MySQL NDB Cluster 8.0

Abstract
This is the MySQL NDB Cluster 8.0 extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2022-05-09 (revision: 73149)

http://forums.mysql.com

Table of Contents

Preface and Legal NOUICESccouuuiiiiiiie ettt e e et ettt e e e e e e e eebanaaeees vii
1 General INFOMMALIONuuii ittt e et e et e e et e et et e e e e ana s 1
2 NDB CIUSTET OVEIVIEWeeeiiieeeeei ettt ettt e e et e e et e e et et e e et et e e e et e e e e et e e e eraa s 5
2.1 NDB ClIUSLEr COre CONCEPLS ...cevviueiiitieteeii e eett ettt ettt e e et e it e e et e e et e e e ere s 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitionsc.c...cccevunnnee. 9
2.3 NDB Cluster Hardware, Software, and Networking Requirementscccccoeevvviiieeeennnnnn. 12
2.4 What iS NeW iN NDB CIUSTEIcoouiiiiiiiii ettt e e et e e e e eees 14
2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0 39
2.6 MySQL Server Using InnoDB Compared with NDB CIUStErccocvviiiiiiiiiiiiiiiiiieeeeiine, 44
2.6.1 Differences Between the NDB and InnoDB Storage Enginesccccooeveviveeiennnnnn. 45
2.6.2 NDB and INNODB WOrKIOAdSccocuuiiiiiiiieiiiii e 46
2.6.3 NDB and InnoDB Feature USage SUMMAIYc.uureeiiiriieeiiiiaeeeniiaeeenineeeennnnnns 47

2.7 Known Limitations Of NDB CIUSTEIiiiiiiiiiiiiii et 47
2.7.1 Noncompliance with SQL Syntax in NDB CIUSEErccovvviiiiiiiiiiieiiiiieeceiieeees 48
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits 50
2.7.3 Limits Relating to Transaction Handling in NDB CIUSterccccooveviiiiieiiiiinneeenns 51
2.7.4 NDB Cluster Error Handlingoooueooiioie e 54
2.7.5 Limits Associated with Database Objects in NDB CIUSterccceiveiiiiiineeiinnnnnn. 54
2.7.6 Unsupported or Missing Features in NDB CIUSEErcccoiiiiiiiiiiiiiiiiiecciiieeees 55
2.7.7 Limitations Relating to Performance in NDB CIUStercccuviiiiiiiiiniiiiiiieeeciine, 56
2.7.8 Issues EXClusive t0 NDB CIUSTEIiiiiiiiieiiiii et 56
2.7.9 Limitations Relating to NDB Cluster Disk Data Storageccccoeeveeeiiinieeeiiinneeens 57
2.7.10 Limitations Relating to Multiple NDB Cluster NOdescccuuiieviiinieiiiiinneeennnn, 57
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0c.ccooevvvviieerennnnnn. 58

3 NDB CIUSEEr INSTAIALIONceeteeeiiti ettt ettt e e e e e b e eeean s 61
3.1 Installation of NDB CIUSIEr ON LINUX ...cuuuiiiiiitiieiiiiiieeeiii e e e e e e e e 63
3.1.1 Installing an NDB Cluster Binary Release on LiNUXccoouviiieiiiiinieiiiiineeeciie, 64
3.1.2 Installing NDB Cluster from RPMcoouiiiiiiiiiii e 66
3.1.3 Installing NDB Cluster Using .deb Files ..o 70
3.1.4 Building NDB Cluster from Source 0n LINUXoveiiiiiiiniiiiiieeiii e 70

3.2 Installing NDB CIUSter 0N WINAOWSiiiiiiiiieei e e e e e eaneas 71
3.2.1 Installing NDB Cluster on Windows from a Binary Releasecccceeiviivinnnnnnn. 72
3.2.2 Compiling and Installing NDB Cluster from Source on Windowscccccceeevevenne. 75
3.2.3 Initial Startup of NDB Cluster on WIiNAOWScoouuiiiiiiiiiiiiiine e 75
3.2.4 Installing NDB Cluster Processes as WiNndOWS SEerVICESccoeevevviieeiiriineereninnnn 78

3.3 Initial Configuration of NDB CIUSLETuuiiiiiiiie e 80
3.4 Initial Startup of NDB CIUSLENccoeuiiiiiiiie e 82
3.5 NDB Cluster Example with Tables and Datacccouuiiiiiiiiiiiiie e 82
3.6 Safe Shutdown and Restart of NDB CIUSEENuiiiiiiiiiiiiiiii e 86
3.7 Upgrading and Downgrading NDB CIUSEEToiiiiiiiiieiiiiie e 86
3.8 The NDB Cluster Auto-Installer (No longer supported)oovevurieiiiiinieiiiieeee e, 89
3.8.1 NDB Cluster Auto-Installer REqUINEMENTEScoevuiiiiiiiiiieiiieeee e 20
3.8.2 Using the NDB Cluster Auto-Installercooooiiiiiiii e 91

4 Configuration Of NDB CIUSLENcoouuiiiiiii ettt e e e 111
4.1 Quick Test Setup Of NDB CIUSLETccouuuiieiiiiii et 111
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 113
4.2.1 NDB Cluster Data Node Configuration Parameterscccccovveviiiiniiiiinneeiinnnnnn. 114
4.2.2 NDB Cluster Management Node Configuration Parametersccccocoeeeeivneeees 121
4.2.3 NDB Cluster SQL Node and API Node Configuration Parametersc........ 122
4.2.4 Other NDB Cluster Configuration Parametersovveveiiiiieiiiiinneeeiineeeeiien 123
4.2.5 NDB Cluster mysqld Option and Variable Referencecccoooiiiviiiiiiiinnenns 124

4.3 NDB Cluster Configuration FileSiiiiiiiiiii e 134
4.3.1 NDB Cluster Configuration: Basic Exampleccoooiiiiiiiiiie e, 135
4.3.2 Recommended Starting Configuration for NDB CIUSEerccoovvvviiiiiiiiiiienennnnn. 138
4.3.3 NDB Cluster CONNECLION STINGSccvevtneiiiiieeiiiii et 141

MySQL NDB Cluster 8.0

4.3.4 Defining Computers in an NDB CIUSENcouuiiiiiiiiiiiiciieee e 142
4.3.5 Defining an NDB Cluster Management SEIVEScocvueeviieeiieeiiieeeiiieeaieeannnas 143
4.3.6 Defining NDB Cluster Data NOGEScccuuiiiiiiiiiiieiiie e e e e e 149
4.3.7 Defining SQL and Other API Nodes in an NDB Clustercccooeveviiiiiiiieeennnn, 227
4.3.8 DefiNiNg the SYSIEMouiii e 235
4.3.9 MySQL Server Options and Variables for NDB CIUSEErccocvvvviviiiieiiineninnn. 236
4.3.10 NDB Cluster TCP/IP CONNECLIONScccuvuiieiiiiiiieieiiiiee e et e e e e e eeeaens 294
4.3.11 NDB Cluster TCP/IP Connections Using Direct Connectionsccceeeeunn.. 300
4.3.12 NDB Cluster Shared-Memory CONNECLIONSccvvviiiiiieiiiieiiie e e e e eaaes 300
4.3.13 Data Node Memory Managementcc.uieiuieeiiieeeiiieeiee e eeee e e e e saneeeanes 306
4.3.14 Configuring NDB Cluster Send Buffer Parametersccccccoevevvieiiiiiiiiiieecineenn, 310
4.4 Using High-Speed Interconnects with NDB CIUStErcocoviiiiiiiiiiiiiii e, 310
5 NDB CIUSIEN PrOQIAIMS ...ouuiiiieiiieeie e e e e e e e et e e e e e e e et e e et e e et e e et e e et e e e e e et ae et e eanaeeaes 313
5.1 ndbd — The NDB Cluster Data NOde DaemoONccccuuieeiiiiiieeiiiiineeeeie e 314
5.2 ndbinfo_select_all — Select From ndbinfo Tablescccooiiiiiiiii e, 324
5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)cccoccevevevinnnn. 329
5.4 ndb_mgmd — The NDB Cluster Management Server Daemonccccccevevevinierinnnnnn. 330
5.5 ndb_mgm — The NDB Cluster Management Clientc.cocoiviiiiiiiiiiiii e 342
5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 347
5.7 ndb_config — Extract NDB Cluster Configuration Informationccooeviiieiineninns 353
5.8 ndb_delete_all — Delete All Rows from an NDB Tableccoocooiiiiiiiiiin i 364
5.9 ndb_desc — Describe NDB TabIESc.uuiiiiiiiiiiciie e e 369
5.10 ndb_drop_index — Drop Index from an NDB Tableccccocoiviiiiiiiiiiiiee e, 378
5.11 ndb_drop_table — Drop an NDB Tablecc.oiiiiiiiiicii e 383
5.12 ndb_error_reporter — NDB Error-Reporting ULIlitycccooviiiiiiiiiiiiiie e 387
5.13 ndb_import — Import CSV Data INto NDBcccouuiiiiiiiiiiiee e e e e 389
5.14 ndb_index_stat — NDB Index Statistics ULilityccooveuiiiiiiiiiiiiie e 405
5.15 ndb_move_data — NDB Data Copy ULIlityccoceeviiiiiiiiiiici e, 413
5.16 ndb_perror — Obtain NDB Error Message Informationccooevviiiiiiiiciiiiecin e, 418
5.17 ndb_print_backup_file — Print NDB Backup File Contentscccoccoivviiiiiiiieeinnennnnn, 421
5.18 ndb_print_file — Print NDB Disk Data File CoNtentscccccooviiiiiiiiiiiiiii e 426
5.19 ndb_print_frag_file — Print NDB Fragment List File Contentsccccocviveviiiieinnenn. 427
5.20 ndb_print_schema_file — Print NDB Schema File Contentsccooeeviviviinieinneeennn. 427
5.21 ndb_print_sys_file — Print NDB System File Contentsccccooeivveiiiiiiineviieecieeeennn, 428
5.22 ndb_redo_log_reader — Check and Print Content of Cluster Redo Logccccccuunee. 428
5.23 ndb_restore — Restore an NDB Cluster Backupccooouvieiiiiiiiiiiiiii e 431
5.23.1 Restoring an NDB Backup to a Different Version of NDB Cluster 457
5.23.2 Restoring to a different number of data nodescccccoeviiiiiiiii i 458
5.23.3 Restoring from a backup taken in parallelcccoooiiiiiiiii e, 461
5.24 ndb_select_all — Print Rows from an NDB Tablecccocoiiiiiiiiiiiiiceee e 462
5.25 ndb_select_count — Print Row Counts for NDB Tablescccoocviiiiiiiiiiiciiiccceeeeen, 469
5.26 ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED) ... 473
5.27 ndb_show_tables — Display List of NDB TabIeSccceuiiiiiiiiiiiiiiii e 476
5.28 ndb_size.pl — NDBCLUSTER Size Requirement Estimatorcccoeeviveiiineeiineennnn. 481
5.29 ndb_top — View CPU usage information for NDB threadscccooeviiiiiiieiiinennnnnns 484
5.30 ndb_waiter — Wait for NDB Cluster to Reach a Given Statusccccoceeveviiiieiineeennn. 489
5.31 ndbxfrm — Compress, Decompress, Encrypt, and Decrypt Files Created by NDB
L 13 (T PP 495
6 Management Of NDB CIUSTELuuiiiiiiiii e e e e e e e e e e e et e eaaeeeeas 501
6.1 Commands in the NDB Cluster Management Clientccoiviiiiiiiiiieeie e, 503
6.2 NDB ClUStEr LOG MESSATES ..vuuiivrneiiiieiiiieii e et e et e e e et e e e e e et e e et e e et e e et e e e e eanaeeees 509
6.2.1 NDB Cluster: Messages in the CIUSter LOQc.vvviiieiiiiieiieciii e ee e 509
6.2.2 NDB Cluster Log Startup MESSAQJESccuueiiueieiieiiiieeiieeeiiieraiieeeieeeinaeeanneannaens 524
6.2.3 Event Buffer Reporting in the Cluster LOgccovviiiiiiiiiiii e 524
6.2.4 NDB Cluster: NDB Transporter ErrOrscooceuiiiiiiiiiiii e ee e 526
6.3 Event Reports Generated in NDB CIUSIENcovuiiiiicii e e e 527
6.3.1 NDB Cluster Logging Management Commandsccoeevuiiviiieriieeiieeeieennnnn, 529

6.3.2 NDB ClUSter LOG EVENLSuiiiiiiiii et e e e e e e e e e 530

MySQL NDB Cluster 8.0

6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client 536
6.4 Summary of NDB CIuSter Start PRASEScoiiiiiiiiiiieii e e e 539
6.5 Performing a Rolling Restart of an NDB CIUSIENcc.uveiiiiiiiiiiiii e 541
6.6 NDB Cluster Single USEr MOOEuoiiiiiiiii e e e e e eaes 543
6.7 Adding NDB Cluster Data Nodes ONliNEccooiiiiiiiiiiiii e 544
6.7.1 Adding NDB Cluster Data Nodes Online: General ISSUEScccoveviiiieiineennnnnns 544
6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedureccoovevvuievinnennnnn. 545
6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Examplecccovevinnennnn. 547
6.8 Online Backup Of NDB ClIUSLETcivuiiiiiiieiii e e e e e e e e e e e e e eaens 554
6.8.1 NDB Cluster Backup CONCEPLSuueiureiiiieii e e e et e e e e e e et e e e e e aanes 554
6.8.2 Using The NDB Cluster Management Client to Create a Backup 555
6.8.3 Configuration for NDB CluSter BaCKUPSocviuieiiiieiiiieeiiieecie e e e 559
6.8.4 NDB Cluster Backup Troubleshootingccocouiiiiiiiiiiiiici e 559
6.8.5 Taking an NDB Backup with Parallel Data NOdescccocciiiiiiiieiiiieiiii e, 560
6.9 MySQL Server Usage for NDB CIUSLETcouuiiiiieiiiiieeie e e e e e e e e e 560
6.10 NDB Cluster Disk Data TableScooiiuuiiiiiiiiiiic e 562
6.10.1 NDB Cluster Disk Data ObJECESuiiiiiiiiiiieiiii e e e 562
6.10.2 NDB Cluster Disk Data Storage RequUIrementscccceuveveiiieiiiieeiiieeineeeneennn. 567
6.11 Online Operations with ALTER TABLE in NDB CIUSterccoeviiiiiiiiieiie e, 568
6.12 Privilege Synchronization and NDB_STORED _USERcccooviiiiiiiiiiiin e, 571
6.13 NDB API Statistics Counters and Variablesooooiiiiiiiiiiii e 572
6.14 ndbinfo: The NDB Cluster Information Databaseccooevvviiiiiiiiiiiiiiiiiieeci e 583
6.14.1 The ndbinfo arbitrator_validity_detail Tablecccoeeiiiiiiiiiii e, 588
6.14.2 The ndbinfo arbitrator_validity summary Tableccoooiiiiiiiiiiii e 589
6.14.3 The ndbinfo backup_id Table ..o 589
6.14.4 The ndbinfo BIODS TabIeccoiiiiiii e 590
6.14.5 The ndbinfo bIOCKS Tablec..uiiiiiiii e 5901
6.14.6 The ndbinfo cluster_locks Tablecccooeviiiiiii i 591
6.14.7 The ndbinfo cluster_operations Tablec.cooiiiiiiii e, 593
6.14.8 The ndbinfo cluster_transactions Tableccoooviiiiiiiiii e, 594
6.14.9 The ndbinfo config_Nodes Tableccoiiiiiiiiii e 595
6.14.10 The ndbinfo config_params Tableccoooii i 596
6.14.11 The ndbinfo config_values Tablecccoooiiiiiii e, 597
6.14.12 The ndbinfo counters Table ..o 599
6.14.13 The ndbinfo cpudata Tablecooeiiiiiiiii e 601
6.14.14 The ndbinfo cpudata_1Sec Tableoiviiiiiiiii e 602
6.14.15 The ndbinfo cpudata_20sSec Tablecc.oeiiiiiiiii e 602
6.14.16 The ndbinfo cpudata 50ms Tablecccooeiiiiiiii e 603
6.14.17 The ndbinfo cpuinfo Tableooiiiiiiii e 604
6.14.18 The ndbinfo cpustat Tableooviiiiiii e 605
6.14.19 The ndbinfo cpustat 50mMs Tableooiiiiiiiiii e 605
6.14.20 The ndbinfo cpustat_1sec Tablecoovviiiiiiii e, 606
6.14.21 The ndbinfo cpustat_20SeC Tableccocouiiiiiiiiii e 607
6.14.22 The ndbinfo dictionary_columns Tablecccoiiiiiiiiii e 608
6.14.23 The ndbinfo dictionary_tables Tableccooiiiiiiii e, 609
6.14.24 The ndbinfo dict_obj_info Tableccooiiii i 611
6.14.25 The ndbinfo dict_obj_tree Tablecooeiiiiii e, 612
6.14.26 The ndbinfo dict_obj_types Tablecccooiiiiiiii e, 615
6.14.27 The ndbinfo disk_write_speed _base Tableccooeviviiii i, 615
6.14.28 The ndbinfo disk_write_speed_aggregate Tablec.cccoiviiiiiiiiiiciiinecieee, 615
6.14.29 The ndbinfo disk_write_speed_aggregate node Tablecccoeevviiiiiiiininnnnns 617
6.14.30 The ndbinfo diskpagebuffer Tableccocoiiiiiiiii e 617
6.14.31 The ndbinfo diskstat Tableoiiiiiiiii e 619
6.14.32 The ndbinfo diskstats 1sec Tablec.ccooiviiiiiiiiiii e 620
6.14.33 The ndbinfo error_messages Tableccooooiiiiiiii e, 621
6.14.34 The ndbinfo events Table ... e 622
6.14.35 The ndbinfo files Table ... 623
6.14.36 The ndbinfo foreign_keys Tablecooviiiiiiiiii e, 624

MySQL NDB Cluster 8.0

6.14.37 The ndbinfo hash_maps Tableccooiiiiii e, 625
6.14.38 The ndbinfo hwinfo Tablecoiiiiiii e 625
6.14.39 The ndbinfo index_columns Table ..o 626
6.14.40 The ndbinfo index_stats Tableccoooiiiiii e, 626
6.14.41 The ndbinfo locks_per_fragment Tableccoooiiiiiiiiiii e, 627
6.14.42 The ndbinfo logbuffers Tableooiiiiiiii e 629
6.14.43 The ndbinfo logspaces Tablecoiiiii i 629
6.14.44 The ndbinfo membership Table ..., 630
6.14.45 The ndbinfo memoryusage Tablecooooiiiiiiiiii e, 632
6.14.46 The ndbinfo memory_per_fragment Tableccocoiiiiiiiiiiiii e 633
6.14.47 The ndbinfo NOdes TabIeiiiiiiiii e 635
6.14.48 The ndbinfo operations_per_fragment Tablec..ccooeiiiiiiiiiicin e, 637
6.14.49 The ndbinfo pgman_time_track stats Tablecccoovviiiiiiiiiii e, 640
6.14.50 The ndbinfo processes Tableoooiiiiiiii i, 641
6.14.51 The ndbinfo resources Tablecoouiiiiiiiiii e 642
6.14.52 The ndbinfo restart_info Tableccccoiiiiiii e 643
6.14.53 The ndbinfo server_locks Tableccoiiiiiiiii e 646
6.14.54 The ndbinfo server_operations Tablec.cccov i, 648
6.14.55 The ndbinfo server_transactions Tablec.ccoooviiiiiiiiii e, 649
6.14.56 The ndbinfo table_distribution_status Tablecccoveiiiiiiiiii e, 651
6.14.57 The ndbinfo table_fragments Tablecooooiiiiiiiii e 652
6.14.58 The ndbinfo table_info Tableccoooiiiiii e 653
6.14.59 The ndbinfo table_replicas Tablecoooviiiiii i 654
6.14.60 The ndbinfo tc_time_track _stats Tablecccccoii i, 655
6.14.61 The ndbinfo threadblocks Tablecoiiiiiiiiii e 656
6.14.62 The ndbinfo threads Table ... 657
6.14.63 The ndbinfo threadstat Tablecooviiiiiiiiii e 658
6.14.64 The ndbinfo transporters Tableccooiiii i 659
6.15 INFORMATION_SCHEMA Tables for NDB CIUSLENceviiieiiiiiiiiiiiiieeeeeeeeiiiiien e 661
6.16 NDB Cluster and the Performance SChemacooooviiiiiiiiiiiieiii e 662
6.17 Quick Reference: NDB Cluster SQL Statementscovvvviieiiiieiiiiiiieee e e 663
6.18 NDB ClIUSIEIr SECUNLY ISSUESuuiiiiiiiiiiieii et e e e e e e e e e e e e aaaas 669
6.18.1 NDB Cluster Security and Networking ISSUEScc.ovevvieiiiiieiiieeie e e, 670
6.18.2 NDB Cluster and MySQL PriVIIEGESccoviiiiiiiii i 674
6.18.3 NDB Cluster and MySQL Security ProCedurescccoveiiiieiiiieiiieeiiiieeiiieeeieans 675
7 NDB CIUSter REPHCALIONiiiiieii e e e e e e e e e e e e e et e e et e e aa e eaas 677
7.1 NDB Cluster Replication: Abbreviations and Symbolscccociiiiiiiiici e 678
7.2 General Requirements for NDB Cluster Replicationc.cccooviiiiiiiiiiiin e 679
7.3 Known Issues in NDB Cluster RepliCationcccuiiiiiiiiiiiieiii e e e 680
7.4 NDB Cluster Replication Schema and TabIesccooovviiiiiiiiiiie e, 687
7.5 Preparing the NDB Cluster for Replicationoooiiiiiiiiiiii e 694
7.6 Starting NDB Cluster Replication (Single Replication Channel)ccccooiiviiiiiinenn. 696
7.7 Using Two Replication Channels for NDB Cluster Replicationcccccoeveviiiiiiiieennnnnns 698
7.8 Implementing Failover with NDB Cluster Replicationc.cccoevviiiiiiiiiiiicieeeieeeis 699
7.9 NDB Cluster Backups With NDB Cluster Replicationccceveiiiieiiiiieiiieciii e 701
7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the
SOUICE BINAIY LOQ ovniiiiiiiii et e e e e e e e e et e e et e e et e e e e eaaaas 704
7.9.2 Point-In-Time Recovery Using NDB Cluster Replicationc.c.ccoeveviiieiinennnnn. 706
7.10 NDB Cluster Replication: Bidirectional and Circular Replicationc..ccoeveviieinnns 707
7.11 NDB Cluster Replication Conflict RESOIULIONc.uiviiiiiiiiieiii e 711

A NDB CIUSEEI FAQ ..ttt ettt ettt e ettt et e e e e e e e e e e e e e 729

Preface and Legal Notices

Licensing information—MySQL NDB Cluster 8.0. If you are using a Commercial release of
MySQL NDB Cluster 8.0, see the MySQL NDB Cluster 8.0 Commercial Release License Information
User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL NDB
Cluster 8.0, see the MySQL NDB Cluster 8.0 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices

Copyright © 1997, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle

Vii

https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-8.0-gpl-en.pdf

Documentation Accessibility

Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

viii

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 General Information

MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 8.0 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster
8.0 users who build from source should use the sources provided for MySQL 8.0 and build with the
options required to provide NDB support. (Locations where the sources can be obtained are listed later
in this section.)

Important

MySQL NDB Cluster does not support InnoDB Cluster, which must be deployed
using MySQL Server 8.0 with the | nnoDB storage engine as well as additional
applications that are not included in the NDB Cluster distribution. MySQL Server
8.0 binaries cannot be used with MySQL NDB Cluster. For more information
about deploying and using InnoDB Cluster, see MySQL AdminAPI. Section 2.6,
“MySQL Server Using InnoDB Compared with NDB Cluster”, discusses
differences between the NDB and | nnoDB storage engines.

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysqgl.com/support/
supportedplatforms/cluster.html.

Availability. = NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysqgl.com/downloads/cluster/.

NDB Cluster release numbers. NDB 8.0 follows the same release pattern as the MySQL Server
8.0 series of releases, beginning with MySQL 8.0.13 and MySQL NDB Cluster 8.0.13. In this Manual
and other MySQL documentation, we identify these and later NDB Cluster releases employing a
version number that begins with “NDB”. This version number is that of the NDBCLUSTER storage engine
used in the NDB 8.0 release, and is the same as the MySQL 8.0 server version on which the NDB
Cluster 8.0 release is based.

Version strings used in NDB Cluster software. The version string displayed by the nysql client
supplied with the MySQL NDB Cluster distribution uses this format:

nysql - nysqgl _server _versi on-cl ust er

nysql _server _ver si on represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 8.0 releases, this is 8. 0. n, where n is the release number.
Building from source using - DW TH_NDBCLUSTER or the equivalent adds the - cl ust er suffix to the
version string. (See Section 3.1.4, “Building NDB Cluster from Source on Linux”, and Section 3.2.2,
“Compiling and Installing NDB Cluster from Source on Windows”.) You can see this format used in the
nysql client, as shown here:

$> nysql

Wl come to the MySQL nonitor. Conmands end with ; or \g.
Your MySQL connection id is 2

Server version: 8.0.29-cluster Source distribution

Type 'help;' or "\h' for help. Type '"\c' to clear the buffer.

nysql > SELECT VERSI ON()\ G

kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x 1 r ow kkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkhkkkkkkkkk*x

VERSI ON(): 8.0.29-cluster
1 rowin set (0.00 sec)

The first General Availability release of NDB Cluster using MySQL 8.0 is NDB 8.0.19, using MySQL
8.0.19.

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/mysql-shell/8.0/en/admin-api-userguide.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster

The version string displayed by other NDB Cluster programs not normally included with the MySQL 8.0
distribution uses this format:

nmysql - nysql _server _versi on ndb-ndb_engi ne_ver si on

nysgl _server _ver si on represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 8.0 releases, this is 8. 0. n, where n is the release number.
ndb_engi ne_ver si on is the version of the NDB storage engine used by this release of the NDB
Cluster software. For all NDB 8.0 releases, this number is the same as the MySQL Server version. You
can see this format used in the output of the SHONcommand in the ndb_ngmclient, like this:

ndb_ngne SHOW
Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=1 @0.0.10.6 (nysql-8.0.29 ndb-8.0.30, Nodegroup: 0, *)
id=2 @0.0.10.8 (nysqgl-8.0.29 ndb-8.0.30, Nodegroup: 0)

[ndb_nmgnmd(M3M] 1 node(s)
i d=3 @.o0.0.10.2 (nysqgl-8.0.29 ndb-8.0.30)

[mysql d(API)] 2 node(s)
i d=4 @.o0.0.10.10 (nysql-8.0.29 ndb-8.0.30)
i d=5 (not connected, accepting connect from any host)

Compatibility with standard MySQL 8.0 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster
(see Section 2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome,

but this also means that you are very unlikely to be able to switch an existing application datastore
—that currently uses, for example, Myl SAMor | nnoDB—to use the NDB storage engine without
allowing for the possibility of changes in schemas, queries, and applications. A mysql d compiled
without NDB support (that is, built without - DW TH_NDBCLUSTER _STORAGE_ENG NE or its alias -
DW TH_NDBCLUSTER) cannot function as a drop-in replacement for a mysql d that is built with it.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed
from https://github.com/mysqgl/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysql/mysql-server are
licensed under the GPL. For information about obtaining MySQL sources using Git and building them
yourself, see Installing MySQL Using a Development Source Tree.

Note
As with MySQL Server 8.0, NDB Cluster 8.0 releases are built using Cvake.

NDB Cluster 8.0 is available beginning with NDB 8.0.19 as a General Availability release, and is
recommended for new deployments. NDB Cluster 7.6 and 7.5 are previous GA releases still supported
in production; for information about NDB Cluster 7.6, see What is New in NDB Cluster 7.6. For similar
information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB Cluster 7.4 and 7.3 are
previous GA releases still supported in production, although we recommend that new deployments for
production use NDB Cluster 8.0; see MySQL NDB Cluster 7.3 and NDB Cluster 7.4.

The contents of this chapter are subject to revision as NDB Cluster continues to evolve. Additional
information regarding NDB Cluster can be found on the MySQL website at http://www.mysqgl.com/
products/cluster/.

Additional Resources. More information about NDB Cluster can be found in the following places:

» For answers to some commonly asked questions about NDB Cluster, see Appendix A, NDB Cluster
FAQ.

e The NDB Cluster Forum: https://forums.mysqgl.com/list.php?25.

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
http://www.mysql.com/products/cluster/
http://www.mysql.com/products/cluster/
https://forums.mysql.com/list.php?25

« Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

http://www.planetmysql.org/

Chapter 2 NDB Cluster Overview

Table of Contents

2.1 NDB ClIUSLEr COre COMNCEPLS ..eevtueiiitii ettt ettt ettt et e e et ettt e et e e et e e e e e ab e e e ere s 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitionsccccceeveviiiinneeiinnnnn. 9
2.3 NDB Cluster Hardware, Software, and Networking Requirementscccooeiveviiiiiieiiininneenn. 12
2.4 What iS NeW iN NDB CIUSTEIcoouiiiiiii ettt et e e e eeees 14
2.5 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0 39
2.6 MySQL Server Using InnoDB Compared with NDB CIUSTETcccuvuiiiiiiiiiiiiiiiiieceii e 44
2.6.1 Differences Between the NDB and InnoDB Storage ENginNescccoovveveiiiiieeiiiinneennn. 45
2.6.2 NDB and INNODB WOTKIOAASccouuiiiiiiiiiieiiii ettt e 46
2.6.3 NDB and InnoDB Feature Usage SUMMANYooceiiriieiiiiieeeiiineeeeiieeeeeiinaeeeeniaeeens 47
2.7 Known Limitations Of NDB CIUSTETiiiiiiiiiiiiiie ettt 47
2.7.1 Noncompliance with SQL Syntax in NDB CIUSTETcccuuiiiiiiiiiiiiiiiieece e 48
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL LimitScccceeveeeenn. 50
2.7.3 Limits Relating to Transaction Handling in NDB CIUSercooovvviiiiiiiinieiiiieeceie, 51
2.7.4 NDB Cluster Error Handlingcoouuuioiiiiiiiiie et 54
2.7.5 Limits Associated with Database Objects in NDB CIUSEErcccoiviiiiiiiiiiiiiiiiecciiieees 54
2.7.6 Unsupported or Missing Features in NDB CIUSErcoviiiiiiiiiiiiiiiieie e 55
2.7.7 Limitations Relating to Performance in NDB CIUSEErcccuiiiiiiiiiiiiiiiieece e 56
2.7.8 I1ssues EXCIUSIVE 0 NDB CIUSTETuiiiiiiiiiiiiii ettt 56
2.7.9 Limitations Relating to NDB Cluster Disk Data StOragecooveveeviiieieeiinieieiinneeennnn 57
2.7.10 Limitations Relating to Multiple NDB Cluster NOAESccccuiieiiiiiiiiiiiiineeeeiie e 57
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0ooovvviiiiiiiiiiiiiiiiieees 58

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing
system. The shared-nothing architecture enables the system to work with very inexpensive hardware,
and with a minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms
such as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine
called NDB (which stands for “Network DataBase”). In our documentation, the term NDB refers to the
part of the setup that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the
combination of one or more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Figure 2.1 NDB Cluster Components

Clients/APIs
NDB
mysql MySQL PHP Connector Connector CCLllisx,-:‘tr?tr;‘ Management
Client C API /I /NET (NDBAPI) . d%h%‘é -
T T_T AN -
SQL Nodes l J
= = =
= = =
|MvSQL| IMVSQ I |MvSQLI
mysqld mysqld mysqld
] * [i] :
1 I]
I I b
[B e] [
——————————————————————— Al
i
Data Nodes « [
i J
[0
11 :
E E : : [M
ndbd ndbd T > | =]
I I P et < glz |»
= =] %

E - E L
Management

> Server
ndb_mgm

ndbd ndbd

All these programs work together to form an NDB Cluster (see Chapter 5, NDB Cluster Programs.
When data is stored by the NDB storage engine, the tables (and table data) are stored in the data
nodes. Such tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster.
Thus, in a payroll application storing data in a cluster, if one application updates the salary of an
employee, all other MySQL servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the nysql d server daemon, it differs in a number of critical
respects from the mysql d binary supplied with the MySQL 8.0 distributions, and the two versions of
nmysqgl d are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage
engine and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due
to losing the transaction state. Because transactional applications are expected to handle transaction
failure, this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling
restarts (in which all nodes are restarted in turn) are used in making configuration changes and
software upgrades (see Section 6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling restarts
are also used as part of the process of adding new data nodes online (see Section 6.7, “Adding NDB
Cluster Data Nodes Online”). For more information about data nodes, how they are organized in an
NDB Cluster, and how they handle and store NDB Cluster data, see Section 2.2, “NDB Cluster Nodes,
Node Groups, Fragment Replicas, and Partitions”.

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality found
in the NDB Cluster management client and the ndb_r est or e program included in the NDB Cluster
distribution. For more information, see Section 6.8, “Online Backup of NDB Cluster”, and Section 5.23,
“ndb_restore — Restore an NDB Cluster Backup”. You can also use the standard MySQL functionality
provided for this purpose in nysql dunp and the MySQL server. See mysgldump — A Database
Backup Program, for more information.

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html

NDB Cluster Core Concepts

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing
options, but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage
engine contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes
on a single computer; for a computer on which one or more cluster nodes are
being run we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there are at least
three nodes, one of each of these types:

« Management node: The role of this type of node is to manage the other nodes within the NDB
Cluster, performing such functions as providing configuration data, starting and stopping nodes, and
running backups. Because this node type manages the configuration of the other nodes, a node
of this type should be started first, before any other node. A management node is started with the
command ndb_ngnd.

« Data node: This type of node stores cluster data. There are as many data nodes as there are
fragment replicas, times the number of fragments (see Section 2.2, “NDB Cluster Nodes, Node
Groups, Fragment Replicas, and Partitions”). For example, with two fragment replicas, each having
two fragments, you need four data nodes. One fragment replica is sufficient for data storage, but
provides no redundancy; therefore, it is recommended to have two (or more) fragment replicas to
provide redundancy, and thus high availability. A data node is started with the command ndbd (see
Section 5.1, “ndbd — The NDB Cluster Data Node Daemon”) or ndbnt d (see Section 5.3, “ndbmtd
— The NDB Cluster Data Node Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we
refer to NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored
on disk; see Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

» SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node
is a traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a nysqgl d
process started with the - - ndbcl ust er and - - ndb- connect st ri ng options, which are explained
elsewhere in this chapter, possibly with additional MySQL server options as well.

An SQL node is actually just a specialized type of APl node, which designates any application which
accesses NDB Cluster data. Another example of an APl node is the ndb_r est or e utility that is
used to restore a cluster backup. It is possible to write such applications using the NDB API. For
basic information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes.
The use of multiple management nodes is also highly recommended.

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html

NDB Cluster Core Concepts

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and
partitions in NDB Cluster, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up
individual communication links between nodes. NDB Cluster is currently designed with the intention
that data nodes are homogeneous in terms of processor power, memory space, and bandwidth. In
addition, to provide a single point of configuration, all configuration data for the cluster as a whole is
located in one configuration file.

The management server manages the cluster configuration file and the cluster log. Each node in
the cluster retrieves the configuration data from the management server, and so requires a way to
determine where the management server resides. When interesting events occur in the data nodes,
the nodes transfer information about these events to the management server, which then writes the
information to the cluster log.

In addition, there can be any number of cluster client processes or applications. These include
standard MySQL clients, NDB-specific APl programs, and management clients. These are described in
the next few paragraphs.

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in
PHP, Perl, C, C++, Java, Python, and so on. Such client applications send SQL statements to and
receive responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that
they interact with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability
to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use j dbc: nmysql : | oadbal ance: // URLs (improved
in Connector/J 5.1.7) to achieve load balancing transparently; for more information about using
Connector/J with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from
the NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster,
using the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes
where an SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector
for Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-
relational mapping persistence frameworks such as Hibernate and JPA that connect directly to
NDBCLUSTER, and so does not require access to a MySQL Server. See Java and NDB Cluster, and
The ClusterJ API and Data Object Model, for more information.

NDB Cluster also supports applications written in JavaScript using Node.js. The MySQL Connector
for JavaScript includes adapters for direct access to the NDB storage engine and as well as for the
MySQL Server. Applications using this Connector are typically event-driven and use a domain object
model similar in many ways to that employed by ClusterJ. For more information, see MySQL NoSQL
Connector for JavaScript.

Management clients. These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),
showing node versions and status, starting and stopping backups, and so on. An example of this type
of program is the ndb_ngmmanagement client supplied with NDB Cluster (see Section 5.5, “ndb_mgm
— The NDB Cluster Management Client”). Such applications can be written using the MGM API, a C-
language API that communicates directly with one or more NDB Cluster management servers. For
more information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster
with a large number of nodes. The MySQL Cluster Manager client also supports commands for getting
and setting the values of most node configuration parameters as well as nmysql d server options and

https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/ndbapi/en/mgm-api.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

variables relating to NDB Cluster. MySQL Cluster Manager 1.4.8 provides experimental support for
NDB 8.0. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and
S0 on), priority, and severity. A complete listing of all reportable events may be found in Section 6.3,
“Event Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

 Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.
* Node log: A separate log which is also kept for each individual node.
Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which
work together to ensure that a consistent view of the cluster's data is maintained. These are shown in
the following list:

» Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs
take place for all nodes in the cluster more or less concurrently. An LCP usually occurs every few
minutes; the precise interval varies, and depends upon the amount of data stored by the node, the
level of cluster activity, and other factors.

NDB 8.0 supports partial LCPs, which can significantly improve performance under some conditions.
See the descriptions of the Enabl eParti al Lcp and Recover yWr k configuration parameters
which enable partial LCPs and control the amount of storage they use.

» Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global
checkpoints, see NDB Cluster Data Node File System Directory.

2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.

A number of concepts central to an understanding of this topic are discussed in the next few
paragraphs.

Data node. An ndbd or ndbnt d process, which stores one or more fragment replicas—that is,
copies of the partitions (discussed later in this section) assigned to the node group of which the node is
a member.

Each data node should be located on a separate computer. While it is also possible to host multiple
data node processes on a single computer, such a configuration is not usually recommended.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an
ndbd or ndbnt d process; where mentioned, management nodes (ndb_ngnd processes) and SQL
nodes (mysql d processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores patrtitions, or sets of fragment
replicas (see next item).

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number
of data nodes and of the number of fragment replicas (NoOf Repl i cas configuration parameter), as
shown here:

[# of node groups] = [# of data nodes] / NoOf Replicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOf Repl i cas is setto 1 in the
config.ini file,2 node groups if NoOf Repl i cas is set to 2, and 1 node group if NoOf Repl i cas
is set to 4. Fragment replicas are discussed later in this section; for more information about

NoOf Repl i cas, see Section 4.3.6, “Defining NDB Cluster Data Nodes”.

Note
All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping
at least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the
cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and
the number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDMthreads]

When using data nodes running ndbnt d, the number of LDM threads is controlled by the setting
for MaxNoOf Execut i onThr eads. When using ndbd there is a single LDM thread, which means
that there are as many cluster partitions as nodes participating in the cluster. This is also the
case when using ndbnt d with MaxNoOf Execut i onThr eads set to 3 or less. (You should be
aware that the number of LDM threads increases with the value of this parameter, but not in a
strictly linear fashion, and that there are additional constraints on setting it; see the description of
MaxNoOf Execut i onThr eads for more information.)

NDB and user-defined partitioning. = NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LI NEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 *
[nunber of LDM threads] * [nunber of node groups],the number of node groups
in an NDB Cluster being determined as discussed previously in this section. When running ndbd
for data node processes, setting the number of LDM threads has no effect (since Thr eadConf i g
applies only to ndbnt d); in such cases, this value can be treated as though it were equal to 1 for
purposes of performing this calculation.

See Section 5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

For more information relating to NDB Cluster and user-defined partitioning, see Section 2.7, “Known
Limitations of NDB Cluster”, and Partitioning Limitations Relating to Storage Engines.

Fragment replica. This is a copy of a cluster partition. Each node in a node group stores a fragment
replica. Also sometimes known as a partition replica. The number of fragment replicas is equal to the
number of nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several
fragment replicas.

10

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two
node groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to
node group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires
an ndb_ngnd process for cluster management and at least one SQL node to
access the data stored by the cluster, these have been omitted from the figure
for clarity.

Figure 2.2 NDB Cluster with Two Node Groups

Node Group 0

Partition O Partition O
(Primary fragment replica) (Backup fragment replica)

] —]

Node 1 Node 2
Partition 2 Partition 2
(Backup fragment replica) (Primary fragment replica)

Node Group 1

Partition 1 Partition 1
(Primary fragment replica) (Backup fragment replica)

]]

Node 3 Node 4
Partition 3 Partition 3
(Backup fragment replica) (Primary fragment replica)

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

+ Partition O is stored on node group O; a primary fragment replica (primary copy) is stored on node 1,
and a backup fragment replica (backup copy of the partition) is stored on node 2.

 Partition 1 is stored on the other node group (hode group 1); this partition's primary fragment replica
is on node 3, and its backup fragment replica is on node 4.

« Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed
from that of Partition O; for Partition 2, the primary fragment replica is stored on node 2, and the
backup on node 1.

 Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed
from those of partition 1. That is, its primary fragment replica is located on node 4, with the backup
on node 3.

11

NDB Cluster Hardware, Software, and Networking Requirements

What this means regarding the continued operation of an NDB Cluster is this: so long as each node

group participating in the cluster has at least one node operating, the cluster has a complete copy of all
data and remains viable. This is illustrated in the next diagram.

Figure 2.3 Nodes Required for a 2x2 NDB Cluster

Node Group O
«——-(}i-——»

] | i e |
Node 1 Node 2
Y A
¥ ¥

— | —
*—
|, (—]
Node 3 Node 4
Node Group 1

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at
least one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a
single node group fail, the combination consisting of the remaining two nodes in the other node group
is not sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide
access to a complete set of all NDB Cluster data.

The maximum number of node groups supported for a single NDB Cluster instance is 48.

2.3 NDB Cluster Hardware, Software, and Networking
Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data
storage is done in memory. (It is possible to reduce this requirement using Disk Data tables—see
Section 6.10, “NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple
and faster CPUs can enhance performance. Memory requirements for other NDB Cluster processes
are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require
any unusual modules, services, applications, or configuration to support NDB Cluster. For supported
operating systems, a standard installation should be sufficient. The MySQL software requirements are
simple: all that is needed is a production release of NDB Cluster. It is not strictly necessary to compile
MySQL yourself merely to be able to use NDB Cluster. We assume that you are using the binaries
appropriate to your platform, available from the NDB Cluster software downloads page at https://
dev.mysqgl.com/downloads/cluster/.

12

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

NDB Cluster Hardware, Software, and Networking Requirements

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard
topology, and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus

a switch, hub, or router to provide network connectivity for the cluster as a whole. We strongly
recommend that an NDB Cluster be run on its own subnet which is not shared with machines not
forming part of the cluster for the following reasons:

e Security. Communications between NDB Cluster nodes are not encrypted or shielded in any
way. The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster
on a protected network. If you intend to use NDB Cluster for Web applications, the cluster should
definitely reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or
elsewhere.

See Section 6.18.1, “NDB Cluster Security and Networking Issues”, for more information.

» Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster
to make exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB
Cluster not only helps protect against unauthorized access to NDB Cluster data, it also ensures
that NDB Cluster nodes are shielded from interference caused by transmissions between other
computers on the network. For enhanced reliability, you can use dual switches and dual cards
to remove the network as a single point of failure; many device drivers support failover for such
communication links.

Network communication and latency. NDB Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to
execute queries and updates. Communication latency between these processes can directly affect the
observed performance and latency of user queries. In addition, to maintain consistency and service
despite the silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat
an extended loss of communication from a node as node failure. This can lead to reduced redundancy.
Recall that, to maintain data consistency, an NDB Cluster shuts down when the last node in a node
group fails. Thus, to avoid increasing the risk of a forced shutdown, breaks in communication between
nodes should be avoided wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the
failed node. Data node recovery requires synchronization of the failed node's data from a surviving
data node, and re-establishment of disk-based redo and checkpoint logs, before the data node
returns to service. This recovery can take some time, during which the Cluster operates with reduced
redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible

if the node is overloaded, has insufficient machine CPU due to sharing with other programs, or is
experiencing delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat
the node that is slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as Hear t beat | nt er val DbDb and Hear t beat | nt er val DbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be
expected in a LAN environment (on the order of 100 ps), timeout parameters must be increased to
ensure that any allowed periods of latency periods are well within configured timeouts. Increasing
timeouts in this way has a corresponding effect on the worst-case time to detect failure and therefore
time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer
a range of latencies, as well as redundancy with slower failover times. Individual link failures may

13

http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in NDB Cluster

require route changes to propagate before end-to-end connectivity is restored. At the TCP level this
can appear as large latencies on individual channels. The worst-case observed TCP latency in these
scenarios is related to the worst-case time for the IP layer to reroute around the failures.

2.4 What is New in NDB Cluster

The following sections describe changes in the implementation of NDB Cluster in MySQL NDB Cluster
8.0 through 8.0.30, as compared to earlier release series. NDB Cluster 8.0 is available as a General
Availability (GA) release, beginning with NDB 8.0.19. NDB Cluster 7.6 and 7.5 are previous GA
releases still supported in production; for information about NDB Cluster 7.6, see What is New in NDB
Cluster 7.6. For similar information about NDB Cluster 7.5, see What is New in NDB Cluster 7.5. NDB
Cluster 7.4 and 7.3 are previous GA releases still supported in production, although we recommend
that new deployments for production use NDB Cluster 8.0; see MySQL NDB Cluster 7.3 and NDB
Cluster 7.4.

What is New in NDB Cluster 8.0

Major changes and new features in NDB Cluster 8.0 which are likely to be of interest are shown in the
following list:

» Compatibility enhancements. The following changes reduce longstanding nonessential
differences in NDB behavior as compared to that of other MySQL storage engines:

« Development in parallel with MySQL server. Beginning with this release, MySQL NDB
Cluster is being developed in parallel with the standard MySQL 8.0 server under a new unified
release model with the following features:

« NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree.
* The numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0.

« Building the source with NDB support appends - cl ust er to the version string returned by
nmysql -V, as shown here:

$> nysql -V
nmysql Ver 8.0.30-cluster for Linux on x86_64 (Source distribution)

NDB binaries continue to display both the MySQL Server version and the NDB engine version,
like this:

$> ndb_ngm -V
M/SQL distrib nysql-8.0.29 ndb-8.0.30, for Linux (x86_64)

In MySQL Cluster NDB 8.0, these two version numbers are always the same.

To build the MySQL 8.0 source with NDB Cluster support, use the CMake option -
DW TH_NDBCLUSTER.

e Platform support notes. NDB 8.0 makes the following changes in platform support:

» NDBCLUSTER no longer supports 32-bit platforms. Beginning with NDB 8.0.21, the NDB build
process checks the system architecture and aborts if it is not a 64-bit platform.

« Itis now possible to build NDB from source for 64-bit ARMCPUSs. Currently, this support is
source-only, and we do not provide any precompiled binaries for this platform.

» Database and table names. NDB 8.0 removes the previous 63-byte limit on identifiers for
databases and tables. These identifiers can now use up to 64 bytes, as for such objects using
other MySQL storage engines. See Section 2.7.11, “Previous NDB Cluster Issues Resolved in
NDB Cluster 8.0".

14

https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster

What is New in NDB Cluster 8.0

« Generated names for foreign keys. NDB now uses the patternt bl _nane_f k_Nfor naming
internally generated foreign keys. This is similar to the pattern used by | nnoDB.

» Schema and metadata distribution and synchronization. = NDB 8.0 makes use of the
MySQL data dictionary to distribute schema information to SQL nodes joining a cluster and to
synchronize new schema changes between existing SQL nodes. The following list describes
individual enhancements relating to this integration work:

* Schema distribution enhancements. The NDB schema distribution coordinator, which handles
schema operations and tracks their progress, has been extended in NDB 8.0 to ensure that
resources used during a schema operation are released at its conclusion. Previously, some of this
work was done by the schema distribution client; this has been changed due to the fact that the
client did not always have all needed state information, which could lead to resource leaks when
the client decided to abandon the schema operation prior to completion and without informing the
coordinator.

To help fix this issue, schema operation timeout detection has been moved from the schema
distribution client to the coordinator, providing the coordinator with an opportunity to clean up
any resources used during the schema operation. The coordinator now checks ongoing schema
operations for timeout at regular intervals, and marks participants that have not yet completed

a given schema operation as failed when detecting timeout. It also provides suitable warnings
whenever a schema operation timeout occurs. (It should be noted that, after such a timeout is
detected, the schema operation itself continues.) Additional reporting is done by printing a list

of active schema operations at regular intervals whenever one or more of these operations is
ongoing.

As an additional part of this work, a new nysql d option - - ndb- schenma- di st - ti meout makes
it possible to set the length of time to wait until a schema operation is marked as having timed out.

« Disk data file distribution. NDB Cluster 8.0.14, uses the MySQL data dictionary to make sure
that disk data files and related constructs such as tablespaces and log file groups are correctly
distributed between all connected SQL nodes.

e Schema synchronization of tablespace objects. When a MySQL Server connects as an
SQL node to an NDB cluster, it checks its data dictionary against the information found in the NDB
dictionary.

Previously, the only NDB objects synchronized on connection of a new SQL node were databases
and tables; MySQL NDB Cluster 8.0 also implements schema synchronization of disk data objects
including tablespaces and log file groups. Among other benefits, this eliminates the possibility of

a mismatch between the MySQL data dictionary and the NDB dictionary following a native backup
and restore, in which tablespaces and log file groups were restored to the NDB dictionary, but not
to the MySQL Server's data dictionary.

It is also no longer possible to issue a CREATE TABLE statement that refers to a nonexistent
tablespace. Such a statement now fails with an error.

« Database DDL synchronization enhancements. Work done for NDB 8.0 insures that
synchronization of databases by newly joined (or rejoined) SQL nodes with those on existing
SQL nodes now makes proper use of the data dictionary so that any database-level operations
(CREATE DATABASE, ALTER DATABASE, or DROP DATABASE) that may have been misssed by
this SQL node are now correctly duplicated on it when it connects (or reconnects) to the cluster.

As part of the schema synchronization procedure performed when starting, an SQL node
now compares all databases on the cluster's data nodes with those in its own data dictionary,
and if any of these is found to be missing from the SQL node's data dictionary, the SQL

Node installs it locally by executing a CREATE DATABASE statement. A database thus
created uses the default MySQL Server database properties (such as those as determined by

15

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/alter-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html

What is New in NDB Cluster 8.0

character _set database andcol | ati on_dat abase) that are in effect on this SQL node at
the time the statement is executed.

NDB metadata change detection and synchronization. NDB 8.0 implements a new
mechanism for detection of updates to metadata for data objects such as tables, tablespaces, and
log file groups with the MySQL data dictionary. This is done using a thread, the NDB metadata
change monitor thread, which runs in the background and checks periodically for inconsistencies
between the NDB dictionary and the MySQL data dictionary.

The monitor performs metadata checks every 60 seconds by default. The polling interval can be
adjusted by setting the value of the ndb_net adat a_check_i nt er val system variable; polling
can be disabled altogether by setting the ndb_net adat a_check system variable to OFF. The
status variable Ndb_net adat a_det ect ed_count shows the number of times since mysql d was
last started that inconsistencies have been detected.

NDB ensures that NDB database, table, log file group, and tablespace objects submitted by the
metadata change monitor thread during operations following startup are automatically checked for
mismatches and synchronized by the NDB binlog thread.

NDB 8.0 adds two status variables relating to automatic synchronization:

Ndb_rnet adat a_synced_count shows the number of objects synchronized automatically;
Ndb_rnet adat a_excl uded_count indicates the number of objects for which synchronization
has failed (prior to NDB 8.0.22, this variable was hamed Ndb_net adat a_bl ackl i st _si ze). In
addition, you can see which objects have been synchronized by inspecting the cluster log.

Setting the ndb_net adat a_sync system variable to t r ue overrides any settings that have been
made for ndb_net adat a_check i nterval and ndb_net adat a_check, causing the change
monitor thread to begin coninuous metadata change detection.

In NDB 8.0.22 and later, setting ndb_net adat a_sync to t r ue clears the list of objects for which
synchronization has failed previously, which means it is no longer necessary to discover individual
tables or to re-trigger synchronization by reconnecting the SQL node to the cluster. In addition,
setting this variable to f al se clears the list of objects waiting to be retried.

Beginning with NDB 8.0.21, more detailed information about the current state of automatic
synchronization than can be obtained from log messages or status variables is provided by two
new tables added to the MySQL Performance Schema. The tables are listed here:

 ndb_sync_pendi ng_obj ect s: Contains information about database objects for which
mismatches have been detected between the NDB dictionary and the MySQL data dictionary
(and which have not been excluded from automatic synchronization).

« ndb_sync_excl uded_obj ect s: Contains information about NDB database objects which
have been excluded because they cannot be synchronized between the NDB dictionary and the
MySQL data dictionary, and thus require manual intervention.

A row in one of these tables provides the database object's parent schema, name, and

type. Types of objects include schemas, tablespaces, log file groups, and tables. (If the

object is a log file group or tablespace, the parent schema is NULL.) In addition, the
ndb_sync_excl uded_obj ect s table shows the reason for which the object has been excluded.

These tables are present only if NDBCLUSTER storage engine support is enabled. For more
information about these tables, see Performance Schema NDB Cluster Tables.

Changes in NDB table extra metadata. = The extra metadata property of an NDB table is used
for storing serialized metadata from the MySQL data dictionary, rather than storing the binary
representation of the table as in previous versions. (This was a . f r mfile, no longer used by the
MySQL Server—see MySQL Data Dictionary.) As part of the work to support this change, the
available size of the table's extra metadata has been increased. This means that NDB tables
created in NDB Cluster 8.0 are not compatible with previous NDB Cluster releases. Tables created

16

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_database
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-pending-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-excluded-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-sync-excluded-objects-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-ndb-cluster-tables.html
https://dev.mysql.com/doc/refman/8.0/en/data-dictionary.html

What is New in NDB Cluster 8.0

in previous releases can be used with NDB 8.0, but cannot be opened afterwards by an earlier
version.

This metadata is accessible using the NDB API methods get Ext r aMet adat a() and
set ExtraMet adat a() .

For more information, see Section 3.7, “Upgrading and Downgrading NDB Cluster”.

¢ On-the-fly upgrades of tables using .frm files. A table created in NDB 7.6 and earlier
contains metadata in the form of a compressed . f r mfile, which is no longer supported in MySQL
8.0. To facilitate online upgrades to NDB 8.0, NDB performs on-the-fly translation of this metadata
and writes it into the MySQL Server's data dictionary, which enables the nmysql d in NDB Cluster
8.0 to work with the table without preventing subsequent use of the table by a previous version of
the NDB software.

Important

Once a table's structure has been modified in NDB 8.0, its metadata is
stored using the data dictionary, and it can no longer be accessed by NDB
7.6 and earlier.

This enhancement also makes it possible to restore an NDB backup made using an earlier version
to a cluster running NDB 8.0 (or later).

* Metadata consistency check error logging. As part of work previously done in NDB 8.0,
the metadata check performed as part of auto-synchronization between the representation of an
NDB table in the NDB dictionary and its counterpart in the MySQL data dictionary includes the
table's name, storage engine, and internal ID. Beginning with NDB 8.0.23, the range of properties
checked is expanded to include properties of the following data objects:

* Columns
* Indexes
» Foreign keys

In addition, details of any mismatches in metadata properties are now written to the MySQL
server error log. The formats used for the error log messages differ slightly depending on
whether the discrepancy is found on the table level or on the level of a column, index, or foreign
key. The format for a log error resulting from a table-level property mismatch is shown here,
where pr operty is the property name, ndb_val ue is the property value as stored in the

NDB dictionary, and nmysql d_val ue is the value of the property as stored in the MySQL data
dictionary:

Diff in 'property' detected, 'ndb_value' != 'nysqld_val ue'

For mismatches in properties of columns, indexes, and foreign keys, the format is as follows,
where obj type isone of col um, i ndex, or f or ei gn key, and obj _nane is the name of the
object:

Diff in obj_type 'obj_nane.property' detected, 'ndb_value' != 'nysqld_val ue'

Metadata checks are performed during automatic synchronization of NDB tables when they are
installed in the data dictionary of any mysql d acting as an SQL node in an NDB Cluster. If the
mysql d is debug-compiled, checks are also made whenever a CREATE TABLE statement is
executed, and whenever an NDB table is opened.

» Synchronization of user privileges with NDB_STORED_USER. A new mechanism for sharing
and synchronizing users, roles, and privileges between SQL nodes is available in NDB 8.0, using

17

https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

What is New in NDB Cluster 8.0

the NDB_STORED USER privilege. Distributed privileges as implemented in NDB 7.6 and earlier (see
Distributed Privileges Using Shared Grant Tables) are no longer supported.

Once a user account is created on an SQL node, the user and its privileges can be stored in NDB and
thus shared between all SQL nodes in the cluster by issuing a GRANT statement such as this one:

GRANT NDB_STORED USER ON *.* TO 'jon' @I ocal host " ;

NDB_STORED USER always has global scope and must be granted using ON *. *. System reserved
accounts such as nysql . sessi on@ ocal host ornysql . i nfoschema@ ocal host cannot be
assigned this privilege.

Roles can also be shared between SQL nodes by issuing the appropriate GRANT
NDB_STORED USER statement. Assigning such a role to a user does not cause the user to be
shared; the NDB_STORED USER privilege must be granted to each user explicitly.

A user or role having NDB_STORED USER, along with its privileges, is shared with all SQL nodes as
soon as they join a given NDB Cluster. It is possible to make such changes from any connected SQL
node, but recommended practice is to do so from a designated SQL node only, since the order of
execution of statements affecting privileges from different SQL nodes cannot be guaranteed to be
the same on all SQL nodes.

Prior to NDB 8.0.27, changes to the privileges of a user or role were synchronized immediately with
all connected SQL nodes. Beginning with MySQL 8.0.27, an SQL node takes a global read lock
when updating privieleges, which keeps concurrent changes executed by multiple SQL nodes from
causing a deadlock.

Implications for upgrades. Due to changes in the MySQL server's privilege system (see Grant
Tables), privilege tables using the NDB storage engine do not function correctly in NDB 8.0. It is

safe but not necessary to retain such privilege tables created in NDB 7.6 or earlier, but they are no
longer used for access control. In NDB 8.0, a nysql d acting as an SQL node and detecting such
tables in NDB writes a warning to the MySQL server log, and creates | nnoDB shadow tables local

to itself; such shadow tables are created on each MySQL server connected to the cluster. When
performing an upgrade from NDB 7.6 or earlier, the privilege tables using NDB can be removed safely
using ndb_dr op_t abl e once all MySQL servers acting as SQL nodes have been upgraded (see
Section 3.7, “Upgrading and Downgrading NDB Cluster”).

The ndb_r est or e utility's - -rest ore-privil ege-t abl es option is deprecated but continues
to be honored in NDB 8.0, and can still be used to restore distributed privilege tables present in a
backup taken from a previous release of NDB Cluster to a cluster running NDB 8.0. These tables are
handled as described in the preceeding paragraph.

Shared users and grants are stored in the ndb_sql _net adat a table, which ndb_r est or e by
default does not restore in NDB 8.0; you can specify the - - i ncl ude- st or ed- gr ant s option to
cause it to do so.

See Section 6.12, “Privilege Synchronization and NDB_STORED_USER?”, for more information.

INFORMATION_SCHEMA changes. The following changes are made in the display of
information regarding Disk Data files in the | NFORVATI ON_SCHENA. FI LES table:

e Tablespaces and log file groups are no longer represented in the FI LES table. (These constructs
are not actually files.)

« Each data file is now represented by a single row in the FI LES table. Each undo log file is also
now represented in this table by one row only. (Previously, a row was displayed for each copy of
each of these files on each data node.)

In addition, | NFORVATI ON_SCHENA tables are now populated with tablespace statistics for MySQL
Cluster tables. (Bug #27167728)

18

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_ndb-stored-user
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-files-table.html

What is New in NDB Cluster 8.0

e Error information with ndb_perror. The deprecated - - ndb option for per r or has been
removed. Instead, use ndb_perr or to obtain error message information from NDB error codes. (Bug
#81704, Bug #81705, Bug #23523926, Bug #23523957)

» Condition pushdown enhancements. Previously, condition pushdown was limited to predicate
terms referring to column values from the same table to which the condition was being pushed. In
NDB 8.0, this restriction is removed such that column values from tables earlier in the query plan can
also be referred to from pushed conditions. NDB 8.0 supports joins comparing column expressions,
as well as comparisons between columns in the same table. Columns and column expressions to be
compared must be of exactly the same type; this means they must also be of the same signedness,
length, character set, precision, and scale, whenever these attributes apply.

Pushing down larger parts of a condition allows more rows to be filtered out by the data nodes,
thereby reducing the number of rows which nysql d must handle during join processing. Another
benefit of these enhancements is that filtering can be performed in parallel in the LDM threads,
rather than in a single mysqld process on an SQL node; this has the potential to improve query
performance significantly.

Existing rules for type compatibility between column values being compared continue to apply (see
Engine Condition Pushdown Optimization).

These additional improvements are made in NDB 8.0.21.:

 Antijoins produced by the MySQL Optimizer through the transformation of NOT EXI STS and NOT
I N queries (see Optimizing IN and EXISTS Subquery Predicates with Semijoin Transformations)
can be pushed down to the data nodes by NDB.

This can be done when there is no unpushed condition on the table, and the query fulfills any other
conditions which must be met for an outer join to be pushed down.

« NDB attempts to identify and evaluate a non-dependent scalar subquery before trying to retrieve
any rows from the table to which it is attached. When it can do so, the value obtained is used as
part of a pushed condition, instead of using the subquery which provided the value.

Beginning with NDB 8.0.27, conditions pushed as part of a pushed query can now refer to columns
from ancestor tables within the same pushed query, subject to the following conditions:

¢ Pushed conditions may include any of the comparison operators <, <=, >, >=, =, and <>.
» Values being compared must be of the same type, including length, precision, and scale.

« NULL handling is performed according to the comparison semantics specified by the ISO SQL
standard; any comparison with NULL returns NULL.

Consider the table created using the statement shown here:

CREATE TABLE t (
x | NT PRI MARY KEY,
y I NT

) ENG NE=NDB;

A query suchas SELECT * FROMt AS a LEFT JONt AS b ON a.x=0 AND b.y>5 can
now use the engine condition pushdown optimization to push down the condition columny.

See Engine Condition Pushdown Optimization, for more information.

The NDB API methods branch_col _eq_paran{(), branch_col ne_paran(),
branch_col |t _param(), branch_col | e param),branch_col gt param),

19

https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_less-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_greater-than-or-equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_equal
https://dev.mysql.com/doc/refman/8.0/en/comparison-operators.html#operator_not-equal
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt-param

What is New in NDB Cluster 8.0

and branch_col ge_paran() were added in NDB 8.0.27 as part of this work. These
Ndbl nt er pr et edCode can be used to compare column values with values of parameters.

In addition, NdbScanFi | ter:: cnp_paran(), also added in NDB 8.0.27, makes it possible to
define comparisons between column values and parameter values for use in performing scans.

Increase in maximum row size. NDB 8.0 increases the maximum number of bytes that can be
stored in an NDBCLUSTER table from 14000 to 30000 bytes.

A BLOB or TEXT column continues to use 264 bytes of this total, as before.

The maximum offset for a fixed-width column of an NDB table is 8188 bytes; this is also unchanged
from previous releases.

See Section 2.7.5, “Limits Associated with Database Objects in NDB Cluster”, for more information.

ndb_mgm SHOW command and single user mode. In NDB 8.0, when the cluster in single user
mode, the output of the management client SHONcommand indicates which API or SQL node has
exclusive access while this mode is in effect.

Online column renames. Columns of NDB tables can now be renamed online, using
ALGORI THVEI NPLACE. See Section 6.11, “Online Operations with ALTER TABLE in NDB Cluster”,
for more information.

Improved ndb_mgmd startup times. Start times for management nodes daemon have been
significantly improved in NDB 8.0, in the following ways:

« Due to replacing the list data structure formerly used by ndb_ngnd for handling node properties
from configuration data with a hash table, overall startup times for the management server have
been decreased by a factor of 6 or more.

« In addition, in cases where data and SQL node host names not present in the management
server's host s file are used in the cluster configuration file, ndb_ngnd start times can be up to 20
times shorter than was previously the case.

NDB APl enhancements. NdbScanFilter::cnp() and several comparison methods of
Ndbl nt er pr et edCode can now be used to compare table column values with each other. The
affected Ndbl nt er pr et edCode methods are listed here:

 branch_col _eq()
e branch_col _ge()
e branch_col _gt ()
e branch_col | e()
e branch_col _It()

e branch_col ne()

For all of the methods just listed, table column values to be compared much be of exactly matching
types, including with respect to length, precision, signedness, scale, character set, and collation, as
applicable.

See the descriptions of the individual APl methods for more information.

Offline multithreaded index builds. Itis now possible to specify a set of cores to be used for

1/0 threads performing offline multithreaded builds of ordered indexes, as opposed to normal 1/0O
duties such as file /0 , compression , or decompression. “Offline” in this context refers to building
of ordered indexes performed when the parent table is not being written to; such building takes place

20

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge-param
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp-param
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-cmp
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-eq
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ge
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-gt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-le
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-lt
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbinterpretedcode.html#ndb-ndbinterpretedcode-branch-col-ne

What is New in NDB Cluster 8.0

when an NDB cluster performs a node or system restart, or as part of restoring a cluster from backup
using ndb_restore --rebuil d-indexes.

In addition, the default behavior for offline index build work is modified to use all cores available to
ndbnt d, rather limiting itself to the core reserved for the 1/O thread. Doing so can improve restart
and restore times and performance, availability, and the user experience.

This enhancement is implemented as follows:

1. The default value for Bui | dl ndexThr eads is changed from 0 to 128. This means that offline
ordered index builds are now multithreaded by default.

2. The default value for TwoPassl ni t i al NodeRest art Copy is changed from f al se totrue.
This means that an initial node restart first copies all data from a “live” node to one that is starting
—without creating any indexes—builds ordered indexes offline, and then again synchronizes its
data with the live node, that is, synchronizing twice and building indexes offline between the two
synchonizations. This causes an initial node restart to behave more like the normal restart of a
node, and reduces the time required for building indexes.

3. A new thread type (i dxbl d) is defined for the Thr eadConf i g configuration parameter, to allow
locking of offline index build threads to specific CPUs.

In addition, NDB now distinguishes the thread types that are accessible to Thr eadConf i g by these
two criteria:

1. Whether the thread is an execution thread. Threads of types mai n, | dm recv, rep, tc, and
send are execution threads; thread types i o, wat chdog, and i dxbl d are not.

2. Whether the allocation of the thread to a given task is permanent or temporary. Currently all
thread types except i dxbl d are permanent.

For additonal information, see the descriptions of the indicated parameters in the Manual. (Bug
#25835748, Bug #26928111)

logbuffers table backup process information. When performing an NDB backup, the

ndbi nf o. | ogbuf f er s table now displays information regarding buffer usage by the backup
process on each data node. This is implemented as rows reflecting two new log types in addition to
REDOand DD- UNDO. One of these rows has the log type BACKUP- DATA, which shows the amount
of data buffer used during backup to copy fragments to backup files. The other row has the log type
BACKUP- LOG, which displays the amount of log buffer used during the backup to record changes
made after the backup has started. One each of these | og_t ype rows is shown in the | ogbuf fers
table for each data node in the cluster. Rows having these two log types are present in the table only
while an NDB backup is currently in progress. (Bug #25822988)

ndbinfo.processes table on Windows. The process ID of the monitor process used on Windows
platforms by RESTART to spawn and restart a mysql d is now shown in the pr ocesses table as an
angel _pi d.

21

https://dev.mysql.com/doc/refman/8.0/en/restart.html

What is New in NDB Cluster 8.0

e String hashing improvements. Prior to NDB 8.0, all string hashing was based on first

transforming the string into a normalized form, then MD5-hashing the resulting binary image. This
could give rise to some performance problems, for the following reasons:

« The normalized string is always space padded to its full length. For a VARCHAR, this often involved
adding more spaces than there were characters in the original string.

e The string libraries were not optimized for this space padding, which added considerable overhead
in some use cases.

« The padding semantics varied between character sets, some of which were not padded to their full
length.

¢ The transformed string could become quite large, even without space padding; some Unicode 9.0
collations can transform a single code point into 100 bytes or more of character data.

« Subsequent MD5 hashing consisted mainly of padding with spaces, and was not particularly
efficient, possibly causing additional performance penalties by flushing significant portions of the
L1 cache.

A collation provides its own hash function, which hashes the string directly without first creating a
normalized string. In addition, for a Unicode 9.0 collation, the hash is computed without padding. NDB
now takes advantage of this built-in function whenever hashing a string identified as using a Unicode
9.0 collation.

Since, for other collations, there are existing databases which are hash partitioned on the
transformed string, NDB continues to employ the previous method for hashing strings that use these,
to maintain compatibility. (Bug #89590, Bug #89604, Bug #89609, Bug #27515000, Bug #27523758,
Bug #27522732)

RESET MASTER changes. Because the MySQL Server now executes RESET MASTER with a
global read lock, the behavior of this statement when used with NDB Cluster has changed in the
following two respects:

 Itis no longer guaranteed to be synonchrous; that is, it is now possible that a read coming
immediately before RESET MASTER s issued may not be logged until after the binary log has been
rotated.

« It now behaves in exactly the same fashion, whether the statement is issued on the same SQL
node that is writing the binary log, or on a different SQL node in the same cluster.

Note

SHOW BI NLOG EVENTS, FLUSH LOGS, and most data definition statements
continue, as they did in previous NDB versions, to operate in a synchronous
fashion.

ndb_restore option usage. The - - nodei d and - - backupi d options are now both required
when invoking ndb_r est or e.

ndb_log_bin default. NDB 8.0 changes the default value of the ndb_| og_bi n system variable
from TRUE to FALSE.

Dynamic transactional resource allocation. Allocation of resources in the transaction
coordinator is now performed using dynamic memory pools. This means that resource allocation
determined by data node configuration parameters such as MaxDVMLOper at i onsPer Tr ansact i on,
MaxNoOF Concur r ent | ndexQper at i ons, MaxNoOf Concur r ent Oper ati ons,

MaxNoCOF Concur r ent Scans, MaxNoOf Concur r ent Tr ansact i ons, MaxNoOf Fi redTri ggers,
MaxNoCOf Local Scans, and Tr ansact i onBuf f er Menor y is now done in such a way that, if the
load represented by each of these parameters is within the target load for all such resources, others
of these resources can be limited so as not to exceed the total resources available.

22

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs

What is New in NDB Cluster 8.0

As part of this work, several new data node parameters controlling transactional resources in DBTC,
listed here, have been added:

¢ ReservedConcurrent | ndexOperati ons

¢ ReservedConcurrent Operati ons

¢ ReservedConcurrent Scans

¢ ReservedConcurrent Transacti ons

* ReservedFiredTriggers

¢ ReservedLocal Scans

* ReservedTransacti onBuffer Menory.

See the descriptions of the parameters just listed for further information.

Backups using multiple LDMs per data node. NDB backups can now be performed in a
parallel fashion on individual data nodes using multiple local data managers (LDMs). (Previously,
backups were done in parallel across data nodes, but were always serial within data node
processes.) No special syntax is required for the START BACKUP command in the ndb_ngmclient
to enable this feature, but all data nodes must be using multiple LDMs. This means that data
nodes must be running ndbnt d (ndbd is single-threaded and thus always has only one LDM)

and they must be configured to use multiple LDMs before taking the backup; you can do this by
choosing an appropriate setting for one of the multi-threaded data node configuration parameters
MaxNoOf Execut i onThr eads or Thr eadConfi g.

Backups using multiple LDMs create subdirectories, one per LDM, under the BACKUP/

BACKUP- backup_i d/ directory. ndb_r est or e now detects these subdirectories automatically, and
if they exist, attempts to restore the backup in parallel; see Section 5.23.3, “Restoring from a backup
taken in parallel”, for details. (Single-threaded backups are restored as in previous versions of NDB.)
It is also possible to restore backups taken in parallel using an ndb_r est or e binary from a previous
version of NDB Cluster by modifying the usual restore procedure; Section 5.23.3.2, “Restoring a
parallel backup serially”, provides information on how to do this.

You can force the creation of single-threaded backups by setting the
Enabl eMul tit hr eadedBackup data node parameter to O for all data nodes in the [ndbd
def aul t] section of the cluster's global configuration file (confi g. i ni).

Binary configuration file enhancements. NDB 8.0 uses a new format for the management
server's binary configuration file. Previously, a maximum of 16381 sections could appear in the
cluster configuration file; now the maximum number of sections is 4G. This is intended to support
larger numbers of nodes in a cluster than was possible before this change.

Upgrades to the new format are relatively seamless, and should seldom if ever require manual
intervention, as the management server continues to be able to read the old format without issue. A
downgrade from NDB 8.0 to an older version of the NDB Cluster software requires manual removal
of any binary configuration files or, alternatively, starting the older management server binary with
the--initial option.

For more information, see Section 3.7, “Upgrading and Downgrading NDB Cluster”.

Increased number of data nodes. NDB 8.0 increases the maximum number of data nodes
supported per cluster to 144 (previously, this was 48). Data nodes can now use node IDs in the
range 1 to 144, inclusive.

Previously, the recommended node IDs for management nodes were 49 and 50. These are still
supported for management nodes, but using them as such limits the maximum number of data nodes

23

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtc.html

What is New in NDB Cluster 8.0

to 142; for this reason, it is now recommended that node IDs 145 and 146 are used for management
nodes.

As part of this work, the format used for the data node sysfi | e has been updated to version 2.
This file records information such as the last global checkpoint index, restart status, and node group
membership of each node (see NDB Cluster Data Node File System Directory).

RedoOverCommitCounter and RedoOverCommitLimit changes. Due to ambiguities in
the semantics for setting them to 0, the minimum value for each of the data node configuration
parameters RedoOver Conmi t Count er and RedoOver Conmi t Li mi t has been increased to 1.

ndb_autoincrement_prefetch_sz changes. The default value of the
ndb_aut oi ncrenent _pr ef et ch_sz server system variable is increased to 512.

Changes in parameter maxmimums and defaults. NDB 8.0 makes the following changes in
configuration parameter maximum and default values:

e The maximum for Dat aMenor y is increased to 16 terabytes.

e The maximum for Di skPageBuf f er Menory is also increased to 16 terabytes.
e The default value for St r i ngMenor y is increased to 25%.

e The default for LcpScanPr ogr essTi meout is increased to 180 seconds.

Disk Data checkpointing improvements. NDB Cluster 8.0 provides a nhumber of new
enhancements which help to reduce the latency of checkpoints of Disk Data tables and tablespaces
when using non-volatile memory devices such as solid-state drives and the NVMe specification for
such devices. These improvements include those in the following list:

« Avoiding bursts of checkpoint disk writes
e Speeding up checkpoints for disk data tablespaces when the redo log or the undo log becomes full

« Balancing checkpoints to disk and in-memory checkpoints against one other, when necessary

Protecting disk devices from overload to help ensure low latency under high loads

As part of this work, two data node configuration parameters have been added.

MaxDi skDat aLat ency places a ceiling on the degree of latency permitted for disk access and
causes transactions taking longer than this length of time to be aborted. Di skDat aUsi ngSaneDi sk
makes it possible to take advantage of housing Disk Data tablespaces on separate disks by
increasing the rate at which checkpoints of such tablespaces can be performed.

In addition, three new tables in the ndbi nf o database provide information about Disk Data
performance:

e The di skst at table reports on writes to Disk Data tablespaces during the past second

e The di skst at s_1sec table reports on writes to Disk Data tablespaces for each of the last 20
seconds

« The pgman_tinme_track st ats table reports on the latency of disk operations relating to Disk
Data tablespaces

Memory allocation and TransactionMemory. A new Transact i onMenory parameter
simplifies allocation of data node memory for transactions as part of the work done to pool

24

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

What is New in NDB Cluster 8.0

transactional and Local Data Manager (LDM) memory. This parameter is intended to replace several
older transactional memory parameters which have been deprecated.

Transaction memory can now be set in any of the three ways listed here:

< Several configuration parameters are incompatible with Tr ansact i onMenor y. If any of these are
set, Transact i onMenory cannot be set (see Parameters incompatible with TransactionMemory),
and the data node's transaction memory is determined as it was previous to NDB 8.0.

Note

Attempting to set Tr ansact i onMenor y and any of these parameters
concurrently in the confi g. i ni file prevents the management server from
starting.

« If Transact i onMenory is set, this value is used for determining transaction memory.
Transact i onMenory cannot be set if any of the incompatible parameters mentioned in the
previous item have also been set.

« If none of the incompatible parameters are set and Tr ansact i onMenory is also not set,
transaction memory is set by NDB.

For more information, see the description of Tr ansact i onMenor y, as well as Section 4.3.13, “Data
Node Memory Management”.

Support for additional fragment replicas. NDB 8.0 increases the maximum number of fragment
replicas supported in production from two to four. (Previously, it was possible to set NoOf Repl i cas
to 3 or 4, but this was not officially supported or verified in testing.)

Restoring by slices. Beginning with NDB 8.0.20, it is possible to divide a backup into roughly
equal portions (slices) and to restore these slices in parallel using two new options implemented for
ndb_restore:

e --num sl i ces determines the number of slices into which the backup should be divided.

e --slice-id provides the ID of the slice to be restored by the current instance of ndb_r est or e.

This makes it possible to employ multiple instances of ndb_r est or e to restore subsets of the
backup in parallel, potentially reducing the amount of time required to perform the restore operation.

For more information, see the description of the ndb_rest ore - - num sl i ces option.

Read from any fragment replica enabled. Read from any fragment replica is enabled by default
for all NDB tables. This means that the default value for the ndb_r ead_backup system variable is
now ON, and that the value of the NDB_TABLE comment option READ BACKUP is 1 when creating a
new NDB table. Enabling read from any fragment replica significantly improves performance for reads
from NDB tables, with minimal impact on writes.

For more information, see the description of the ndb_r ead_backup system variable, and Setting
NDB Comment Options.

ndb_blob_tool enhancements. Beginning with NDB 8.0.20, the ndb_bl ob_t ool utility can
detect missing blob parts for which inline parts exist and replace these with placeholder blob parts
(consisting of space characters) of the correct length. To check whether there are missing blob
parts, use the - - check- m ssi ng option with this program. To replace any missing blob parts with
placeholders, use the - - add- mi ssi ng option.

For more information, see Section 5.6, “ndb_blob_tool — Check and Repair BLOB and TEXT
columns of NDB Cluster Tables”.

25

https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html

What is New in NDB Cluster 8.0

e ndbinfo versioning. NDB 8.0.20 and later supports versioning for ndbi nf o tables, and maintains

the current definitions for its tables internally. At startup, NDB compares its supported ndbi nf o
version with the version stored in the data dictionary. If the versions differ, NDB drops any old
ndbi nf o tables and recreates them using the current definitions.

Support for Fedora Linux. Beginning with NDB 8.0.20, Fedora Linux is a supported platform for
NDB Cluster Community releases and can be installed using the RPMs supplied for this purpose by
Oracle. These can be obtained from the NDB Cluster downloads page.

NDB programs—NDBT dependency removal. = The dependency of a number of NDB utility
programs on the NDBT library has been removed. This library is used internally for development, and
is not required for normal use; its inclusion in these programs could lead to unwanted issues when
testing.

Affected programs are listed here, along with the NDB versions in which the dependency was
removed:

e ndb_restore
* ndb_delete_all
* ndb_show t abl es (NDB 8.0.20)

* ndb_wai t er (NDB 8.0.20)

The principal effect of this change for users is that these programs no longer print
NDBT_ProgranExit - status following completion of a run. Applications that depend upon such
behavior should be updated to reflect the change when upgrading to the indicated versions.

Pushdown of outer joins and semijoins. Work done in NDB 8.0.20 allows many outer joins and
semijoins, and not only those using a primary key or unique key lookup, to be pushed down to the
data nodes (see Engine Condition Pushdown Optimization).

Outer joins using scans which can now be pushed include those which meet the following conditions:
* There are no unpushed conditions on the table

« There are no unpushed conditions on other tables in the same join nest, or in upper join nests on
which it depends

< All other tables in the same join nest, or in upper join nests on which it depends, are also pushed

A semijoin that uses an index scan can now be pushed if it meets the the conditions just noted for a
pushed outer join, and it uses the f i r st Mat ch strategy (see Optimizing IN and EXISTS Subquery
Predicates with Semijoin Transformations).

When a join cannot be pushed, EXPLAI N should provide the reason or reasons.

Foreign keys and lettercasing. NDB stores the names of foreign keys using the case with
which they were defined. Formerly, when the value of the | ower _case_t abl e_nanes system
variable was set to 0, it performed case-sensitive comparisons of foreign key hames as used in
SELECT and other SQL statements with the names as stored. Beginning with NDB 8.0.20, such
comparisons are now always performed in a case-insensitive fashion, regardless of the value of
| oner case_t abl e_nanes.

Multiple transporters. NDB 8.0.20 introduces support for multiple transporters to handle
node-to-node communication between pairs of data nodes. This facilitates higher rates of update

26

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/engine-condition-pushdown-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/semijoins.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/select.html

What is New in NDB Cluster 8.0

operations for each node group in the cluster, and helps avoid constraints imposed by system or
other limitations on inter-node communications using a single socket.

By default, NDB now uses a number of transporters based on the number of local data management
(LDM) threads or the number of transaction coordinator (TC) threads, whichever is greater. By
default, the number of transporters is equal to half of this number. While the default should perform
well for most workloads, it is possible to adjust the number of transporters employed by each node
group by setting the NodeGr oupTr ansport er s data node configuration parameter (also introduced
in NDB 8.0.20), up a maximum of the greater of the number of LDM threads or the number of TC
threads. Setting it to 0 causes the number of transporters to be the same as the number of LDM
threads.

ndb_restore: primary key schema changes. NDB 8.0.21 (and later) supports different primary
key definitions for source and target tables when restoring an NDB native backup with ndb_r est ore
when it is run with the - - al | ow pk- changes option. Both increasing and decreasing the number of
columns making up the original primary key are supported.

When the primary key is extended with an additional column or columns, any columns added must
be defined as NOT NULL, and no values in any such columns may be changed during the time that
the backup is being taken. Because some applications set all column values in a row when updating
it, whether or not all values are actually changed, this can cause a restore operation to fail even if no
values in the column to be added to the primary key have changed. You can override this behavior
using the - - i gnor e- ext ended- pk- updat es option also added in NDB 8.0.21; in this case, you
must ensure that no such values are changed.

A column can be removed from the table's primary key whether or not this column remains part of
the table.

For more information, see the description of the - - al | ow- pk- changes option for ndb_r est or e.

Merging backups with ndb_restore. In some cases, it may be desirable to consolidate data
originally stored in different instances of NDB Cluster (all using the same schema) into a single
target NDB Cluster. This is now supported when using backups created in the ndb_ngmclient (see
Section 6.8.2, “Using The NDB Cluster Management Client to Create a Backup”) and restoring
them with ndb_r est or e, using the - - r enap- col unm option added in NDB 8.0.21 along with - -
rest or e- dat a (and possibly additional compatible options as needed or desired). - - r emap-

col umm can be employed to handle cases in which primary and unique key values are overlapping
between source clusters, and it is necessary that they do not overlap in the target cluster, as well as
to preserve other relationships between tables such as foreign keys.

- - remap- col umm takes as its argument a string having the format db. t bl . col : f n: ar gs, where
db, t bl , and col are, respectively, the names of the database, table, and column, f n is the name

of a remapping function, and ar gs is one or more arguments to f n. There is no default value. Only
of f set is supported as the function name, with ar gs as the integer offset to be applied to the value
of the column when inserting it into the target table from the backup. This column must be one of | NT
or Bl G NT; the allowed range of the offset value is the same as the signed version of that type (this
allows the offset to be negative if desired).

The new option can be used multiple times in the same invocation of ndb_r est or e, so that you can
remap to new values multiple columns of the same table, different tables, or both. The offset value
does not have to be the same for all instances of the option.

In addition, two new options are provided for ndb_desc, also beginning in NDB 8.0.21:

e --auto-inc (short form - a): Includes the the next auto-increment value in the output, if the table
has an AUTO | NCREVENT column.

27

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

What is New in NDB Cluster 8.0

e --cont ext (short form - x): Provides extra information about the table, including the schema,
database name, table name, and internal ID.

For more information and examples, see the description of the - - r emap- col unm option.

Send thread improvements. As of NDB 8.0.20, each send thread now handles sends to a
subset of transporters, and each block thread now assists only one send thread, resulting in more
send threads, and thus better performance and data node scalability.

Adaptive spin control using SpinMethod. A simple interface for setting up adaptive CPU spin
on platforms supporting it, using the Spi nMet hod data node parameter. This parameter (added in
NDB 8.0.20, functional beginning with NDB 8.0.24) has four settings, one each for static spinning,
cost-based adaptive spinning, latency-optimized adaptive spinning, and adaptive spinning optimized
for database machines on which each thread has its own CPU. Each of these settings causes the
data node to use a set of predetermined values for one or more spin parameters which enable
adaptive spinning, set spin timing, and set spin overhead, as appropriate to a given scenario, thus
obviating the need to set these directly for common use cases.

For fine-tuning spin behavior, it is also possible to set these and additional spin parameters directly,
using the existing Schedul er Spi nTi mer data node configuration parameter as well as the
following DUMP commands in the ndb_ngmclient:

e DUVMP 104000 (Set Schedul er Spi nTi ner Al |') : Sets spin time for all threads
e« DUVMP 104001 (Set Schedul er Spi nTi nmer Thr ead) : Sets spin time for a specified thread

« DUWMP 104002 (Set Al | owedSpi nOver head) : Sets spin overhead as the number of units of
CPU time allowed to gain 1 unit of latency

« DUMP 104003 (Set Spi nti mePer Cal |): Sets the time for a call to spin
« DUVMP 104004 (Enabl eAdapti veSpi nni ng) : Enables or disables adpative spinning

NDB 8.0.20 also adds a new TCP configuration parameter TcpSpi nTi ne which sets the time to spin
for a given TCP connection.

The ndb_t op tool is also enhanced to provide spin time information per thread.

For additional information, see the description of the Spi nMet hod parameter, the listed DUMP
commands, and Section 5.29, “ndb_top — View CPU usage information for NDB threads”.

Disk Data and cluster restarts. Beginning with NDB 8.0.21, an initial restart of the cluster forces
the removal of all Disk Data objects such as tablespaces and log file groups, including any data files
and undo log files associated with these objects.

See Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

Disk Data extent allocation. Beginning with NDB 8.0.20, allocation of extents in data files is
done in a round-robin fashion among all data files used by a given tablespace. This is expected to
improve distribution of data in cases where multiple storage devices are used for Disk Data storage.

For more information, see Section 6.10.1, “NDB Cluster Disk Data Objects”.

--ndb-log-fail-terminate option. Beginning with NDB 8.0.21, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting nysql d with
the - - ndb- 1 og-fai |l -t erm nat e option.

AllowUnresolvedHostNames parameter. By default, a management node refuses to start when
it cannot resolve a host name present in the global configuration file, which can be problematic in
some environments such as Kubernetes. Beginning with NDB 8.0.22, it is possible to override this
behavior by setting Al | ownr esol vedHost Nanes totrueinthe[tcp defaul t] section of

28

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104000.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104001.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104002.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104003.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-104004.html

What is New in NDB Cluster 8.0

the cluster global confugration file (confi g. i ni file). Doing so causes such errors to be treated as
warnings instead, and to permit ndb_ngnd to continue starting

Blob write performance enhancements. NDB 8.0.22 implements a number of improvements
which allow more efficient batching when modifying multiple blob columns in the same row, or when
modifying multiple rows containing blob columns in the same statement, by reducing the number of
round trips required between an SQL or other API node and the data nodes when applying these
modifications. The performance of many | NSERT, UPDATE, and DELETE statements can thus be
improved. Examples of such statements are listed here, where t abl e is an NDB table containing one
or more Blob columns:

« I NSERT I NTO tabl e VALUES RON 1, blob_val uel, blob_value2, ...),thatis,
insertion of a row containing one or more Blob columns

I NSERT | NTO tabl e VALUES ROAN 1, blob_valuel), RON2, blob_value2),
ROWN 3, blob_value3), ...,thatis, insertion of multiple rows containing one or more Blob
columns

« UPDATE table SET blob_columl = bl ob_val uel, blob_colum2 =
bl ob_val ue2,

¢ UPDATE table SET bl ob_colum = bl ob_val ue WHERE primary_key_colum in
(val ue_li st), where the primary key column is not a Blob type

e DELETE FROM tabl e WHERE prinmary_key col utm = val ue, where the primary key
column is not a Blob type

e DELETE FROM tabl e WHERE primary_key_colum | N (val ue_I i st), where the primary
key column is not a Blob type

Other SQL statements may benefit from these improvements as well. These include LOAD DATA

| NFI LE and CREATE TABLE ... SELECTInaddition, ALTER TABLE table ENG NE =
NDB, where t abl e uses a storage engine other than NDB prior to execution of the statement, may
also execute more efficiently.

This enhancement applies to statements affecting columns of MySQL type BLOB, VEDI UVBLOB,
LONGBLOB, TEXT, MEDI UMTEXT, and LONGTEXT. Statements which update TI NYBLOB or TI NYTEXT
columns (or both types) only are not affected by this work, and no changes in their performance
should be expected.

The performance of some SQL statements is not noticeably improved by this enhancement, due to
the fact that they require scans of table Blob columns, which breaks up batching. Such statements
include those of the types listed here:

e SELECT FROM tabl e [WHERE key_colum I N (bl ob_val ue_list)], whererows are
selected by matching on a primary key or unique key column which uses a Blob type

 UPDATE table SET blob_colum = bl ob_val ue WHERE condi ti on, usingacondition
which does not depend on a unique value

e DELETE FROM t abl e WHERE condi ti on to delete rows containing one or more Blob columns,
using a condi t i on which does not depend on a unique value

* A copying ALTER TABLE statement on a table which already used the NDB storage engine prior
to executing the statement, and whose rows contain one or more Blob columns before or after the
statement is executed (or both)

To take advantage of this improvement to its fullest extent, you may wish to increase the values
used for the - - ndb- bat ch- si ze and - - ndb- bl ob-wri t e- bat ch- byt es options for nysql d, to
minimize the number of round trips required to modify blobs. For replication, it is also recommended

29

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-select.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

What is New in NDB Cluster 8.0

that you enable the sl ave_al | ow_bat chi ng system variable, which minimizes the number of
round trips required by the replica cluster to apply epoch transactions.

Note

Beginning with NDB 8.0.30, you should also use
ndb_replica_batch_size instead of - - ndb- bat ch-si ze, and
ndb_replica bl ob wite batch_bytes rather than - - ndb- bl ob-
wri t e- bat ch- byt es. See the descriptions of these variables, as well
as Section 7.5, “Preparing the NDB Cluster for Replication”, for more
information.

* Node.js update. Beginning with with NDB 8.0.22, the NDB adapter for Node.js is built using

version 12.18.3, and only that version (or a later version of Node.js) is now supported.

Encrypted backups. NDB 8.0.22 adds support for backup files encrypted using AES-256-

CBC,; this is intended to protect against recovery of data from backups that have been accessed by
unathorized parties. When encrypted, backup data is protected by a user-supplied password. The
password can be any string consisting of up to 256 characters from the range of printable ASCII
characters otherthan!,"' ,",$, %\, and *. Retention of the password used to encrypt any given
NDB Cluster backup must be performed by the user or application; NDB does not save the password.
The password can be empty, although this is hot recommended.

When taking an NDB Cluster backup, you can encrypt it by using ENCRYPT PASSWORD=passwor d
with the management client START BACKUP command. Users of the MGM API can also initiate an
encrypted backup by calling ndb_ngm st art _backup4() .

You can encrypt existing backup files using the ndbxf r mutility which is added to the NDB Cluster
distribution in the 8.0.22 release; this program can also be employed for decrypting encrypted
backup files. In addition, ndbxf r mcan compress backup files and decompress compressed backup
files using the same method that is employed by NDB Cluster for creating backups when the

Conpr essedBackup configuration parameter is set to 1.

To restore from an encrypted backup, use ndb_r est or e with the options - - decr ypt

and - - backup- passwor d. Both options are required, along with any others that would be
needed to restore the same backup if it were not encrypted. ndb_pri nt _backup_fil e and
ndbxf r mcan also read encrypted files using, respectively, - P passwor d and - - decr ypt -
passwor d=passwor d.

In all cases in which a password is supplied together with an option for encryption or decryption,
the password must be quoted; you can use either single or double quotation marks to delimit the
password.

Beginning with NDB 8.0.24, several NDB programs, listed here, also support input of the password
from standard input, similarly to how this is done when logging in interactively with the mysql client
using the - - passwor d option (without including the password on the command line):

e Forndb_restore andndb_print_backup_fil e, the--backup-password-fromstdin
option enables input of the password in a secure fashion, similar to how it is done by the nmysq|l
client' - - passwor d option. For ndb_r est or e, use the option together with the - - decr ypt
option; for ndb_pri nt _backup_fil e, use the option in place of the - P option.

e For ndb_ngmthe option - - backup- passwor d-from st di n, is supported together with - -
execut e "START BACKUP [options]" for starting a cluster backup from the system shell.

30

https://dev.mysql.com/doc/ndbapi/en/mgm-functions-backup.html#mgm-ndb-mgm-start-backup4
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password
https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_password

What is New in NDB Cluster 8.0

e Two ndbxf r moptions, - - encrypt - passwor d-from st di nand - - decr ypt - passwor d-
from st di n, cause similar behavior when using that program to encrypt or to decrypt a backup
file.

See the descriptions of the programs just listed for more information.

It is also possible, beginning with NDB 8.0.22, to enforce encryption of backups by setting

Requi r eEncr ypt edBackup=1 in the [ndbd def aul t] section of the cluster global configuration
file. When this is done, the ndb_ngmclient rejects any attempt to perform a backup that is not
encrypted.

Beginning with NDB 8.0.24, you can cause ndb_ngmto use encryption whenever it creates a backup
by starting it with - - encr ypt - backup. In this case, the user is prompted for a password when
invoking START BACKUP if none is supplied.

IPv6 support. Beginning with NDB 8.0.22, IPv6 addressing is supported for connections to
management and data nodes; this includes connections between management and data nodes with
SQL nodes. When configuring a cluster, you can use numeric IPv6 addresses, host names which
resolve to IPv6 addresses or both.

For IPv6 addressing to work, the operating platform and network on which the cluster is deployed
must support IPv6. As when using IPv4 addressing, hostname resolution to IPv6 addresses must be
provided by the operating platform.

IPv4 addressing continues to be supported by NDB. Using IPv4 and IPv6 addresses concurrently is
not recommended, but can be made to work in the following cases:

« When the management node is configured with IPv6 and data nodes are configured with IPv4
addresses in the confi g. i ni file: This works if - - bi nd- addr ess is not used with ngnd, and
data nodes are started with - - ndb- connect st ri ng set to the IPv4 address of the management
nodes.

* When the management node is configured with IPv4 and data nodes are configured with IPv6
addresses in conf i g. i ni : Similarly to the other case, this works if - - bi nd- addr ess is not
passed to ngnd and data nodes are started with - - ndb- connect st ri ng set to the IPv6 address
of the management node.

These cases work because ndb_ngnd does not bind to any IP address by default.

To perform an upgrade from a version of NDB that does not support IPv6 addressing to one that
does, provided that the network supports IPv4 and IPv6, first perform the software upgrade; after this
has been done, you can update IPv4 addresses used in the confi g. i ni file with IPv6 addresses.
After this, to cause the configuration changes to take effect and to make the cluster start using the
IPv6 addresses, it is necessary to perform a system restart of the cluster.

Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_set up. py) is deprecated in NDB 8.0.22, and is removed in NDB 8.0.23 and
later. It is no longer supported.

ndbmemcache deprecation and removal. ndbnentache is no longer supported.
ndbnmentache was deprecated in NDB 8.0.22, and removed in NDB 8.0.23.

ndbinfo backup_id table. NDB 8.0.24 adds a backup_i d table to the ndbi nf o information
database. This is intended to serve as a replacement for obtaining this information by using
ndb_sel ect _al | to dump the contents of the internal SYSTAB_0 tyable, which is error-prone and
takes an excessively long time to perform.

This table has a single column and row containing the ID of the most recent backup of the cluster
taken using the START BACKUP management client command. In the event that no backup of this
cluster can be found, the table contains a single row whose column value is 0.

31

What is New in NDB Cluster 8.0

e Table partitioning enhancements. NDB 8.0.23 introduces a new method for handling table

partitions and fragments, which can determine the number of local data managers (LDMs) for a given
data node independently of the number of redo log parts. This means that the number of LDMs can
now be highly variable. NDB can employ this method when the Cl assi cFr agnent at i on data node
configuration parameter, also implemented in NDB 8.0.23, is set to f al se; when this is the case,

the number of LDMs is no longer used to determine how many partitions to create for a table per
data node, and the value of the Parti t i onsPer Node parameter (also introduced in NDB 8.0.23)
determines this number instead, which is also used for calculating the number of fragments used for
atable.

When Cl assi cFragnent at i on has its default value t r ue, then the traditional method of using the
number of LDMs is used to determine the number of fragments that a table should have.

For more information, see the descriptions of the new parameters referenced previously, in Multi-
Threading Configuration Parameters (ndbmtd).

Terminology updates. To align with work begun in MySQL 8.0.21 and NDB 8.0.21, NDB 8.0.23
implements a number of changes in terminology, listed here:

e The system variable ndb_sl ave_confli ct _rol e is now deprecated. It is replaced by
ndb_conflict _role.

« Many NDB status variables are deprecated. These variables, and their replacements, are shown in
the following table:

Table 2.1 Deprecated NDB status variables and their replacements

Deprecated variable Replacement

Ndb_api _adaptive_send _deferred_count | Ndbavepi adapti ve_send_deferred count| replica

Ndb_api _adaptive_send_forced_count s|Ndke api _adaptive send forced count _replica

Ndb_api _adapti ve_send_unforced_count |[NMdbavepi _adapti ve_send_unforced_count| replica

Ndb_api _bytes_received_count_slave |[Ndb_api bytes received count _replica

Ndb_api bytes_sent count sl ave Ndb_api _bytes _sent _count replica
Ndb_api _pk_op_count _sl ave Ndb_api _pk_op_count _replica
Ndb_api _pruned_scan_count _sl ave Ndb_api _pruned_scan_count _replica
Ndb_api _range_scan_count _sl ave Ndb_api _range_scan_count _replica
Ndb_api _read_row count sl ave Ndb_api _read_row count _replica
Ndb_api _scan_bat ch_count _sl ave Ndb_api _scan_batch_count replica
Ndb_api _tabl e_scan_count _sl ave Ndb_api _tabl e_scan_count _replica
Ndb_api _trans_abort count _sl ave Ndb_api _trans_abort _count _replica
Ndb_api _trans_cl ose_count sl ave Ndb_api trans_cl ose _count _replica
Ndb_api _trans_commit_count _sl ave Ndb_api _trans_conmit_count _replica

Ndb_api _trans_l ocal read_row count _s|Ndke api _trans_| ocal read_row count _replica

Ndb_api trans_start _count _sl ave Ndb_api _trans_start_count _replica

Ndb_api _uk_op_count _sl ave Ndb_api _uk_op_count replica

Ndb_api _wait_exec_conpl ete_count sl algdb_api _wait_exec_conpl ete_count _rep|ica

Ndb_api _wait_neta_request_count_sl aveNdb_api _wait_neta_request _count _repljca

Ndb_api _wai t _nanos_count _sl ave Ndb_api _wait _nanos_count replica

Ndb_api _wait_scan_result count sl ave/Ndb_api wait _scan_result_count _replica

32

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

What is New in NDB Cluster 8.0

Deprecated variable Replacement

Ndb_sl ave_max_replicat ed_epoch Ndb_replica _max_replicated_epoch

The deprecated status variables continue to be shown in the output of SHOW STATUS, but
applications should be updated as soon as possible not to rely upon them any longer, since their
availability in future release series is not guaranteed.

e The values ADD TABLE NMASTER and ADD TABLE_SLAVE previously shown in the
tab_copy_st at us column of the ndbi nf o ndbi nfo. tabl e _di stribution_stat us table
are deprecated. These are replaced by, respectively, the values ADD TABLE COORDI NATOR and
ADD_TABLE_PARTI Cl PANT.

e The - - hel p output of some NDB client and utility programs such as ndb_r est or e has been
modified.

* ThreadConfig enhancements. As of NDB 8.0.23, the configurability of the Thr eadConf i g
parameter has been extended with two new thread types, listed here:

e query: A query thread works (only) on READ COVM TTED queries. A query thread also acts as
a recovery thread. The number of query threads must be 0, 1, 2, or 3 times the number of LDM
threads. O (the default, unless using Thr eadConf i g, or Aut ormat i cThr eadConf i g is enabled)
causes LDMs to behave as they did prior to NDB 8.0.23.

e recover : Arecovery thread retrieves data from a local checkpoint. A recovery thread specified as
such never acts as a query thread.

It is also possible to combine the existing mai n and r ep threads in either of two ways:

« Into a single thread by setting either one of these arguments to 0. When this is done, the resulting
combined thread is shown with the name nai n_r ep in the ndbi nf 0. t hr eads table.

« Together with the r ecv thread by setting both | dmand t ¢ to 0, and setting r ecv to 1. In this case,
the combined thread is named nai n_rep_recv.

In addition, the maximum numbers of a number of existing thread types have been increased. The
new maximums, including those for query threads and recovery threads, are listed here:

¢ LDM: 332

¢ Query: 332

* Recovery: 332

+ TC: 128

* Receive: 64

* Send: 64

* Main: 2

Maximums for other thread types remain unchanged.

Also, as the result of work done relating to this task, NDB now employs mutexes to protect job buffers
when using more than 32 block threads. While this can cause a slight decrease in performance (1 to
2 percent in most cases), it also significantly reduces the amount of memory required by very large
configurations. For example, a setup with 64 threads which used 2 GB of job buffer memory prior

to NDB 8.0.23 should require only about 1 GB instead in NDB 8.0.23 and later. In our testing this

33

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed

What is New in NDB Cluster 8.0

has resulted in an overall improvement on the order of 5 percent in the execution of very complex
queries.

For further information, see the descriptions of the Thr eadConf i g parameter and the
ndbi nf o. t hr eads table.

ThreadConfig thread count changes. As the result of work done in NDB 8.0.30, setting the
value of Thr eadConf i g requires including i n, r ep, r ecv, and | dmin the Thr eadConf i g value
string explicitly, in this and subsequent NDB Cluster releases. In addition, count =0 must be set
explicitly for each thread type (of mai n, r ep, or | dn that is not to be used, and setting count =1 for
replication threads (r ep) requires also setting count =1 for mai n.

These changes can have a significant impact on upgrades of NDB clusters where this parameter is
in use; see Section 3.7, “Upgrading and Downgrading NDB Cluster”, for more information.

ndbmtd Thread Auto-Configuration. Beginning with NDB 8.0.23, it is possible to employ
automatic configuration of threads for multi-threaded data nodes using the ndbnt d configuration
parameter Aut omat i cThr eadConf i g. When this parameter is set to 1, NDB sets up thread
assignments automatically, based on the number of processors available to applications, for all
thread supported thread types, including the new query and r ecover thread types described

in the previous item. If the system does not limit the number of processors, you can do so if
desired by setting NumCPUs (also added in NDB 8.0.23). Otherwise, automatic thread configuration
accommodates up to 1024 CPUs.

Automatic thread configuration occurs regardless of any values set for Thr eadConfi g or
MaxNoCOf Execut i onThr eads in confi g. i ni ; this means that it is not necessary to set either of
these parameters.

In addition, NDB 8.0.23 implements a number of new ndbi nf o information database tables
providing information about hardware and CPU availability, as well as CPU usage by NDB data
nodes. These tables are listed here:

e cpudat a
e cpudata_1lsec
e cpudat a_20sec
e cpudat a_50ns
e cpuinfo
 hwi nfo

Some of these tables are not available on every platform supported by NDB Cluster; see the
individual descriptions of them for more information.

Hierachical views of NDB database objects. The di ct _obj tree table, added to the
ndbi nf o information database in NDB 8.0.24, can provide hierarchical and tree-like views of many
NDB database objects, including the following:

» Tables and associated indexes
» Tablespaces and associated data files

» Logfile groups and associated undo log files

For more information and examples, see Section 6.14.25, “The ndbinfo dict_obj tree Table”.

34

What is New in NDB Cluster 8.0

e Index statistics enhancements. NDB 8.0.24 implements the following improvements in
calculation of index statistics:

« Index statistics were previously collected from one fragment only; this is changed such that this
extrapolation is extended to additional fragments.

« The algorithm used for very small tables, such as those having very few rows where results are
discarded, has been improved, so that estimates for such tables should be more accurate than
previously.

As of NDB 8.0.27, the index statistics tables are created and updated automatically by default,
| ndexSt at Aut oCr eat e and | ndex St at Aut oUpdat e both default to 1 (enabled) rather than 0
(disabled), and it is no longer necessary to run ANALYZE TABLE to update the statistics.

For additional information, see Section 6.13, “NDB API Statistics Counters and Variables”.

Conversion between NULL and NOT NULL during restore operations. Beginning with NDB
8.0.26, ndb_r est or e can support restoring of NULL columns as NOT NULL and the reverse, using
the options listed here;

» To restore a NULL column as NOT NULL, use the - -1 ossy- conver si ons option.

The column originally declared as NULL must not contain any NULL rows; if it does, ndb_r est ore
exits with an error.

e Torestore a NOT NULL column as NULL, use the - - pronot e- at tri but es option.

For more information, see the descriptions of the indicated ndb_r est or e options.

SQL-compliant NULL comparison mode for NdbScanFilter. Traditionally, when making
comparisons involving NULL, NdbScanFi | t er treats NULL as equal to NULL (and thus considers
NULL == NULL to be TRUE). This is not the same as specified by the SQL Standard, which requires
that any comparison with NULL return NULL, including NULL == NULL.

Previously, it was not possible for an NDB API application to override this behavior; beginning

with NDB 8.0.26, you can do so by calling NdbScanFi | ter: : set Sgl CpSenant i cs() prior to
creating a scan filter. (Thus, this method is always invoked as a class method and not as an instance
method.) Doing so causes the next NdbScanFi | t er object to be created to employ SQL-compliant
NULL comparison for all comparison operations performed over the lifetime of the instance. You must
invoke the method for each NdbScanFi | t er object that should use SQL-compliant comparisons.

For more information, see NdbScanFilter::setSglCmpSemantics().

Deprecation of NDB API .FRM file methods. MySQL 8.0 and NDB 8.0 no longer use

. FRMfiles for storing table metadata. For this reason, the NDB API methods get Fr nDat a() ,
get FrmLengt h(), and set Frn() are deprecated as of NDB 8.0.27, and subject to removal
in a future release. For reading and writing table metadata, use get Ext r aMet adat a() and
set Ext r aMet adat a() instead.

Preference for IPv4 or IPv6 addressing. NDB 8.0.26 adds the Pr ef er | PVer si on
configuration parameter, which controls the addressing preference for DNS resolution. IPv4
(Pref er | PVer si on=4) is the default. Because configuration retrieval in NDB requires that this
preference be the same for all TCP connections, you should setitonly inthe [t cp def aul t]
section of the cluster global configuration (confi g. i ni) file.

See Section 4.3.10, “NDB Cluster TCP/IP Connections”, for more information.

Logging enhancements. Previously, analysis of NDB Cluster data node and management node
logs could be hampered by the fact that different log messages used different formats, and that not
all log messages included timestamps. Such issues were due in part to the fact that logging was

35

https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbscanfilter.html#ndb-ndbscanfilter-setsqlcmpsemantics
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmdata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getfrmlength
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setfrm
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-getextrametadata
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html#ndb-table-setextrametadata

What is New in NDB Cluster 8.0

performed by a number of different mechanisms, such as the functions pri ntf, f printf, ndbout,
and ndbout _c, overloading of the << operator, and so on.

We fix these problems by standardizing on the Event Logger mechanism, which is already present
in NDB, and which begins each log message with a timestamp in YYYY- MM DD HH: M\t SS format.

See Section 6.3, “Event Reports Generated in NDB Cluster”, for more information about NDB Cluster
event logs and the Event Logger log message format.

Copying ALTER TABLE improvements. Beginning with NDB 8.0.27, a copying ALTER TABLE
on an NDB table compares the fragment commit counts for the source table before and after
performing the copy. This allows the SQL node executing this statement to determine whether
there has been any concurrent write activity to the table being altered; if so, the SQL node can then
terminate the operation.

When concurrent writes are detected being made to the table being altered, the ALTER TABLE
statement is rejected with the error Det ect ed change to data in source table
during copying ALTER TABLE. Alter aborted to avoid inconsistency
(ER_TABLE_DEF_CHANGED). Stopping the alter operation, rather than allowing it to proceed with
concurrent writes taking place, can help prevent silent data loss or corruption.

ndbinfo index_stats table. NDB 8.0.28 adds the i ndex_st at s table, which provides basic
information about NDB index statistics. It is intended primarily for internal testing, but may be useful
as a supplement to ndb_i ndex_st at .

ndb_import --table option. Prior to NDB 8.0.28, ndb_i nport always imported the data read
from a CSV file into a table whose name was derived from the name of the file being read. NDB
8.0.28 adds a - - t abl e option (short form: - t) for this program to specify the name of the target
table directly, and override the previous behavior.

The defult behavior for ndb_i nport remains to use the base name of the input file as the name of
the target table.

ndb_import --missing-ai-column option. Beginning with NDB 8.0.29, ndb_i npor t can import
data from a CSV file that contains empty values for an AUTO | NCREMENT column, using the - -

m ssi ng- ai - col umm option introduced in that release. The option can be used with one or more
tables containing such a column.

In order for this option to work, the AUTO_| NCREMENT column in the CSV file must not contain any
values. Otherwise, the import operation cannot proceed.

ndb_import and empty lines. ndb_i nport has always rejected any empty lines encountered
in an incoming CSV file. NDB 8.0.30 adds support for importing empty lines into a single column,
provided that it is possible to convert the empty value into a column value.

ndb_restore --with-apply-status option. Beginning with NDB 8.0.29, it is possible to restore the
ndb_appl y_st at us table from an NDB backup, using ndb_r est or e with the - - wi t h- appl y-

st at us option added in that release. To use this option, you must also use - - r est or e- dat a when
invoking ndb_r est ore.

--w t h-appl y- st at us restores all rows of the ndb_appl y_st at us table except for the row
having server i d = 0; to restore this row, use - - r est or e- epoch. For more information, see
ndb_apply_status Table, as the description of the - - wi t h- appl y- st at us option.

SQL access to tables with missing indexes. Prior to NDB 8.0.29, when a user query attempted
to open an NDB table with a missing or broken index, the MySQL server raised NDB error 4243
(Index not found). This situation could arise when constraint violations or missing data make it

36

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_table_def_changed
https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4243

What is New in NDB Cluster 8.0

impossible to restore an index on an NDB table, and ndb_r est or e - - di sabl e-i ndexes was used
to restore the data without the index.

Beginning with NDB 8.0.29, an SQL query against an NDB table which has missing indexes
succeeds if the query does not use any of the missing indexes. Otherwise, the query is rejected
with ER_NOT_KEYFI LE. In this case, you can use ALTER TABLE ... ALTER | NDEX ...

I NVI SI BLE to keep the MySQL Optimizer from trying to use the index, or drop the index (and then
possibly re-create it) using the appropriate SQL statements.

NDB API List::clear() method. The NDB API Di cti onary methods | i st Event s(),
listlndexes(),andlistObjects() each require areferencetoali st object which is empty.
Previously, reusing an existing Li st with any of these methods was problematic for this reason.
NDB 8.0.29 makes this easier by implementing a cl ear () method which removes all data from the
list.

As part of this work, the Li st class destructor now calls Li st : : cl ear () before removing any
elements or attributes from the list.

NDB dictionary tables in ndbinfo. NDB 8.0.29 introduces several new tables in the ndbi nf o
database providing information from NdbDi ct i onary that previously required the use of ndb_desc,
ndb_sel ect _al | , and other NDB utility programs.

Two of these tables are actually views. The hash_nmaps table provides information about hash maps
used by NDB; the f i | es table shows information regarding files used for storing data on disk (see
Section 6.10, “NDB Cluster Disk Data Tables”).

The remaining six ndbi nf o tables added in NDB 8.0.29 are base tables. These tables are not
hidden and are not named using the prefix ndb$. These tables are listed here, with descriptions of
the objects represented in each table:

* bl obs: Blob tables used to store the variable-size parts of BLOB and TEXT columns
e dictionary_col utms: Columns of NDB tables

e dictionary_tabl es: NDB tables

e event s: Event subscriptions in the NDB API

« foreign_keys: Foreign keys on NDB tables

¢ i ndex_col ums: Indexes on NDB tables

NDB 8.0.29 also makes changes in the ndbi nf o storage engine's implementation of primary keys to
improve compatibility with NdbDi ct i onary.

ndbcluster plugin and Performance Schema. As of NDB 8.0.29, ndbcl ust er plugin threads
are shown in the Performance Schemat hr eads and set up_t hr eads tables, making it possible
to obtain information about the performance of these threads. The three threads exposed in

per f or mance_schena tables are listed here:

e ndb_bi nl og: Binary logging thread
e ndb_i ndex_st at : Index statistics thread

* ndb_net adat a: Metadata thread
See ndbcluster Plugin Threads, for more information and examples.
In NDB 8.0.30 and later, transaction batching memory usage is visible as nenor y/

ndbcl ust er/ Thd_ndb: : bat ch_nem r oot in the Performance Schema
nmenory_summary_ by thread by event nane and setup_i nstrunents tables. You can use

37

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_not_keyfile
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html#alter-table-index
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html#alter-table-index
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listevents
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listindexes
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-listobjects
https://dev.mysql.com/doc/ndbapi/en/ndb-list.html
https://dev.mysql.com/doc/ndbapi/en/ndb-list.html#ndb-list-clear
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-memory-summary-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-setup-instruments-table.html

What is New in NDB Cluster 8.0

this information to see how much memory is being used by transactions. For additional information,
see Transaction Memory Usage.

Configurable blob inline size. Beginning with NDB 8.0.30, it is possible to set a blob column's
inline size as part of CREATE TABLE or ALTER TABLE. The maximum inline size supported by NDB
Cluster is 29980 bytes.

For additional information and examples, see NDB_COLUMN Options, as well as String Type
Storage Requirements.

replica_allow_batching enabled by default. Replica write batching improves NDB Cluster
Replication performance greatly, especially when replicating blob-type columns (TEXT, BLOB, and
JSON), and so generally should be enabled whenever using replication with NDB Cluster. For this
reason, beginning with NDB 8.0.30, the r epl i ca_al | ow_bat chi ng system variable is enabled by
default, and setting it to OFF raises a warning.

Conflict resolution insert operation support. Prior to NDB 8.0.30, there were only two
strategies available for resolving primary key conflicts for update and delete operations, implemented
as the functions NDBSMAX() and NDBSVAX DELETE W N() . Neither of these has any effect on
write operations, other than that a write operation with the same primary key as a previous write is
always rejected, and accepted and applied only if no operation having the same primary key already
exists. NDB 8.0.30 introduces two new conflict resolution functions NDBSMAX | NS() and NDB
$MAX_DEL_W N_I NS() that handle primary key conflicts between insert operations. These functions
handle conflicting writes as follows:

1. If there is no conflicting write, apply this one (this is the same as NDBSMVAX()).
2. Otherwise, apply “greatest timestamp wins” conflict resolution, as follows:

a. If the timestamp for the incoming write is greater than that of the conflicting write, apply the
incoming operation.

b. If the timestamp for the incoming write is not greater, reject the incoming write operation.

For conflicting update and delete operations, NDB$MAX | NS() behaves as NDBSMAX() does, and
NDB$MAX_DEL_W N_I NS() behaves in the same way as NDBSMAX_DELETE_W N() .

This enhancement provides support for configuring conflict detection when handling conflicting
replicated write operations, so that a replicated | NSERT with a higher timestamp column value is
applied idempotently, while a replicated | NSERT with a lower timestamp column value is rejected.

As with the other conflict resolution functions, rejected operations can optionally be logged in an
exceptions table; rejected operations increment a counter (status variables Ndb_conflict fn_nax
for “greatest timestamp wins” and Ndb_confl i ct _fn_ol d for “same timestamp wins”).

For more information, see the descriptions of the new conflict resolution functions, and as well as
Section 7.11, “NDB Cluster Replication Conflict Resolution”.

Replication applier batch size control. Previously, the size of batches used when writing to

a replica NDB Cluster was controlled by - - ndb- bat ch- si ze, and the batch size used for writing
blob data to the replica was determined by ndb- bl ob-wr i t e- bat ch- byt es. One problem with
this arrangement was that the replica used the global values of these variables which meant that
changing either of them for the replica also affected the value used by all other sessions. In addition,
it was not possible to set different defaults for these values exclusive to the replica, which should
preferably have a higher default value than other sessions.

NDB 8.0.30 adds two new system variables which are specific to the replica applier.
ndb_replica_bat ch_si ze now controls the batch size used for the replica applier, and

38

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-ndb-comment-options.html#create-table-ndb-comment-column-options
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 8.0

ndb_replica_blob wite batch_bytes variable now determines the blob write batch size
used to perform batch blob writes on the replica.

This change should improve the behavior of MySQL NDB Cluster Replication using default settings,
and lets the user fine tune NDB replication performance without affecting user threads, such as those
performing processing of SQL queries.

For more information, see the descriptions of the new variables. See also Section 7.5, “Preparing the
NDB Cluster for Replication”.

MySQL Cluster Manager 1.4.8 also provides experimental support for NDB Cluster 8.0. MySQL Cluster
Manager has an advanced command-line interface that can simplify many complex NDB Cluster
management tasks. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

2.5 Options, Variables, and Parameters Added, Deprecated or
Removed in NDB 8.0

Parameters Introduced in NDB 8.0
Parameters Deprecated in NDB 8.0
Parameters Removed in NDB 8.0

Options and Variables Introduced in NDB 8.0
Options and Variables Deprecated in NDB 8.0

Options and Variables Removed in NDB 8.0

The next few sections contain information about NDB node configuration parameters and NDB-specific
nysgl d options and variables that have been added to, deprecated in, or removed from NDB 8.0.

Parameters Introduced in NDB 8.0

The following node configuration parameters have been added in NDB 8.0.

Al | omnr esol vedHost Nanes: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only. Added
in NDB 8.0.22.

Aut omat i cThr eadConf i g: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation. Added in NDB
8.0.23.

Cl assi cFragnent at i on: When true, use traditional table fragmentation; set false to enable
flexible distribution of fragments among LDMs. Disabled by AutomaticThreadConfig. Added in NDB
8.0.23.

Di skDat aUsi ngSaneDi sk: Set to false if Disk Data tablespaces are located on separate physical
disks. Added in NDB 8.0.19.

Enabl eMul ti t hr eadedBackup: Enable multi-threaded backup. Added in NDB 8.0.16.

Encrypt edFi | eSyst em Encrypt local checkpoint and tablespace files. EXPERIMENTAL. Added in
NDB 8.0.29.

KeepAl i veSendl nt er val : Time between keep-alive signals on links between data nodes, in
milliseconds. Set to 0 to disable. Added in NDB 8.0.27.

MaxDi skDat aLat ency: Maximum allowed mean latency of disk access (ms) before starting to
abort transactions. Added in NDB 8.0.19.

39

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

Parameters Deprecated in NDB 8.0

* NodeG oupTransport ers: Number of transporters to use between nodes in same node group.
Added in NDB 8.0.20.

* NunCPUs: Specify number of CPUs to use with AutomaticThreadConfig. Added in NDB 8.0.23.

e Partiti onsPer Node: Determines the number of table partitions created on each data node; not
used if ClassicFragmentation is enabled. Added in NDB 8.0.23.

e Preferl PVersion: Indicate DNS resolver preference for IP version 4 or 6. Added in NDB 8.0.26.

* Requi r eEncr ypt edBackup: Whether backups must be encrypted (1 = encryption required,
otherwise 0). Added in NDB 8.0.22.

* ReservedConcurrent | ndexOper ati ons: Number of simultaneous index operations having
dedicated resources on one data node. Added in NDB 8.0.16.

* ReservedConcurrent Oper ati ons: Number of simultaneous operations having dedicated
resources in transaction coordinators on one data node. Added in NDB 8.0.16.

* ReservedConcurrent Scans: Number of simultaneous scans having dedicated resources on one
data node. Added in NDB 8.0.16.

* ReservedConcurrent Tr ansact i ons: Number of simultaneous transactions having dedicated
resources on one data node. Added in NDB 8.0.16.

* ReservedFiredTri ggers: Number of triggers having dedicated resources on one data node.
Added in NDB 8.0.16.

* ReservedLocal Scans: Number of simultaneous fragment scans having dedicated resources on
one data node. Added in NDB 8.0.16.

* ReservedTransacti onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Added in NDB 8.0.16.

* Spi nMet hod: Determines spin method used by data node; see documentation for details. Added in
NDB 8.0.20.

e TcpSpi nTi me: Time to spin before going to sleep when receiving. Added in NDB 8.0.20.

e Transacti onMenor y: Memory allocated for transactions on each data node. Added in NDB 8.0.19.

Parameters Deprecated in NDB 8.0

The following node configuration parameters have been deprecated in NDB 8.0.

» Bat chSi zePer Local Scan: Used to calculate number of lock records for scan with hold lock.
Deprecated in NDB 8.0.19.

* MaxAl | ocat e: No longer used; has no effect. Deprecated in NDB 8.0.27.

» MaxNoOF Concurrent | ndexQOper at i ons: Total number of index operations that can execute
simultaneously on one data node. Deprecated in NDB 8.0.19.

* MaxNoOF Concurrent Transact i ons: Maximum number of transactions executing concurrently
on this data node, total number of transactions that can be executed concurrently is this value times
number of data nodes in cluster. Deprecated in NDB 8.0.19.

» MaxNoOr Fi redTri gger s: Total number of triggers that can fire simultaneously on one data node.
Deprecated in NDB 8.0.19.

» MaxNoOrF Local Oper at i ons: Maximum number of operation records defined on this data node.
Deprecated in NDB 8.0.19.

40

Parameters Removed in NDB 8.0

MaxNoCOF Local Scans: Maximum number of fragment scans in parallel on this data node.
Deprecated in NDB 8.0.19.

ReservedTr ansact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node. Deprecated in NDB 8.0.19.

UndoDat aBuf f er : Unused; has no effect. Deprecated in NDB 8.0.27.

Undol ndexBuf f er : Unused; has no effect. Deprecated in NDB 8.0.27.

Parameters Removed in NDB 8.0

No node configuration parameters have been removed in NDB 8.0.

Options and Variables Introduced in NDB 8.0

The following system variables, status variables, and server options have been added in NDB 8.0.

Ndb_api _adaptive_send_deferred_count _replica: Number of adaptive send calls not
actually sent by this replica. Added in NDB 8.0.23.

Ndb_api _adaptive_send_forced_count _replica: Number of adaptive sends with forced-
send set sent by this replica. Added in NDB 8.0.23.

Ndb_api _adapti ve_send_unforced_count _repl i ca: Number of adaptive sends without
forced-send sent by this replica. Added in NDB 8.0.23.

Ndb_api _bytes _recei ved _count repli ca: Quantity of data (in bytes) received from data
nodes by this replica. Added in NDB 8.0.23.

Ndb_api _bytes_sent _count _repl i ca: Qunatity of data (in bytes) sent to data nodes by this
replica. Added in NDB 8.0.23.

Ndb_api _pk_op_count repli ca: Number of operations based on or using primary keys by this
replica. Added in NDB 8.0.23.

Ndb_api _pruned_scan_count _repl i ca: Number of scans that have been pruned to one
partition by this replica. Added in NDB 8.0.23.

Ndb_api _range_scan_count repl i ca: Number of range scans that have been started by this
replica. Added in NDB 8.0.23.

Ndb_api _read_row _count _repl i ca: Total number of rows that have been read by this replica.
Added in NDB 8.0.23.

Ndb_api _scan_bat ch_count _repl i ca: Number of batches of rows received by this replica.
Added in NDB 8.0.23.

Ndb_api tabl e_scan_count repli ca: Number of table scans that have been started, including
scans of internal tables, by this replica. Added in NDB 8.0.23.

Ndb_api _trans_abort _count _replica: Number of transactions aborted by this replica. Added
in NDB 8.0.23.

Ndb_api _trans_cl ose_count _repl i ca: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica. Added in NDB 8.0.23.

Ndb_api _trans_commit_count _repl i ca: Number of transactions committed by this replica.
Added in NDB 8.0.23.

Ndb_api _trans_l ocal _read _row count _replica: Total number of rows that have been read
by this replica. Added in NDB 8.0.23.

41

Options and Variables Introduced in NDB 8.0

Ndb_api _trans_start _count _replica: Number of transactions started by this replica. Added
in NDB 8.0.23.

Ndb_api _uk_op_count _r epl i ca: Number of operations based on or using unique keys by this
replica. Added in NDB 8.0.23.

Ndb_api _wait_ exec_conpl ete_count repli ca: Number of times thread has been blocked
while waiting for operation execution to complete by this replica. Added in NDB 8.0.23.

Ndb_api _wait_neta_request _count _replica: Number of times thread has been blocked
waiting for metadata-based signal by this replica. Added in NDB 8.0.23.

Ndb_api _wai t _nanos_count _repl i ca: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes by this replica. Added in NDB 8.0.23.

Ndb_api _wait_scan_result _count _replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Added in NDB 8.0.23.

Ndb_confi g_gener ati on: Generation number of the current configuration of the cluster. Added in
NDB 8.0.24.

Ndb_conflict _fn_max_del w n_i ns: Number of times that NDB replication conflict resolution
based on outcome of NDB$SMAX_DEL_WIN_INS() has been applied to insert operations. Added in
NDB 8.0.30.

Ndb_conflict_fn_max_i ns: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations. Added in NDB 8.0.30.

Ndb_ret adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Added in NDB
8.0.18.

Ndb_rnet adat a_det ect ed_count : Number of times NDB metadata change monitor thread has
detected changes. Added in NDB 8.0.16.

Ndb_ret adat a_excl uded_count : Number of NDB metadata objects that NDB binlog thread has
failed to synchronize. Added in NDB 8.0.22.

Ndb_rnet adat a_synced_count : Number of NDB metadata objects which have been
synchronized. Added in NDB 8.0.18.

Ndb_trans_hi nt _count _sessi on: Number of transactions using hints that have been started in
this session. Added in NDB 8.0.17.

ndb- appl i er - al | ow ski p- epoch: Lets replication applier skip epochs. Added in NDB 8.0.28.

ndb-1 og-fail -t erm nat e: Terminate mysqld process if complete logging of all found row events
is not possible. Added in NDB 8.0.21.

ndb- schema- di st -ti nmeout : How long to wait before detecting timeout during schema
distribution. Added in NDB 8.0.17.

ndb_conflict_rol e: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information. Added in NDB 8.0.23.

ndb_dbg_check_shar es: Check for any lingering shares (debug builds only). Added in NDB
8.0.13.

ndb_ret adat a_check: Enable auto-detection of NDB metadata changes with respect to MySQL
data dictionary; enabled by default. Added in NDB 8.0.16.

ndb_rnet adat a_check_i nt er val : Interval in seconds to perform check for NDB metadata
changes with respect to MySQL data dictionary. Added in NDB 8.0.16.

42

Options and Variables Deprecated in NDB 8.0

ndb_net adat a_sync: Triggers immediate synchronization of all changes between NDB dictionary
and MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values
to be ignored. Resets to false when synchronization is complete. Added in NDB 8.0.19.

ndb_replica_bat ch_si ze: Batch size in bytes for replica applier. Added in NDB 8.0.30.

ndb_schema_di st _| ock_wai t _ti neout : Time during schema distribution to wait for lock before
returning error. Added in NDB 8.0.18.

ndb_schenma_di st _ti neout: Time to wait before detecting timeout during schema distribution.
Added in NDB 8.0.16.

ndb_schena_di st _upgrade_al | owed: Allow schema distribution table upgrade when connecting
to NDB. Added in NDB 8.0.17.

ndbi nf o: Enable ndbinfo plugin, if supported. Added in NDB 8.0.13.

replica_al |l ow _bat chi ng: Turns update batching on and off for replica. Added in NDB 8.0.26.

Options and Variables Deprecated in NDB 8.0

The following system variables, status variables, and options have been deprecated in NDB 8.0.

Ndb_api _adaptive_send_deferred_count _sl ave: Number of adaptive send calls not actually
sent by this replica. Deprecated in NDB 8.0.23.

Ndb_api _adaptive_send_forced_count _sl ave: Number of adaptive sends with forced-send
set sent by this replica. Deprecated in NDB 8.0.23.

Ndb_api _adapti ve_send_unforced_count _sl ave: Number of adaptive sends without forced-
send sent by this replica. Deprecated in NDB 8.0.23.

Ndb_api _bytes_recei ved _count _sl ave: Quantity of data (in bytes) received from data nodes
by this replica. Deprecated in NDB 8.0.23.

Ndb_api byt es_sent count _sl ave: Qunatity of data (in bytes) sent to data nodes by this
replica. Deprecated in NDB 8.0.23.

Ndb_api _pk_op_count _sl ave: Number of operations based on or using primary keys by this
replica. Deprecated in NDB 8.0.23.

Ndb_api _pruned_scan_count _sl| ave: Number of scans that have been pruned to one partition
by this replica. Deprecated in NDB 8.0.23.

Ndb_api _range_scan_count _sl ave: Number of range scans that have been started by this
replica. Deprecated in NDB 8.0.23.

Ndb_api _read_r ow_count _sl ave: Total number of rows that have been read by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _scan_bat ch_count _sl ave: Number of batches of rows received by this replica.
Deprecated in NDB 8.0.23.

Ndb_api _tabl e_scan_count _sl ave: Number of table scans that have been started, including
scans of internal tables, by this replica. Deprecated in NDB 8.0.23.

Ndb_api _trans_abort _count _sl ave: Number of transactions aborted by this replica.
Deprecated in NDB 8.0.23.

Ndb_api trans_cl ose_count _sl ave: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica. Deprecated in NDB 8.0.23.

43

Options and Variables Removed in NDB 8.0

e Ndb_api _trans_commt_count _sl ave: Number of transactions committed by this replica.
Deprecated in NDB 8.0.23.

* Ndb_api _trans_l ocal _read_row count _sl ave: Total number of rows that have been read by
this replica. Deprecated in NDB 8.0.23.

* Ndb_api _trans_start_count _sl ave: Number of transactions started by this replica.
Deprecated in NDB 8.0.23.

 Ndb_api _uk_op_count _sl ave: Number of operations based on or using unique keys by this
replica. Deprecated in NDB 8.0.23.

* Ndb_api _wait_exec_conpl et e_count _sl ave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica. Deprecated in NDB 8.0.23.

* Ndb_api _wait_neta_request_count _sl ave: Number of times thread has been blocked waiting
for metadata-based signal by this replica. Deprecated in NDB 8.0.23.

« Ndb_api _wait_nanos_count _sl ave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica. Deprecated in NDB 8.0.23.

* Ndb_api _wait_scan_result_count _sl ave: Number of times thread has been blocked while
waiting for scan-based signal by this replica. Deprecated in NDB 8.0.23.

 Ndb_net adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Deprecated in
NDB 8.0.21.

* Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica.
When this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet
been detected. Deprecated in NDB 8.0.23.

* ndb_sl ave_conflict_rol e: Role for replica to play in conflict detection and resolution. Value is
one of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication
SQL thread is stopped. See documentation for further information. Deprecated in NDB 8.0.23.

e sl ave_al | ow_bat chi ng: Turns update batching on and off for replica. Deprecated in NDB 8.0.26.

Options and Variables Removed in NDB 8.0
The following system variables, status variables, and options have been removed in NDB 8.0.

 Ndb_net adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count. Removed in NDB
8.0.22.

2.6 MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and | nnoDB can serve
as transactional MySQL storage engines, users of MySQL Server sometimes become interested

in NDB Cluster. They see NDB as a possible alternative or upgrade to the default | nnoDB storage
engine in MySQL 8.0. While NDB and | nnoDB share common characteristics, there are differences

in architecture and implementation, so that some existing MySQL Server applications and usage
scenarios can be a good fit for NDB Cluster, but not all of them.

In this section, we discuss and compare some characteristics of the NDB storage engine used by NDB
8.0 with | nnoDB used in MySQL 8.0. The next few sections provide a technical comparison. In many
instances, decisions about when and where to use NDB Cluster must be made on a case-by-case
basis, taking all factors into consideration. While it is beyond the scope of this documentation to provide
specifics for every conceivable usage scenario, we also attempt to offer some very general guidance

44

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Differences Between the NDB and InnoDB Storage Engines

on the relative suitability of some common types of applications for NDB as opposed to | nnoDB back
ends.

NDB Cluster 8.0 uses a nmysqgl d based on MySQL 8.0, including support for | nnoDB 1.1. While it is
possible to use | nnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible to
use programs or libraries from an NDB Cluster 8.0 distribution with MySQL Server 8.0, or the reverse.

While it is also true that some types of common business applications can be run either on NDB
Cluster or on MySQL Server (most likely using the | nnoDB storage engine), there are some important
architectural and implementation differences. Section 2.6.1, “Differences Between the NDB and
InnoDB Storage Engines”, provides a summary of the these differences. Due to the differences, some
usage scenarios are clearly more suitable for one engine or the other; see Section 2.6.2, “NDB and
InnoDB Workloads”. This in turn has an impact on the types of applications that better suited for use
with NDB or | nnoDB. See Section 2.6.3, “NDB and InnoDB Feature Usage Summary”, for a comparison
of the relative suitability of each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to
Use MEMORY or NDB Cluster.

See Alternative Storage Engines, for additional information about MySQL storage engines.

2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes

it to behave differently from | nnoDB in a number of ways. For those unaccustomed to working with
NDB, unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign
keys, table limits, and other characteristics. These are shown in the following table:

Table 2.2 Differences between InnoDB and NDB storage engines

Feature I nnoDB (MySQL 8.0) NDB 8.0

MySQL Server Version 8.0 8.0

| nnoDB Version I nnoDB 8.0.29 | nnoDB 8.0.29

NDB Cluster Version N/A NDB 8.0.30/8.0.30

Storage Limits 64TB 128TB

Foreign Keys Yes Yes

Transactions All standard types READ COWM TTED

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup

files can be compressed)

Large Row Support (> 14K)

Supported for VARBI NARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and

TEXT columns only (Using
these types to store very large
amounts of data can lower NDB
performance)

Replication Support

Asynchronous and
semisynchronous replication
using MySQL Replication;
MySQL Group Replication

Automatic synchronous
replication within an NDB
Cluster; asynchronous replication
between NDB Clusters,

using MySQL Replication
(Semisynchronous replication is
not supported)

Scaleout for Read Operations

Yes (MySQL Replication)

Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

45

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/8.0/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

NDB and InnoDB Workloads

Feature

| nnoDB (MySQL 8.0)

NDB 8.0

Scaleout for Write Operations

Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA)

Built-in, from InnoDB cluster

Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

From MySQL Group Replication

Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery

30 seconds or longer

Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally
be stored on disk; both in-
memory and disk data storage
are durable)

NoSQL Access to Storage Yes Yes (Multiple APIs, including

Engine Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/
REST)

Concurrent and Parallel Writes |Yes Up to 48 writers, optimized for

concurrent writes

Conflict Detection and Resolution|Yes (MySQL Group Replication) |Yes
(Multiple Sources)
Hash Indexes No Yes

Online Addition of Nodes

Read/write replicas using MySQL
Group Replication

Yes (all node types)

Online Upgrades

Yes (using replication)

Yes

Online Schema Modifications

Yes, as part of MySQL 8.0

Yes

2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-
node implementation, NDB Cluster also has specific constraints that may keep some workloads from
performing well. A number of major differences in behavior between the NDB and | nnoDB storage
engines with regard to some common types of database-driven application workloads are shown in the

following table::

Table 2.3 Differences between InnoDB and NDB storage engines, common types of data-driven

application workloads.

Workload I nnoDB NDB Cluster (NDB)

High-Volume OLTP Applications |Yes Yes

DSS Applications (data marts, Yes Limited (Join operations across

analytics) OLTP datasets not exceeding
3TB in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly
primary key access); NDB
Cluster 8.0 supports foreign keys

In-Network Telecoms No Yes

Applications (HLR, HSS, SDP)

46

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB and InnoDB Feature Usage Summary

Workload | nnoDB NDB Cluster (NDB)
Session Management and Yes Yes

Caching

E-Commerce Applications Yes Yes

User Profile Management, AAA |Yes Yes

Protocol

2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of | nnoDB with NDB, some are
clearly more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each

feature is typically better suited.

Table 2.4 Supported application features according to the storage engine to which each feature

is typically better suited

Preferred application requirements for | nnoDB

Preferred application requirements for NDB

» Foreign keys
Note

NDB Cluster 8.0
supports foreign keys

Write scaling
99.999% uptime

Online addition of nodes and online schema
operations

 Full table scans » Multiple SQL and NoSQL APIs (see NDB

Cluster APIs: Overview and Concepts)
» Very large databases, rows, or transactions

* Real-time performance
» Transactions other than READ COVM TTED

* Limited use of BLOB columns

» Foreign keys are supported, although their use
may have an impact on performance at high
throughput

2.7 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as
compared with the features available when using the Myl SAMand | nnoDB storage engines. If you
check the “Cluster” category in the MySQL bugs database at http://bugs.mysqgl.com, you can find
known bugs in the following categories under “MySQL Server:” in the MySQL bugs database at http://
bugs.mysql.com, which we intend to correct in upcoming releases of NDB Cluster:

* NDB Cluster

 Cluster Direct APl (NDBAPI)
* Cluster Disk Data

 Cluster Replication

e ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report
any discrepancies that you encounter to the MySQL bugs database using the instructions given in How

47

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
http://bugs.mysql.com
http://bugs.mysql.com
http://bugs.mysql.com
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html

Noncompliance with SQL Syntax in NDB Cluster

to Report Bugs or Problems. Any problem which we do not plan to fix in NDB Cluster 8.0, is added to
the list.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0” for a list of issues in
earlier releases that have been resolved in NDB Cluster 8.0.

Note

Limitations and other issues specific to NDB Cluster Replication are described
in Section 7.3, “Known Issues in NDB Cluster Replication”.

2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables,
as described in the following list:

 Temporary tables. Temporary tables are not supported. Trying either to create a temporary table
that uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the
error Tabl e storage engi ne 'ndbcluster' does not support the create option
" TEMPORARY" .

» Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

Column width. Attempting to create an index on an NDB table column whose width is greater
than 3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such
cases, a warning Speci fi ed key was too |ong; max key length is 3072 bytesis
issued, and a SHOW CREATE TABLE statement shows the length of the index as 3072.

TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of
the TEXT or BLOB data types.

FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for Myl SAMand | nnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

USING HASH keys and NULL. Using nullable columns in unique keys and primary keys
means that queries using these columns are handled as full table scans. To work around this
issue, make the column NOT NULL, or re-create the index without the USI NG HASH option.

Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an
NDB column index is always the same as the width of the column in bytes, up to and including
3072 bytes, as described earlier in this section. Also see Section 2.7.6, “Unsupported or Missing
Features in NDB Cluster”, for additional information.)

BIT columns. A BI T column cannot be a primary key, unique key, or index, nor can it be part of
a composite primary key, unique key, or index.

AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine
can handle a maximum of one AUTO | NCREMENT column per table, and this column must be
indexed. However, in the case of an NDB table with no explicit primary key, an AUTO | NCREMENT
column is automatically defined and used as a “hidden” primary key. For this reason, you cannot
create an NDB table having an AUTO | NCREMENT column and no explicit primary key.

The following CREATE TABLE statements do not work, as shown here:

No index on AUTO | NCREMENT col umm; table has no prinmary key
Rai ses ER WRONG_AUTO_KEY
mysql > CREATE TABLE n (

-> a | NT,

-> b | NT AUTO | NCREVENT

48

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_auto_key

Noncompliance with SQL Syntax in NDB Cluster

oS)

-> ENG NE=NDB;
ERROR 1075 (42000): Incorrect table definition; there can be only one auto
colum and it nust be defined as a key

I ndex on AUTO_| NCREMENT col umm; table has no primary key
Rai ses NDB error 4335

nmysql > CREATE TABLE n (

> a | NT,
-> b | NT AUTO_ | NCREMENT,
-> KEY k (b)
oS)
-> ENG NE=NDB;

ERROR 1296 (HYO000): Got error 4335 'Only one autoi ncrenment colum allowed per
table. Having a table wi thout prinmary key uses an autoincr' from NDBCLUSTER

The following statement creates a table with a primary key, an AUTO | NCREMENT column, and an
index on this column, and succeeds:

I ndex on AUTO_ | NCREMENT col umm; table has a prinmary key

nysqgl > CREATE TABLE n (

-> a | NT PRI MARY KEY,

-> b I NT AUTO_ | NCREMENT,
o> KEY k (b)

->)

- > ENG NE=NDB;

Query OK, 0 rows affected (0.38 sec)

» Restrictions on foreign keys. Support for foreign key constraints in NDB 8.0 is comparable to
that provided by | nnoDB, subject to the following restrictions:

Every column referenced as a foreign key requires an explicit unique key, if it is not the table's
primary key.

ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing
the old primary key) plus an insert of the new row (with a new primary key). This is not visible to
the NDB kernel, which views these two rows as being the same, and thus has no way of knowing
that this update should be cascaded.

ON DELETE CASCADE is also not supported where the child table contains one or more columns
of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

SET DEFAULT is not supported. (Also not supported by | nnoDB.)

The NO ACTI ON keyword is accepted but treated as RESTRI CT. NO ACTI ON, which is a standard
SQL keyword, is the default in MySQL 8.0. (Also the same as with | nnoDB.)

In earlier versions of NDB Cluster, when creating a table with foreign key referencing an index in
another table, it sometimes appeared possible to create the foreign key even if the order of the
columns in the indexes did not match, due to the fact that an appropriate error was not always
returned internally. A partial fix for this issue improved the error used internally to work in most
cases; however, it remains possible for this situation to occur in the event that the parent index is a
unigue index. (Bug #18094360)

For more information, see FOREIGN KEY Constraints, and FOREIGN KEY Constraints.

* NDB Cluster and geometry data types.
Geometry data types (WKT and V\KB) are supported for NDB tables. However, spatial indexes are not
supported.

» Character sets and binary log files. Currently, the ndb_appl y_st at us and
ndb_bi nl og_i ndex tables are created using the | at i n1 (ASCII) character set. Because names
of binary logs are recorded in this table, binary log files named using non-Latin characters are

49

https://dev.mysql.com/doc/ndbapi/en/ndb-error-codes-application-error.html#ndberrno-4335
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/8.0/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limits and Differences of NDB Cluster from Standard MySQL Limits

not referenced correctly in these tables. This is a known issue, which we are working to fix. (Bug
#50226)

To work around this problem, use only Latin-1 characters when naming binary log files or setting any
the - - basedir,--10g-bin,or--1o0g-bin-index options.

» Creating NDB tables with user-defined partitioning. Support for user-defined partitioning
in NDB Cluster is restricted to [LI NEAR] KEY partitioning. Using any other partitioning type with
ENG NE=NDB or ENG NE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings.
For details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using

the table's primary key as the partitioning key. If no primary key is explicitly set for the table, the
“hidden” primary key automatically created by the NDB storage engine is used instead. For additional
discussion of these and related issues, see KEY Partitioning.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER
table not to meet either or both of the following two requirements are not permitted, and fail with an
error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTI TI ON BY [LI NEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. = The maximum number of partitions
that can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node
group. (See Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for
more information about NDB Cluster node groups.

DROP PARTITION not supported. Itis not possible to drop partitions from NDB tables using
ALTER TABLE ... DROP PARTI Tl ON. The other partitioning extensions to ALTER TABLE—ADD
PARTI TI ON, REORGANI ZE PARTI TI ON, and COALESCE PARTI TI ON—are supported for NDB
tables, but use copying and so are not optimized. See Management of RANGE and LIST Partitions
and ALTER TABLE Statement.

Partition selection. Partition selection is not supported for NDB tables. See Partition Selection, for
more information.

» JSON datatype. The MySQL JSON data type is supported for NDB tables in the nysql d supplied
with NDB 8.0.

An NDB table can have a maximum of 3 JSON columns.

The NDB API has no special provision for working with J SON data, which it views simply as BLOB
data. Handling data as JSON must be performed by the application.

2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not
found in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules
hold true:

50

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#option_mysqld_log-bin-index
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-limitations-storage-engines.html#partitioning-limitations-ndb
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-key.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-management-range-list.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-selection.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Limits Relating to Transaction Handling in NDB Cluster

» A DELETE statement on an NDB table makes the memory formerly used by the deleted rows
available for re-use by inserts on the same table only. However, this memory can be made available
for general re-use by performing OPTI M ZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 6.5,
“Performing a Rolling Restart of an NDB Cluster”.

« ADROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by
this table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See
TRUNCATE TABLE Statement.

» Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets
limits. See the complete list of configuration parameters in Section 4.3, “NDB Cluster Configuration
Files”. Most configuration parameters can be upgraded online. These hard limits include:

« Database memory size and index memory size (Dat aMenor y and | ndexMenor y, respectively).

Dat aMenory is allocated as 32KB pages. As each Dat aMenor y page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

« The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOf Concur r ent Qper at i ons and MaxNoOf Local Oper at i ons.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as
special cases by running multiple transactions, and so are not subject to
this limitation.

« Different limits related to tables and indexes. For example, the maximum number of ordered
indexes in the cluster is determined by MaxNoOf Or der edl ndexes, and the maximum number of
ordered indexes per table is 16.

e Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

e The maximum number of data nodes is 145. (In NDB 7.6 and earlier, this was 48.)
A data node must have a node ID in the range of 1 to 144, inclusive.

Management and API nodes may use node IDs in the range 1 to 255, inclusive.

¢ The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL
nodes (MySQL Servers), APl nodes (applications accessing the cluster other than MySQL
servers), data nodes, and management servers.

« The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit
is hard-coded.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 8.0”, for more
information.

2.7.3 Limits Relating to Transaction Handling in NDB Cluster

51

https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include
the following:

» Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COWM TTED transaction isolation level. (I nnoDB, for example, supports READ COVM TTED, READ
UNCOWM TTED, REPEATABLE READ, and SERI ALI ZABLE.) You should keep in mind that NDB
implements READ COVM TTED on a per-row basis; when a read request arrives at the data node
storing the row, what is returned is the last committed version of the row at that time.

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can
observe “before” values, “after” values, or both, for different rows among these, due to the fact that a
given row read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK I N SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

 Increased frequency of lock wait timeout errors, and reduced concurrency
« Increased transaction processing overhead due to reads requiring a commit phase

« Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoOF Concur r ent Oper ati ons

NDB uses READ COVM TTED for all reads unless a modifier such as LOCK | N SHARE MODE or FOR
UPDATE is used. LOCK | N SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

» Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value
that uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of
the BLOB or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives
rise to two related issues of which you should be aware whenever executing SELECT statements on
tables that contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COWM TTED transaction isolation level is converted to a read with read lock. This is done
to guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the
BLOB or TEXT data types and that is executed within a transaction, a shared read lock is held on
the table for the duration of the transaction—that is, until the transaction is either committed or
aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables
having BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
a INT NOT NULL AUTO | NCRENENT PRI MARY KEY,
b I NT NOT NULL,
¢ INT NOT NULL,
d TEXT,
I NDEX i (b),
UNI QUE KEY u(c)

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_serializable
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Limits Relating to Transaction Handling in NDB Cluster

) ENGI NE = NDB,

The following query on t causes a shared read lock, because it uses a unique key lookup:

SELECT * FROMt WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROMt WHERE b

1

SELECT * FROMt WHERE d

v
SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use
table scans, and the fourth, while using a primary key lookup, does not retrieve the value of any
BLOB or TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable,
by committing transactions as soon as possible afterward.

* Unique key lookups and transaction isolation. Unique indexes are implemented in NDB using
a hidden index table which is maintained internally. When a user-created NDB table is accessed
using a unique index, the hidden index table is first read to find the primary key that is then used to
read the user-created table. To avoid modification of the index during this double-read operation, the
row found in the hidden index table is locked. When a row referenced by a unique index in the user-
created NDB table is updated, the hidden index table is subject to an exclusive lock by the transaction
in which the update is performed. This means that any read operation on the same (user-created)
NDB table must wait for the update to complete. This is true even when the transaction level of the
read operation is READ COVM TTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unigue index when performing the read. This can be done by using the | GNORE | NDEX
index hint as part of the SELECT statement reading the table (see Index Hints). Because the MySQL
server creates a shadowing ordered index for every unique index created in NDB, this lets the
ordered index be read instead, and avoids unique index access locking. The resulting read is as
consistent as a committed read by primary key, returning the last committed value at the time the row
is read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have
higher latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

* Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate
key or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as | nnoDB that may roll
back individual statements.

e Transactions and memory usage.
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions

53

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

NDB Cluster Error Handling

require very large amounts of memory. Because of this, the transactional behavior of a number of
MySQL statements is affected as described in the following list:

« TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to
empty the table, then it must be re-run until it is successful.

« DELETE FROM(even with no WHERE clause) is transactional. For tables containing a great
many rows, you may find that performance is improved by using several DELETE FROM . ..
LIMT ... statements to “chunk” the delete operation. If your objective is to empty the table, then
you may wish to use TRUNCATE TABLE instead.

« LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.
Important

When executing a LOAD DATA statement, the NDB engine performs
commits at irregular intervals that enable better utilization of the
communication network. It is not possible to know ahead of time when such
commits take place.

« ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE,
the creation of the copy is nontransactional. (In any case, this operation is rolled back when the
copy is deleted.)

e Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible
to guarantee the transactional consistency of the COUNT() function on the replica. In other words,
when performing on the source a series of statements (I NSERT, DELETE, or both) that changes
the number of rows in a table within a single transaction, executing SELECT COUNT(*) FROM
t abl e queries on the replica may yield intermediate results. This is due to the fact that SELECT
COUNT(. . .) may perform dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321
for more information.)

2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to
fail. These include the following cases:

 Temporary errors. When first starting a node, it is possible that you may see Error 1204
Tenporary failure, distribution changed and similar temporary errors.

e Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This
should be done by retrying the transaction.

See also Section 2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

2.7.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the
NDBCLUSTER storage engine:

* Number of database objects. = The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

» Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

» Attributes per key. The maximum number of attributes per key is 32.

54

https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Unsupported or Missing Features in NDB Cluster

« Row size. In NDB 8.0, the maximum permitted size of any one row is 30000 bytes (increased
from 14000 bytes in previous releases).

Each BLOB or TEXT column contributes 256 + 8 = 264 hytes to this total; this includes JSON
columns. See String Type Storage Requirements, as well as JSON Storage Requirements, for more
information relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting
to create a table that violates this limitation fails with NDB error 851 Maxi num of f set f or
fixed-size col utms exceeded. For memory-based columns, you can work around this
limitation by using a variable-width column type such as VARCHAR or defining the column as
COLUVN_FORNVAT=DYNAM C, this does not work with columns stored on disk. For disk-based
columns, you may be able to do so by reordering one or more of the table's disk-based columns
such that the combined width of all but the disk-based column defined last in the CREATE TABLE
statement used to create the table does not exceed 8188 bytes, less any possible rounding
performed for some data types such as CHAR or VARCHAR; otherwise it is necessary to use memory-
based storage for one or more of the offending column or columns instead.

* BIT column storage per table. The maximum combined width for all Bl T columns used in a
given NDB table is 4096.

* FIXED column storage. = NDB Cluster 8.0 supports a maximum of 128 TB per fragment of data in
FI XED columns.

2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to
use any of these features in NDB Cluster does not cause errors in or of itself; however, errors may
occur in applications that expects the features to be supported or enforced. Statements referencing
such features, even if effectively ignored by NDB, must be syntactically and otherwise valid.

» Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE | NDEX,
the prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be
syntactically valid. For example, the following statement always fails with Error 1089 | ncor r ect
prefix key; the used key part isn't a string, the used length is |onger
than the key part, or the storage engine doesn't support unique prefix
keys, regardless of storage engine:

CREATE TABLE t1 (
cl I NT NOT NULL,
c2 VARCHAR(100),
I NDEX i 1 (c2(500))
)

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.
» Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in Myl SAM

* Durability of commits. There are no durable commits on disk. Commits are replicated, but there
is no guarantee that logs are flushed to disk on commit.

* Replication. Statement-based replication is not supported. Use - - bi nl og- f or nat =ROW(or
- - bi nl og- f or mat =M XED) when setting up cluster replication. See Chapter 7, NDB Cluster
Replication, for more information.

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 8.0. Do not enable GTIDs when using the NDB storage engine, as this is
very likely to cause problems up to and including failure of NDB Cluster Replication.

55

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html#data-types-storage-reqs-json
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_format

Limitations Relating to Performance in NDB Cluster

Semisynchronous replication is not supported in NDB Cluster.

Generated columns. The NDB storage engine does not support indexes on virtual generated
columns.

As with other storage engines, you can create an index on a stored generated column, but you
should bear in mind that NDB uses Dat aMenor y for storage of the generated column as well as
| ndexMenor y for the index. See JSON columns and indirect indexing in NDB Cluster, for an
example.

NDB Cluster writes changes in stored generated columns to the binary log, but does log not those
made to virtual columns. This should not effect NDB Cluster Replication or replication between NDB
and other MySQL storage engines.

Note

See Section 2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”, for
more information relating to limitations on transaction handling in NDB.

2.7.7 Limitations Relating to Performance in NDB Cluster

The following performance issues are specific to or especially pronounced in NDB Cluster:

* Range scans. There are query performance issues due to sequential access to the NDB storage

engine; it is also relatively more expensive to do many range scans than it is with either Myl SAMor
| nnoDB.

Reliability of Records in range. The Records i n range statistic is available but is not
completely tested or officially supported. This may result in nonoptimal query plans in some cases.
If necessary, you can employ USE | NDEX or FORCE | NDEX to alter the execution plan. See Index
Hints, for more information on how to do this.

Unique hash indexes. Unique hash indexes created with USI NG HASH cannot be used for
accessing a table if NULL is given as part of the key.

2.7.8 Issues Exclusive to NDB Cluster

The following are limitations specific to the NDB storage engine:

* Machine architecture. All machines used in the cluster must have the same architecture. That is,

all machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture
of both. For example, you cannot have a management node running on a PowerPC which directs
a data node that is running on an x86 machine. This restriction does not apply to machines simply
running nysql or other clients that may be accessing the cluster's SQL nodes.

Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

¢ sqgl _| og_bi n has no effect on data operations; however, it is supported for schema operations.
« NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

« Only the following schema operations are logged in a cluster binary log which is not on the
mysgl d executing the statement:

 CREATE TABLE
* ALTER TABLE

« DROP TABLE

56

https://dev.mysql.com/doc/refman/8.0/en/create-table-secondary-indexes.html#json-column-indirect-index-mysql-cluster
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/index-hints.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/drop-table.html

Limitations Relating to NDB Cluster Disk Data Storage

+ CREATE DATABASE/ CREATE SCHENA
» DROP DATABASE / DROP SCHENA

* CREATE TABLESPACE

« ALTER TABLESPACE

* DROP TABLESPACE

* CREATE LOGFI LE GROUP

* ALTER LOGFI LE GROUP

* DROP LOGFI LE GROUP

» Schema operations. Schema operations (DDL statements) are rejected while any data
node restarts. Schema operations are also not supported while performing an online upgrade or
downgrade.

* Number of fragment replicas. The number of fragment replicas, as determined by the
NoOf Repl i cas data node configuration parameter, is the number of copies of all data stored
by NDB Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no
redundancy is provided, and the loss of a data node entails loss of data. To guarantee redundancy,
and thus preservation of data even if a data node fails, set this parameter to 2, which is the default
and recommended value in production.

Setting NoOf Repl i cas to a value greater than 2 is supported (to a maximum of 4) but unnecessary
to guard against loss of data.

See also Section 2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following
maximums and minimums:

» Maximum number of tablespaces: 2% (4294967296)
« Maximum number of data files per tablespace: 216 (65536)

» The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See CREATE TABLESPACE Statement, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

» Data files use Dat aMenor y. Usage is the same as for in-memory data.

» Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

» Extents require sufficient Di skPageBuf f er Menor y; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.

57

https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/drop-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/drop-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html

Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and
are specific to the NDBCLUSTER storage engine:

Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created
separately on each SQL node. See Stored routines and triggers in NDB Cluster.

No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the
SQL node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true
for a lock issued by any statement that locks tables as part of its operations. (See next item for an
example.)

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM Read or LM Excl usi ve. For more information about
how to do this, see the description of NdbOper at i on: : get LockHandl e() in the NDB Cluster API
Guide.

ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL
servers (SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed
table locks.)

Multiple management nodes.
When using multiple management servers:

If any of the management servers are running on the same host, you must give nodes explicit

IDs in connection strings because automatic allocation of node IDs does not work across multiple
management servers on the same host. This is not required if every management server resides on
a different host.

When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server - -rel oad and - -i ni ti al startup options are ignored
unless the management server is the only one running. It also means that, when performing a rolling
restart of an NDB Cluster with multiple management nodes, the management server reads its own
configuration file if (and only if) it is the only management server running in this NDB Cluster. See
Section 6.5, “Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data node are not supported.
Use of these is liable to cause problems: In the event of a data node failure, an SQL node waits for
confirmation that the data node went down but never receives it because another route to that data
node remains open. This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet
cards) for a single data node, but these must be bound to the same address.
This also means that it not possible to use more than one [t cp] section per
connection in the confi g. i ni file. See Section 4.3.10, “NDB Cluster TCP/IP
Connections”, for more information.

2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

A number of limitations and related issues that existed in earlier versions of NDB Cluster have been
resolved in NDB 8.0. These are described briefly in the following list:

Database and table names. In NDB 7.6 and earlier, when using the NDB storage engine, the
maximum allowed length both for database names and for table names was 63 characters, and a
statement using a database name or table name longer than this limit failed with an appropriate
error. In NDB 8.0, this restriction is lifted; identifiers for NDB databases and tables may now use up to
64 bytes, as with other MySQL database and table names.

58

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/stored-program-restrictions.html#stored-routines-ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Previous NDB Cluster Issues Resolved in NDB Cluster 8.0

e IPv6 support. Prior to NDB 8.0.22, it was necessary for all network addresses used for
connections between nodes within an NDB Cluster to use or to be resolvable to IPv4 addresses.
Beginning with NDB 8.0.22, NDB supports IPv6 addresses for all types of cluster nodes, as well as for
applications that use the NDB API or MGM API.

59

60

Chapter 3 NDB Cluster Installation

Table of Contents

3.1 Installation of NDB CIUSLEr ON LINUX ...uuiiiiitiiiiiiiee ettt e et et e e e e e e ennens 63
3.1.1 Installing an NDB Cluster Binary Release on LiNUXcc.oviiiiiiiiiiiiiiiieeeiieeceiieeeens 64
3.1.2 Installing NDB Cluster from RPMoouiiiiiiiiiiii e 66
3.1.3 Installing NDB Cluster Using .deb Filescooiiiiiiiiii e 70
3.1.4 Building NDB Cluster from Source on LiNUXcoouuiiiiiiiieiiiee e 70

3.2 Installing NDB Cluster 0N WINAOWSuiiiiiiiieiiiii et 71
3.2.1 Installing NDB Cluster on Windows from a Binary Releaseccccooooiiiiiiiiiineiinnnnn. 72
3.2.2 Compiling and Installing NDB Cluster from Source on Windowscceuviieiiiiineeeens 75
3.2.3 Initial Startup of NDB CIuster 0n WINGOWScoouuiieiiiiiieeiiiie e 75
3.2.4 Installing NDB Cluster Processes as WIiNdOWS SEerviCeSovveveiiinieiiiiinieiiiiinieeennnn 78

3.3 Initial Configuration of NDB CIUSLENuiiiiiiiieii e 80

3.4 Initial Startup Of NDB CIUSTETcoiiiieieii e e e 82

3.5 NDB Cluster Example with Tables and Dataoveiiiiiiiiiiiii e 82

3.6 Safe Shutdown and Restart Of NDB CIUSTEIuiiiiiiiiiiiiiiiee et 86

3.7 Upgrading and Downgrading NDB CIUSTETccoiiiiiiiiiiiieeiei et 86

3.8 The NDB Cluster Auto-Installer (N0 longer SUPPOIEd)oeeveriiieiiiiieeeieie e 89
3.8.1 NDB Cluster Auto-Installer REQUIFEMENESccoiuuiiieiiiiiieeiei e 20
3.8.2 Using the NDB Cluster AUO-INSTAIIETuiiiiiiii e 91

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Chapter 4, Configuration of NDB Cluster provide more in-depth information
on a variety of clustering options and configuration, the result of following the guidelines and
procedures outlined here should be a usable NDB Cluster which meets the minimum requirements for
availability and safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB
Cluster; basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample
database; and performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's
physical and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 3.1 Network addresses of nodes in example cluster

Node IP Address

Management node (ngnd) 198.51.100.10
SQL node (nysql d) 198.51.100.20
Data node "A" (ndbd) 198.51.100.30
Data node "B" (ndbd) 198.51.100.40

This setup is also shown in the following diagram:

61

Figure 3.1 NDB Cluster Multi-Computer Setup
ndb_mgmd mysgld --ndbcluster

ndb_mgm

1| — 1218010 1

192.168.0.20 —
Management MySQL Server
Server (SQL Node)
(MGM Node)
—

—)
—
e Network
Switch

ndbd ndbd

|:| —192.168.0.30 ———————192.168.0.40 — |:|

Data Node “A” Data Node “B”
(NDBD Node) (NDBD Node)
Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric

IP addresses. However, if DNS resolution is available on your network, it is possible to use host names
in lieu of IP addresses in configuring Cluster. Alternatively, you can use the host s file (typically / et c/
host s for Linux and other Unix-like operating systems, C. \ W NDOAS\ syst enB2\ dri vers\etc

\ host s on Windows, or your operating system's equivalent) for providing a means to do host lookup if
such is available.

Prior to NDB 8.0.22, all network addresses used for connections to or from data and management
nodes must use or be resolvable using IPv4. This includes addresses used by SQL nodes to contact
the other nodes. Beginning with NDB 8.0.22, NDB Cluster supports IPv6 for connections between any
and all cluster nodes.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set
up the system's own host name in the / et ¢/ host s during installation. Consider two machines with
the host names ndb1 and ndb2, both in the cl ust er network domain. Red Hat Linux (including some
derivatives such as CentOS and Fedora) places the following entries in these machines'/ et ¢/ host s
files:

ndbl /etc/hosts:
127.0.0.1 ndbl. cl uster ndbl | ocal host. | ocal donmai n | ocal host

ndb2 /etc/hosts:
127.0.0.1 ndb2. cl uster ndb2 | ocal host. | ocal dormai n | ocal host

SUSE Linux (including OpenSUSE) places these entries in the machines' / et ¢/ host s files:

ndbl /etc/hosts:
127.0.0.1 | ocal host
127.0.0.2 ndbl. cl uster ndbl

ndb2 /etc/hosts:
127.0.0.1 | ocal host
127.0.0.2 ndb2. cl uster ndb2

62

Installation of NDB Cluster on Linux

In both instances, ndb1 routes ndb1. cl ust er to a loopback IP address, but gets a public IP address
from DNS for ndb2. cl ust er, while ndb2 routes ndb2. cl ust er to a loopback address and obtains
a public address for ndb1. cl ust er . The result is that each data node connects to the management
server, but cannot tell when any other data nodes have connected, and so the data nodes appear to
hang while starting.

Caution

You cannot mix | ocal host and other host names or IP addresses in

confi g.ini . Forthese reasons, the solution in such cases (other than to use
IP addresses for all confi g. i ni Host Nane entries) is to remove the fully
gualified host names from / et ¢/ host s and use these in confi g. i ni forall
cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop

PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-
issue Ethernet networking appliance such as a switch. (All machines should use network cards with
the same throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four
machines should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit
Ethernet provides better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less
than 100 Mbps or which experiences a high degree of latency. For this reason
(among others), attempting to run an NDB Cluster over a wide area network
such as the Internet is not likely to be successful, and is not supported in
production.

Sample data. We use the wor | d database which is available for download from the MySQL
website (see https://dev.mysqgl.com/doc/index-other.html). We assume that each machine has sufficient
memory for running the operating system, required NDB Cluster processes, and (on the data nodes)
storing the database.

For general information about installing MySQL, see Installing and Upgrading MySQL. For information
about installation of NDB Cluster on Linux and other Unix-like operating systems, see Section 3.1,
“Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on Windows
operating systems, see Section 3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

3.1 Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating
systems. While the next few sections refer to a Linux operating system, the instructions and procedures
given there should be easily adaptable to other supported Unix-like platforms. For manual installation
and setup instructions specific to Windows systems, see Section 3.2, “Installing NDB Cluster on
Windows”.

Each NDB Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (nysql d). Management nodes require
the management server daemon (ndb_ngnd); data nodes require the data node daemon (ndbd or

63

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html

Installing an NDB Cluster Binary Release on Linux

ndbnt d). It is not necessary to install the MySQL Server binary on management node hosts and
data node hosts. It is recommended that you also install the management client (ndb_ngn) on the
management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded
as a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of
these installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 3.3, “Initial
Configuration of NDB Cluster”.

3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each
cluster host is to download the binary archive from the NDB Cluster downloads page. (For the

most recent 64-bit NDB 8.0 release, this is nysql - cl ust er-gpl - 8. 0. 28-11i nux-gl i bc2. 12-
x86_64.tar. gz.) We assume that you have placed this file in each machine's / var / t np directory.

If you require a custom binary, see Installing MySQL Using a Development Source Tree.
Note

After completing the installation, do not yet start any of the binaries. We show
you how to do so following the configuration of the nodes (see Section 3.3,
“Initial Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps
as the system r oot user:

1. Checkyour/etc/ passwd and/ et c/ group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysqgl user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new nysql user group, and then add
anmysql user to this group:

$> groupadd nysql
$> useradd -g nysqgl -s /bin/false nysql

The syntax for user add and gr oupadd may differ slightly on different versions of Unix, or they
may have different names such as adduser and addgr oup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named nysql to the mysql directory.

Note

The actual file and directory names vary according to the NDB Cluster
version number.

$> cd /var/tnp
$> tar -C /usr/local -xzvf nysql-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64.tar.gz
$> In -s /usr/local /nysql-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64 /usr/local/nysql

3. Change location to the nysql directory and set up the system databases using nysql d - -
initialize asshown here:

$> cd nysql

64

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize

Installing an NDB Cluster Binary Release on Linux

$> nysqgld --initialize

This generates a random password for the MySQL r oot account. If you do not want the random
password to be generated, you can substitute the --i ni ti al i ze-i nsecur e option for - -
initialize.In either case, you should review Initializing the Data Directory, for additional
information before performing this step. See also mysql_secure_installation — Improve MySQL
Installation Security.

4. Set the necessary permissions for the MySQL server and data directories:

$> chown -R root
$> chown -R nysql data
$> chgrp -R nysq

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start
when the operating system is booted up:

$> cp support-files/nysql.server /etc/rc.d/init.d/
$> chnod +x /etc/rc.d/init.d/ nmysql.server
$> chkconfig --add nysql.server

(The startup scripts directory may vary depending on your operating system and version—for
example, in some Linux distributions, itis/ etc/init. d.)

Here we use Red Hat's chkconf i g for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as updat e- r c. d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to
reside.

Data nodes. Installation of the data nodes does not require the nmysql d binary. Only the NDB
Cluster data node executable ndbd (single-threaded) or ndbnt d (multithreaded) is required. These
binaries can also be found in the . t ar . gz archive. Again, we assume that you have placed this
archive in/ var / t np.

As system r oot (that is, after using sudo, su r oot , or your system's equivalent for temporarily
assuming the system administrator account's privileges), perform the following steps to install the data
node binaries on the data node hosts:

1. Change location to the / var / t np directory, and extract the ndbd and ndbnt d binaries from the
archive into a suitable directory such as / usr/ | ocal / bi n:

$> cd /var/tnp

$> tar -zxvf nysqgl-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64.tar.gz
$> cd nysql -cluster-gpl-8.0.28-1inux-glibc2.12-x86_64

$> cp bin/ndbd /usr/local/bin/ ndbd

$> cp bin/ndbntd /usr/local/bin/ndbntd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from / var / t mp once ndb_ngmand ndb_ngnd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local /bin
$> chnod +x ndb*

The preceding steps should be repeated on each data node host.

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbnt d in the preceding instructions. We recommend that
you do this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since
this saves time and trouble in the event that you later decide to change from one to the other.

65

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_initialize-insecure
https://dev.mysql.com/doc/refman/8.0/en/data-directory-initialization.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-secure-installation.html

Installing NDB Cluster from RPM

Note

The data directory on each machine hosting a data node is / usr /| ocal /
nysql / dat a. This piece of information is essential when configuring the
management node. (See Section 3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the nmysql d binary.
Only the NDB Cluster management server (ndb_ngnd) is required; you most likely want to install the
management client (ndb_ngn) as well. Both of these binaries also be found in the . t ar . gz archive.
Again, we assume that you have placed this archive in / var/ t np.

As system r oot , perform the following steps to install ndb_ngnd and ndb_ngmon the management
node host:

1. Change location to the / var / t np directory, and extract the ndb_ngmand ndb_ngnd from the
archive into a suitable directory such as / usr/ | ocal / bi n:

$> cd /var/tnp

$> tar -zxvf nysql-cluster-gpl-8.0.28-1inux-glibc2.12-x86_64.tar.gz
$> cd nysql -cluster-gpl-8.0.28-1inux-glibc2. 12-x86_64

$> cp bin/ndb_nmgnt /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from / var / t np once ndb_ngmand ndb_ngnd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chnod +x ndb_ngnt

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in
our example NDB Cluster.

3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster
8.0 node using RPM packages supplied by Oracle.

As an alternative to the method described in this section, Oracle provides MySQL Repositories for NDB
Cluster that are compatible with many common Linux distributions. Two repostories, listed here, are
available for RPM-based distributions:

 For distributions using yumor dnf , you can use the MySQL Yum Repository for NDB Cluster. See
Installing MySQL NDB Cluster Using the Yum Repository, for instructions and additional information.

» For SLES, you can use the MySQL SLES Repository for NDB Cluster. See Installing MySQL NDB
Cluster Using the SLES Repository, for instructions and additional information.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

nmysql - cl ust er - communi t y- dat a- node- 8. 0. 28-1. el 7. x86_64. r pm
mysql -cl uster-1icense-conponent-ver-rev.distro.arch. rpm
|'icense: = {comrercial | community}
conponent : {managenent -server | data-node | server | client | other-see text}
ver: major.mnor.rel ease
rev: major[.mnor]

distro: {el6 | el7 | slesl2}

66

https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install
https://dev.mysql.com/doc/mysql-sles-repo-quick-guide/en/#repo-qg-sles-fresh-cluster-install

Installing NDB Cluster from RPM

arch: {i686 | x86_64}

| i cense indicates whether the RPM is part of a Commercial or Community release of NDB Cluster. In
the remainder of this section, we assume for the examples that you are installing a Community release.

Possible values for conponent , with descriptions, can be found in the following table:

Table 3.2 Components of the NDB Cluster RPM distribution

Component

Description

aut o-install er (DEPRECATED)

NDB Cluster Auto Installer program; see
Section 3.8, “The NDB Cluster Auto-Installer (No
longer supported)”, for usage

client MySQL and NDB client programs; includes nysq|l
client, ndb_ngmclient, and other client tools

commmon Character set and error message information
needed by the MySQL server

dat a- node ndbd and ndbnt d data node binaries

devel Headers and library files needed for MySQL client
development

enbedded Embedded MySQL server

enbedded- conpat

Backwards-compatible embedded MySQL server

enbedded- devel

Header and library files for developing applications
for embedded MySQL

j ava JAR files needed for support of ClusterJ
applications

I'ibs MySQL client libraries

|'i bs- conpat Backwards-compatible MySQL client libraries

managenent - server

The NDB Cluster management server
(ndb_ngnd)

nencached

Files needed to support ndbrmentache

m ni mal - debugi nf o

Debug information for package server-minimal;
useful when developing applications that use this
package or when debugging this package

ndbcl i ent

NDB client library for running NDB API and MGM
API applications (I i bndbcl i ent)

ndbcl i ent - devel

Header and other files needed for developing NDB
APl and MGM API applications

nodej s Files needed to set up Node.JS support for NDB
Cluster
server The MySQL server (mysql d) with NDB storage

engine support included, and associated MySQL
server programs

server-m ni nal

Minimal installation of the MySQL server for NDB
and related tools

t est

nysqgl t est, other MySQL test programs, and
support files

A single bundle (. t ar file) of all NDB Cluster RPMs for a given platform and architecture is also
available. The name of this file follows the pattern shown here:

nysql -cluster-|icense-ver-rev.distro.arch.rpmbundl e.tar

67

Installing NDB Cluster from RPM

You can extract the individual RPM files from this file using t ar or your preferred tool for extracting
archives.

The components required to install the three major types of NDB Cluster nodes are given in the
following list:

* Management node: managenent - ser ver
» Data node: dat a- node
e SQL node: server and common

In addition, the cl i ent RPM should be installed to provide the ndb_ngmmanagement client on

at least one management node. You may also wish to install it on SQL nodes, to have nysql and
other MySQL client programs available on these. We discuss installation of nodes by type later in this
section.

ver represents the three-part NDB storage engine version number in 8.0.x format, shown as 8. 0. 28 in
the examples. r ev provides the RPM revision number in maj or .m nor format. In the examples shown
in this section, we use 1. 1 for this value.

The di st r o (Linux distribution) is one of r hel 5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5),

el 6 (Oracle Linux 6, Red Hat Enterprise Linux 6), el 7 (Oracle Linux 7, Red Hat Enterprise Linux 7), or
sl es12 (SUSE Enterprise Linux 12). For the examples in this section, we assume that the host runs
Oracle Linux 7, Red Hat Enterprise Linux 7, or the equivalent (el 7).

archisi 686 for 32-bit RPMs and x86_64 for 64-bit versions. In the examples shown here, we
assume a 64-bit platform.

The NDB Cluster version number in the RPM file names (shown here as 8. 0. 28) can vary according
to the version which you are actually using. It is very important that all of the Cluster RPMs to be
installed have the same version number. The architecture should also be appropriate to the machine
on which the RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs (x86_64)
cannot be used with 32-bit operating systems (use i 686 for the latter).

Data nodes. On a computer that is to host an NDB Cluster data node it is necessary to install only
the dat a- node RPM. To do so, copy this RPM to the data node host, and run the following command
as the system root user, replacing the name shown for the RPM as necessary to match that of the
RPM downloaded from the MySQL website:

$> rpm - Uhv nysql - cl ust er - conmuni t y- dat a- node- 8. 0. 28- 1. el 7. x86_64. r pm

This installs the ndbd and ndbnt d data node binaries in / usr/ shi n. Either of these can be used to
run a data node process on this host.

SQL nodes. Copy the server and conmon RPMs to each machine to be used for hosting an NDB
Cluster SQL node (ser ver requires conmon). Install the ser ver RPM by executing the following
command as the system root user, replacing the name shown for the RPM as necessary to match the
name of the RPM downloaded from the MySQL website:

$> rpm - Uhv nysql -cl ust er-comuni ty-server-8.0.28-1.el 7. x86_64.rpm

This installs the MySQL server binary (mysql d), with NDB storage engine support, in the / usr/ sbi n
directory. It also installs all needed MySQL Server support files and useful MySQL server programs,
including the nysql . server and nysql d_saf e startup scripts (in / usr/ shar e/ nysql and/
usr/ bi n, respectively). The RPM installer should take care of general configuration issues (such as
creating the nysql user and group, if needed) automatically.

Important

You must use the versions of these RPMs released for NDB Cluster ; those
released for the standard MySQL server do not provide support for the NDB
storage engine.

68

Installing NDB Cluster from RPM

To administer the SQL node (MySQL server), you should also install the cl i ent RPM, as shown here:

$> rpm - Uhv nysql -cl uster-comunity-client-8.0.28-1.el 7.x86_64.rpm

This installs the nysql client and other MySQL client programs, such as nmysql adm n and
nmysql dunp, to/ usr/ bi n.

Management nodes. To install the NDB Cluster management server, it is necessary only to use
the managenent - ser ver RPM. Copy this RPM to the computer intended to host the management
node, and then install it by running the following command as the system root user (replace the name
shown for the RPM as necessary to match that of the nanagenent - ser ver RPM downloaded from
the MySQL website):

$> rpm - Uhv nysql -cl ust er - conmuni t y- managenent - server-8. 0. 28-1. el 7. x86_64. rpm

This RPM installs the management server binary ndb_ngnd in the / usr/ sbi n directory. While this
is the only program actually required for running a management node, it is also a good idea to have
the ndb_ngmNDB Cluster management client available as well. You can obtain this program, as well
as other NDB client programs such as ndb_desc and ndb_confi g, by installing the cl i ent RPM as
described previously.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about
installing MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster; see Section 3.3, “Initial Configuration
of NDB Cluster”, for the relevant information.

It is very important that all of the Cluster RPMs to be installed have the same version number. The

ar chi t ect ur e designation should also be appropriate to the machine on which the RPM is to be
installed; in particular, you should keep in mind that 64-bit RPMs cannot be used with 32-bit operating
systems.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the
server RPM. To do so, copy this RPM to the data node host, and run the following command as
the system root user, replacing the name shown for the RPM as necessary to match that of the RPM
downloaded from the MySQL website:

$> rpm -Unv MySQL- Ol ust er-server-gpl -8.0.28-1. sl es11.i386.rpm

Although this installs all NDB Cluster binaries, only the program ndbd or ndbnt d (both in/ usr/ sbi n)
is actually needed to run an NDB Cluster data node.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the ser ver RPM
by executing the following command as the system root user, replacing the name shown for the RPM
as necessary to match the name of the RPM downloaded from the MySQL website:

$> rpm -Uhv MySQL- Ol ust er-server-gpl -8.0.28-1. sl es1l1.i386.rpm

This installs the MySQL server binary (mysql d) with NDB storage engine support in the / usr/ sbhi n
directory, as well as all needed MySQL Server support files. It also installs the nmysql . server and
nysql d_saf e startup scripts (in / usr/ shar e/ nysqgl and/ usr/ bi n, respectively). The RPM
installer should take care of general configuration issues (such as creating the nysql user and group,
if needed) automatically.

To administer the SQL node (MySQL server), you should also install the cl i ent RPM, as shown here:

$> rpm -Uhv MySQL-C uster-client-gpl-8.0.28-1.sles1l.i386.rpm
This installs the nysql client program.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install

69

https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Installing NDB Cluster Using .deb Files

it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the ser ver RPM downloaded from the MySQL website):

$> rpm - Uhv MySQL-C uster-server-gpl-8.0.28-1.sles1l.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_ngnd (in the
/ usr/ sbi n directory) is actually required for running a management node. The ser ver RPM also
installs ndb_ngm the NDB management client.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about
installing MySQL using RPMs supplied by Oracle. See Section 3.3, “Initial Configuration of NDB
Cluster”, for information about required post-installation configuration.

3.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the . deb files supplied by Oracle for this purpose.

Oracle also provides an NDB Cluster APT repository for Debian and other distributions. See Installing
MySQL NDB Cluster Using the APT Repository, for instructions and additional information.

Oracle provides . deb installer files for NDB Cluster for 32-bit and 64-bit platforms. For a Debian-
based system, only a single installer file is necessary. This file is named using the pattern shown here,
according to the applicable NDB Cluster version, Debian version, and architecture:

nysql - cl ust er - gpl - ndbver - debi andebi anver - ar ch. deb

Here, ndbver is the 3-part NDB engine version number, debi anver is the major version of Debian (8
or 9), and ar ch is one of i 686 or x86_64. In the examples that follow, we assume you wish to install
NDB 8.0.28 on a 64-bit Debian 9 system; in this case, the installer file is named nysql - cl ust er -
gpl - 8. 0. 28- debi an9- x86_64. deb- bundl e. tar.

Once you have downloaded the appropriate . deb file, you can untar it, and then install it from the
command line using dpkg, like this:

$> dpkg -i nysql -cl uster-gpl-8.0.28-debi an9-i 686. deb
You can also remove it using dpkg as shown here:
$> dpkg -r nysq

The installer file should also be compatible with most graphical package managers that work with . deb
files, such as GDebi for the Gnome desktop.

The . deb file installs NDB Cluster under / opt / nysql / server -ver si on/ , where ver si on

is the 2-part release series version for the included MySQL server. For NDB 8.0, this is always

5. 7. The directory layout is the same as that for the generic Linux binary distribution (see MySQL
Installation Layout for Generic Unix/Linux Binary Package), with the exception that startup scripts and
configuration files are found in support-fil es instead of shar e. All NDB Cluster executables, such
as ndb_ngm ndbd, and ndb_ngnd, are placed in the bi n directory.

3.1.4 Building NDB Cluster from Source on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs
in a few key respects discussed here. For general information about building MySQL from source, see
Installing MySQL from Source. For information about compiling NDB Cluster on Windows platforms,
see Section 3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysqgl.com/downloads/. The archived source file should
have a name similar to nysqgl - 8. 0. 28. t ar. gz. You can also obtain the sources from GitHub at
https://github.com/mysgl/mysql-server.

70

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/linux-installation-rpm.html
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#repo-qg-apt-cluster-install
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html#binary-installation-layout
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server

Installing NDB Cluster on Windows

Note

In previous versions, building of NDB Cluster from standard MySQL Server
sources was not supported. In MySQL 8.0 and NDB Cluster 8.0, this is no
longer the case—both products are now built from the same sources.

The W TH_NDBCLUSTER option for CMake causes the binaries for the management nodes, data
nodes, and other NDB Cluster programs to be built; it also causes mysql d to be compiled with NDB
storage engine support. This option (or one of its aliases W TH_NDBCLUSTER STORAGE ENG NE and
W TH_PLUGQ N_NDBCLUSTER) is required when building NDB Cluster.

Important

The W TH_NDB_JAVA option is enabled by default. This means that, by default,
if CMake cannot find the location of Java on your system, the configuration
process fails; if you do not wish to enable Java and ClusterJ support, you must
indicate this explicitly by configuring the build using - DW TH_NDB_JAVA=OFF.
Use W TH_CLASSPATH to provide the Java classpath if needed.

For more information about C\Vake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

After you have run make && make install (or your system's equivalent), the result is similar to
what is obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default rake i nstal |, the
management server and management client binaries (ndb_ngnd and ndb_ngn) can be found in /
usr/ 1l ocal / nysql / bi n. Only ndb_ngnd is required to be present on a management node host;
however, it is also a good idea to have ndb_ngmpresent on the same host machine. Neither of these
executables requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or
ndbnt d. (nysql d, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory / usr/ | ocal / nysql / bi n. For installing on
multiple data node hosts, only ndbd or ndbnt d need be copied to the other host machine or machines.
(This assumes that all data node hosts use the same architecture and operating system; otherwise you
may need to compile separately for each different platform.) The data node binary need not be in any
particular location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbnt d to be built
automatically; make i nstal | places the ndbnt d binary in the installation bi n directory along with

nysql d, ndbd, and ndb_ngm

SQL nodes. If you compile MySQL with clustering support, and perform the default installation
(using make i nstal |l asthe systemr oot user), nysql dis placedin/usr/ | ocal / mysql / bi n.
Follow the steps given in Installing MySQL from Source to make mysql d ready for use. If you want
to run multiple SQL nodes, you can use a copy of the same nysql d executable and its associated
support files on several machines. The easiest way to do this is to copy the entire / usr/ | ocal /
mysql directory and all directories and files contained within it to the other SQL node host or hosts,
then repeat the steps from Installing MySQL from Source on each machine. If you configure the build
with a nondefault PREFI X option, you must adjust the directory accordingly.

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in
our example NDB Cluster.

3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster 8.0
binaries for Windows can be obtained from https://dev.mysqgl.com/downloads/cluster/. For information

71

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows from a Binary Release

about installing NDB Cluster on Windows from a binary release provided by Oracle, see Section 3.2.1,
“Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this
section (see Chapter 3, NDB Cluster Installation), as shown in the following table:

Table 3.3 Network addresses of nodes in example cluster

Node IP Address

Management node (ngnd) 198.51.100.10
SQL node (nmysql d) 198.51.100.20
Data node "A" (ndbd) 198.51.100.30
Data node "B" (ndbd) 198.51.100.40

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on

it a MySQL Server binary (mysql d. exe). You should also have the MySQL client (nysql . exe) on
this host. For management nodes and data nodes, it is not necessary to install the MySQL Server
binary; however, each management node requires the management server daemon (ndb_ngnd. exe);
each data node requires the data node daemon (ndbd. exe or ndbnt d. exe). For this example, we
refer to ndbd. exe as the data node executable, but you can install ndbnt d. exe, the multithreaded
version of this program, instead, in exactly the same way. You should also install the management
client (ndb_ngm exe) on the management server host. This section covers the steps necessary to
install the correct Windows binaries for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are hamed with
the . exe file extension. However, it is not necessary to include the . exe
extension when invoking these programs from the command line. Therefore,
we often simply refer to these programs in this documentation as nmysql d,
nysql , ndb_ngnd, and so on. You should understand that, whether we refer
(for example) to nysql d or nysql d. exe, either name means the same thing
(the MySQL Server program).

For setting up an NDB Cluster using Oracles's no- i nst al | binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysqgl.com/
downloads/cluster/. This archive has a filename of the nysql - cl ust er - gpl - ver -wi narch. zi p,
where ver is the NDB storage engine version (such as 8. 0. 28), and ar ch is the architecture (32

for 32-bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 8.0.28 archive for 64-bit
Windows systems is named nysql - cl ust er-gpl - 8. 0. 28-w n64. zi p.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-
bit NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit
version of Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster
binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C: \ Docunent s
and Settings\usernanme\ My Docunent s\ Downl oads on the computer having the IP address
198.51.100.20, where user nane is the name of the current user. (You can obtain this name using

72

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows from a Binary Release

ECHO %JSERNANME%o0nN the command line.) To install and run NDB Cluster executables as Windows
services, this user should be a member of the Adni ni st r at or s group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is
adequate for this task. (If you use a different archive program, be sure that it extracts all files and
directories from the archive, and that it preserves the archive's directory structure.) When you are
asked for a destination directory, enter C: \ , which causes the Extraction Wizard to extract the archive
to the directory C. \ nysql - cl ust er - gpl - ver - wi nar ch. Rename this directory to C. \ nysql .

It is possible to install the NDB Cluster binaries to directories other than C: \ nysql \ bi n; however, if
you do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL
Server (SQL node) binary is installed to a location other than C: \ nysql or C:\ Program Fi | es

\ MySQL\ MySQL Server 8.0, orif the SQL node's data directory is in a location other than C:
\nmysqgl \dataorC:\ Program Fi | es\ MySQ.\ MySQL Server 8. 0\ dat a, extra configuration
options must be used on the command line or added to the my. i ni or my. cnf file when starting the
SQL node. For more information about configuring a MySQL Server to run in a nonstandard location,
see Installing MySQL on Microsoft Windows Using a noi nst al | ZIP Archive.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with
the options - - ndbcl ust er and - - ndb- connect st ri ng. While you can specify these options on the
command line, it is usually more convenient to place them in an option file. To do this, create a new
text file in Notepad or another text editor. Enter the following configuration information into this file:

[nysql d]

Options for nysqld process:

ndbcl ust er # run NDB storage engine

ndb- connect stri ng=198. 51. 100. 10 # | ocati on of nmanagenent server

You can add other options used by this MySQL Server if desired (see Creating an Option File), but
the file must contain the options shown, at a minimum. Save this file as C. \ mysql \ my. i ni . This
completes the installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one
of either ndbd. exe or ndbnt d. exe. For this example, we assume that you are using ndbd. exe,
but the same instructions apply when using ndbnt d. exe. On each computer where you wish to run
a data node (the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the
directories C: \ nysql , C:\ nmysql \ bi n, and C: \ nysql \ cl ust er - dat a; then, on the computer
where you downloaded and extracted the no- i nst al | archive, locate ndbd. exe in the C: \ nysq|l

\ bi n directory. Copy this file to the C: \ mysqgl \ bi n directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of

the management server. You can supply this information on the command line using the - - ndb-
connect st ring or - c option when starting each data node process. However, it is usually preferable
to put this information in an option file. To do this, create a new text file in Notepad or another text
editor and enter the following text:

[mysql _cl uster]
Options for data node process:
ndb- connect string=198. 51. 100. 10 # | ocati on of managenment server

Save this file as C: \ nysqgl \ ny. i ni on the data node host. Create another text file containing the
same information and save it on as C. mysql \ my. i ni on the other data node host, or copy the my.ini
file from the first data node host to the second one, making sure to place the copy in the second data
node's C: \ mysqgl directory. Both data node hosts are now ready to be used in the NDB Cluster, which
leaves only the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an
NDB Cluster management node is the management server program ndb_ngnd. exe. However, in
order to administer the NDB Cluster once it has been started, you should also install the NDB Cluster
management client program ndb_ngm exe on the same machine as the management server. Locate
these two programs on the machine where you downloaded and extracted the no-i nst al | archive;

73

https://dev.mysql.com/doc/refman/8.0/en/windows-install-archive.html
https://dev.mysql.com/doc/refman/8.0/en/windows-create-option-file.html

Installing NDB Cluster on Windows from a Binary Release

this should be the directory C. \ nysqgl \ bi n on the SQL node host. Create the directory C: \ nysq|l
\ bi n on the computer having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_ngnd. exe:

1. Alocal configuration file to supply configuration data specific to the management node itself.
Typically, this file needs only to supply the location of the NDB Cluster global configuration file (see
item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql _cluster]
Options for nanagenent node process
config-file=C /nysqgl/bin/config.in

Save this file as the text file C: \ nysql \ bi n\ my. i ni .

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data
nodes (Host Nane configuration parameter). It is also advisable to include the following additional
information:

e The IP address or hostname of any SQL nodes

e The data memory and index memory allocated to each data node (Dat aMenory and
| ndexMenor y configuration parameters)

e The number of fragment replicas, using the NoOf Repl i cas configuration parameter (see
Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

e The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the Dat aDi r configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd default]

Options affecting ndbd processes on all data nodes

NoOf Repl i cas=2 Nurmber of fragment replicas

Dat abDi r =C: / nysql / cl ust er - dat a Directory for each data node's data files
Forward sl ashes used in directory path
rat her than backsl ashes. This is correct;
see Inportant note in text

Menory allocated to data storage

Menory allocated to index storage

For DataMenory and | ndexMenory, we have used the

#

#

#

H H H HH

Dat aMenor y=80M
| ndexMenor y=18M

default values. Since the "world" database takes up
only about 500KB, this should be nmore than enough for
this exanple O uster setup

[ndb_ngnd]

Managenent process options

Host Name=198. 51. 100. 10 # Hostnane or |P address of nanagenent node
Dat abDi r =C: / nysql / bi n/ cl ust er - | ogs # Directory for management node log files

[ndbd]
Options for data node "A"
(one [ndbd] section per data node)

Host Name=198. 51. 100. 30 # Hostnanme or | P address
[ndbd]

Options for data node "B"

Host Name=198. 51. 100. 40 # Hostnanme or | P address
[nysal d]

SQ. node options

74

Compiling and Installing NDB Cluster from Source on Windows

Host Nane=198. 51. 100. 20 # Hostname or | P address
Save this file as the text file C: \ nysql \ bi n\ confi g.ini.
Important

A single backslash character (\) cannot be used when specifying directory
paths in program options or configuration files used by NDB Cluster on
Windows. Instead, you must either escape each backslash character with a
second backslash (\ \), or replace the backslash with a forward slash character
(/). For example, the following line from the [ndb_ngnd] section of an NDB
Cluster confi g. i ni file does not work:

Dat aDi r =C: \ nysql \ bi n\ cl uster-1 ogs

Instead, you may use either of the following:
Dat aDi r=C: \\ nysqgl \\ bi n\\cluster-1ogs # Escaped backsl ashes

Dat aDi r =C: / nysql / bi n/ cl ust er - | ogs # Forward sl ashes

For reasons of brevity and legibility, we recommend that you use forward
slashes in directory paths used in NDB Cluster program options and
configuration files on Windows.

3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most
users. However, if you wish, it is also possible to compile NDB Cluster for Windows from source code.
The procedure for doing this is almost identical to the procedure used to compile the standard MySQL
Server binaries for Windows, and uses the same tools. However, there are two major differences:

* Building MySQL NDB Cluster 8.0 requires using the MySQL Server 8.0 sources. These are available
from the MySQL downloads page at https://dev.mysqgl.com/downloads/. The archived source file
should have a name similar to mysql - 8. 0. 28. t ar. gz. You can also obtain the sources from
GitHub at https://github.com/mysqgl/mysqgl-server.

» You must configure the build using the W TH_NDBCLUSTER option in addition to any other
build options you wish to use with Cvake. W TH _NDBCLUSTER STORAGE ENG NE and
W TH_PLUG N_NDBCLUSTER are supported as aliases for W TH_NDBCLUSTER, and work in exactly
the same way.

Important

The W TH_NDB_JAVA option is enabled by default. This means that, by default,
if CMake cannot find the location of Java on your system, the configuration
process fails; if you do not wish to enable Java and ClusterJ support, you must
indicate this explicitly by configuring the build using - DW TH_NDB_JAVA=0FF.
(Bug #12379735) Use W TH_CLASSPATH to provide the Java classpath if
needed.

For more information about C\Vake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Installing MySQL Using a Standard Source Distribution provides the commands needed to perform this
task on Windows systems. The NDB Cluster binaries can be found in the bi n directory of the resulting
archive, which is equivalent to the no- i nst al | archive, and which can be installed and configured in
the same manner. For more information, see Section 3.2.1, “Installing NDB Cluster on Windows from a
Binary Release”.

3.2.3 Initial Startup of NDB Cluster on Windows

75

https://dev.mysql.com/downloads/
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/8.0/en/installing-source-distribution.html

Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial
start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the
cluster. Each cluster node process must be started separately, and on the host computer where it
resides. The management node should be started first, followed by the data nodes, and then finally by
any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\ nysgl \ bi n> ndb_ngnd
2010-06-23 07:53:34 [Mgnt Srvr] |INFO -- NDB Cl uster Managenent Server. mnysql-8.0.29-ndb-8.0.30
2010- 06-23 07:53:34 [Mynt Srvr] |INFO -- Reading cluster configuration from'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB
Cluster on a Unix-like platform such as Linux, you may notice that the management node's default
behavior in this regard on Windows is effectively the opposite of its behavior on Unix systems,
where it runs by default as a Unix daemon process. This behavior is also true of NDB Cluster
data node processes running on Windows.) For this reason, do not close the window in which
ndb_ngnd. exe is running; doing so kills the management node process. (See Section 3.2.4,
“Installing NDB Cluster Processes as Windows Services”, where we show how to install and run
NDB Cluster processes as Windows services.)

The required - f option tells the management node where to find the global configuration file
(confi g.ini). The long form of this optionis - -config-file.

Important

An NDB Cluster management node caches the configuration data that

it reads from confi g. i ni ; once it has created a configuration cache, it
ignores the conf i g. i ni file on subsequent starts unless forced to do
otherwise. This means that, if the management node fails to start due

to an error in this file, you must make the management node re-read
confi g. i ni after you have corrected any errors in it. You can do this by
starting ndb_ngnd. exe withthe - -rel oad or--ini tial option on the
command line. Either of these options works to refresh the configuration
cache.

It is not necessary or advisable to use either of these options in the
management node's ny. i ni file.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\ nysql \ bi n> ndbd
2010- 06-23 07:53:46 [ndbd] INFO -- Configuration fetched from'local host: 1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown

in the preceding example, and is followed by additional lines of logging output. As with the
management node process, this is normal, because the data node is not running as a Windows
service. For this reason, do not close the console window in which the data node process is
running; doing so kills ndbd. exe. (For more information, see Section 3.2.4, “Installing NDB Cluster
Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node
host, start the NDB Cluster management client ndb_ngm exe, which should be in C: \ nysql \ bi n
on the management node host. (Do not try to re-use the console window where ndb_ngnd. exe is
running by typing CTRL+C, as this kills the management node.) The resulting output should look
like this:

C:\nysql \ bi n> ndb_ngm
- NDB Cluster -- Managenent Client --

76

Initial Startup of NDB Cluster on Windows

ndb_ngne

When the prompt ndb_ngne appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start
by entering ALL STATUS at the management client prompt. This command causes a running report
of the data nodes's startup sequence, which should look something like this:

ndb_ngm> ALL STATUS

Connect ed to Managenent Server at: |ocal host: 1186

Node 2: starting (Last conpleted phase 3) (nysqgl-8.0.29-ndb-8.0.30)
Node 3: starting (Last conpleted phase 3) (nysqgl-8.0.29-ndb-8.0.30)

Node 2: starting (Last conpleted phase 4) (nysqgl-8.0.29-ndb-8.0.30)
Node 3: starting (Last conpleted phase 4) (nysqgl-8.0.29-ndb-8.0.30)

Node 2: Started (version 8.0.30)
Node 3: Started (version 8.0.30)

ndb_ngne
Note

Commands issued in the management client are not case-sensitive; we
use uppercase as the canonical form of these commands, but you are not
required to observe this convention when inputting them into the ndb_ngm
client. For more information, see Section 6.1, “Commands in the NDB
Cluster Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the
speed at which the data nodes are able to start, the release version number of the NDB Cluster
software you are using, and other factors. What is significant is that, when you see that both data
nodes have started, you are ready to start the SQL node.

You can leave ndb_ngm exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after
you have started it.

On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:

\ nysql \ bi n).
Start the SQL node by invoking mysql d. exe from the command line, as shown here:

C:\nysqgl\bi n> nysqgl d --consol e

The - - consol e option causes logging information to be written to the console, which can

be helpful in the event of problems. (Once you are satisfied that the SQL node is running in a
satisfactory manner, you can stop it and restart it out without the - - consol e option, so that logging
is performed normally.)

In the console window where the management client (ndb_ngm exe) is running on the
management node host, enter the SHONcommand, which should produce output similar to what is
shown here:

ndb_ngn> SHOW

Connected to Managenent Server at: |ocal host: 1186

Cluster Configuration

[ndbd(NDB)] 2 node(s)

i d=2 @198. 51. 100. 30 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)
i d=3 @198. 51. 100. 40 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_nmgnmd(M3M)] 1 node(s)
id=1 @98.51.100. 10 (Version: 8.0.29-ndb-8.0.30)

77

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_console

Installing NDB Cluster Processes as Windows Services

[mysql d(API)] 1 node(s)
i d=4 @98.51. 100. 20 (Version: 8.0.29-ndb-8.0.30)

You can also verify that the SQL node is connected to the NDB Cluster in the mysql client
(mysqgl . exe) using the SHOW ENG NE NDB STATUS statement.

You should now be ready to work with database objects and data using NDB Cluster 's NDBCLUSTER
storage engine. See Section 3.5, “NDB Cluster Example with Tables and Data”, for more information
and examples.

You can also install ndb_ngnd. exe, ndbd. exe, and ndbnt d. exe as Windows services. For
information on how to do this, see Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”).

3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes
and data nodes as Windows services, so that these processes are started and stopped automatically
whenever Windows is started or stopped. This also makes it possible to control these processes from
the command line with the appropriate SC START and SC STOP commands, or using the Windows
graphical Ser vi ces utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_ngnd. exe from the command
line on the machine hosting the management node, using the - - i nst al | option, as shown here:

C.\> C\nysql\bi n\ndb_ngnd. exe --install

Installing service 'NDB O uster Managenent Server'
as '"C \nysql\bin\ndbd. exe" "--service=ndb_ngnmd"'

Servi ce successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should
always specify the complete path; otherwise the service installation may fail with
the error The system cannot find the file specified.

The - -i nstal | option must be used first, ahead of any other options that might be specified for
ndb_ngnd. exe. However, it is preferable to specify such options in an options file instead. If your
options file is not in one of the default locations as shown in the output of ndb_ngnd. exe - - hel p, you
can specify the location using the - - conf i g-fi | e option.

Now you should be able to start and stop the management server like this:
C.\> SC START ndb_ngnd

C.\> SC STOP ndb_ngnd
Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C:\> NET START 'NDB Cl uster Managenent Server'
The NDB C uster Managenent Server service is starting.
The NDB C uster Managenent Server service was started successfully.

C.\> NET STOP 'NDB Cluster Managenent Server'
The NDB C uster Managenent Server service is stopping..
The NDB C uster Managenent Server service was stopped successfully.

78

https://dev.mysql.com/doc/refman/8.0/en/show-engine.html#show-engine-ndb-status
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Installing NDB Cluster Processes as Windows Services

It is usually simpler to specify a short service name or to permit the default service name to be used
when installing the service, and then reference that name when starting or stopping the service. To
specify a service name other than ndb_ngnd, append it to the - - i nst al | option, as shown in this
example:

C.\> C\nysqgl\bi n\ndb_ngnd. exe --install=ngndl

Installing service 'NDB O uster Managenent Server'

as '"C \nysql\bin\ndb_ngnd. exe" "--servi ce=ngnd1"’
Servi ce successfully install ed.

Now you should be able to start or stop the service using the name you have specified, like this:

C.\> SC START ngndl

C.\> SC STOP ngnul

To remove the management node service, use SC DELETE servi ce_nane:

C.\> SC DELETE ngndl

Alternatively, invoke ndb_ngnd. exe with the - - r enove option, as shown here:

C.\> C\nysqgl\bi n\ndb_ngnd. exe --renove
Renovi ng service 'NDB O uster Managenent Server'
Servi ce successful ly renoved.

If you installed the service using a service name other than the default, pass the service name as the
value of the ndb_ngnd. exe - - r enove option, like this:

C.\> C\nysqgl\bi n\ndb_ngnd. exe --renove=ngndl

Renovi ng service 'ngndl’
Servi ce successful ly renoved.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar
fashion, using the - - i nst al | option for ndbd. exe (or ndbnt d. exe), as shown here:

C.\> C\nysqgl\bin\ndbd. exe --install

Installing service 'NDB O uster Data Node Daenpon' as '"C:\nysql\bin\ndbd. exe" "--service=ndbd"'

Servi ce successfully install ed.

Now you can start or stop the data node as shown in the following example:

C.\> SC START ndhbd

C.\> SC STCP ndbd

To remove the data node service, use SC DELETE servi ce_nane:

C.\> SC DELETE ndbd

Alternatively, invoke ndbd. exe with the - - r enove option, as shown here:

C:\> C \nysqgl\bin\ndbd. exe --renpve
Renovi ng service 'NDB O uster Data Node Daenon'
Servi ce successful ly renpved.

As with ndb_ngnd. exe (and nysql d. exe), when installing ndbd. exe as a Windows service, you
can also specify a name for the service as the value of - - i nst al | , and then use it when starting or
stopping the service, like this:

C:\> C \nysqgl\bin\ndbd. exe --install =dnodel
Installing service 'dnodel' as '"C:\nysql\bin\ndbd. exe" "--service=dnodel"'
Servi ce successfully install ed.

C.\> SC START dnodel

79

Initial Configuration of NDB Cluster

C.\> SC STOP dnodel

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C.\> SC DELETE dnodel

Alternatively, you can pass the service name as the value of the ndbd. exe - - r enove option, as
shown here:

C.\> C \nysqgl\bi n\ndbd. exe --renpve=dnodel
Renmovi ng servi ce ' dnodel’
Servi ce successfully renpved.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and
removing the service are done in a similar fashion, using nysql d - -i nstal | , SC START, SC STOP,
and SC DELETE (or nysql d - - r enove). NET commands can also be used to start or stop a service.
For additional information, see Starting MySQL as a Windows Service.

3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to
write four configuration files, one per node host.

» Each data node or SQL node requires a ny. cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the
MySQL server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage
engine.

For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.

e The management node needs a confi g. i ni file telling it how many fragment replicas to maintain,
how much memory to allocate for data and indexes on each data node, where to find the data nodes,
where to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The ny. cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the / et ¢ directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/ny.cnf
Note

We show vi being used here to create the file, but any text editor should work
just as well.

For each data node and SQL node in our example setup, ny. cnf should look like this:

[nysql d]
Options for nysqld process:
ndbcl ust er # run NDB storage engine

[mysql _cl uster]
Options for NDB O uster processes:
ndb- connect stri ng=198. 51. 100. 10 # | ocati on of nanagenent server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

80

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_remove
https://dev.mysql.com/doc/refman/8.0/en/windows-start-service.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Initial Configuration of NDB Cluster

Important

Once you have started a mysql d process with the ndbcl ust er and ndb-
connect stri ng parameters in the [mysql d] and [nysqgl cl uster]
sections of the my. cnf file as shown previously, you cannot execute any
CREATE TABLE or ALTER TABLE statements without having actually started
the cluster. Otherwise, these statements fail with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to
create the directory in which the configuration file can be found and then to create the file itself. For
example (running as r oot):

$> nkdir /var/lib/nysql-cluster
$> cd /var/lib/nysqgl-cluster
$> vi config.ini

For our representative setup, the confi g. i ni file should read as follows:

[ndbd defaul t]

Options affecting ndbd processes on all data nodes:

NoOf Repl i cas=2 # Nunber of fragnent replicas

Dat aMenor y=98M # How nuch nenory to allocate for data storage

[ndb_ngnd]

Managenent process options:

Host Nane=198. 51. 100. 10 # Hostnane or | P address of nanagenent node
Dat aDir=/var/lib/nysql-cluster # Directory for nanagenent node log files

[ndbd]

Options for data node "A":

(one [ndbd] section per data node)

Host nane or | P address

Node ID for this data node

Directory for this data node's data files

Host Nane=198. 51. 100. 30
Nodel d=2
Dat aDi r=/ usr/ | ocal / nysql / dat a

H HH

[ndbd]

Options for data node "B":
Host Nane=198. 51. 100. 40

Nodel d=3

Dat aDi r=/ usr/ | ocal / nysql / dat a

Host nane or | P address
Node ID for this data node
Directory for this data node's data files

H*H B

[nmysql d]

SQL node options:
Host Nane=198. 51. 100. 20 Host nane or | P address

(addi tional nysqgld connections can be
specified for this node for various

pur poses such as runni ng ndb_restore)

H HH

Note

The wor | d database can be downloaded from https://dev.mysqgl.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you
are ready to proceed with starting the cluster and verifying that all processes are running. We discuss
how this is done in Section 3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their
uses, see Section 4.3, “NDB Cluster Configuration Files”, and Chapter 4, Configuration of NDB Cluster.
For configuration of NDB Cluster as relates to making backups, see Section 6.8.3, “Configuration for
NDB Cluster Backups”.

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. However, the cluster can automatically allocate ports for data
nodes from those that are already free.

81

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

Initial Startup of NDB Cluster

3.4 Initial Startup of NDB Cluster

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1.

On the management host, issue the following command from the system shell to start the
management node process:

$> ndb_ngnd --initial -f /var/lib/nysql-cluster/config.ini

The first time that it is started, ndb_ngnd must be told where to find its configuration file, using
the-f or--config-fil e option. This option requires that - -i ni ti al or--rel oad also be
specified; see Section 5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for
details.

On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational.
You can test this by invoking the ndb_ngmmanagement node client. The output should look like that
shown here, although you might see some slight differences in the output depending upon the exact
version of MySQL that you are using:

$> ndb_nmgm

-- NDB Cluster -- Managenent Cient --

ndb_ngnm> SHOW

Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @98.51.100.30 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)
i d=3 @98.51.100.40 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0)

[ndb_nmgnmd(MGM] 1 node(s)
id=1 @98.51.100. 10 (Version: 8.0.29-ndb-8.0.30)

[mysql d(API)] 1 node(s)
i d=4 @98.51.100.20 (Version: 8.0.29-ndb-8.0.30)

The SQL node is referenced here as [nysql d(APl)], which reflects the fact that the mysql d process
is acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the
output of SHOWis the address used by the SQL or API node to connect to the
cluster data nodes, and not to any management node.

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 3.5,
“NDB Cluster Example with Tables and Data”, for a brief discussion.

3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

82

NDB Cluster Example with Tables and Data

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

» For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify
this, use the ENG NE=NDBCLUSTER or ENG NE=NDB option when creating the table:

CREATE TABLE tbl _nanme (col _nanme col umm_defini ti ons) ENG NE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change
the table to use NDBCLUSTER:

ALTER TABLE tbl _name ENG NE=NDBCLUSTER;

» Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes
up space just as does any other table index. (It is not uncommon to encounter problems due to
insufficient memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysql dunp, you can open
the SQL script in a text editor and add the ENG NE option to any table creation statements, or replace
any existing ENG NE options. Suppose that you have the wor | d sample database on another MySQL
server that does not support NDB Cluster, and you want to export the Ci t y table:

$> nysqgl dunp --add-drop-table world Gty > city_table.sql

The resulting ci ty_t abl e. sqgl file contains this table creation statement (and the | NSERT
statements necessary to import the table data):

DROP TABLE IF EXISTS "Gty ;

CREATE TABLE “City" (
“ID int(11) NOT NULL auto_i ncrenent,
“Nane® char(35) NOT NULL default "'
“CountryCode’ char(3) NOT NULL default "'
"District® char(20) NOT NULL default "'
“Popul ation® int(11) NOT NULL default '0',
PR MARY KEY ('ID)

) ENG NE=My| SAM DEFAULT CHARSET=I ati n1;

INSERT INTO "GCity VALUES (1,'Kabul','AFG,'Kabol', 1780000);
INSERT INTO "City" VALUES (2,' Qandahar','AFG ,' Qandahar', 237500) ;
INSERT INTO "City VALUES (3,'Herat','AFG ,'Herat', 186800);
(renmaining | NSERT statenents onitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are
two ways that this can be accomplished. One of these is to modify the table definition before importing
it into the Cluster database. Using the Ci t y table as an example, modify the ENG NE option of the
definition as follows:

DROP TABLE IF EXISTS "City ;

CREATE TABLE “City" (
“ID int(11) NOT NULL auto_increnent,
“Nane® char(35) NOT NULL default "',
" CountryCode” char(3) NOT NULL default "'
"District® char(20) NOT NULL default "'
“Popul ation® int(11) NOT NULL default 'O',
PRI MARY KEY (1D

) ENG NE=NDBCLUSTER DEFAULT CHARSET=I ati ni;

INSERT INTO "City VALUES (1,'Kabul',"'AFG,'Kabol', 1780000);
INSERT INTO "City VALUES (2,'Qandahar','AFG ,' Qandahar', 237500);
INSERT INTO "City" VALUES (3,'Herat','AFG,'Herat', 186800);
(remai ni ng | NSERT statenents onitted)

This must be done for the definition of each table that is to be part of the clustered database. The
easiest way to accomplish this is to do a search-and-replace on the file that contains the definitions and
replace all instances of TYPE=engi ne_nane or ENG NE=engi ne_nane with ENG NE=NDBCLUSTER.

83

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Example with Tables and Data

If you do not want to modify the file, you can use the unmodified file to create the tables, and then use
ALTER TABLE to change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named wor | d on the SQL node of the cluster, you
can then use the nysql command-line clienttoread city tabl e. sql, and create and populate the
corresponding table in the usual manner:

$> nysql world < city table. sql

It is very important to keep in mind that the preceding command must be executed on the host where
the SQL node is running (in this case, on the machine with the IP address 198. 51. 100. 20).

To create a copy of the entire wor | d database on the SQL node, use nysql dunp on the noncluster
server to export the database to a file named wor | d. sgl (for example, in the / t np directory). Then
modify the table definitions as just described and import the file into the SQL node of the cluster like
this:

$> nysql world < /tnp/world. sql
If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in
the usual way (specify the r oot password at the Ent er passwor d: prompt):

$> nysqgl -u root -p

Ent er password:

Wel cone to the MySQL nonitor. Conmands end with ; or \g.

Your MySQL connection id is 1 to server version: 8.0.29-ndb-8.0.30

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.
nysql >

We simply use the MySQL server's r oot account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong r oot password. For more
information, see Securing the Initial MySQL Account.

It is worth taking into account that NDB Cluster nodes do not make use of the MySQL privilege system

when accessing one another. Setting or changing MySQL user accounts (including the r oot account)

effects only applications that access the SQL node, not interaction between nodes. See Section 6.18.2,
“NDB Cluster and MySQL Privileges”, for more information.

If you did not modify the ENG NE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

nmysql > USE wor | d;

nmysqgl > ALTER TABLE City ENG NE=NDBCLUSTER,

nmysqgl > ALTER TABLE Country ENG NE=NDBCLUSTER,

nmysql > ALTER TABLE CountrylLanguage ENG NE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also
accomplished in the usual manner, as is exiting the MySQL Monitor:

nysql > USE wor | d;
nysqgl > SELECT Nane, Popul ati on FROM City ORDER BY Popul ati on DESC LIM T 5;

| Name | Popul ation |
oocomooooos foccmmosoooon +
Bombay	10500000
Seoul	9981619
S&o Paul o	9968485
Shanghai	9696300
Jakarta	9604900
oocomooooos foccmmosoooon +

5 rows in set (0.34 sec)

84

https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/default-privileges.html

NDB Cluster Example with Tables and Data

mysqgl > \q
Bye

$>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to
remember that your application must access the SQL node, and not the management or data nodes.
This brief example shows how we might execute the SELECT statement just shown by using the PHP
5.X mysql i extension running on a Web server elsewhere on the network:

<! DOCTYPE HTML PUBLIC "-//WBC//DTD HTM. 4.01 Transitional //EN'
"http://ww. w3. org/ TR/ ht m 4/ 1 oose. dt d" >
<ht m >
<head>
<meta http-equi v="=Cont ent - Type"
content="text/htm ; charset=iso-8859-1">
<title>SI MPLE nysqli SELECT</title>

</ head>
<body>
<?php
connect to SQL node
$link = new nysqgli('198.51.100.20', 'root', 'root_password', 'world');

paraneters for nmysqgli constructor are
host, user, password, database

if(nysqgli_connect_errno())
di e("Connect failed: " . nysqli_connect_error())

$query = "SELECT Nane, Popul ation
FROM Gty
ORDER BY Popul ati on DESC
LIMT 5";

if no errors..
if($result = $link->query($query))
{
2>
<tabl e border="1" wi dth="40% cell paddi ng="4" cell spacing ="1">
<t body>
<tr>
<th wi dth="10% >Ci ty</th>
<t h>Popul ati on</t h>
</tr>
<?
then display the results..
whi |l e($row = $resul t->fetch_object())
printf("<tr>\n <td align=\"center\">%</td><td>%l</td>\n</tr>\n",
$row >Nanme, $row >Popul ati on) ;

2>
</ t body
</t abl e>
<?
...and verify the nunber of rows that were retrieved
printf("<p>Affected rows: %l</p>\n", $link->affected_rows);
}
el se

otherwi se, tell us what went wong
echo nysqli_error();

free the result set and the nmysqgli connecti on object
$resul t->cl ose();
$l i nk->cl ose();

2>

</ body>

</htm >

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

85

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Safe Shutdown and Restart of NDB Cluster

3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the
management node:

$> ndb_ngm -e shut down

The - e option here is used to pass a command to the ndb_ngmclient from the shell. The command
causes the ndb_ngm ndb_ngnd, and any ndbd or ndbnt d processes to terminate gracefully.

Any SQL nodes can be terminated using nysql adni n shut down and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC
STOP servi ce_nane or NET STOP servi ce_nane.

To restart the cluster on Unix platforms, run these commands:

e On the management host (198. 51. 100. 10 in our example setup):

$> ndb_ngnd -f /var/lib/nysql-cluster/config.ini

* On each of the data node hosts (198. 51. 100. 30 and 198. 51. 100. 40):

$> ndbd
» Use the ndb_ngmclient to verify that both data nodes have started successfully.

« Onthe SQL host (198. 51. 100. 20):

$> nysql d_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows
services using the default service names (see Section 3.2.4, “Installing NDB Cluster Processes as
Windows Services”), you can restart the cluster as follows:

» On the management host (198. 51. 100. 10 in our example setup), execute the following command:

C.\> SC START ndb_ngnd

* On each of the data node hosts (198. 51. 100. 30 and 198. 51. 100. 40), execute the following
command:

C.\> SC START ndbd

» On the management node host, use the ndb_ngmclient to verify that the management node and
both data nodes have started successfully (see Section 3.2.3, “Initial Startup of NDB Cluster on
Windows").

* On the SQL node host (198. 51. 100. 20), execute the following command:

C.\> SC START nysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases,
even when making configuration changes, or performing upgrades to the cluster hardware or software
(or both), which require shutting down individual host machines, it is possible to do so without shutting
down the cluster as a whole by performing a rolling restart of the cluster. For more information about
doing this, see Section 6.5, “Performing a Rolling Restart of an NDB Cluster”.

3.7 Upgrading and Downgrading NDB Cluster

This section provides information about NDB Cluster software and table file compatibility between
different NDB Cluster 8.0 releases with regard to performing upgrades and downgrades as well as
compatibility matrices and notes. You should already be familiar with installing and configuring NDB
Cluster prior to attempting an upgrade or downgrade. See Chapter 4, Configuration of NDB Cluster.

86

Upgrades and Downgrades, NDB Cluster 8.0

Schema operations, including SQL DDL statements, cannot be performed while any data nodes

are restarting, and thus during an online upgrade or downgrade of the cluster. For other information
regarding the rolling restart procedure used to perform an online upgrade, see Section 6.5, “Performing
a Rolling Restart of an NDB Cluster”.

Important

Compatibility between release versions is taken into account only with regard to
NDBCLUSTER in this section, and there are additional issues to be considered.
See Upgrading MySQL.

As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the
MySQL versions from which and to which you intend to migrate, before
attempting an upgrade or downgrade of the NDB Cluster software.

The table shown here provides information on NDB Cluster upgrade and downgrade compatibility
among different releases of NDB 8.0. Additional notes about upgrades and downgrades to, from, or
within the NDB Cluster 8.0 release series can be found following the table.

Upgrades and Downgrades, NDB Cluster 8.0

Figure 3.2 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 8.0

MySQL NDB Cluster 8.0
A 8.0.29
8.0.28
8.0.27
8.0.26
8.0.25
8.0.24
8.0.23
8.0.22
8.0.21
8.0.20

V 8.0.19

KEY:

Online upgrades and
downgrades possible

Version support. The following versions of NDB Cluster are supported for upgrades to GA releases
of NDB Cluster 8.0 (8.0.19 and later):

» NDB Cluster 7.6: NDB 7.6.4 and later
* NDB Cluster 7.5: NDB 7.5.4 and later
» NDB Cluster 7.4: NDB 7.4.6 and later

To upgrade from a release series previous to NDB 7.4, you must upgrade in stages, first to one of the
versions just listed, and then from that version to the latest NDB 8.0 release. In such cases, upgrading
to the latest NDB 7.6 release is recommended as the first step. For information about upgrades to NDB
7.6 from previous versions, see Upgrading and Downgrading NDB 7.6.

87

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/upgrading.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-upgrade-downgrade-7-6.html

Upgrades and Downgrades, NDB Cluster 8.0

Known Issues. The following issues are known to occur when upgrading to or between NDB 8.0
releases:

» Online downgrades from NDB 8.0 to previous releases are not supported. Tables created in NDB 8.0
are not backwards compatible with previous releases. This is due to a change in usage of the extra
metadata property implemented by NDB tables to provide full support for the MySQL data dictionary.

For more information, see Changes in NDB table extra metadata. See also MySQL Data Dictionary.

* In NDB 8.0, the default values changed for | og_bi n (from 0 to 1) and ndb_I| og_bi n (from 1 to 0).
This means that you must now explicitly set ndb_| og_bi n to 1 to enable binary logging.

« Distributed privileges shared between MySQL servers as implemented in prior release series (see
Distributed Privileges Using Shared Grant Tables) are not supported in NDB Cluster 8.0. When
started, the nysql d supplied with NDB 8.0 and later checks for the existence of any grant tables
which use the NDB storage engine; if it finds any, it creates local copies (“shadow tables”) of these
using | nnoDB. This is true for each MySQL server connected to NDB Cluster. After this has been
performed on all MySQL servers acting as NDB Cluster SQL nodes, the NDB grant tables may be
safely removed using the ndb_dr op_t abl e utility supplied with the NDB Cluster distribution, like
this:

ndb_drop_table -d nysql user db columms_priv tables_priv proxies_priv procs_priv

It is safe to retain the NDB grant tables, but they are not used for access control and are effectively
ignored.

For more information about the MySQL privileges system used in NDB 8.0, see Section 6.12,
“Privilege Synchronization and NDB_STORED_USER?”, as well as Grant Tables.

* In NDB 8.0, the binary configuration file format has been enhanced to provide support for greater
numbers of nodes than in previous versions. The new format is not accessible to nodes running older
versions of NDB, although newer management servers can detect older nodes and communicate with
them using the appropriate format.

Upgrades to NDB 8.0 should not be problematic in this regard. When downgrading from NDB

8.0 to previous versions, because older management servers cannot read the newer binary
configuration file format, some manual intervention is required. When performing such a downgrade,
it is necessary to remove any cached binary configuration files prior to starting the management
using the older NDB software version, and to have the plaintext configuration file available for the
management server to read. Alternatively, you can start the older management server using the
--initial option (again, it is necessary to have the confi g. i ni available). If the cluster uses
multiple management servers, one of these two things must be done for each management server
binary.

Also in connection with support for increased numbers of nodes, due to incompatible changes
implemented in NDB 8.0 in the data node LCP Sysfi | e, itis necessary, when performing an online
downgrade from NDB 8.0 to a prior NDB Cluster release, to restart all data nodes using the - -
initial option.

Restarting the data nodes with - - i ni ti al is also required when upgrading any release prior to
NDB 7.6.4 to any NDB 8.0 release.

» Direct downgrades of clusters running more than 48 data nodes, or with data nodes using node IDs
greater than 48, to earlier NDB Cluster releases from NDB 8.0 are not supported. It is necessary
in such cases to reduce the number of data nodes, change the configurations for all data nodes
such that they use node IDs less than or equal to 48, or both, as required not to exceed the old
maximums.

« If you are downgrading from NDB 8.0 to NDB 7.5 or NDB 7.4, you must set an explicit value for
I ndexMenor y in the cluster configuration file if none is already present. This is because NDB 8.0
does not use this parameter (which was removed in NDB 7.6) and sets it to 0 by default, whereas

https://dev.mysql.com/doc/refman/8.0/en/data-dictionary.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_log_bin
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-privilege-distribution.html
https://dev.mysql.com/doc/refman/8.0/en/grant-tables.html

The NDB Cluster Auto-Installer (No longer supported)

it is required in NDB 7.5 and NDB 7.4, in both of which the cluster refuses to start with | nval i d
configuration received from Managenent Server... if| ndexMenory is notsetto a
nonzero value.

Setting | ndexMenor y is not required for downgrades from NDB 8.0 to NDB 7.6.

» NDB 8.0.22 adds support for IPv6 addressing for management nodes and data nodes in the
config.ini file. To begin using IPv6 addresses as part of an upgrade, perform the following steps:

1. Perform an upgrade of the cluster to version 8.0.22 or a later version of the NDB Cluster software
in the usual manner.

2. Change the addresses used in the confi g. i ni file to IPv6 addresses.
3. Perform a system restart of the cluster.

» Due to changes in the internal mysql . ndb_schena table, if you upgrade to an NDB 8.0 release
prior to 8.0.24, then you are advised to use ndb_schenma_di st _upgrade_al | oned = 0 to avoid
unexpected outages (Bug #30876990, Bug #31016905).

« If you are using multithreaded data nodes (ndbnt d) and the Thr eadConf i g configuration
parameter, you may need to make changes in the value set for this in the confi g. i ni file when
upgrading from a previous release to NDB 8.0.30 or later. When upgrading from NDB 8.0.23 or
earlier, any usage of mai n, r ep, r ecv, or | dmthreads that was implicit in the earlier version must be
explicitly set. When upgrading from NDB 8.0.23 or later to NDB 8.0.30 or later, any usage of r ecv
threads must be set explicitly in the Thr eadConf i g string. In addition, to avoid using nmei n, r ep, or
| dmthreads in NDB 8.0.30 or later, you must set the thread count for the given type to O explicitly.

An example follows.

NDB 8.0.22 and earlier:

e config.ini file contains ThreadConfi g=I dm

« This is interpreted by these versions of NDB as Thr eadConf i g=nai n, | dm recv, rep.

« Required in confi g. i ni to match effectin NDB 8.0.30 or later:
Thr eadConfi g=mai n,l dmrecv, rep.

NDB 8.0.23—8.0.29:
e config.ini file contains Thr eadConfi g=I dm
e This is interpreted by these versions of NDB as Thr eadConf i g=I dm r ecv.

* Required in confi g. i ni to match effectin NDB 8.0.30 or later:
Thr eadConf i g=mai n={ count =0}, | dm r ecv, r ep={ count =0} .

For more information, see the description of the Thr eadConf i g configuration parameter.

3.8 The NDB Cluster Auto-Installer (No longer supported)

Note

This feature has been removed from NDB Cluster, and is no longer supported.
See Section 2.4, “What is New in NDB Cluster”, for more information.

This section describes the web-based graphical configuration installer included as part of the NDB
Cluster distribution. Topics discussed include an overview of the installer and its parts, software and
other requirements for running the installer, navigating the GUI, and using the installer to set up and
start or stop an NDB Cluster on one or more host computers.

89

NDB Cluster Auto-Installer Requirements

The NDB Cluster Auto-Installer is made up of two components. The front end is a GUI client
implemented as a Web page that loads and runs in a standard Web browser such as Firefox or
Microsoft Internet Explorer. The back end is a server process (ndb_set up. py) that runs on the local
machine or on another host to which you have access.

These two components (client and server) communicate with each other using standard HTTP
requests and responses. The back end can manage NDB Cluster software programs on any host
where the back end user has granted access. If the NDB Cluster software is on a different host, the
back end relies on SSH for access.

3.8.1 NDB Cluster Auto-Installer Requirements

This section provides information on supported operating platforms and software, required software,
and other prerequisites for running the NDB Cluster Auto-Installer.

Supported platforms. The NDB Cluster Auto-Installer is available with NDB 8.0 distributions for
recent versions of Linux, Windows, Solaris, and macOS. For more detailed information about platform
support for NDB Cluster and the NDB Cluster Auto-Installer, see https://www.mysql.com/support/
supportedplatforms/cluster.html.

Supported web browsers. The web-based installer is supported with recent versions of Firefox
and Microsoft Internet Explorer. It should also work with recent versions of Opera, Safari, and Chrome,
although we have not thoroughly tested for compability with these browsers.

Required software—setup host. The following software must be installed on the host where the
Auto-Installer is run:

* Python 2.6 or higher. The Auto-Installer requires the Python interpreter and standard libraries.
If these are not already installed on the system, you may be able to add them using the system's
package manager. Otherwise, you can download them from http://python.org/download/.

e Paramiko 2 or higher. You can download this from http://www.lag.net/paramiko/ if it is not
available from your system's package manager.

» Pycrypto version 1.9 or higher. This cryptography module is required by Paramiko, and can
be iunstalled using pi p i nstal |l cryptography. If pi p is not installed, and the module is not
available using your system's package manage, you can download it from https://www.dlitz.net/
software/pycrypto/.

All of the software in the preceding list is included in the Windows version of the configuration tool, and
does not need to be installed separately.

Required software—remote hosts. The only software required for remote hosts where you wish
to deploy NDB Cluster nodes is the SSH server, which is usually installed by default on Linux and
Solaris systems. Several alternatives are available for Windows; for an overview of these, see http://
en.wikipedia.org/wiki/Comparison_of SSH_servers.

An additional requirement when using multiple hosts is that it is possible to authenticate to any of
the remote hosts using SSH and the proper keys or user credentials, as discussed in the next few
paragraphs:

Authentication and security. Three basic security or authentication mechanisms for remote
access are available to the Auto-Installer, which we list and describe here:

« SSH. A secure shell connection is used to enable the back end to perform actions on remote
hosts. For this reason, an SSH server must be running on the remote host. In addition, the operating
system user running the installer must have access to the remote server, either with a user name
and password, or by using public and private keys.

90

https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
http://python.org/download/
http://www.lag.net/paramiko/
https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers

Using the NDB Cluster Auto-Installer

Important

You should never use the system r oot account for remote access, as

this is extremely insecure. In addition, nysql d cannot normally be started

by system r oot . For these and other reasons, you should provide SSH
credentials for a regular user account on the target system, and not for
system r oot . For more information about this issue, see How to Run MySQL
as a Normal User.

e HTTPS. Remote communication between the Web browser front end and the back end is not

encrypted by default, which means that information such as the user's SSH password is transmitted
as cleartext that is readable to anyone. For communication from a remote client to be encrypted,
the back end must have a certificate, and the front end must communicate with the back end using
HTTPS rather than HTTP. Enabling HTTPS is accomplished most easily through issuing a self-
signed certificate. Once the certificate is issued, you must make sure that it is used. You can do this
by starting ndb_set up. py from the command line with the - - use-https (-S)and--cert-file
(- ¢) options.

A sample certificate file cf g. pemis included and is used by default. This file is located in the ntc
directory under the installation share directory; on Linux, the full path to the file is normally / usr/
share/ nysql / ncc/ cf g. pem On Windows systems, this is usually C: \ Program Fi | es\ MySQL
\ MySQL Server 8.0\share\ntc)\cfg. pem Letting the default be used means that, for testing
purposes, you can simply start the installer with the - S option to use an HTTPS connection between
the browser and the back end.

The Auto-Installer saves the configuration file for a given cluster nycl ust er 01 as

nmycl ust er 01. ntc in the home directory of the user invoking the ndb_set up. py executable. This
file is encrypted with a passphrase supplied by the user (using Fernet); because HTTP transmits the
passphrase in the clear, it is strongly recommended that you always use an HTTPS connection to
access the Auto-Installer on a remote host.

Certificate-based authentication. The back end ndb_set up. py process can execute
commands on the local host as well as remote hosts. This means that anyone connecting to the
back end can take charge of how commands are executed. To reject unwanted connections to the
back end, a certificate may be required for authentication of the client. In this case, a certificate
must be issued by the user, installed in the browser, and made available to the back end for
authentication purposes. You can enact this requirement (together with or in place of password or
key authentication) by starting ndb_set up. py withthe - - ca-certs-fil e (- a) option.

There is no need or requirement for secure authentication when the client browser is running on the
same host as the Auto-Installer back end.

See also Section 6.18, “NDB Cluster Security Issues”, which discusses security considerations to
take into account when deploying NDB Cluster, as well as Security, for more general MySQL security
information.

3.8.2 Using the NDB Cluster Auto-Installer

The NDB Cluster Auto-Installer interface is made up of several pages, each corresponding to a step in
the process used to configure and deploy an NDB Cluster. These pages are listed here, in order:

Welcome: Begin using the Auto-Installer by choosing either to configure a new NDB Cluster, or to
continue configuring an existing one.

Define Cluster: Set basic information about the cluster as a whole, such as name, hosts, and load
type. Here you can also set the SSH authentication type for accessing remote hosts, if needed.

Define Hosts: Identify the hosts where you intend to run NDB Cluster processes.

Define Processes: Assign one or more processes of a given type or types to each cluster host.

91

https://dev.mysql.com/doc/refman/8.0/en/changing-mysql-user.html
https://dev.mysql.com/doc/refman/8.0/en/changing-mysql-user.html
https://cryptography.io/en/latest/fernet/
https://dev.mysql.com/doc/refman/8.0/en/security.html

Using the NDB Cluster Auto-Installer

» Define Parameters: Set configuration attributes for processes or types of processes.

» Deploy Configuration: Deploy the cluster with the configuration set previously; start and stop the
deployed cluster.

NDB Cluster Installer Settings and Help Menus

These menus are shown on all screens except for the Welcome screen. They provide access to
installer settings and information. The Settings menu is shown here in more detail:

Figure 3.3 NDB Cluster Auto-Installer Settings menu

Automatically save configuration as cookies

Show adwvanced configuration options
use cg

- Automatically get resource information far new hosts

The Settings menu has the following entries:

» Automatically save configuration as cookies: Save your configuration information—such as
host names, process data, and parameter values—as a cookie in the browser. When this option is
chosen, all information except any SSH password is saved. This means that you can quit and restart
the browser, and continue working on the same configuration from where you left off at the end of the
previous session. This option is enabled by default.

The SSH password is never saved; if you use one, you must supply it at the beginning of each new
session.

» Show advanced configuration options: Shows by default advanced configuration parameters
where available.

Once set, the advanced parameters continue to be used in the configuration file until they are
explicitly changed or reset. This is regardless of whether the advanced parameters are currently
visible in the installer; in other words, disabling the menu item does not reset the values of any of
these parameters.

You can also toggle the display of advanced parameters for individual processes on the Define
Parameters screen.

This option is disabled by default.

» Automatically get resource information for new hosts: Query new hosts automatically for

hardware resource information to pre-populate a number of configuration options and values. In this
case, the suggested values are not mandatory, but they are used unless explicitly changed using the
appropriate editing options in the installer.

This option is enabled by default.

The installer Help menu is shown here:

92

Using the NDB Cluster Auto-Installer

Figure 3.4 NDB Cluster Auto-Installer Help menu

Contents

. 5 Current page
use case. If you intend to use remete hosts for deploying My!

About

The Help menu provides several options, described in the following list:

» Contents: Show the built-in user guide. This is opened in a separate browser window, so that it can
be used simultaneously with the installer without interrupting workflow.

» Current page: Open the built-in user guide to the section describing the page currently displayed in
the installer.

» About: open a dialog displaying the installer name and the version number of the NDB Cluster
distribution with which it was supplied.

The Auto-Installer also provides context-sensitive help in the form of tooltips for most input widgets.

In addition, the names of most NDB configuration parameters are linked to their descriptions in the
online documentation. The documentation is displayed in a separate browser window.

The next section discusses starting the Auto-Installer. The sections immediately following it describe in
greater detail the purpose and function of each of these pages in the order listed previously.

Starting the NDB Cluster Auto-Installer

The Auto-Installer is provided together with the NDB Cluster software. Separate RPM and . deb
packages containing only the Auto-Installer are also available for many Linux distributions. (See
Chapter 3, NDB Cluster Installation.)

The present section explains how to start the installer. You can do by invoking the ndb_set up. py
executable.

User and privileges

You should run the ndb_set up. py as a normal user; no special privileges are
needed to do so. You should not run this program as the nysql user, or using
the system r oot or Administrator account; doing so may cause the installation
to fail.

ndb_set up. py is found in the bi n within the NDB Cluster installation directory; a typical location
might be / usr /| ocal / nysql / bi n on a Linux system or C: \ Program Fi | es\ MySQ.\ MySQL
Server 8. 0\ bi n on a Windows system. This can vary according to where the NDB Cluster software
is installed on your system, and the installation method.

On Windows, you can also start the installer by running set up. bat in the NDB Cluster installation
directory. When invoked from the command line, this batch file accepts the same options as
ndb_set up. py.

93

Using the NDB Cluster Auto-Installer

ndb_set up. py can be started with any of several options that affect its operation, but it is usually
sufficient to allow the default settings be used, in which case you can start ndb_set up. py by either of
the following two methods:

1. Navigate to the NDB Cluster bi n directory in a terminal and invoke it from the command line,
without any additional arguments or options, like this:

$> ndb_set up. py

Runni ng out of install dir: /usr/local/nysqgl/bin

Starting web server on port 8081

URL is https://|ocal host: 8081/ wel cone. ht m

deat hkey=627876

Press CTRL+C to stop web server.

The application should now be running in your browser.

(Alternatively you can navigate to https://|ocal host: 8081/ wel come. html to start it)

This works regardless of operating platform.

2. Navigate to the NDB Cluster bi n directory in a file browser (such as Windows Explorer on
Windows, or Konqueror, Dolphin, or Nautilus on Linux) and activate (usually by double-clicking)
the ndb_setup.py file icon. This works on Windows, and should work with most common Linux
desktops as well.

On Windows, you can also navigate to the NDB Cluster installation directory and activate the
setup.bat file icon.

In either case, once ndb_set up. py is invoked, the Auto-Installer's Welcome screen should

open in the system's default web browser. If not, you should be able to open the page http://

I ocal host: 8081/ wel cone. ht Ml orhttps://|ocal host: 8081/ wel cone. ht M manually in the
browser.

In some cases, you may wish to use non-default settings for the installer, such as specifying HTTPS
for connections, or a different port for the Auto-Installer's included web server to run on, in which case
you must invoke ndb_set up. py with one or more startup options with values overriding the necessary
defaults. The same startup options can be used on Windows systems with the set up. bat file supplied
for such platforms in the NDB Cluster software distribution. This can be done using the command line,
but if you want or need to start the installer from a desktop or file browser while employing one or more
of these options, it is also possible to create a script or batch file containing the proper invocation, then
to double-click its file icon in the file browser to start the installer. (On Linux systems, you might also
need to make the script file executable first.) If you plan to use the Auto-Installer from a remote host,
you should start using the - S option. For information about this and other advanced startup options for
the NDB Cluster Auto-Installer, see Section 5.26, “ndb_setup.py — Start browser-based Auto-Installer
for NDB Cluster (DEPRECATED)".

NDB Cluster Auto-Installer Welcome Screen

The Welcome screen is loaded in the default browser when ndb_set up. py is invoked. The first time
the Auto-Installer is run (or if for some other reason there are no existing configurations), this screen
appears as shown here:

94

Using the NDB Cluster Auto-Installer

Figure 3.5 The NDB Cluster Auto-Installer Welcome screen, first run

ORACLE MySQL Cluster Installer

PASSPHRASE:

MEW COMFIGURATION A

CONFIRM PP:

[B View cfg B Continue

In this case, the only choice of cluster listed is for configuration of a new cluster, and both the View Cfg

and Continue buttons are inactive.

To create a new configuration, enter and confirm a passphrase in the text boxes provided. When this

has been done, you can click Continue to proceed to the Define Cluster screen where you can assign

a name to the new cluster.

If you have previously created one or more clusters with the Auto-Installer, they are listed by name.

This example shows an existing cluster named mycl ust er - 1:

Figure 3.6 The NDB Cluster Auto-Installer Welcome screen, with previously created cluster

mycluster-1

ORACLE MySQL Cluster Installer

NEW COMFIGURATION & PASSPHRASE:

mycluster-1 mec

CONFIRM PP:

E View cfg e Continue

95

Using the NDB Cluster Auto-Installer

To view the configuration for and work with a given cluster, select the radiobutton next to its name in
the list, then enter and confirm the passphrase that was used to create it. When you have done this
correctly, you can click View Cfg to view and edit this cluster's configuration.

NDB Cluster Auto-Installer Define Cluster Screen

The Define Cluster screen is appears following the Welcome screen, and is used for setting general
properties of the cluster. The layout of the Define Cluster screen is shown here:

Figure 3.7 The NDB Cluster Auto-Installer Define Cluster screen

ORACLE MySQL Cluster Installer

Define cluster

Cluster Type and SSH Credentials

MySQL Cluster is able to operate in various configurations. Flease specify the settings below to define the right cluster type that fits your use
case. If you intend to use remote hosts for deploying MySQL Cluster, SSH rust be enabled. Unless key based SSH is possible, you must submit
your user name and password below.

Cluster property Value |kl
Cluster name [7] mycluster-1
Host list [7]
Application area [7] simple testing
Write load [7] medium
S5H property Value
(Cluster-wide)
Key based SSH Key user: [7]
(]
User name [7] Ff]y passphrase

Passward [7] Key file: [7]

Install properties Value
(Cluster-wide) vl

4 Frevious | | Save&Next | [Finish

This screen and subsequent screens also include Settings and Help menus which are described later
in this section; see NDB Cluster Installer Settings and Help Menus.

The Define Cluster screen allows you to set three sorts of properties for the cluster: cluster properties,
SSH properties, and installation properties.

Cluster properties that can be set on this screen are listed here:

» Cluster name: A name that identifies the cluster; in this example, this is nycl ust er - 1. The name is
set on the previous screen and cannot be changed here.

» Host list: A comma-delimited list of one or more hosts where cluster processes should run. By
default, thisis 127. 0. 0. 1. If you add remote hosts to the list, you must be able to connect to them
using the credentials supplied as SSH properties.

» Application type: Choose one of the following:

1. Simple testing: Minimal resource usage for small-scale testing. This the default. Not intended for
production environments.

2. Web: Maximize performance for the given hardware.

3. Real-time: Maximize performance while maximizing sensitivity to timeouts in order to minimize
the time needed to detect failed cluster processes.

» Write load: Choose a level for the anticipated number of writes for the cluster as a whole. You can

choose any one of the following levels:

96

Using the NDB Cluster Auto-Installer

1. Low: The expected load includes fewer than 100 write transactions for second.

2. Medium: The expected load includes 100 to 1000 write transactions per second; this is the
default.

3. High: The expected load includes more than 1000 write transactions per second.

SSH properties are described in the following list:

» Key-Based SSH: Check this box to use key-enabled login to the remote host. If checked, the key
user and passphrase must also be supplied; otherwise, a user and password for a remote login
account are needed.

» User: Name of user with remote login access.

» Password: Password for remote user.

» Key user: Name of the user for whom the key is valid, if not the same as the operating system user.

» Key passphrase: Passphrase for the key, if required.

» Key file: Path to the key file. The defaultis ~/ . ssh/i d_r sa.

The SSH properties set on this page apply to all hosts in the cluster. They can be overridden for a
given host by editing that hosts's properties on the Define Hosts screen.

Two installation properties can also be set on this screen:

« Install MySQL Cluster: This setting determines the source from which the Auto-Installer installs
NDB Cluster software, if any, on the cluster hosts. Possible values and their effects are listed here:

1. DOCKER: Try to install the MySQL Cluster Docker image from ht t ps: // hub. docker. conir/
mysql / mysql - cl ust er/ on each host

2. REPQ Try to install the NDB Cluster software from the MySQL Repositories on each host

3. BOTH: Try to install either the Docker image or the software from the repository on each host,
giving preference to the repository

4. NONE: Do not install the NDB Cluster software on the hosts; this is the default

* Open FW Ports: Check this check box to have the installer attempt to open ports required by NDB
CLuster processes on all hosts.

The next figure shows the Define Cluster page with settings for a small test cluster with all nodes
running on | ocal host:

97

https://repo.mysql.com/

Using the NDB Cluster Auto-Installer

Figure 3.8 The NDB Cluster Auto-Installer Define Cluster screen, with settings for a test cluster

ORACLE' MySQL Cluster Installer

Define cluster

Settings * Help =

Cluster Type and SSH Credentials

MySQL Cluster is able to operate in various configurations. Please specify the settings below to define the right cluster type that fits your use
case. If you intend to use remate hosts for deplaying MySQL Cluster, SSH must be enabled. Unless key based SSH is pessible, you must subrmit
your user name and password belon

Cluster property Value
Cluster name [7] myeluster-1
Host list [7] localhost
Application area [7] simple testing
Write load [7] law

S5H property Value

{Cluster-wide)

:<?e]y based SSH Key user: [?]
Key passphrase
171
Passward [7] Key file: 7

User name [7]

Install properties Value
(Cluster-wide)

Install MySQL Cluster [7] MOMNE

Open FW ports [7]

o Frevious | Save&Next | | Finish

After making the desired settings, you can save them to the configuration file and proceed to the
Define Hosts screen by clicking the Save & Next button.

If you exit the installer without saving, no changes are made to the configuration file.

NDB Cluster Auto-Installer Define Hosts Screen

The Define Hosts screen, shown here, provides a means of viewing and specifying several key
properties of each cluster host:

98

Using the NDB Cluster Auto-Installer

Figure 3.9 NDB Cluster Define Hosts screen, start

ORACLE' MySQL Cluster Installer

Define hosts Settings + Help

Select and Edit Hosts

MySQL Cluster can be deployed on sevaral hosts, Please select the desired hosts by pressing the Add host button below and erter a comma separated list of host names or ip addresses,
Resource information is autematically retrieved from the added hest if this is checked in the settings menu, and if the required SSH credentials have been submitted. When a hest has been
added, the corresponding information can be edited by double dicking a cellin the grid. 1f you want to apply the same changes to several hosts, muttiple rows can be selected and the £dit
selected host(s) button can be pressed, which shows a dialog where the editing can be done. Hosts can be deleted by selacting the earrespending rows in the table and pressing the Remove
selected host(s) button. If & host is remaved, processes configured to run on that host will alse be remaved from the configuration.

Host Res.info Platform Memory (MB) Cores MySQL Cluster install directory MySOL Cluster data directory | DiskFree

localhost 0K Linux 32032 8 iustflocalibint ivarilib/mysql-cluster 5500

Add host | | 3 Remove selected hostls) 5 Edit selected host | | = Refresh selected hostls) " Show extended info

o Previous | | Save&Next | | M Finish

Properties shown include the following:

* Host: Name or IP address of this host

» Res.info: Shows K if the installer was able to retrieve requested resource information from this host
» Platform: Operating system or platform

* Memory (MB): Amount of RAM on this host

» Cores: Number of CPU cores available on this host

e MySQL Cluster install directory: Path to directory where the NDB Cluster software is installed on
this host; defaults to / usr /| ocal / bi n

» MySQL Cluster data directory: Path to directory used for data by NDB Cluster processes on this
host; defaultsto / var /| i b/ nysql - cl uster.

» DiskFree: Free disk space in bytes

For hosts with multiple disks, only the space available on the disk used for the data directory is
shown.

This screen also provides an extended view for each host that includes the following properties:

» FDQN: This host's fully qualified domain name, used by the installer to connect with it, distribute
configuration information to it, and start and stop cluster processes on it.

 Internal IP: The IP address used for communication with cluster processes running on this host by
processes running elsewhere.

» OS Details: Detailed operating system name and version information.

» Open FW: If this check box is enabled, the installer attempts to open ports in the host's firewall
needed by cluster processes.

* REPO URL: URL for MySQL NDB Cluster repository

* DOCKER URL: URL for MySQL NDB CLuster Docker images; for NDB 8.0, this is nysql / mysql -
cluster:8.0.

« Install: If this check box is enabled, the Auto-Installer attempts to install the NDB Cluster software on
this host

99

Using the NDB Cluster Auto-Installer

The extended view is shown here:

Figure 3.10 NDB Cluster Define Hosts screen, extended host info view

ORACLE" MySQL Gluster Installer

Define hosts Settings * Help ~

Select and Edit Hosts

MySQL Cluster can be deployed on several hosts. Please select the desired hosts by pressing the Add hest button below and enter a comma separated list of host names or ip addresses
Resource information is automatically retrieved from the added host if this is checked in the settings menu, and if the required SS5H credentials have been submitted. When 2 host has been
added, the corresponding information can be edited by double dicking a cellin the grid. If you want to apply the same changes to several hasts, muttiple rows can be selected and the Edit
selected hest(s) buttan can be pressed, which shows a dialog where the editing can be done. Hests can be deleted by selecting the correspending rows in the table and prassing the Remove
selected host(s) button. If a host is removed, processes configured to run on that host will also be removed from the configuration

Host Res.info Platform Memory (ME) Cores MySOL Cluster install directory MySOL Cluster data directory | DiskFree
Faon Internal IP 05 details OpenFW REPO URL DOCKER URL Install
localhost 0K Linux 32032 8 iustllocalibin Ivarilibimysql-clustar] 5506
localhost lacalhost apensuse, ver. 423

@ Add host | | 3¢ Remove selected hastls) | | &) Edit selected host | | 5 Refresh selected host(s) | | %, Hide extended info

o Previous | [B Save&Next | [M Finish

All cells in the display are editable, with the exceptions of those in the Host, Res.info, and FQDN

columns.

Be aware that it may take some time for information to be retrieved from remote hosts. Fields for which
no value could be retrieved are indicated with an ellipsis (..). You can retry the fetching of resource
information from one or more hosts by selecting the hosts in the list and then clicking the Refresh

selected host(s) button.

Adding and Removing Hosts

You can add one or more hosts by clicking the Add Host button and entering the required properties

where indicated in the Add new host dialog, shown here:

100

Using the NDB Cluster Auto-Installer

Figure 3.11 NDB Cluster Add Host dialog

Add new host X

Host name: [¥]

Host internal IP (WPHI: [T]

Key-based auth: [7]

Usar [7] Passphrase [7]
Key file [7]

Ordinary lagin:

User [7] Password [7]

Open FW ports [7] Configure installation [7]

|. Cancel | | Add |

This dialog includes the following fields:

» Host name: A comma-separated list of one or more host names, IP addresses, or both. These must
be accessible from the host where the Auto-Installer is running.

» Host internal IP (VPN): If you are setting up the cluster to run on a VPN or other internal network,
enter the IP address or addresses used for contact by cluster nodes on other hosts.

101

Using the NDB Cluster Auto-Installer

» Key-based auth: If checked, enables key-based authentication. You can enter any additional
needed information in the User, Passphrase, and Key file fields.

» Ordinary login: If accessing this host using a password-based login, enter the appropriate
information in the User and Password fields.

» Open FW ports: Selecting this check box allows the installer try opening any ports needed by cluster
processes in this host's firewall.

» Configure installation: Checking this allows the Auto-Install to attempt to set up the NDB Cluster
software on this host.

To save the new host and its properties, click Add. If you wish to cancel without saving any changes,
click Cancel instead.

Similarly, you can remove one or more hosts using the button labelled Remove selected host(s).
When you remove a host, any process which was configured for that host is also removed.

Warning

Remove selected host(s) acts immediately. There is no confirmation dialog. If
you remove a host in error, you must re-enter its name and properties manually
using Add host.

If the SSH user credentials on the Define Cluster screen are changed, the Auto-Installer attempts to
refresh the resource information from any hosts for which information is missing.

You can edit the host's platform name, hardware resource information, installation directory, and data
directory by clicking the corresponding cell in the grid, by selecting one or more hosts and clicking the
button labelled Edit selected host(s). This causes a dialog box to appear, in which these fields can be
edited, as shown here:

Figure 3.12 NDB Cluster Auto-Installer Edit Hosts dialog

Edit selected hostis)

Please editthe fields you want to change. The changes will be applied to all selected hosts. Fields that are not edited in the farm
below will be left unchanged.

:?I;atform I['-'I??moryI (MB) CPU cores [7] :-'I:;SOL Cluster install directary [-'I:;SOL Cluster data directory

Linux 32,032 2 550G

DiskFree [7]

Host external IP: [7]
localhast

Hast internal IP (WPN): [7]
lacalhast

Key-based auth: [7]

User [7] Passphrasa [7]
Key file [7]

Ordinary login:

User [7] Password [7]

Open FW ports [7] Configure installation [7]

Cancel Save

When more than one host is selected, any edited values are applied to all selected hosts.

102

Using the NDB Cluster Auto-Installer

Once you have entered all desired host information, you can use the Save & Next button to save the
information to the cluster's configuration file and proceed to the Define Processes screen, where you
can set up NDB Cluster processes on one or more hosts.

NDB Cluster Auto-Installer Define Processes Screen

The Define Processes screen, shown here, provides a way to assign NDB Cluster processes (nodes)
to cluster hosts:

Figure 3.13 NDB Cluster Auto-Installer Define Processes dialog

ORACLE' MySaL Cluster Installer

Define processes

Settings * Help =

Define Processes and Cluster Topology

Various processes may be part of a MySQL Cluster configuration. Flease refer to the MySQL Cluster Documertation for a description of the different
process types. If you have added hosts previously, a default configuration will be suggested the first time you enter this page. This configuration may

be modified by moving processes between hosts by drag and drop, o by adding and remaoving processes. You may also go back to the previous page
and add more hosts before edting the topology. The special entry labelled Any host in the tree below represents an arbitrary host. On this special tree
entry, only AP/ processes can be moved or added. These processes wil not be required to run on a particular host, but may execute anywhere.

mycluster-1 topology

<% Any host
[J localhost
&P Management node 1
¥ APl node 1
P &P1 node 2
&P &P node 3
&P s0Lnode 1
&P s0Lnode 2
P Multi threaded data node 1
&P Multi threaded data nade 2

€ add process | | 3 Del process

4 Previous | | Save&Next!| | M Finish

This screen contains a process tree showing cluster hosts and processes set up to run on each one, as
well as a panel which displays information about the item currently selected in the tree.

When this screen is accessed for the first time for a given cluster, a default set of processes is defined
for you, based on the number of hosts. If you later return to the Define Hosts screen, remove all hosts,
and add new hosts, this also causes a new default set of processes to be defined.

NDB Cluster processes are of the types described in this list:

« Management node. Performs administrative tasks such as stopping individual data nodes,
querying node and cluster status, and making backups. Executable: ndb_ngnd.

» Single-threaded data node. Stores data and executes queries. Executable: ndbd.

» Multi threaded data node. Stores data and executes queries with multiple worker threads
executing in parallel. Executable: ndbnt d.

« SQL node. MySQL server for executing SQL queries against NDB. Executable: nmysql d.

 APInode. A client accessing data in NDB by means of the NDB API or other low-level client API,
rather than by using SQL. See MySQL NDB Cluster API Developer Guide, for more information.

For more information about process (node) types, see Section 2.1, “NDB Cluster Core Concepts”.

Processes shown in the tree are numbered sequentially by type, for each host—for example, SQL
node 1, SQL node 2, and so on—to simplify identification.

103

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/

Using the NDB Cluster Auto-Installer

Each management node, data node, or SQL process must be assigned to a specific host, and is

not allowed to run on any other host. An APl node may be assigned to a single host, but this is not
required. Instead, you can assign it to the special Any host entry which the tree also contains in
addition to any other hosts, and which acts as a placeholder for processes that are allowed to run on
any host. Only API processes may use this Any host entry.

Adding processes. To add a new process to a given host, either right-click that host's entry in the
tree, then select the Add process popup when it appears, or select a host in the process tree, and

press the Add process button below the process tree. Performing either of these actions opens the
add process dialog, as shown here:

Figure 3.14 NDB Cluster Auto-Installer Add Process Dialog

Add new process

Select process type: |Management nu:u:le|

Enter process name: |Management node 2

Cancel Add

Here you can select from among the available process types described earlier this section; you can
also enter an arbitrary process name to take the place of the suggested value, if desired.

Removing processes. To delete a process, select that process in the tree and use the Del
process button.

When you select a process in the process tree, information about that process is displayed in the
information panel, where you can change the process name and possibly its type. You can change a
multi-threaded data node (ndbnt d) to a single-threaded data node (ndbd), or the reverse, only; no
other process type changes are allowed. If you want to make a change between any other process
types, you must delete the original process first, then add a new process of the desired type.

NDB Cluster Auto-Installer Define Parameters Screen

Like the Define Processes screen, this screen includes a process tree; the Define Parameters
process tree is organized by process or node type, in groups labelled Management Layer, Data
Layer, SQL Layer, and API Layer. An information panel displays information regarding the item
currently selected. The Define Attributes screen is shown here:

104

Using the NDB Cluster Auto-Installer

Figure 3.15 NDB Cluster Auto-Installer Define Parameters screen

ORACLE" MySQL Cluster Installer

Define parameters

Settings * Help =

Define Processes Parameters

The processes in your MyS0L Cluster configuration can be tuned by setting a number of configuration parameters. Please refer to the MyS 0L Cluster
Docurnentation for a description of the different process parameters. This page allows you to define a subset of the configuration parameters. Below,
you wil see your processes to the left grouped by process type. If you select a process type sntry in the tree, you may set parameters that will be
applied to all instances of that process. However, if you want to set a parameter specifically for one process, you may do so by selecting the process
instance in the tree and set the desired parameter. This tool suggests predefined settings for the different parameters based on the hardware
resources and the cluster topology: The pradefined settings may ba overridden by pressing the Override button to the very right of the configuration
parameter. If you want to cancel your setting, you may revert to the predefined value by pressing the Revert button which shows up when a
parameter is overridden.

mycluster- 1 processes

» Management layer
&P Management node 1
I~ Data layar
&® Multi threaded data nede 1
P Multi threaded data node 2
(= SOL layer
¥ soLnade 1
&P S0Lnode 2
= AP! layer
P &P1 node 1
&® 2Pl node 2
&% AP node 3

Show advanced configuration
options

o Previous | | Save&Next | [Finish

The check box labelled Show advanced configuration, when checked, makes advanced options
for data node and SQL node processes visible in the information pane. These options are set and
used whether or not they are visible. You can also enable this behavior globally by checking Show
advanced configuration options under Settings (see NDB Cluster Installer Settings and Help
Menus).

You can edit attributes for a single process by selecting that process from the tree, or for all processes
of the same type in the cluster by selecting one of the Layer folders. A per-process value set for a
given attribute overrides any per-group setting for that attribute that would otherwise apply to the
process in question. An example of such an information panel (for an SQL process) is shown here:

105

Using the NDB Cluster Auto-Installer

Figure 3.16 Define Parameters—Process Attributes

ORACLE" MySQL Cluster Installer

Define parameters

Settings * Help =

Define Processes Parameters

The processes in your MyS0L Cluster configuration can be tuned by setting a number of configuration parameters. Please refer to the MyS 0L Cluster
Docurnentation for a description of the different process parameters. This page allows you to define a subset of the configuration parameters. Below,
you wil see your processes to the left grouped by process type. If you select a process type sntry in the tree, you may set parameters that will be
applied to all instances of that process. However, if you want to set a parameter specifically for one process, you may do so by selecting the process
instance in the tree and set the desired parameter. This tool suggests predefined settings for the different parameters based on the hardware
resources and the cluster topology: The pradefined settings may ba overridden by pressing the Override button to the very right of the configuration
parameter. If you want to cancel your setting, you may revert to the predefined value by pressing the Revert button which shows up when a
parameter is overridden.

mycluster- 1 processes Process property Value Override
= Ma
HNode identity and
§ direcrories
(= Data layer Nodeld [7] 49
@ Multi threaded data nade 1 HostName [7] localhost
P Multi threaded data node 2 DataDir [7] homeljon/MySQL_Cluster/a9/
& SOLlayer ArbitrationRank [7] 1
§ SQLnade 1 TotalSendBufferMemary e
&¥ s0Lnode 2 71
AP layer r:eatlnterva\MgmdMgmd 1500
P &P1 node 1
ﬁ@ APl node 2 Communication
- a6
& oP1 node 3 Fartnumber [7] 1186 (+]

Show advanced configuration
options

o Frevious | | Save&Next | [Finish

Attributes whose values can be overridden are shown in the information panel with a button bearing
a plus sign. This + button activates an input widget for the attribute, enabling you to change its value.
When the value has been overridden, this button changes into a button showing an X. The X button
undoes any changes made to a given attribute, which immediately reverts to the predefined value.

All configuration attributes have predefined values calculated by the installer, based such factors as
host name, node ID, node type, and so on. In most cases, these values may be left as they are. If you
are not familiar with it already, it is highly recommended that you read the applicable documentation
before making changes to any of the attribute values. To make finding this information easier, each
attribute name shown in the information panel is linked to its description in the online NDB Cluster
documentation.

NDB Cluster Auto-Installer Deploy Configuration Screen
This screen allows you to perform the following tasks:

» Review process startup commands and configuration files to be applied

« Distribute configuration files by creating any necessary files and directories on all cluster hosts—that
is, deploy the cluster as presently configured

 Start and stop the cluster

The Deploy Configuration screen is shown here:

106

Using the NDB Cluster Auto-Installer

Figure 3.17 NDB Cluster Auto-Installer Deploy Configuration screen

ORACLE' MySQL Cluster Installer

Deploy configuration

Settings * Help =

Deploy Configuration and start MySQL Cluster
“our MySQL Cluster configuration can be reviewed below. To the left are the processes you have defined, ordered by their startup sequence. Please

select a process to view its startup command(s) and configuration file. Note that some processes do not have configuration files. At the bottom of the
certer panel, there are buttons to Deploy, Start and Stop your cluster. Please note that starting the cluster may take up to several minutes depending

on the configuration you have defined. Inthe process tres, the icons reflect the status of the process as reported by the management daermon:
- unknawn or if the managerment dasrmon does not reply, @ connected orstarted, O starting or shutting down, and @ : not connected or
stopped.

mycluster-1 processes Startup command

L= Management layer
&P Management node 1
» Data layer
P Multi threaded data node 1
&P Multi threaded data node 2 icontigurstion fie
(= SOL layer
&P S0Lnode 1
&P soLnode 2
(= API layer
&9 2P node 1
&® APl node 2
P &PInode 3

¥ Install cluster |4 Deploy cluster | [p Start cluster | [l Stop cluster

o Previous | B Saveiliext | M Finish

Like the Define Parameters screen, this screen features a process tree which is organized by

process type. Next to each process in the tree is a status icon indicating the current status of the
process: connected (CONNECTED), starting (STARTI NG), running (STARTED), stopping (STOPPI NG), or
disconnected (NO_CONTACT). The icon shows green if the process is connected or running; yellow if it
is starting or stopping; red if the process is stopped or cannot be contacted by the management server.

This screen also contains two information panels, one showing the startup command or commands
needed to start the selected process. (For some processes, more than one command may be required
—for example, if initialization is necessary.) The other panel shows the contents of the configuration
file, if any, for the given process.

This screen also contains four buttons, labelled as and performing the functions described in the
following list:

« Install cluster: Nonfunctional in this release; implementation intended for a future release.

» Deploy cluster: Verify that the configuration is valid. Create any directories required on the cluster
hosts, and distribute the configuration files onto the hosts. A progress bar shows how far the
deployment has proceeded, as shown here, and a dialog is pisplayed when the deployment has
completed, as shown here:

107

Using the NDB Cluster Auto-Installer

Figure 3.18 Cluster Deployment Process

ORACLE' MySOL Cluster Installer

Deploy configuration
Settings ¥ Help v
Deploy Configuration and start MySQL Cluster
e Ay Ttha af aa thepr e ordarad by the esee
e e e
B e Nt R o o e e ot e g e
ot canfuraion you have et Gomr T
unknown or = fown, and © : not connected or
o
e
r
@ Management nodef Deploying configur ation X
& Data layer Thost:1186, =
& Multithreaded da C2M9Y d
& Wultithreaded dat
=+ S0Llayer " e

& SQLnode 1

& SOLnade 2

& aPinode 1

& APinode 2

& AP inode 3

I install cluscer | (# Deploy cluster | (I Starc cluster | | W 5top cluscer
[@Praviouz | B Savestiet | | Finish

108

Using the NDB Cluster Auto-Installer

Start cluster: The cluster is deployed as with Deploy cluster, after which all cluster processes are
started in the correct order.

Starting these processes may take some time. If the estimated time to completion is too large, the
installer provides an opportunity to cancel or to continue of the startup procedure. A progress bar

indicates the current status of the startup procedure, as shown here:

Figure 3.19 Cluster Startup Process with Progress Bar

MySQL Cluster Installer

Deploy configuration

Settings v Help

» * 3 W Stop cluseer

The process status icons next to the items shown in the process tree also update with the status of
each process.

A confirmation dialog is shown when the startup process has completed, as shown here:

Figure 3.20 Cluster Startup, Process Completed Dialog

ORACLE' MySQL Cluster Installer

Deploy configuration

Settings v Help

Deploy Configuration and start MySQL Cluster
You below Tothe left defined, order

e
2ploy, Start and Stop your cluster

Cluster started
stopped.

mycluster-1 processi

o
Gl e s Flocalhose:1286,

O Multi threaded
O Mult thre sdad 433 nads 2

T00%

ey No configuration ile for thiz procesz
© S0 node 1

© 5L node 2

APl layer

© 41 nods 1

© 1 nods 2

O 201 node 3

» * > M Stop cluster

» Stop cluster: After the cluster has been started, you can stop it using this. As with starting the

cluster, cluster shutdown is not instantaneous, and may require some time complete. A progress bar,

similar to that displayed during cluster startup, shows the approximate current status of the cluster

109

Using the NDB Cluster Auto-Installer

shutdown procedure, as do the process status icons adjoining the process tree. The progress bar is
shown here:

Figure 3.21 Cluster Shutdown Process, with Progress Bar

ORACLE MySQL Cluster Installer

Deploy configuration
Settings = Help

wration and start MysQL Cluster
T

lack the status ofth proce:

Startup command
Path

i
Executable

Stopping cluster

Running ndb_mgm -¢ shutdown o take do

W Stop cluster

A previauz | b M

A confirmation dialog indicates when the shutdown process is complete:

Figure 3.22 Cluster Shutdown, Process Completed Dialog

ORACLE' MysQL Cluster Installer

Deploy configuration
Settings ~ Help
Deploy Configuration and start MySQL Cluster
Tathelef are thepr
p T
stopped.
clust ce: ok
R
Cluster stopped succassfuly |
v
. ‘
—
O v Aot e
» * S C i
) "

The Auto-Installer generates a confi g. i ni file containing NDB node parameters for each
management node, as well as a ny. cnf file containing the appropriate options for each nysql d
process in the cluster. No configuration files are created for data nodes or API nodes.

110

Chapter 4 Configuration of NDB Cluster

Table of Contents

4.1 Quick Test Setup Of NDB CIUSTELiveiieii i e e e e e e e e et e e eeeees 111
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variables 113
4.2.1 NDB Cluster Data Node Configuration Parameterscccovvveiiiiiiiieeiiieee e 114
4.2.2 NDB Cluster Management Node Configuration Parameterscccocceevvviiieviineeenneennnn. 121
4.2.3 NDB Cluster SQL Node and API Node Configuration Parametersc...ccceeevvvnan. 122
4.2.4 Other NDB Cluster Configuration Parametersc..oveviiiiiiiiiiiiieiieeeieeeeneeeee e 123
4.2.5 NDB Cluster mysqgld Option and Variable Referencecccoovviiiiiiiviii i, 124
4.3 NDB Cluster Configuration FileSooiiuiiiiiii i e e e e e eaaeee 134
4.3.1 NDB Cluster Configuration: BasiC EXamplecccoveiiiiiiiiiiiii v 135
4.3.2 Recommended Starting Configuration for NDB CIUStErcovvviiiiiiiiiiiieiii e 138
4.3.3 NDB Cluster ConnNECtioN StHNGS ...vvvuiiiiiiiieeie e e e e e e e e e e e e e e e e eeanaees 141
4.3.4 Defining Computers in an NDB CIUSEETcouuiiiiiiiiii e e e e e e e 142
4.3.5 Defining an NDB Cluster Management SEIVETcc.uviieiiieiiieeeiieeieeeeeeeaneeeaeeeenees 143
4.3.6 Defining NDB Cluster Data NOUEScccuuiiiiiiiiiere e e e e e e e e e e e e eanns 149
4.3.7 Defining SQL and Other APl Nodes in an NDB CIUSENcccvveiiiiviiieiiieeeieeeeeeann 227
4.3.8 DEfiNING the SYSIEIM ...iii i e e et e e eaes 235
4.3.9 MySQL Server Options and Variables for NDB CIUStercccccoviviiiiiiiiiiiii e, 236
4.3.10 NDB Cluster TCP/IP CONNECHIONSccuuuiiiiiiiiietiiiiie ettt e e e e e e eaa e eeeenns 294
4.3.11 NDB Cluster TCP/IP Connections Using Direct Connectionsc.cccccvvevvnvevinnennnnn. 300
4.3.12 NDB Cluster Shared-Memory CONNECHONSovvuuiviiiiiiiiieeiie e e e e e e eeens 300
4.3.13 Data Node Memory ManagemeENntc..uveeunieiiieeeieeeiree e e e et e e e e e e e eaneeeens 306
4.3.14 Configuring NDB Cluster Send Buffer Parametersccoovvviiiiiiiiiineiin e 310
4.4 Using High-Speed Interconnects with NDB CIUSTENcoovuiiiiiiiiii e 310

A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's nmy. cnf configuration file, or start the
server with the - - ndbcl ust er option.

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node

on | ocal host . However, should you need to specify that its location is elsewhere, this can be
done in nmy. cnf , or with the mysql client. Before the NDB storage engine can be used, at least one
management node must be operational, as well as any desired data nodes.

For more information about - - ndbcl ust er and other nysql d options specific to NDB Cluster, see
Section 4.3.9.1, “MySQL Server Options for NDB Cluster”.

For general information about installing NDB Cluster, see Chapter 3, NDB Cluster Installation.

4.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

First, you need to create a configuration directory such as/var/ | i b/ nmysql - cl ust er, by executing
the following command as the system r oot user:

$> nkdir /var/lib/nysql-cluster

111

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Quick Test Setup of NDB Cluster

In this directory, create a file named confi g. i ni that contains the following information. Substitute
appropriate values for Host Nane and Dat aDi r as necessary for your system.

file "config.ini" - showi ng mninmal setup consisting of 1 data node,

1 managenent server, and 3 MySQ servers.

The enpty default sections are not required, and are shown only for

the sake of conpl et eness.

Dat a nodes nust provide a hostnane but MySQL Servers are not required

to do so.

If you don't know the hostnane for your nachine, use |ocal host.

The DataDir paraneter also has a default value, but it is recomended to

set it explicitly.

Note: [db], [api], and [ngn] are aliases for [ndbd], [nysqld], and [ndb_ngnd],
respectively. [db] is deprecated and should not be used in new installations.

HoH O HHHHHH R

[ndbd defaul t]
NoOf Repl i cas= 1

[nmysqgld default]
[ndb_nmgnd def aul t]
[tcp defaul t]

[ndb_ngnd]
Host Nane= nyhost . exanpl e. com

[ndbd]

Host Nane= nyhost . exanpl e. com
DataDir= /var/lib/ nysql -cl uster

[nysql d]
[nysql d]
[nysql d]

You can now start the ndb_ngnd management server. By default, it attempts to read the confi g. i ni
file in its current working directory, so change location into the directory where the file is located and
then invoke ndb_ngnd:

$> cd /var/lib/nysql -cluster
$> ndb_ngnd

Then start a single data node by running ndbd:

$> ndhd

By default, ndbd looks for the management server at | ocal host on port 1186.
Note

If you have installed MySQL from a binary tarball, you must to specify the path
of the ndb_ngnd and ndbd servers explicitly. (Normally, these can be found in
[usr/local /mysql/bin.)

Finally, change location to the MySQL data directory (usually / var /| i b/ nysql or/usr/ | ocal /
nmysql / dat a), and make sure that the ny. cnf file contains the option necessary to enable the NDB
storage engine:

[mysql d]
ndbcl ust er

You can now start the MySQL server as usual:
$> nysql d_safe --user=nysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice nysql
ended, check the server's . err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

112

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Overview of NDB Cluster Configuration Parameters, Options, and Variables

$> nysql
Wel come to the MySQL nonitor. Conmmands end with ; or \g.
Your MySQL connection id is 1 to server version: 8.0.29

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

nysql > SHOW ENG NES\ G

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 12 r ow kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x

Engi ne: NDBCLUSTER
Support: YES

Comment: Clustered, fault-tol erant, nenory-based tables
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x 13 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*x

Engi ne: NDB
Support: YES
Comment: Alias for NDBCLUSTER

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> nysql
nmysql > USE test;
Dat abase changed

mysql > CREATE TABLE ctest (i |NT) ENG NE=NDBCLUSTER,
Query OK, 0 rows affected (0.09 sec)

nmysql > SHOW CREATE TABLE ctest \G

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkhkkhkkkkkkk* l r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*

Tabl e: ctest
Create Tabl e: CREATE TABLE "ctest (
i7 int(11) default NULL
) ENG NE=ndbcl ust er DEFAULT CHARSET=l ati nl
1 rowin set (0.00 sec)

To check that your nodes were set up properly, start the management client:

$> ndb_ngm

Use the SHONcommand from within the management client to obtain a report on the cluster's status:

ndb_ngn»> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @27.0.0.1 (Version: 8.0.29-ndb-8.0.30, Nodegroup: 0, *)

[ndb_mymd(M3V)] 1 node(s)
id=1 @27.0.0.1 (Version: 8.0.29-ndb-8.0.30)

[mysql d(API)] 3 node(s)

i d=3 @27.0.0.1 (Version: 8.0.29-ndb-8.0.30)

i d=4 (not connected, accepting connect from any host)
i d=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working NDB Cluster . You can now store data in the
cluster by using any table created with ENG NE=NDBCLUSTER or its alias ENG NE=NDB.
4.2 Overview of NDB Cluster Configuration Parameters, Options,
and Variables
The next several sections provide summary tables of NDB Cluster node configuration parameters used

inthe confi g. i ni file to govern various aspects of node behavior, as well as of options and variables
read by nysql d from a ny. cnf file or from the command line when run as an NDB Cluster process.

113

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Data Node Configuration Parameters

Each of the node parameter tables lists the parameters for a given type (ndbd, ndb_ngnd, nysql d,
conput er, t cp, or shm. All tables include the data type for the parameter, option, or variable, as well
as its default, mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what
type of restart is required (node restart or system restart)—and whether the restart must be done with

- -1 ni tial —to change the value of a given configuration parameter. When performing a node restart
or an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a
rolling restart). It is possible to update cluster configuration parameters marked as node online—that is,
without shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd
process with the - -i ni ti al option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without

any problems, although it is advisable to do so progressively, making such
adjustments in relatively small increments. Many of these can be increased
online, using a rolling restart.

However, decreasing the values of such parameters—whether this is

done using a node restart, node initial restart, or even a complete system
restart of the cluster—is not to be undertaken lightly; it is recommended

that you do so only after careful planning and testing. This is especially

true with regard to those parameters that relate to memory usage and

disk space, such as MaxNoOf Tabl es, MaxNoOf Or der edl ndexes, and
MaxNoOF Uni queHashl ndexes. In addition, it is the generally the case that
configuration parameters relating to memory and disk usage can be raised
using a simple node restart, but they require an initial node restart to be
lowered.

Because some of these parameters can be used for configuring more than one type of cluster node,
they may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX | NT_RNI L and is equal to
OXFFFFFEFF, or 232 - 28 - 1,

4.2.1 NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd
def aul t] sections of aconfi g. i ni file for configuring NDB Cluster data nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 4.3.6,
“Defining NDB Cluster Data Nodes”.

These parameters also apply to ndbnt d, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbnt d follows.

» Arbitration: How arbitration should be performed to avoid split-brain issues in event of node
failure.

e ArbitrationTi neout : Maximum time (milliseconds) database partition waits for arbitration signal.

114

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Data Node Configuration Parameters

BackupDat aBuf f er Si ze: Default size of databuffer for backup (in bytes).

BackupDat aDi r : Path to where to store backups. Note that string /BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

BackupDi skW it eSpeedPct : Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

BackupLogBuf f er Si ze: Default size of log buffer for backup (in bytes).

BackupMaxW i t eSi ze: Maximum size of file system writes made by backup (in bytes).
BackupMenor y: Total memory allocated for backups per node (in bytes).

BackupReport Fr equency: Frequency of backup status reports during backup in seconds.
BackupW i t eSi ze: Default size of file system writes made by backup (in bytes).

Bat chSi zePer Local Scan: Used to calculate number of lock records for scan with hold lock.

Bui | dl ndexThr eads: Number of threads to use for building ordered indexes during system or
node restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to 0
disables multithreaded building of ordered indexes.

Conpr essedBackup: Use zlib to compress backups as they are written.
Conpr essedLCP: Write compressed LCPs using zlib.

Connect Checkl nt er val Del ay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

CrashOnCor r upt edTupl e: When enabled, forces node to shut down whenever it detects
corrupted tuple.

Dat aDi r : Data directory for this node.

Dat aMenor y: Number of bytes on each data node allocated for storing data; subject to available
system RAM and size of IndexMemory.

Def aul t HashMapSi ze: Set size (in buckets) to use for table hash maps. Three values are
supported: 0, 240, and 3840.

Di ct Tr ace: Enable DBDICT debugging; for NDB development.

Di skDat aUsi ngSaneDi sk: Set to false if Disk Data tablespaces are located on separate physical
disks.

Di skl OThr eadPool : Number of unbound threads for file access, applies to disk data only.
Di skl ess: Run without using disk.

Di skPageBuf f er Ent ri es: Memory to allocate in DiskPageBufferMemory; very large disk
transactions may require increasing this value.

Di skPageBuf f er Menor y: Number of bytes on each data node allocated for disk page buffer
cache.

Di skSyncSi ze: Amount of data written to file before synch is forced.

Enabl eParti al Lcp: Enable partial LCP (true); if this is disabled (false), all LCPs write full
checkpoints.

Enabl eRedoCont r ol : Enable adaptive checkpointing speed for controlling redo log usage.

Encrypt edFi | eSyst em Encrypt local checkpoint and tablespace files. EXPERIMENTAL.

115

NDB Cluster Data Node Configuration Parameters

Event LogBuf f er Si ze: Size of circular buffer for NDB log events within data nodes.
Execut eOnConput er : String referencing earlier defined COMPUTER.

Ext r aSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

Fi | eSyst enPat h: Path to directory where data node stores its data (directory must exist).

Fi | eSyst enPat hDat aFi | es: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

Fi | eSyst enPat hDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

Fi | eSyst enPat hUndoFi | es: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise,
value of DataDir is used.

Fr agnment LogFi | eSi ze: Size of each redo log file.

Hear t beat | nt er val DbApi : Time between API node-data node heartbeats. (API connection
closed after 3 missed heartbeats).

Hear t beat | nt er val DbDb: Time between data node-to-data node heartbeats; data node
considered dead after 3 missed heartbeats.

Hear t beat Or der : Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

Host Nane: Host name or IP address for this data node.

| ndexMenor y: Number of bytes on each data node allocated for storing indexes; subject to
available system RAM and size of DataMemory.

| ndexSt at Aut oCr eat e: Enable/disable automatic statistics collection when indexes are created.
| ndex St at Aut oUpdat e: Monitor indexes for changes and trigger automatic statistics updates.

| ndexSt at SaveScal e: Scaling factor used in determining size of stored index statistics.

| ndexSt at SaveSi ze: Maximum size in bytes for saved statistics per index.

| ndexSt at Tri gger Pct : Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

I ndexSt at Tri gger Scal e: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

I ndex St at Updat eDel ay: Minimum delay between automatic index statistics updates for given
index. 0 means no delay.

I ni t Fragnent LogFi | es: Initialize fragment logfiles (sparse/full).

Initial LogFil eG oup: Describes log file group that is created during initial start. See
documentation for format.

I nitial NoOf OpenFi | es: Initial number of files open per data node. (One thread is created per
file).

I nitial Tabl espace: Describes tablespace that is created during initial start. See documentation
for format.

116

NDB Cluster Data Node Configuration Parameters

I nsert Recover yWor k: Percentage of RecoveryWork used for inserted rows; has no effect unless
partial local checkpoints are in use.

Lat eAl | oc: Allocate memory after connection to management server has been established.

LcpScanPr ogr essTi meout : Maximum time that local checkpoint fragment scan can be stalled
before node is shut down to ensure systemwide LCP progress. Use 0 to disable.

LockExecut eThr eadToCPU: Comma-delimited list of CPU IDs.
LockMai nt Thr eadsToCPU: CPU ID indicating which CPU runs maintenance threads.

LockPages| nMai nMenor y: O=disable locking, 1=lock after memory allocation, 2=lock before
memory allocation.

LogLevel Checkpoi nt : Log level of local and global checkpoint information printed to stdout.
LogLevel Congesti on: Level of congestion information printed to stdout.

LogLevel Connecti on: Level of node connect/disconnect information printed to stdout.
LogLevel Error: Transporter, heartbeat errors printed to stdout.

LogLevel | nf o: Heartbeat and log information printed to stdout.

LogLevel NodeRest art : Level of node restart and node failure information printed to stdout.
LogLevel Shut down: Level of node shutdown information printed to stdout.

LoglLevel St art up: Level of node startup information printed to stdout.

LogLevel Stati sti c: Level of transaction, operation, and transporter information printed to stdout.
LongMessageBuf f er : Number of bytes allocated on each data node for internal long messages.
MaxAl | ocat e: No longer used; has no effect.

MaxBuf f er edEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

MaxBuf f er edEpochByt es: Total number of bytes allocated for buffering epochs.

MaxDi skDat aLat ency: Maximum allowed mean latency of disk access (ms) before starting to
abort transactions.

MaxDi skW it eSpeed: Maximum number of bytes per second that can be written by LCP and
backup when no restarts are ongoing.

MaxDi skW it eSpeedQ her NodeRest art : Maximum number of bytes per second that can be
written by LCP and backup when another node is restarting.

MaxDi skW it eSpeedOwnRest ar t : Maximum number of bytes per second that can be written by
LCP and backup when this node is restarting.

MaxFKBui | dBat chSi ze: Maximum scan batch size to use for building foreign keys. Increasing this
value may speed up builds of foreign keys but impacts ongoing traffic as well.

MaxDMLQper at i onsPer Tr ansact i on: Limit size of transaction; aborts transaction if it requires
more than this many DML operations. Set to 0 to disable.

MaxLCPSt ar t Del ay: Time in seconds that LCP polls for checkpoint mutex (to allow other data
nodes to complete metadata synchronization), before putting itself in lock queue for parallel recovery
of table data.

MaxNoCF At t ri but es: Suggests total number of attributes stored in database (sum over all tables).

117

NDB Cluster Data Node Configuration Parameters

MaxNoCOF Concur r ent | ndexQper at i ons: Total number of index operations that can execute
simultaneously on one data node.

MaxNoCf Concur r ent Oper at i ons: Maximum number of operation records in transaction
coordinator.

MaxNoOF Concur r ent Scans: Maximum number of scans executing concurrently on data node.
MaxNoCOF Concur r ent SubQper at i ons: Maximum number of concurrent subscriber operations.

MaxNoCOf Concur r ent Tr ansact i ons: Maximum number of transactions executing concurrently
on this data node, total number of transactions that can be executed concurrently is this value times
number of data nodes in cluster.

MaxNoCF Fi redTr i gger s: Total number of triggers that can fire simultaneously on one data node.
MaxNoCOf Local Oper at i ons: Maximum number of operation records defined on this data node.
MaxNoCf Local Scans: Maximum number of fragment scans in parallel on this data node.

MaxNoCOf OpenFi | es: Maximum number of files open per data node.(One thread is created per file).
MaxNoCOF Or der edl ndexes: Total number of ordered indexes that can be defined in system.

MaxNoOf SavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

MaxNoOF Subscri ber s: Maximum number of subscribers.

MaxNoCOF Subscri pti ons: Maximum number of subscriptions (default 0 = MaxNoOfTables).
MaxNoOF Tabl es: Suggests total number of NDB tables stored in database.

MaxNoOXf Tri gger s: Total number of triggers that can be defined in system.

MaxNoCOF Uni queHashl ndexes: Total number of unique hash indexes that can be defined in
system.

MaxPar al | el Copyl nst ances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

MaxPar al | el ScansPer Fr agnent : Maximum number of parallel scans per fragment. Once this
limit is reached, scans are serialized.

MaxReor gBui | dBat chSi ze: Maximum scan batch size to use for reorganization of table partitions.
Increasing this value may speed up table partition reorganization but impacts ongoing traffic as well.

MaxSt ar t Fai | Ret ri es: Maximum retries when data node fails on startup, requires StopOnError =
0. Setting to 0 causes start attempts to continue indefinitely.

Max Ul Bui | dBat chSi ze: Maximum scan batch size to use for building unique keys. Increasing this
value may speed up builds of unique keys but impacts ongoing traffic as well.

MenReport Fr equency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

M nDi skW i t eSpeed: Minimum number of bytes per second that can be written by LCP and
backup.

M nFr eePct : Percentage of memory resources to keep in reserve for restarts.
NodeG oup: Node group to which data node belongs; used only during initial start of cluster.

NodeG oupTr ansport er s: Number of transporters to use between nodes in same node group.

118

NDB Cluster Data Node Configuration Parameters

Nodel d: Number uniquely identifying data node among all nodes in cluster.

NoOF Fr agnent LogFi | es: Number of 16 MB redo log files in each of 4 file sets belonging to data
node.

NoOf Repl i cas: Number of copies of all data in database.

Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to O permits system to
determine use of interleaving by data node process; 1 means that it is determined by data node.

QODi r ect : Use O_DIRECT file reads and writes when possible.

ODi r ect SyncFl ag: O_DIRECT writes are treated as synchronized writes; ignored when ODirect is
not enabled, InitFragmentLogFiles is set to SPARSE, or both.

Real ti meSchedul er : When true, data node threads are scheduled as real-time threads. Default is
false.

Recover yWr k: Percentage of storage overhead for LCP files: greater value means less work in
normal operations, more work during recovery.

RedoBuf f er : Number of bytes on each data node allocated for writing redo logs.

RedoOver Conmmi t Count er : When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

RedoOver Conmi t Li mi t : Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

Reser vedConcur r ent | ndexOper at i ons: Number of simultaneous index operations having
dedicated resources on one data node.

Reser vedConcur r ent Oper at i ons: Number of simultaneous operations having dedicated
resources in transaction coordinators on one data node.

Reser vedConcur r ent Scans: Number of simultaneous scans having dedicated resources on one
data node.

Reser vedConcur rent Tr ansact i ons: Number of simultaneous transactions having dedicated
resources on one data node.

Reser vedFi redTri gger s: Number of triggers having dedicated resources on one data node.

Reser vedLocal Scans: Number of simultaneous fragment scans having dedicated resources on
one data node.

ReservedTransact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data
allocated to each data node.

Rest art OnError | nsert : Control type of restart caused by inserting error (when StopOnError is
enabled).

Schedul er Execut i onTi ner : Number of microseconds to execute in scheduler before sending.

Schedul er Responsi veness: Set NDB scheduler response optimization 0-10; higher values
provide better response time but lower throughput.

Schedul er Spi nTi mer : Number of microseconds to execute in scheduler before sleeping.
Ser ver Por t : Port used to set up transporter for incoming connections from API nodes.
Shar edd obal Menor y: Total number of bytes on each data node allocated for any use.

Spi nMet hod: Determines spin method used by data node; see documentation for details.

119

NDB Cluster Data Node Configuration Parameters

St art Fai | Ret r yDel ay: Delay in seconds after start failure prior to retry; requires StopOnError =
0.

St art Fai | ur eTi meout : Milliseconds to wait before terminating. (0=Wait forever).

St art NoNodeG oupTi neout : Time to wait for nodes without nodegroup before trying to start
(O=forever).

Start Partial Ti meout : Milliseconds to wait before trying to start without all nodes. (0=Wait
forever).

StartPartitionedTi meout : Milliseconds to wait before trying to start partitioned. (0=Wait
forever).

St art upSt at usRepor t Fr equency: Frequency of status reports during startup.
St opOnEr r or : When set to 0, data node automatically restarts and recovers following node failures.
St ri ngMenor y: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

TcpBi nd_I NADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

Ti meBet weenEpochs: Time between epochs (synchronization used for replication).

Ti meBet weenEpochsTi neout : Timeout for time between epochs. Exceeding causes node
shutdown.

Ti meBet weend obal Checkpoi nt s: Time between group commits of transactions to disk.

Ti meBet weend obal Checkpoi nt sTi neout : Minimum timeout for group commit of transactions
to disk.

Ti neBet weenl nacti veTr ansact i onAbort Check: Time between checks for inactive
transactions.

Ti meBet weenLocal Checkpoi nt s: Time between taking snapshots of database (expressed in
base-2 logarithm of bytes).

Ti meBet weenWat chDogCheck: Time between execution checks inside data node.

Ti meBet weenWat chDogCheckl ni ti al : Time between execution checks inside data node (early
start phases when memory is allocated).

Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers..

Transact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data allocated
for each data node.

Transacti onDeadl ockDet ecti onTi neout : Time transaction can spend executing within data
node. This is time that transaction coordinator waits for each data node participating in transaction to
execute request. If data node takes more than this amount of time, transaction is aborted.

Transactionl nacti veTi neout : Milliseconds that application waits before executing another part
of transaction. This is time transaction coordinator waits for application to execute or send another
part (query, statement) of transaction. If application takes too much time, then transaction is aborted.
Timeout = 0 means that application never times out.

Transact i onMenor y: Memory allocated for transactions on each data node.

TwoPassl ni ti al NodeRest art Copy: Copy data in 2 passes during initial node restart, which
enables multithreaded building of ordered indexes for such restarts.

UndoDat aBuf f er : Unused; has no effect.

120

NDB Cluster Management Node Configuration Parameters

» Undol ndexBuf f er : Unused; has no effect.

» UseShm Use shared memory connections between this data node and API node also running on this
host.

The following parameters are specific to ndbnt d:

* Aut ormat i cThr eadConf i g: Use automatic thread configuration; overrides any settings for
ThreadConfig and MaxNoOfExecutionThreads, and disables ClassicFragmentation.

» Cl assi cFragnent at i on: When true, use traditional table fragmentation; set false to enable
flexible distribution of fragments among LDMs. Disabled by AutomaticThreadConfig.

* Enabl eMul tit hr eadedBackup: Enable multi-threaded backup.

* MaxNoOF Execut i onThr eads: For ndbmtd only, specify maximum number of execution threads.
* NoOF Fr agnent LogPar t s: Number of redo log file groups belonging to this data node.

* NunCPUs: Specify number of CPUs to use with AutomaticThreadConfig.

» Partiti onsPer Node: Determines the number of table partitions created on each data node; not
used if ClassicFragmentation is enabled.

» ThreadConfi g: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty
string; see documentation for syntax and other information.

4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_ngnd] or

[mgni section of a confi g. i ni file for configuring NDB Cluster management nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 4.3.5,
“Defining an NDB Cluster Management Server”.

e ArbitrationDel ay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

e ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order
1,2.

» Dat aDi r: Data directory for this node.
* Execut eOnConmput er : String referencing earlier defined COMPUTER.

» ExtraSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

* Heart beat | nt er val MgndMgnd: Time between management-node-to-management-node
heartbeats; connection between management nodes is considered lost after 3 missed heartbeats.

* Heartbeat ThreadPri ority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

» Host Name: Host name or IP address for this management node.

| d: Number identifying management node. Now deprecated; use Nodeld instead.

» LogDesti nati on: Where to send log messages: console, system log, or specified log file.

* Nodel d: Number uniquely identifying management node among all nodes in cluster.

» Port Nunber : Port number to send commands to and fetch configuration from management server.
» Port Nunber St at s: Port number used to get statistical information from management server.

e Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers.

121

NDB Cluster SQL Node and API Node Configuration Parameters

e wan: Use WAN TCP setting as default.
Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.
See Section 4.3.5, “Defining an NDB Cluster Management Server”, for more
information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing

confi g.ini files. For more information about issues arising when using
multiple management nodes, see Section 2.7.10, “Limitations Relating to
Multiple NDB Cluster Nodes”.

4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [nysql d] and [api]
sections of a confi g. i ni file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 4.3.7,
“Defining SQL and Other APl Nodes in an NDB Cluster”.

» Api Ver bose: Enable NDB API debugging; for NDB development.
» ArbitrationDel ay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.
* ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

e Aut oReconnect : Specifies whether an API node should reconnect fully when disconnected from
cluster.

» Bat chByt eSi ze: Default batch size in bytes.
» Bat chSi ze: Default batch size in number of records.

» Connect Backof f MaxTi nme: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this APl node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting
to 0. If no data nodes are currently connected to this APl node, StartConnectBackoffMaxTime is
used instead.

e Connecti onMap: Specifies which data nodes to connect.

» Def aul t HashMapSi ze: Set size (in buckets) to use for table hash maps. Three values are
supported: 0, 240, and 3840.

* Def aul t Oper ati onRedoPr obl emAct i on: How operations are handled in event that
RedoOverCommitCounter is exceeded.

» Execut eOnConput er : String referencing earlier defined COMPUTER.

» ExtraSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

* Heart beat ThreadPri ority: Set heartbeat thread policy and priority for APl nodes; see manual
for allowed values.

» Host Name: Host name or IP address for this SQL or API node.
» | d: Number identifying MySQL server or API node (Id). Now deprecated; use Nodeld instead.
» MaxScanBat chSi ze: Maximum collective batch size for one scan.

e Nodel d: Number uniquely identifying SQL node or API node among all nodes in cluster.

122

Other NDB Cluster Configuration Parameters

e Start Connect Backof f MaxTi me: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this APl node.

» Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers.
« wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see Section 4.3.9.1, “MySQL Server
Options for NDB Cluster”. For information about MySQL server system variables relating to NDB
Cluster, see Section 4.3.9.2, “NDB Cluster System Variables”.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,

it is necessary to perform a rolling restart of all cluster nodes after adding new

[mysqgl d] or[api] sections tothe confi g.ini file (orfiles, if you are using
more than one management server). This must be done before the new SQL or
API nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes
can employ previously unused API slots in the cluster configuration to connect
to the cluster.

4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [conmputer],[tcp],
and [shnj sections of a confi g. i ni file for configuring NDB Cluster. For detailed descriptions
and additional information about individual parameters, see Section 4.3.10, “NDB Cluster TCP/IP
Connections”, or Section 4.3.12, “NDB Cluster Shared-Memory Connections”, as appropriate.

The following parameters apply to the confi g. i ni file's [conput er] section:
* Host Nane: Host name or IP address of this computer.

| d: Unique identifier for this computer.

The following parameters apply to the confi g. i ni file's[tcp] section:

* Al'l ownr esol vedHost Nanes: When false (default), failure by management node to resolve host
name results in fatal error; when true, unresolved host names are reported as warnings only.

e Checksum If checksum is enabled, all signals between nodes are checked for errors.

» Group: Used for group proximity; smaller value is interpreted as being closer.

» Host Narel: Name or IP address of first of two computers joined by TCP connection.

» Host Nanme2: Name or IP address of second of two computers joined by TCP connection.

* Nodel d1: ID of node (data node, API node, or management node) on one side of connection.
* Nodel d2: ID of node (data node, API node, or management node) on one side of connection.
* Nodel dSer ver : Set server side of TCP connection.

e Overl oadLi m t: When more than this many unsent bytes are in send buffer, connection is
considered overloaded.

» Preferl PVersion: Indicate DNS resolver preference for IP version 4 or 6.

* PreSendChecksum If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all TCP signals between nodes for errors.

* Proxy: ...

123

NDB Cluster mysgld Option and Variable Reference

» Recei veBuf f er Menor y: Bytes of buffer for signals received by this node.

» SendBuf f er Menor y: Bytes of TCP buffer for signals sent from this node.

e SendSi gnal | d: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.
» TCP_MAXSEG SI ZE: Value used for TCP_MAXSEG.

« TCP_RCV_BUF_SI ZE: Value used for SO_RCVBUF.

 TCP_SND BUF_SI ZE: Value used for SO_SNDBUF.

e TcpBi nd_I NADDR_ANY: Bind InAddrAny instead of host name for server part of connection.
The following parameters apply to the confi g. i ni file's[shn] section:

» Checksum If checksum is enabled, all signals between nodes are checked for errors.

» Group: Used for group proximity; smaller value is interpreted as being closer.

» Host Namel: Name or IP address of first of two computers joined by SHM connection.

» Host Nanme2: Name or IP address of second of two computers joined by SHM connection.

* Nodel d1: ID of node (data node, API node, or management node) on one side of connection.
* Nodel d2: ID of node (data node, API node, or management node) on one side of connection.
* Nodel dSer ver : Set server side of SHM connection.

e Overl oadLi m t: When more than this many unsent bytes are in send buffer, connection is
considered overloaded.

* PreSendChecksum If this parameter and Checksum are both enabled, perform pre-send checksum
checks, and check all SHM signals between nodes for errors.

» SendBuf f er Menor y: Bytes in shared memory buffer for signals sent from this node.
» SendSi gnal | d: Sends ID in each signal. Used in trace files.

» ShnKey: Shared memory key; when set to 1, this is calculated by NDB.

» ShnSpi nTi me: When receiving, number of microseconds to spin before sleeping.

e Shnti ze: Size of shared memory segment.

» Si gnum Signal number to be used for signalling.

4.2.5 NDB Cluster mysqgld Option and Variable Reference

The following list includes command-line options, system variables, and status variables applicable
within mysql d when it is running as an SQL node in an NDB Cluster. For a reference to all command-
line options, system variables, and status variables used with or relating to nysql d, see Server Option,
System Variable, and Status Variable Reference.

e Com show ndb_st at us: Count of SHOW NDB STATUS statements.

» Handl er _di scover : Number of times that tables have been discovered.
» ndb-appl i er-al | ow ski p- epoch: Lets replication applier skip epochs.
* ndb- bat ch- si ze: Size (in bytes) to use for NDB transaction batches.

« ndb- bl ob- r ead- bat ch- byt es: Specifies size in bytes that large BLOB reads should be batched
into. 0 = no limit.

124

https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html#statvar_Com_xxx

NDB Cluster mysgld Option and Variable Reference

ndb- bl ob-wr i t e- bat ch- byt es: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

ndb- cl ust er - connect i on- pool : Number of connections to cluster used by MySQL.

ndb- cl ust er - connecti on- pool - nodei ds: Comma-separated list of node IDs for connections
to cluster used by MySQL; number of nodes in list must match value set for --ndb-cluster-connection-
pool.

ndb- connect st ri ng: Address of NDB management server distributing configuration information
for this cluster.

ndb- def aul t - col um-f or nat : Use this value (FIXED or DYNAMIC) by default for
COLUMN_FORMAT and ROW_FORMAT options when creating or adding table columns.

ndb- def err ed- const r ai nt s: Specifies that constraint checks on unique indexes (where these
are supported) should be deferred until commit time. Not normally needed or used; for testing
purposes only.

ndb- di st ri but i on: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

ndb- | og- appl y- st at us: Cause MySQL server acting as replica to log mysqgl.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective
only if server is started with --ndbcluster option.

ndb- | og- enpt y- epochs: When enabled, causes epochs in which there were no changes to be
written to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

ndb- | og- enpt y- updat e: When enabled, causes updates that produced no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

ndb- | og- excl usi ve-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

ndb-1 og-fail -t erm nat e: Terminate mysqld process if complete logging of all found row events
is not possible.

ndb- | og- ori g: Log originating server id and epoch in mysqgl.ndb_binlog_index table.

ndb-1 og-transacti on-i d: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

ndb- | og- updat e- m ni nal : Log updates in minimal format.
ndb- | og- updat ed- onl y: Log complete rows (ON) or updates only (OFF).

ndb- | og- updat e- as- wri t e: Toggles logging of updates on source between updates (OFF) and
writes (ON).

ndb- ngnd- host : Set host (and port, if desired) for connecting to management server.
ndb- nodei d: NDB Cluster node ID for this MySQL server.

ndb- opti m zed- node- sel ecti on: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

ndb-transi d- mysql - connect i on- map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

ndb- wai t - connect ed: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

ndb- wai t - set up: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

125

NDB Cluster mysgld Option and Variable Reference

ndb- al | ow copyi ng-al t er-tabl e: Set to OFF to keep ALTER TABLE from using copying
operations on NDB tables.

Ndb_api _adaptive_send_def erred_count: Number of adaptive send calls not actually sent by
this MySQL Server (SQL node).

Ndb_api _adaptive_send_def erred_count _sessi on: Number of adaptive send calls not
actually sent in this client session.

Ndb_api _adapti ve_send_deferred_count replica: Number of adaptive send calls not
actually sent by this replica.

Ndb_api _adaptive_send_deferred_count _sl ave: Number of adaptive send calls not actually
sent by this replica.

Ndb_api _adaptive_send_f orced_count : Number of adaptive sends with forced-send set sent
by this MySQL Server (SQL node).

Ndb_api _adapti ve_send_f or ced_count _sessi on: Number of adaptive sends with forced-
send set in this client session.

Ndb_api _adaptive_send_forced_count replica: Number of adaptive sends with forced-
send set sent by this replica.

Ndb_api _adaptive_send forced_count sl ave: Number of adaptive sends with forced-send
set sent by this replica.

Ndb_api _adapti ve_send_unf or ced_count : Number of adaptive sends without forced-send
sent by this MySQL Server (SQL node).

Ndb_api _adaptive_send_unforced _count _sessi on: Number of adaptive sends without
forced-send in this client session.

Ndb_api _adaptive_send_unforced_count replica: Number of adaptive sends without
forced-send sent by this replica.

Ndb_api _adapti ve_send_unforced_count _sl ave: Number of adaptive sends without forced-
send sent by this replica.

Ndb_api _bytes_recei ved_count : Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

Ndb_api _bytes_recei ved_count _sessi on: Quantity of data (in bytes) received from data
nodes in this client session.

Ndb_api _bytes_recei ved_count _replica: Quantity of data (in bytes) received from data
nodes by this replica.

Ndb_api _bytes_recei ved_count _sl ave: Quantity of data (in bytes) received from data nodes
by this replica.

Ndb_api byt es_sent count : Quantity of data (in bytes) sent to data nodes by this MySQL
Server (SQL node).

Ndb_api _bytes_sent count sessi on: Quantity of data (in bytes) sent to data nodes in this
client session.

Ndb_api _bytes_sent count _repli ca: Qunatity of data (in bytes) sent to data nodes by this
replica.

Ndb_api _bytes_sent _count _sl ave: Qunatity of data (in bytes) sent to data nodes by this
replica.

Ndb_api _event byt es_count: Number of bytes of events received by this MySQL Server (SQL
node).

126

NDB Cluster mysgld Option and Variable Reference

Ndb_api _event bytes count i nj ect or : Number of bytes of event data received by NDB
binary log injector thread.

Ndb_api _event _dat a_count : Number of row change events received by this MySQL Server
(SQL node).

Ndb_api _event dat a_count i nj ect or: Number of row change events received by NDB binary
log injector thread.

Ndb_api _event nondat a_count : Number of events received, other than row change events, by
this MySQL Server (SQL node).

Ndb_api _event nondat a_count i nj ect or: Number of events received, other than row change
events, by NDB binary log injector thread.

Ndb_api _pk_op_count : Number of operations based on or using primary keys by this MySQL
Server (SQL node).

Ndb_api _pk_op_count _sessi on: Number of operations based on or using primary keys in this
client session.

Ndb_api _pk_op_count _repl i ca: Number of operations based on or using primary keys by this
replica.

Ndb_api _pk_op_count _sl ave: Number of operations based on or using primary keys by this
replica.

Ndb_api _pruned_scan_count : Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

Ndb_api _pruned_scan_count sessi on: Number of scans that have been pruned to one
partition in this client session.

Ndb_api _pruned_scan_count _repl i ca: Number of scans that have been pruned to one
partition by this replica.

Ndb_api _pruned_scan_count _sl ave: Number of scans that have been pruned to one partition
by this replica.

Ndb_api _range_scan_count : Number of range scans that have been started by this MySQL
Server (SQL node).

Ndb_api _range_scan_count _sessi on: Number of range scans that have been started in this
client session.

Ndb_api _range_scan_count _repl i ca: Number of range scans that have been started by this
replica.

Ndb_api _range_scan_count _sl ave: Number of range scans that have been started by this
replica.

Ndb_api _read_r ow_count : Total number of rows that have been read by this MySQL Server
(SQL node).

Ndb_api _read_row _count _sessi on: Total number of rows that have been read in this client
session.

Ndb_api _read_row count repli ca: Total number of rows that have been read by this replica.
Ndb_api _read_row_count _sl ave: Total number of rows that have been read by this replica.

Ndb_api _scan_bat ch_count : Number of batches of rows received by this MySQL Server (SQL
node).

127

NDB Cluster mysgld Option and Variable Reference

Ndb_api _scan_bat ch_count _sessi on: Number of batches of rows received in this client
session.

Ndb_api _scan_bat ch_count _repl i ca: Number of batches of rows received by this replica.
Ndb_api _scan_bat ch_count _sl ave: Number of batches of rows received by this replica.

Ndb_api _t abl e_scan_count : Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

Ndb_api _t abl e_scan_count _sessi on: Number of table scans that have been started, including
scans of internal tables, in this client session.

Ndb_api _t abl e_scan_count _repl i ca: Number of table scans that have been started, including
scans of internal tables, by this replica.

Ndb_api _tabl e_scan_count _sl ave: Number of table scans that have been started, including
scans of internal tables, by this replica.

Ndb_api _trans_abort _count: Number of transactions aborted by this MySQL Server (SQL
node).

Ndb_api _trans_abort _count _sessi on: Number of transactions aborted in this client session.
Ndb_api trans_abort count replica: Number of transactions aborted by this replica.
Ndb_api _trans_abort count sl ave: Number of transactions aborted by this replica.

Ndb_api _trans_cl ose_count : Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this MySQL Server (SQL node).

Ndb_api _trans_cl ose_count _sessi on: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) in this client session.

Ndb_api _trans_cl ose_count _repl i ca: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica.

Ndb_api _trans_cl ose_count _sl ave: Number of transactions aborted (may be greater than
sum of TransCommitCount and TransAbortCount) by this replica.

Ndb_api _trans_commi t _count : Number of transactions committed by this MySQL Server (SQL
node).

Ndb_api _trans_commit_count sessi on: Number of transactions committed in this client
session.

Ndb_api _trans_commt_count replica: Number of transactions committed by this replica.
Ndb_api _trans_comrit _count _sl ave: Number of transactions committed by this replica.

Ndb_api _trans_l ocal read row count: Total number of rows that have been read by this
MySQL Server (SQL node).

Ndb_api _trans_l ocal _read row count _sessi on: Total number of rows that have been read
in this client session.

Ndb_api _trans_l ocal _read_row count _repli ca: Total number of rows that have been read
by this replica.

Ndb_api trans_l ocal _read_row count _sl ave: Total number of rows that have been read by
this replica.

Ndb_api _trans_start _count: Number of transactions started by this MySQL Server (SQL
node).

128

NDB Cluster mysgld Option and Variable Reference

Ndb_api _trans_start_count _sessi on: Number of transactions started in this client session.
Ndb_api _trans_start_count _replica: Number of transactions started by this replica.
Ndb_api _trans_start _count sl ave: Number of transactions started by this replica.

Ndb_api _uk_op_count : Number of operations based on or using unique keys by this MySQL
Server (SQL node).

Ndb_api _uk_op_count _sessi on: Number of operations based on or using unique keys in this
client session.

Ndb_api _uk_op_count _repl i ca: Number of operations based on or using unique keys by this
replica.

Ndb_api _uk_op_count _sl ave: Number of operations based on or using unique keys by this
replica.

Ndb_api _wait_exec_conpl et e_count : Number of times thread has been blocked while waiting
for operation execution to complete by this MySQL Server (SQL node).

Ndb_api _wait_exec_conpl et e_count _sessi on: Number of times thread has been blocked
while waiting for operation execution to complete in this client session.

Ndb_api _wait _exec_conpl et e_count repli ca: Number of times thread has been blocked
while waiting for operation execution to complete by this replica.

Ndb_api _wait_exec_conpl et e_count _sl ave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

Ndb_api _wait_neta_request count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

Ndb_api _wait_neta_request_count _sessi on: Number of times thread has been blocked
waiting for metadata-based signal in this client session.

Ndb_api _wait neta request count _replica: Number of times thread has been blocked
waiting for metadata-based signal by this replica.

Ndb_api _wait_neta_request_count _sl ave: Number of times thread has been blocked waiting
for metadata-based signal by this replica.

Ndb_api _wait_nanos_count : Total time (in nanoseconds) spent waiting for some type of signal
from data nodes by this MySQL Server (SQL node).

Ndb_api _wai t _nanos_count _sessi on: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes in this client session.

Ndb_api _wait_nanos_count _repli ca: Total time (in nanoseconds) spent waiting for some type
of signal from data nodes by this replica.

Ndb_api _wait _nanos_count _sl ave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

Ndb_api _wait_scan_resul t _count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

Ndb_api _wait_scan_result _count _sessi on: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

Ndb_api _wait_scan_result_count _replica: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

Ndb_api _wait_scan_result_count sl ave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

129

NDB Cluster mysgld Option and Variable Reference

e ndb_aut oi ncrenent _pr ef et ch_sz: NDB auto-increment prefetch size.

 ndb_cache_check_ti ne: Number of milliseconds between checks of cluster SQL nodes made by
MySQL query cache.

e ndb_cl ear _appl y_st at us: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

 Ndb_cl ust er _node_i d: Node ID of this server when acting as NDB Cluster SQL node.

« Ndb_confi g_from host: NDB Cluster management server host name or IP address.
 Ndb_confi g_from port: Port for connecting to NDB Cluster management server.
 Ndb_confi g_generati on: Generation number of the current configuration of the cluster.

e Ndb_conflict_fn_epoch: Number of rows that have been found in conflict by NDBSEPOCH()
NDB replication conflict detection function.

* Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDB replication
NDB$EPOCH2() conflict detection function.

« Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
replication NDBSEPOCH2_TRANS() conflict detection function.

* Ndb_conflict_fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

« Ndb_conflict_fn_nax: Number of times that NDB replication conflict resolution based on "greater
timestamp wins" has been applied to update and delete operations.

« Ndb_conflict_fn_max_del w n: Number of times that NDB replication conflict resolution based
on outcome of NDBSMAX_DELETE_WIN() has been applied to update and delete operations.

* Ndb_conflict_fn_max_ins: Number of times that NDB replication conflict resolution based on
"greater timestamp wins" has been applied to insert operations.

« Ndb_conflict_fn_max_del w n_i ns: Number of times that NDB replication conflict resolution
based on outcome of NDBSMAX_DEL_WIN_INS() has been applied to insert operations.

e Ndb_conflict_fn_ol d: Number of times in NDB replication "same timestamp wins" conflict
resolution has been applied.

* Ndb_conflict _last_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

« Ndb_conflict | ast_stabl e _epoch: Number of rows found to be in conflict by transactional
conflict function.

e Ndb_conflict _reflected op_di scard_count: Number of reflected operations that were not
applied due error during execution.

* Ndb_conflict _reflected op_prepare_count: Number of reflected operations received that
have been prepared for execution.

« Ndb_conflict _refresh_op_count: Number of refresh operations that have been prepared.

 ndb_conflict_rol e: Role for replica to play in conflict detection and resolution. Value is one of
PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

* Ndb_conflict _trans_conflict_comm t_count: Number of epoch transactions committed
after requiring transactional conflict handling.

130

NDB Cluster mysgld Option and Variable Reference

Ndb_conflict _trans_detect iter_count:Number of internal iterations
required to commit epoch transaction. Should be (slightly) greater than or equal to
Ndb_conflict_trans_conflict_commit_count.

Ndb_conflict _trans_reject_count: Number of transactions rejected after being found in
conflict by transactional conflict function.

Ndb_conflict _trans_row conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

Ndb_conflict _trans_row reject count: Total number of rows realigned after being found
in conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any
rows included in or dependent on conflicting transactions.

ndb_dat a_node_nei ghbour : Specifies cluster data node "closest" to this MySQL Server, for
transaction hinting and fully replicated tables.

ndb_def aul t _col um_f or nat : Sets default row format and column format (FIXED or DYNAMIC)
used for new NDB tables.

ndb_def erred_constrai nts: Specifies that constraint checks should be deferred (where these
are supported). Not normally needed or used; for testing purposes only.

ndb_dbg_ check_shar es: Check for any lingering shares (debug builds only).

ndb- schenma- di st -ti neout: How long to wait before detecting timeout during schema
distribution.

ndb_di stri buti on: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

Ndb_epoch_del et e_del et e_count : Number of delete-delete conflicts detected (delete operation
is applied, but row does not exist).

ndb_event buf fer _free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

ndb_event buf f er _max_al | oc: Maximum memory that can be allocated for buffering events by
NDB API. Defaults to 0 (no limit).

Ndb_execut e_count : Number of round trips to NDB kernel made by operations.

ndb_extra_| oggi ng: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

ndb_f or ce_send: Forces sending of buffers to NDB immediately, without waiting for other threads.
ndb_fully repli cat ed: Whether new NDB tables are fully replicated.
ndb_i ndex_st at _enabl e: Use NDB index statistics in query optimization.

ndb_i ndex_stat opti on: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

ndb_j oi n_pushdown: Enables pushing down of joins to data nodes.
Ndb_| ast _commit_epoch_server: Epoch most recently committed by NDB.
Ndb_| ast _commit _epoch_sessi on: Epoch most recently committed by this NDB client.

ndb_| og_appl y_st at us: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its
own server ID.

131

NDB Cluster mysgld Option and Variable Reference

ndb_| og_bi n: Write updates to NDB tables in binary log. Effective only if binary logging is enabled
with --log-bin.

ndb_| og_bi nl og_i ndex: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

ndb_I| og_enpt y_epochs: When enabled, epochs in which there were no changes are
written to ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or
log_slave_updates is enabled.

ndb_| og_enpty_updat e: When enabled, updates which produce no changes are written
to ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or
log_slave_updates is enabled.

ndb_I| og_excl usi ve_r eads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

ndb_| og_ori g: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

ndb_| og_transacti on_i d: Whether NDB transaction IDs are written into binary log (Read-only).

ndb_rnet adat a_check: Enable auto-detection of NDB metadata changes with respect to MySQL
data dictionary; enabled by default.

Ndb_ret adat a_bl ackl i st _si ze: Number of NDB metadata objects that NDB binlog thread has
failed to synchronize; renamed in NDB 8.0.22 as Ndb_metadata_excluded_count.

ndb_ret adat a_check_i nt er val : Interval in seconds to perform check for NDB metadata
changes with respect to MySQL data dictionary.

Ndb_rnet adat a_det ect ed_count : Number of times NDB metadata change monitor thread has
detected changes.

Ndb_ret adat a_excl uded_count : Number of NDB metadata objects that NDB binlog thread has
failed to synchronize.

ndb_net adat a_sync: Triggers immediate synchronization of all changes between NDB dictionary
and MySQL data dictionary; causes ndb_metadata_check and ndb_metadata_check_interval values
to be ignored. Resets to false when synchronization is complete.

Ndb_net adat a_synced_count : Number of NDB metadata objects which have been
synchronized.

Ndb_numnber _of dat a_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

ndb- opti ni zat i on- del ay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

ndb_opti m zed_node_sel ecti on: Determines how SQL node chooses cluster data node to use
as transaction coordinator.

Ndb_pruned_scan_count : Number of scans executed by NDB since cluster was last started
where partition pruning could be used.

Ndb_pushed_queri es_def i ned: Number of joins that APl nodes have attempted to push down to
data nodes.

Ndb_pushed_queri es_dr opped: Number of joins that APl nodes have tried to push down, but
failed.

Ndb_pushed_queri es_execut ed: Number of joins successfully pushed down and executed on
data nodes.

132

NDB Cluster mysgld Option and Variable Reference

Ndb_pushed_r eads: Number of reads executed on data nodes by pushed-down joins.

ndb_read_backup: Enable read from any replica for all NDB tables; use
NDB_TABLE=READ_BACKUP={0|1} with CREATE TABLE or ALTER TABLE to enable or disable
for individual NDB tables.

ndb_recv_thread_activation_threshol d: Activation threshold when receive thread takes
over polling of cluster connection (measured in concurrently active threads).

ndb_recv_t hread_cpu_nask: CPU mask for locking receiver threads to specific CPUs; specified
as hexadecimal. See documentation for details.

Ndb_replica_max_replicated_epoch: Most recently committed NDB epoch on this replica.
When this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet
been detected.

ndb_replica_bat ch_si ze: Batch size in bytes for replica applier.

ndb_report _thresh_binl og _epoch_slip: NDB 7.5 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_OVER_THRESHOLD event buffer status message; prior to NDB 7.5:
Threshold for number of epochs to lag behind before reporting binary log status.

ndb_report _thresh_bi nl og_nmem usage: Threshold for percentage of free memory remaining
before reporting binary log status.

ndb_r ow_checksum When enabled, set row checksums; enabled by default.
Ndb_scan_count : Total number of scans executed by NDB since cluster was last started.

ndb_schenma_di st | ock _wait _tineout: Time during schema distribution to wait for lock before
returning error.

ndb_schema_di st _ti meout : Time to wait before detecting timeout during schema distribution.

ndb_schena_di st _upgrade_al | owed: Allow schema distribution table upgrade when connecting
to NDB.

ndb_show f orei gn_key_nock_t abl es: Show mock tables used to support
foreign_key checks=0.

ndb_sl ave_conflict _rol e: Role for replica to play in conflict detection and resolution. Value is
one of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication
SQL thread is stopped. See documentation for further information.

Ndb_sl ave_nax_repl i cat ed_epoch: Most recently committed NDB epoch on this replica. When
this value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been
detected.

Ndb_syst em nane: Configured cluster system name; empty if server not connected to NDB.

ndb_t abl e_no_I| oggi ng: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered
to use NDBCLUSTER persists for table's lifetime.

ndb_t abl e_t enpor ar y: NDB tables are not persistent on disk: no schema files are created and
tables are not logged.

Ndb_trans_hi nt _count _sessi on: Number of transactions using hints that have been started in
this session.

ndb_use copyi ng_al ter _tabl e: Use copying ALTER TABLE operations in NDB Cluster.

133

NDB Cluster Configuration Files

e ndb_use_exact _count : Use exact row count when planning queries.

 ndb_use_transacti ons: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

* ndb_ver si on: Shows build and NDB engine version as an integer.
e ndb_versi on_stri ng: Shows build information including NDB engine version in ndb-x.y.z format.

* ndbcl ust er : Enable NDB Cluster (if this version of MySQL supports it). Disabled by - - ski p-
ndbcl ust er.

* ndbi nf o: Enable ndbinfo plugin, if supported.

» ndbi nf o_dat abase: Name used for NDB information database; read only.
* ndbi nf o_max_byt es: Used for debugging only.

e ndbi nf o_nmax_r ows: Used for debugging only.

* ndbi nf o_of f1i ne: Put ndbinfo database into offline mode, in which no rows are returned from
tables or views.

» ndbi nf o_show_hi dden: Whether to show ndbinfo internal base tables in mysql client; default is
OFF.

» ndbi nfo_tabl e_prefi x: Prefix to use for naming ndbinfo internal base tables; read only.
* ndbi nf o_ver si on: ndbinfo engine version; read only.
* replica_all ow_bat chi ng: Turns update batching on and off for replica.

» server _id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be
less than 2 to power of this value.

» ski p- ndbcl ust er : Disable NDB Cluster storage engine.
» sl ave_al | ow_bat chi ng: Turns update batching on and off for replica.

e transaction_al | ow _bat chi ng: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

4.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

* ny. cnf : Specifies options for all NDB Cluster executables. This file, with which you should be
familiar with from previous work with MySQL, must be accessible by each executable running in the
cluster.

» config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. conf i g. i ni contains a description of each node involved in the cluster.
This includes configuration parameters for data nodes and configuration parameters for connections
between all nodes in the cluster. For a quick reference to the sections that can appear in this file,
and what sorts of configuration parameters may be placed in each section, see Sections of the
config.ini File.

Caching of configuration data. NDB uses stateful configuration. Rather than reading the global
configuration file every time the management server is restarted, the management server caches the
configuration the first time it is started, and thereafter, the global configuration file is read only when
one of the following conditions is true:

134

NDB Cluster Configuration: Basic Example

e The management server is started using the --initial option. When --ini ti al is used, the
global configuration file is re-read, any existing cache files are deleted, and the management server
creates a new configuration cache.

» The management server is started using the --reload option. The - - r el oad option causes
the management server to compare its cache with the global configuration file. If they differ,
the management server creates a hew configuration cache; any existing configuration cache is
preserved, but not used. If the management server's cache and the global configuration file contain
the same configuration data, then the existing cache is used, and no new cache is created.

» The management server is started using --config-cache=FALSE. This disables - -
confi g- cache (enabled by default), and can be used to force the management server to bypass
configuration caching altogether. In this case, the management server ignores any configuration files
that may be present, always reading its configuration data from the conf i g. i ni file instead.

* No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. = The management server by default creates configuration cache files

in a directory named nmysql - cl ust er in the MySQL installation directory. (If you build NDB Cluster
from source on a Unix system, the default location is / usr /| ocal / nysql - cl ust er.) This can be
overridden at runtime by starting the management server with the - - conf i gdi r option. Configuration
cache files are binary files named according to the pattern ndb_node i d_confi g. bi n. seq_i d,
where node_i d is the management server's node ID in the cluster, and seq_i d is a cache idenitifer.
Cache files are numbered sequentially using seq_i d, in the order in which they are created. The
management server uses the latest cache file as determined by the seq_i d.

Note

It is possible to roll back to a previous configuration by deleting later
configuration cache files, or by renaming an earlier cache file so that it has a
higher seq_i d. However, since configuration cache files are written in a binary
format, you should not attempt to edit their contents by hand.

For more information about the - - confi gdi r, --confi g-cache,--initial,and--rel oad
options for the NDB Cluster management server, see Section 5.4, “ndb_mgmd — The NDB Cluster
Management Server Daemon”.

We are continuously making improvements in NDB Cluster configuration and attempting to simplify this
process. Although we strive to maintain backward compatibility, there may be times when introduce an
incompatible change. In such cases we try to let NDB Cluster users know in advance if a change is not
backward compatible. If you find such a change and we have not documented it, please report it in the
MySQL bugs database using the instructions given in How to Report Bugs or Problems.

4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you should update my. cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used
inconfi g. i ni global configuration files. Global configuration options are
discussed later in this section.

ny. cnf
exanple additions to ny.cnf for NDB C uster
(valid in MySQL 8.0)

enabl e ndbcl uster storage engi ne, and provi de connection string for
managenent server host (default port is 1186)

135

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html

NDB Cluster Configuration: Basic Example

[nysgl d]
ndbcl ust er
ndb- connect st ri ng=ndb_ngnd. nmysql . com

provide connection string for managenent server host (default port: 1186)
[ndbd]
connect - stri ng=ndb_ngnd. nysql . com

provide connection string for managenent server host (default port: 1186)

[ndb_nmgm
connect - stri ng=ndb_ngnd. nysql . com

provide |ocation of cluster configuration file
| MPORTANT: When starting the management server with this option in the

configuration file, the use of --initial or --reload on the command |ine when
i nvoking ndb_ngnd is al so required
[ndb_ngnd]

config-file=/etc/config.in

(For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.)

ny. cnf
exanpl e additions to ny.cnf for NDB C uster
(works on all versions)

enabl e ndbcl uster storage engine, and provi de connection string for managenent
server host to the default port 1186

[nysal d]
ndbcl ust er
ndb- connect st ri ng=ndb_ngnd. nysql . com 1186

Important

Once you have started a mysql d process with the NDBCLUSTER and ndb-
connect st ri ng parameters in the [mysql d] in the my. cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE
statements without having actually started the cluster. Otherwise, these
statements fail with an error. This is by design.

You may also use a separate [nysql _cl ust er] section in the cluster ny. cnf file for settings to be
read and used by all executables:

cluster-specific settings
[mysql _cl uster]
ndb- connect st ri ng=ndb_ngnd. mysql . com 1186

For additional NDB variables that can be set in the ny. cnf file, see Section 4.3.9.2, “NDB Cluster
System Variables”.

The NDB Cluster global configuration file is by convention named conf i g. i ni (but this is not
required). If needed, it is read by ndb_ngnd at startup and can be placed in any location that

can be read by it. The location and name of the configuration are specified using - - conf i g-

fil e=pat h_name with ndb_ngnd on the command line. This option has no default value, and is
ignored if ndb_ngnd uses the configuration cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded

by section headings (surrounded by square brackets), followed by the appropriate parameter names
and values. One deviation from the standard INI format is that the parameter name and value can be
separated by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another
deviation is that sections are not uniquely identified by section name. Instead, unique sections (such as
two different nodes of the same type) are identified by a unique ID specified as a parameter within the
section.

Default values are defined for most parameters, and can also be specified in confi g. i ni . To create
a default value section, simply add the word def aul t to the section name. For example, an [ndbd]

136

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Cluster Configuration: Basic Example

section contains parameters that apply to a particular data node, whereas an [ndbd def aul t]
section contains parameters that apply to all data nodes. Suppose that all data nodes should use the
same data memory size. To configure them all, create an [ndbd def aul t] section that contains a
Dat aMenor y line to specify the data memory size.

If used, the [ndbd def aul t] section must precede any [ndbd] sections in the configuration file.
This is also true for def aul t sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for

NoCOf Repl i cas, which always had to be specified explicitly in the [ndbd
def aul t] section. Although this parameter now has a default value of 2,
which is the recommended setting in most common usage scenarios, it is still
recommended practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQ.L nodes

This file is placed in the startup directory of ndb_ngnmd (the
managenment server)

The first MySQL Server can be started fromany host. The second
can be started only on the host nysqgl d_5. mysqgl.com

[ndbd defaul t]
NoOf Repl i cas= 2
Dat aDir= /var/lib/nysql -cl uster

[ndb_ngnd]
Host nane= ndb_ngnd. nysql . com
Dat aDir= /var/lib/ nysql -cl uster

[ndbd]
Host Nane= ndbd_2. mysqgl . com

[ndbd]
Host Nane= ndbd_3. mysqgl . com

[nysgl d]
[nysgl d]
Host Nane= mysql d_5. nysql . com

Note

The preceding example is intended as a minimal starting configuration for
purposes of familiarization with NDB Cluster , and is almost certain not to be
sufficient for production settings. See Section 4.3.2, “Recommended Starting
Configuration for NDB Cluster”, which provides a more complete example
starting configuration.

Each node has its own section in the confi g. i ni file. For example, this cluster has two data nodes,
so the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the
confi g.ini file; this causes the management server not to start because it
cannot parse the configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the confi g. i ni configuration file, as described in
the following list:

137

Recommended Starting Configuration for NDB Cluster

[comput er] : Defines cluster hosts. This is not required to configure a viable NDB Cluster, but be
may used as a convenience when setting up a large cluster. See Section 4.3.4, “Defining Computers
in an NDB Cluster”, for more information.

[ndbd] : Defines a cluster data node (ndbd process). See Section 4.3.6, “Defining NDB Cluster Data
Nodes”, for details.

[mysql d] : Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a
discussion of SQL node configuration, see Section 4.3.7, “Defining SQL and Other API Nodes in an
NDB Cluster”.

[mgni or [ndb_ngnd] : Defines a cluster management server (MGM) node. For information
concerning the configuration of management nodes, see Section 4.3.5, “Defining an NDB Cluster
Management Server”.

[t cp] : Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default
transport protocol. Normally, [t cp] or[tcp defaul t] sections are not required to set up an

NDB Cluster, as the cluster handles this automatically; however, it may be necessary in some
situations to override the defaults provided by the cluster. See Section 4.3.10, “NDB Cluster TCP/IP
Connections”, for information about available TCP/IP configuration parameters and how to use them.
(You may also find Section 4.3.11, “NDB Cluster TCP/IP Connections Using Direct Connections” to
be of interest in some cases.)

[shn : Defines shared-memory connections between nodes. In MySQL 8.0, it is enabled by
default, but should still be considered experimental. For a discussion of SHM interconnects, see
Section 4.3.12, “NDB Cluster Shared-Memory Connections”.

[sci] : Defines Scalable Coherent Interface connections between cluster data nodes. Not supported
in NDB 8.0.

You can define def aul t values for each section. If used, a def aul t section should come before
any other sections of that type. For example, an [ndbd def aul t] section should appear in the
configuration file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server ny. cnf or
my.ini files.

4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

NDB Cluster software version

Numbers of data nodes and SQL nodes
Hardware

Operating system

Amount of data to be stored

Size and type of load under which the cluster is to operate

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which
can vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are

also likely to be indicated when changes are made in the platform on which the cluster is run, or in
applications that use the NDB Cluster 's data. For these reasons, it is not possible to offer a single
configuration that is ideal for all usage scenarios. However, in this section, we provide a recommended
base configuration.

138

Recommended Starting Configuration for NDB Cluster

Starting config.ini file. The following confi g. i ni file is a recommended starting point for
configuring a cluster running NDB Cluster 8.0:

TCP PARAMETERS

[tcp defaul t]
SendBuf f er Menor y=2M
Recei veBuf f er Menor y=2M

I ncreasing the sizes of these 2 buffers beyond the default val ues
hel ps prevent bottlenecks due to slow disk I/Q

MANAGEMENT NODE PARAMETERS

[ndb_ngnd def aul t]
Dat aDi r =pat h/ t o/ managenent / server/ dat a/ di rectory

1t is possible to use a different data directory for each managenent
server, but for ease of administration it is preferable to be
consi stent.

[ndb_nmgnd]
Host Nane=nmanagenent - ser ver - A- host nanme
Nodel d=managenent - ser ver - A- nodei d

[ndb_nmgnd]
Host Nane=nmanagenent - ser ver - B- host nane
Nodel d=managenent - ser ver - B- nodei d

Usi ng 2 managenent servers hel ps guarantee that there is always an
arbitrator in the event of network partitioning, and so is
recommended for high availability. Each managenent server nust be
identified by a Host Name. You may for the sake of conveni ence specify
a Nodel d for any managenent server, although one is allocated

for it automatically; if you do so, it nust be in the range 1-255
inclusive and nmust be unique anong all |Ds specified for cluster
nodes.

H o HHH R

DATA NODE PARAMETERS

[ndbd defaul t]
NoOf Repl i cas=2

Using two fragnent replicas is recommended to guarantee availability of data;
using only one fragnment replica does not provide any redundancy, which nmeans

that the failure of a single data node causes the entire cluster to shut down.
1t is also possible (but not required) in NDB 8.0 to use nore than two

fragnent replicas, although two fragnment replicas are sufficient to provide

high availability.

LockPages| nMai nMenor y=1

On Linux and Sol aris systens, setting this paranmeter |ocks data node
processes into menory. Doing so prevents them from swapping to di sk,
whi ch can severely degrade cluster performance.

Dat aMenor y=3456M

The val ue provi ded for DataMenory assunes 4 GB RAM

per data node. However, for best results, you should first calcul ate
the nenory that woul d be used based on the data you actually plan to
store (you may find the ndb_size.pl utility helpful in estimating

this), then allow an extra 20% over the cal cul ated val ues. Naturally,
you shoul d ensure that each data node host has at |east as much

physical menory as the sum of these two val ues.

ODirect=1

Enabling this paraneter causes NDBCLUSTER to try using O DI RECT

wites for local checkpoints and redo | ogs; this can reduce | oad on
CPUs. W recommend doi ng so when using NDB Cl uster on systens runni ng
Linux kernel 2.6 or later.

139

Recommended Starting Configuration for NDB Cluster

NoOf Fr agnent LogFi | es=300
Dat aDi r =pat h/ t o/ dat a/ node/ dat a/ di rectory
MaxNoCOf Concur r ent Oper at i ons=100000

Schedul er Spi nTi mer =400

Schedul er Execut i onTi mer =100

Real Ti neSchedul er =1

Setting these paraneters allows you to take advantage of real-tine scheduling
of NDB threads to achi eve increased throughput when using ndbd. They

are not needed when using ndbntd; in particular, you should not set

Real Ti meSchedul er for ndbntd data nodes.

Ti meBet weend obal Checkpoi nt s=1000
Ti neBet weenEpochs=200
RedoBuf f er =32M

ConpressedLCP=1

Conpr essedBackup=1

Enabl i ng ConpressedLCP and ConpressedBackup causes, respectively, |ocal
checkpoint files and backup files to be conpressed, which can result in a space
savi ngs of up to 50% over nonconpressed LCPs and backups.

MaxNoOf Local Scans=64
MaxNoCOf Tabl es=1024
MaxNoOf Or der edl ndexes=256

[ndbd]
Host Nane=dat a- node- A- host nane
Nodel d=dat a- node- A- nodei d

LockExecut eThr eadToCPU=1

LockMai nt Thr eads ToCPU=0

On systens with multiple CPUs, these paranmeters can be used to | ock NDBCLUSTER
threads to specific CPUs

[ndbd]
Host Nane=dat a- node- B- host nane
Nodel d=dat a- node- B- nodei d

LockExecut eThr eadToCPU=1
LockMai nt Thr eads ToCPU=0

You nmust have an [ndbd] section for every data node in the cluster;
each of these sections nust include a Host Name. Each section nay
optionally include a Nodeld for conveni ence, but in nost cases, it is
sufficient to allow the cluster to allocate node |IDs dynamcally. |If
you do specify the node ID for a data node, it nust be in the range 1
to 144 inclusive and nust be unique anong all |Ds specified for

cl uster nodes.

HH O H R HH

SQL NODE / API NODE PARAMETERS

[nysql d]
Host Nane=sql - node- A- host nane
Nodel d=sql - node- A- nodei d

[nysql d]
[nysql d]

Each APl or SQ. node that connects to the cluster requires a [nysqld]
or [api] section of its own. Each such section defines a connection
“slot”; you should have at |east as many of these sections in the

config.ini file as the total nunber of APl nodes and SQL nodes t hat

you wi sh to have connected to the cluster at any given tine. There is
no performance or other penalty for having extra slots available in
case you find later that you want or need nore APl or SQL nodes to

connect to the cluster at the sane tine.

If no HostNane is specified for a given [nysqgld] or [api] section,

then any APl or SQL node may use that slot to connect to the

cluster. You may wi sh to use an explicit HostName for one connection sl ot

140

NDB Cluster Connection Strings

to guarantee that an APl or SQ node fromthat host can al ways

connect to the cluster. If you wish to prevent APl or SQ. nodes from
connecting fromother than a desired host or hosts, then use a

Host Nane for every [nysqgld] or [api] section in the config.ini file.
You can if you wish define a node ID (Nodeld paraneter) for any APl or
SQL node, but this is not necessary; if you do so, it nust be in the
range 1 to 255 inclusive and nust be uni que anong all |Ds specified
for cluster nodes

HHHHHHHH

Required my.cnf options for SQL nodes. MySQL servers acting as NDB Cluster SQL nodes
must always be started with the - - ndbcl ust er and - - ndb- connect st ri ng options, either on the
command line or in ny. cnf .

4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_ngnd), each node that is part

of an NDB Cluster requires a connection string that points to the management server's location.

This connection string is used in establishing a connection to the management server as well as in
performing other tasks depending on the node's role in the cluster. The syntax for a connection string is
as follows:

[nodei d=node_i d,]host-definition[, host-definition[, ...]]

host-definition
host _nane[: port_nunber]

node_i d is an integer greater than or equal to 1 which identifies a node in confi g. i ni . host _nane
is a string representing a valid Internet host name or IP address. port _nunber is an integer referring
to a TCP/IP port number.

exanple 1 (long): "nodei d=2, nyhost 1: 1100, nyhost 2: 1100, 198. 51. 100. 3: 1200"
exanple 2 (short): "my