_bytes_received_count	66236
Ndb_api_trans_start_count	148
Ndb_api_trans_commit_count	148
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	148
Ndb_api_pk_op_count	151
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	0
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	147
Ndb_api_trans_local_read_row_count	37
Ndb_api_adaptive_send_forced_count	3
Ndb_api_adaptive_send_unforced_count	294
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_wait_exec_complete_count_replica	0
Ndb_api_wait_scan_result_count_replica	0
Ndb_api_wait_meta_request_count_replica	0
Ndb_api_wait_nanos_count_replica	0

606

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

NDB API Statistics Counters and Variables

Ndb_api_bytes_sent_count_replica	0
Ndb_api_bytes_received_count_replica	0
Ndb_api_trans_start_count_replica	0
Ndb_api_trans_commit_count_replica	0
Ndb_api_trans_abort_count_replica	0
Ndb_api_trans_close_count_replica	0
Ndb_api_pk_op_count_replica	0
Ndb_api_uk_op_count_replica	0
Ndb_api_table_scan_count_replica	0
Ndb_api_range_scan_count_replica	0
Ndb_api_pruned_scan_count_replica	0
Ndb_api_scan_batch_count_replica	0
Ndb_api_read_row_count_replica	0
Ndb_api_trans_local_read_row_count_replica	0
Ndb_api_adaptive_send_forced_count_replica	0
Ndb_api_adaptive_send_unforced_count_replica	0
Ndb_api_adaptive_send_deferred_count_replica	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+-----------+
90 rows in set (0.01 sec)

These status variables are also available from the Performance Schema session_status and
global_status tables, as shown here:

mysql> SELECT * FROM performance_schema.session_status
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
Ndb_api_wait_exec_complete_count	617
Ndb_api_wait_scan_result_count	0
Ndb_api_wait_meta_request_count	649
Ndb_api_wait_nanos_count	335663491
Ndb_api_bytes_sent_count	65764
Ndb_api_bytes_received_count	86940
Ndb_api_trans_start_count	308
Ndb_api_trans_commit_count	308
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	308
Ndb_api_pk_op_count	311
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	0
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0

607

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html

NDB API Statistics Counters and Variables

Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	307
Ndb_api_trans_local_read_row_count	77
Ndb_api_adaptive_send_forced_count	3
Ndb_api_adaptive_send_unforced_count	614
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_wait_exec_complete_count_replica	0
Ndb_api_wait_scan_result_count_replica	0
Ndb_api_wait_meta_request_count_replica	0
Ndb_api_wait_nanos_count_replica	0
Ndb_api_bytes_sent_count_replica	0
Ndb_api_bytes_received_count_replica	0
Ndb_api_trans_start_count_replica	0
Ndb_api_trans_commit_count_replica	0
Ndb_api_trans_abort_count_replica	0
Ndb_api_trans_close_count_replica	0
Ndb_api_pk_op_count_replica	0
Ndb_api_uk_op_count_replica	0
Ndb_api_table_scan_count_replica	0
Ndb_api_range_scan_count_replica	0
Ndb_api_pruned_scan_count_replica	0
Ndb_api_scan_batch_count_replica	0
Ndb_api_read_row_count_replica	0
Ndb_api_trans_local_read_row_count_replica	0
Ndb_api_adaptive_send_forced_count_replica	0
Ndb_api_adaptive_send_unforced_count_replica	0
Ndb_api_adaptive_send_deferred_count_replica	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0

608

NDB API Statistics Counters and Variables

Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+----------------+
90 rows in set (0.01 sec)

mysql> SELECT * FROM performance_schema.global_status
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%';
+--+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--+----------------+
Ndb_api_wait_exec_complete_count	741
Ndb_api_wait_scan_result_count	0
Ndb_api_wait_meta_request_count	777
Ndb_api_wait_nanos_count	373888309
Ndb_api_bytes_sent_count	78124
Ndb_api_bytes_received_count	94988
Ndb_api_trans_start_count	370
Ndb_api_trans_commit_count	370
Ndb_api_trans_abort_count	0
Ndb_api_trans_close_count	370
Ndb_api_pk_op_count	373
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	0
Ndb_api_range_scan_count	0
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	0
Ndb_api_read_row_count	369
Ndb_api_trans_local_read_row_count	93
Ndb_api_adaptive_send_forced_count	3
Ndb_api_adaptive_send_unforced_count	738
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_api_wait_exec_complete_count_replica	0
Ndb_api_wait_scan_result_count_replica	0
Ndb_api_wait_meta_request_count_replica	0
Ndb_api_wait_nanos_count_replica	0
Ndb_api_bytes_sent_count_replica	0
Ndb_api_bytes_received_count_replica	0

609

NDB API Statistics Counters and Variables

Ndb_api_trans_start_count_replica	0
Ndb_api_trans_commit_count_replica	0
Ndb_api_trans_abort_count_replica	0
Ndb_api_trans_close_count_replica	0
Ndb_api_pk_op_count_replica	0
Ndb_api_uk_op_count_replica	0
Ndb_api_table_scan_count_replica	0
Ndb_api_range_scan_count_replica	0
Ndb_api_pruned_scan_count_replica	0
Ndb_api_scan_batch_count_replica	0
Ndb_api_read_row_count_replica	0
Ndb_api_trans_local_read_row_count_replica	0
Ndb_api_adaptive_send_forced_count_replica	0
Ndb_api_adaptive_send_unforced_count_replica	0
Ndb_api_adaptive_send_deferred_count_replica	0
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	0
Ndb_api_wait_nanos_count_session	0
Ndb_api_bytes_sent_count_session	0
Ndb_api_bytes_received_count_session	0
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
+--+----------------+
90 rows in set (0.01 sec)

Each Ndb object has its own counters. NDB API applications can read the values of the counters
for use in optimization or monitoring. For multithreaded clients which use more than one Ndb object
concurrently, it is also possible to obtain a summed view of counters from all Ndb objects belonging to a
given Ndb_cluster_connection.

Four sets of these counters are exposed. One set applies to the current session only; the other 3 are
global. This is in spite of the fact that their values can be obtained as either session or global status
variables in the mysql client. This means that specifying the SESSION or GLOBAL keyword with SHOW
STATUS has no effect on the values reported for NDB API statistics status variables, and the value for
each of these variables is the same whether the value is obtained from the equivalent column of the
session_status or the global_status table.

• Session counters (session specific)

Session counters relate to the Ndb objects in use by (only) the current session. Use of such objects by
other MySQL clients does not influence these counts.

In order to minimize confusion with standard MySQL session variables, we refer to the variables that
correspond to these NDB API session counters as “_session variables”, with a leading underscore.

• Replica counters (global)

610

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

NDB API Statistics Counters and Variables

This set of counters relates to the Ndb objects used by the replica SQL thread, if any. If this mysqld
does not act as a replica, or does not use NDB tables, then all of these counts are 0.

We refer to the related status variables as “_slave variables” (with a leading underscore).

• Injector counters (global)

Injector counters relate to the Ndb object used to listen to cluster events by the binary log injector thread.
Even when not writing a binary log, mysqld processes attached to an NDB Cluster continue to listen for
some events, such as schema changes.

We refer to the status variables that correspond to NDB API injector counters as “_injector variables”
(with a leading underscore).

• Server (Global) counters (global)

This set of counters relates to all Ndb objects currently used by this mysqld. This includes all MySQL
client applications, the replica SQL thread (if any), the binary log injector, and the NDB utility thread.

We refer to the status variables that correspond to these counters as “global variables” or “mysqld-level
variables”.

You can obtain values for a particular set of variables by additionally filtering for the substring session,
slave, or injector in the variable name (along with the common prefix Ndb_api). For _session
variables, this can be done as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%session';
+--+---------+
| Variable_name | Value |
+--+---------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	1
Ndb_api_wait_nanos_count_session	8144375
Ndb_api_bytes_sent_count_session	68
Ndb_api_bytes_received_count_session	84
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1
Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+---------+
18 rows in set (0.50 sec)

To obtain a listing of the NDB API mysqld-level status variables, filter for variable names beginning with
ndb_api and ending in _count, like this:

mysql> SELECT * FROM performance_schema.session_status
 -> WHERE VARIABLE_NAME LIKE 'ndb_api%count';
+------------------------------------+----------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+------------------------------------+----------------+
| NDB_API_WAIT_EXEC_COMPLETE_COUNT | 4 |
| NDB_API_WAIT_SCAN_RESULT_COUNT | 3 |

611

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB API Statistics Counters and Variables

NDB_API_WAIT_META_REQUEST_COUNT	28
NDB_API_WAIT_NANOS_COUNT	53756398
NDB_API_BYTES_SENT_COUNT	1060
NDB_API_BYTES_RECEIVED_COUNT	9724
NDB_API_TRANS_START_COUNT	3
NDB_API_TRANS_COMMIT_COUNT	2
NDB_API_TRANS_ABORT_COUNT	0
NDB_API_TRANS_CLOSE_COUNT	3
NDB_API_PK_OP_COUNT	2
NDB_API_UK_OP_COUNT	0
NDB_API_TABLE_SCAN_COUNT	1
NDB_API_RANGE_SCAN_COUNT	0
NDB_API_PRUNED_SCAN_COUNT	0
NDB_API_SCAN_BATCH_COUNT	0
NDB_API_READ_ROW_COUNT	2
NDB_API_TRANS_LOCAL_READ_ROW_COUNT	2
NDB_API_EVENT_DATA_COUNT	0
NDB_API_EVENT_NONDATA_COUNT	0
NDB_API_EVENT_BYTES_COUNT	0
+------------------------------------+----------------+
21 rows in set (0.09 sec)

Not all counters are reflected in all 4 sets of status variables. For the event counters
DataEventsRecvdCount, NondataEventsRecvdCount, and EventBytesRecvdCount, only
_injector and mysqld-level NDB API status variables are available:

mysql> SHOW STATUS LIKE 'ndb_api%event%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
+--------------------------------------+-------+
6 rows in set (0.00 sec)

_injector status variables are not implemented for any other NDB API counters, as shown here:

mysql> SHOW STATUS LIKE 'ndb_api%injector%';
+--------------------------------------+-------+
| Variable_name | Value |
+--------------------------------------+-------+
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
+--------------------------------------+-------+
3 rows in set (0.00 sec)

The names of the status variables can easily be associated with the names of the corresponding counters.
Each NDB API statistics counter is listed in the following table with a description as well as the names of
any MySQL server status variables corresponding to this counter.

612

NDB API Statistics Counters and Variables

Table 6.15 NDB API statistics counters

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

WaitExecCompleteCount Number of times thread has
been blocked while waiting for
execution of an operation to
complete. Includes all execute()
calls as well as implicit executes
for blob operations and auto-
increment not visible to clients.

• Ndb_api_wait_exec_complete_count_session

• Ndb_api_wait_exec_complete_count_slave

• [none]

• Ndb_api_wait_exec_complete_count

WaitScanResultCount Number of times thread has been
blocked while waiting for a scan-
based signal, such waiting for
additional results, or for a scan to
close.

• Ndb_api_wait_scan_result_count_session

• Ndb_api_wait_scan_result_count_slave

• [none]

• Ndb_api_wait_scan_result_count

WaitMetaRequestCount Number of times thread has been
blocked waiting for a metadata-
based signal; this can occur when
waiting for a DDL operation or for
an epoch to be started (or ended).

• Ndb_api_wait_meta_request_count_session

• Ndb_api_wait_meta_request_count_slave

• [none]

• Ndb_api_wait_meta_request_count

WaitNanosCount Total time (in nanoseconds) spent
waiting for some type of signal
from the data nodes.

• Ndb_api_wait_nanos_count_session

• Ndb_api_wait_nanos_count_slave

• [none]

• Ndb_api_wait_nanos_count

BytesSentCount Amount of data (in bytes) sent to
the data nodes

• Ndb_api_bytes_sent_count_session

• Ndb_api_bytes_sent_count_slave

• [none]

• Ndb_api_bytes_sent_count

BytesRecvdCount Amount of data (in bytes) received
from the data nodes

• Ndb_api_bytes_received_count_session

• Ndb_api_bytes_received_count_slave

• [none]

• Ndb_api_bytes_received_count

TransStartCount Number of transactions started. • Ndb_api_trans_start_count_session

613

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-execute

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• Ndb_api_trans_start_count_slave

• [none]

• Ndb_api_trans_start_count

TransCommitCount Number of transactions
committed.

• Ndb_api_trans_commit_count_session

• Ndb_api_trans_commit_count_slave

• [none]

• Ndb_api_trans_commit_count

TransAbortCount Number of transactions aborted. • Ndb_api_trans_abort_count_session

• Ndb_api_trans_abort_count_slave

• [none]

• Ndb_api_trans_abort_count

TransCloseCount Number of transactions aborted.
(This value may be greater than
the sum of TransCommitCount
and TransAbortCount.)

• Ndb_api_trans_close_count_session

• Ndb_api_trans_close_count_slave

• [none]

• Ndb_api_trans_close_count

PkOpCount Number of operations based
on or using primary keys. This
count includes blob-part table
operations, implicit unlocking
operations, and auto-increment
operations, as well as primary
key operations normally visible to
MySQL clients.

• Ndb_api_pk_op_count_session

• Ndb_api_pk_op_count_slave

• [none]

• Ndb_api_pk_op_count

UkOpCount Number of operations based on or
using unique keys.

• Ndb_api_uk_op_count_session

• Ndb_api_uk_op_count_slave

• [none]

• Ndb_api_uk_op_count

TableScanCount Number of table scans that have
been started. This includes scans
of internal tables.

• Ndb_api_table_scan_count_session

• Ndb_api_table_scan_count_slave

614

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server
• [none]

• Ndb_api_table_scan_count

RangeScanCount Number of range scans that have
been started.

• Ndb_api_range_scan_count_session

• Ndb_api_range_scan_count_slave

• [none]

• Ndb_api_range_scan_count

PrunedScanCount Number of scans that have been
pruned to a single partition.

• Ndb_api_pruned_scan_count_session

• Ndb_api_pruned_scan_count_slave

• [none]

• Ndb_api_pruned_scan_count

ScanBatchCount Number of batches of rows
received. (A batch in this context
is a set of scan results from a
single fragment.)

• Ndb_api_scan_batch_count_session

• Ndb_api_scan_batch_count_slave

• [none]

• Ndb_api_scan_batch_count

ReadRowCount Total number of rows that have
been read. Includes rows read
using primary key, unique key,
and scan operations.

• Ndb_api_read_row_count_session

• Ndb_api_read_row_count_slave

• [none]

• Ndb_api_read_row_count

TransLocalReadRowCount Number of rows read from the
data same node on which the
transaction was being run.

• Ndb_api_trans_local_read_row_count_session

• Ndb_api_trans_local_read_row_count_slave

• [none]

• Ndb_api_trans_local_read_row_count

DataEventsRecvdCount Number of row change events
received.

• [none]

• [none]

• Ndb_api_event_data_count_injector

• Ndb_api_event_data_count

615

NDB API Statistics Counters and Variables

Counter Name Description Status Variables (by statistic
type):

• Session

• Slave (replica)

• Injector

• Server

NondataEventsRecvdCount Number of events received, other
than row change events.

• [none]

• [none]

• Ndb_api_event_nondata_count_injector

• Ndb_api_event_nondata_count

EventBytesRecvdCount Number of bytes of events
received.

• [none]

• [none]

• Ndb_api_event_bytes_count_injector

• Ndb_api_event_bytes_count

To see all counts of committed transactions—that is, all TransCommitCount counter status variables—
you can filter the results of SHOW STATUS for the substring trans_commit_count, like this:

mysql> SHOW STATUS LIKE '%trans_commit_count%';
+------------------------------------+-------+
| Variable_name | Value |
+------------------------------------+-------+
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_commit_count	2
+------------------------------------+-------+
3 rows in set (0.00 sec)

From this you can determine that 1 transaction has been committed in the current mysql client session,
and 2 transactions have been committed on this mysqld since it was last restarted.

You can see how various NDB API counters are incremented by a given SQL statement by comparing
the values of the corresponding _session status variables immediately before and after performing the
statement. In this example, after getting the initial values from SHOW STATUS, we create in the test
database an NDB table, named t, that has a single column:

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+--------+
| Variable_name | Value |
+--+--------+
Ndb_api_wait_exec_complete_count_session	2
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	3
Ndb_api_wait_nanos_count_session	820705
Ndb_api_bytes_sent_count_session	132
Ndb_api_bytes_received_count_session	372
Ndb_api_trans_start_count_session	1
Ndb_api_trans_commit_count_session	1
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	1

616

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB API Statistics Counters and Variables

Ndb_api_pk_op_count_session	1
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	1
Ndb_api_trans_local_read_row_count_session	1
+--+--------+
18 rows in set (0.00 sec)

mysql> USE test;
Database changed
mysql> CREATE TABLE t (c INT) ENGINE NDBCLUSTER;
Query OK, 0 rows affected (0.85 sec)

Now you can execute a new SHOW STATUS statement and observe the changes, as shown here (with the
changed rows highlighted in the output):

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	8
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	17
Ndb_api_wait_nanos_count_session	706871709
Ndb_api_bytes_sent_count_session	2376
Ndb_api_bytes_received_count_session	3844
Ndb_api_trans_start_count_session	4
Ndb_api_trans_commit_count_session	4
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	4
Ndb_api_pk_op_count_session	6
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	2
Ndb_api_trans_local_read_row_count_session	1
+--+-----------+
18 rows in set (0.00 sec)

Similarly, you can see the changes in the NDB API statistics counters caused by inserting a row into t:
Insert the row, then run the same SHOW STATUS statement used in the previous example, as shown here:

mysql> INSERT INTO t VALUES (100);
Query OK, 1 row affected (0.00 sec)

mysql> SHOW STATUS LIKE 'ndb_api%session%';
+--+-----------+
| Variable_name | Value |
+--+-----------+
Ndb_api_wait_exec_complete_count_session	11
Ndb_api_wait_scan_result_count_session	6
Ndb_api_wait_meta_request_count_session	20
Ndb_api_wait_nanos_count_session	707370418
Ndb_api_bytes_sent_count_session	2724
Ndb_api_bytes_received_count_session	4116
Ndb_api_trans_start_count_session	7
Ndb_api_trans_commit_count_session	6
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	7
Ndb_api_pk_op_count_session	8
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	1

617

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

ndbinfo: The NDB Cluster Information Database

Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	3
Ndb_api_trans_local_read_row_count_session	2
+--+-----------+
18 rows in set (0.00 sec)

We can make a number of observations from these results:

• Although we created t with no explicit primary key, 5 primary key operations were performed in doing so
(the difference in the “before” and “after” values of Ndb_api_pk_op_count_session, or 6 minus 1).
This reflects the creation of the hidden primary key that is a feature of all tables using the NDB storage
engine.

• By comparing successive values for Ndb_api_wait_nanos_count_session, we can see that the
NDB API operations implementing the CREATE TABLE statement waited much longer (706871709 -
820705 = 706051004 nanoseconds, or approximately 0.7 second) for responses from the data nodes
than those executed by the INSERT (707370418 - 706871709 = 498709 ns or roughly .0005 second).
The execution times reported for these statements in the mysql client correlate roughly with these
figures.

On platforms without sufficient (nanosecond) time resolution, small changes in the value of
the WaitNanosCount NDB API counter due to SQL statements that execute very quickly
may not always be visible in the values of Ndb_api_wait_nanos_count_session,
Ndb_api_wait_nanos_count_slave, or Ndb_api_wait_nanos_count.

• The INSERT statement incremented both the ReadRowCount and TransLocalReadRowCount NDB
API statistics counters, as reflected by the increased values of Ndb_api_read_row_count_session
and Ndb_api_trans_local_read_row_count_session.

6.14 ndbinfo: The NDB Cluster Information Database
ndbinfo is a database containing information specific to NDB Cluster.

This database contains a number of tables, each providing a different sort of data about NDB Cluster node
status, resource usage, and operations. You can find more detailed information about each of these tables
in the next several sections.

ndbinfo is included with NDB Cluster support in the MySQL Server; no special compilation or
configuration steps are required; the tables are created by the MySQL Server when it connects to the
cluster. You can verify that ndbinfo support is active in a given MySQL Server instance using SHOW
PLUGINS; if ndbinfo support is enabled, you should see a row containing ndbinfo in the Name column
and ACTIVE in the Status column, as shown here (emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha256_password	ACTIVE	AUTHENTICATION	NULL	GPL
caching_sha2_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha2_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
daemon_keyring_proxy_plugin	ACTIVE	DAEMON	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL

618

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html

ndbinfo: The NDB Cluster Information Database

INNODB_CMP_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMPMEM_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_PER_INDEX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP_PER_INDEX_RESET	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_PAGE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_PAGE_LRU	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_BUFFER_POOL_STATS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TEMP_TABLE_INFO	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_METRICS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_DEFAULT_STOPWORD	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_DELETED	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_BEING_DELETED	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_CONFIG	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_INDEX_CACHE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_FT_INDEX_TABLE	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TABLES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TABLESTATS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_INDEXES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_COLUMNS	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_VIRTUAL	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CACHED_INDEXES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_SESSION_TEMP_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
TempTable	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
ngram	ACTIVE	FTPARSER	NULL	GPL
mysqlx_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
mysqlx	ACTIVE	DAEMON	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
47 rows in set (0.00 sec)

You can also do this by checking the output of SHOW ENGINES for a line including ndbinfo in the Engine
column and YES in the Support column, as shown here (emphasized text):

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: ndbcluster
 Support: YES
 Comment: Clustered, fault-tolerant tables
Transactions: YES
 XA: NO
 Savepoints: NO
*************************** 2. row ***************************
 Engine: CSV
 Support: YES
 Comment: CSV storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 3. row ***************************
 Engine: InnoDB
 Support: DEFAULT
 Comment: Supports transactions, row-level locking, and foreign keys
Transactions: YES
 XA: YES
 Savepoints: YES
*************************** 4. row ***************************
 Engine: BLACKHOLE
 Support: YES

619

https://dev.mysql.com/doc/refman/8.0/en/show-engines.html

ndbinfo: The NDB Cluster Information Database

 Comment: /dev/null storage engine (anything you write to it disappears)
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 5. row ***************************
 Engine: MyISAM
 Support: YES
 Comment: MyISAM storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 6. row ***************************
 Engine: MRG_MYISAM
 Support: YES
 Comment: Collection of identical MyISAM tables
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 7. row ***************************
 Engine: ARCHIVE
 Support: YES
 Comment: Archive storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 8. row ***************************
 Engine: ndbinfo
 Support: YES
 Comment: NDB Cluster system information storage engine
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 9. row ***************************
 Engine: PERFORMANCE_SCHEMA
 Support: YES
 Comment: Performance Schema
Transactions: NO
 XA: NO
 Savepoints: NO
*************************** 10. row ***************************
 Engine: MEMORY
 Support: YES
 Comment: Hash based, stored in memory, useful for temporary tables
Transactions: NO
 XA: NO
 Savepoints: NO
10 rows in set (0.00 sec)

If ndbinfo support is enabled, then you can access ndbinfo using SQL statements in mysql or another
MySQL client. For example, you can see ndbinfo listed in the output of SHOW DATABASES, as shown
here (emphasized text):

mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| ndbinfo |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.04 sec)

If the mysqld process was not started with the --ndbcluster option, ndbinfo is not available and
is not displayed by SHOW DATABASES. If mysqld was formerly connected to an NDB Cluster but the

620

https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html

ndbinfo: The NDB Cluster Information Database

cluster becomes unavailable (due to events such as cluster shutdown, loss of network connectivity, and so
forth), ndbinfo and its tables remain visible, but an attempt to access any tables (other than blocks or
config_params) fails with Got error 157 'Connection to NDB failed' from NDBINFO.

With the exception of the blocks and config_params tables, what we refer to as ndbinfo “tables”
are actually views generated from internal NDB tables not normally visible to the MySQL Server. You can
make these tables visible by setting the ndbinfo_show_hidden system variable to ON (or 1), but this is
normally not necessary.

All ndbinfo tables are read-only, and are generated on demand when queried. Because many of them
are generated in parallel by the data nodes while other are specific to a given SQL node, they are not
guaranteed to provide a consistent snapshot.

In addition, pushing down of joins is not supported on ndbinfo tables; so joining large ndbinfo tables
can require transfer of a large amount of data to the requesting API node, even when the query makes use
of a WHERE clause.

ndbinfo tables are not included in the query cache. (Bug #59831)

You can select the ndbinfo database with a USE statement, and then issue a SHOW TABLES statement to
obtain a list of tables, just as for any other database, like this:

mysql> USE ndbinfo;
Database changed

mysql> SHOW TABLES;
+---------------------------------+
| Tables_in_ndbinfo |
+---------------------------------+
| arbitrator_validity_detail |
| arbitrator_validity_summary |
| backup_id |
| blobs |
| blocks |
| cluster_locks |
| cluster_operations |
| cluster_transactions |
| config_nodes |
| config_params |
| config_values |
| counters |
| cpudata |
| cpudata_1sec |
| cpudata_20sec |
| cpudata_50ms |
| cpuinfo |
| cpustat |
| cpustat_1sec |
| cpustat_20sec |
| cpustat_50ms |
| dict_obj_info |
| dict_obj_tree |
| dict_obj_types |
| dictionary_columns |
| dictionary_tables |
| disk_write_speed_aggregate |
| disk_write_speed_aggregate_node |
| disk_write_speed_base |
| diskpagebuffer |
| diskstat |
| diskstats_1sec |
| error_messages |
| events |
| files |

621

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/show-tables.html

ndbinfo: The NDB Cluster Information Database

| foreign_keys |
| hash_maps |
| hwinfo |
| index_columns |
| index_stats |
| locks_per_fragment |
| logbuffers |
| logspaces |
| membership |
| memory_per_fragment |
| memoryusage |
| nodes |
| operations_per_fragment |
| pgman_time_track_stats |
| processes |
| resources |
| restart_info |
| server_locks |
| server_operations |
| server_transactions |
| table_distribution_status |
| table_fragments |
| table_info |
| table_replicas |
| tc_time_track_stats |
| threadblocks |
| threads |
| threadstat |
| transporters |
+---------------------------------+
64 rows in set (0.00 sec)

In NDB 8.0, all ndbinfo tables use the NDB storage engine; however, an ndbinfo entry still appears in
the output of SHOW ENGINES and SHOW PLUGINS as described previously.

You can execute SELECT statements against these tables, just as you would normally expect:

mysql> SELECT * FROM memoryusage;
+---------+---------------------+--------+------------+------------+-------------+
| node_id | memory_type | used | used_pages | total | total_pages |
+---------+---------------------+--------+------------+------------+-------------+
5	Data memory	425984	13	2147483648	65536
5	Long message buffer	393216	1536	67108864	262144
6	Data memory	425984	13	2147483648	65536
6	Long message buffer	393216	1536	67108864	262144
7	Data memory	425984	13	2147483648	65536
7	Long message buffer	393216	1536	67108864	262144
8	Data memory	425984	13	2147483648	65536
8	Long message buffer	393216	1536	67108864	262144
+---------+---------------------+--------+------------+------------+-------------+
8 rows in set (0.09 sec)

More complex queries, such as the two following SELECT statements using the memoryusage table, are
possible:

mysql> SELECT SUM(used) as 'Data Memory Used, All Nodes'
 > FROM memoryusage
 > WHERE memory_type = 'Data memory';
+-----------------------------+
| Data Memory Used, All Nodes |
+-----------------------------+
| 6460 |
+-----------------------------+
1 row in set (0.09 sec)

mysql> SELECT SUM(used) as 'Long Message Buffer, All Nodes'

622

https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

The ndbinfo arbitrator_validity_detail Table

 > FROM memoryusage
 > WHERE memory_type = 'Long message buffer';
+-------------------------------------+
| Long Message Buffer Used, All Nodes |
+-------------------------------------+
| 1179648 |
+-------------------------------------+
1 row in set (0.08 sec)

ndbinfo table and column names are case-sensitive (as is the name of the ndbinfo database itself).
These identifiers are in lowercase. Trying to use the wrong lettercase results in an error, as shown in this
example:

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
5	17707	STARTED	0	1
6	17706	STARTED	0	1
7	17705	STARTED	0	1
8	17704	STARTED	0	1
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.06 sec)

mysql> SELECT * FROM Nodes;
ERROR 1146 (42S02): Table 'ndbinfo.Nodes' doesn't exist

mysqldump ignores the ndbinfo database entirely, and excludes it from any output. This is true even
when using the --databases or --all-databases option.

NDB Cluster also maintains tables in the INFORMATION_SCHEMA information database, including the
FILES table which contains information about files used for NDB Cluster Disk Data storage, and the
ndb_transid_mysql_connection_map table, which shows the relationships between transactions,
transaction coordinators, and NDB Cluster API nodes. For more information, see the descriptions of the
tables or Section 6.15, “INFORMATION_SCHEMA Tables for NDB Cluster”.

6.14.1 The ndbinfo arbitrator_validity_detail Table

The arbitrator_validity_detail table shows the view that each data node in the cluster has of the
arbitrator. It is a subset of the membership table.

The arbitrator_validity_detail table contains the following columns:

• node_id

This node's node ID

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this node is connected to the arbitrator; either of Yes or No

• arb_state

Arbitration state

623

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_databases
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html#option_mysqldump_all-databases
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html

The ndbinfo arbitrator_validity_summary Table

Notes

The node ID is the same as that reported by ndb_mgm -e "SHOW".

All nodes should show the same arbitrator and arb_ticket values as well as the same arb_state
value. Possible arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1,
ARBIT_PREP2, ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether the current node is connected to the arbitrator.

6.14.2 The ndbinfo arbitrator_validity_summary Table

The arbitrator_validity_summary table provides a composite view of the arbitrator with regard to
the cluster's data nodes.

The arbitrator_validity_summary table contains the following columns:

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_connected

Whether this arbitrator is connected to the cluster

• consensus_count

Number of data nodes that see this node as arbitrator; either of Yes or No

Notes

In normal operations, this table should have only 1 row for any appreciable length of time. If it has more
than 1 row for longer than a few moments, then either not all nodes are connected to the arbitrator, or all
nodes are connected, but do not agree on the same arbitrator.

The arbitrator column shows the arbitrator's node ID.

arb_ticket is the internal identifier used by this arbitrator.

arb_connected shows whether this node is connected to the cluster as an arbitrator.

6.14.3 The ndbinfo backup_id Table

This table provides a way to find the ID of the backup started most recently for this cluster.

The backup_id table contains a single column id, which corresponds to a backup ID taken using the
ndb_mgm client START BACKUP command. This table contains a single row.

Example: Assume the following sequence of START BACKUP commands issued in the NDB management
client, with no other backups taken since the cluster was first started:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 5: Backup 1 started from node 50
Node 5: Backup 1 started from node 50 completed
 StartGCP: 27894 StopGCP: 27897

624

The ndbinfo blobs Table

 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm> START BACKUP 5
Waiting for completed, this may take several minutes
Node 5: Backup 5 started from node 50
Node 5: Backup 5 started from node 50 completed
 StartGCP: 27905 StopGCP: 27908
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 5: Backup 6 started from node 50
Node 5: Backup 6 started from node 50 completed
 StartGCP: 27912 StopGCP: 27915
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm> START BACKUP 3
Connected to Management Server at: localhost:1186
Waiting for completed, this may take several minutes
Node 5: Backup 3 started from node 50
Node 5: Backup 3 started from node 50 completed
 StartGCP: 28149 StopGCP: 28152
 #Records: 2057 #LogRecords: 0
 Data: 51580 bytes Log: 0 bytes
ndb_mgm>

After this, the backup_id table contains the single row shown here, using the mysql client:

mysql> USE ndbinfo;

Database changed
mysql> SELECT * FROM backup_id;
+------+
| id |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

If no backups can be found, the table contains a single row with 0 as the id value.

The backup_id table was added in NDB 8.0.24.

6.14.4 The ndbinfo blobs Table

This table provides about blob values stored in NDB. The blobs table has the columns listed here:

• table_id

Unique ID of the table containing the column

• database_name

Name of the database in which this table resides

• table_name

Name of the table

• column_id

The column's unique ID within the table

• column_name

625

The ndbinfo blocks Table

Name of the column

• inline_size

Inline size of the column

• part_size

Part size of the column

• stripe_size

Stripe size of the column

• blob_table_name

Name of the blob table containing this column's blob data, if any

Rows exist in this table for those NDB table columns that store BLOB, TEXT values taking up more than 255
bytes and thus require the use of a blob table. Parts of JSON values exceeding 4000 bytes in size are also
stored in this table. For more information about how NDB Cluster stores columns of such types, see String
Type Storage Requirements.

The part and (NDB 8.0.30 and later) inline sizes of NDB blob columns can be set using CREATE TABLE
and ALTER TABLE statements containing NDB table column comments (see NDB_COLUMN Options); this
can also be done in NDB API applications (see Column::setPartSize() and setInlineSize()).

The blobs table was added in NDB 8.0.29.

6.14.5 The ndbinfo blocks Table

The blocks table is a static table which simply contains the names and internal IDs of all NDB kernel
blocks (see NDB Kernel Blocks). It is for use by the other ndbinfo tables (most of which are actually
views) in mapping block numbers to block names for producing human-readable output.

The blocks table contains the following columns:

• block_number

Block number

• block_name

Block name

Notes

To obtain a list of all block names, simply execute SELECT block_name FROM ndbinfo.blocks.
Although this is a static table, its content can vary between different NDB Cluster releases.

6.14.6 The ndbinfo cluster_locks Table

The cluster_locks table provides information about current lock requests holding and waiting for
locks on NDB tables in an NDB Cluster, and is intended as a companion table to cluster_operations.
Information obtain from the cluster_locks table may be useful in investigating stalls and deadlocks.

The cluster_locks table contains the following columns:

626

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-setpartsize
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-setinlinesize
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

The ndbinfo cluster_locks Table

• node_id

ID of reporting node

• block_instance

ID of reporting LDM instance

• tableid

ID of table containing this row

• fragmentid

ID of fragment containing locked row

• rowid

ID of locked row

• transid

Transaction ID

• mode

Lock request mode

• state

Lock state

• detail

Whether this is first holding lock in row lock queue

• op

Operation type

• duration_millis

Milliseconds spent waiting or holding lock

• lock_num

ID of lock object

• waiting_for

Waiting for lock with this ID

Notes

The table ID (tableid column) is assigned internally, and is the same as that used in other ndbinfo
tables. It is also shown in the output of ndb_show_tables.

The transaction ID (transid column) is the identifier generated by the NDB API for the transaction
requesting or holding the current lock.

627

The ndbinfo cluster_operations Table

The mode column shows the lock mode; this is always one of S (indicating a shared lock) or X (an
exclusive lock). If a transaction holds an exclusive lock on a given row, all other locks on that row have the
same transaction ID.

The state column shows the lock state. Its value is always one of H (holding) or W (waiting). A waiting lock
request waits for a lock held by a different transaction.

When the detail column contains a * (asterisk character), this means that this lock is the first holding
lock in the affected row's lock queue; otherwise, this column is empty. This information can be used to help
identify the unique entries in a list of lock requests.

The op column shows the type of operation requesting the lock. This is always one of the values READ,
INSERT, UPDATE, DELETE, SCAN, or REFRESH.

The duration_millis column shows the number of milliseconds for which this lock request has been
waiting or holding the lock. This is reset to 0 when a lock is granted for a waiting request.

The lock ID (lockid column) is unique to this node and block instance.

The lock state is shown in the lock_state column; if this is W, the lock is waiting to be granted, and
the waiting_for column shows the lock ID of the lock object this request is waiting for. Otherwise, the
waiting_for column is empty. waiting_for can refer only to locks on the same row, as identified by
node_id, block_instance, tableid, fragmentid, and rowid.

6.14.7 The ndbinfo cluster_operations Table

The cluster_operations table provides a per-operation (stateful primary key op) view of all activity
in the NDB Cluster from the point of view of the local data management (LQH) blocks (see The DBLQH
Block).

The cluster_operations table contains the following columns:

• node_id

Node ID of reporting LQH block

• block_instance

LQH block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

628

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

The ndbinfo cluster_transactions Table

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED, SCAN_RELEASE_STOPPED,
SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED, TC_NOT_CONNECTED, WAIT_ACC,
WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR, WAIT_SCAN_AI, WAIT_TUP,
WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If the MySQL Server is running
with ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-partition-
info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance and tc_block_instance column provide, respectively, the DBLQH and DBTC
block instance numbers. You can use these along with the block names to obtain information about
specific threads from the threadblocks table.

6.14.8 The ndbinfo cluster_transactions Table

629

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

The ndbinfo cluster_transactions Table

The cluster_transactions table shows information about all ongoing transactions in an NDB Cluster.

The cluster_transactions table contains the following columns:

• node_id

Node ID of transaction coordinator

• block_instance

TC block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

Number of stateful primary key operations in transaction (includes reads with locks, as well as DML
operations)

• outstanding_operations

Operations still being executed in local data management blocks

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The transaction ID is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The state column can have any one of the values CS_ABORTING, CS_COMMITTING, CS_COMMIT_SENT,
CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED, CS_FAIL_ABORTED,
CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING, CS_FAIL_COMPLETED,
CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING, CS_REC_COMMITTING,
CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED, CS_START_COMMITTING,
CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF, CS_WAIT_COMPLETE_CONF,
CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with ndbinfo_show_hidden enabled, you
can view this list of states by selecting from the ndb$dbtc_apiconnect_state table, which is normally
hidden.)

630

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

The ndbinfo config_nodes Table

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The tc_block_instance column provides the DBTC block instance number. You can use this along with
the block name to obtain information about specific threads from the threadblocks table.

6.14.9 The ndbinfo config_nodes Table

The config_nodes table shows nodes configured in an NDB Cluster config.ini file. For each node,
the table displays a row containing the node ID, the type of node (management node, data node, or API
node), and the name or IP address of the host on which the node is configured to run.

This table does not indicate whether a given node is actually running, or whether it is currently connected
to the cluster. Information about nodes connected to an NDB Cluster can be obtained from the nodes and
processes table.

The config_nodes table contains the following columns:

• node_id

The node's ID

• node_type

The type of node

• node_hostname

The name or IP address of the host on which the node resides

Notes

The node_id column shows the node ID used in the config.ini file for this node; if none is specified,
the node ID that would be assigned automatically to this node is displayed.

The node_type column displays one of the following three values:

• MGM: Management node.

• NDB: Data node.

• API: API node; this includes SQL nodes.

The node_hostname column shows the node host as specified in the config.ini file. This can be
empty for an API node, if HostName has not been set in the cluster configuration file. If HostName has
not been set for a data node in the configuration file, localhost is used here. localhost is also used if
HostName has not been specified for a management node.

6.14.10 The ndbinfo config_params Table

The config_params table is a static table which provides the names and internal ID numbers of and
other information about NDB Cluster configuration parameters. This table can also be used in conjunction
with the config_values table for obtaining realtime information about node configuration parameters.

The config_params table contains the following columns:

• param_number

631

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

The ndbinfo config_values Table

The parameter's internal ID number

• param_name

The name of the parameter

• param_description

A brief description of the parameter

• param_type

The parameter's data type

• param_default

The parameter's default value, if any

• param_min

The parameter's maximum value, if any

• param_max

The parameter's minimum value, if any

• param_mandatory

This is 1 if the parameter is required, otherwise 0

• param_status

Currently unused

Notes

This table is read-only.

Although this is a static table, its content can vary between NDB Cluster installations, since supported
parameters can vary due to differences between software releases, cluster hardware configurations, and
other factors.

6.14.11 The ndbinfo config_values Table

The config_values table provides information about the current state of node configuration parameter
values. Each row in the table corresponds to the current value of a parameter on a given node.

The config_values table contains the following columns:

• node_id

ID of the node in the cluster

• config_param

The parameter's internal ID number

• config_value

632

The ndbinfo config_values Table

Current value of the parameter

Notes

This table's config_param column and the config_params table's param_number column use the
same parameter identifiers. By joining the two tables on these columns, you can obtain detailed information
about desired node configuration parameters. The query shown here provides the current values for all
parameters on each data node in the cluster, ordered by node ID and parameter name:

SELECT v.node_id AS 'Node Id',
 p.param_name AS 'Parameter',
 v.config_value AS 'Value'
FROM config_values v
JOIN config_params p
ON v.config_param=p.param_number
WHERE p.param_name NOT LIKE '__%'
ORDER BY v.node_id, p.param_name;

Partial output from the previous query when run on a small example cluster used for simple testing:

+---------+--+----------------+
| Node Id | Parameter | Value |
+---------+--+----------------+
2	Arbitration	1
2	ArbitrationTimeout	7500
2	BackupDataBufferSize	16777216
2	BackupDataDir	/home/jon/data
2	BackupDiskWriteSpeedPct	50
2	BackupLogBufferSize	16777216

...

3	TotalSendBufferMemory	0
3	TransactionBufferMemory	1048576
3	TransactionDeadlockDetectionTimeout	1200
3	TransactionInactiveTimeout	4294967039
3	TwoPassInitialNodeRestartCopy	0
3	UndoDataBuffer	16777216
3	UndoIndexBuffer	2097152
+---------+--+----------------+
248 rows in set (0.02 sec)

The WHERE clause filters out parameters whose names begin with a double underscore (__); these
parameters are reserved for testing and other internal uses by the NDB developers, and are not intended
for use in a production NDB Cluster.

You can obtain output that is more specific, more detailed, or both by issuing the proper queries. This
example provides all types of available information about the NodeId, NoOfReplicas, HostName,
DataMemory, IndexMemory, and TotalSendBufferMemory parameters as currently set for all data
nodes in the cluster:

SELECT p.param_name AS Name,
 v.node_id AS Node,
 p.param_type AS Type,
 p.param_default AS 'Default',
 p.param_min AS Minimum,
 p.param_max AS Maximum,
 CASE p.param_mandatory WHEN 1 THEN 'Y' ELSE 'N' END AS 'Required',
 v.config_value AS Current
FROM config_params p
JOIN config_values v
ON p.param_number = v.config_param
WHERE p. param_name

633

The ndbinfo config_values Table

 IN ('NodeId', 'NoOfReplicas', 'HostName',
 'DataMemory', 'IndexMemory', 'TotalSendBufferMemory')\G

The output from this query when run on a small NDB Cluster with 2 data nodes used for simple testing is
shown here:

*************************** 1. row ***************************
 Name: NodeId
 Node: 2
 Type: unsigned
 Default:
 Minimum: 1
 Maximum: 144
Required: Y
 Current: 2
*************************** 2. row ***************************
 Name: HostName
 Node: 2
 Type: string
 Default: localhost
 Minimum:
 Maximum:
Required: N
 Current: 127.0.0.1
*************************** 3. row ***************************
 Name: TotalSendBufferMemory
 Node: 2
 Type: unsigned
 Default: 0
 Minimum: 262144
 Maximum: 4294967039
Required: N
 Current: 0
*************************** 4. row ***************************
 Name: NoOfReplicas
 Node: 2
 Type: unsigned
 Default: 2
 Minimum: 1
 Maximum: 4
Required: N
 Current: 2
*************************** 5. row ***************************
 Name: DataMemory
 Node: 2
 Type: unsigned
 Default: 102760448
 Minimum: 1048576
 Maximum: 1099511627776
Required: N
 Current: 524288000
*************************** 6. row ***************************
 Name: NodeId
 Node: 3
 Type: unsigned
 Default:
 Minimum: 1
 Maximum: 144
Required: Y
 Current: 3
*************************** 7. row ***************************
 Name: HostName
 Node: 3
 Type: string
 Default: localhost
 Minimum:
 Maximum:

634

The ndbinfo counters Table

Required: N
 Current: 127.0.0.1
*************************** 8. row ***************************
 Name: TotalSendBufferMemory
 Node: 3
 Type: unsigned
 Default: 0
 Minimum: 262144
 Maximum: 4294967039
Required: N
 Current: 0
*************************** 9. row ***************************
 Name: NoOfReplicas
 Node: 3
 Type: unsigned
 Default: 2
 Minimum: 1
 Maximum: 4
Required: N
 Current: 2
*************************** 10. row ***************************
 Name: DataMemory
 Node: 3
 Type: unsigned
 Default: 102760448
 Minimum: 1048576
 Maximum: 1099511627776
Required: N
 Current: 524288000
10 rows in set (0.01 sec)

6.14.12 The ndbinfo counters Table

The counters table provides running totals of events such as reads and writes for specific kernel blocks
and data nodes. Counts are kept from the most recent node start or restart; a node start or restart resets all
counters on that node. Not all kernel blocks have all types of counters.

The counters table contains the following columns:

• node_id

The data node ID

• block_name

Name of the associated NDB kernel block (see NDB Kernel Blocks).

• block_instance

Block instance

• counter_id

The counter's internal ID number; normally an integer between 1 and 10, inclusive.

• counter_name

The name of the counter. See text for names of individual counters and the NDB kernel block with which
each counter is associated.

• val

The counter's value

635

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks.html

The ndbinfo counters Table

Notes

Each counter is associated with a particular NDB kernel block.

The OPERATIONS counter is associated with the DBLQH (local query handler) kernel block. A primary-key
read counts as one operation, as does a primary-key update. For reads, there is one operation in DBLQH
per operation in DBTC. For writes, there is one operation counted per fragment replica.

The ATTRINFO, TRANSACTIONS, COMMITS, READS, LOCAL_READS, SIMPLE_READS, WRITES,
LOCAL_WRITES, ABORTS, TABLE_SCANS, and RANGE_SCANS counters are associated with the DBTC
(transaction co-ordinator) kernel block.

LOCAL_WRITES and LOCAL_READS are primary-key operations using a transaction coordinator in a node
that also holds the primary fragment replica of the record.

The READS counter includes all reads. LOCAL_READS includes only those reads of the primary fragment
replica on the same node as this transaction coordinator. SIMPLE_READS includes only those reads in
which the read operation is the beginning and ending operation for a given transaction. Simple reads
do not hold locks but are part of a transaction, in that they observe uncommitted changes made by the
transaction containing them but not of any other uncommitted transactions. Such reads are “simple” from
the point of view of the TC block; since they hold no locks they are not durable, and once DBTC has routed
them to the relevant LQH block, it holds no state for them.

ATTRINFO keeps a count of the number of times an interpreted program is sent to the data node. See NDB
Protocol Messages, for more information about ATTRINFO messages in the NDB kernel.

The LOCAL_TABLE_SCANS_SENT, READS_RECEIVED, PRUNED_RANGE_SCANS_RECEIVED,
RANGE_SCANS_RECEIVED, LOCAL_READS_SENT, CONST_PRUNED_RANGE_SCANS_RECEIVED,
LOCAL_RANGE_SCANS_SENT, REMOTE_READS_SENT, REMOTE_RANGE_SCANS_SENT,
READS_NOT_FOUND, SCAN_BATCHES_RETURNED, TABLE_SCANS_RECEIVED, and
SCAN_ROWS_RETURNED counters are associated with the DBSPJ (select push-down join) kernel block.

The block_name and block_instance columns provide, respectively, the applicable NDB kernel block
name and instance number. You can use these to obtain information about specific threads from the
threadblocks table.

A number of counters provide information about transporter overload and send buffer sizing when
troubleshooting such issues. For each LQH instance, there is one instance of each counter in the following
list:

• LQHKEY_OVERLOAD: Number of primary key requests rejected at the LQH block instance due to
transporter overload

• LQHKEY_OVERLOAD_TC: Count of instances of LQHKEY_OVERLOAD where the TC node transporter was
overloaded

• LQHKEY_OVERLOAD_READER: Count of instances of LQHKEY_OVERLOAD where the API reader (reads
only) node was overloaded.

• LQHKEY_OVERLOAD_NODE_PEER: Count of instances of LQHKEY_OVERLOAD where the next backup
data node (writes only) was overloaded

• LQHKEY_OVERLOAD_SUBSCRIBER: Count of instances of LQHKEY_OVERLOAD where a event subscriber
(writes only) was overloaded.

• LQHSCAN_SLOWDOWNS: Count of instances where a fragment scan batch size was reduced due to
scanning API transporter overload.

636

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol-messages.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

The ndbinfo cpudata Table

6.14.13 The ndbinfo cpudata Table

The cpudata table provides data about CPU usage during the last second.

The cpustat table contains the following columns:

• node_id

Node ID

• cpu_no

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

Notes

The cpudata table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

6.14.14 The ndbinfo cpudata_1sec Table

The cpudata_1sec table provides data about CPU usage per second over the last 20 seconds.

The cpustat table contains the following columns:

• node_id

Node ID

• measurement_id

Measurement sequence ID; later measurements have lower IDs

• cpu_no

637

The ndbinfo cpudata_20sec Table

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

• elapsed_time

Time in microseconds used for this measurement

Notes

The cpudata_1sec table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

6.14.15 The ndbinfo cpudata_20sec Table

The cpudata_20sec table provides data about CPU usage per 20-second interval over the last 400
seconds.

The cpustat table contains the following columns:

• node_id

Node ID

• measurement_id

Measurement sequence ID; later measurements have lower IDs

• cpu_no

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

638

The ndbinfo cpudata_50ms Table

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

• elapsed_time

Time in microseconds used for this measurement

Notes

The cpudata_20sec table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

6.14.16 The ndbinfo cpudata_50ms Table

The cpudata_50ms table provides data about CPU usage per 50-millisecond interval over the last
second.

The cpustat table contains the following columns:

• node_id

Node ID

• measurement_id

Measurement sequence ID; later measurements have lower IDs

• cpu_no

CPU ID

• cpu_online

1 if the CPU is currently online, otherwise 0

• cpu_userspace_time

CPU time spent in userspace

• cpu_idle_time

CPU time spent idle

639

The ndbinfo cpuinfo Table

• cpu_system_time

CPU time spent in system time

• cpu_interrupt_time

CPU time spent handling interrupts (hardware and software)

• cpu_exec_vm_time

CPU time spent in virtual machine execution

• elapsed_time

Time in microseconds used for this measurement

Notes

The cpudata_50ms table is available only on Linux and Solaris operating systems.

This table was added in NDB 8.0.23.

6.14.17 The ndbinfo cpuinfo Table

The cpuinfo table provides information about the CPU on which a given data node executes.

The cpuinfo table contains the following columns:

• node_id

Node ID

• cpu_no

CPU ID

• cpu_online

1 if the CPU is online, otherwise 0

• core_id

CPU core ID

• socket_id

CPU socket ID

Notes

The cpuinfo table is available on all operating systems supported by NDB, with the exception of MacOS
and FreeBSD.

This table was added in NDB 8.0.23.

6.14.18 The ndbinfo cpustat Table

The cpustat table provides per-thread CPU statistics gathered each second, for each thread running in
the NDB kernel.

640

The ndbinfo cpustat_50ms Table

The cpustat table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user

OS user time

• OS_system

OS system time

• OS_idle

OS idle time

• thread_exec

Thread execution time

• thread_sleeping

Thread sleep time

• thread_spinning

Thread spin time

• thread_send

Thread send time

• thread_buffer_full

Thread buffer full time

• elapsed_time

Elapsed time

6.14.19 The ndbinfo cpustat_50ms Table

The cpustat_50ms table provides raw, per-thread CPU data obtained each 50 milliseconds for each
thread running in the NDB kernel.

Like cpustat_1sec and cpustat_20sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_50ms provides 1 second of history.

The cpustat_50ms table contains the following columns:

• node_id

ID of the node where the thread is running

641

The ndbinfo cpustat_1sec Table

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

OS system time

• OS_idle_time

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

6.14.20 The ndbinfo cpustat_1sec Table

The cpustat-1sec table provides raw, per-thread CPU data obtained each second for each thread
running in the NDB kernel.

Like cpustat_50ms and cpustat_20sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_1sec provides 20 seconds of history.

The cpustat_1sec table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

642

The ndbinfo cpustat_20sec Table

OS user time

• OS_system_time

OS system time

• OS_idle_time

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

6.14.21 The ndbinfo cpustat_20sec Table

The cpustat_20sec table provides raw, per-thread CPU data obtained each 20 seconds, for each thread
running in the NDB kernel.

Like cpustat_50ms and cpustat_1sec, this table shows 20 measurement sets per thread, each
referencing a period of the named duration. Thus, cpsustat_20sec provides 400 seconds of history.

The cpustat_20sec table contains the following columns:

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• OS_user_time

OS user time

• OS_system_time

643

The ndbinfo dictionary_columns Table

OS system time

• OS_idle_time

OS idle time

• exec_time

Thread execution time

• sleep_time

Thread sleep time

• spin_time

Thread spin time

• send_time

Thread send time

• buffer_full_time

Thread buffer full time

• elapsed_time

Elapsed time

6.14.22 The ndbinfo dictionary_columns Table

The table provides NDB dictionary information about columns of NDB tables. dictionary_columns has
the columns listed here (with brief descriptions):

• table_id

ID of the table containing the column

• column_id

The column's unique ID

• name

Name of the column

• column_type

Data type of the column from the NDB API; see Column::Type, for possible values

• default_value

The column's default value, if any

• nullable

Either of NULL or NOT NULL

644

https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-type

The ndbinfo dictionary_tables Table

• array_type

The column's internal attribute storage format; one of FIXED, SHORT_VAR, or MEDIUM_VAR; for more
information, see Column::ArrayType, in the NDB API documentation

• storage_type

Type of storage used by the table; either of MEMORY or DISK

• primary_key

1 if this is a primary key column, otherwise 0

• partition_key

1 if this is a partitioning key column, otherwise 0

• dynamic

1 if the column is dynamic, otherwise 0

• auto_inc

1 if this is an AUTO_INCREMENT column, otherwise 0

You can obtain information about all of the columns in a given table by joining dictionary_columns with
the dictionary_tables table, like this:

SELECT dc.*
 FROM dictionary_columns dc
JOIN dictionary_tables dt
 ON dc.table_id=dt.table_id
WHERE dt.table_name='t1'
 AND dt.database_name='mydb';

The dictionary_columns table was added in NDB 8.0.29.

Note

Blob columns are not shown in this table. This is a known issue.

6.14.23 The ndbinfo dictionary_tables Table

This table provides NDB dictionary information for NDB tables. dictionary_tables contains the columns
listed here:

• table_id

The table' unique ID

• database_name

Name of the database containing the table

• table_name

Name of the table

• status

645

https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-arraytype

The ndbinfo dictionary_tables Table

The table status; one of New, Changed, Retrieved, Invalid, or Altered. (See Object::Status, for
more information about object status values.)

• attributes

Number of table attributes

• primary_key_cols

Number of columns in the table's primary key

• primary_key

A comma-separated list of the columns in the table's primary key

• storage

Type of storage used by the table; one of memory, disk, or default

• logging

Whether logging is enabled for this table

• dynamic

1 if the table is dynamic, otherwise 0; the table is considered dynamic if table->getForceVarPart()
is true, or if at least one table column is dynamic

• read_backup

1 if read from any replica (READ_BACKUP option is enabled for this table, otherwise 0; see Setting NDB
Comment Options)

• fully_replicated

1 if FULLY_REPLICATED is enabled for this table (each data node in the cluster has a complete copy of
the table), 0 if not; see Setting NDB Comment Options

• checksum

If this table uses a checksum, the value in this column is 1; if not, it is 0

• row_size

The amount of data, in bytes that can be stored in one row, not including any blob data stored separately
in blob tables; see Table::getRowSizeInBytes(), in the API documentation, for more information

• min_rows

Minimum number of rows, as used for calculating partitions; see Table::getMinRows(), in the API
documentation, for more information

• max_rows

Maximum number of rows, as used for calculating partitions; see Table::getMaxRows(), in the API
documentation, for more information

• tablespace

646

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-status
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getforcevarpart
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getrowsizeinbytes
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getminrows
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getmaxrows

The ndbinfo dict_obj_info Table

ID of the tablespace to which the table belongs, if any; this is 0, if the table does not use data on disk

• fragment_type

The table's fragment type; one of Single, AllSmall, AllMedium, AllLarge, DistrKeyHash,
DistrKeyLin, UserDefined, unused, or HashMapPartition; for more information, see
Object::FragmentType, in the NDB API documentation

• hash_map

The hash map used by the table

• fragments

Number of table fragments

• partitions

Number of partitions used by the table

• partition_balance

Type of partition balance used, if any; one of FOR_RP_BY_NODE, FOR_RA_BY_NODE, FOR_RP_BY_LDM,
FOR_RA_BY_LDM, FOR_RA_BY_LDM_X_2, FOR_RA_BY_LDM_X_3, or FOR_RA_BY_LDM_X_4; see
Setting NDB Comment Options

• contains_GCI

1 if the table includes a global checkpoint index, otherwise 0

• single_user_mode

Type of access allowed to the table when single user mode is in effect; one of locked,
read_only, or read_write; these are equivalent to the values SingleUserModeLocked,
SingleUserModeReadOnly, and SingleUserModeReadWrite, respectively, of the
Table::SingleUserMode type in the NDB API

• force_var_part

This is 1 if table->getForceVarPart() is true for this table, and 0 if it is not

• GCI_bits

Used in testing

• author_bits

Used in testing

The dictionary_tables table was added in NDB 8.0.29.

6.14.24 The ndbinfo dict_obj_info Table

The dict_obj_info table provides information about NDB data dictionary (DICT) objects such as tables
and indexes. (The dict_obj_types table can be queried for a list of all the types.) This information
includes the object's type, state, parent object (if any), and fully qualified name.

The dict_obj_info table contains the following columns:

647

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-fragmenttype
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-singleusermode
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getforcevarpart
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

The ndbinfo dict_obj_tree Table

• type

Type of DICT object; join on dict_obj_types to obtain the name

• id

Object identifier; for Disk Data undo log files and data files, this is the same as the value shown in
the LOGFILE_GROUP_NUMBER column of the INFORMATION_SCHEMA.FILES table; for undo log
files, it also the same as the value shown for the log_id column in the ndbinfo logbuffers and
logspaces tables

• version

Object version

• state

Object state; see Object::State for values and descriptions.

• parent_obj_type

Parent object's type (a dict_obj_types type ID); 0 indicates that the object has no parent

• parent_obj_id

Parent object ID (such as a base table); 0 indicates that the object has no parent

• fq_name

Fully qualified object name; for a table, this has the form database_name/def/table_name,
for a primary key, the form is sys/def/table_id/PRIMARY, and for a unique key it is sys/
def/table_id/uk_name$unique

6.14.25 The ndbinfo dict_obj_tree Table

The dict_obj_tree table provides a tree-based view of table information from the dict_obj_info
table. This is intended priarily for use in testing, but can be useful in visualizing hierachies of NDB database
objects.

The dict_obj_tree table contains the following columns:

• type

Type of DICT object; join on dict_obj_types to obtain the name of the object type

• id

Object identifier; same as the id column in dict_obj_info

For Disk Data undo log files and data files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the INFORMATION_SCHEMA.FILES table; for undo log files, it
also the same as the value shown for the log_id column in the ndbinfo logbuffers and logspaces
tables

• name

The fully qualified name of the object; the same as the fq_name column in dict_obj_info

648

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-state
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

The ndbinfo dict_obj_tree Table

For a table, this is database_name/def/table_name (the same as its parent_name); for an index
of any type, this takes the form NDB$INDEX_index_id_CUSTOM

• parent_type

The DICT object type of this object's parent object; join on dict_obj_types to obtain the name of the
object type

• parent_id

Identifier for this object's parent object; the same as the dict_obj_info table's id column

• parent_name

Fully qualified name of this object's parent object; the same as the dict_obj_info table's fq_name
column

For a table, this has the form database_name/def/table_name. For an index, the name is sys/
def/table_id/index_name. For a primary key, it is sys/def/table_id/PRIMARY, and for a
unique key it is sys/def/table_id/uk_name$unique

• root_type

The DICT object type of the root object; join on dict_obj_types to obtain the name of the object type

• root_id

Identifier for the root object; the same as the dict_obj_info table's id column

• root_name

Fully qualified name of the root object; the same as the dict_obj_info table's fq_name column

• level

Level of the object in the hierarchy

• path

Complete path to the object in the NDB object hierarchy; objects are separated by a right arrow
(represented as ->), starting with the root object on the left

• indented_name

The name prefixed with a right arrow (represented as ->) with a number of spaces preceding it that
correspond to the object's depth in the hierarchy

The path column is useful for obtaining a complete path to a given NDB database object in a single line,
whereas the indented_name column can be used to obtain a tree-like layout of complete hierarchy
information for a desired object.

Example: Assuming the existence of a test database and no existing table named t1 in this database,
execute the following SQL statement:

CREATE TABLE test.t1 (
 a INT PRIMARY KEY,
 b INT,
 UNIQUE KEY(b)

649

The ndbinfo dict_obj_tree Table

) ENGINE = NDB;

You can obtain the path to the table just created using the query shown here:

mysql> SELECT path FROM ndbinfo.dict_obj_tree
 -> WHERE name LIKE 'test%t1';
+-------------+
| path |
+-------------+
| test/def/t1 |
+-------------+
1 row in set (0.14 sec)

You can see the paths to all dependent objects of this table using the path to the table as the root name in
a query like this one:

mysql> SELECT path FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/t1';
+--+
| path |
+--+
| test/def/t1 |
| test/def/t1 -> sys/def/13/b |
| test/def/t1 -> sys/def/13/b -> NDB$INDEX_15_CUSTOM |
| test/def/t1 -> sys/def/13/b$unique |
| test/def/t1 -> sys/def/13/b$unique -> NDB$INDEX_16_UI |
| test/def/t1 -> sys/def/13/PRIMARY |
| test/def/t1 -> sys/def/13/PRIMARY -> NDB$INDEX_14_CUSTOM |
+--+
7 rows in set (0.16 sec)

To obtain a hierarchical view of the t1 table with all its dependent objects, execute a query similar to this
one which selects the indented name of each object having test/def/t1 as the name of its root object:

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/t1';
+----------------------------+
| indented_name |
+----------------------------+
| test/def/t1 |
| -> sys/def/13/b |
| -> NDB$INDEX_15_CUSTOM |
| -> sys/def/13/b$unique |
| -> NDB$INDEX_16_UI |
| -> sys/def/13/PRIMARY |
| -> NDB$INDEX_14_CUSTOM |
+----------------------------+
7 rows in set (0.15 sec)

When working with Disk Data tables, note that, in this context, a tablespace or log file group is
considered a root object. This means that you must know the name of any tablespace or log file group
associated with a given table, or obtain this information from SHOW CREATE TABLE and then querying
INFORMATION_SCHEMA.FILES, or similar means as shown here:

mysql> SHOW CREATE TABLE test.dt_1\G
*************************** 1. row ***************************
 Table: dt_1
Create Table: CREATE TABLE `dt_1` (
 `member_id` int unsigned NOT NULL AUTO_INCREMENT,
 `last_name` varchar(50) NOT NULL,
 `first_name` varchar(50) NOT NULL,
 `dob` date NOT NULL,
 `joined` date NOT NULL,
 PRIMARY KEY (`member_id`),
 KEY `last_name` (`last_name`,`first_name`)

650

https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

The ndbinfo dict_obj_types Table

) /*!50100 TABLESPACE `ts_1` STORAGE DISK */ ENGINE=ndbcluster DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci
1 row in set (0.00 sec)

mysql> SELECT DISTINCT TABLESPACE_NAME, LOGFILE_GROUP_NAME
 -> FROM INFORMATION_SCHEMA.FILES WHERE TABLESPACE_NAME='ts_1';
+-----------------+--------------------+
| TABLESPACE_NAME | LOGFILE_GROUP_NAME |
+-----------------+--------------------+
| ts_1 | lg_1 |
+-----------------+--------------------+
1 row in set (0.00 sec)

Now you can obtain hierarchical information for the table, tablespace, and log file group like this:

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'test/def/dt_1';
+----------------------------+
| indented_name |
+----------------------------+
| test/def/dt_1 |
| -> sys/def/23/last_name |
| -> NDB$INDEX_25_CUSTOM |
| -> sys/def/23/PRIMARY |
| -> NDB$INDEX_24_CUSTOM |
+----------------------------+
5 rows in set (0.15 sec)

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name = 'ts_1';
+-----------------+
| indented_name |
+-----------------+
| ts_1 |
| -> data_1.dat |
| -> data_2.dat |
+-----------------+
3 rows in set (0.17 sec)

mysql> SELECT indented_name FROM ndbinfo.dict_obj_tree
 -> WHERE root_name LIKE 'lg_1';
+-----------------+
| indented_name |
+-----------------+
| lg_1 |
| -> undo_1.log |
| -> undo_2.log |
+-----------------+
3 rows in set (0.16 sec)

The dict_obj_tree table was added in NDB 8.0.24.

6.14.26 The ndbinfo dict_obj_types Table

The dict_obj_types table is a static table listing possible dictionary object types used in the NDB
kernel. These are the same types defined by Object::Type in the NDB API.

The dict_obj_types table contains the following columns:

• type_id

The type ID for this type

• type_name

The name of this type

651

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

The ndbinfo disk_write_speed_base Table

6.14.27 The ndbinfo disk_write_speed_base Table

The disk_write_speed_base table provides base information about the speed of disk writes during
LCP, backup, and restore operations.

The disk_write_speed_base table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• millis_ago

Milliseconds since this reporting period ended

• millis_passed

Milliseconds elapsed in this reporting period

• backup_lcp_bytes_written

Number of bytes written to disk by local checkpoints and backup processes during this period

• redo_bytes_written

Number of bytes written to REDO log during this period

• target_disk_write_speed

Actual speed of disk writes per LDM thread (base data)

6.14.28 The ndbinfo disk_write_speed_aggregate Table

The disk_write_speed_aggregate table provides aggregated information about the speed of disk
writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate table contains the following columns:

• node_id

Node ID of this node

• thr_no

Thread ID of this LDM thread

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to REDO log in the last second

• backup_lcp_speed_last_10sec

652

The ndbinfo disk_write_speed_aggregate_node Table

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_10sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 10 seconds

• std_dev_redo_speed_last_10sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 10
seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• std_dev_backup_lcp_speed_last_60sec

Standard deviation in number of bytes written to disk by backup and LCP processes per second,
averaged over the last 60 seconds

• std_dev_redo_speed_last_60sec

Standard deviation in number of bytes written to REDO log per second, averaged over the last 60
seconds

• slowdowns_due_to_io_lag

Number of seconds since last node start that disk writes were slowed due to REDO log I/O lag

• slowdowns_due_to_high_cpu

Number of seconds since last node start that disk writes were slowed due to high CPU usage

• disk_write_speed_set_to_min

Number of seconds since last node start that disk write speed was set to minimum

• current_target_disk_write_speed

Actual speed of disk writes per LDM thread (aggregated)

6.14.29 The ndbinfo disk_write_speed_aggregate_node Table

The disk_write_speed_aggregate_node table provides aggregated information per node about the
speed of disk writes during LCP, backup, and restore operations.

The disk_write_speed_aggregate_node table contains the following columns:

653

The ndbinfo diskpagebuffer Table

• node_id

Node ID of this node

• backup_lcp_speed_last_sec

Number of bytes written to disk by backup and LCP processes in the last second

• redo_speed_last_sec

Number of bytes written to REDO log in the last second

• backup_lcp_speed_last_10sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 10
seconds

• redo_speed_last_10sec

Number of bytes written to REDO log per second, averaged over the last 10 seconds

• backup_lcp_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

• redo_speed_last_60sec

Number of bytes written to disk by backup and LCP processes per second, averaged over the last 60
seconds

6.14.30 The ndbinfo diskpagebuffer Table

The diskpagebuffer table provides statistics about disk page buffer usage by NDB Cluster Disk Data
tables.

The diskpagebuffer table contains the following columns:

• node_id

The data node ID

• block_instance

Block instance

• pages_written

Number of pages written to disk.

• pages_written_lcp

Number of pages written by local checkpoints.

• pages_read

Number of pages read from disk

• log_waits

654

The ndbinfo diskpagebuffer Table

Number of page writes waiting for log to be written to disk

• page_requests_direct_return

Number of requests for pages that were available in buffer

• page_requests_wait_queue

Number of requests that had to wait for pages to become available in buffer

• page_requests_wait_io

Number of requests that had to be read from pages on disk (pages were unavailable in buffer)

Notes

You can use this table with NDB Cluster Disk Data tables to determine whether DiskPageBufferMemory
is sufficiently large to allow data to be read from the buffer rather from disk; minimizing disk seeks can help
improve performance of such tables.

You can determine the proportion of reads from DiskPageBufferMemory to the total number of reads
using a query such as this one, which obtains this ratio as a percentage:

SELECT
 node_id,
 100 * page_requests_direct_return /
 (page_requests_direct_return + page_requests_wait_io)
 AS hit_ratio
FROM ndbinfo.diskpagebuffer;

The result from this query should be similar to what is shown here, with one row for each data node in the
cluster (in this example, the cluster has 4 data nodes):

+---------+-----------+
| node_id | hit_ratio |
+---------+-----------+
5	97.6744
6	97.6879
7	98.1776
8	98.1343
+---------+-----------+
4 rows in set (0.00 sec)

hit_ratio values approaching 100% indicate that only a very small number of reads are being made
from disk rather than from the buffer, which means that Disk Data read performance is approaching
an optimum level. If any of these values are less than 95%, this is a strong indicator that the setting for
DiskPageBufferMemory needs to be increased in the config.ini file.

Note

A change in DiskPageBufferMemory requires a rolling restart of all of the
cluster's data nodes before it takes effect.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table. Using this information, you can obtain
information about disk page buffer metrics relating to individual threads; an example query using LIMIT 1
to limit the output to a single thread is shown here:

mysql> SELECT

655

The ndbinfo diskstat Table

 > node_id, thr_no, block_name, thread_name, pages_written,
 > pages_written_lcp, pages_read, log_waits,
 > page_requests_direct_return, page_requests_wait_queue,
 > page_requests_wait_io
 > FROM ndbinfo.diskpagebuffer
 > INNER JOIN ndbinfo.threadblocks USING (node_id, block_instance)
 > INNER JOIN ndbinfo.threads USING (node_id, thr_no)
 > WHERE block_name = 'PGMAN' LIMIT 1\G
*************************** 1. row ***************************
 node_id: 1
 thr_no: 1
 block_name: PGMAN
 thread_name: rep
 pages_written: 0
 pages_written_lcp: 0
 pages_read: 1
 log_waits: 0
page_requests_direct_return: 4
 page_requests_wait_queue: 0
 page_requests_wait_io: 1
1 row in set (0.01 sec)

6.14.31 The ndbinfo diskstat Table

The diskstat table provides information about writes to Disk Data tablespaces during the past 1 second.

The diskstat table contains the following columns:

• node_id

Node ID of this node

• block_instance

ID of reporting instance of PGMAN

• pages_made_dirty

Number of pages made dirty during the past second

• reads_issued

Reads issued during the past second

• reads_completed

Reads completed during the past second

• writes_issued

Writes issued during the past second

• writes_completed

Writes completed during the past second

• log_writes_issued

Number of times a page write has required a log write during the past second

• log_writes_completed

656

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

The ndbinfo diskstats_1sec Table

Number of log writes completed during the last second

• get_page_calls_issued

Number of get_page() calls issued during the past second

• get_page_reqs_issued

Number of times that a get_page() call has resulted in a wait for I/O or completion of I/O already
begun during the past second

• get_page_reqs_completed

Number of get_page() calls waiting for I/O or I/O completion that have completed during the past
second

Notes

Each row in this table corresponds to an instance of PGMAN; there is one such instance per LDM thread
plus an additional instance for each data node.

6.14.32 The ndbinfo diskstats_1sec Table

The diskstats_1sec table provides information about writes to Disk Data tablespaces over the past 20
seconds.

The diskstat table contains the following columns:

• node_id

Node ID of this node

• block_instance

ID of reporting instance of PGMAN

• pages_made_dirty

Pages made dirty during the designated 1-second interval

• reads_issued

Reads issued during the designated 1-second interval

• reads_completed

Reads completed during the designated 1-second interval

• writes_issued

Writes issued during the designated 1-second interval

• writes_completed

Writes completed during the designated 1-second interval

• log_writes_issued

657

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

The ndbinfo error_messages Table

Number of times a page write has required a log write during the designated 1-second interval

• log_writes_completed

Number of log writes completed during the designated 1-second interval

• get_page_calls_issued

Number of get_page() calls issued during the designated 1-second interval

• get_page_reqs_issued

Number of times that a get_page() call has resulted in a wait for I/O or completion of I/O already
begun during the designated 1-second interval

• get_page_reqs_completed

Number of get_page() calls waiting for I/O or I/O completion that have completed during the
designated 1-second interval

• seconds_ago

Number of 1-second intervals in the past of the interval to which this row applies

Notes

Each row in this table corresponds to an instance of PGMAN during a 1-second interval occurring from 0
to 19 seconds ago; there is one such instance per LDM thread plus an additional instance for each data
node.

6.14.33 The ndbinfo error_messages Table

The error_messages table provides information about

The error_messages table contains the following columns:

• error_code

Numeric error code

• error_description

Description of error

• error_status

Error status code

• error_classification

Error classification code

Notes

error_code is a numeric NDB error code. This is the same error code that can be supplied to
ndb_perror.

error_description provides a basic description of the condition causing the error.

658

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-pgman.html

The ndbinfo error_messages Table

The error_status column provides status information relating to the error. Possible values for this
column are listed here:

• No error

• Illegal connect string

• Illegal server handle

• Illegal reply from server

• Illegal number of nodes

• Illegal node status

• Out of memory

• Management server not connected

• Could not connect to socket

• Start failed

• Stop failed

• Restart failed

• Could not start backup

• Could not abort backup

• Could not enter single user mode

• Could not exit single user mode

• Failed to complete configuration change

• Failed to get configuration

• Usage error

• Success

• Permanent error

• Temporary error

• Unknown result

• Temporary error, restart node

• Permanent error, external action needed

• Ndbd file system error, restart node initial

• Unknown

The error_classification column shows the error classification. See NDB Error Classifications, for
information about classification codes and their meanings.

659

https://dev.mysql.com/doc/ndbapi/en/ndb-error-classifications.html

The ndbinfo events Table

6.14.34 The ndbinfo events Table

This table provides information about event subscriptions in NDB. The columns of the events table are
listed here, with short descriptions of each:

• event_id

The event ID

• name

The name of the event

• table_id

The ID of the table on which the event occurred

• reporting

One of updated, all, subscribe, or DDL

• columns

A comma-separated list of columns affected by the event

• table_event

One or more of INSERT, DELETE, UPDATE, SCAN, DROP, ALTER, CREATE, GCP_COMPLETE,
CLUSTER_FAILURE, STOP, NODE_FAILURE, SUBSCRIBE, UNSUBSCRIBE, and ALL (defined by
Event::TableEvent in the NDB API)

The events table was added in NDB 8.0.29.

6.14.35 The ndbinfo files Table

The files tables provides information about files and other objects used by NDB disk data tables, and
contains the columns listed here:

• id

Object ID

• type

The type of object; one of Log file group, Tablespace, Undo file, or Data file

• name

The name of the object

• parent

ID of the parent object

• parent_name

Name of the parent object

• free_extents

660

https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent

The ndbinfo foreign_keys Table

Number of free extents

• total_extents

Total number of extents

• extent_size

Extent size (MB)

• initial_size

Initial size (bytes)

• maximum_size

Maximum size (bytes)

• autoextend_size

Autoextend size (bytes)

For log file groups and tablespaces, parent is always 0, and the parent_name, free_extents,
total_extents, extent_size, initial_size, maximum_size, and autoentend_size columns
are all NULL.

The files table is empty if no disk data objects have been created in NDB. See Section 6.10.1, “NDB
Cluster Disk Data Objects”, for more information.

The files table was added in NDB 8.0.29.

See also The INFORMATION_SCHEMA FILES Table.

6.14.36 The ndbinfo foreign_keys Table

The foreign_keys table provides information about foreign keys on NDB tables. This table has the
following columns:

• object_id

The foreign key's object ID

• name

Name of the foreign key

• parent_table

The name of the foreign key's parent table

• parent_columns

A comma-delimited list of parent columns

• child_table

The name of the child table

661

https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

The ndbinfo hash_maps Table

• child_columns

A comma-separated list of child columns

• parent_index

Name of the parent index

• child_index

Name of the child index

• on_update_action

The ON UPDATE action specified for the foreign key; one of No Action, Restrict, Cascade, Set
Null, or Set Default

• on_delete_action

The ON DELETE action specified for the foreign key; one of No Action, Restrict, Cascade, Set
Null, or Set Default

The foreign_keys table was added in NDB 8.0.29.

6.14.37 The ndbinfo hash_maps Table

• id

The hash map's unique ID

• version

Hash map version (integer)

• state

Hash map state; see Object::State for values and descriptions.

• fq_name

The hash map's fully qualified name

The hash_maps table is actually a view consisting of the four columns having the same names of the
dict_obj_info table, as shown here:

CREATE VIEW hash_maps AS
 SELECT id, version, state, fq_name
 FROM dict_obj_info
 WHERE type=24; # Hash map; defined in dict_obj_types

See the description of dict_obj_info for more information.

The hash_maps table was added in NDB 8.0.29.

6.14.38 The ndbinfo hwinfo Table

The hwinfo table provides information about the hardware on which a given data node executes.

The hwinfo table contains the following columns:

662

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-state

The ndbinfo index_columns Table

• node_id

Node ID

• cpu_cnt_max

Number of processors on this host

• cpu_cnt

Number of processors available to this node

• num_cpu_cores

Number of CPU cores on this host

• num_cpu_sockets

Number of CPU sockets on this host

• HW_memory_size

Amount of memory available on this host

• model_name

CPU model name

Notes

The hwinfo table is available on all operating systems supported by NDB.

This table was added in NDB 8.0.23.

6.14.39 The ndbinfo index_columns Table

This table provides information about indexes on NDB tables. The columns of the index_columns table
are listed here, along with brief descriptions:

• table_id

Unique ID of the NDB table for which the index is defined

• Name of the database containing this table

varchar(64)

• table_name

Name of the table

• index_object_id

Object ID of this index

• index_name

Name of the index; if the index is not named, the name of the first column in the index is used

663

The ndbinfo index_stats Table

• index_type

Type of index; normally this is 3 (unique hash index) or 6 (ordered index); the values are the same as
those in the type_id column of the dict_obj_types table

• status

One of new, changed, retrieved, invalid, or altered

• columns

A comma-delimited list of columns making up the index

The index_columns table was added in NDB 8.0.29.

6.14.40 The ndbinfo index_stats Table

The index_stats table provides basic information about NDB index statistics.

More complete index statistics information can be obtained using the ndb_index_stat utility.

The index_stats table contains the following columns:

• index_id

Index ID

• index_version

Index version

• sample_version

Sample version

Notes

This table was added in NDB 8.0.28.

6.14.41 The ndbinfo locks_per_fragment Table

The locks_per_fragment table provides information about counts of lock claim requests,
and the outcomes of these requests on a per-fragment basis, serving as a companion table to
operations_per_fragment and memory_per_fragment. This table also shows the total time spent
waiting for locks successfully and unsuccessfully since fragment or table creation, or since the most recent
restart.

The locks_per_fragment table contains the following columns:

• fq_name

Fully qualified table name

• parent_fq_name

Fully qualified name of parent object

664

The ndbinfo locks_per_fragment Table

• type

Table type; see text for possible values

• table_id

Table ID

• node_id

Reporting node ID

• block_instance

LDM instance ID

• fragment_num

Fragment identifier

• ex_req

Exclusive lock requests started

• ex_imm_ok

Exclusive lock requests immediately granted

• ex_wait_ok

Exclusive lock requests granted following wait

• ex_wait_fail

Exclusive lock requests not granted

• sh_req

Shared lock requests started

• sh_imm_ok

Shared lock requests immediately granted

• sh_wait_ok

Shared lock requests granted following wait

• sh_wait_fail

Shared lock requests not granted

• wait_ok_millis

Time spent waiting for lock requests that were granted, in milliseconds

• wait_fail_millis

Time spent waiting for lock requests that failed, in milliseconds

665

The ndbinfo logbuffers Table

Notes

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

fq_name is a fully qualified database object name in database/schema/name format, such as test/
def/t1 or sys/def/10/b$unique.

parent_fq_name is the fully qualified name of this object's parent object (table).

table_id is the table's internal ID generated by NDB. This is the same internal table ID shown in other
ndbinfo tables; it is also visible in the output of ndb_show_tables.

The type column shows the type of table. This is always one of System table, User table, Unique
hash index, Hash index, Unique ordered index, Ordered index, Hash index trigger,
Subscription trigger, Read only constraint, Index trigger, Reorganize trigger,
Tablespace, Log file group, Data file, Undo file, Hash map, Foreign key definition,
Foreign key parent trigger, Foreign key child trigger, or Schema transaction.

The values shown in all of the columns ex_req, ex_req_imm_ok, ex_wait_ok, ex_wait_fail,
sh_req, sh_req_imm_ok, sh_wait_ok, and sh_wait_fail represent cumulative numbers of requests
since the table or fragment was created, or since the last restart of this node, whichever of these occurred
later. This is also true for the time values shown in the wait_ok_millis and wait_fail_millis
columns.

Every lock request is considered either to be in progress, or to have completed in some way (that is, to
have succeeded or failed). This means that the following relationships are true:

ex_req >= (ex_req_imm_ok + ex_wait_ok + ex_wait_fail)

sh_req >= (sh_req_imm_ok + sh_wait_ok + sh_wait_fail)

The number of requests currently in progress is the current number of incomplete requests, which can be
found as shown here:

[exclusive lock requests in progress] =
 ex_req - (ex_req_imm_ok + ex_wait_ok + ex_wait_fail)

[shared lock requests in progress] =
 sh_req - (sh_req_imm_ok + sh_wait_ok + sh_wait_fail)

A failed wait indicates an aborted transaction, but the abort may or may not be caused by a lock wait
timeout. You can obtain the total number of aborts while waiting for locks as shown here:

[aborts while waiting for locks] = ex_wait_fail + sh_wait_fail

6.14.42 The ndbinfo logbuffers Table

The logbuffer table provides information on NDB Cluster log buffer usage.

The logbuffers table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log. One of: REDO, DD-UNDO, BACKUP-DATA, or BACKUP-LOG.

666

The ndbinfo logspaces Table

• log_id

The log ID; for Disk Data undo log files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the INFORMATION_SCHEMA.FILES tableas well as the value
shown for the log_id column of the ndbinfo logspaces table

• log_part

The log part number

• total

Total space available for this log

• used

Space used by this log

Notes

logbuffers table rows reflecting two additional log types are available when performing an NDB backup.
One of these rows has the log type BACKUP-DATA, which shows the amount of data buffer used during
backup to copy fragments to backup files. The other row has the log type BACKUP-LOG, which displays the
amount of log buffer used during the backup to record changes made after the backup has started. One
each of these log_type rows is shown in the logbuffers table for each data node in the cluster. These
rows are not present unless an NDB backup is currently being performed.

6.14.43 The ndbinfo logspaces Table

This table provides information about NDB Cluster log space usage.

The logspaces table contains the following columns:

• node_id

The ID of this data node.

• log_type

Type of log; one of: REDO or DD-UNDO.

• node_id

The log ID; for Disk Data undo log files, this is the same as the value shown in the
LOGFILE_GROUP_NUMBER column of the INFORMATION_SCHEMA.FILES table, as well as the value
shown for the log_id column of the ndbinfo logbuffers table

• log_part

The log part number.

• total

Total space available for this log.

• used

Space used by this log.

667

https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

The ndbinfo membership Table

6.14.44 The ndbinfo membership Table

The membership table describes the view that each data node has of all the others in the cluster,
including node group membership, president node, arbitrator, arbitrator successor, arbitrator connection
states, and other information.

The membership table contains the following columns:

• node_id

This node's node ID

• group_id

Node group to which this node belongs

• left node

Node ID of the previous node

• right_node

Node ID of the next node

• president

President's node ID

• successor

Node ID of successor to president

• succession_order

Order in which this node succeeds to presidency

• Conf_HB_order

-

• arbitrator

Node ID of arbitrator

• arb_ticket

Internal identifier used to track arbitration

• arb_state

Arbitration state

• arb_connected

Whether this node is connected to the arbitrator; either of Yes or No

• connected_rank1_arbs

Connected arbitrators of rank 1

668

The ndbinfo membership Table

• connected_rank2_arbs

Connected arbitrators of rank 1

Notes

The node ID and node group ID are the same as reported by ndb_mgm -e "SHOW".

left_node and right_node are defined in terms of a model that connects all data nodes in a circle, in
order of their node IDs, similar to the ordering of the numbers on a clock dial, as shown here:

Figure 6.1 Circular Arrangement of NDB Cluster Nodes

In this example, we have 8 data nodes, numbered 5, 6, 7, 8, 12, 13, 14, and 15, ordered clockwise in
a circle. We determine “left” and “right” from the interior of the circle. The node to the left of node 5 is
node 15, and the node to the right of node 5 is node 6. You can see all these relationships by running the
following query and observing the output:

mysql> SELECT node_id,left_node,right_node
 -> FROM ndbinfo.membership;
+---------+-----------+------------+
| node_id | left_node | right_node |
+---------+-----------+------------+
5	15	6
6	5	7
7	6	8
8	7	12
12	8	13
13	12	14
14	13	15
15	14	5
+---------+-----------+------------+
8 rows in set (0.00 sec)

The designations “left” and “right” are used in the event log in the same way.

The president node is the node viewed by the current node as responsible for setting an arbitrator
(see NDB Cluster Start Phases). If the president fails or becomes disconnected, the current node
expects the node whose ID is shown in the successor column to become the new president. The
succession_order column shows the place in the succession queue that the current node views itself
as having.

In a normal NDB Cluster, all data nodes should see the same node as president, and the same node
(other than the president) as its successor. In addition, the current president should see itself as 1 in the
order of succession, the successor node should see itself as 2, and so on.

669

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-start-phases.html

The ndbinfo memoryusage Table

All nodes should show the same arb_ticket values as well as the same arb_state values. Possible
arb_state values are ARBIT_NULL, ARBIT_INIT, ARBIT_FIND, ARBIT_PREP1, ARBIT_PREP2,
ARBIT_START, ARBIT_RUN, ARBIT_CHOOSE, ARBIT_CRASH, and UNKNOWN.

arb_connected shows whether this node is connected to the node shown as this node's arbitrator.

The connected_rank1_arbs and connected_rank2_arbs columns each display a list of 0 or more
arbitrators having an ArbitrationRank equal to 1, or to 2, respectively.

Note

Both management nodes and API nodes are eligible to become arbitrators.

6.14.45 The ndbinfo memoryusage Table

Querying this table provides information similar to that provided by the ALL REPORT MemoryUsage
command in the ndb_mgm client, or logged by ALL DUMP 1000.

The memoryusage table contains the following columns:

• node_id

The node ID of this data node.

• memory_type

One of Data memory, Index memory, or Long message buffer.

• used

Number of bytes currently used for data memory or index memory by this data node.

• used_pages

Number of pages currently used for data memory or index memory by this data node; see text.

• total

Total number of bytes of data memory or index memory available for this data node; see text.

• total_pages

Total number of memory pages available for data memory or index memory on this data node; see text.

Notes

The total column represents the total amount of memory in bytes available for the given resource (data
memory or index memory) on a particular data node. This number should be approximately equal to the
setting of the corresponding configuration parameter in the config.ini file.

Suppose that the cluster has 2 data nodes having node IDs 5 and 6, and the config.ini file contains the
following:

[ndbd default]
DataMemory = 1G
IndexMemory = 1G

Suppose also that the value of the LongMessageBuffer configuration parameter is allowed to assume its
default (64 MB).

670

https://dev.mysql.com/doc/ndb-internals/en/dump-command-1000.html

The ndbinfo memory_per_fragment Table

The following query shows approximately the same values:

mysql> SELECT node_id, memory_type, total
 > FROM ndbinfo.memoryusage;
+---------+---------------------+------------+
| node_id | memory_type | total |
+---------+---------------------+------------+
5	Data memory	1073741824
5	Index memory	1074003968
5	Long message buffer	67108864
6	Data memory	1073741824
6	Index memory	1074003968
6	Long message buffer	67108864
+---------+---------------------+------------+
6 rows in set (0.00 sec)

In this case, the total column values for index memory are slightly higher than the value set of
IndexMemory due to internal rounding.

For the used_pages and total_pages columns, resources are measured in pages, which are 32K in
size for DataMemory and 8K for IndexMemory. For long message buffer memory, the page size is 256
bytes.

6.14.46 The ndbinfo memory_per_fragment Table

The memory_per_fragment table provides information about the usage of memory by individual
fragments.

The memory_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Type of object; see text for possible values

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

Kernel block instance ID

• fragment_num

Fragment ID (number)

• fixed_elem_alloc_bytes

Number of bytes allocated for fixed-sized elements

671

The ndbinfo memory_per_fragment Table

• fixed_elem_free_bytes

Free bytes remaining in pages allocated to fixed-size elements

• fixed_elem_size_bytes

Length of each fixed-size element in bytes

• fixed_elem_count

Number of fixed-size elements

• fixed_elem_free_count

Number of free rows for fixed-size elements

• var_elem_alloc_bytes

Number of bytes allocated for variable-size elements

• var_elem_free_bytes

Free bytes remaining in pages allocated to variable-size elements

• var_elem_count

Number of variable-size elements

• hash_index_alloc_bytes

Number of bytes allocated to hash indexes

Notes

The type column from this table shows the dictionary object type used for this fragment (Object::Type,
in the NDB API), and can take any one of the values shown in the following list:

• System table

• User table

• Unique hash index

• Hash index

• Unique ordered index

• Ordered index

• Hash index trigger

• Subscription trigger

• Read only constraint

• Index trigger

• Reorganize trigger

• Tablespace

672

https://dev.mysql.com/doc/ndbapi/en/ndb-object.html#ndb-object-type

The ndbinfo nodes Table

• Log file group

• Data file

• Undo file

• Hash map

• Foreign key definition

• Foreign key parent trigger

• Foreign key child trigger

• Schema transaction

You can also obtain this list by executing SELECT * FROM ndbinfo.dict_obj_types in the mysql
client.

The block_instance column provides the NDB kernel block instance number. You can use this to obtain
information about specific threads from the threadblocks table.

6.14.47 The ndbinfo nodes Table

This table contains information on the status of data nodes. For each data node that is running in the
cluster, a corresponding row in this table provides the node's node ID, status, and uptime. For nodes that
are starting, it also shows the current start phase.

The nodes table contains the following columns:

• node_id

The data node's unique node ID in the cluster.

• uptime

Time since the node was last started, in seconds.

• status

Current status of the data node; see text for possible values.

• start_phase

If the data node is starting, the current start phase.

• config_generation

The version of the cluster configuration file in use on this data node.

Notes

The uptime column shows the time in seconds that this node has been running since it was last started or
restarted. This is a BIGINT value. This figure includes the time actually needed to start the node; in other
words, this counter starts running the moment that ndbd or ndbmtd is first invoked; thus, even for a node
that has not yet finished starting, uptime may show a nonzero value.

The status column shows the node's current status. This is one of: NOTHING, CMVMI, STARTING,
STARTED, SINGLEUSER, STOPPING_1, STOPPING_2, STOPPING_3, or STOPPING_4. When the status

673

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

The ndbinfo nodes Table

is STARTING, you can see the current start phase in the start_phase column (see later in this section).
SINGLEUSER is displayed in the status column for all data nodes when the cluster is in single user
mode (see Section 6.6, “NDB Cluster Single User Mode”). Seeing one of the STOPPING states does not
necessarily mean that the node is shutting down but can mean rather that it is entering a new state. For
example, if you put the cluster in single user mode, you can sometimes see data nodes report their state
briefly as STOPPING_2 before the status changes to SINGLEUSER.

The start_phase column uses the same range of values as those used in the output of the ndb_mgm
client node_id STATUS command (see Section 6.1, “Commands in the NDB Cluster Management
Client”). If the node is not currently starting, then this column shows 0. For a listing of NDB Cluster start
phases with descriptions, see Section 6.4, “Summary of NDB Cluster Start Phases”.

The config_generation column shows which version of the cluster configuration is in effect on each
data node. This can be useful when performing a rolling restart of the cluster in order to make changes in
configuration parameters. For example, from the output of the following SELECT statement, you can see
that node 3 is not yet using the latest version of the cluster configuration (6) although nodes 1, 2, and 4 are
doing so:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	10462	STARTED	0	6
2	10460	STARTED	0	6
3	10457	STARTED	0	5
4	10455	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
2 rows in set (0.04 sec)

Therefore, for the case just shown, you should restart node 3 to complete the rolling restart of the cluster.

Nodes that are stopped are not accounted for in this table. Suppose that you have an NDB Cluster with 4
data nodes (node IDs 1, 2, 3 and 4), and all nodes are running normally, then this table contains 4 rows, 1
for each data node:

mysql> USE ndbinfo;
Database changed
mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |
+---------+--------+---------+-------------+-------------------+
1	11776	STARTED	0	6
2	11774	STARTED	0	6
3	11771	STARTED	0	6
4	11769	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
4 rows in set (0.04 sec)

If you shut down one of the nodes, only the nodes that are still running are represented in the output of this
SELECT statement, as shown here:

ndb_mgm> 2 STOP
Node 2: Node shutdown initiated
Node 2: Node shutdown completed.
Node 2 has shutdown.

mysql> SELECT * FROM nodes;
+---------+--------+---------+-------------+-------------------+
| node_id | uptime | status | start_phase | config_generation |

674

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

The ndbinfo operations_per_fragment Table

+---------+--------+---------+-------------+-------------------+
1	11807	STARTED	0	6
3	11802	STARTED	0	6
4	11800	STARTED	0	6
+---------+--------+---------+-------------+-------------------+
3 rows in set (0.02 sec)

6.14.48 The ndbinfo operations_per_fragment Table

The operations_per_fragment table provides information about the operations performed on
individual fragments and fragment replicas, as well as about some of the results from these operations.

The operations_per_fragment table contains the following columns:

• fq_name

Name of this fragment

• parent_fq_name

Name of this fragment's parent

• type

Type of object; see text for possible values

• table_id

Table ID for this table

• node_id

Node ID for this node

• block_instance

Kernel block instance ID

• fragment_num

Fragment ID (number)

• tot_key_reads

Total number of key reads for this fragment replica

• tot_key_inserts

Total number of key inserts for this fragment replica

• tot_key_updates

total number of key updates for this fragment replica

• tot_key_writes

Total number of key writes for this fragment replica

• tot_key_deletes

675

The ndbinfo operations_per_fragment Table

Total number of key deletes for this fragment replica

• tot_key_refs

Number of key operations refused

• tot_key_attrinfo_bytes

Total size of all attrinfo attributes

• tot_key_keyinfo_bytes

Total size of all keyinfo attributes

• tot_key_prog_bytes

Total size of all interpreted programs carried by attrinfo attributes

• tot_key_inst_exec

Total number of instructions executed by interpreted programs for key operations

• tot_key_bytes_returned

Total size of all data and metadata returned from key read operations

• tot_frag_scans

Total number of scans performed on this fragment replica

• tot_scan_rows_examined

Total number of rows examined by scans

• tot_scan_rows_returned

Total number of rows returned to client

• tot_scan_bytes_returned

Total size of data and metadata returned to the client

• tot_scan_prog_bytes

Total size of interpreted programs for scan operations

• tot_scan_bound_bytes

Total size of all bounds used in ordered index scans

• tot_scan_inst_exec

Total number of instructions executed for scans

• tot_qd_frag_scans

Number of times that scans of this fragment replica have been queued

• conc_frag_scans

676

The ndbinfo operations_per_fragment Table

Number of scans currently active on this fragment replica (excluding queued scans)

• conc_qd_frag_scans

Number of scans currently queued for this fragment replica

• tot_commits

Total number of row changes committed to this fragment replica

Notes

The fq_name contains the fully qualified name of the schema object to which this fragment replica
belongs. This currently has the following formats:

• Base table: DbName/def/TblName

• BLOB table: DbName/def/NDB$BLOB_BaseTblId_ColNo

• Ordered index: sys/def/BaseTblId/IndexName

• Unique index: sys/def/BaseTblId/IndexName$unique

The $unique suffix shown for unique indexes is added by mysqld; for an index created by a different
NDB API client application, this may differ, or not be present.

The syntax just shown for fully qualified object names is an internal interface which is subject to change in
future releases.

Consider a table t1 created and modified by the following SQL statements:

CREATE DATABASE mydb;

USE mydb;

CREATE TABLE t1 (
 a INT NOT NULL,
 b INT NOT NULL,
 t TEXT NOT NULL,
 PRIMARY KEY (b)
) ENGINE=ndbcluster;

CREATE UNIQUE INDEX ix1 ON t1(b) USING HASH;

If t1 is assigned table ID 11, this yields the fq_name values shown here:

• Base table: mydb/def/t1

• BLOB table: mydb/def/NDB$BLOB_11_2

• Ordered index (primary key): sys/def/11/PRIMARY

• Unique index: sys/def/11/ix1$unique

For indexes or BLOB tables, the parent_fq_name column contains the fq_name of the corresponding
base table. For base tables, this column is always NULL.

The type column shows the schema object type used for this fragment, which can take any one of the
values System table, User table, Unique hash index, or Ordered index. BLOB tables are
shown as User table.

677

The ndbinfo pgman_time_track_stats Table

The table_id column value is unique at any given time, but can be reused if the corresponding object
has been deleted. The same ID can be seen using the ndb_show_tables utility.

The block_instance column shows which LDM instance this fragment replica belongs to. You can use
this to obtain information about specific threads from the threadblocks table. The first such instance is
always numbered 0.

Since there are typically two fragment replicas, and assuming that this is so, each fragment_num value
should appear twice in the table, on two different data nodes from the same node group.

Since NDB does not use single-key access for ordered indexes, the counts for tot_key_reads,
tot_key_inserts, tot_key_updates, tot_key_writes, and tot_key_deletes are not
incremented by ordered index operations.

Note

When using tot_key_writes, you should keep in mind that a write operation
in this context updates the row if the key exists, and inserts a new row otherwise.
(One use of this is in the NDB implementation of the REPLACE SQL statement.)

The tot_key_refs column shows the number of key operations refused by the LDM. Generally, such
a refusal is due to duplicate keys (inserts), Key not found errors (updates, deletes, and reads), or the
operation was rejected by an interpreted program used as a predicate on the row matching the key.

The attrinfo and keyinfo attributes counted by the tot_key_attrinfo_bytes and
tot_key_keyinfo_bytes columns are attributes of an LQHKEYREQ signal (see The NDB
Communication Protocol) used to initiate a key operation by the LDM. An attrinfo typically contains
tuple field values (inserts and updates) or projection specifications (for reads); keyinfo contains the
primary or unique key needed to locate a given tuple in this schema object.

The value shown by tot_frag_scans includes both full scans (that examine every row) and scans of
subsets. Unique indexes and BLOB tables are never scanned, so this value, like other scan-related counts,
is 0 for fragment replicas of these.

tot_scan_rows_examined may display less than the total number of rows in a given fragment replica,
since ordered index scans can limited by bounds. In addition, a client may choose to end a scan before
all potentially matching rows have been examined; this occurs when using an SQL statement containing
a LIMIT or EXISTS clause, for example. tot_scan_rows_returned is always less than or equal to
tot_scan_rows_examined.

tot_scan_bytes_returned includes, in the case of pushed joins, projections returned to the DBSPJ
block in the NDB kernel.

tot_qd_frag_scans can be effected by the setting for the MaxParallelScansPerFragment data
node configuration parameter, which limits the number of scans that may execute concurrently on a single
fragment replica.

6.14.49 The ndbinfo pgman_time_track_stats Table

This table provides information regarding the latency of disk operations for NDB Cluster Disk Data
tablespaces.

The pgman_time_track_stats table contains the following columns:

• node_id

678

https://dev.mysql.com/doc/refman/8.0/en/replace.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndb-protocol.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html

The ndbinfo processes Table

Unique node ID of this node in the cluster

• block_number

Block number (from blocks table)

• block_instance

Block instance number

• upper_bound

Upper bound

• page_reads

Page read latency (ms)

• page_writes

Page write latency (ms)

• log_waits

Log wait latency (ms)

• get_page

Latency of get_page() calls (ms)

Notes

The read latency (page_reads column) measures the time from when the read request is sent to the file
system thread until the read is complete and has been reported back to the execution thread. The write
latency (page_writes) is calculated in a similar fashion. The size of the page read to or written from a
Disk Data tablespace is always 32 KB.

Log wait latency (log_waits column) is the length of time a page write must wait for the undo log to be
flushed, which must be done prior to each page write.

6.14.50 The ndbinfo processes Table

This table contains information about NDB Cluster node processes; each node is represented by the row in
the table. Only nodes that are connected to the cluster are shown in this table. You can obtain information
about nodes that are configured but not connected to the cluster from the nodes and config_nodes
tables.

The processes table contains the following columns:

• node_id

The node's unique node ID in the cluster

• node_type

Type of node (management, data, or API node; see text)

• node_version

679

The ndbinfo processes Table

Version of the NDB software program running on this node.

• process_id

This node's process ID

• angel_process_id

Process ID of this node's angel process

• process_name

Name of the executable

• service_URI

Service URI of this node (see text)

Notes

node_id is the ID assigned to this node in the cluster.

The node_type column displays one of the following three values:

• MGM: Management node.

• NDB: Data node.

• API: API or SQL node.

For an executable shipped with the NDB Cluster distribution, node_version shows the software Cluster
version string, such as 8.0.29-ndb-8.0.30.

process_id is the node executable's process ID as shown by the host operating system using a process
display application such as top on Linux, or the Task Manager on Windows platforms.

angel_process_id is the system process ID for the node's angel process, which ensures that a data
node or SQL is automatically restarted in cases of failures. For management nodes and API nodes other
than SQL nodes, the value of this column is NULL.

The process_name column shows the name of the running executable. For management nodes,
this is ndb_mgmd. For data nodes, this is ndbd (single-threaded) or ndbmtd (multithreaded).
For SQL nodes, this is mysqld. For other types of API nodes, it is the name of the executable
program connected to the cluster; NDB API applications can set a custom value for this using
Ndb_cluster_connection::set_name().

service_URI shows the service network address. For management nodes and data nodes, the
scheme used is ndb://. For SQL nodes, this is mysql://. By default, API nodes other than SQL
nodes use ndb:// for the scheme; NDB API applications can set this to a custom value using
Ndb_cluster_connection::set_service_uri(). regardless of the node type, the scheme is
followed by the IP address used by the NDB transporter for the node in question. For management nodes
and SQL nodes, this address includes the port number (usually 1186 for management nodes and 3306
for SQL nodes). If the SQL node was started with the bind_address system variable set, this address is
used instead of the transporter address, unless the bind address is set to *, 0.0.0.0, or ::.

Additional path information may be included in the service_URI value for an SQL node reflecting
various configuration options. For example, mysql://198.51.100.3/tmp/mysql.sock

680

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-set-name
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_bind_address

The ndbinfo resources Table

indicates that the SQL node was started with the skip_networking system variable enabled, and
mysql://198.51.100.3:3306/?server-id=1 shows that replication is enabled for this SQL node.

6.14.51 The ndbinfo resources Table

This table provides information about data node resource availability and usage.

These resources are sometimes known as super-pools.

The resources table contains the following columns:

• node_id

The unique node ID of this data node.

• resource_name

Name of the resource; see text.

• reserved

The amount reserved for this resource.

• used

The amount actually used by this resource.

• max

The maximum amount of this resource used, since the node was last started.

Notes

The resource_name can be any one of the names shown in the following table:

• RESERVED: Reserved by the system; cannot be overridden.

• DISK_OPERATIONS: If a log file group is allocated, the size of the undo log buffer is used to set the size
of this resource. This resource is used only to allocate the undo log buffer for an undo log file group;
there can only be one such group. Overallocation occurs as needed by CREATE LOGFILE GROUP.

• DISK_RECORDS: Records allocated for Disk Data operations.

• DATA_MEMORY: Used for main memory tuples, indexes, and hash indexes. Sum of DataMemory and
IndexMemory, plus 8 pages of 32 KB each if IndexMemory has been set. Cannot be overallocated.

• JOBBUFFER: Used for allocating job buffers by the NDB scheduler; cannot be overallocated. This
is approximately 2 MB per thread plus a 1 MB buffer in both directions for all threads that can
communicate. For large configurations this consume several GB.

• FILE_BUFFERS: Used by the redo log handler in the DBLQH kernel block; cannot be overallocated. Size
is NoOfFragmentLogParts * RedoBuffer, plus 1 MB per log file part.

• TRANSPORTER_BUFFERS: Used for send buffers by ndbmtd; the sum of TotalSendBufferMemory
and ExtraSendBufferMemory. This resource that can be overallocated by up to 25 percent.
TotalSendBufferMemory is calculated by summing the send buffer memory per node, the default
value of which is 2 MB. Thus, in a system having four data nodes and eight API nodes, the data nodes

681

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_skip_networking
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dblqh.html

The ndbinfo restart_info Table

have 12 * 2 MB send buffer memory. ExtraSendBufferMemory is used by ndbmtd and amounts to
2 MB extra memory per thread. Thus, with 4 LDM threads, 2 TC threads, 1 main thread, 1 replication
thread, and 2 receive threads, ExtraSendBufferMemory is 10 * 2 MB. Overallocation of this resource
can be performed by setting the SharedGlobalMemory data node configuration parameter.

• DISK_PAGE_BUFFER: Used for the disk page buffer; determined by the DiskPageBufferMemory
configuration parameter. Cannot be overallocated.

• QUERY_MEMORY: Used by the DBSPJ kernel block.

• SCHEMA_TRANS_MEMORY: Minimum is 2 MB; can be overallocated to use any remaining available
memory.

6.14.52 The ndbinfo restart_info Table

The restart_info table contains information about node restart operations. Each entry in the table
corresponds to a node restart status report in real time from a data node with the given node ID. Only the
most recent report for any given node is shown.

The restart_info table contains the following columns:

• node_id

Node ID in the cluster

• node_restart_status

Node status; see text for values. Each of these corresponds to a possible value of
node_restart_status_int.

• node_restart_status_int

Node status code; see text for values.

• secs_to_complete_node_failure

Time in seconds to complete node failure handling

• secs_to_allocate_node_id

Time in seconds from node failure completion to allocation of node ID

• secs_to_include_in_heartbeat_protocol

Time in seconds from allocation of node ID to inclusion in heartbeat protocol

• secs_until_wait_for_ndbcntr_master

Time in seconds from being included in heartbeat protocol until waiting for NDBCNTR master began

• secs_wait_for_ndbcntr_master

Time in seconds spent waiting to be accepted by NDBCNTR master for starting

• secs_to_get_start_permitted

Time in seconds elapsed from receiving of permission for start from master until all nodes have accepted
start of this node

682

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbspj.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-ndbcntr.html

The ndbinfo restart_info Table

• secs_to_wait_for_lcp_for_copy_meta_data

Time in seconds spent waiting for LCP completion before copying metadata

• secs_to_copy_meta_data

Time in seconds required to copy metadata from master to newly starting node

• secs_to_include_node

Time in seconds waited for GCP and inclusion of all nodes into protocols

• secs_starting_node_to_request_local_recovery

Time in seconds that the node just starting spent waiting to request local recovery

• secs_for_local_recovery

Time in seconds required for local recovery by node just starting

• secs_restore_fragments

Time in seconds required to restore fragments from LCP files

• secs_undo_disk_data

Time in seconds required to execute undo log on disk data part of records

• secs_exec_redo_log

Time in seconds required to execute redo log on all restored fragments

• secs_index_rebuild

Time in seconds required to rebuild indexes on restored fragments

• secs_to_synchronize_starting_node

Time in seconds required to synchronize starting node from live nodes

• secs_wait_lcp_for_restart

Time in seconds required for LCP start and completion before restart was completed

• secs_wait_subscription_handover

Time in seconds spent waiting for handover of replication subscriptions

• total_restart_secs

Total number of seconds from node failure until node is started again

Notes

The following list contains values defined for the node_restart_status_int column with their internal
status names (in parentheses), and the corresponding messages shown in the node_restart_status
column:

• 0 (ALLOCATED_NODE_ID)

683

The ndbinfo restart_info Table

Allocated node id

• 1 (INCLUDED_IN_HB_PROTOCOL)

Included in heartbeat protocol

• 2 (NDBCNTR_START_WAIT)

Wait for NDBCNTR master to permit us to start

• 3 (NDBCNTR_STARTED)

NDBCNTR master permitted us to start

• 4 (START_PERMITTED)

All nodes permitted us to start

• 5 (WAIT_LCP_TO_COPY_DICT)

Wait for LCP completion to start copying metadata

• 6 (COPY_DICT_TO_STARTING_NODE)

Copying metadata to starting node

• 7 (INCLUDE_NODE_IN_LCP_AND_GCP)

Include node in LCP and GCP protocols

• 8 (LOCAL_RECOVERY_STARTED)

Restore fragments ongoing

• 9 (COPY_FRAGMENTS_STARTED)

Synchronizing starting node with live nodes

• 10 (WAIT_LCP_FOR_RESTART)

Wait for LCP to ensure durability

• 11 (WAIT_SUMA_HANDOVER)

Wait for handover of subscriptions

• 12 (RESTART_COMPLETED)

Restart completed

• 13 (NODE_FAILED)

Node failed, failure handling in progress

• 14 (NODE_FAILURE_COMPLETED)

Node failure handling completed

• 15 (NODE_GETTING_PERMIT)

684

The ndbinfo server_locks Table

All nodes permitted us to start

• 16 (NODE_GETTING_INCLUDED)

Include node in LCP and GCP protocols

• 17 (NODE_GETTING_SYNCHED)

Synchronizing starting node with live nodes

• 18 (NODE_GETTING_LCP_WAITED)

[none]

• 19 (NODE_ACTIVE)

Restart completed

• 20 (NOT_DEFINED_IN_CLUSTER)

[none]

• 21 (NODE_NOT_RESTARTED_YET)

Initial state

Status numbers 0 through 12 apply on master nodes only; the remainder of those shown in the table apply
to all restarting data nodes. Status numbers 13 and 14 define node failure states; 20 and 21 occur when no
information about the restart of a given node is available.

See also Section 6.4, “Summary of NDB Cluster Start Phases”.

6.14.53 The ndbinfo server_locks Table

The server_locks table is similar in structure to the cluster_locks table, and provides a subset of
the information found in the latter table, but which is specific to the SQL node (MySQL server) where it
resides. (The cluster_locks table provides information about all locks in the cluster.) More precisely,
server_locks contains information about locks requested by threads belonging to the current mysqld
instance, and serves as a companion table to server_operations. This may be useful for correlating
locking patterns with specific MySQL user sessions, queries, or use cases.

The server_locks table contains the following columns:

• mysql_connection_id

MySQL connection ID

• node_id

ID of reporting node

• block_instance

ID of reporting LDM instance

• tableid

685

The ndbinfo server_locks Table

ID of table containing this row

• fragmentid

ID of fragment containing locked row

• rowid

ID of locked row

• transid

Transaction ID

• mode

Lock request mode

• state

Lock state

• detail

Whether this is first holding lock in row lock queue

• op

Operation type

• duration_millis

Milliseconds spent waiting or holding lock

• lock_num

ID of lock object

• waiting_for

Waiting for lock with this ID

Notes

The mysql_connection_id column shows the MySQL connection or thread ID as shown by SHOW
PROCESSLIST.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The tableid is assigned to the table by NDB; the same ID is used for this table in other ndbinfo tables,
as well as in the output of ndb_show_tables.

The transaction ID shown in the transid column is the identifier generated by the NDB API for the
transaction requesting or holding the current lock.

The mode column shows the lock mode, which is always one of S (shared lock) or X (exclusive lock). If a
transaction has an exclusive lock on a given row, all other locks on that row have the same transaction ID.

686

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html

The ndbinfo server_operations Table

The state column shows the lock state. Its value is always one of H (holding) or W (waiting). A waiting lock
request waits for a lock held by a different transaction.

The detail column indicates whether this lock is the first holding lock in the affected row's lock queue,
in which case it contains a * (asterisk character); otherwise, this column is empty. This information can be
used to help identify the unique entries in a list of lock requests.

The op column shows the type of operation requesting the lock. This is always one of the values READ,
INSERT, UPDATE, DELETE, SCAN, or REFRESH.

The duration_millis column shows the number of milliseconds for which this lock request has been
waiting or holding the lock. This is reset to 0 when a lock is granted for a waiting request.

The lock ID (lockid column) is unique to this node and block instance.

If the lock_state column's value is W, this lock is waiting to be granted, and the waiting_for column
shows the lock ID of the lock object this request is waiting for. Otherwise, waiting_for is empty.
waiting_for can refer only to locks on the same row (as identified by node_id, block_instance,
tableid, fragmentid, and rowid).

6.14.54 The ndbinfo server_operations Table

The server_operations table contains entries for all ongoing NDB operations that the current SQL node
(MySQL Server) is currently involved in. It effectively is a subset of the cluster_operations table, in
which operations for other SQL and API nodes are not shown.

The server_operations table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Node ID

• block_instance

Block instance

• transid

Transaction ID

• operation_type

Operation type (see text for possible values)

• state

Operation state (see text for possible values)

• tableid

Table ID

• fragmentid

687

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

The ndbinfo server_operations Table

Fragment ID

• client_node_id

Client node ID

• client_block_ref

Client block reference

• tc_node_id

Transaction coordinator node ID

• tc_block_no

Transaction coordinator block number

• tc_block_instance

Transaction coordinator block instance

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The operation_type column can take any one of the values READ, READ-SH, READ-EX, INSERT,
UPDATE, DELETE, WRITE, UNLOCK, REFRESH, SCAN, SCAN-SH, SCAN-EX, or <unknown>.

The state column can have any one of the values ABORT_QUEUED, ABORT_STOPPED,
COMMITTED, COMMIT_QUEUED, COMMIT_STOPPED, COPY_CLOSE_STOPPED,
COPY_FIRST_STOPPED, COPY_STOPPED, COPY_TUPKEY, IDLE, LOG_ABORT_QUEUED,
LOG_COMMIT_QUEUED, LOG_COMMIT_QUEUED_WAIT_SIGNAL, LOG_COMMIT_WRITTEN,
LOG_COMMIT_WRITTEN_WAIT_SIGNAL, LOG_QUEUED, PREPARED, PREPARED_RECEIVED_COMMIT,
SCAN_CHECK_STOPPED, SCAN_CLOSE_STOPPED, SCAN_FIRST_STOPPED, SCAN_RELEASE_STOPPED,
SCAN_STATE_USED, SCAN_STOPPED, SCAN_TUPKEY, STOPPED, TC_NOT_CONNECTED, WAIT_ACC,
WAIT_ACC_ABORT, WAIT_AI_AFTER_ABORT, WAIT_ATTR, WAIT_SCAN_AI, WAIT_TUP,
WAIT_TUPKEYINFO, WAIT_TUP_COMMIT, or WAIT_TUP_TO_ABORT. (If the MySQL Server is running
with ndbinfo_show_hidden enabled, you can view this list of states by selecting from the ndb
$dblqh_tcconnect_state table, which is normally hidden.)

You can obtain the name of an NDB table from its table ID by checking the output of ndb_show_tables.

The fragid is the same as the partition number seen in the output of ndb_desc --extra-partition-
info (short form -p).

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

688

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid

The ndbinfo server_transactions Table

The block_instance and tc_block_instance column provide NDB kernel block instance numbers.
You can use these to obtain information about specific threads from the threadblocks table.

6.14.55 The ndbinfo server_transactions Table

The server_transactions table is subset of the cluster_transactions table, but includes only
those transactions in which the current SQL node (MySQL Server) is a participant, while including the
relevant connection IDs.

The server_transactions table contains the following columns:

• mysql_connection_id

MySQL Server connection ID

• node_id

Transaction coordinator node ID

• block_instance

Transaction coordinator block instance

• transid

Transaction ID

• state

Operation state (see text for possible values)

• count_operations

Number of stateful operations in the transaction

• outstanding_operations

Operations still being executed by local data management layer (LQH blocks)

• inactive_seconds

Time spent waiting for API

• client_node_id

Client node ID

• client_block_ref

Client block reference

Notes

The mysql_connection_id is the same as the connection or session ID shown in the
output of SHOW PROCESSLIST. It is obtained from the INFORMATION_SCHEMA table
NDB_TRANSID_MYSQL_CONNECTION_MAP.

block_instance refers to an instance of a kernel block. Together with the block name, this number can
be used to look up a given instance in the threadblocks table.

689

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html

The ndbinfo table_distribution_status Table

The transaction ID (transid) is a unique 64-bit number which can be obtained using the NDB API's
getTransactionId() method. (Currently, the MySQL Server does not expose the NDB API transaction
ID of an ongoing transaction.)

The state column can have any one of the values CS_ABORTING, CS_COMMITTING, CS_COMMIT_SENT,
CS_COMPLETE_SENT, CS_COMPLETING, CS_CONNECTED, CS_DISCONNECTED, CS_FAIL_ABORTED,
CS_FAIL_ABORTING, CS_FAIL_COMMITTED, CS_FAIL_COMMITTING, CS_FAIL_COMPLETED,
CS_FAIL_PREPARED, CS_PREPARE_TO_COMMIT, CS_RECEIVING, CS_REC_COMMITTING,
CS_RESTART, CS_SEND_FIRE_TRIG_REQ, CS_STARTED, CS_START_COMMITTING,
CS_START_SCAN, CS_WAIT_ABORT_CONF, CS_WAIT_COMMIT_CONF, CS_WAIT_COMPLETE_CONF,
CS_WAIT_FIRE_TRIG_REQ. (If the MySQL Server is running with ndbinfo_show_hidden enabled, you
can view this list of states by selecting from the ndb$dbtc_apiconnect_state table, which is normally
hidden.)

In client_node_id and client_block_ref, client refers to an NDB Cluster API or SQL node (that
is, an NDB API client or a MySQL Server attached to the cluster).

The block_instance column provides the DBTC kernel block instance number. You can use this to
obtain information about specific threads from the threadblocks table.

6.14.56 The ndbinfo table_distribution_status Table

The table_distribution_status table provides information about the progress of table distribution
for NDB tables.

The table_distribution_status table contains the following columns:

• node_id

Node id

• table_id

Table ID

• tab_copy_status

Status of copying of table distribution data to disk; one of IDLE, SR_PHASE1_READ_PAGES,
SR_PHASE2_READ_TABLE, SR_PHASE3_COPY_TABLE, REMOVE_NODE, LCP_READ_TABLE,
COPY_TAB_REQ, COPY_NODE_STATE, ADD_TABLE_COORDINATOR (prior to NDB 8.0.23:
ADD_TABLE_MASTER), ADD_TABLE_PARTICIPANT (prior to NDB 8.0.23: ADD_TABLE_SLAVE),
INVALIDATE_NODE_LCP, ALTER_TABLE, COPY_TO_SAVE, or GET_TABINFO

• tab_update_status

Status of updating of table distribution data; one of IDLE, LOCAL_CHECKPOINT,
LOCAL_CHECKPOINT_QUEUED, REMOVE_NODE, COPY_TAB_REQ, ADD_TABLE_MASTER,
ADD_TABLE_SLAVE, INVALIDATE_NODE_LCP, or CALLBACK

• tab_lcp_status

Status of table LCP; one of ACTIVE (waiting for local checkpoint to be performed), WRITING_TO_FILE
(checkpoint performed but not yet written to disk), or COMPLETED (checkpoint performed and persisted to
disk)

• tab_status

690

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-gettransactionid
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

The ndbinfo table_fragments Table

Table internal status; one of ACTIVE (table exists), CREATING (table is being created), or DROPPING
(table is being dropped)

• tab_storage

Table recoverability; one of NORMAL (fully recoverable with redo logging and checkpointing), NOLOGGING
(recoverable from node crash, empty following cluster crash), or TEMPORARY (not recoverable)

• tab_partitions

Number of partitions in table

• tab_fragments

Number of fragments in table; normally same as tab_partitions; for fully replicated tables equal to
tab_partitions * [number of node groups]

• current_scan_count

Current number of active scans

• scan_count_wait

Current number of scans waiting to be performed before ALTER TABLE can complete.

• is_reorg_ongoing

Whether the table is currently being reorganized (1 if true)

6.14.57 The ndbinfo table_fragments Table

The table_fragments table provides information about the fragmentation, partitioning, distribution, and
(internal) replication of NDB tables.

The table_fragments table contains the following columns:

• node_id

Node ID (DIH master)

• table_id

Table ID

• partition_id

Partition ID

• fragment_id

Fragment ID (same as partition ID unless table is fully replicated)

• partition_order

Order of fragment in partition

• log_part_id

691

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

The ndbinfo table_info Table

Log part ID of fragment

• no_of_replicas

Number of fragment replicas

• current_primary

Current primary node ID

• preferred_primary

Preferred primary node ID

• current_first_backup

Current first backup node ID

• current_second_backup

Current second backup node ID

• current_third_backup

Current third backup node ID

• num_alive_replicas

Current number of live fragment replicas

• num_dead_replicas

Current number of dead fragment replicas

• num_lcp_replicas

Number of fragment replicas remaining to be checkpointed

6.14.58 The ndbinfo table_info Table

The table_info table provides information about logging, checkpointing, distribution, and storage
options in effect for individual NDB tables.

The table_info table contains the following columns:

• table_id

Table ID

• logged_table

Whether table is logged (1) or not (0)

• row_contains_gci

Whether table rows contain GCI (1 true, 0 false)

• row_contains_checksum

692

The ndbinfo table_replicas Table

Whether table rows contain checksum (1 true, 0 false)

• read_backup

If backup fragment replicas are read this is 1, otherwise 0

• fully_replicated

If table is fully replicated this is 1, otherwise 0

• storage_type

Table storage type; one of MEMORY or DISK

• hashmap_id

Hashmap ID

• partition_balance

Partition balance (fragment count type) used for table; one of FOR_RP_BY_NODE, FOR_RA_BY_NODE,
FOR_RP_BY_LDM, or FOR_RA_BY_LDM

• create_gci

GCI in which table was created

6.14.59 The ndbinfo table_replicas Table

The table_replicas table provides information about the copying, distribution, and checkpointing of
NDB table fragments and fragment replicas.

The table_replicas table contains the following columns:

• node_id

ID of the node from which data is fetched (DIH master)

• table_id

Table ID

• fragment_id

Fragment ID

• initial_gci

Initial GCI for table

• replica_node_id

ID of node where fragment replica is stored

• is_lcp_ongoing

Is 1 if LCP is ongoing on this fragment, 0 otherwise

693

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html

The ndbinfo tc_time_track_stats Table

• num_crashed_replicas

Number of crashed fragment replica instances

• last_max_gci_started

Highest GCI started in most recent LCP

• last_max_gci_completed

Highest GCI completed in most recent LCP

• last_lcp_id

ID of most recent LCP

• prev_lcp_id

ID of previous LCP

• prev_max_gci_started

Highest GCI started in previous LCP

• prev_max_gci_completed

Highest GCI completed in previous LCP

• last_create_gci

Last Create GCI of last crashed fragment replica instance

• last_replica_gci

Last GCI of last crashed fragment replica instance

• is_replica_alive

1 if this fragment replica is alive, 0 otherwise

6.14.60 The ndbinfo tc_time_track_stats Table

The tc_time_track_stats table provides time-tracking information obtained from the DBTC block (TC)
instances in the data nodes, through API nodes access NDB. Each TC instance tracks latencies for a set
of activities it undertakes on behalf of API nodes or other data nodes; these activities include transactions,
transaction errors, key reads, key writes, unique index operations, failed key operations of any type, scans,
failed scans, fragment scans, and failed fragment scans.

A set of counters is maintained for each activity, each counter covering a range of latencies less than or
equal to an upper bound. At the conclusion of each activity, its latency is determined and the appropriate
counter incremented. tc_time_track_stats presents this information as rows, with a row for each
instance of the following:

• Data node, using its ID

• TC block instance

• Other communicating data node or API node, using its ID

694

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

The ndbinfo tc_time_track_stats Table

• Upper bound value

Each row contains a value for each activity type. This is the number of times that this activity occurred
with a latency within the range specified by the row (that is, where the latency does not exceed the upper
bound).

The tc_time_track_stats table contains the following columns:

• node_id

Requesting node ID

• block_number

TC block number

• block_instance

TC block instance number

• comm_node_id

Node ID of communicating API or data node

• upper_bound

Upper bound of interval (in microseconds)

• scans

Based on duration of successful scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_errors

Based on duration of failed scans from opening to closing, tracked against the API or data nodes
requesting them.

• scan_fragments

Based on duration of successful fragment scans from opening to closing, tracked against the data nodes
executing them

• scan_fragment_errors

Based on duration of failed fragment scans from opening to closing, tracked against the data nodes
executing them

• transactions

Based on duration of successful transactions from beginning until sending of commit ACK, tracked
against the API or data nodes requesting them. Stateless transactions are not included.

• transaction_errors

Based on duration of failing transactions from start to point of failure, tracked against the API or data
nodes requesting them.

• read_key_ops

695

The ndbinfo threadblocks Table

Based on duration of successful primary key reads with locks. Tracked against both the API or data node
requesting them and the data node executing them.

• write_key_ops

Based on duration of successful primary key writes, tracked against both the API or data node
requesting them and the data node executing them.

• index_key_ops

Based on duration of successful unique index key operations, tracked against both the API or data node
requesting them and the data node executing reads of base tables.

• key_op_errors

Based on duration of all unsuccessful key read or write operations, tracked against both the API or data
node requesting them and the data node executing them.

Notes

The block_instance column provides the DBTC kernel block instance number. You can use this
together with the block name to obtain information about specific threads from the threadblocks table.

6.14.61 The ndbinfo threadblocks Table

The threadblocks table associates data nodes, threads, and instances of NDB kernel blocks.

The threadblocks table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• block_name

Block name

• block_instance

Block instance number

Notes

The value of the block_name in this table is one of the values found in the block_name column when
selecting from the ndbinfo.blocks table. Although the list of possible values is static for a given NDB
Cluster release, the list may vary between releases.

The block_instance column provides the kernel block instance number.

6.14.62 The ndbinfo threads Table

The threads table provides information about threads running in the NDB kernel.

The threads table contains the following columns:

696

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

The ndbinfo threadstat Table

• node_id

ID of the node where the thread is running

• thr_no

Thread ID (specific to this node)

• thread_name

Thread name (type of thread)

• thread_description

Thread (type) description

Notes

Sample output from a 2-node example cluster, including thread descriptions, is shown here:

mysql> SELECT * FROM threads;
+---------+--------+-------------+--+
| node_id | thr_no | thread_name | thread_description |
+---------+--------+-------------+--+
5	0	main	main thread, schema and distribution handling
5	1	rep	rep thread, asynch replication and proxy block handling
5	2	ldm	ldm thread, handling a set of data partitions
5	3	recv	receive thread, performing receive and polling for new receives
6	0	main	main thread, schema and distribution handling
6	1	rep	rep thread, asynch replication and proxy block handling
6	2	ldm	ldm thread, handling a set of data partitions
6	3	recv	receive thread, performing receive and polling for new receives
+---------+--------+-------------+--+
8 rows in set (0.01 sec)

NDB 8.0.23 introduces the possibility to set either of the ThreadConfig arguments main or rep to 0
while keeping the other at 1, in which case the thread name is main_rep and its description is main and
rep thread, schema, distribution, proxy block and asynch replication handling.
It is also possible beginning with NDB 8.0.23 to set both main and rep to 0, in which case the name of the
resulting thread is shown in this table as main_rep_recv, and its description is main, rep and recv
thread, schema, distribution, proxy block and asynch replication handling and
handling receive and polling for new receives.

6.14.63 The ndbinfo threadstat Table

The threadstat table provides a rough snapshot of statistics for threads running in the NDB kernel.

The threadstat table contains the following columns:

• node_id

Node ID

• thr_no

Thread ID

• thr_nm

Thread name

697

The ndbinfo threadstat Table

• c_loop

Number of loops in main loop

• c_exec

Number of signals executed

• c_wait

Number of times waiting for additional input

• c_l_sent_prioa

Number of priority A signals sent to own node

• c_l_sent_priob

Number of priority B signals sent to own node

• c_r_sent_prioa

Number of priority A signals sent to remote node

• c_r_sent_priob

Number of priority B signals sent to remote node

• os_tid

OS thread ID

• os_now

OS time (ms)

• os_ru_utime

OS user CPU time (µs)

• os_ru_stime

OS system CPU time (µs)

• os_ru_minflt

OS page reclaims (soft page faults)

• os_ru_majflt

OS page faults (hard page faults)

• os_ru_nvcsw

OS voluntary context switches

• os_ru_nivcsw

OS involuntary context switches

698

The ndbinfo transporters Table

Notes

os_time uses the system gettimeofday() call.

The values of the os_ru_utime, os_ru_stime, os_ru_minflt, os_ru_majflt, os_ru_nvcsw, and
os_ru_nivcsw columns are obtained using the system getrusage() call, or the equivalent.

Since this table contains counts taken at a given point in time, for best results it is necessary to query
this table periodically and store the results in an intermediate table or tables. The MySQL Server's Event
Scheduler can be employed to automate such monitoring. For more information, see Using the Event
Scheduler.

6.14.64 The ndbinfo transporters Table

This table contains information about NDB transporters.

The transporters table contains the following columns:

• node_id

This data node's unique node ID in the cluster

• remote_node_id

The remote data node's node ID

• status

Status of the connection

• remote_address

Name or IP address of the remote host

• bytes_sent

Number of bytes sent using this connection

• bytes_received

Number of bytes received using this connection

• connect_count

Number of times connection established on this transporter

• overloaded

1 if this transporter is currently overloaded, otherwise 0

• overload_count

Number of times this transporter has entered overload state since connecting

• slowdown

1 if this transporter is in slowdown state, otherwise 0

• slowdown_count

699

https://dev.mysql.com/doc/refman/8.0/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.0/en/event-scheduler.html

The ndbinfo transporters Table

Number of times this transporter has entered slowdown state since connecting

Notes

For each running data node in the cluster, the transporters table displays a row showing the status
of each of that node's connections with all nodes in the cluster, including itself. This information is shown
in the table's status column, which can have any one of the following values: CONNECTING, CONNECTED,
DISCONNECTING, or DISCONNECTED.

Connections to API and management nodes which are configured but not currently connected to the
cluster are shown with status DISCONNECTED. Rows where the node_id is that of a data node which is
not currently connected are not shown in this table. (This is similar omission of disconnected nodes in the
ndbinfo.nodes table.

The remote_address is the host name or address for the node whose ID is shown in the
remote_node_id column. The bytes_sent from this node and bytes_received by this node are
the numbers, respectively, of bytes sent and received by the node using this connection since it was
established. For nodes whose status is CONNECTING or DISCONNECTED, these columns always display 0.

Assume you have a 5-node cluster consisting of 2 data nodes, 2 SQL nodes, and 1 management node, as
shown in the output of the SHOW command in the ndb_mgm client:

ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @10.100.10.1 (8.0.29-ndb-8.0.30, Nodegroup: 0, *)
id=2 @10.100.10.2 (8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=10 @10.100.10.10 (8.0.29-ndb-8.0.30)

[mysqld(API)] 2 node(s)
id=20 @10.100.10.20 (8.0.29-ndb-8.0.30)
id=21 @10.100.10.21 (8.0.29-ndb-8.0.30)

There are 10 rows in the transporters table—5 for the first data node, and 5 for the second—assuming
that all data nodes are running, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTED
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
2	1	CONNECTED
2	2	DISCONNECTED
2	10	CONNECTED
2	20	CONNECTED
2	21	CONNECTED
+---------+----------------+---------------+
10 rows in set (0.04 sec)

If you shut down one of the data nodes in this cluster using the command 2 STOP in the ndb_mgm client,
then repeat the previous query (again using the mysql client), this table now shows only 5 rows—1 row for
each connection from the remaining management node to another node, including both itself and the data

700

INFORMATION_SCHEMA Tables for NDB Cluster

node that is currently offline—and displays CONNECTING for the status of each remaining connection to the
data node that is currently offline, as shown here:

mysql> SELECT node_id, remote_node_id, status
 -> FROM ndbinfo.transporters;
+---------+----------------+---------------+
| node_id | remote_node_id | status |
+---------+----------------+---------------+
1	1	DISCONNECTED
1	2	CONNECTING
1	10	CONNECTED
1	20	CONNECTED
1	21	CONNECTED
+---------+----------------+---------------+
5 rows in set (0.02 sec)

The connect_count, overloaded, overload_count, slowdown, and slowdown_count counters
are reset on connection, and retain their values after the remote node disconnects. The bytes_sent
and bytes_received counters are also reset on connection, and so retain their values following
disconnection (until the next connection resets them).

The overload state referred to by the overloaded and overload_count columns occurs
when this transporter's send buffer contains more than OVerloadLimit bytes (default is 80% of
SendBufferMemory, that is, 0.8 * 2097152 = 1677721 bytes). When a given transporter is in a state
of overload, any new transaction that tries to use this transporter fails with Error 1218 (Send Buffers
overloaded in NDB kernel). This affects both scans and primary key operations.

The slowdown state referenced by the slowdown and slowdown_count columns of this table occurs
when the transporter's send buffer contains more than 60% of the overload limit (equal to 0.6 * 2097152 =
1258291 bytes by default). In this state, any new scan using this transporter has its batch size reduced to
minimize the load on the transporter.

Common causes of send buffer slowdown or overloading include the following:

• Data size, in particular the quantity of data stored in TEXT columns or BLOB columns (or both types of
columns)

• Having a data node (ndbd or ndbmtd) on the same host as an SQL node that is engaged in binary
logging

• Large number of rows per transaction or transaction batch

• Configuration issues such as insufficient SendBufferMemory

• Hardware issues such as insufficient RAM or poor network connectivity

See also Section 4.3.14, “Configuring NDB Cluster Send Buffer Parameters”.

6.15 INFORMATION_SCHEMA Tables for NDB Cluster

Two INFORMATION_SCHEMA tables provide information that is of particular use when managing an NDB
Cluster. The FILES table provides information about NDB Cluster Disk Data files (see Section 6.10.1,
“NDB Cluster Disk Data Objects”). The ndb_transid_mysql_connection_map table provides a
mapping between transactions, transaction coordinators, and API nodes.

Additional statistical and other data about NDB Cluster transactions, operations, threads, blocks, and other
aspects of performance can be obtained from the tables in the ndbinfo database. For information about
these tables, see Section 6.14, “ndbinfo: The NDB Cluster Information Database”.

701

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-ndb-transid-mysql-connection-map-table.html

NDB Cluster and the Performance Schema

6.16 NDB Cluster and the Performance Schema

NDB 8.0 provides information in the MySQL Performance Schema about threads and transaction memory
usage; NDB 8.0.29 adds ndbcluster plugin threads, and NDB 8.0.30 adds instrumenting for transaction
batch memory. These features are described in greater detail in the sections which follow.

ndbcluster Plugin Threads

Beginning with with NDB 8.0.29, ndbcluster plugin threads are visible in the Performance Schema
threads table, as shown in the following query:

mysql> SELECT name, type, thread_id, thread_os_id
 -> FROM performance_schema.threads
 -> WHERE name LIKE '%ndbcluster%'\G
+----------------------------------+------------+-----------+--------------+
| name | type | thread_id | thread_os_id |
+----------------------------------+------------+-----------+--------------+
thread/ndbcluster/ndb_binlog	BACKGROUND	30	11980
thread/ndbcluster/ndb_index_stat	BACKGROUND	31	11981
thread/ndbcluster/ndb_metadata	BACKGROUND	32	11982
+----------------------------------+------------+-----------+--------------+

The threads table shows all three of the threads listed here:

• ndb_binlog: Binary logging thread

• ndb_index_stat: Index statistics thread

• ndb_metadata: Metadata thread

These threads are also shown by name in the setup_threads table.

Thread names are shown in the name column of the threads and setup_threads tables using
the format prefix/plugin_name/thread_name. prefix, the object type as determined by the
performance_schema engine, is thread for plugin threads (see Thread Instrument Elements). The
plugin_name is ndbcluster. thread_name is the standalone name of the thread (ndb_binlog,
ndb_index_stat, or ndb_metadata).

Using the thread ID or OS thread ID for a given thread in the threads or setup_threads table,
it is possible to obtain considerable information from Performance Schema about plugin execution
and resource usage. This example shows how to obtain the amount of memory allocated by the
threads created by the ndbcluster plugin from the mem_root arena by joining the threads and
memory_summary_by_thread_by_event_name tables:

mysql> SELECT
 -> t.name,
 -> m.sum_number_of_bytes_alloc,
 -> IF(m.sum_number_of_bytes_alloc > 0, "true", "false") AS 'Has allocated memory'
 -> FROM performance_schema.memory_summary_by_thread_by_event_name m
 -> JOIN performance_schema.threads t
 -> ON m.thread_id = t.thread_id
 -> WHERE t.name LIKE '%ndbcluster%'
 -> AND event_name LIKE '%THD::main_mem_root%';
+----------------------------------+---------------------------+----------------------+
| name | sum_number_of_bytes_alloc | Has allocated memory |
+----------------------------------+---------------------------+----------------------+
thread/ndbcluster/ndb_binlog	20576	true
thread/ndbcluster/ndb_index_stat	0	false
thread/ndbcluster/ndb_metadata	8240	true

702

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-instrument-naming.html#performance-schema-thread-instrument-elements
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-summary-tables.html

Transaction Memory Usage

+----------------------------------+---------------------------+----------------------+

Transaction Memory Usage

Starting with NDB 8.0.30, you can see the amount of memory used for transaction batching by querying
the Performance Schema memory_summary_by_thread_by_event_name table, similar to what is
shown here:

mysql> SELECT EVENT_NAME
 -> FROM performance_schema.memory_summary_by_thread_by_event_name
 -> WHERE THREAD_ID = PS_CURRENT_THREAD_ID()
 -> AND EVENT_NAME LIKE 'memory/ndbcluster/%';
+---+
| EVENT_NAME |
+---+
| memory/ndbcluster/Thd_ndb::batch_mem_root |
+---+
1 row in set (0.01 sec)

The ndbcluster transaction memory instrument is also visible in the Perforamce Schema
setup_instruments table, as shown here:

mysql> SELECT * from performance_schema.setup_instruments
 -> WHERE NAME LIKE '%ndb%'\G
*************************** 1. row ***************************
 NAME: memory/ndbcluster/Thd_ndb::batch_mem_root
 ENABLED: YES
 TIMED: NULL
 PROPERTIES:
 VOLATILITY: 0
DOCUMENTATION: Memory used for transaction batching
1 row in set (0.01 sec)

6.17 Quick Reference: NDB Cluster SQL Statements
This section discusses several SQL statements that can prove useful in managing and monitoring a
MySQL server that is connected to an NDB Cluster, and in some cases provide information about the
cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster, creation
and usage of NDB Cluster objects, and binary logging for NDB Cluster replication.

See SHOW ENGINE Statement, for a usage example and more detailed information.

• SHOW ENGINES

This statement can be used to determine whether or not clustering support is enabled in the MySQL
server, and if so, whether it is active.

See SHOW ENGINES Statement, for more detailed information.

Note

This statement does not support a LIKE clause. However, you can use LIKE to
filter queries against the INFORMATION_SCHEMA.ENGINES table, as discussed
in the next item.

• SELECT * FROM INFORMATION_SCHEMA.ENGINES [WHERE ENGINE LIKE 'NDB%']

703

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-instruments-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/information-schema-engines-table.html

Quick Reference: NDB Cluster SQL Statements

This is the equivalent of SHOW ENGINES, but uses the ENGINES table of the INFORMATION_SCHEMA
database. Unlike the case with the SHOW ENGINES statement, it is possible to filter the results using
a LIKE clause, and to select specific columns to obtain information that may be of use in scripts. For
example, the following query shows whether the server was built with NDB support and, if so, whether it
is enabled:

mysql> SELECT ENGINE, SUPPORT FROM INFORMATION_SCHEMA.ENGINES
 -> WHERE ENGINE LIKE 'NDB%';
+------------+---------+
| ENGINE | SUPPORT |
+------------+---------+
| ndbcluster | YES |
| ndbinfo | YES |
+------------+---------+

If NDB support is not enabled, the preceding query returns an empty set. See The
INFORMATION_SCHEMA ENGINES Table, for more information.

• SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine, and
their values, as shown here:

mysql> SHOW VARIABLES LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| Variable_name | Value |
+--------------------------------------+---------------------------------------+
ndb_allow_copying_alter_table	ON
ndb_autoincrement_prefetch_sz	512
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_cluster_connection_pool_nodeids	
ndb_connectstring	127.0.0.1
ndb_data_node_neighbour	0
ndb_default_column_format	FIXED
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_fully_replicated	OFF
ndb_index_stat_enable	ON
ndb_index_stat_option	loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,	
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,	
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0	
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	OFF
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF
ndb_log_updated_only	ON
ndb_metadata_check	ON
ndb_metadata_check_interval	60

704

https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-engines-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-engines-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-engines-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Quick Reference: NDB Cluster SQL Statements

ndb_metadata_sync	OFF
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_read_backup	ON
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	
ndb_report_thresh_binlog_epoch_slip	10
ndb_report_thresh_binlog_mem_usage	10
ndb_row_checksum	1
ndb_schema_dist_lock_wait_timeout	30
ndb_schema_dist_timeout	120
ndb_schema_dist_upgrade_allowed	ON
ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	524308
ndb_version_string	ndb-8.0.30
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	524308
+--------------------------------------+---------------------------------------+

See Server System Variables, for more information.

• SELECT * FROM performance_schema.global_variables WHERE VARIABLE_NAME LIKE
'NDB%'

This statement is the equivalent of the SHOW VARIABLES statement described in the previous item, and
provides almost identical output, as shown here:

mysql> SELECT * FROM performance_schema.global_variables
 -> WHERE VARIABLE_NAME LIKE 'NDB%';
+--------------------------------------+---------------------------------------+
| VARIABLE_NAME | VARIABLE_VALUE |
+--------------------------------------+---------------------------------------+
ndb_allow_copying_alter_table	ON
ndb_autoincrement_prefetch_sz	512
ndb_batch_size	32768
ndb_blob_read_batch_bytes	65536
ndb_blob_write_batch_bytes	65536
ndb_clear_apply_status	ON
ndb_cluster_connection_pool	1
ndb_cluster_connection_pool_nodeids	
ndb_connectstring	127.0.0.1
ndb_data_node_neighbour	0
ndb_default_column_format	FIXED
ndb_deferred_constraints	0
ndb_distribution	KEYHASH
ndb_eventbuffer_free_percent	20
ndb_eventbuffer_max_alloc	0
ndb_extra_logging	1
ndb_force_send	ON
ndb_fully_replicated	OFF
ndb_index_stat_enable	ON

705

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Quick Reference: NDB Cluster SQL Statements

| ndb_index_stat_option | loop_enable=1000ms,loop_idle=1000ms,
loop_busy=100ms,update_batch=1,read_batch=4,idle_batch=32,check_batch=8,
check_delay=10m,delete_batch=8,clean_delay=1m,error_batch=4,error_delay=1m,
evict_batch=8,evict_delay=1m,cache_limit=32M,cache_lowpct=90,zero_total=0 |
ndb_join_pushdown	ON
ndb_log_apply_status	OFF
ndb_log_bin	OFF
ndb_log_binlog_index	ON
ndb_log_empty_epochs	OFF
ndb_log_empty_update	OFF
ndb_log_exclusive_reads	OFF
ndb_log_orig	OFF
ndb_log_transaction_id	OFF
ndb_log_update_as_write	ON
ndb_log_update_minimal	OFF
ndb_log_updated_only	ON
ndb_metadata_check	ON
ndb_metadata_check_interval	60
ndb_metadata_sync	OFF
ndb_mgmd_host	127.0.0.1
ndb_nodeid	0
ndb_optimization_delay	10
ndb_optimized_node_selection	3
ndb_read_backup	ON
ndb_recv_thread_activation_threshold	8
ndb_recv_thread_cpu_mask	
ndb_report_thresh_binlog_epoch_slip	10
ndb_report_thresh_binlog_mem_usage	10
ndb_row_checksum	1
ndb_schema_dist_lock_wait_timeout	30
ndb_schema_dist_timeout	120
ndb_schema_dist_upgrade_allowed	ON
ndb_show_foreign_key_mock_tables	OFF
ndb_slave_conflict_role	NONE
ndb_table_no_logging	OFF
ndb_table_temporary	OFF
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	OFF
ndb_use_transactions	ON
ndb_version	524308
ndb_version_string	ndb-8.0.30
ndb_wait_connected	30
ndb_wait_setup	30
ndbinfo_database	ndbinfo
ndbinfo_max_bytes	0
ndbinfo_max_rows	10
ndbinfo_offline	OFF
ndbinfo_show_hidden	OFF
ndbinfo_table_prefix	ndb$
ndbinfo_version	524308
+--------------------------------------+---------------------------------------+

Unlike the case with the SHOW VARIABLES statement, it is possible to select individual columns. For
example:

mysql> SELECT VARIABLE_VALUE
 -> FROM performance_schema.global_variables
 -> WHERE VARIABLE_NAME = 'ndb_force_send';
+----------------+
| VARIABLE_VALUE |
+----------------+
| ON |

706

https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Quick Reference: NDB Cluster SQL Statements

+----------------+

A more useful query is shown here:

mysql> SELECT VARIABLE_NAME AS Name, VARIABLE_VALUE AS Value
 > FROM performance_schema.global_variables
 > WHERE VARIABLE_NAME
 > IN ('version', 'ndb_version',
 > 'ndb_version_string', 'ndbinfo_version');

+--------------------+----------------+
| Name | Value |
+--------------------+----------------+
ndb_version	524317
ndb_version_string	ndb-8.0.29
ndbinfo_version	524317
version	8.0.29-cluster
+--------------------+----------------+
4 rows in set (0.00 sec)

For more information, see Performance Schema Status Variable Tables, and Server System Variables.

• SHOW STATUS LIKE 'NDB%'

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node, and
if so, it provides the MySQL server's cluster node ID, the host name and port for the cluster management
server to which it is connected, and the number of data nodes in the cluster, as shown here:

mysql> SHOW STATUS LIKE 'NDB%';
+--+-------------------------------+
| Variable_name | Value |
+--+-------------------------------+
Ndb_metadata_detected_count	0
Ndb_cluster_node_id	100
Ndb_config_from_host	127.0.0.1
Ndb_config_from_port	1186
Ndb_number_of_data_nodes	2
Ndb_number_of_ready_data_nodes	2
Ndb_connect_count	0
Ndb_execute_count	0
Ndb_scan_count	0
Ndb_pruned_scan_count	0
Ndb_schema_locks_count	0
Ndb_api_wait_exec_complete_count_session	0
Ndb_api_wait_scan_result_count_session	0
Ndb_api_wait_meta_request_count_session	1
Ndb_api_wait_nanos_count_session	163446
Ndb_api_bytes_sent_count_session	60
Ndb_api_bytes_received_count_session	28
Ndb_api_trans_start_count_session	0
Ndb_api_trans_commit_count_session	0
Ndb_api_trans_abort_count_session	0
Ndb_api_trans_close_count_session	0
Ndb_api_pk_op_count_session	0
Ndb_api_uk_op_count_session	0
Ndb_api_table_scan_count_session	0
Ndb_api_range_scan_count_session	0
Ndb_api_pruned_scan_count_session	0
Ndb_api_scan_batch_count_session	0
Ndb_api_read_row_count_session	0
Ndb_api_trans_local_read_row_count_session	0
Ndb_api_adaptive_send_forced_count_session	0
Ndb_api_adaptive_send_unforced_count_session	0
Ndb_api_adaptive_send_deferred_count_session	0
Ndb_trans_hint_count_session	0

707

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html

Quick Reference: NDB Cluster SQL Statements

Ndb_sorted_scan_count	0
Ndb_pushed_queries_defined	0
Ndb_pushed_queries_dropped	0
Ndb_pushed_queries_executed	0
Ndb_pushed_reads	0
Ndb_last_commit_epoch_server	37632503447571
Ndb_last_commit_epoch_session	0
Ndb_system_name	MC_20191126162038
Ndb_api_event_data_count_injector	0
Ndb_api_event_nondata_count_injector	0
Ndb_api_event_bytes_count_injector	0
Ndb_api_wait_exec_complete_count_slave	0
Ndb_api_wait_scan_result_count_slave	0
Ndb_api_wait_meta_request_count_slave	0
Ndb_api_wait_nanos_count_slave	0
Ndb_api_bytes_sent_count_slave	0
Ndb_api_bytes_received_count_slave	0
Ndb_api_trans_start_count_slave	0
Ndb_api_trans_commit_count_slave	0
Ndb_api_trans_abort_count_slave	0
Ndb_api_trans_close_count_slave	0
Ndb_api_pk_op_count_slave	0
Ndb_api_uk_op_count_slave	0
Ndb_api_table_scan_count_slave	0
Ndb_api_range_scan_count_slave	0
Ndb_api_pruned_scan_count_slave	0
Ndb_api_scan_batch_count_slave	0
Ndb_api_read_row_count_slave	0
Ndb_api_trans_local_read_row_count_slave	0
Ndb_api_adaptive_send_forced_count_slave	0
Ndb_api_adaptive_send_unforced_count_slave	0
Ndb_api_adaptive_send_deferred_count_slave	0
Ndb_slave_max_replicated_epoch	0
Ndb_api_wait_exec_complete_count	4
Ndb_api_wait_scan_result_count	7
Ndb_api_wait_meta_request_count	172
Ndb_api_wait_nanos_count	1083548094028
Ndb_api_bytes_sent_count	4640
Ndb_api_bytes_received_count	109356
Ndb_api_trans_start_count	4
Ndb_api_trans_commit_count	1
Ndb_api_trans_abort_count	1
Ndb_api_trans_close_count	4
Ndb_api_pk_op_count	2
Ndb_api_uk_op_count	0
Ndb_api_table_scan_count	1
Ndb_api_range_scan_count	1
Ndb_api_pruned_scan_count	0
Ndb_api_scan_batch_count	1
Ndb_api_read_row_count	3
Ndb_api_trans_local_read_row_count	2
Ndb_api_adaptive_send_forced_count	1
Ndb_api_adaptive_send_unforced_count	5
Ndb_api_adaptive_send_deferred_count	0
Ndb_api_event_data_count	0
Ndb_api_event_nondata_count	0
Ndb_api_event_bytes_count	0
Ndb_metadata_excluded_count	0
Ndb_metadata_synced_count	0
Ndb_conflict_fn_max	0
Ndb_conflict_fn_old	0
Ndb_conflict_fn_max_del_win	0
Ndb_conflict_fn_epoch	0
Ndb_conflict_fn_epoch_trans	0
Ndb_conflict_fn_epoch2	0
Ndb_conflict_fn_epoch2_trans	0
Ndb_conflict_trans_row_conflict_count	0

708

Quick Reference: NDB Cluster SQL Statements

Ndb_conflict_trans_row_reject_count	0
Ndb_conflict_trans_reject_count	0
Ndb_conflict_trans_detect_iter_count	0
Ndb_conflict_trans_conflict_commit_count	0
Ndb_conflict_epoch_delete_delete_count	0
Ndb_conflict_reflected_op_prepare_count	0
Ndb_conflict_reflected_op_discard_count	0
Ndb_conflict_refresh_op_count	0
Ndb_conflict_last_conflict_epoch	0
Ndb_conflict_last_stable_epoch	0
Ndb_index_stat_status	allow:1,enable:1,busy:0,
loop:1000,list:(new:0,update:0,read:0,idle:0,check:0,delete:0,error:0,total:0),	
analyze:(queue:0,wait:0),stats:(nostats:0,wait:0),total:(analyze:(all:0,error:0),	
query:(all:0,nostats:0,error:0),event:(act:0,skip:0,miss:0),cache:(refresh:0,	
clean:0,pinned:0,drop:0,evict:0)),cache:(query:0,clean:0,drop:0,evict:0,	
usedpct:0.00,highpct:0.00)	
Ndb_index_stat_cache_query	0
Ndb_index_stat_cache_clean	0
+--+-------------------------------+

If the MySQL server was built with NDB support, but it is not currently connected to a cluster, every row in
the output of this statement contains a zero or an empty string for the Value column.

See also SHOW STATUS Statement.

• SELECT * FROM performance_schema.global_status WHERE VARIABLE_NAME LIKE 'NDB
%'

This statement provides similar output to the SHOW STATUS statement discussed in the previous item.
Unlike the case with SHOW STATUS, it is possible using SELECT statements to extract values in SQL for
use in scripts for monitoring and automation purposes.

For more information, see Performance Schema Status Variable Tables.

• SELECT * FROM INFORMATION_SCHEMA.PLUGINS WHERE PLUGIN_NAME LIKE 'NDB%'

This statement displays information from the INFORMATION_SCHEMA.PLUGINS table about plugins
associated with NDB Cluster, such as version, author, and license, as shown here:

mysql> SELECT * FROM INFORMATION_SCHEMA.PLUGINS
 > WHERE PLUGIN_NAME LIKE 'NDB%'\G
*************************** 1. row ***************************
 PLUGIN_NAME: ndbcluster
 PLUGIN_VERSION: 1.0
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 80029.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Clustered, fault-tolerant tables
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON
*************************** 2. row ***************************
 PLUGIN_NAME: ndbinfo
 PLUGIN_VERSION: 0.1
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: STORAGE ENGINE
 PLUGIN_TYPE_VERSION: 80029.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: MySQL Cluster system information storage engine
 PLUGIN_LICENSE: GPL

709

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html

NDB Cluster Security Issues

 LOAD_OPTION: ON
*************************** 3. row ***************************
 PLUGIN_NAME: ndb_transid_mysql_connection_map
 PLUGIN_VERSION: 0.1
 PLUGIN_STATUS: ACTIVE
 PLUGIN_TYPE: INFORMATION SCHEMA
 PLUGIN_TYPE_VERSION: 80029.0
 PLUGIN_LIBRARY: NULL
PLUGIN_LIBRARY_VERSION: NULL
 PLUGIN_AUTHOR: Oracle Corporation
 PLUGIN_DESCRIPTION: Map between MySQL connection ID and NDB transaction ID
 PLUGIN_LICENSE: GPL
 LOAD_OPTION: ON

You can also use the SHOW PLUGINS statement to display this information, but the output from that
statement cannot easily be filtered. See also The MySQL Plugin API, which describes where and how
the information in the PLUGINS table is obtained.

You can also query the tables in the ndbinfo information database for real-time data about many NDB
Cluster operations. See Section 6.14, “ndbinfo: The NDB Cluster Information Database”.

6.18 NDB Cluster Security Issues
This section discusses security considerations to take into account when setting up and running NDB
Cluster.

Topics covered in this section include the following:

• NDB Cluster and network security issues

• Configuration issues relating to running NDB Cluster securely

• NDB Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to NDB Cluster

6.18.1 NDB Cluster Security and Networking Issues

In this section, we discuss basic network security issues as they relate to NDB Cluster. It is extremely
important to remember that NDB Cluster “out of the box” is not secure; you or your network administrator
must take the proper steps to ensure that your cluster cannot be compromised over the network.

Cluster communication protocols are inherently insecure, and no encryption or similar security measures
are used in communications between nodes in the cluster. Because network speed and latency have
a direct impact on the cluster's efficiency, it is also not advisable to employ SSL or other encryption to
network connections between nodes, as such schemes cause slow communications.

It is also true that no authentication is used for controlling API node access to an NDB Cluster. As with
encryption, the overhead of imposing authentication requirements would have an adverse impact on
Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the
cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the config.ini
file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then any
API nodes (including SQL nodes) that know the management server's host name (or IP address) and

710

https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html

NDB Cluster Security and Networking Issues

port can connect to the cluster and access its data without restriction. (See Section 6.18.2, “NDB Cluster
and MySQL Privileges”, for more information about this and related issues.)

Note

 You can exercise some control over SQL and API node access to the cluster by
specifying a HostName parameter for all [mysqld] and [api] sections in the
config.ini file. However, this also means that, should you wish to connect an
API node to the cluster from a previously unused host, you need to add an [api]
section containing its host name to the config.ini file.

More information is available elsewhere in this chapter about the HostName
parameter. Also see Section 4.1, “Quick Test Setup of NDB Cluster”, for
configuration examples using HostName with API nodes.

• Any ndb_mgm client

This means that any cluster management client that is given the management server's host name (or
IP address) and port (if not the standard port) can connect to the cluster and execute any management
client command. This includes commands such as ALL STOP and SHUTDOWN.

 For these reasons, it is necessary to protect the cluster on the network level. The safest network
configuration for Cluster is one which isolates connections between Cluster nodes from any other network
communications. This can be accomplished by any of the following methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This option is
the most dependable; however, it is the most expensive to implement.

We show an example of an NDB Cluster setup using such a physically segregated network here:

Figure 6.2 NDB Cluster with Hardware Firewall

This setup has two networks, one private (solid box) for the Cluster management servers and data
nodes, and one public (dotted box) where the SQL nodes reside. (We show the management and data
nodes connected using a gigabit switch since this provides the best performance.) Both networks are
protected from the outside by a hardware firewall, sometimes also known as a network-based firewall.

This network setup is safest because no packets can reach the cluster's management or data nodes
from outside the network—and none of the cluster's internal communications can reach the outside

711

NDB Cluster Security and Networking Issues

—without going through the SQL nodes, as long as the SQL nodes do not permit any packets to be
forwarded. This means, of course, that all SQL nodes must be secured against hacking attempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different from
any other MySQL server. See Making MySQL Secure Against Attackers, for a
description of techniques you can use to secure MySQL servers.

2. Using one or more software firewalls (also known as host-based firewalls) to control which packets
pass through to the cluster from portions of the network that do not require access to it. In this type
of setup, a software firewall must be installed on every host in the cluster which might otherwise be
accessible from outside the local network.

The host-based option is the least expensive to implement, but relies purely on software to provide
protection and so is the most difficult to keep secure.

This type of network setup for NDB Cluster is illustrated here:

Figure 6.3 NDB Cluster with Software Firewalls

Using this type of network setup means that there are two zones of NDB Cluster hosts. Each cluster
host must be able to communicate with all of the other machines in the cluster, but only those hosting
SQL nodes (dotted box) can be permitted to have any contact with the outside, while those in the zone
containing the data nodes and management nodes (solid box) must be isolated from any machines that

712

https://dev.mysql.com/doc/refman/8.0/en/security-against-attack.html

NDB Cluster Security and Networking Issues

are not part of the cluster. Applications using the cluster and user of those applications must not be
permitted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types shown in
the following table, according to the type of node that is running on each cluster host computer:

Table 6.16 Node types in a host-based firewall cluster configuration

Node Type Permitted Traffic

SQL or API node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

• It originates from within the network in which
the cluster resides and is on the port that your
application is using.

Data node or Management node • It originates from the IP address of a
management or data node (using any TCP or
UDP port).

• It originates from the IP address of an SQL or
API node.

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application, and are
beyond the scope of this Manual. iptables is a very common and reliable firewall application, which
is often used with APF as a front end to make configuration easier. You can (and should) consult the
documentation for the software firewall that you employ, should you choose to implement an NDB
Cluster network setup of this type, or of a “mixed” type as discussed under the next item.

3. It is also possible to employ a combination of the first two methods, using both hardware and software
to secure the cluster—that is, using both network-based and host-based firewalls. This is between the
first two schemes in terms of both security level and cost. This type of network setup keeps the cluster

713

NDB Cluster and MySQL Privileges

behind the hardware firewall, but permits incoming packets to travel beyond the router connecting all
cluster hosts to reach the SQL nodes.

One possible network deployment of an NDB Cluster using hardware and software firewalls in
combination is shown here:

Figure 6.4 NDB Cluster with a Combination of Hardware and Software Firewalls

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL
nodes and API nodes, and then permit traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping
the cluster secure remains the same—to prevent any unessential traffic from reaching the cluster while
ensuring the most efficient communication between the nodes in the cluster.

 Because NDB Cluster requires large numbers of ports to be open for communications between nodes,
the recommended option is to use a segregated network. This represents the simplest way to prevent
unwanted traffic from reaching the cluster.

Note

 If you wish to administer an NDB Cluster remotely (that is, from outside the
local network), the recommended way to do this is to use ssh or another secure
login shell to access an SQL node host. From this host, you can then run the
management client to access the management server safely, from within the
cluster's own local network.

Even though it is possible to do so in theory, it is not recommended to use ndb_mgm
to manage a Cluster directly from outside the local network on which the Cluster
is running. Since neither authentication nor encryption takes place between the
management client and the management server, this represents an extremely
insecure means of managing the cluster, and is almost certain to be compromised
sooner or later.

6.18.2 NDB Cluster and MySQL Privileges

714

NDB Cluster and MySQL Privileges

In this section, we discuss how the MySQL privilege system works in relation to NDB Cluster and the
implications of this for keeping an NDB Cluster secure.

 Standard MySQL privileges apply to NDB Cluster tables. This includes all MySQL privilege types (SELECT
privilege, UPDATE privilege, DELETE privilege, and so on) granted on the database, table, and column
level. As with any other MySQL Server, user and privilege information is stored in the mysql system
database. The SQL statements used to grant and revoke privileges on NDB tables, databases containing
such tables, and columns within such tables are identical in all respects with the GRANT and REVOKE
statements used in connection with database objects involving any (other) MySQL storage engine. The
same thing is true with respect to the CREATE USER and DROP USER statements.

 It is important to keep in mind that, by default, the MySQL grant tables use the InnoDB storage engine.
Because of this, those tables are not normally duplicated or shared among MySQL servers acting as
SQL nodes in an NDB Cluster. In other words, changes in users and their privileges do not automatically
propagate between SQL nodes by default. If you wish, you can enable synchronization of MySQL
users and privileges across NDB Cluster SQL nodes; see Section 6.12, “Privilege Synchronization and
NDB_STORED_USER”, for details.

 Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked or
not granted in the first place, but not denied as such), there is no special protection for NDB tables on one
SQL node from users that have privileges on another SQL node; this is true even if you are not using
automatic distribution of user privileges. The definitive example of this is the MySQL root account, which
can perform any action on any database object. In combination with empty [mysqld] or [api] sections
of the config.ini file, this account can be especially dangerous. To understand why, consider the
following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the
NDB Cluster management server performs no checking of the host from which a MySQL Server (or other
API node) accesses the NDB Cluster.

• There is no firewall, or the firewall fails to protect against access to the NDB Cluster from hosts external
to the network.

• The host name or IP address of the NDB Cluster management server is known or can be determined
from outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster
--ndb-connectstring=management_host and access this NDB Cluster. Using the MySQL root
account, this person can then perform the following actions:

• Execute metadata statements such as SHOW DATABASES statement (to obtain a list of all NDB
databases on the server) or SHOW TABLES FROM some_ndb_database statement to obtain a list of
all NDB tables in a given database

• Run any legal MySQL statements on any of the discovered tables, such as:

• SELECT * FROM some_table or TABLE some_table to read all the data from any table

• DELETE FROM some_table or TRUNCATE TABLE to delete all the data from a table

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema

• UPDATE some_table SET column1 = some_value to fill a table column with “garbage” data; this
could actually cause much greater damage than simply deleting all the data

More insidious variations might include statements like these:

715

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-tables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster and MySQL Security Procedures

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

Such malicious statements are limited only by the imagination of the attacker.

The only tables that would be safe from this sort of mayhem would be those tables that were created
using storage engines other than NDB, and so not visible to a “rogue” SQL node.

 A user who can log in as root can also access the INFORMATION_SCHEMA database and its tables,
and so obtain information about databases, tables, stored routines, scheduled events, and any other
database objects for which metadata is stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different NDB Cluster
SQL nodes unless you are using shared privileges.

In sum, you cannot have a safe NDB Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true when
running MySQL as an NDB Cluster SQL node as it is when running it as a
standalone (non-Cluster) MySQL Server, and should be done as part of the MySQL
installation process before configuring the MySQL Server as an SQL node in an
NDB Cluster.

If you need to synchronize mysql system tables between SQL nodes, you can use standard MySQL
replication to do so, or employ a script to copy table entries between the MySQL servers. Users and their
privileges can be shared and kept in synch using the NDB_STORED_USER privilege.

Summary. The most important points to remember regarding the MySQL privilege system with regard
to NDB Cluster are listed here:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other
SQL nodes in the cluster. Conversely, removing a user or privilege on one SQL node in the cluster
does not remove the user or privilege from any other SQL nodes.

2. You can share MySQL users and privileges among SQL nodes using NDB_STORED_USER.

3. Once a MySQL user is granted privileges on an NDB table from one SQL node in an NDB Cluster, that
user can “see” any data in that table regardless of the SQL node from which the data originated, even if
that user is not shared.

6.18.3 NDB Cluster and MySQL Security Procedures

In this section, we discuss MySQL standard security procedures as they apply to running NDB Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL Server
as part of an NDB Cluster. First and foremost, you should always run a MySQL Server as the mysql
operating system user; this is no different from running MySQL in a standard (non-Cluster) environment.
The mysql system account should be uniquely and clearly defined. Fortunately, this is the default behavior
for a new MySQL installation. You can verify that the mysqld process is running as the mysql operating
system user by using the system command such as the one shown here:

$> ps aux | grep mysql

716

https://dev.mysql.com/doc/refman/8.0/en/information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster and MySQL Security Procedures

root 10467 0.0 0.1 3616 1380 pts/3 S 11:53 0:00 \
 /bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186
mysql 10512 0.2 2.5 58528 26636 pts/3 Sl 11:53 0:00 \
 /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
 --datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
 --ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
 --log-error=/usr/local/mysql/var/mothra.err
jon 10579 0.0 0.0 2736 688 pts/0 S+ 11:54 0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down and
restart it as the mysql user. If this user does not exist on the system, the mysql user account should be
created, and this user should be part of the mysql user group; in this case, you should also make sure
that the MySQL data directory on this system (as set using the --datadir option for mysqld) is owned
by the mysql user, and that the SQL node's my.cnf file includes user=mysql in the [mysqld] section.
Alternatively, you can start the MySQL server process with --user=mysql on the command line, but it is
preferable to use the my.cnf option, since you might forget to use the command-line option and so have
mysqld running as another user unintentionally. The mysqld_safe startup script forces MySQL to run as
the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially any file
on the system can be read by MySQL, and thus—should MySQL be compromised
—by an attacker.

 As mentioned in the previous section (see Section 6.18.2, “NDB Cluster and MySQL Privileges”), you
should always set a root password for the MySQL Server as soon as you have it running. You should also
delete the anonymous user account that is installed by default. You can accomplish these tasks using the
following statements:

$> mysql -u root

mysql> UPDATE mysql.user
 -> SET Password=PASSWORD('secure_password')
 -> WHERE User='root';

mysql> DELETE FROM mysql.user
 -> WHERE User='';

mysql> FLUSH PRIVILEGES;

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk deleting
all MySQL users. Be sure to run the FLUSH PRIVILEGES statement as soon as you have modified the
mysql.user table, so that the changes take immediate effect. Without FLUSH PRIVILEGES, the changes
do not take effect until the next time that the server is restarted.

Note

 Many of the NDB Cluster utilities such as ndb_show_tables, ndb_desc, and
ndb_select_all also work without authentication and can reveal table names,
schemas, and data. By default these are installed on Unix-style systems with the
permissions wxr-xr-x (755), which means they can be executed by any user that
can access the mysql/bin directory.

See Chapter 5, NDB Cluster Programs, for more information about these utilities.

717

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_user
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges

718

Chapter 7 NDB Cluster Replication

Table of Contents
7.1 NDB Cluster Replication: Abbreviations and Symbols ... 721
7.2 General Requirements for NDB Cluster Replication .. 721
7.3 Known Issues in NDB Cluster Replication .. 722
7.4 NDB Cluster Replication Schema and Tables .. 729
7.5 Preparing the NDB Cluster for Replication ... 737
7.6 Starting NDB Cluster Replication (Single Replication Channel) .. 739
7.7 Using Two Replication Channels for NDB Cluster Replication ... 741
7.8 Implementing Failover with NDB Cluster Replication ... 742
7.9 NDB Cluster Backups With NDB Cluster Replication .. 744

7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary
Log .. 747
7.9.2 Point-In-Time Recovery Using NDB Cluster Replication ... 750

7.10 NDB Cluster Replication: Bidirectional and Circular Replication ... 751
7.11 NDB Cluster Replication Conflict Resolution ... 756

NDB Cluster supports asynchronous replication, more usually referred to simply as “replication”. This
section explains how to set up and manage a configuration in which one group of computers operating
as an NDB Cluster replicates to a second computer or group of computers. We assume some familiarity
on the part of the reader with standard MySQL replication as discussed elsewhere in this Manual. (See
Replication).

Note

NDB Cluster does not support replication using GTIDs; semisynchronous replication
and group replication are also not supported by the NDB storage engine.

Normal (non-clustered) replication involves a source server and a replica server, the source being so
named because operations and data to be replicated originate with it, and the replica being the recipient
of these. In NDB Cluster, replication is conceptually very similar but can be more complex in practice, as it
may be extended to cover a number of different configurations including replicating between two complete
clusters. Although an NDB Cluster itself depends on the NDB storage engine for clustering functionality,
it is not necessary to use NDB as the storage engine for the replica's copies of the replicated tables (see
Replication from NDB to other storage engines). However, for maximum availability, it is possible (and
preferable) to replicate from one NDB Cluster to another, and it is this scenario that we discuss, as shown
in the following figure:

719

https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Figure 7.1 NDB Cluster-to-Cluster Replication Layout

In this scenario, the replication process is one in which successive states of a source cluster are logged
and saved to a replica cluster. This process is accomplished by a special thread known as the NDB binary
log injector thread, which runs on each MySQL server and produces a binary log (binlog). This thread
ensures that all changes in the cluster producing the binary log—and not just those changes that are
effected through the MySQL Server—are inserted into the binary log with the correct serialization order.
We refer to the MySQL source and replica servers as replication servers or replication nodes, and the data
flow or line of communication between them as a replication channel.

For information about performing point-in-time recovery with NDB Cluster and NDB Cluster Replication,
see Section 7.9.2, “Point-In-Time Recovery Using NDB Cluster Replication”.

NDB API replica status variables. NDB API counters can provide enhanced monitoring capabilities
on replica clusters. These counters are implemented as NDB statistics _slave status variables, as
seen in the output of SHOW STATUS, or in the results of queries against the Performance Schema
session_status or global_status table in a mysql client session connected to a MySQL Server that
is acting as a replica in NDB Cluster Replication. By comparing the values of these status variables before
and after the execution of statements affecting replicated NDB tables, you can observe the corresponding
actions taken on the NDB API level by the replica, which can be useful when monitoring or troubleshooting
NDB Cluster Replication. Section 6.13, “NDB API Statistics Counters and Variables”, provides additional
information.

Replication from NDB to non-NDB tables. It is possible to replicate NDB tables from an NDB Cluster
acting as the replication source to tables using other MySQL storage engines such as InnoDB or MyISAM

720

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-status-variable-tables.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html

NDB Cluster Replication: Abbreviations and Symbols

on a replica mysqld. This is subject to a number of conditions; see Replication from NDB to other storage
engines, and Replication from NDB to a nontransactional storage engine, for more information.

7.1 NDB Cluster Replication: Abbreviations and Symbols

Throughout this section, we use the following abbreviations or symbols for referring to the source and
replica clusters, and to processes and commands run on the clusters or cluster nodes:

Table 7.1 Abbreviations used throughout this section referring to source and replica clusters, and
to processes and commands run on cluster nodes

Symbol or Abbreviation Description (Refers to...)

S The cluster serving as the (primary) replication
source

R The cluster acting as the (primary) replica

shellS> Shell command to be issued on the source cluster

mysqlS> MySQL client command issued on a single MySQL
server running as an SQL node on the source
cluster

mysqlS*> MySQL client command to be issued on all SQL
nodes participating in the replication source cluster

shellR> Shell command to be issued on the replica cluster

mysqlR> MySQL client command issued on a single MySQL
server running as an SQL node on the replica
cluster

mysqlR*> MySQL client command to be issued on all SQL
nodes participating in the replica cluster

C Primary replication channel

C' Secondary replication channel

S' Secondary replication source

R' Secondary replica

7.2 General Requirements for NDB Cluster Replication

A replication channel requires two MySQL servers acting as replication servers (one each for the source
and replica). For example, this means that in the case of a replication setup with two replication channels
(to provide an extra channel for redundancy), there should be a total of four replication nodes, two per
cluster.

Replication of an NDB Cluster as described in this section and those following is dependent on row-
based replication. This means that the replication source MySQL server must be running with --binlog-
format=ROW or --binlog-format=MIXED, as described in Section 7.6, “Starting NDB Cluster
Replication (Single Replication Channel)”. For general information about row-based replication, see
Replication Formats.

Important

If you attempt to use NDB Cluster Replication with --binlog-
format=STATEMENT, replication fails to work properly because the

721

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-formats.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format

Known Issues in NDB Cluster Replication

ndb_binlog_index table on the source cluster and the epoch column of the
ndb_apply_status table on the replica cluster are not updated (see Section 7.4,
“NDB Cluster Replication Schema and Tables”). Instead, only updates on the
MySQL server acting as the replication source propagate to the replica, and no
updates from any other SQL nodes in the source cluster are replicated.

The default value for the --binlog-format option is MIXED.

Each MySQL server used for replication in either cluster must be uniquely identified among all the MySQL
replication servers participating in either cluster (you cannot have replication servers on both the source
and replica clusters sharing the same ID). This can be done by starting each SQL node using the --
server-id=id option, where id is a unique integer. Although it is not strictly necessary, we assume for
purposes of this discussion that all NDB Cluster binaries are of the same release version.

It is generally true in MySQL Replication that both MySQL servers (mysqld processes) involved must
be compatible with one another with respect to both the version of the replication protocol used and the
SQL feature sets which they support (see Replication Compatibility Between MySQL Versions). It is due
to such differences between the binaries in the NDB Cluster and MySQL Server 8.0 distributions that NDB
Cluster Replication has the additional requirement that both mysqld binaries come from an NDB Cluster
distribution. The simplest and easiest way to assure that the mysqld servers are compatible is to use the
same NDB Cluster distribution for all source and replica mysqld binaries.

We assume that the replica server or cluster is dedicated to replication of the source cluster, and that no
other data is being stored on it.

All NDB tables being replicated must be created using a MySQL server and client. Tables and other
database objects created using the NDB API (with, for example, Dictionary::createTable()) are not
visible to a MySQL server and so are not replicated. Updates by NDB API applications to existing tables
that were created using a MySQL server can be replicated.

Note

It is possible to replicate an NDB Cluster using statement-based replication.
However, in this case, the following restrictions apply:

• All updates to data rows on the cluster acting as the source must be directed to a
single MySQL server.

• It is not possible to replicate a cluster using multiple simultaneous MySQL
replication processes.

• Only changes made at the SQL level are replicated.

These are in addition to the other limitations of statement-based replication
as opposed to row-based replication; see Advantages and Disadvantages of
Statement-Based and Row-Based Replication, for more specific information
concerning the differences between the two replication formats.

7.3 Known Issues in NDB Cluster Replication

This section discusses known problems or issues when using replication with NDB Cluster.

Loss of connection between source and replica. A loss of connection can occur either between
the source cluster SQL node and the replica cluster SQL node, or between the source SQL node and the
data nodes of the source cluster. In the latter case, this can occur not only as a result of loss of physical

722

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-compatibility.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-createtable
https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html
https://dev.mysql.com/doc/refman/8.0/en/replication-sbr-rbr.html

Known Issues in NDB Cluster Replication

connection (for example, a broken network cable), but due to the overflow of data node event buffers; if
the SQL node is too slow to respond, it may be dropped by the cluster (this is controllable to some degree
by adjusting the MaxBufferedEpochs and TimeBetweenEpochs configuration parameters). If this
occurs, it is entirely possible for new data to be inserted into the source cluster without being recorded in
the source SQL node's binary log. For this reason, to guarantee high availability, it is extremely important
to maintain a backup replication channel, to monitor the primary channel, and to fail over to the secondary
replication channel when necessary to keep the replica cluster synchronized with the source. NDB Cluster
is not designed to perform such monitoring on its own; for this, an external application is required.

 The source SQL node issues a “gap” event when connecting or reconnecting to the source cluster. (A
gap event is a type of “incident event,” which indicates an incident that occurs that affects the contents of
the database but that cannot easily be represented as a set of changes. Examples of incidents are server
failures, database resynchronization, some software updates, and some hardware changes.) When the
replica encounters a gap in the replication log, it stops with an error message. This message is available
in the output of SHOW REPLICA STATUS (prior to NDB 8.0.22, use SHOW SLAVE STATUS), and indicates
that the SQL thread has stopped due to an incident registered in the replication stream, and that manual
intervention is required. See Section 7.8, “Implementing Failover with NDB Cluster Replication”, for more
information about what to do in such circumstances.

Important

Because NDB Cluster is not designed on its own to monitor replication status or
provide failover, if high availability is a requirement for the replica server or cluster,
then you must set up multiple replication lines, monitor the source mysqld on
the primary replication line, and be prepared fail over to a secondary line if and
as necessary. This must be done manually, or possibly by means of a third-party
application. For information about implementing this type of setup, see Section 7.7,
“Using Two Replication Channels for NDB Cluster Replication”, and Section 7.8,
“Implementing Failover with NDB Cluster Replication”.

If you are replicating from a standalone MySQL server to an NDB Cluster, one
channel is usually sufficient.

Circular replication. NDB Cluster Replication supports circular replication, as shown in the next
example. The replication setup involves three NDB Clusters numbered 1, 2, and 3, in which Cluster 1
acts as the replication source for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts
as the source for Cluster 1, thus completing the circle. Each NDB Cluster has two SQL nodes, with SQL
nodes A and B belonging to Cluster 1, SQL nodes C and D belonging to Cluster 2, and SQL nodes E and F
belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all source and replica clusters are the same.

• All SQL nodes acting as sources and replicas are started with the system variable
log_replica_updates (NDB 8.0.26 and later) or log_slave_updates (prior to NDB 8.0.26)
enabled.

This type of circular replication setup is shown in the following diagram:

723

https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates

Known Issues in NDB Cluster Replication

Figure 7.2 NDB Cluster Circular Replication With All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as sources and
replicas.

It should also be possible to set up circular replication in which not all source SQL nodes are also replicas,
as shown here:

724

Known Issues in NDB Cluster Replication

Figure 7.3 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as sources and replicas. However, you must not
start any of the SQL nodes with the log_replica_updates or log_slave_updates system variable
enabled. This type of circular replication scheme for NDB Cluster, in which the line of replication (again
indicated by the curved arrows in the diagram) is discontinuous, should be possible, but it should be noted
that it has not yet been thoroughly tested and must therefore still be considered experimental.

Note

The NDB storage engine uses idempotent execution mode, which suppresses
duplicate-key and other errors that otherwise break circular replication of NDB
Cluster. This is equivalent to setting the global value of the system variable

725

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Known Issues in NDB Cluster Replication

replica_exec_mode or slave_exec_mode to IDEMPOTENT, although this is
not necessary in NDB Cluster replication, since NDB Cluster sets this variable
automatically and ignores any attempts to set it explicitly.

NDB Cluster replication and primary keys. In the event of a node failure, errors in replication of NDB
tables without primary keys can still occur, due to the possibility of duplicate rows being inserted in such
cases. For this reason, it is highly recommended that all NDB tables being replicated have explicit primary
keys.

NDB Cluster Replication and Unique Keys. In older versions of NDB Cluster, operations that
updated values of unique key columns of NDB tables could result in duplicate-key errors when replicated.
This issue is solved for replication between NDB tables by deferring unique key checks until after all table
row updates have been performed.

Deferring constraints in this way is currently supported only by NDB. Thus, updates of unique keys when
replicating from NDB to a different storage engine such as InnoDB or MyISAM are still not supported.

The problem encountered when replicating without deferred checking of unique key updates can be
illustrated using NDB table such as t, is created and populated on the source (and transmitted to a replica
that does not support deferred unique key updates) as shown here:

CREATE TABLE t (
 p INT PRIMARY KEY,
 c INT,
 UNIQUE KEY u (c)
) ENGINE NDB;

INSERT INTO t
 VALUES (1,1), (2,2), (3,3), (4,4), (5,5);

The following UPDATE statement on t succeeds on the source, since the rows affected are processed in
the order determined by the ORDER BY option, performed over the entire table:

UPDATE t SET c = c - 1 ORDER BY p;

The same statement fails with a duplicate key error or other constraint violation on the replica, because the
ordering of the row updates is performed for one partition at a time, rather than for the table as a whole.

Note

Every NDB table is implicitly partitioned by key when it is created. See KEY
Partitioning, for more information.

GTIDs not supported. Replication using global transaction IDs is not compatible with the NDB storage
engine, and is not supported. Enabling GTIDs is likely to cause NDB Cluster Replication to fail.

Multithreaded replicas not supported. NDB Cluster does not support multithreaded replicas. This
is because the replica may not be able to separate transactions occurring in one database from those
in another if they are written within the same epoch. In addition, every transaction handled by the NDB
storage engine involves at least two databases—the target database and the mysql system database
—due to the requirement for updating the mysql.ndb_apply_status table (see Section 7.4, “NDB
Cluster Replication Schema and Tables”). This in turn breaks the requirement for multithreading that the
transaction is specific to a given database.

Prior to NDB 8.0.26, setting any system variables relating to multithreaded replicas such as
replica_parallel_workers or slave_parallel_workers, and replica_checkpoint_group or
slave_checkpoint_group (or the equivalent mysqld startup options) was completely ignored, and had
no effect.

726

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_exec_mode
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_exec_mode
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_parallel_workers
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_checkpoint_group
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_checkpoint_group

Known Issues in NDB Cluster Replication

In NDB 8.0.27 and later, replica_parallel_workers must be set to 0. If set to any other value on
startup, NDB changes it to 0, and writes a message to the mysqld server log file.

Restarting with --initial. Restarting the cluster with the --initial option causes the sequence of
GCI and epoch numbers to start over from 0. (This is generally true of NDB Cluster and not limited to
replication scenarios involving Cluster.) The MySQL servers involved in replication should in this case be
restarted. After this, you should use the RESET MASTER and RESET REPLICA (prior to NDB 8.0.22, use
RESET SLAVE) statements to clear the invalid ndb_binlog_index and ndb_apply_status tables,
respectively.

Replication from NDB to other storage engines. It is possible to replicate an NDB table on the source
to a table using a different storage engine on the replica, taking into account the restrictions listed here:

• Multi-source and circular replication are not supported (tables on both the source and the replica must
use the NDB storage engine for this to work).

• Using a storage engine which does not perform binary logging for tables on the replica requires special
handling.

• Use of a nontransactional storage engine for tables on the replica also requires special handling.

• The source mysqld must be started with --ndb-log-update-as-write=0 or --ndb-log-update-
as-write=OFF.

The next few paragraphs provide additional information about each of the issues just described.

Multiple sources not supported when replicating NDB to other storage engines. For replication
from NDB to a different storage engine, the relationship between the two databases must be one-to-one.
This means that bidirectional or circular replication is not supported between NDB Cluster and other
storage engines.

In addition, it is not possible to configure more than one replication channel when replicating between NDB
and a different storage engine. (An NDB Cluster database can simultaneously replicate to multiple NDB
Cluster databases.) If the source uses NDB tables, it is still possible to have more than one MySQL Server
maintain a binary log of all changes, but for the replica to change sources (fail over), the new source-
replica relationship must be explicitly defined on the replica.

Replicating NDB tables to a storage engine that does not perform binary logging. If you attempt
to replicate from an NDB Cluster to a replica that uses a storage engine that does not handle its own
binary logging, the replication process aborts with the error Binary logging not possible ...
Statement cannot be written atomically since more than one engine involved and
at least one engine is self-logging (Error 1595). It is possible to work around this issue in one
of the following ways:

• Turn off binary logging on the replica. This can be accomplished by setting sql_log_bin = 0.

• Change the storage engine used for the mysql.ndb_apply_status table. Causing this table to use
an engine that does not handle its own binary logging can also eliminate the conflict. This can be done
by issuing a statement such as ALTER TABLE mysql.ndb_apply_status ENGINE=MyISAM on the
replica. It is safe to do this when using a storage engine other than NDB on the replica, since you do not
need to worry about keeping multiple replicas synchronized.

• Filter out changes to the mysql.ndb_apply_status table on the replica. This can be done by
starting the replica with --replicate-ignore-table=mysql.ndb_apply_status. If you need for
other tables to be ignored by replication, you might wish to use an appropriate --replicate-wild-
ignore-table option instead.

727

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/reset-replica.html
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-ignore-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-wild-ignore-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-wild-ignore-table

Known Issues in NDB Cluster Replication

Important

You should not disable replication or binary logging of
mysql.ndb_apply_status or change the storage engine used for this table
when replicating from one NDB Cluster to another. See Replication and binary log
filtering rules with replication between NDB Clusters, for details.

Replication from NDB to a nontransactional storage engine. When replicating from NDB to a
nontransactional storage engine such as MyISAM, you may encounter unnecessary duplicate key errors
when replicating INSERT ... ON DUPLICATE KEY UPDATE statements. You can suppress these by
using --ndb-log-update-as-write=0, which forces updates to be logged as writes, rather than as
updates.

Replication and binary log filtering rules with replication between NDB Clusters. If you are using
any of the options --replicate-do-*, --replicate-ignore-*, --binlog-do-db, or --binlog-
ignore-db to filter databases or tables being replicated, you must take care not to block replication or
binary logging of the mysql.ndb_apply_status, which is required for replication between NDB Clusters
to operate properly. In particular, you must keep in mind the following:

1. Using --replicate-do-db=db_name (and no other --replicate-do-* or --replicate-
ignore-* options) means that only tables in database db_name are replicated. In this case, you
should also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

Using --binlog-do-db=db_name (and no other --binlog-do-db options) means that
changes only to tables in database db_name are written to the binary log. In this case, you should
also use --replicate-do-db=mysql, --binlog-do-db=mysql, or --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is populated on
replicas.

2. Using --replicate-ignore-db=mysql means that no tables in the mysql database are replicated.
In this case, you should also use --replicate-do-table=mysql.ndb_apply_status to ensure
that mysql.ndb_apply_status is replicated.

Using --binlog-ignore-db=mysql means that no changes to tables in the mysql
database are written to the binary log. In this case, you should also use --replicate-do-
table=mysql.ndb_apply_status to ensure that mysql.ndb_apply_status is replicated.

You should also remember that each replication rule requires the following:

1. Its own --replicate-do-* or --replicate-ignore-* option, and that multiple rules cannot be
expressed in a single replication filtering option. For information about these rules, see Replication and
Binary Logging Options and Variables.

2. Its own --binlog-do-db or --binlog-ignore-db option, and that multiple rules cannot be
expressed in a single binary log filtering option. For information about these rules, see The Binary Log.

If you are replicating an NDB Cluster to a replica that uses a storage engine other than NDB, the
considerations just given previously may not apply, as discussed elsewhere in this section.

NDB Cluster Replication and IPv6. Beginning with NDB 8.0.22, all types of NDB Cluster nodes
support IPv6; this includes management nodes, data nodes, and API or SQL nodes.

Prior to NDB 8.0.22, the NDB API and MGM API (and thus data nodes and management nodes) do not
support IPv6, although MySQL Servers—including those acting as SQL nodes in an NDB Cluster —can
use IPv6 to contact other MySQL Servers. In versions of NDB Cluster prior to 8.0.22, you can replicate

728

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-ignore-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-ignore-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-ignore-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-ignore-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-do-db
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_binlog-ignore-db
https://dev.mysql.com/doc/refman/8.0/en/binary-log.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Replication Schema and Tables

between clusters using IPv6 to connect the SQL nodes acting as source and replica as shown by the
dotted arrow in the following diagram:

Figure 7.4 Replication Between SQL Nodes Connected Using IPv6

Prior to NDB 8.0.22, all connections originating within the NDB Cluster —represented in the preceding
diagram by solid arrows—must use IPv4. In other words, all NDB Cluster data nodes, management
servers, and management clients must be accessible from one another using IPv4. In addition, SQL nodes
must use IPv4 to communicate with the cluster. In NDB 8.0.22 and later, these restrictions no longer apply;
in addition, any applications written using the NDB and MGM APIs can be written and deployed assuming
an IPv6-only environment.

Attribute promotion and demotion. NDB Cluster Replication includes support for attribute promotion
and demotion. The implementation of the latter distinguishes between lossy and non-lossy type
conversions, and their use on the replica can be controlled by setting the global value of the system
variable replica_type_conversions (NDB 8.0.26 and later) or slave_type_conversions (prior to
NDB 8.0.26).

For more information about attribute promotion and demotion in NDB Cluster, see Row-based replication:
attribute promotion and demotion.

NDB, unlike InnoDB or MyISAM, does not write changes to virtual columns to the binary log; however,
this has no detrimental effects on NDB Cluster Replication or replication between NDB and other storage
engines. Changes to stored generated columns are logged.

7.4 NDB Cluster Replication Schema and Tables
• ndb_apply_status Table

• ndb_binlog_index Table

• ndb_replication Table

729

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_replica_type_conversions
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_type_conversions
https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html#replication-features-attribute-promotion
https://dev.mysql.com/doc/refman/8.0/en/replication-features-differing-tables.html#replication-features-attribute-promotion
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html

ndb_apply_status Table

Replication in NDB Cluster makes use of a number of dedicated tables in the mysql database on each
MySQL Server instance acting as an SQL node in both the cluster being replicated and in the replica. This
is true regardless of whether the replica is a single server or a cluster.

The ndb_binlog_index and ndb_apply_status tables are created in the mysql database. They
should not be explicitly replicated by the user. User intervention is normally not required to create or
maintain either of these tables, since both are maintained by the NDB binary log (binlog) injector thread.
This keeps the source mysqld process updated to changes performed by the NDB storage engine. The
NDB binlog injector thread receives events directly from the NDB storage engine. The NDB injector is
responsible for capturing all the data events within the cluster, and ensures that all events which change,
insert, or delete data are recorded in the ndb_binlog_index table. The replica I/O (receiver) thread
transfers the events from the source's binary log to the replica's relay log.

The ndb_replication table must be created manually. This table can be updated by the user to perform
filtering by database or table. See ndb_replication Table, for more information. ndb_replication is
also used in NDB Replication conflict detection and resolution for conflict resolution control; see Conflict
Resolution Control.

Even though ndb_binlog_index and ndb_apply_status are created and maintained automatically,
it is advisable to check for the existence and integrity of these tables as an initial step in preparing an
NDB Cluster for replication. It is possible to view event data recorded in the binary log by querying the
mysql.ndb_binlog_index table directly on the source. This can be also be accomplished using the
SHOW BINLOG EVENTS statement on either the source or replica SQL node. (See SHOW BINLOG
EVENTS Statement.)

You can also obtain useful information from the output of SHOW ENGINE NDB STATUS.

Note

When performing schema changes on NDB tables, applications should wait until the
ALTER TABLE statement has returned in the MySQL client connection that issued
the statement before attempting to use the updated definition of the table.

ndb_apply_status Table

ndb_apply_status is used to keep a record of the operations that have been replicated from the source
to the replica. If the ndb_apply_status table does not exist on the replica, ndb_restore re-creates it.

Unlike the case with ndb_binlog_index, the data in this table is not specific to any one SQL node in the
(replica) cluster, and so ndb_apply_status can use the NDBCLUSTER storage engine, as shown here:

CREATE TABLE `ndb_apply_status` (
 `server_id` INT(10) UNSIGNED NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `log_name` VARCHAR(255) CHARACTER SET latin1 COLLATE latin1_bin NOT NULL,
 `start_pos` BIGINT(20) UNSIGNED NOT NULL,
 `end_pos` BIGINT(20) UNSIGNED NOT NULL,
 PRIMARY KEY (`server_id`) USING HASH
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

The ndb_apply_status table is populated only on replicas, which means that, on the source, this table
never contains any rows; thus, there is no need to allot any DataMemory to ndb_apply_status there.

Because this table is populated from data originating on the source, it should be allowed to replicate;
any replication filtering or binary log filtering rules that inadvertently prevent the replica from updating
ndb_apply_status, or that prevent the source from writing into the binary log may prevent replication
between clusters from operating properly. For more information about potential problems arising from such
filtering rules, see Replication and binary log filtering rules with replication between NDB Clusters.

730

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

ndb_binlog_index Table

It is possible to delete this table, but this is not recommended. Deleting it puts all SQL nodes in read-only
mode; in NDB 8.0.24 and later, NDB detects that this table has been dropped, and re-creates it, after which
it is possible once again to perform updates. Dropping and re-creating ndb_apply_status creates a gap
event in the binary log; the gap event causes replica SQL nodes to stop applying changes from the source
until the replication channel is restarted. Prior to NDB 8.0.24, it was necessary in such cases to restart all
SQL nodes to bring them out of read-only mode, and then to re-create ndb_apply_status manually.

0 in the epoch column of this table indicates a transaction originating from a storage engine other than
NDB.

ndb_apply_status is used to record which epoch transactions have been replicated and applied to a
replica cluster from an upstream source. This information is captured in an NDB online backup, but (by
design) it is not restored by ndb_restore. In some cases, it can be helpful to restore this information for
use in new setups; beginning with NDB 8.0.29, you can do this by invoking ndb_restore with the --
with-apply-status option. See the description of the option for more information.

ndb_binlog_index Table

NDB Cluster Replication uses the ndb_binlog_index table for storing the binary log's indexing data.
Since this table is local to each MySQL server and does not participate in clustering, it uses the InnoDB
storage engine. This means that it must be created separately on each mysqld participating in the source
cluster. (The binary log itself contains updates from all MySQL servers in the cluster.) This table is defined
as follows:

CREATE TABLE `ndb_binlog_index` (
 `Position` BIGINT(20) UNSIGNED NOT NULL,
 `File` VARCHAR(255) NOT NULL,
 `epoch` BIGINT(20) UNSIGNED NOT NULL,
 `inserts` INT(10) UNSIGNED NOT NULL,
 `updates` INT(10) UNSIGNED NOT NULL,
 `deletes` INT(10) UNSIGNED NOT NULL,
 `schemaops` INT(10) UNSIGNED NOT NULL,
 `orig_server_id` INT(10) UNSIGNED NOT NULL,
 `orig_epoch` BIGINT(20) UNSIGNED NOT NULL,
 `gci` INT(10) UNSIGNED NOT NULL,
 `next_position` bigint(20) unsigned NOT NULL,
 `next_file` varchar(255) NOT NULL,
 PRIMARY KEY (`epoch`,`orig_server_id`,`orig_epoch`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Note

If you are upgrading from an older release (prior to NDB 7.5.2), perform the MySQL
upgrade procedure and ensure that the system tables are upgraded by starting
the MySQL server with the --upgrade=FORCE option. The system table upgrade
causes an ALTER TABLE ... ENGINE=INNODB statement to be executed for this
table. Use of the MyISAM storage engine for this table continues to be supported for
backward compatibility.

ndb_binlog_index may require additional disk space after being converted to
InnoDB. If this becomes an issue, you may be able to conserve space by using an
InnoDB tablespace for this table, changing its ROW_FORMAT to COMPRESSED, or
both. For more information, see CREATE TABLESPACE Statement, and CREATE
TABLE Statement, as well as Tablespaces.

The size of the ndb_binlog_index table is dependent on the number of epochs per binary log file and
the number of binary log files. The number of epochs per binary log file normally depends on the amount
of binary log generated per epoch and the size of the binary log file, with smaller epochs resulting in more

731

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-tablespace.html

ndb_replication Table

epochs per file. You should be aware that empty epochs produce inserts to the ndb_binlog_index table,
even when the --ndb-log-empty-epochs option is OFF, meaning that the number of entries per file
depends on the length of time that the file is in use; this relationship can be represented by the formula
shown here:

[number of epochs per file] = [time spent per file] / TimeBetweenEpochs

A busy NDB Cluster writes to the binary log regularly and presumably rotates binary log files more quickly
than a quiet one. This means that a “quiet” NDB Cluster with --ndb-log-empty-epochs=ON can
actually have a much higher number of ndb_binlog_index rows per file than one with a great deal of
activity.

When mysqld is started with the --ndb-log-orig option, the orig_server_id and orig_epoch
columns store, respectively, the ID of the server on which the event originated and the epoch in which the
event took place on the originating server, which is useful in NDB Cluster replication setups employing
multiple sources. The SELECT statement used to find the closest binary log position to the highest applied
epoch on the replica in a multi-source setup (see Section 7.10, “NDB Cluster Replication: Bidirectional and
Circular Replication”) employs these two columns, which are not indexed. This can lead to performance
issues when trying to fail over, since the query must perform a table scan, especially when the source
has been running with --ndb-log-empty-epochs=ON. You can improve multi-source failover times by
adding an index to these columns, as shown here:

ALTER TABLE mysql.ndb_binlog_index
 ADD INDEX orig_lookup USING BTREE (orig_server_id, orig_epoch);

Adding this index provides no benefit when replicating from a single source to a single replica, since
the query used to get the binary log position in such cases makes no use of orig_server_id or
orig_epoch.

See Section 7.8, “Implementing Failover with NDB Cluster Replication”, for more information about using
the next_position and next_file columns.

The following figure shows the relationship of the NDB Cluster replication source server, its binary log
injector thread, and the mysql.ndb_binlog_index table.

Figure 7.5 The Replication Source Cluster

ndb_replication Table

732

https://dev.mysql.com/doc/refman/8.0/en/select.html

ndb_replication Table

The ndb_replication table is used to control binary logging and conflict resolution, and acts on a per-
table basis. Each row in this table corresponds to a table being replicated, determines how to log changes
to the table and, if a conflict resolution function is specified, and determines how to resolve conflicts for that
table.

Unlike the ndb_apply_status and ndb_replication tables, the ndb_replication table must be
created manually, using the SQL statement shown here:

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,
 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The columns of this table are listed here, with descriptions:

• db column

The name of the database containing the table to be replicated.

You may employ either or both of the wildcards _ and % as part of the database name. (See Matching
with wildcards, later in this section.)

• table_name column

The name of the table to be replicated.

The table name may include either or both of the wildcards _ and %. See Matching with wildcards, later in
this section.

• server_id column

The unique server ID of the MySQL instance (SQL node) where the table resides.

0 in this column acts like a wildcard equivalent to %, and matches any server ID. (See Matching with
wildcards, later in this section.)

• binlog_type column

The type of binary logging to be employed. See text for values and descriptions.

• conflict_fn column

The conflict resolution function to be applied; one of NDB$OLD(), NDB$MAX(), NDB
$MAX_DELETE_WIN(), NDB$EPOCH(), NDB$EPOCH_TRANS(), NDB$EPOCH2(), NDB
$EPOCH2_TRANS(); NULL indicates that conflict resolution is not used for this table. NDB
8.0.30 and later supports two additional conflict resolution functions NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS().

See Conflict Resolution Functions, for more information about these functions and their uses in NDB
Replication conflict resolution.

Some conflict resolution functions (NDB$OLD(), NDB$EPOCH(), NDB$EPOCH_TRANS()) require the use
of one or more user-created exceptions tables. See Conflict Resolution Exceptions Table.

733

ndb_replication Table

To enable conflict resolution with NDB Replication, it is necessary to create and populate this table with
control information on the SQL node or nodes on which the conflict should be resolved. Depending on the
conflict resolution type and method to be employed, this may be the source, the replica, or both servers.
In a simple source-replica setup where data can also be changed locally on the replica this is typically the
replica. In a more complex replication scheme, such as bidirectional replication, this is usually all of the
sources involved. See Section 7.11, “NDB Cluster Replication Conflict Resolution”, for more information.

The ndb_replication table allows table-level control over binary logging outside the scope of conflict
resolution, in which case conflict_fn is specified as NULL, while the remaining column values are used
to control binary logging for a given table or set of tables matching a wildcard expression. By setting the
proper value for the binlog_type column, you can make logging for a given table or tables use a desired
binary log format, or disabling binary logging altogether. Possible values for this column, with internal
values and descriptions, are shown in the following table:

Table 7.2 binlog_type values, with internal values and descriptions

Value Internal Value Description

0 NBT_DEFAULT Use server default

1 NBT_NO_LOGGING Do not log this table in the binary log (same effect as
sql_log_bin = 0, but applies to one or more specified
tables only)

2 NBT_UPDATED_ONLY Only updated attributes are logged (same effect as --
ndb-log-updated-only, but applies to one or more
specified tables only)

3 NBT_FULL Log full row, even if not updated (MySQL server default
behavior)

6 NBT_UPDATED_ONLY_USE_UPDATE
(equal to NBT_UPDATED_ONLY |
NBT_USE_UPDATE)

Use updated attributes, even if values are unchanged

7 NBT_FULL_USE_UPDATE (equal to
NBT_FULL | NBT_USE_UPDATE)

Use full row, even if values are unchanged

8 NBT_UPDATED_ONLY_MINIMAL Log update as UPDATE_ROW; log only primary key
columns in before image, and only updated columns
in after image (same effect as --ndb-log-update-
minimal, but applies to one or more specified tables
only)

9 NBT_UPDATED_FULL_MINIMAL Log update as UPDATE_ROW; log only primary key
columns in before image, and all columns other than
primary key columns in after image

Note

The binlog_type values 4 and 5 are not used, and so are omitted from the
previous table as well as the next one.

Several binlog_type values are equivalent to various combinations of the mysqld logging options --
ndb-log-updated-only, --ndb-log-update-as-write, and --ndb-log-update-minimal, as
shown in the following table:

734

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin

ndb_replication Table

Table 7.3 binlog_type values with equivalent combinations of NDB logging options

Value / Internal Value --ndb-log-
updated-only
Value

--ndb-log-
update-as-write
Value

--ndb-log-
update-minimal
Value

0 / NBT_DEFAULT -- -- --

1 / NBT_NO_LOGGING -- -- --

2 / NBT_UPDATED_ONLY ON OFF OFF

3 / NBT_FULL OFF OFF OFF

6 / NBT_UPDATED_ONLY_USE_UPDATE ON ON OFF

7 / NBT_FULL_USE_UPDATE OFF ON OFF

8 / NBT_UPDATED_ONLY_MINIMAL ON OFF ON

9 / NBT_UPDATED_FULL_MINIMAL OFF OFF ON

Binary logging can be set to different formats for different tables by inserting rows into the
ndb_replication table using the appropriate db, table_name, and binlog_type column values. The
internal integer value shown in the preceding table should be used when setting the binary logging format.
The following two statements set binary logging to logging of full rows (NBT_FULL, internal value 3) for
table test.a, and to logging of updates only (NBT_UPDATED_ONLY, internal value 2) for table test.b:

Table test.a: Log full rows
INSERT INTO mysql.ndb_replication VALUES("test", "a", 0, 3, NULL);

Table test.b: log updates only
INSERT INTO mysql.ndb_replication VALUES("test", "b", 0, 2, NULL);

To disable logging for one or more tables, use 1 (NBT_NO_LOGGING) for binlog_type, as shown here:

Disable binary logging for table test.t1
INSERT INTO mysql.ndb_replication VALUES("test", "t1", 0, 1, NULL);

Disable binary logging for any table in 'test' whose name begins with 't'
INSERT INTO mysql.ndb_replication VALUES("test", "t%", 0, 1, NULL);

Setting NBT_NO_LOGGING for a given table is the equivalent of setting sql_log_bin = 0, except that it
applies to one or more tables individually. NBT_NO_LOGGING is effectively implemented at the data nodes;
if an SQL node is not performing binary logging for a given table, it is not sent the row change events
for those tables. This means that it is not receiving all changes and discarding some, but rather it is not
subscribing to these changes.

NBT_NO_LOGGING can be useful for a number of reasons, including those listed here:

• Not sending changes across the network generally saves bandwidth, buffering, and CPU resources.

• Not logging changes to tables with very frequent updates but whose value is not great is a good fit for
transient data (such as session data) that may be relatively unimportant in the event of a complete failure
of the cluster.

• Using a session variable (or sql_log_bin) and application code, it is also possible to log (or not to log)
certain SQL statements or types of SQL statements; for example, it may be desirable in some cases not
to record DDL statements on one or more tables.

• Splitting replication streams into two (or more) binary logs can be done for reasons of performance, a
need to replicate different databases to different places, use of different binary logging types for different
databases, and so on.

735

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin

ndb_replication Table

Matching with wildcards. In order not to make it necessary to insert a row in the ndb_replication
table for each and every combination of database, table, and SQL node in your replication setup, NDB
supports wildcard matching on the this table's db, table_name, and server_id columns. Database
and table names used in, respectively, db and table_name may contain either or both of the following
wildcards:

• _ (underscore character): matches zero or more characters

• % (percent sign): matches a single character

(These are the same wildcards as supported by the MySQL LIKE operator.)

The server_id column supports 0 as a wildcard equivalent to _ (matches anything). This is used in the
examples shown previously.

A given row in the ndb_replication table can use wildcards to match any of the database name, table
name, and server ID in any combination. Where there are multiple potential matches in the table, the best
match is chosen, according to the table shown here, where W represents a wildcard match, E an exact
match, and the greater the value in the Quality column, the better the match:

Table 7.4 Weights of different combinations of wildcard and exact matches on columns in the
mysql.ndb_replication table

db table_name server_id Quality

W W W 1

W W E 2

W E W 3

W E E 4

E W W 5

E W E 6

E E W 7

E E E 8

Thus, an exact match on database name, table name, and server ID is considered best (strongest), while
the weakest (worst) match is a wildcard match on all three columns. Only the strength of the match is
considered when choosing which rule to apply; the order in which the rows occur in the table has no effect
on this determination.

Logging Full or Partial Rows. There are two basic methods of logging rows, as determined by the
setting of the --ndb-log-updated-only option for mysqld:

• Log complete rows (option set to ON)

• Log only column data that has been updated—that is, column data whose value has been set,
regardless of whether or not this value was actually changed. This is the default behavior (option set to
OFF).

It is usually sufficient—and more efficient—to log updated columns only; however, if you need to log full
rows, you can do so by setting --ndb-log-updated-only to 0 or OFF.

Logging Changed Data as Updates. The setting of the MySQL Server's --ndb-log-update-as-
write option determines whether logging is performed with or without the “before” image.

Because conflict resolution for updates and delete operations is done in the MySQL Server's update
handler, it is necessary to control the logging performed by the replication source such that updates are

736

https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like

Preparing the NDB Cluster for Replication

updates and not writes; that is, such that updates are treated as changes in existing rows rather than the
writing of new rows, even though these replace existing rows.

This option is turned on by default; in other words, updates are treated as writes. That is, updates are by
default written as write_row events in the binary log, rather than as update_row events.

To disable the option, start the source mysqld with --ndb-log-update-as-write=0 or --ndb-
log-update-as-write=OFF. You must do this when replicating from NDB tables to tables using a
different storage engine; see Replication from NDB to other storage engines, and Replication from NDB to
a nontransactional storage engine, for more information.

Important

(NDB 8.0.30 and later:) For insert conflict resolution using NDB$MAX_INS() or
NDB$MAX_DEL_WIN_INS(), an SQL node (that is, a mysqld process) can record
row updates on the source cluster as WRITE_ROW events with the --ndb-log-
update-as-write option enabled for idempotency and optimal size. This works
for these algorithms since they both map a WRITE_ROW event to an insert or update
depending on whether the row already exists, and the required metadata (the “after”
image for the timestamp column) is present in the “WRITE_ROW” event.

7.5 Preparing the NDB Cluster for Replication
Preparing the NDB Cluster for replication consists of the following steps:

1. Check all MySQL servers for version compatibility (see Section 7.2, “General Requirements for NDB
Cluster Replication”).

2. Create a replication account on the source Cluster with the appropriate privileges, using the following
two SQL statements:

mysqlS> CREATE USER 'replica_user'@'replica_host'
 -> IDENTIFIED BY 'replica_password';

mysqlS> GRANT REPLICATION SLAVE ON *.*
 -> TO 'replica_user'@'replica_host';

In the previous statement, replica_user is the replication account user name, replica_host is
the host name or IP address of the replica, and replica_password is the password to assign to this
account.

For example, to create a replica user account with the name myreplica, logging in from the host
named replica-host, and using the password 53cr37, use the following CREATE USER and GRANT
statements:

mysqlS> CREATE USER 'myreplica'@'replica-host'
 -> IDENTIFIED BY '53cr37';

mysqlS> GRANT REPLICATION SLAVE ON *.*
 -> TO 'myreplica'@'replica-host';

For security reasons, it is preferable to use a unique user account—not employed for any other purpose
—for the replication account.

3. Set up the replica to use the source. Using the mysql client, this can be accomplished with the
CHANGE REPLICATION SOURCE TO statement (beginning with NDB 8.0.23) or CHANGE MASTER TO
statement (prior to NDB 8.0.23):

mysqlR> CHANGE MASTER TO

737

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

Preparing the NDB Cluster for Replication

 -> MASTER_HOST='source_host',
 -> MASTER_PORT=source_port,
 -> MASTER_USER='replica_user',
 -> MASTER_PASSWORD='replica_password';

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='source_host',
 -> SOURCE_PORT=source_port,
 -> SOURCE_USER='replica_user',
 -> SOURCE_PASSWORD='replica_password';

In the previous statement, source_host is the host name or IP address of the replication source,
source_port is the port for the replica to use when connecting to the source, replica_user is the
user name set up for the replica on the source, and replica_password is the password set for that
user account in the previous step.

For example, to tell the replica to use the MySQL server whose host name is rep-source with the
replication account created in the previous step, use the following statement:

mysqlR> CHANGE MASTER TO
 -> MASTER_HOST='rep-source',
 -> MASTER_PORT=3306,
 -> MASTER_USER='myreplica',
 -> MASTER_PASSWORD='53cr37';

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST='rep-source',
 -> SOURCE_PORT=3306,
 -> SOURCE_USER='myreplica',
 -> SOURCE_PASSWORD='53cr37';

For a complete list of options that can be used with this statement, see CHANGE MASTER TO
Statement.

To provide replication backup capability, you also need to add an --ndb-connectstring option
to the replica's my.cnf file prior to starting the replication process. See Section 7.9, “NDB Cluster
Backups With NDB Cluster Replication”, for details.

For additional options that can be set in my.cnf for replicas, see Replication and Binary Logging
Options and Variables.

4. If the source cluster is already in use, you can create a backup of the source and load this onto the
replica to cut down on the amount of time required for the replica to synchronize itself with the source.
If the replica is also running NDB Cluster, this can be accomplished using the backup and restore
procedure described in Section 7.9, “NDB Cluster Backups With NDB Cluster Replication”.

ndb-connectstring=management_host[:port]

In the event that you are not using NDB Cluster on the replica, you can create a backup with this
command on the source:

shellS> mysqldump --master-data=1

Then import the resulting data dump onto the replica by copying the dump file over to it. After this, you
can use the mysql client to import the data from the dumpfile into the replica database as shown here,

738

https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html

Starting NDB Cluster Replication (Single Replication Channel)

where dump_file is the name of the file that was generated using mysqldump on the source, and
db_name is the name of the database to be replicated:

shellR> mysql -u root -p db_name < dump_file

For a complete list of options to use with mysqldump, see mysqldump — A Database Backup
Program.

Note

If you copy the data to the replica in this fashion, make sure that you stop
the replica from trying to connect to the source to begin replicating before all
the data has been loaded. You can do this by starting the replica with the --
skip-slave-start option on the command line, by including skip-slave-
start in the replica's my.cnf file, or beginning with NDB 8.0.24, by setting
the skip_slave_start system variable. Beginning with NDB 8.0.26, use --
skip-replica-start or skip_replica_start instead. Once the data
loading has completed, follow the additional steps outlined in the next two
sections.

5. Ensure that each MySQL server acting as a replication source is assigned a unique server ID, and has
binary logging enabled, using the row-based format. (See Replication Formats.) In addition, we strongly
recommend enabling the replica_allow_batching system variable (NDB 8.0.26 and later; prior to
NDB 8.0.26, use slave_allow_batching). Beginning with NDB 8.0.30, this is enabled by default.

If you are using a release of NDB Cluster prior to NDB 8.0.30, you should also consider increasing
the values used with the --ndb-batch-size and --ndb-blob-write-batch-bytes options as
well. In NDB 8.0.30 and later, use --ndb-replica-batch-size to set the batch size used for writes
on the replica instead of --ndb-batch-size, and --ndb-replica-blob-write-batch-bytes
rather than --ndb-blob-write-batch-bytes to determine the batch size used by the replication
applier for writing blob data. All of these options can be set either in the source server's my.cnf file,
or on the command line when starting the source mysqld process. See Section 7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”, for more information.

7.6 Starting NDB Cluster Replication (Single Replication Channel)
This section outlines the procedure for starting NDB Cluster replication using a single replication channel.

1. Start the MySQL replication source server by issuing this command, where id is this server's unique ID
(see Section 7.2, “General Requirements for NDB Cluster Replication”):

shellS> mysqld --ndbcluster --server-id=id \
 --log-bin --ndb-log-bin &

This starts the server's mysqld process with binary logging enabled using the proper logging format.
It is also necessary in NDB 8.0 to enable logging of updates to NDB tables explicitly, using the --ndb-
log-bin option; this is a change from previous versions of NDB Cluster, in which this option was
enabled by default.

Note

You can also start the source with --binlog-format=MIXED, in which case
row-based replication is used automatically when replicating between clusters.
Statement-based binary logging is not supported for NDB Cluster Replication
(see Section 7.2, “General Requirements for NDB Cluster Replication”).

2. Start the MySQL replica server as shown here:

739

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-slave-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-slave-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-replica-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-replica-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start
https://dev.mysql.com/doc/refman/8.0/en/replication-formats.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format

Starting NDB Cluster Replication (Single Replication Channel)

shellR> mysqld --ndbcluster --server-id=id &

In the command just shown, id is the replica server's unique ID. It is not necessary to enable logging
on the replica.

Note

Unless you want replication to begin immediately, delay the start of the
replication threads until the appropriate START REPLICA statement has been
issued, as explained in Step 4 below. You can do this by starting the replica
with the --skip-slave-start option on the command line, by including
skip-slave-start in the replica's my.cnf file, or in NDB 8.0.24 and later, by
setting the skip_slave_start system variable. In NDB 8.0.26 and later, use
--skip-replica-start and skip_replica_start.

3. It is necessary to synchronize the replica server with the source server's replication binary log. If binary
logging has not previously been running on the source, run the following statement on the replica:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='',
 -> MASTER_LOG_POS=4;

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_LOG_FILE='',
 -> SOURCE_LOG_POS=4;

This instructs the replica to begin reading the source server's binary log from the log's starting
point. Otherwise—that is, if you are loading data from the source using a backup—see Section 7.8,
“Implementing Failover with NDB Cluster Replication”, for information on how to obtain the
correct values to use for SOURCE_LOG_FILE | MASTER_LOG_FILE and SOURCE_LOG_POS |
MASTER_LOG_POS in such cases.

4. Finally, instruct the replica to begin applying replication by issuing this command from the mysql client
on the replica:

mysqlR> START SLAVE;

In NDB 8.0.22 and later, you can also use the following statement:

mysqlR> START REPLICA;

This also initiates the transmission of data and changes from the source to the replica.

It is also possible to use two replication channels, in a manner similar to the procedure described in
the next section; the differences between this and using a single replication channel are covered in
Section 7.7, “Using Two Replication Channels for NDB Cluster Replication”.

It is also possible to improve cluster replication performance by enabling batched updates. This can be
accomplished by setting the system variable replica_allow_batching (NDB 8.0.26 and later) or
slave_allow_batching (prior to NDB 8.0.26) on the replicas' mysqld processes. Normally, updates
are applied as soon as they are received. However, the use of batching causes updates to be applied
in batches of 32 KB each; this can result in higher throughput and less CPU usage, particularly where
individual updates are relatively small.

740

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-slave-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-replica-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start

Using Two Replication Channels for NDB Cluster Replication

Note

Batching works on a per-epoch basis; updates belonging to more than one
transaction can be sent as part of the same batch.

All outstanding updates are applied when the end of an epoch is reached, even if
the updates total less than 32 KB.

Batching can be turned on and off at runtime. To activate it at runtime, you can use either of these two
statements:

SET GLOBAL slave_allow_batching = 1;
SET GLOBAL slave_allow_batching = ON;

Beginning with NDB 8.0.26, you can (and should) use one of the following statements:

SET GLOBAL replica_allow_batching = 1;
SET GLOBAL replica_allow_batching = ON;

If a particular batch causes problems (such as a statement whose effects do not appear to be replicated
correctly), batching can be deactivated using either of the following statements:

SET GLOBAL slave_allow_batching = 0;
SET GLOBAL slave_allow_batching = OFF;

Beginning with NDB 8.0.26, you can (and should) use one of the following statements instead:

SET GLOBAL replica_allow_batching = 0;
SET GLOBAL replica_allow_batching = OFF;

You can check whether batching is currently being used by means of an appropriate SHOW VARIABLES
statement, like this one:

mysql> SHOW VARIABLES LIKE 'slave%';

In ŃDB 8.0.26 and later, use the following statement:

mysql> SHOW VARIABLES LIKE 'replica%';

7.7 Using Two Replication Channels for NDB Cluster Replication
In a more complete example scenario, we envision two replication channels to provide redundancy and
thereby guard against possible failure of a single replication channel. This requires a total of four replication
servers, two source servers on the source cluster and two replica servers on the replica cluster. For
purposes of the discussion that follows, we assume that unique identifiers are assigned as shown here:

Table 7.5 NDB Cluster replication servers described in the text

Server ID Description

1 Source - primary replication channel (S)

2 Source - secondary replication channel (S')

3 Replica - primary replication channel (R)

4 replica - secondary replication channel (R')

Setting up replication with two channels is not radically different from setting up a single replication
channel. First, the mysqld processes for the primary and secondary replication source servers must
be started, followed by those for the primary and secondary replicas. The replication processes can be
initiated by issuing the START REPLICA statement on each of the replicas. The commands and the order
in which they need to be issued are shown here:

741

https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Implementing Failover with NDB Cluster Replication

1. Start the primary replication source:

shellS> mysqld --ndbcluster --server-id=1 \
 --log-bin &

2. Start the secondary replication source:

shellS'> mysqld --ndbcluster --server-id=2 \
 --log-bin &

3. Start the primary replica server:

shellR> mysqld --ndbcluster --server-id=3 \
 --skip-slave-start &

4. Start the secondary replica server:

shellR'> mysqld --ndbcluster --server-id=4 \
 --skip-slave-start &

5. Finally, initiate replication on the primary channel by executing the START REPLICA statement on the
primary replica as shown here:

mysqlR> START SLAVE;

Beginning with NDB 8.0.22, you can also use the following statement:

mysqlR> START REPLICA;

Warning

Only the primary channel must be started at this point. The secondary
replication channel needs to be started only in the event that the primary
replication channel fails, as described in Section 7.8, “Implementing Failover
with NDB Cluster Replication”. Running multiple replication channels
simultaneously can result in unwanted duplicate records being created on the
replicas.

As mentioned previously, it is not necessary to enable binary logging on the replicas.

7.8 Implementing Failover with NDB Cluster Replication
In the event that the primary Cluster replication process fails, it is possible to switch over to the secondary
replication channel. The following procedure describes the steps required to accomplish this.

1. Obtain the time of the most recent global checkpoint (GCP). That is, you need to determine the most
recent epoch from the ndb_apply_status table on the replica cluster, which can be found using the
following query:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status;

In a circular replication topology, with a source and a replica running on each host, when you are using
ndb_log_apply_status=1, NDB Cluster epochs are written in the replicas' binary logs. This means
that the ndb_apply_status table contains information for the replica on this host as well as for any
other host which acts as a replica of the replication source server running on this host.

In this case, you need to determine the latest epoch on this replica to the exclusion of any epochs from
any other replicas in this replica's binary log that were not listed in the IGNORE_SERVER_IDS options of

742

https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

Implementing Failover with NDB Cluster Replication

the CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement used to set up this replica.
The reason for excluding such epochs is that rows in the mysql.ndb_apply_status table whose
server IDs have a match in the IGNORE_SERVER_IDS list from the CHANGE REPLICATION SOURCE
TO | CHANGE MASTER TO statement used to prepare this replicas's source are also considered to be
from local servers, in addition to those having the replica's own server ID. You can retrieve this list as
Replicate_Ignore_Server_Ids from the output of SHOW REPLICA STATUS. We assume that you
have obtained this list and are substituting it for ignore_server_ids in the query shown here, which
like the previous version of the query, selects the greatest epoch into a variable named @latest:

mysqlR'> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id NOT IN (ignore_server_ids);

In some cases, it may be simpler or more efficient (or both) to use a list of the server IDs to be included
and server_id IN server_id_list in the WHERE condition of the preceding query.

2. Using the information obtained from the query shown in Step 1, obtain the corresponding records from
the ndb_binlog_index table on the source cluster.

You can use the following query to obtain the needed records from the ndb_binlog_index table on
the source:

mysqlS'> SELECT
 -> @file:=SUBSTRING_INDEX(next_file, '/', -1),
 -> @pos:=next_position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch >= @latest
 -> ORDER BY epoch ASC LIMIT 1;

These are the records saved on the source since the failure of the primary replication channel. We
have employed a user variable @latest here to represent the value obtained in Step 1. Of course, it is
not possible for one mysqld instance to access user variables set on another server instance directly.
These values must be “plugged in” to the second query manually or by an application.

Important

You must ensure that the replica mysqld is started with --slave-skip-
errors=ddl_exist_errors before executing START REPLICA. Otherwise,
replication may stop with duplicate DDL errors.

3. Now it is possible to synchronize the secondary channel by running the following query on the
secondary replica server:

mysqlR'> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

In NDB 8.0.23 and later, you can also use the statement shown here:

mysqlR'> CHANGE REPLICATION SOURCE TO
 -> SOURCE_LOG_FILE='@file',

743

https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/show-replica-status.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_slave-skip-errors
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_slave-skip-errors
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html

NDB Cluster Backups With NDB Cluster Replication

 -> SOURCE_LOG_POS=@pos;

Again we have employed user variables (in this case @file and @pos) to represent the values
obtained in Step 2 and applied in Step 3; in practice these values must be inserted manually or using
an application that can access both of the servers involved.

Note

@file is a string value such as '/var/log/mysql/replication-source-
bin.00001', and so must be quoted when used in SQL or application code.
However, the value represented by @pos must not be quoted. Although MySQL
normally attempts to convert strings to numbers, this case is an exception.

4. You can now initiate replication on the secondary channel by issuing the appropriate command on the
secondary replica mysqld:

mysqlR'> START SLAVE;

In NDB 8.0.22 or later, you can also use the following statement:

mysqlR'> START REPLICA;

Once the secondary replication channel is active, you can investigate the failure of the primary and effect
repairs. The precise actions required to do this depend upon the reasons for which the primary channel
failed.

Warning

The secondary replication channel is to be started only if and when the primary
replication channel has failed. Running multiple replication channels simultaneously
can result in unwanted duplicate records being created on the replicas.

If the failure is limited to a single server, it should in theory be possible to replicate from S to R', or from S'
to R.

7.9 NDB Cluster Backups With NDB Cluster Replication

This section discusses making backups and restoring from them using NDB Cluster replication. We
assume that the replication servers have already been configured as covered previously (see Section 7.5,
“Preparing the NDB Cluster for Replication”, and the sections immediately following). This having been
done, the procedure for making a backup and then restoring from it is as follows:

1. There are two different methods by which the backup may be started.

• Method A. This method requires that the cluster backup process was previously enabled on the
source server, prior to starting the replication process. This can be done by including the following
line in a [mysql_cluster] section in the my.cnf file, where management_host is the
IP address or host name of the NDB management server for the source cluster, and port is the
management server's port number:

ndb-connectstring=management_host[:port]

Note

The port number needs to be specified only if the default port (1186) is not
being used. See Section 3.3, “Initial Configuration of NDB Cluster”, for more
information about ports and port allocation in NDB Cluster.

744

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Backups With NDB Cluster Replication

 In this case, the backup can be started by executing this statement on the replication source:

shellS> ndb_mgm -e "START BACKUP"

• Method B. If the my.cnf file does not specify where to find the management host, you can start
the backup process by passing this information to the NDB management client as part of the START
BACKUP command. This can be done as shown here, where management_host and port are the
host name and port number of the management server:

shellS> ndb_mgm management_host:port -e "START BACKUP"

In our scenario as outlined earlier (see Section 7.5, “Preparing the NDB Cluster for Replication”), this
would be executed as follows:

shellS> ndb_mgm rep-source:1186 -e "START BACKUP"

2. Copy the cluster backup files to the replica that is being brought on line. Each system running an ndbd
process for the source cluster has cluster backup files located on it, and all of these files must be
copied to the replica to ensure a successful restore. The backup files can be copied into any directory
on the computer where the replica's management host resides, as long as the MySQL and NDB
binaries have read permissions in that directory. In this case, we assume that these files have been
copied into the directory /var/BACKUPS/BACKUP-1.

While it is not necessary that the replica cluster have the same number of data nodes as the source,
it is highly recommended this number be the same. It is necessary that the replication process is
prevented from starting when the replica server starts. You can do this by starting the replica with the
--skip-slave-start option on the command line, by including skip-slave-start in the replica's
my.cnf file, or in NDB 8.0.24 or later, by setting the skip_slave_start system variable.

3. Create any databases on the replica cluster that are present on the source cluster and that are to be
replicated.

Important

A CREATE DATABASE (or CREATE SCHEMA) statement corresponding to each
database to be replicated must be executed on each SQL node in the replica
cluster.

4. Reset the replica cluster using this statement in the mysql client:

mysqlR> RESET SLAVE;

In NDB 8.0.22 or later, you can also use this statement:

mysqlR> RESET REPLICA;

5. You can now start the cluster restoration process on the replica using the ndb_restore command
for each backup file in turn. For the first of these, it is necessary to include the -m option to restore the
cluster metadata, as shown here:

shellR> ndb_restore -c replica_host:port -n node-id \

745

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#option_mysqld_skip-slave-start
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_slave_start
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html

NDB Cluster Backups With NDB Cluster Replication

 -b backup-id -m -r dir

dir is the path to the directory where the backup files have been placed on the replica. For the
ndb_restore commands corresponding to the remaining backup files, the -m option should not be
used.

For restoring from a source cluster with four data nodes (as shown in the figure in Chapter 7, NDB
Cluster Replication) where the backup files have been copied to the directory /var/BACKUPS/
BACKUP-1, the proper sequence of commands to be executed on the replica might look like this:

shellR> ndb_restore -c replica-host:1186 -n 2 -b 1 -m \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 3 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 4 -b 1 \
 -r ./var/BACKUPS/BACKUP-1
shellR> ndb_restore -c replica-host:1186 -n 5 -b 1 -e \
 -r ./var/BACKUPS/BACKUP-1

Important

The -e (or --restore-epoch) option in the final invocation of ndb_restore
in this example is required to make sure that the epoch is written to the replica's
mysql.ndb_apply_status table. Without this information, the replica cannot
synchronize properly with the source. (See Section 5.23, “ndb_restore —
Restore an NDB Cluster Backup”.)

6. Now you need to obtain the most recent epoch from the ndb_apply_status table on the replica (as
discussed in Section 7.8, “Implementing Failover with NDB Cluster Replication”):

mysqlR> SELECT @latest:=MAX(epoch)
 FROM mysql.ndb_apply_status;

7. Using @latest as the epoch value obtained in the previous step, you can obtain the correct starting
position @pos in the correct binary log file @file from the mysql.ndb_binlog_index table on the
source. The query shown here gets these from the Position and File columns from the last epoch
applied before the logical restore position:

mysqlS> SELECT
 -> @file:=SUBSTRING_INDEX(File, '/', -1),
 -> @pos:=Position
 -> FROM mysql.ndb_binlog_index
 -> WHERE epoch > @latest
 -> ORDER BY epoch ASC LIMIT 1;

In the event that there is currently no replication traffic, you can get similar information by running SHOW
MASTER STATUS on the source and using the value shown in the Position column of the output for
the file whose name has the suffix with the greatest value for all files shown in the File column. In this
case, you must determine which file this is and supply the name in the next step manually or by parsing
the output with a script.

8. Using the values obtained in the previous step, you can now issue the appropriatein the replica's
mysql client. In NDB 8.0.23 and later, use the following CHANGE REPLICATION SOURCE TO
statement:

mysqlR> CHANGE REPLICATION SOURCE TO
 -> SOURCE_LOG_FILE='@file',

746

https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-master-status.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html

NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log

 -> SOURCE_LOG_POS=@pos;

Prior to NDB 8.0.23, you can must use the CHANGE MASTER TO statement shown here:

mysqlR> CHANGE MASTER TO
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

9. Now that the replica knows from what point in which binary log file to start reading data from the source,
you can cause the replica to begin replicating with this statement:

mysqlR> START SLAVE;

Beginning with NDB 8.0.22, you can also use the following statement:

mysqlR> START REPLICA;

To perform a backup and restore on a second replication channel, it is necessary only to repeat these
steps, substituting the host names and IDs of the secondary source and replica for those of the primary
source and replica servers where appropriate, and running the preceding statements on them.

For additional information on performing Cluster backups and restoring Cluster from backups, see
Section 6.8, “Online Backup of NDB Cluster”.

7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to
the Source Binary Log

It is possible to automate much of the process described in the previous section (see Section 7.9, “NDB
Cluster Backups With NDB Cluster Replication”). The following Perl script reset-replica.pl serves as
an example of how you can do this.

#!/user/bin/perl -w

file: reset-replica.pl

Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to:
Free Software Foundation, Inc.
59 Temple Place, Suite 330
Boston, MA 02111-1307 USA
#
Version 1.1

######################## Includes ###############################

use DBI;

######################## Globals ################################

my $m_host='';

747

https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html

NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log

my $m_port='';
my $m_user='';
my $m_pass='';
my $s_host='';
my $s_port='';
my $s_user='';
my $s_pass='';
my $dbhM='';
my $dbhS='';

####################### Sub Prototypes ##########################

sub CollectCommandPromptInfo;
sub ConnectToDatabases;
sub DisconnectFromDatabases;
sub GetReplicaEpoch;
sub GetSourceInfo;
sub UpdateReplica;

######################## Program Main ###########################

CollectCommandPromptInfo;
ConnectToDatabases;
GetReplicaEpoch;
GetSourceInfo;
UpdateReplica;
DisconnectFromDatabases;

################## Collect Command Prompt Info ##################

sub CollectCommandPromptInfo
{
 ### Check that user has supplied correct number of command line args
 die "Usage:\n
 reset-replica >source MySQL host< >source MySQL port< \n
 >source user< >source pass< >replica MySQL host< \n
 >replica MySQL port< >replica user< >replica pass< \n
 All 8 arguments must be passed. Use BLANK for NULL passwords\n"
 unless @ARGV == 8;

 $m_host = $ARGV[0];
 $m_port = $ARGV[1];
 $m_user = $ARGV[2];
 $m_pass = $ARGV[3];
 $s_host = $ARGV[4];
 $s_port = $ARGV[5];
 $s_user = $ARGV[6];
 $s_pass = $ARGV[7];

 if ($m_pass eq "BLANK") { $m_pass = '';}
 if ($s_pass eq "BLANK") { $s_pass = '';}
}

############### Make connections to both databases #############

sub ConnectToDatabases
{
 ### Connect to both source and replica cluster databases

 ### Connect to source
 $dbhM
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$m_host;port=$m_port",
 "$m_user", "$m_pass")
 or die "Can't connect to source cluster MySQL process!
 Error: $DBI::errstr\n";

748

NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log

 ### Connect to replica
 $dbhS
 = DBI->connect(
 "dbi:mysql:database=mysql;host=$s_host",
 "$s_user", "$s_pass")
 or die "Can't connect to replica cluster MySQL process!
 Error: $DBI::errstr\n";
}

################ Disconnect from both databases ################

sub DisconnectFromDatabases
{
 ### Disconnect from source

 $dbhM->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";

 ### Disconnect from replica

 $dbhS->disconnect
 or warn " Disconnection failed: $DBI::errstr\n";
}

###################### Find the last good GCI ##################

sub GetReplicaEpoch
{
 $sth = $dbhS->prepare("SELECT MAX(epoch)
 FROM mysql.ndb_apply_status;")
 or die "Error while preparing to select epoch from replica: ",
 $dbhS->errstr;

 $sth->execute
 or die "Selecting epoch from replica error: ", $sth->errstr;

 $sth->bind_col (1, \$epoch);
 $sth->fetch;
 print "\tReplica epoch = $epoch\n";
 $sth->finish;
}

####### Find the position of the last GCI in the binary log ########

sub GetSourceInfo
{
 $sth = $dbhM->prepare("SELECT
 SUBSTRING_INDEX(File, '/', -1), Position
 FROM mysql.ndb_binlog_index
 WHERE epoch > $epoch
 ORDER BY epoch ASC LIMIT 1;")
 or die "Prepare to select from source error: ", $dbhM->errstr;

 $sth->execute
 or die "Selecting from source error: ", $sth->errstr;

 $sth->bind_col (1, \$binlog);
 $sth->bind_col (2, \$binpos);
 $sth->fetch;
 print "\tSource binary log file = $binlog\n";
 print "\tSource binary log position = $binpos\n";
 $sth->finish;
}

########## Set the replica to process from that location #########

sub UpdateReplica

749

Point-In-Time Recovery Using NDB Cluster Replication

{
 $sth = $dbhS->prepare("CHANGE MASTER TO
 MASTER_LOG_FILE='$binlog',
 MASTER_LOG_POS=$binpos;")
 or die "Prepare to CHANGE MASTER error: ", $dbhS->errstr;

 $sth->execute
 or die "CHANGE MASTER on replica error: ", $sth->errstr;
 $sth->finish;
 print "\tReplica has been updated. You may now start the replica.\n";
}

end reset-replica.pl

7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

Point-in-time recovery—that is, recovery of data changes made since a given point in time—is performed
after restoring a full backup that returns the server to its state when the backup was made. Performing
point-in-time recovery of NDB Cluster tables with NDB Cluster and NDB Cluster Replication can be
accomplished using a native NDB data backup (taken by issuing CREATE BACKUP in the ndb_mgm client)
and restoring the ndb_binlog_index table (from a dump made using mysqldump).

To perform point-in-time recovery of NDB Cluster, it is necessary to follow the steps shown here:

1. Back up all NDB databases in the cluster, using the START BACKUP command in the ndb_mgm client
(see Section 6.8, “Online Backup of NDB Cluster”).

2. At some later point, prior to restoring the cluster, make a backup of the mysql.ndb_binlog_index
table. It is probably simplest to use mysqldump for this task. Also back up the binary log files at this
time.

This backup should be updated regularly—perhaps even hourly—depending on your needs.

3. (Catastrophic failure or error occurs.)

4. Locate the last known good backup.

5. Clear the data node file systems (using ndbd --initial or ndbmtd --initial).

Note

Beginning with NDB 8.0.21, Disk Data tablespace and log files are removed by
--initial. Previously, it was necessary to delete these manually.

6. Use DROP TABLE or TRUNCATE TABLE with the mysql.ndb_binlog_index table.

7. Execute ndb_restore, restoring all data. You must include the --restore-epoch option when you
run ndb_restore, so that the ndb_apply_status table is populated correctly. (See Section 5.23,
“ndb_restore — Restore an NDB Cluster Backup”, for more information.)

8. Restore the ndb_binlog_index table from the output of mysqldump and restore the binary log files
from backup, if necessary.

9. Find the epoch applied most recently—that is, the maximum epoch column value in the
ndb_apply_status table—as the user variable @LATEST_EPOCH (emphasized):

SELECT @LATEST_EPOCH:=MAX(epoch)
 FROM mysql.ndb_apply_status;

10. Find the latest binary log file (@FIRST_FILE) and position (Position column value) within this file that
correspond to @LATEST_EPOCH in the ndb_binlog_index table:

750

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html

NDB Cluster Replication: Bidirectional and Circular Replication

SELECT Position, @FIRST_FILE:=File
 FROM mysql.ndb_binlog_index
 WHERE epoch > @LATEST_EPOCH ORDER BY epoch ASC LIMIT 1;

11. Using mysqlbinlog, replay the binary log events from the given file and position up to the point of the
failure. (See mysqlbinlog — Utility for Processing Binary Log Files.)

See also Point-in-Time (Incremental) Recovery, for more information about the binary log, replication, and
incremental recovery.

7.10 NDB Cluster Replication: Bidirectional and Circular Replication

It is possible to use NDB Cluster for bidirectional replication between two clusters, as well as for circular
replication between any number of clusters.

Circular replication example. In the next few paragraphs we consider the example of a replication
setup involving three NDB Clusters numbered 1, 2, and 3, in which Cluster 1 acts as the replication source
for Cluster 2, Cluster 2 acts as the source for Cluster 3, and Cluster 3 acts as the source for Cluster 1.
Each cluster has two SQL nodes, with SQL nodes A and B belonging to Cluster 1, SQL nodes C and D
belonging to Cluster 2, and SQL nodes E and F belonging to Cluster 3.

Circular replication using these clusters is supported as long as the following conditions are met:

• The SQL nodes on all sources and replicas are the same.

• All SQL nodes acting as sources and replicas are started with the system variable
log_replica_updates (beginning with NDB 8.0.26) or log_slave_updates (NDB 8.0.26 and
earlier) enabled.

This type of circular replication setup is shown in the following diagram:

751

https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/8.0/en/point-in-time-recovery.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 7.6 NDB Cluster Circular Replication with All Sources As Replicas

In this scenario, SQL node A in Cluster 1 replicates to SQL node C in Cluster 2; SQL node C replicates
to SQL node E in Cluster 3; SQL node E replicates to SQL node A. In other words, the replication line
(indicated by the curved arrows in the diagram) directly connects all SQL nodes used as replication
sources and replicas.

It is also possible to set up circular replication in such a way that not all source SQL nodes are also
replicas, as shown here:

752

NDB Cluster Replication: Bidirectional and Circular Replication

Figure 7.7 NDB Cluster Circular Replication Where Not All Sources Are Replicas

In this case, different SQL nodes in each cluster are used as replication sources and replicas. You must
not start any of the SQL nodes with the system variable log_replica_updates (NDB 8.0.26 and
later) or log_slave_updates (prior to NDB 8.0.26) enabled. This type of circular replication scheme
for NDB Cluster, in which the line of replication (again indicated by the curved arrows in the diagram) is
discontinuous, should be possible, but it should be noted that it has not yet been thoroughly tested and
must therefore still be considered experimental.

Using NDB-native backup and restore to initialize a replica cluster. When setting up circular
replication, it is possible to initialize the replica cluster by using the management client START BACKUP
command on one NDB Cluster to create a backup and then applying this backup on another NDB Cluster
using ndb_restore. This does not automatically create binary logs on the second NDB Cluster's SQL

753

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates

NDB Cluster Replication: Bidirectional and Circular Replication

node acting as the replica; in order to cause the binary logs to be created, you must issue a SHOW TABLES
statement on that SQL node; this should be done prior to running START REPLICA. This is a known issue.

Multi-source failover example. In this section, we discuss failover in a multi-source NDB Cluster
replication setup with three NDB Clusters having server IDs 1, 2, and 3. In this scenario, Cluster 1
replicates to Clusters 2 and 3; Cluster 2 also replicates to Cluster 3. This relationship is shown here:

Figure 7.8 NDB Cluster Multi-Master Replication With 3 Sources

In other words, data replicates from Cluster 1 to Cluster 3 through 2 different routes: directly, and by way of
Cluster 2.

Not all MySQL servers taking part in multi-source replication must act as both source and replica, and a
given NDB Cluster might use different SQL nodes for different replication channels. Such a case is shown
here:

Figure 7.9 NDB Cluster Multi-Source Replication, With MySQL Servers

MySQL servers acting as replicas must be run with the system variable log_replica_updates
(beginning with NDB 8.0.26) or log_slave_updates (NDB 8.0.26 and earlier) enabled. Which mysqld
processes require this option is also shown in the preceding diagram.

754

https://dev.mysql.com/doc/refman/8.0/en/show-tables.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates

NDB Cluster Replication: Bidirectional and Circular Replication

Note

Using the log_replica_updates or log_slave_updates system variable has
no effect on servers not being run as replicas.

The need for failover arises when one of the replicating clusters goes down. In this example, we consider
the case where Cluster 1 is lost to service, and so Cluster 3 loses 2 sources of updates from Cluster 1.
Because replication between NDB Clusters is asynchronous, there is no guarantee that Cluster 3's updates
originating directly from Cluster 1 are more recent than those received through Cluster 2. You can handle
this by ensuring that Cluster 3 catches up to Cluster 2 with regard to updates from Cluster 1. In terms of
MySQL servers, this means that you need to replicate any outstanding updates from MySQL server C to
server F.

On server C, perform the following queries:

mysqlC> SELECT @latest:=MAX(epoch)
 -> FROM mysql.ndb_apply_status
 -> WHERE server_id=1;

mysqlC> SELECT
 -> @file:=SUBSTRING_INDEX(File, '/', -1),
 -> @pos:=Position
 -> FROM mysql.ndb_binlog_index
 -> WHERE orig_epoch >= @latest
 -> AND orig_server_id = 1
 -> ORDER BY epoch ASC LIMIT 1;

Note

You can improve the performance of this query, and thus likely speed up failover
times significantly, by adding the appropriate index to the ndb_binlog_index
table. See Section 7.4, “NDB Cluster Replication Schema and Tables”, for more
information.

Copy over the values for @file and @pos manually from server C to server F (or have your application
perform the equivalent). Then, on server F, execute the following CHANGE REPLICATION SOURCE TO
statement (NDB 8.0.23 and later) or CHANGE MASTER TO statement (prior to NDB 8.0.23):

mysqlF> CHANGE MASTER TO
 -> MASTER_HOST = 'serverC'
 -> MASTER_LOG_FILE='@file',
 -> MASTER_LOG_POS=@pos;

Beginning with NDB 8.0.23, you can also use the following statement:

mysqlF> CHANGE REPLICATION SOURCE TO
 -> SOURCE_HOST = 'serverC'
 -> SOURCE_LOG_FILE='@file',
 -> SOURCE_LOG_POS=@pos;

Once this has been done, you can issue a START REPLICA statement on MySQL server F; this causes
any missing updates originating from server B to be replicated to server F.

The CHANGE REPLICATION SOURCE TO | CHANGE MASTER TO statement also supports an
IGNORE_SERVER_IDS option which takes a comma-separated list of server IDs and causes events
originating from the corresponding servers to be ignored. For more information, see CHANGE MASTER
TO Statement, and SHOW SLAVE | REPLICA STATUS Statement. For information about how this option
intereacts with the ndb_log_apply_status variable, see Section 7.8, “Implementing Failover with NDB
Cluster Replication”.

755

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_replica_updates
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_slave_updates
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/start-replica.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-master-to.html
https://dev.mysql.com/doc/refman/8.0/en/show-slave-status.html

NDB Cluster Replication Conflict Resolution

7.11 NDB Cluster Replication Conflict Resolution

• Requirements

• Source Column Control

• Conflict Resolution Control

• Conflict Resolution Functions

• Conflict Resolution Exceptions Table

• Conflict Detection Status Variables

• Examples

When using a replication setup involving multiple sources (including circular replication), it is possible that
different sources may try to update the same row on the replica with different data. Conflict resolution
in NDB Cluster Replication provides a means of resolving such conflicts by permitting a user-defined
resolution column to be used to determine whether or not an update on a given source should be applied
on the replica.

Some types of conflict resolution supported by NDB Cluster (NDB$OLD(), NDB$MAX(), and
NDB$MAX_DELETE_WIN(); additionally, in NDB 8.0.30 and later, NDB$MAX_INS() and NDB
$MAX_DEL_WIN_INS()) implement this user-defined column as a “timestamp” column (although its type
cannot be TIMESTAMP, as explained later in this section). These types of conflict resolution are always
applied a row-by-row basis rather than a transactional basis. The epoch-based conflict resolution functions
NDB$EPOCH() and NDB$EPOCH_TRANS() compare the order in which epochs are replicated (and thus
these functions are transactional). Different methods can be used to compare resolution column values on
the replica when conflicts occur, as explained later in this section; the method used can be set to act on a
single table, database, or server, or on a set of one or more tables using pattern matching. See Matching
with wildcards, for information about using pattern matches in the db, table_name, and server_id
columns of the mysql.ndb_replication table.

You should also keep in mind that it is the application's responsibility to ensure that the resolution column
is correctly populated with relevant values, so that the resolution function can make the appropriate choice
when determining whether to apply an update.

Requirements

Preparations for conflict resolution must be made on both the source and the replica. These tasks are
described in the following list:

• On the source writing the binary logs, you must determine which columns are sent (all columns or only
those that have been updated). This is done for the MySQL Server as a whole by applying the mysqld
startup option --ndb-log-updated-only (described later in this section), or on one or more specific
tables by placing the proper entries in the mysql.ndb_replication table (see ndb_replication Table).

Note

If you are replicating tables with very large columns (such as TEXT or BLOB
columns), --ndb-log-updated-only can also be useful for reducing the size
of the binary logs and avoiding possible replication failures due to exceeding
max_allowed_packet.

756

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

Source Column Control

See Replication and max_allowed_packet, for more information about this issue.

• On the replica, you must determine which type of conflict resolution to apply (“latest timestamp wins”,
“same timestamp wins”, “primary wins”, “primary wins, complete transaction”, or none). This is done
using the mysql.ndb_replication system table, and applies to one or more specific tables (see
ndb_replication Table).

• NDB Cluster also supports read conflict detection, that is, detecting conflicts between reads of a given
row in one cluster and updates or deletes of the same row in another cluster. This requires exclusive
read locks obtained by setting ndb_log_exclusive_reads equal to 1 on the replica. All rows read by
a conflicting read are logged in the exceptions table. For more information, see Read conflict detection
and resolution.

• Prior to NDB 8.0.30, NDB applied WRITE_ROW events strictly as inserts, requiring that there was
not already any such row; that is, an incoming write was always rejected if the row already existed.
(This is still the case when using any conflict resolution function other than NDB$MAX_INS() or NDB
$MAX_DEL_WIN_INS().)

Beginning with NDB 8.0.30, when using NDB$MAX_INS() or NDB$MAX_DEL_WIN_INS(), NDB can
apply WRITE_ROW events idempotently, mapping such an event to an insert when the incoming row does
not already exist, or to an update if it does.

When using the functions NDB$OLD(), NDB$MAX(), and NDB$MAX_DELETE_WIN() for timestamp-based
conflict resolution (as well as NDB$MAX_INS() and NDB$MAX_DEL_WIN_INS(), beginning with NDB
8.0.30), we often refer to the column used for determining updates as a “timestamp” column. However, the
data type of this column is never TIMESTAMP; instead, its data type should be INT (INTEGER) or BIGINT.
The “timestamp” column should also be UNSIGNED and NOT NULL.

The NDB$EPOCH() and NDB$EPOCH_TRANS() functions discussed later in this section work by comparing
the relative order of replication epochs applied on a primary and secondary NDB Cluster, and do not make
use of timestamps.

Source Column Control

 We can see update operations in terms of “before” and “after” images—that is, the states of the table
before and after the update is applied. Normally, when updating a table with a primary key, the “before”
image is not of great interest; however, when we need to determine on a per-update basis whether or not
to use the updated values on a replica, we need to make sure that both images are written to the source's
binary log. This is done with the --ndb-log-update-as-write option for mysqld, as described later in
this section.

Important

Whether logging of complete rows or of updated columns only is done is decided
when the MySQL server is started, and cannot be changed online; you must either
restart mysqld, or start a new mysqld instance with different logging options.

Conflict Resolution Control

 Conflict resolution is usually enabled on the server where conflicts can occur. Like logging method
selection, it is enabled by entries in the mysql.ndb_replication table.

NBT_UPDATED_ONLY_MINIMAL and NBT_UPDATED_FULL_MINIMAL can be used with NDB$EPOCH(),
NDB$EPOCH2(), and NDB$EPOCH_TRANS(), because these do not require “before” values of columns

757

https://dev.mysql.com/doc/refman/8.0/en/replication-features-max-allowed-packet.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

Conflict Resolution Functions

which are not primary keys. Conflict resolution algorithms requiring the old values, such as NDB$MAX()
and NDB$OLD(), do not work correctly with these binlog_type values.

Conflict Resolution Functions

This section provides detailed information about the functions which can be used for conflict detection and
resolution with NDB Replication.

• NDB$EPOCH()

• NDB$EPOCH2()

• NDB$EPOCH_TRANS()

• NDB$EPOCH2_TRANS()

• NDB$MAX()

• NDB$MAX_DELETE_WIN()

• NDB$MAX_DEL_WIN_INS()

• NDB$MAX_INS()

• NDB$OLD()

NDB$EPOCH()

 The NDB$EPOCH() function tracks the order in which replicated epochs are applied on a replica cluster
relative to changes originating on the replica. This relative ordering is used to determine whether changes
originating on the replica are concurrent with any changes that originate locally, and are therefore
potentially in conflict.

Most of what follows in the description of NDB$EPOCH() also applies to NDB$EPOCH_TRANS(). Any
exceptions are noted in the text.

NDB$EPOCH() is asymmetric, operating on one NDB Cluster in a bidirectional replication configuration
(sometimes referred to as “active-active” replication). We refer here to cluster on which it operates as
the primary, and the other as the secondary. The replica on the primary is responsible for detecting and
handling conflicts, while the replica on the secondary is not involved in any conflict detection or handling.

When the replica on the primary detects conflicts, it injects events into its own binary log to compensate for
these; this ensures that the secondary NDB Cluster eventually realigns itself with the primary and so keeps
the primary and secondary from diverging. This compensation and realignment mechanism requires that
the primary NDB Cluster always wins any conflicts with the secondary—that is, that the primary's changes
are always used rather than those from the secondary in event of a conflict. This “primary always wins” rule
has the following implications:

• Operations that change data, once committed on the primary, are fully persistent and are not undone or
rolled back by conflict detection and resolution.

• Data read from the primary is fully consistent. Any changes committed on the Primary (locally or from the
replica) are not reverted later.

• Operations that change data on the secondary may later be reverted if the primary determines that they
are in conflict.

758

Conflict Resolution Functions

• Individual rows read on the secondary are self-consistent at all times, each row always reflecting either a
state committed by the secondary, or one committed by the primary.

• Sets of rows read on the secondary may not necessarily be consistent at a given single point in time. For
NDB$EPOCH_TRANS(), this is a transient state; for NDB$EPOCH(), it can be a persistent state.

• Assuming a period of sufficient length without any conflicts, all data on the secondary NDB Cluster
(eventually) becomes consistent with the primary's data.

NDB$EPOCH() and NDB$EPOCH_TRANS() do not require any user schema modifications, or application
changes to provide conflict detection. However, careful thought must be given to the schema used, and the
access patterns used, to verify that the complete system behaves within specified limits.

Each of the NDB$EPOCH() and NDB$EPOCH_TRANS() functions can take an optional parameter; this is
the number of bits to use to represent the lower 32 bits of the epoch, and should be set to no less than the
value calculated as shown here:

CEIL(LOG2(TimeBetweenGlobalCheckpoints / TimeBetweenEpochs), 1)

For the default values of these configuration parameters (2000 and 100 milliseconds, respectively), this
gives a value of 5 bits, so the default value (6) should be sufficient, unless other values are used for
TimeBetweenGlobalCheckpoints, TimeBetweenEpochs, or both. A value that is too small can result
in false positives, while one that is too large could lead to excessive wasted space in the database.

Both NDB$EPOCH() and NDB$EPOCH_TRANS() insert entries for conflicting rows into the relevant
exceptions tables, provided that these tables have been defined according to the same exceptions table
schema rules as described elsewhere in this section (see NDB$OLD()). You must create any exceptions
table before creating the data table with which it is to be used.

As with the other conflict detection functions discussed in this section, NDB$EPOCH() and NDB
$EPOCH_TRANS() are activated by including relevant entries in the mysql.ndb_replication table
(see ndb_replication Table). The roles of the primary and secondary NDB Clusters in this scenario are fully
determined by mysql.ndb_replication table entries.

Because the conflict detection algorithms employed by NDB$EPOCH() and NDB$EPOCH_TRANS() are
asymmetric, you must use different values for the server_id entries of the primary and secondary
replicas.

A conflict between DELETE operations alone is not sufficient to trigger a conflict using NDB$EPOCH() or
NDB$EPOCH_TRANS(), and the relative placement within epochs does not matter.

Limitations on NDB$EPOCH()

 The following limitations currently apply when using NDB$EPOCH() to perform conflict detection:

• Conflicts are detected using NDB Cluster epoch boundaries, with granularity proportional to
TimeBetweenEpochs (default: 100 milliseconds). The minimum conflict window is the minimum
time during which concurrent updates to the same data on both clusters always report a conflict. This
is always a nonzero length of time, and is roughly proportional to 2 * (latency + queueing +
TimeBetweenEpochs). This implies that—assuming the default for TimeBetweenEpochs and
ignoring any latency between clusters (as well as any queuing delays)—the minimum conflict window
size is approximately 200 milliseconds. This minimum window should be considered when looking at
expected application “race” patterns.

• Additional storage is required for tables using the NDB$EPOCH() and NDB$EPOCH_TRANS() functions;
from 1 to 32 bits extra space per row is required, depending on the value passed to the function.

759

Conflict Resolution Functions

• Conflicts between delete operations may result in divergence between the primary and secondary. When
a row is deleted on both clusters concurrently, the conflict can be detected, but is not recorded, since the
row is deleted. This means that further conflicts during the propagation of any subsequent realignment
operations are not detected, which can lead to divergence.

Deletes should be externally serialized, or routed to one cluster only. Alternatively, a separate row
should be updated transactionally with such deletes and any inserts that follow them, so that conflicts
can be tracked across row deletes. This may require changes in applications.

• Only two NDB Clusters in a birectional “active-active” configuration are currently supported when using
NDB$EPOCH() or NDB$EPOCH_TRANS() for conflict detection.

• Tables having BLOB or TEXT columns are not currently supported with NDB$EPOCH() or NDB
$EPOCH_TRANS().

NDB$EPOCH2()

 The NDB$EPOCH2() function is similar to NDB$EPOCH(), except that NDB$EPOCH2() provides for
delete-delete handling with a bidirectional replication topology. In this scenario, primary and secondary
roles are assigned to the two sources by setting the ndb_slave_conflict_role system variable to
the appropriate value on each source (usually one each of PRIMARY, SECONDARY). When this is done,
modifications made by the secondary are reflected by the primary back to the secondary which then
conditionally applies them.

NDB$EPOCH_TRANS()

 NDB$EPOCH_TRANS() extends the NDB$EPOCH() function. Conflicts are detected and handled in the
same way using the “primary wins all” rule (see NDB$EPOCH()) but with the extra condition that any
other rows updated in the same transaction in which the conflict occurred are also regarded as being in
conflict. In other words, where NDB$EPOCH() realigns individual conflicting rows on the secondary, NDB
$EPOCH_TRANS() realigns conflicting transactions.

In addition, any transactions which are detectably dependent on a conflicting transaction are also regarded
as being in conflict, these dependencies being determined by the contents of the secondary cluster's binary
log. Since the binary log contains only data modification operations (inserts, updates, and deletes), only
overlapping data modifications are used to determine dependencies between transactions.

NDB$EPOCH_TRANS() is subject to the same conditions and limitations as NDB$EPOCH(), and in
addition requires that all transaction IDs are recorded in the secondary's binary log (the --ndb-log-
transaction-id option), which adds a variable overhead (up to 13 bytes per row). The deprecated
log_bin_use_v1_row_events system variable, which defaults to OFF, must not be set to ON with NDB
$EPOCH_TRANS().

See NDB$EPOCH().

NDB$EPOCH2_TRANS()

 NDB$EPOCH2_TRANS() extends the NDB$EPOCH2() function. Conflicts are detected and handled in
the same way, and assigning primary and secondary roles to the replicating clusters, but with the extra
condition that any other rows updated in the same transaction in which the conflict occurred are also
regarded as being in conflict. That is, NDB$EPOCH2() realigns individual conflicting rows on the secondary,
while NDB$EPOCH_TRANS() realigns conflicting transactions.

Where NDB$EPOCH() and NDB$EPOCH_TRANS() use metadata that is specified per row, per last modified
epoch, to determine on the primary whether an incoming replicated row change from the secondary
is concurrent with a locally committed change; concurrent changes are regarded as conflicting, with

760

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin_use_v1_row_events

Conflict Resolution Functions

subesequent exceptions table updates and realignment of the secondary. A problem arises when a row is
deleted on the primary so there is no longer any last-modified epoch available to determine whether any
replicated operations conflict, which means that conflicting delete operationss are not detected. This can
result in divergence, an example being a delete on one cluster which is concurrent with a delete and insert
on the other; this why delete operations can be routed to only one cluster when using NDB$EPOCH() and
NDB$EPOCH_TRANS().

NDB$EPOCH2() bypasses the issue just described—storing information about deleted rows on the
PRIMARY—by ignoring any delete-delete conflict, and by avoiding any potential resultant divergence as
well. This is accomplished by reflecting any operation successfully applied on and replicated from the
secondary back to the secondary. On its return to the secondary, it can be used to reapply an operation on
the secondary which was deleted by an operation originating from the primary.

When using NDB$EPOCH2(), you should keep in mind that the secondary applies the delete from the
primary, removing the new row until it is restored by a reflected operation. In theory, the subsequent insert
or update on the secondary conflicts with the delete from the primary, but in this case, we choose to ignore
this and allow the secondary to “win”, in the interest of preventing divergence between the clusters. In other
words, after a delete, the primary does not detect conflicts, and instead adopts the secondary's following
changes immediately. Because of this, the secondary's state can revisit multiple previous committed states
as it progresses to a final (stable) state, and some of these may be visible.

You should also be aware that reflecting all operations from the secondary back to the primary increases
the size of the primary's logbinary log, as well as demands on bandwidth, CPU usage, and disk I/O.

Application of reflected operations on the secondary depends on the state of the target
row on the secondary. Whether or not reflected changes are applied on the secondary
can be tracked by checking the Ndb_conflict_reflected_op_prepare_count
and Ndb_conflict_reflected_op_discard_count status variables. The number
of changes applied is simply the difference between these two values (note that
Ndb_conflict_reflected_op_prepare_count is always greater than or equal to
Ndb_conflict_reflected_op_discard_count).

Events are applied if and only if both of the following conditions are true:

• The existence of the row—that is, whether or not it exists—is in accordance with the type of event. For
delete and update operations, the row must already exist. For insert operations, the row must not exist.

• The row was last modified by the primary. It is possible that the modification was accomplished through
the execution of a reflected operation.

If both of these conditions are not met, the reflected operation is discarded by the secondary.

NDB$MAX()

 For an update or delete operation, if the “timestamp” column value for a given row coming from the source
is higher than that on the replica, it is applied; otherwise it is not applied on the replica. This is illustrated by
the following pseudocode:

if (source_new_column_value > replica_current_column_value)
 apply_update();

 This function can be used for “greatest timestamp wins” conflict resolution. This type of conflict resolution
ensures that, in the event of a conflict, the version of the row that was most recently updated is the version
that persists.

This function has no effects on conflicts between write operations, other than that a write operation with
the same primary key as a previous write is always rejected; it is accepted and applied only if no write

761

Conflict Resolution Functions

operation using the same primary key already exists. Beginning with NDB 8.0.30, you can use NDB
$MAX_INS() to handle conflict resolution between writes.

Important

The column value from the sources's “after” image is used by this function.

NDB$MAX_DELETE_WIN()

 This is a variation on NDB$MAX(). Due to the fact that no timestamp is available for a delete operation, a
delete using NDB$MAX() is in fact processed as NDB$OLD, but for some use cases, this is not optimal. For
NDB$MAX_DELETE_WIN(), if the “timestamp” column value for a given row adding or updating an existing
row coming from the source is higher than that on the replica, it is applied. However, delete operations are
treated as always having the higher value. This is illustrated by the following pseudocode:

if ((source_new_column_value > replica_current_column_value)
 ||
 operation.type == "delete")
 apply_update();

 This function can be used for “greatest timestamp, delete wins” conflict resolution. This type of conflict
resolution ensures that, in the event of a conflict, the version of the row that was deleted or (otherwise)
most recently updated is the version that persists.

Note

As with NDB$MAX(), the column value from the source's “after” image is the value
used by this function.

NDB$MAX_DEL_WIN_INS()

 This function provides support for resolution of conflicting write operations, along with “delete
wins” resolution like that of NDB$MAX_DELETE_WIN(). Write conflicts are handled by NDB
$MAX_DEL_WIN_INS() as shown here:

1. If there is no conflicting write, apply this one (this is the same as NDB$MAX_DELETE_WIN()).

2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

Handling of insert operations as performed by NDB$MAX_DEL_WIN_INS() can be represented in
pseudocode as shown here:

if (source_timestamp_column_value > replica_timestamp_column_value)
 apply_insert();
else
 log_exception();

For update operations, the source's updated timestamp column value is compared with replica's timestamp
column value, like this (again using pseudocode):

if (source_new_column_value > replica_current_column_value)
 apply_update();
else
 log_exception();

762

Conflict Resolution Functions

Deletes are handled using a “delete always wins” strategy (the same as NDB$MAX_DELETE_WIN()); a
DELETE is always applied without any regard to any timestamp values, as illustrated by this pseudocode:

if (operation.type == "delete")
 apply_delete();

For conflicts between update and delete operations, this function behaves identically to NDB
$MAX_DELETE_WIN().

NDB$MAX_DEL_WIN_INS() was added in NDB 8.0.30.

NDB$MAX_INS()

 This function provides support for resolution of conflicting write operations. Such conflicts are handled by
“NDB$MAX_INS()” as follows:

1. If there is no conflicting write, apply this one (this is the same as NDB$MAX()).

2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

When handling an insert operation, NDB$MAX_INS() compares timestamps from the source and replica as
illustrated by the following pseudocode:

if (source_timestamp_column_value > replica_timestamp_column_value)
 apply_insert();
else
 log_exception();

For an update operation, the updated timestamp column value from the source is compared with the
replica's timestamp column value, as shown here:

if (source_new_column_value > replica_current_column_value)
 apply_update();
else
 log_exception();

This is the same as performed by NDB$MAX().

For delete operations, the handling is also the same as that performed by NDB$MAX() (and thus the same
as NDB$OLD()), and is done like this:

if (source_timestamp_column_value == replica_timestamp_column_value)
 apply_delete();
else
 log_exception();

NDB$MAX_INS() was added in NDB 8.0.30.

NDB$OLD()

 If the value of column_name is the same on both the source and the replica, then the update is applied;
otherwise, the update is not applied on the replica and an exception is written to the log. This is illustrated
by the following pseudocode:

if (source_old_column_value == replica_current_column_value)

763

Conflict Resolution Exceptions Table

 apply_update();
else
 log_exception();

 This function can be used for “same value wins” conflict resolution. This type of conflict resolution ensures
that updates are not applied on the replica from the wrong source.

Important

The column value from the source's “before” image is used by this function.

Conflict Resolution Exceptions Table

 To use the NDB$OLD() conflict resolution function, it is also necessary to create an exceptions table
corresponding to each NDB table for which this type of conflict resolution is to be employed. This is also
true when using NDB$EPOCH() or NDB$EPOCH_TRANS(). The name of this table is that of the table for
which conflict resolution is to be applied, with the string $EX appended. (For example, if the name of the
original table is mytable, the name of the corresponding exceptions table name should be mytable$EX.)
The syntax for creating the exceptions table is as shown here:

CREATE TABLE original_table$EX (
 [NDB$]server_id INT UNSIGNED,
 [NDB$]source_server_id INT UNSIGNED,
 [NDB$]source_epoch BIGINT UNSIGNED,
 [NDB$]count INT UNSIGNED,

 [NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,]
 [NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,]
 [NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,]

 original_table_pk_columns,

 [orig_table_column|orig_table_column$OLD|orig_table_column$NEW,]

 [additional_columns,]

 PRIMARY KEY([NDB$]server_id, [NDB$]source_server_id, [NDB$]source_epoch, [NDB$]count)
) ENGINE=NDB;

The first four columns are required. The names of the first four columns and the columns matching
the original table's primary key columns are not critical; however, we suggest for reasons of clarity
and consistency, that you use the names shown here for the server_id, source_server_id,
source_epoch, and count columns, and that you use the same names as in the original table for the
columns matching those in the original table's primary key.

If the exceptions table uses one or more of the optional columns NDBOP_TYPE, NDBCFT_CAUSE, or NDB
$ORIG_TRANSID discussed later in this section, then each of the required columns must also be named
using the prefix NDB$. If desired, you can use the NDB$ prefix to name the required columns even if you do
not define any optional columns, but in this case, all four of the required columns must be named using the
prefix.

Following these columns, the columns making up the original table's primary key should be copied in the
order in which they are used to define the primary key of the original table. The data types for the columns
duplicating the primary key columns of the original table should be the same as (or larger than) those of the
original columns. A subset of the primary key columns may be used.

The exceptions table must use the NDB storage engine. (An example that uses NDB$OLD() with an
exceptions table is shown later in this section.)

764

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Conflict Detection Status Variables

Additional columns may optionally be defined following the copied primary key columns, but not before any
of them; any such extra columns cannot be NOT NULL. NDB Cluster supports three additional, predefined
optional columns NDBOP_TYPE, NDBCFT_CAUSE, and NDB$ORIG_TRANSID, which are described in the
next few paragraphs.

 NDB$OP_TYPE: This column can be used to obtain the type of operation causing the conflict. If you use
this column, define it as shown here:

NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL

The WRITE_ROW, UPDATE_ROW, and DELETE_ROW operation types represent user-initiated operations.
REFRESH_ROW operations are operations generated by conflict resolution in compensating transactions
sent back to the originating cluster from the cluster that detected the conflict. READ_ROW operations are
user-initiated read tracking operations defined with exclusive row locks.

 NDB$CFT_CAUSE: You can define an optional column NDB$CFT_CAUSE which provides the cause of the
registered conflict. This column, if used, is defined as shown here:

NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL

ROW_DOES_NOT_EXIST can be reported as the cause for UPDATE_ROW and WRITE_ROW operations;
ROW_ALREADY_EXISTS can be reported for WRITE_ROW events. DATA_IN_CONFLICT is reported when
a row-based conflict function detects a conflict; TRANS_IN_CONFLICT is reported when a transactional
conflict function rejects all of the operations belonging to a complete transaction.

 NDB$ORIG_TRANSID: The NDB$ORIG_TRANSID column, if used, contains the ID of the originating
transaction. This column should be defined as follows:

NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL

NDB$ORIG_TRANSID is a 64-bit value generated by NDB. This value can be used to correlate multiple
exceptions table entries belonging to the same conflicting transaction from the same or different exceptions
tables.

Additional reference columns which are not part of the original table's primary key can be named
colname$OLD or colname$NEW. colname$OLD references old values in update and delete operations—
that is, operations containing DELETE_ROW events. colname$NEW can be used to reference new values in
insert and update operations—in other words, operations using WRITE_ROW events, UPDATE_ROW events,
or both types of events. Where a conflicting operation does not supply a value for a given reference column
that is not a primary key, the exceptions table row contains either NULL, or a defined default value for that
column.

Important

The mysql.ndb_replication table is read when a data table is set up for
replication, so the row corresponding to a table to be replicated must be inserted
into mysql.ndb_replication before the table to be replicated is created.

Conflict Detection Status Variables

 Several status variables can be used to monitor conflict detection. You can see how many rows have
been found in conflict by NDB$EPOCH() since this replica was last restarted from the current value of the
Ndb_conflict_fn_epoch system status variable.

Ndb_conflict_fn_epoch_trans provides the number of rows that have been found directly in conflict
by NDB$EPOCH_TRANS(). Ndb_conflict_fn_epoch2 and Ndb_conflict_fn_epoch2_trans

765

Examples

show the number of rows found in conflict by NDB$EPOCH2() and NDB$EPOCH2_TRANS(),
respectively. The number of rows actually realigned, including those affected due to their
membership in or dependency on the same transactions as other conflicting rows, is given by
Ndb_conflict_trans_row_reject_count.

Another server status variable Ndb_conflict_fn_max provides a count of the number of times that a
row was not applied on the current SQL node due to “greatest timestamp wins” conflict resolution since the
last time that mysqld was started. Ndb_conflict_fn_max_del_win provides a count of the number of
times that conflict resolution based on the outcome of NDB$MAX_DELETE_WIN() has been applied.

NDB 8.0.30 and later provides Ndb_conflict_fn_max_ins for tracking the number of
times that “greater timestamp wins” handling has been applied to write operations (using NDB
$MAX_INS()); a count of the number of times that “same timestamp wins” handling of writes has
been applied (as implemented by NDB$MAX_DEL_WIN_INS()), is provided by the status variable
Ndb_conflict_fn_max_del_win_ins.

The number of times that a row was not applied as the result of “same timestamp wins” conflict
resolution on a given mysqld since the last time it was restarted is given by the global status variable
Ndb_conflict_fn_old. In addition to incrementing Ndb_conflict_fn_old, the primary key of the
row that was not used is inserted into an exceptions table, as explained elsewhere in this section.

See also Section 4.3.9.3, “NDB Cluster Status Variables”.

Examples

The following examples assume that you have already a working NDB Cluster replication setup, as
described in Section 7.5, “Preparing the NDB Cluster for Replication”, and Section 7.6, “Starting NDB
Cluster Replication (Single Replication Channel)”.

NDB$MAX() example. Suppose you wish to enable “greatest timestamp wins” conflict resolution on
table test.t1, using column mycol as the “timestamp”. This can be done using the following steps:

1. Make sure that you have started the source mysqld with --ndb-log-update-as-write=OFF.

2. On the source, perform this INSERT statement:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't1', 0, NULL, 'NDB$MAX(mycol)');

Note

If the ndb_replication table does not already exist, you must create it. See
ndb_replication Table.

Inserting a 0 into the server_id column indicates that all SQL nodes accessing this table should use
conflict resolution. If you want to use conflict resolution on a specific mysqld only, use the actual server
ID.

Inserting NULL into the binlog_type column has the same effect as inserting 0 (NBT_DEFAULT); the
server default is used.

3. Create the test.t1 table:

CREATE TABLE test.t1 (
 columns
 mycol INT UNSIGNED,
 columns

766

https://dev.mysql.com/doc/refman/8.0/en/insert.html

Examples

) ENGINE=NDB;

Now, when updates are performed on this table, conflict resolution is applied, and the version of the
row having the greatest value for mycol is written to the replica.

Note

Other binlog_type options such as NBT_UPDATED_ONLY_USE_UPDATE (6)
should be used to control logging on the source using the ndb_replication table
rather than by using command-line options.

NDB$OLD() example. Suppose an NDB table such as the one defined here is being replicated, and you
wish to enable “same timestamp wins” conflict resolution for updates to this table:

CREATE TABLE test.t2 (
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,
 columns,
 mycol INT UNSIGNED NOT NULL,
 columns,
 PRIMARY KEY pk (a, b)
) ENGINE=NDB;

The following steps are required, in the order shown:

1. First—and prior to creating test.t2—you must insert a row into the mysql.ndb_replication
table, as shown here:

INSERT INTO mysql.ndb_replication
 VALUES ('test', 't2', 0, 0, 'NDB$OLD(mycol)');

Possible values for the binlog_type column are shown earlier in this section; in this case, we use 0
to specify that the server default logging behavior be used. The value 'NDB$OLD(mycol)' should be
inserted into the conflict_fn column.

2. Create an appropriate exceptions table for test.t2. The table creation statement shown here includes
all required columns; any additional columns must be declared following these columns, and before the
definition of the table's primary key.

CREATE TABLE test.t2$EX (
 server_id INT UNSIGNED,
 source_server_id INT UNSIGNED,
 source_epoch BIGINT UNSIGNED,
 count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,
 b CHAR(25) NOT NULL,

 [additional_columns,]

 PRIMARY KEY(server_id, source_server_id, source_epoch, count)
) ENGINE=NDB;

We can include additional columns for information about the type, cause, and originating transaction ID
for a given conflict. We are also not required to supply matching columns for all primary key columns in
the original table. This means you can create the exceptions table like this:

CREATE TABLE test.t2$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 a INT UNSIGNED NOT NULL,

767

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Examples

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 NDB$ORIG_TRANSID BIGINT UNSIGNED NOT NULL,

 [additional_columns,]

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Note

The NDB$ prefix is required for the four required columns since we included
at least one of the columns NDBOP_TYPE, NDBCFT_CAUSE, or NDB
$ORIG_TRANSID in the table definition.

3. Create the table test.t2 as shown previously.

These steps must be followed for every table for which you wish to perform conflict resolution using NDB
$OLD(). For each such table, there must be a corresponding row in mysql.ndb_replication, and
there must be an exceptions table in the same database as the table being replicated.

Read conflict detection and resolution. NDB Cluster also supports tracking of read operations,
which makes it possible in circular replication setups to manage conflicts between reads of a given row
in one cluster and updates or deletes of the same row in another. This example uses employee and
department tables to model a scenario in which an employee is moved from one department to another
on the source cluster (which we refer to hereafter as cluster A) while the replica cluster (hereafter B)
updates the employee count of the employee's former department in an interleaved transaction.

The data tables have been created using the following SQL statements:

Employee table
CREATE TABLE employee (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 dept INT NOT NULL
) ENGINE=NDB;

Department table
CREATE TABLE department (
 id INT PRIMARY KEY,
 name VARCHAR(2000),
 members INT
) ENGINE=NDB;

The contents of the two tables include the rows shown in the (partial) output of the following SELECT
statements:

mysql> SELECT id, name, dept FROM employee;
+---------------+------+
| id | name | dept |
+------+--------+------+
...
998	Mike	3
999	Joe	3
1000	Mary	3
...
+------+--------+------+

mysql> SELECT id, name, members FROM department;
+-----+-------------+---------+

768

https://dev.mysql.com/doc/refman/8.0/en/select.html

Examples

| id | name | members |
+-----+-------------+---------+
...
| 3 | Old project | 24 |
...
+-----+-------------+---------+

We assume that we are already using an exceptions table that includes the four required columns (and
these are used for this table's primary key), the optional columns for operation type and cause, and the
original table's primary key column, created using the SQL statement shown here:

CREATE TABLE employee$EX (
 NDB$server_id INT UNSIGNED,
 NDB$source_server_id INT UNSIGNED,
 NDB$source_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,

 NDB$OP_TYPE ENUM('WRITE_ROW','UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW','READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST',
 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT',
 'TRANS_IN_CONFLICT') NOT NULL,

 id INT NOT NULL,

 PRIMARY KEY(NDB$server_id, NDB$source_server_id, NDB$source_epoch, NDB$count)
) ENGINE=NDB;

Suppose there occur the two simultaneous transactions on the two clusters. On cluster A, we create a new
department, then move employee number 999 into that department, using the following SQL statements:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 1);
 UPDATE employee SET dept = 4 WHERE id = 999;
COMMIT;

At the same time, on cluster B, another transaction reads from employee, as shown here:

BEGIN;
 SELECT name FROM employee WHERE id = 999;
 UPDATE department SET members = members - 1 WHERE id = 3;
commit;

The conflicting transactions are not normally detected by the conflict resolution mechanism, since the
conflict is between a read (SELECT) and an update operation. You can circumvent this issue by executing
SET ndb_log_exclusive_reads = 1 on the replica cluster. Acquiring exclusive read locks in this way
causes any rows read on the source to be flagged as needing conflict resolution on the replica cluster. If
we enable exclusive reads in this way prior to the logging of these transactions, the read on cluster B is
tracked and sent to cluster A for resolution; the conflict on the employee row is subsequently detected and
the transaction on cluster B is aborted.

The conflict is registered in the exceptions table (on cluster A) as a READ_ROW operation (see Conflict
Resolution Exceptions Table, for a description of operation types), as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
| 999 | READ_ROW | TRANS_IN_CONFLICT |
+-------+-------------+-------------------+

769

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Examples

Any existing rows found in the read operation are flagged. This means that multiple rows resulting from the
same conflict may be logged in the exception table, as shown by examining the effects a conflict between
an update on cluster A and a read of multiple rows on cluster B from the same table in simultaneous
transactions. The transaction executed on cluster A is shown here:

BEGIN;
 INSERT INTO department VALUES (4, "New project", 0);
 UPDATE employee SET dept = 4 WHERE dept = 3;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 4;
 UPDATE department SET members = @count WHERE id = 4;
COMMIT;

Concurrently a transaction containing the statements shown here runs on cluster B:

SET ndb_log_exclusive_reads = 1; # Must be set if not already enabled
...
BEGIN;
 SELECT COUNT(*) INTO @count FROM employee WHERE dept = 3 FOR UPDATE;
 UPDATE department SET members = @count WHERE id = 3;
COMMIT;

In this case, all three rows matching the WHERE condition in the second transaction's SELECT are read, and
are thus flagged in the exceptions table, as shown here:

mysql> SELECT id, NDBOP_TYPE, NDBCFT_CAUSE FROM employee$EX;
+-------+-------------+-------------------+
| id | NDB$OP_TYPE | NDB$CFT_CAUSE |
+-------+-------------+-------------------+
...
998	READ_ROW	TRANS_IN_CONFLICT
999	READ_ROW	TRANS_IN_CONFLICT
1000	READ_ROW	TRANS_IN_CONFLICT
...
+-------+-------------+-------------------+

Read tracking is performed on the basis of existing rows only. A read based on a given condition track
conflicts only of any rows that are found and not of any rows that are inserted in an interleaved transaction.
This is similar to how exclusive row locking is performed in a single instance of NDB Cluster.

Insert conflict detection and resolution example (NDB 8.0.30 and later). The following example
illustrates the use of the insert conflict detection functions added in NDB 8.0.30. We assume that we are
replicating two tables t1 and t2 in database test, and that we wish to use insert conflict detection with
NDB$MAX_INS() for t1 and NDB$MAX_DEL_WIN_INS() for t2. The two data tables are not created until
later in the setup process.

Setting up insert conflict resolution is similar to setting up other conflict detection and resolution algorithms
as shown in the previous examples. If the mysql.ndb_replication table used to configure binary
logging and conflict resolution, does not already exist, it is first necessary to create it, as shown here:

CREATE TABLE mysql.ndb_replication (
 db VARBINARY(63),
 table_name VARBINARY(63),
 server_id INT UNSIGNED,
 binlog_type INT UNSIGNED,
 conflict_fn VARBINARY(128),
 PRIMARY KEY USING HASH (db, table_name, server_id)
) ENGINE=NDB
PARTITION BY KEY(db,table_name);

The ndb_replication table acts on a per-table basis; that is, we need to insert a row containing table
information, a binlog_type value, the conflict resolution function to be employed, and the name of the
timestamp column (X) for each table to be set up, like this:

770

Examples

INSERT INTO mysql.ndb_replication VALUES ("test", "t1", 0, 7, "NDB$MAX_INS(X)");
INSERT INTO mysql.ndb_replication VALUES ("test", "t2", 0, 7, "NDB$MAX_DEL_WIN_INS(X)");

Here we have set the binlog_type as NBT_FULL_USE_UPDATE (7) which means that full rows are always
logged. See ndb_replication Table, for other possible values.

You can also create an exceptions table corresponding to each NDB table for which conflict resolution is to
be employed. An exceptions table records all rows rejected by the conflict resolution function for a given
table. Exceptions tables for replication conflict detection for tables t1 and t2 can be created using the
following two SQL statements:

CREATE TABLE `t1$EX` (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 a INT NOT NULL,
 PRIMARY KEY(NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE=NDB;

CREATE TABLE `t2$EX` (
 NDB$server_id INT UNSIGNED,
 NDB$master_server_id INT UNSIGNED,
 NDB$master_epoch BIGINT UNSIGNED,
 NDB$count INT UNSIGNED,
 NDB$OP_TYPE ENUM('WRITE_ROW', 'UPDATE_ROW', 'DELETE_ROW',
 'REFRESH_ROW', 'READ_ROW') NOT NULL,
 NDB$CFT_CAUSE ENUM('ROW_DOES_NOT_EXIST', 'ROW_ALREADY_EXISTS',
 'DATA_IN_CONFLICT', 'TRANS_IN_CONFLICT') NOT NULL,
 a INT NOT NULL,
 PRIMARY KEY(NDB$server_id, NDB$master_server_id,
 NDB$master_epoch, NDB$count)
) ENGINE=NDB;

Finally, after creating the exception tables just shown, you can create the data tables to be replicated and
subject to conflict resolution control, using the following two SQL statements:

CREATE TABLE t1 (
 a INT PRIMARY KEY,
 b VARCHAR(32),
 X INT UNSIGNED
) ENGINE=NDB;

CREATE TABLE t2 (
 a INT PRIMARY KEY,
 b VARCHAR(32),
 X INT UNSIGNED
) ENGINE=NDB;

For each table, the X column is used as the timestamp column.

Once created on the source, t1 and t2 are replicated and can be assumed to exist on both the source and
the replica. In the remainder of this example, we use mysqlS> to indicate a mysql client connected to the
source, and mysqlR> to indicate a mysql client running on the replica.

First we insert one row each into the tables on the source, like this:

mysqlS> INSERT INTO t1 VALUES (1, 'Initial X=1', 1);
Query OK, 1 row affected (0.01 sec)

771

Examples

mysqlS> INSERT INTO t2 VALUES (1, 'Initial X=1', 1);
Query OK, 1 row affected (0.01 sec)

We can be certain that these two rows are replicated without causing any conflicts, since the tables on the
replica did not contain any rows prior to issuing the INSERT statements on the source. We can verify this
by selecting from the tables on the replica as shown here:

mysqlR> TABLE t1 ORDER BY a;
+---+-------------+------+
| a | b | X |
+---+-------------+------+
| 1 | Initial X=1 | 1 |
+---+-------------+------+
1 row in set (0.00 sec)

mysqlR> TABLE t2 ORDER BY a;
+---+-------------+------+
| a | b | X |
+---+-------------+------+
| 1 | Initial X=1 | 1 |
+---+-------------+------+
1 row in set (0.00 sec)

Next, we insert new rows into the tables on the replica, like this:

mysqlR> INSERT INTO t1 VALUES (2, 'Replica X=2', 2);
Query OK, 1 row affected (0.01 sec)

mysqlR> INSERT INTO t2 VALUES (2, 'Replica X=2', 2);
Query OK, 1 row affected (0.01 sec)

Now we insert conflicting rows into the tables on the source having greater timestamp (X) column values,
using the statements shown here:

mysqlS> INSERT INTO t1 VALUES (2, 'Source X=20', 20);
Query OK, 1 row affected (0.01 sec)

mysqlS> INSERT INTO t2 VALUES (2, 'Source X=20', 20);
Query OK, 1 row affected (0.01 sec)

Now we observe the results by selecting (again) from both tables on the replica, as shown here:

mysqlR> TABLE t1 ORDER BY a;
+---+-------------+-------+
| a | b | X |
+---+-------------+-------+
| 1 | Initial X=1 | 1 |
+---+-------------+-------+
| 2 | Source X=20 | 20 |
+---+-------------+-------+
2 rows in set (0.00 sec)

mysqlR> TABLE t2 ORDER BY a;
+---+-------------+-------+
| a | b | X |
+---+-------------+-------+
| 1 | Initial X=1 | 1 |
+---+-------------+-------+
| 1 | Source X=20 | 20 |
+---+-------------+-------+
2 rows in set (0.00 sec)

The rows inserted on the source, having greater timestamps than those in the conflicting rows on the
replica, have replaced those rows. On the replica, we next insert two new rows which do not conflict with
any existing rows in t1 or t2, like this:

772

https://dev.mysql.com/doc/refman/8.0/en/insert.html

Examples

mysqlR> INSERT INTO t1 VALUES (3, 'Slave X=30', 30);
Query OK, 1 row affected (0.01 sec)

mysqlR> INSERT INTO t2 VALUES (3, 'Slave X=30', 30);
Query OK, 1 row affected (0.01 sec)

Inserting more rows on the source with the same primary key value (3) brings about conflicts as before, but
this time we use a value for the timestamp column less than that in same column in the conflicting rows on
the replica.

mysqlS> INSERT INTO t1 VALUES (3, 'Source X=3', 3);
Query OK, 1 row affected (0.01 sec)

mysqlS> INSERT INTO t2 VALUES (3, 'Source X=3', 3);
Query OK, 1 row affected (0.01 sec)

We can see by querying the tables that both inserts from the source were rejected by the replica, and the
rows inserted on the replica previously have not been overwritten, as shown here in the mysql client on
the replica:

mysqlR> TABLE t1 ORDER BY a;
+---+--------------+-------+
| a | b | X |
+---+--------------+-------+
| 1 | Initial X=1 | 1 |
+---+--------------+-------+
| 2 | Source X=20 | 20 |
+---+--------------+-------+
| 3 | Replica X=30 | 30 |
+---+--------------+-------+
3 rows in set (0.00 sec)

mysqlR> TABLE t2 ORDER BY a;
+---+--------------+-------+
| a | b | X |
+---+--------------+-------+
| 1 | Initial X=1 | 1 |
+---+--------------+-------+
| 2 | Source X=20 | 20 |
+---+--------------+-------+
| 3 | Replica X=30 | 30 |
+---+--------------+-------+
3 rows in set (0.00 sec)

You can see information about the rows that were rejected in the exception tables, as shown here:

mysqlR> SELECT NDB$server_id, NDB$master_server_id, NDB$count,
 > NDBOP_TYPE, NDBCFT_CAUSE, a
 > FROM t1$EX
 > ORDER BY NDB$count\G
*************************** 1. row ***************************
NDB$server_id : 2
NDB$master_server_id: 1
NDB$count : 1
NDB$OP_TYPE : WRITE_ROW
NDB$CFT_CAUSE : DATA_IN_CONFLICT
a : 3
1 row in set (0.00 sec)

mysqlR> SELECT NDB$server_id, NDB$master_server_id, NDB$count,
 > NDBOP_TYPE, NDBCFT_CAUSE, a
 > FROM t2$EX
 > ORDER BY NDB$count\G
*************************** 1. row ***************************
NDB$server_id : 2

773

Examples

NDB$master_server_id: 1
NDB$count : 1
NDB$OP_TYPE : WRITE_ROW
NDB$CFT_CAUSE : DATA_IN_CONFLICT
a : 3
1 row in set (0.00 sec)

As we saw earlier, no other rows inserted on the source were rejected by the replica, only those rows
having a lesser timestamp value than the rows in conflict on the replica.

774

Appendix A NDB Cluster FAQ
In the following section, we answer questions that are frequently asked about MySQL NDB Cluster and the
NDB storage engine.

Questions

• A.1: Which versions of the MySQL software support NDB Cluster? Do I have to compile from source?

• A.2: What do “NDB” and “NDBCLUSTER” mean?

• A.3: What is the difference between using NDB Cluster versus using MySQL Replication?

• A.4: Do I need any special networking to run NDB Cluster? How do computers in a cluster
communicate?

• A.5: How many computers do I need to run an NDB Cluster, and why?

• A.6: What do the different computers do in an NDB Cluster?

• A.7: When I run the SHOW command in the NDB Cluster management client, I see a line of output that
looks like this:

id=2 @10.100.10.32 (Version: 8.0.29-ndb-8.0.30 Nodegroup: 0, *)

What does the * mean? How is this node different from the others?

• A.8: With which operating systems can I use NDB Cluster?

• A.9: What are the hardware requirements for running NDB Cluster?

• A.10: How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all?

• A.11: What file systems can I use with NDB Cluster? What about network file systems or network
shares?

• A.12: Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
VirtualBox, Parallels, or Xen)?

• A.13: I am trying to populate an NDB Cluster database. The loading process terminates prematurely
and I get an error message like this one: ERROR 1114: The table 'my_cluster_table' is
full Why is this happening?

• A.14: NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

• A.15: Do I have to learn a new programming or query language to use NDB Cluster?

• A.16: What programming languages and APIs are supported by NDB Cluster?

• A.17: Does NDB Cluster include any management tools?

• A.18: How do I find out what an error or warning message means when using NDB Cluster?

• A.19: Is NDB Cluster transaction-safe? What isolation levels are supported?

• A.20: What storage engines are supported by NDB Cluster?

• A.21: In the event of a catastrophic failure— for example, the whole city loses power and my UPS fails
—would I lose all my data?

775

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

• A.22: Is it possible to use FULLTEXT indexes with NDB Cluster?

• A.23: Can I run multiple nodes on a single computer?

• A.24: Can I add data nodes to an NDB Cluster without restarting it?

• A.25: Are there any limitations that I should be aware of when using NDB Cluster?

• A.26: Does NDB Cluster support foreign keys?

• A.27: How do I import an existing MySQL database into an NDB Cluster?

• A.28: How do NDB Cluster nodes communicate with one another?

• A.29: What is an arbitrator?

• A.30: What data types are supported by NDB Cluster?

• A.31: How do I start and stop NDB Cluster?

• A.32: What happens to NDB Cluster data when the NDB Cluster is shut down?

• A.33: Is it a good idea to have more than one management node for an NDB Cluster?

• A.34: Can I mix different kinds of hardware and operating systems in one NDB Cluster?

• A.35: Can I run two data nodes on a single host? Two SQL nodes?

• A.36: Can I use host names with NDB Cluster?

• A.37: Does NDB Cluster support IPv6?

• A.38: How do I handle MySQL users in an NDB Cluster having multiple MySQL servers?

• A.39: How do I continue to send queries in the event that one of the SQL nodes fails?

• A.40: How do I back up and restore an NDB Cluster?

• A.41: What is an “angel process”?

Questions and Answers

A.1: Which versions of the MySQL software support NDB Cluster? Do I have to compile from
source?

NDB Cluster is not supported in standard MySQL Server 8.0 releases. Instead, MySQL NDB Cluster is
provided as a separate product. Available NDB Cluster release series include the following:

• NDB Cluster 7.2. This series is no longer supported for new deployments or maintained. Users of
NDB Cluster 7.2 should upgrade to a newer release series as soon as possible. We recommend that
new deployments use the latest NDB Cluster 8.0 release.

• NDB Cluster 7.3. This series is a previous General Availability (GA) version of NDB Cluster, still
available for production use, although we recommend that new deployments use the latest NDB Cluster
8.0 release. The most recent NDB Cluster 7.3 release can be obtained from https://dev.mysql.com/
downloads/cluster/.

• NDB Cluster 7.4. This series is a previous General Availability (GA) version of NDB Cluster, still
available for production use, although we recommend that new deployments use the latest NDB Cluster

776

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

8.0 release. The most recent NDB Cluster 7.4 release can be obtained from https://dev.mysql.com/
downloads/cluster/.

• NDB Cluster 7.5. This series is a previous General Availability (GA) version of NDB Cluster, still
available for production use, although we recommend that new deployments use the latest NDB
Cluster 7.6 release. The latest NDB Cluster 7.5 releases can be obtained from https://dev.mysql.com/
downloads/cluster/.

• NDB Cluster 7.6. This series is a previous General Availability (GA) version of NDB Cluster, still
available for production use, although we recommend that new deployments use the latest NDB
Cluster 8.0 release. The latest NDB Cluster 7.6 releases can be obtained from https://dev.mysql.com/
downloads/cluster/.

• NDB Cluster 8.0. This series is the most recent General Availability (GA) version of NDB Cluster,
based on version 8.0 of the NDB storage engine and MySQL Server 8.0. NDB Cluster 8.0 is available
for production use; new deployments intended for production should use the latest GA release in this
series, which is currently NDB Cluster 8.0.30. You can obtain the most recent NDB Cluster 8.0 release
from https://dev.mysql.com/downloads/cluster/. For information about new features and other important
changes in this series, see What is New in NDB Cluster.

You can obtain and compile NDB Cluster from source (see Section 3.1.4, “Building NDB Cluster from
Source on Linux”, and Section 3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”),
but for all but the most specialized cases, we recommend using one of the following installers provided by
Oracle that is appropriate to your operating platform and circumstances:

• The web-based NDB Cluster Auto-Installer (works on all platforms supported by NDB)

• Linux binary release (tar.gz file)

• Linux RPM package

• Linux .deb file

• Windows binary “no-install” release

• Windows MSI Installer

Installation packages may also be available from your platform's package management system.

You can determine whether your MySQL Server has NDB support using one of the statements SHOW
VARIABLES LIKE 'have_%', SHOW ENGINES, or SHOW PLUGINS.

A.2: What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage engine that
enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.3: What is the difference between using NDB Cluster versus using MySQL Replication?

In traditional MySQL replication, a source MySQL server updates one or more replicas. Transactions are
committed sequentially, and a slow transaction can cause the replica to lag behind the source. This means
that if the source fails, it is possible that the replica might not have recorded the last few transactions. If
a transaction-safe engine such as InnoDB is being used, a transaction is either completed on the replica
or not applied at all, but replication does not guarantee that all data on the source and the replica remains
consistent at all times. In NDB Cluster, all data nodes are kept in synchrony, and a transaction committed
by any one data node is committed for all data nodes. In the event of a data node failure, all remaining data
nodes remain in a consistent state.

777

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

In short, whereas standard MySQL replication is asynchronous, NDB Cluster is synchronous.

Asynchronous replication is also available in NDB Cluster. NDB Cluster Replication (also sometimes
known as “geo-replication”) includes the capability to replicate both between two NDB Clusters, and from
an NDB Cluster to a non-Cluster MySQL server. See Chapter 7, NDB Cluster Replication.

A.4: Do I need any special networking to run NDB Cluster? How do computers in a cluster
communicate?

NDB Cluster is intended to be used in a high-bandwidth environment, with computers connecting using
TCP/IP. Its performance depends directly upon the connection speed between the cluster's computers.
The minimum connectivity requirements for NDB Cluster include a typical 100-megabit Ethernet network or
the equivalent. We recommend you use gigabit Ethernet whenever available.

A.5: How many computers do I need to run an NDB Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum recommended
number of computers in an NDB Cluster is four: one each to run the management and SQL nodes, and
two computers to serve as data nodes. The purpose of the two data nodes is to provide redundancy; the
management node must run on a separate machine to guarantee continued arbitration services in the
event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes (MySQL Servers
connected to the cluster). It is also possible (although not strictly necessary) to run multiple management
servers.

A.6: What do the different computers do in an NDB Cluster?

An NDB Cluster has both a physical and logical organization, with computers being the physical elements.
The logical or functional elements of a cluster are referred to as nodes, and a computer housing a cluster
node is sometimes referred to as a cluster host. There are three types of nodes, each corresponding to a
specific role within the cluster. These are:

• Management node. This node provides management services for the cluster as a whole, including
startup, shutdown, backups, and configuration data for the other nodes. The management node server
is implemented as the application ndb_mgmd; the management client used to control NDB Cluster
is ndb_mgm. See Section 5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, and
Section 5.5, “ndb_mgm — The NDB Cluster Management Client”, for information about these programs.

• Data node. This type of node stores and replicates data. Data node functionality is handled by
instances of the NDB data node process ndbd. For more information, see Section 5.1, “ndbd — The NDB
Cluster Data Node Daemon”.

• SQL node. This is simply an instance of MySQL Server (mysqld) that is built with support for the
NDBCLUSTER storage engine and started with the --ndb-cluster option to enable the engine and
the --ndb-connectstring option to enable it to connect to an NDB Cluster management server. For
more about these options, see Section 4.3.9.1, “MySQL Server Options for NDB Cluster”.

Note

An API node is any application that makes direct use of Cluster data nodes for
data storage and retrieval. An SQL node can thus be considered a type of API
node that uses a MySQL Server to provide an SQL interface to the Cluster.
You can write such applications (that do not depend on a MySQL Server) using
the NDB API, which supplies a direct, object-oriented transaction and scanning
interface to NDB Cluster data; see NDB Cluster API Overview: The NDB API, for
more information.

778

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html

A.7: When I run the SHOW command in the NDB Cluster management client, I see a line of output
that looks like this:

id=2 @10.100.10.32 (Version: 8.0.29-ndb-8.0.30 Nodegroup: 0, *)

What does the * mean? How is this node different from the others?

The simplest answer is, “It's not something you can control, and it's nothing that you need to worry about in
any case, unless you're a software engineer writing or analyzing the NDB Cluster source code”.

If you don't find that answer satisfactory, here's a longer and more technical version:

A number of mechanisms in NDB Cluster require distributed coordination among the data nodes. These
distributed algorithms and protocols include global checkpointing, DDL (schema) changes, and node
restart handling. To make this coordination simpler, the data nodes “elect” one of their number to act as
leader. There is no user-facing mechanism for influencing this selection, which is completely automatic; the
fact that it is automatic is a key part of NDB Cluster's internal architecture.

When a node acts as the “leader” for any of these mechanisms, it is usually the point of coordination for
the activity, and the other nodes act as “followers”, carrying out their parts of the activity as directed by the
leader. If the node acting as leader fails, then the remaining nodes elect a new leader. Tasks in progress
that were being coordinated by the old leader may either fail or be continued by the new leader, depending
on the actual mechanism involved.

It is possible for some of these different mechanisms and protocols to have different leader nodes, but in
general the same leader is chosen for all of them. The node indicated as the leader in the output of SHOW
in the management client is known internally as the DICT manager, responsible for coordinating DDL and
metadata activity.

NDB Cluster is designed in such a way that the choice of leader has no discernible effect outside the
cluster itself. For example, the current leader does not have significantly higher CPU or resource usage
than the other data nodes, and failure of the leader should not have a significantly different impact on the
cluster than the failure of any other data node.

A.8: With which operating systems can I use NDB Cluster?

NDB Cluster is supported on most Unix-like operating systems. NDB Cluster is also supported in
production settings on Microsoft Windows operating systems.

For more detailed information concerning the level of support which is offered for NDB Cluster on various
operating system versions, operating system distributions, and hardware platforms, please refer to https://
www.mysql.com/support/supportedplatforms/cluster.html.

A.9: What are the hardware requirements for running NDB Cluster?

NDB Cluster should run on any platform for which NDB-enabled binaries are available. For data nodes and
API nodes, faster CPUs and more memory are likely to improve performance, and 64-bit CPUs are likely
to be more effective than 32-bit processors. There must be sufficient memory on machines used for data
nodes to hold each node's share of the database (see How much RAM do I Need? for more information).
For a computer which is used only for running the NDB Cluster management server, the requirements
are minimal; a common desktop PC (or the equivalent) is generally sufficient for this task. Nodes can
communicate through the standard TCP/IP network and hardware. They can also use the high-speed SCI
protocol; however, special networking hardware and software are required to use SCI (see Section 4.4,
“Using High-Speed Interconnects with NDB Cluster”).

A.10: How much RAM do I need to use NDB Cluster? Is it possible to use disk memory at all?

779

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster was originally implemented as in-memory only, but all versions currently available also
provide the ability to store NDB Cluster on disk. See Section 6.10, “NDB Cluster Disk Data Tables”, for
more information.

For in-memory NDB tables, you can use the following formula for obtaining a rough estimate of how much
RAM is needed for each data node in the cluster:

(SizeofDatabase × NumberOfReplicas × 1.1) / NumberOfDataNodes

To calculate the memory requirements more exactly requires determining, for each table in the cluster
database, the storage space required per row (see Data Type Storage Requirements, for details), and
multiplying this by the number of rows. You must also remember to account for any column indexes as
follows:

• Each primary key or hash index created for an NDBCLUSTER table requires 21−25 bytes per record.
These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is created with
USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per record.

• However, if the primary key or unique index is created with USING HASH, then it requires only 21 to 25
bytes per record.

Creating NDB Cluster tables with USING HASH for all primary keys and unique indexes generally causes
table updates to run more quickly—in some cases by a much as 20 to 30 percent faster than updates on
tables where USING HASH was not used in creating primary and unique keys. This is due to the fact that
less memory is required (because no ordered indexes are created), and that less CPU must be utilized
(because fewer indexes must be read and possibly updated). However, it also means that queries that
could otherwise use range scans must be satisfied by other means, which can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility which
is available in recent MySQL 8.0 releases. This Perl script connects to a current (non-Cluster) MySQL
database and creates a report on how much space that database would require if it used the NDBCLUSTER
storage engine. For more information, see Section 5.28, “ndb_size.pl — NDBCLUSTER Size Requirement
Estimator”.

It is especially important to keep in mind that every NDB Cluster table must have a primary key. The NDB
storage engine creates a primary key automatically if none is defined; this primary key is created without
USING HASH.

You can determine how much memory is being used for storage of NDB Cluster data and indexes at
any given time using the REPORT MEMORYUSAGE command in the ndb_mgm client; see Section 6.1,
“Commands in the NDB Cluster Management Client”, for more information. In addition, warnings are
written to the cluster log when 80% of available DataMemory or (prior to NDB 7.6) IndexMemory is in
use, and again when usage reaches 90%, 99%, and 100%.

A.11: What file systems can I use with NDB Cluster? What about network file systems or network
shares?

Generally, any file system that is native to the host operating system should work well with NDB Cluster.
If you find that a given file system works particularly well (or not so especially well) with NDB Cluster, we
invite you to discuss your findings in the NDB Cluster Forums.

780

https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://forums.mysql.com/list.php?25

For Windows, we recommend that you use NTFS file systems for NDB Cluster, just as we do for
standard MySQL. We do not test NDB Cluster with FAT or VFAT file systems. Because of this, we do not
recommend their use with MySQL or NDB Cluster.

NDB Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure of a single
piece of hardware should not cause the failure of multiple cluster nodes, or possibly even the failure of the
cluster as a whole. For this reason, the use of network shares or network file systems is not supported for
NDB Cluster. This also applies to shared storage devices such as SANs.

A.12: Can I run NDB Cluster nodes inside virtual machines (such as those created by VMWare,
VirtualBox, Parallels, or Xen)?

NDB Cluster is supported for use in virtual machines. We currently support and test using Oracle VM.

Some NDB Cluster users have successfully deployed NDB Cluster using other virtualization products; in
such cases, Oracle can provide NDB Cluster support, but issues specific to the virtual environment must
be referred to that product's vendor.

A.13: I am trying to populate an NDB Cluster database. The loading process terminates
prematurely and I get an error message like this one: ERROR 1114: The table
'my_cluster_table' is full Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data and all
indexes, including the primary key required by the NDB storage engine and automatically created in the
event that the table definition does not include the definition of a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data node in a
cluster can use more memory than the least amount available to any individual data node. For example,
if there are four computers hosting Cluster data nodes, and three of these have 3GB of RAM available to
store Cluster data while the remaining data node has only 1GB RAM, then each data node can devote at
most 1GB to NDB Cluster data and indexes.

In some cases it is possible to get Table is full errors in MySQL client applications even when
ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. You can force NDB to
create extra partitions for NDB Cluster tables and thus have more memory available for hash indexes by
using the MAX_ROWS option for CREATE TABLE. In general, setting MAX_ROWS to twice the number of rows
that you expect to store in the table should be sufficient.

For similar reasons, you can also sometimes encounter problems with data node restarts on nodes that
are heavily loaded with data. The MinFreePct parameter can help with this issue by reserving a portion
(5% by default) of DataMemory and (prior to NDB 7.6) IndexMemory for use in restarts. This reserved
memory is not available for storing NDB tables or data.

A.14: NDB Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

It is very unlikely that a cluster would perform reliably under such conditions, as NDB Cluster was designed
and implemented with the assumption that it would be run under conditions guaranteeing dedicated high-
speed connectivity such as that found in a LAN setting using 100 Mbps or gigabit Ethernet—preferably the
latter. We neither test nor warrant its performance using anything slower than this.

Also, it is extremely important to keep in mind that communications between the nodes in an NDB Cluster
are not secure; they are neither encrypted nor safeguarded by any other protective mechanism. The most
secure configuration for a cluster is in a private network behind a firewall, with no direct access to any
Cluster data or management nodes from outside. (For SQL nodes, you should take the same precautions
as you would with any other instance of the MySQL server.) For more information, see Section 6.18, “NDB
Cluster Security Issues”.

781

http://www.oracle.com/technetwork/server-storage/vm/index.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

A.15: Do I have to learn a new programming or query language to use NDB Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself, only
standard (My)SQL statements are required for the following operations:

• Creating, altering, and dropping tables

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up an NDB Cluster—see
Section 4.3, “NDB Cluster Configuration Files”, for information about these.

A few simple commands are used in the NDB Cluster management client (ndb_mgm) for tasks such as
starting and stopping cluster nodes. See Section 6.1, “Commands in the NDB Cluster Management Client”.

A.16: What programming languages and APIs are supported by NDB Cluster?

NDB Cluster supports the same programming APIs and languages as the standard MySQL Server,
including ODBC, .Net, the MySQL C API, and numerous drivers for popular scripting languages such
as PHP, Perl, and Python. NDB Cluster applications written using these APIs behave similarly to other
MySQL applications; they transmit SQL statements to a MySQL Server (in the case of NDB Cluster, an
SQL node), and receive responses containing rows of data. For more information about these APIs, see
Connectors and APIs.

NDB Cluster also supports application programming using the NDB API, which provides a low-level C+
+ interface to NDB Cluster data without needing to go through a MySQL Server. See The NDB API. In
addition, many NDBCLUSTER management functions are exposed by the C-language MGM API; see The
MGM API, for more information.

NDB Cluster also supports Java application programming using ClusterJ, which supports a domain object
model of data using sessions and transactions. See Java and NDB Cluster, for more information.

In addition, NDB Cluster provides support for memcached, allowing developers to access data stored in
NDB Cluster using the memcached interface; for more information, see ndbmemcache—Memcache API
for NDB Cluster (NO LONGER SUPPORTED).

NDB Cluster also includes adapters supporting NoSQL applications written against Node.js, with NDB
Cluster as the data store. See MySQL NoSQL Connector for JavaScript, for more information.

A.17: Does NDB Cluster include any management tools?

NDB Cluster includes a command line client for performing basic management functions. See Section 5.5,
“ndb_mgm — The NDB Cluster Management Client”, and Section 6.1, “Commands in the NDB Cluster
Management Client”.

NDB Cluster 7.6 and earlier are also supported by MySQL Cluster Manager, a separate product providing
an advanced command line interface that can automate many NDB Cluster management tasks such as
rolling restarts and configuration changes. Beginning with version 1.4.8, MySQL Cluster Manager also
provides experimental support for NDB Cluster 8.0. For more information about MySQL Cluster Manager,
see MySQL Cluster Manager 1.4.8 User Manual.

NDB Cluster also provides a graphical, browser-based Auto-Installer for setting up and deploying NDB
Cluster, as part of the NDB Cluster software distribution. For more information, see The NDB Cluster Auto-
Installer (NDB 7.5) (No longer supported).

782

https://dev.mysql.com/doc/refman/8.0/en/connectors-apis.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
https://dev.mysql.com/doc/ndbapi/en/ndbmemcache.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-install-auto.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-install-auto.html

A.18: How do I find out what an error or warning message means when using NDB Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon being notified
of the error or warning condition.

• From a system shell prompt, use perror --ndb error_code.

A.19: Is NDB Cluster transaction-safe? What isolation levels are supported?

Yes. For tables created with the NDB storage engine, transactions are supported. Currently, NDB Cluster
supports only the READ COMMITTED transaction isolation level.

A.20: What storage engines are supported by NDB Cluster?

NDB Cluster requires the NDB storage engine. That is, in order for a table to be shared between
nodes in an NDB Cluster, the table must be created using ENGINE=NDB (or the equivalent option
ENGINE=NDBCLUSTER).

It is possible to create tables using other storage engines (such as InnoDB or MyISAM) on a MySQL
server being used with NDB Cluster, but since these tables do not use NDB, they do not participate in
clustering; each such table is strictly local to the individual MySQL server instance on which it is created.

NDB Cluster is quite different from InnoDB clustering with regard to architecture, requirements, and
implementation; despite any similarity in their names, the two are not compatible. For more information
about InnoDB clustering, see MySQL AdminAPI. See also Section 2.6, “MySQL Server Using InnoDB
Compared with NDB Cluster”, for information about the differences between the NDB and InnoDB storage
engines.

A.21: In the event of a catastrophic failure— for example, the whole city loses power and my UPS
fails—would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be lost in
the event of a catastrophe, this should be quite limited. Data loss can be further reduced by minimizing
the number of operations per transaction. (It is not a good idea to perform large numbers of operations per
transaction in any case.)

A.22: Is it possible to use FULLTEXT indexes with NDB Cluster?

FULLTEXT indexing is currently supported only by the InnoDB and MyISAM storage engines. See Full-Text
Search Functions, for more information.

A.23: Can I run multiple nodes on a single computer?

It is possible but not always advisable. One of the chief reasons to run a cluster is to provide redundancy.
To obtain the full benefits of this redundancy, each node should reside on a separate machine. If you place
multiple nodes on a single machine and that machine fails, you lose all of those nodes. For this reason, if
you do run multiple data nodes on a single machine, it is extremely important that they be set up in such a
way that the failure of this machine does not cause the loss of all the data nodes in a given node group.

Given that NDB Cluster can be run on commodity hardware loaded with a low-cost (or even no-cost)
operating system, the expense of an extra machine or two is well worth it to safeguard mission-critical data.
It also worth noting that the requirements for a cluster host running a management node are minimal. This
task can be accomplished with a 300 MHz Pentium or equivalent CPU and sufficient RAM for the operating
system, plus a small amount of overhead for the ndb_mgmd and ndb_mgm processes.

783

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html

It is acceptable to run multiple cluster data nodes on a single host that has multiple CPUs, cores, or both.
The NDB Cluster distribution also provides a multithreaded version of the data node binary intended for
use on such systems. For more information, see Section 5.3, “ndbmtd — The NDB Cluster Data Node
Daemon (Multi-Threaded)”.

It is also possible in some cases to run data nodes and SQL nodes concurrently on the same machine;
how well such an arrangement performs is dependent on a number of factors such as number of cores and
CPUs as well as the amount of disk and memory available to the data node and SQL node processes, and
you must take these factors into account when planning such a configuration.

A.24: Can I add data nodes to an NDB Cluster without restarting it?

It is possible to add new data nodes to a running NDB Cluster without taking the cluster offline. For more
information, see Section 6.7, “Adding NDB Cluster Data Nodes Online”.

For other types of NDB Cluster nodes, a rolling restart is all that is required (see Section 6.5, “Performing a
Rolling Restart of an NDB Cluster”).

A.25: Are there any limitations that I should be aware of when using NDB Cluster?

Limitations on NDB tables in MySQL NDB Cluster include the following:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using ENGINE=NDB or
ENGINE=NDBCLUSTER fails with an error.

• The only types of user-defined partitioning supported for NDBCLUSTER tables are KEY and LINEAR KEY.
Trying to create an NDB table using any other partitioning type fails with an error.

• FULLTEXT indexes are not supported.

• Index prefixes are not supported. Only complete columns may be indexed.

• Spatial indexes are not supported (although spatial columns can be used). See Spatial Data Types.

• Support for partial transactions and partial rollbacks is comparable to that of other transactional storage
engines such as InnoDB that can roll back individual statements.

• The maximum number of attributes allowed per table is 512. Attribute names cannot be any longer than
31 characters. For each table, the maximum combined length of the table and database names is 122
characters.

• Priot to NDB 8.0, the maximum size for a table row is 14 kilobytes, not counting BLOB values. In NDB
8.0, this maximum is increased to 30000 bytes. See Section 2.7.5, “Limits Associated with Database
Objects in NDB Cluster”, for more information.

There is no set limit for the number of rows per NDB table. Limits on table size depend on a number of
factors, in particular on the amount of RAM available to each data node.

For a complete listing of limitations in NDB Cluster, see Section 2.7, “Known Limitations of NDB Cluster”.
See also Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0”.

A.26: Does NDB Cluster support foreign keys?

NDB Cluster provides support for foreign key constraints which is comparable to that found in the InnoDB
storage engine; see FOREIGN KEY Constraints, for more detailed information, as well as FOREIGN KEY
Constraints. Applications requiring foreign key support should use NDB Cluster 7.3, 7.4, 7.5, or later.

A.27: How do I import an existing MySQL database into an NDB Cluster?

784

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html

You can import databases into NDB Cluster much as you would with any other version of MySQL. Other
than the limitations mentioned elsewhere in this FAQ, the only other special requirement is that any tables
to be included in the cluster must use the NDB storage engine. This means that the tables must be created
with ENGINE=NDB or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables that use other storage engines to NDBCLUSTER using one
or more ALTER TABLE statement. However, the definition of the table must be compatible with the
NDBCLUSTER storage engine prior to making the conversion. In MySQL 8.0, an additional workaround is
also required; see Section 2.7, “Known Limitations of NDB Cluster”, for details.

A.28: How do NDB Cluster nodes communicate with one another?

Cluster nodes can communicate through any of three different transport mechanisms: TCP/IP, SHM
(shared memory), and SCI (Scalable Coherent Interface). Where available, SHM is used by default
between nodes residing on the same cluster host; however, this is considered experimental. SCI is a high-
speed (1 gigabit per second and higher), high-availability protocol used in building scalable multi-processor
systems; it requires special hardware and drivers. See Section 4.4, “Using High-Speed Interconnects with
NDB Cluster”, for more about using SCI as a transport mechanism for NDB Cluster.

A.29: What is an arbitrator?

If one or more data nodes in a cluster fail, it is possible that not all cluster data nodes are able to “see”
one another. In fact, it is possible that two sets of data nodes might become isolated from one another in
a network partitioning, also known as a “split-brain” scenario. This type of situation is undesirable because
each set of data nodes tries to behave as though it is the entire cluster. An arbitrator is required to decide
between the competing sets of data nodes.

When all data nodes in at least one node group are alive, network partitioning is not an issue, because
no single subset of the cluster can form a functional cluster on its own. The real problem arises when no
single node group has all its nodes alive, in which case network partitioning (the “split-brain” scenario)
becomes possible. Then an arbitrator is required. All cluster nodes recognize the same node as the
arbitrator, which is normally the management server; however, it is possible to configure any of the
MySQL Servers in the cluster to act as the arbitrator instead. The arbitrator accepts the first set of cluster
nodes to contact it, and tells the remaining set to shut down. Arbitrator selection is controlled by the
ArbitrationRank configuration parameter for MySQL Server and management server nodes. You
can also use the ArbitrationRank configuration parameter to control the arbitrator selection process.
For more information about these parameters, see Section 4.3.5, “Defining an NDB Cluster Management
Server”.

The role of arbitrator does not in and of itself impose any heavy demands upon the host so designated,
and thus the arbitrator host does not need to be particularly fast or to have extra memory especially for this
purpose.

A.30: What data types are supported by NDB Cluster?

NDB Cluster supports all of the usual MySQL data types, including those associated with MySQL's spatial
extensions; however, the NDB storage engine does not support spatial indexes. (Spatial indexes are
supported only by MyISAM; see Spatial Data Types, for more information.) In addition, there are some
differences with regard to indexes when used with NDB tables.

Note

NDB Cluster Disk Data tables (that is, tables created with TABLESPACE ...
STORAGE DISK ENGINE=NDB or TABLESPACE ... STORAGE DISK
ENGINE=NDBCLUSTER) have only fixed-width rows. This means that (for example)
each Disk Data table record containing a VARCHAR(255) column requires space

785

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-types.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/char.html

for 255 characters (as required for the character set and collation being used for the
table), regardless of the actual number of characters stored therein.

See Section 2.7, “Known Limitations of NDB Cluster”, for more information about these issues.

A.31: How do I start and stop NDB Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node, using the ndb_mgmd command.

You must include the -f or --config-file option to tell the management node where its
configuration file can be found.

2. Start each data node with the ndbd command.

Each data node must be started with the -c or --ndb-connectstring option so that the data node
knows how to connect to the management server.

3. Start each MySQL Server (SQL node) using your preferred startup script, such as mysqld_safe.

Each MySQL Server must be started with the --ndbcluster and --ndb-connectstring options.
These options cause mysqld to enable NDBCLUSTER storage engine support and how to connect to
the management server.

Each of these commands must be run from a system shell on the machine housing the affected node. (You
do not have to be physically present at the machine—a remote login shell can be used for this purpose.)
You can verify that the cluster is running by starting the NDB management client ndb_mgm on the machine
housing the management node and issuing the SHOW or ALL STATUS command.

To shut down a running cluster, issue the command SHUTDOWN in the management client. Alternatively,
you may enter the following command in a system shell:

$> ndb_mgm -e "SHUTDOWN"

(The quotation marks in this example are optional, since there are no spaces in the command string
following the -e option; in addition, the SHUTDOWN command, like other management client commands, is
not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to terminate
gracefully. MySQL servers running as SQL nodes can be stopped using mysqladmin shutdown.

For more information, see Section 6.1, “Commands in the NDB Cluster Management Client”, and
Section 3.6, “Safe Shutdown and Restart of NDB Cluster”.

MySQL Cluster Manager and the NDB Cluster Auto-Installer provide additional ways to handle starting
ansd stopping of NDB Cluster nodes. See MySQL Cluster Manager 1.4.8 User Manual, and Section 3.8,
“The NDB Cluster Auto-Installer (No longer supported)”, for more information about these tools.

A.32: What happens to NDB Cluster data when the NDB Cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded into
memory the next time that the cluster is started.

A.33: Is it a good idea to have more than one management node for an NDB Cluster?

It can be helpful as a fail-safe. Only one management node controls the cluster at any given time, but it is
possible to configure one management node as primary, and one or more additional management nodes to
take over in the event that the primary management node fails.

786

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

See Section 4.3, “NDB Cluster Configuration Files”, for information on how to configure NDB Cluster
management nodes.

A.34: Can I mix different kinds of hardware and operating systems in one NDB Cluster?

Yes, as long as all machines and operating systems have the same “endianness” (all big-endian or all little-
endian).

It is also possible to use software from different NDB Cluster releases on different nodes. However, we
support such use only as part of a rolling upgrade procedure (see Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”).

A.35: Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required) for each
node to use a different data directory. If you want to run multiple SQL nodes on one machine, each
instance of mysqld must use a different TCP/IP port.

Running data nodes and SQL nodes together on the same host is possible, but you should be aware that
the ndbd or ndbmtd processes may compete for memory with mysqld.

A.36: Can I use host names with NDB Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application requires “five
nines” availability, you should use fixed (numeric) IP addresses, since making communication between
Cluster hosts dependent on services such as DNS and DHCP introduces additional potential points of
failure.

A.37: Does NDB Cluster support IPv6?

IPv6 is supported for connections between SQL nodes (MySQL servers), but connections between all
other types of NDB Cluster nodes must use IPv4.

In practical terms, this means that you can use IPv6 for replication between NDB Clusters, but connections
between nodes in the same NDB Cluster must use IPv4. For more information, see Section 7.3, “Known
Issues in NDB Cluster Replication”.

A.38: How do I handle MySQL users in an NDB Cluster having multiple MySQL servers?

MySQL user accounts and privileges are normally not automatically propagated between different
MySQL servers accessing the same NDB Cluster. MySQL NDB Cluster provides support for shared and
synchronized users and privileges using the NDB_STORED_USER privilege; see Distributed Privileges
Using Shared Grant Tables, for more information. You should be aware that this implementation is new to
NDB 8.0 and is not compatible with the shared privileges mechanism employed in earlier versions of NDB
Cluster, which is no longer supported in NDB 8.0.

A.39: How do I continue to send queries in the event that one of the SQL nodes fails?

MySQL NDB Cluster does not provide any sort of automatic failover between SQL nodes. Your application
must be prepared to handle the loss of SQL nodes and to fail over between them.

A.40: How do I back up and restore an NDB Cluster?

You can use the NDB Cluster native backup and restore functionality in the NDB management client
and the ndb_restore program. See Section 6.8, “Online Backup of NDB Cluster”, and Section 5.23,
“ndb_restore — Restore an NDB Cluster Backup”.

787

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html

You can also use the traditional functionality provided for this purpose in mysqldump and the MySQL
server. See mysqldump — A Database Backup Program, for more information.

A.41: What is an “angel process”?

This process monitors and, if necessary, attempts to restart the data node process. If you check the list
of active processes on your system after starting ndbd, you can see that there are actually 2 processes
running by that name, as shown here (we omit the output from ndb_mgmd and ndbd for brevity):

$> ./ndb_mgmd

$> ps aux | grep ndb
me 23002 0.0 0.0 122948 3104 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23025 0.0 0.0 5284 820 pts/2 S+ 14:14 0:00 grep ndb

$> ./ndbd -c 127.0.0.1 --initial

$> ps aux | grep ndb
me 23002 0.0 0.0 123080 3356 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23096 0.0 0.0 35876 2036 ? Ss 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23097 1.0 2.4 524116 91096 ? Sl 14:14 0:00 ./ndbmtd -c 127.0.0.1 --initial
me 23168 0.0 0.0 5284 812 pts/2 R+ 14:15 0:00 grep ndb

The ndbd process showing 0.0 for both memory and CPU usage is the angel process (although it actually
does use a very small amount of each). This process merely checks to see if the main ndbd or ndbmtd
process (the primary data node process which actually handles the data) is running. If permitted to do so
(for example, if the StopOnError configuration parameter is set to false), the angel process tries to
restart the primary data node process.

788

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html

	MySQL NDB Cluster 8.0
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	Chapter 2 NDB Cluster Overview
	2.1 NDB Cluster Core Concepts
	2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions
	2.3 NDB Cluster Hardware, Software, and Networking Requirements
	2.4 What is New in NDB Cluster
	2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0
	2.6 MySQL Server Using InnoDB Compared with NDB Cluster
	2.6.1 Differences Between the NDB and InnoDB Storage Engines
	2.6.2 NDB and InnoDB Workloads
	2.6.3 NDB and InnoDB Feature Usage Summary

	2.7 Known Limitations of NDB Cluster
	2.7.1 Noncompliance with SQL Syntax in NDB Cluster
	2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits
	2.7.3 Limits Relating to Transaction Handling in NDB Cluster
	2.7.4 NDB Cluster Error Handling
	2.7.5 Limits Associated with Database Objects in NDB Cluster
	2.7.6 Unsupported or Missing Features in NDB Cluster
	2.7.7 Limitations Relating to Performance in NDB Cluster
	2.7.8 Issues Exclusive to NDB Cluster
	2.7.9 Limitations Relating to NDB Cluster Disk Data Storage
	2.7.10 Limitations Relating to Multiple NDB Cluster Nodes
	2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

	Chapter 3 NDB Cluster Installation
	3.1 Installation of NDB Cluster on Linux
	3.1.1 Installing an NDB Cluster Binary Release on Linux
	3.1.2 Installing NDB Cluster from RPM
	3.1.3 Installing NDB Cluster Using .deb Files
	3.1.4 Building NDB Cluster from Source on Linux

	3.2 Installing NDB Cluster on Windows
	3.2.1 Installing NDB Cluster on Windows from a Binary Release
	3.2.2 Compiling and Installing NDB Cluster from Source on Windows
	3.2.3 Initial Startup of NDB Cluster on Windows
	3.2.4 Installing NDB Cluster Processes as Windows Services

	3.3 Initial Configuration of NDB Cluster
	3.4 Initial Startup of NDB Cluster
	3.5 NDB Cluster Example with Tables and Data
	3.6 Safe Shutdown and Restart of NDB Cluster
	3.7 Upgrading and Downgrading NDB Cluster
	3.8 The NDB Cluster Auto-Installer (No longer supported)
	3.8.1 NDB Cluster Auto-Installer Requirements
	3.8.2 Using the NDB Cluster Auto-Installer

	Chapter 4 Configuration of NDB Cluster
	4.1 Quick Test Setup of NDB Cluster
	4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables
	4.2.1 NDB Cluster Data Node Configuration Parameters
	4.2.2 NDB Cluster Management Node Configuration Parameters
	4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters
	4.2.4 Other NDB Cluster Configuration Parameters
	4.2.5 NDB Cluster mysqld Option and Variable Reference

	4.3 NDB Cluster Configuration Files
	4.3.1 NDB Cluster Configuration: Basic Example
	4.3.2 Recommended Starting Configuration for NDB Cluster
	4.3.3 NDB Cluster Connection Strings
	4.3.4 Defining Computers in an NDB Cluster
	4.3.5 Defining an NDB Cluster Management Server
	4.3.6 Defining NDB Cluster Data Nodes
	4.3.7 Defining SQL and Other API Nodes in an NDB Cluster
	4.3.8 Defining the System
	4.3.9 MySQL Server Options and Variables for NDB Cluster
	4.3.9.1 MySQL Server Options for NDB Cluster
	4.3.9.2 NDB Cluster System Variables
	4.3.9.3 NDB Cluster Status Variables

	4.3.10 NDB Cluster TCP/IP Connections
	4.3.11 NDB Cluster TCP/IP Connections Using Direct Connections
	4.3.12 NDB Cluster Shared-Memory Connections
	4.3.13 Data Node Memory Management
	4.3.14 Configuring NDB Cluster Send Buffer Parameters

	4.4 Using High-Speed Interconnects with NDB Cluster

	Chapter 5 NDB Cluster Programs
	5.1 ndbd — The NDB Cluster Data Node Daemon
	5.2 ndbinfo_select_all — Select From ndbinfo Tables
	5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)
	5.4 ndb_mgmd — The NDB Cluster Management Server Daemon
	5.5 ndb_mgm — The NDB Cluster Management Client
	5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables
	5.7 ndb_config — Extract NDB Cluster Configuration Information
	5.8 ndb_delete_all — Delete All Rows from an NDB Table
	5.9 ndb_desc — Describe NDB Tables
	5.10 ndb_drop_index — Drop Index from an NDB Table
	5.11 ndb_drop_table — Drop an NDB Table
	5.12 ndb_error_reporter — NDB Error-Reporting Utility
	5.13 ndb_import — Import CSV Data Into NDB
	5.14 ndb_index_stat — NDB Index Statistics Utility
	5.15 ndb_move_data — NDB Data Copy Utility
	5.16 ndb_perror — Obtain NDB Error Message Information
	5.17 ndb_print_backup_file — Print NDB Backup File Contents
	5.18 ndb_print_file — Print NDB Disk Data File Contents
	5.19 ndb_print_frag_file — Print NDB Fragment List File Contents
	5.20 ndb_print_schema_file — Print NDB Schema File Contents
	5.21 ndb_print_sys_file — Print NDB System File Contents
	5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Log
	5.23 ndb_restore — Restore an NDB Cluster Backup
	5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster
	5.23.1.1 Restoring an NDB backup to a previous version of NDB Cluster
	5.23.1.2 Restoring an NDB backup to a later version of NDB Cluster

	5.23.2 Restoring to a different number of data nodes
	5.23.2.1 Restoring to Fewer Nodes Than the Original
	5.23.2.2 Restoring to More Nodes Than the Original

	5.23.3 Restoring from a backup taken in parallel
	5.23.3.1 Restoring a parallel backup in parallel
	5.23.3.2 Restoring a parallel backup serially

	5.24 ndb_select_all — Print Rows from an NDB Table
	5.25 ndb_select_count — Print Row Counts for NDB Tables
	5.26 ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED)
	5.27 ndb_show_tables — Display List of NDB Tables
	5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimator
	5.29 ndb_top — View CPU usage information for NDB threads
	5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Status
	5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB Cluster

	Chapter 6 Management of NDB Cluster
	6.1 Commands in the NDB Cluster Management Client
	6.2 NDB Cluster Log Messages
	6.2.1 NDB Cluster: Messages in the Cluster Log
	6.2.2 NDB Cluster Log Startup Messages
	6.2.3 Event Buffer Reporting in the Cluster Log
	6.2.4 NDB Cluster: NDB Transporter Errors

	6.3 Event Reports Generated in NDB Cluster
	6.3.1 NDB Cluster Logging Management Commands
	6.3.2 NDB Cluster Log Events
	6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client

	6.4 Summary of NDB Cluster Start Phases
	6.5 Performing a Rolling Restart of an NDB Cluster
	6.6 NDB Cluster Single User Mode
	6.7 Adding NDB Cluster Data Nodes Online
	6.7.1 Adding NDB Cluster Data Nodes Online: General Issues
	6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedure
	6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Example

	6.8 Online Backup of NDB Cluster
	6.8.1 NDB Cluster Backup Concepts
	6.8.2 Using The NDB Cluster Management Client to Create a Backup
	6.8.3 Configuration for NDB Cluster Backups
	6.8.4 NDB Cluster Backup Troubleshooting
	6.8.5 Taking an NDB Backup with Parallel Data Nodes

	6.9 MySQL Server Usage for NDB Cluster
	6.10 NDB Cluster Disk Data Tables
	6.10.1 NDB Cluster Disk Data Objects
	6.10.2 NDB Cluster Disk Data Storage Requirements

	6.11 Online Operations with ALTER TABLE in NDB Cluster
	6.12 Privilege Synchronization and NDB_STORED_USER
	6.13 NDB API Statistics Counters and Variables
	6.14 ndbinfo: The NDB Cluster Information Database
	6.14.1 The ndbinfo arbitrator_validity_detail Table
	6.14.2 The ndbinfo arbitrator_validity_summary Table
	6.14.3 The ndbinfo backup_id Table
	6.14.4 The ndbinfo blobs Table
	6.14.5 The ndbinfo blocks Table
	6.14.6 The ndbinfo cluster_locks Table
	6.14.7 The ndbinfo cluster_operations Table
	6.14.8 The ndbinfo cluster_transactions Table
	6.14.9 The ndbinfo config_nodes Table
	6.14.10 The ndbinfo config_params Table
	6.14.11 The ndbinfo config_values Table
	6.14.12 The ndbinfo counters Table
	6.14.13 The ndbinfo cpudata Table
	6.14.14 The ndbinfo cpudata_1sec Table
	6.14.15 The ndbinfo cpudata_20sec Table
	6.14.16 The ndbinfo cpudata_50ms Table
	6.14.17 The ndbinfo cpuinfo Table
	6.14.18 The ndbinfo cpustat Table
	6.14.19 The ndbinfo cpustat_50ms Table
	6.14.20 The ndbinfo cpustat_1sec Table
	6.14.21 The ndbinfo cpustat_20sec Table
	6.14.22 The ndbinfo dictionary_columns Table
	6.14.23 The ndbinfo dictionary_tables Table
	6.14.24 The ndbinfo dict_obj_info Table
	6.14.25 The ndbinfo dict_obj_tree Table
	6.14.26 The ndbinfo dict_obj_types Table
	6.14.27 The ndbinfo disk_write_speed_base Table
	6.14.28 The ndbinfo disk_write_speed_aggregate Table
	6.14.29 The ndbinfo disk_write_speed_aggregate_node Table
	6.14.30 The ndbinfo diskpagebuffer Table
	6.14.31 The ndbinfo diskstat Table
	6.14.32 The ndbinfo diskstats_1sec Table
	6.14.33 The ndbinfo error_messages Table
	6.14.34 The ndbinfo events Table
	6.14.35 The ndbinfo files Table
	6.14.36 The ndbinfo foreign_keys Table
	6.14.37 The ndbinfo hash_maps Table
	6.14.38 The ndbinfo hwinfo Table
	6.14.39 The ndbinfo index_columns Table
	6.14.40 The ndbinfo index_stats Table
	6.14.41 The ndbinfo locks_per_fragment Table
	6.14.42 The ndbinfo logbuffers Table
	6.14.43 The ndbinfo logspaces Table
	6.14.44 The ndbinfo membership Table
	6.14.45 The ndbinfo memoryusage Table
	6.14.46 The ndbinfo memory_per_fragment Table
	6.14.47 The ndbinfo nodes Table
	6.14.48 The ndbinfo operations_per_fragment Table
	6.14.49 The ndbinfo pgman_time_track_stats Table
	6.14.50 The ndbinfo processes Table
	6.14.51 The ndbinfo resources Table
	6.14.52 The ndbinfo restart_info Table
	6.14.53 The ndbinfo server_locks Table
	6.14.54 The ndbinfo server_operations Table
	6.14.55 The ndbinfo server_transactions Table
	6.14.56 The ndbinfo table_distribution_status Table
	6.14.57 The ndbinfo table_fragments Table
	6.14.58 The ndbinfo table_info Table
	6.14.59 The ndbinfo table_replicas Table
	6.14.60 The ndbinfo tc_time_track_stats Table
	6.14.61 The ndbinfo threadblocks Table
	6.14.62 The ndbinfo threads Table
	6.14.63 The ndbinfo threadstat Table
	6.14.64 The ndbinfo transporters Table

	6.15 INFORMATION_SCHEMA Tables for NDB Cluster
	6.16 NDB Cluster and the Performance Schema
	6.17 Quick Reference: NDB Cluster SQL Statements
	6.18 NDB Cluster Security Issues
	6.18.1 NDB Cluster Security and Networking Issues
	6.18.2 NDB Cluster and MySQL Privileges
	6.18.3 NDB Cluster and MySQL Security Procedures

	Chapter 7 NDB Cluster Replication
	7.1 NDB Cluster Replication: Abbreviations and Symbols
	7.2 General Requirements for NDB Cluster Replication
	7.3 Known Issues in NDB Cluster Replication
	7.4 NDB Cluster Replication Schema and Tables
	7.5 Preparing the NDB Cluster for Replication
	7.6 Starting NDB Cluster Replication (Single Replication Channel)
	7.7 Using Two Replication Channels for NDB Cluster Replication
	7.8 Implementing Failover with NDB Cluster Replication
	7.9 NDB Cluster Backups With NDB Cluster Replication
	7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source Binary Log
	7.9.2 Point-In-Time Recovery Using NDB Cluster Replication

	7.10 NDB Cluster Replication: Bidirectional and Circular Replication
	7.11 NDB Cluster Replication Conflict Resolution

	Appendix A NDB Cluster FAQ

