MySQL NDB Cluster 7.3, MySQL NDB Cluster 7.4

Abstract
This is the MySQL NDB Cluster 7.3 and MySQL NDB Cluster 7.4 extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2021-10-22 (revision: 71168)

http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieee ittt e e e e et e e e et e e e eaea s Vi
1 General INFOMMALIONiiiii ettt e et e et et e e e et e e e e et e e e e nba s 1
2 NDB CIUSTET OVEIVIEWceeitieeeeiti ettt ettt ettt et e e et et e et e e e et et r et e e abneeeena e e eenans 5
2.1 NDB ClIUSLEr COre CONCEPLS ...eevtuieiiiii ettt ettt et e e et e e e e e eet e et eeb e e e e e e e ena e eeenens 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitionsc.occoviieeiiiineeens 9
2.3 NDB Cluster Hardware, Software, and Networking Requirementsoccoiiieeiiiinieeiennnnnn. 12
2.4 What is New in MySQL NDB ClIUSEEIccouuuiiiiiiiiieeiiii ettt e e e e 14
2.4.1 What is New in NDB CIUSEEI 7.3 ... oottt 15
2.4.2 What is New in NDB CIUSEEI 7.4couuiiiiiii e 16

2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parameters 19
2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.3 19
2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4 21

2.6 MySQL Server Using InnoDB Compared with NDB CIUSTErcccuviiiiiiiiiniiiiiieeeeieeeeie 23
2.6.1 Differences Between the NDB and InnoDB Storage ENginescccceeveevivineeeennnnnn. 24
2.6.2 NDB and INNODB WOTKIOAASccoiuiiiiiiiiiie et 25
2.6.3 NDB and InnoDB Feature Usage SUMMAIYcoeieiuiiieiiiiiieiiiiee e e 26

2.7 Known Limitations Of NDB CIUSTETiiiiiiiiiiiiiii e e e e e eens 26
2.7.1 Noncompliance with SQL Syntax in NDB CIUSEErccouuiiiiiiiiiiiiiiieeceii e 27
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limitsc.....cccuunnee. 29
2.7.3 Limits Relating to Transaction Handling in NDB CIUSEErccooviiiiiiiiiiiiiiieiiiiieeees 30
2.7.4 NDB Cluster Error Handlingcoouuuiioiiiie et 33
2.7.5 Limits Associated with Database Objects in NDB CIUSTercccccoviiiiiiiniiiiiineeciii, 33
2.7.6 Unsupported or Missing Features in NDB CIUSEErc...oviiiiiiiiiiiiiiiieci e 34
2.7.7 Limitations Relating to Performance in NDB CIUSEErcccuiiiiiiiiiiiiiiiiieeei e 35
2.7.8 I1ssues EXCIUSIVE t0 NDB CIUSTEIuiiiiiiiieeiiiii et 35
2.7.9 Limitations Relating to NDB Cluster Disk Data StOragecccooveveiviieeiiiiiieeeiiineeens 36
2.7.10 Limitations Relating to Multiple NDB Cluster NOAESccc.uviiiiiiiiiiiiiinieciiineeeenen 37
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 7.3ccooevviiiiiiiiiineeeeiinne, 37

3 NDB CIUSEEr INSTAIALIONeevtiieeeit ettt et ettt ettt e e e e e e eaba e e ennes 39
3.1 Installation of NDB CIUSIEN ON LINUXuuuiiiiiiiieiiiii ettt e et e e et eeeeneneeees 41
3.1.1 Installing an NDB Cluster Binary Release on LiNUXccoivieiiiiiiniiiiiiicceeecein 42
3.1.2 Installing NDB Cluster from RPMccoouuiiiiiiiiiiii e e 44
3.1.3 Installing NDB Cluster Using .deb Filesooiiiiiiiiiii e 46
3.1.4 Building NDB Cluster from Source on LiNUXoociiiiiiiiiiiieiieecei e 46

3.2 Installing NDB Cluster 0N WINAOWSiiiiiiiiiiiiie ettt eeeenns 48
3.2.1 Installing NDB Cluster on Windows from a Binary Releaseccccooovvviiiiiiiiiiinnenns 48
3.2.2 Compiling and Installing NDB Cluster from Source on Windowscceuviieeeennnnnn. 51
3.2.3 Initial Startup of NDB Cluster 0n WINGOWScocuuuiiiiiiieieiiieeeeiis e eeeen 52
3.2.4 Installing NDB Cluster Processes as WIindOWS SErViCeSccouvivveiiiiiiieiiiiinneeiiiinnnn, 54

3.3 Initial Configuration Of NDB CIUSTENuiiiiiiiiiiii e 56
3.4 Initial Startup Of NDB CIUSTEYccuuiiiiiii et 58
3.5 NDB Cluster Example with Tables and Dataccc.iviiiiiiiiiiiii e 59
3.6 Safe Shutdown and Restart 0f NDB CIUSTENuiiiiiiiiiiiiiii e 63
3.7 Upgrading and Downgrading NDB CIUSTELiiuuiiiiiiiiii e 64
3.8 The NDB Cluster Auto-Installer (N0 longer SUPPOIEd)ccvevuiieieiiiiieiiiie e 67
3.8.1 NDB Cluster Auto-Installer REQUIFEMENEScoouuuiiiiiiiieiiii e 67
3.8.2 Using the NDB Cluster AUtO-INSTAIIEriiiiiiii e 68

4 Configuration Of NDB CIUSTETcouuiiiiiii et e ettt e e et e e et et e e e et e e eenbaeeees 79
4.1 Quick Test Setup Of NDB CIUSLENccouuiiiiiiiiee e 79
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variablesc............ 82
4.2.1 NDB Cluster Data Node Configuration Parametersccoveeviiiiieiiiiineeeeiineeeceiee 82

MySQL NDB Cluster 7.3, MySQL NDB Cluster 7.4

4.2.2 NDB Cluster Management Node Configuration Parametersccoceveeviiieviineeennennn. 88
4.2.3 NDB Cluster SQL Node and API Node Configuration Parametersccc.cccevevvvnenn. 89
4.2.4 Other NDB Cluster Configuration Parametersc.oveiiiieiiiieiiii e eeve e e 91
4.2.5 NDB Cluster mysqgld Option and Variable Referencecccooeviiiiiiiiiiiiiin e, 92

4.3 NDB Cluster Configuration FileSciiiiiiiiiii e 100
4.3.1 NDB Cluster Configuration: Basic EXamplec.ccoooiiiiiiiiii e 101
4.3.2 Recommended Starting Configuration for NDB CIUSEErcc.coevviiiiiiiiiiiicii e, 104
4.3.3 NDB Cluster Connection StHNGSc.uuiiiiiieiiieii e e e e e eens 107
4.3.4 Defining Computers in an NDB CIUSEETcc.uiiiiiiiciii e 108
4.3.5 Defining an NDB Cluster Management SEIVELccccuuveiuieeiiieeiiieeiie e eeie e eaens 109
4.3.6 Defining NDB Cluster Data NOUEScccueiiiiiiiiieiiie e e e e aaes 116
4.3.7 Defining SQL and Other APl Nodes in an NDB CIUSEErccccovvviiiiiiiiiiiiieiieeeie, 183
4.3.8 MySQL Server Options and Variables for NDB CIUSterccccovvviviiiiiiiieciiieecieeeannn, 191
4.3.9 NDB Cluster TCP/IP CONNECHIONSuuiiiiiiiieiiiiiee et e et e et e e e e e 236
4.3.10 NDB Cluster TCP/IP Connections Using Direct Connectionscccccvvvvvevinieennnns 241
4.3.11 NDB Cluster Shared-Memory CONNECLIONSoeiuuieiiiiiiiii e eece e e eas 242
4.3.12 Configuring NDB Cluster Send Buffer Parameterscccooeviiiiiiiiiii e, 246

4.4 Using High-Speed Interconnects with NDB CIUSEEccovuiiiiiiiiiiic e 247
R 1B = R @ 0TS =T g md (o [= = 249
5.1 ndbd — The NDB Cluster Data NOde DaBmMONcccuuiiiiiiiiieiiiiieee e 250
5.2 ndbinfo_select_all — Select From ndbinfo Tablesccooiiiiiiii i 260
5.3 ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)c.cccoovviiiiiiieeins 265
5.4 ndb_mgmd — The NDB Cluster Management Server Daemoncoovevuiveiiiieiiiieeiieenins 266
5.5 ndb_mgm — The NDB Cluster Management ClIentcooevviiiiiiiieiii e 278
5.6 ndb_blob_tool — Check and Repair BLOB and TEXT columns of NDB Cluster Tables 283
5.7 ndb_config — Extract NDB Cluster Configuration Informationccccocciiiiiiiiiiiiiiiieeennn, 290
5.8 ndb_cpcd — Automate Testing for NDB DeVvelopmentccovviiiiiiieiiiieiie e 302
5.9 ndb_delete_all — Delete All Rows from an NDB Tablecccooviiiiiiiiiciiin e, 302
5.10 ndb_desc — Describe NDB TabIESccuuiiiiiiiiii et e e e e e 307
5.11 ndb_drop_index — Drop Index from an NDB Tablec.coovviiiiiiiiiiie e 315
5.12 ndb_drop_table — Drop an NDB Tableooiiiiiiiiiiiie e 320
5.13 ndb_error_reporter — NDB Error-Reporting Utilitycccoiviiiiiiiiii e, 325
5.14 ndb_index_stat — NDB Index Statistics ULIlitycccoiviiiiiiiiiiii e, 326
5.15 ndb_move_data — NDB Data Copy ULIlItYccoviiiiiiiiiic e 335
5.16 ndb_print_backup_file — Print NDB Backup File Contentsc.cccoveviiiiiiiieeiii e, 340
5.17 ndb_print_file — Print NDB Disk Data File CONtentsccccoovviiiiiiiiiiiiccie e, 341
5.18 ndb_print_frag_file — Print NDB Fragment List File Contentsccccoeeiiveiiiieiinieiieeennnn, 341
5.19 ndb_print_schema_file — Print NDB Schema File Contentscccoovviiiieiiiieiiin e, 342
5.20 ndb_print_sys_file — Print NDB System File CONtentscccccoiviiiiiiiiiiieii e 343
5.21 ndb_redo_log_reader — Check and Print Content of Cluster Redo LOgcccocvvveeennnnnn. 343
5.22 ndb_restore — Restore an NDB Cluster Backupccccoovviiiiiiiiiin e, 346
5.22.1 Restoring an NDB Backup to a Different Version of NDB Clustercceeeeenn. 367
5.22.2 Restoring to a different number of data nodesccoeeiiiiiiiii i, 368

5.23 ndb_select_all — Print Rows from an NDB Tablec.cooiiiiiiiii e 372
5.24 ndb_select_count — Print Row Counts for NDB Tablesccccoveiiiiiiiiiiiie e, 379
5.25 ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED) 383
5.26 ndb_show_tables — Display List of NDB Tablesccccoiviiiiiiiiiiiii e, 387
5.27 ndb_size.pl — NDBCLUSTER Size Requirement EStimatorccoevevviieiiiieiiiiieiieeiis 392
5.28 ndb_waiter — Wait for NDB Cluster to Reach a Given Statuscccccoeveiiiieiiiieiiiieeeins 395
6 Management Of NDB CIUSTETuuiiiiiii et e e e e e e e e e e et e e et e eanaeeees 403
6.1 Commands in the NDB Cluster Management Clentcccooiviiiiiiiieiiin e 405
6.2 NDB ClUSEr LOG MESSATES ...ucvvuneiiieiiiiieiieee e e e e e e e e e e et e e e et e e et e e et e e st eeaneeenans 410
6.2.1 NDB Cluster: Messages in the CIUSter LOgcocvvuiiiiiiiii e, 410

6.2.2 NDB Cluster Log Startup MESSAGESuuieiuuiiiiieiiiieei et ee e e e et e et ae et e e e eaenns 425

MySQL NDB Cluster 7.3, MySQL NDB Cluster 7.4

6.2.3 NDB Cluster: NDB TranSpOMEr EITOISccuuiiiiiieeiii et e e e e e e e e e eeens 426
6.3 Event Reports Generated in NDB CIUSIENcciuuiiiiiieiii e e e e e e e e eaa e 427
6.3.1 NDB Cluster Logging Management COmMmMandScooevuuieiunieriiieeeieeiiiiesieeeaneens 429
6.3.2 NDB ClIUStEr LOG EVENLSiiiiiiiiii et e e et e e e e e e eens 430
6.3.3 Using CLUSTERLOG STATISTICS in the NDB Cluster Management Client 437
6.4 Summary of NDB Cluster Start PRaSeSooiiuiiiiiiiiii e 439
6.5 Performing a Rolling Restart of an NDB CIUSLErcoovviiiiiiiiiii e 441
6.6 NDB Cluster Single USEI MOUEuiiiiiiii e e e e e e e e 443
6.7 Adding NDB Cluster Data NOdes ONlINEooiiiiiiiiiiii e e 444
6.7.1 Adding NDB Cluster Data Nodes Online: General ISSUEScceveviieviieiiiniennnenn, 444
6.7.2 Adding NDB Cluster Data Nodes Online: Basic procedurecccooovveeviiiieiiiieennnenns 446
6.7.3 Adding NDB Cluster Data Nodes Online: Detailed Exampleccocoeeiiiiieiiieeinnnns 447
6.8 Online Backup Of NDB ClIUSLELccuuiiiiiiieii e e e e e e e e e e aans 455
6.8.1 NDB Cluster Backup CONCEPLSuuiviiiiiiiieii et e e e e e e e e e e eeas 455
6.8.2 Using The NDB Cluster Management Client to Create a Backupcccooevvvevnnnnnnn. 456
6.8.3 Configuration for NDB CIUSter BACKUPSccuuiviiniiiieeiiiietiieeeieeeei e e e e e e e eanaeeaen 459
6.8.4 NDB Cluster Backup Troubleshootingcccciiiiiiiiiiiii e, 460
6.9 MySQL Server Usage for NDB CIUSLELc.uuiiiiiieiiiei e e e e e e e e e 460
6.10 NDB Cluster Disk Data Tablescooeuiiiiiiiiiee e eaeans 461
6.10.1 NDB Cluster Disk Data ODJECESccuuuiiiiieiiiiii e e e e e e 462
6.10.2 Using Symbolic Links with Disk Data ObJeCtScccceviiiiiiiiiiicii e, 467
6.10.3 NDB Cluster Disk Data Storage ReqUIrEMENLSc.uveviiiiiiieiiiieiiieeiiee e eeaeeeann 468
6.11 Online Operations with ALTER TABLE in NDB CIUSterccciviiiiiiiiiii e, 469
6.12 Distributed Privileges Using Shared Grant Tablescccooeiiiiiii i, 472
6.13 NDB API Statistics Counters and Variablescoouiiiiiiiiiiiiiii e 476
6.14 ndbinfo: The NDB Cluster Information Databaseocoouiiiiiiiiiiiiiiii e 487
6.14.1 The ndbinfo arbitrator_validity _detail Tablec.ccoiiiiiiiii e, 491
6.14.2 The ndbinfo arbitrator_validity_ summary Tablec.ccooiiiiiiiii e, 492
6.14.3 The ndbinfo BIOCKS Tablecoouuiiiii e 492
6.14.4 The ndbinfo cluster_operations Tableccoooiiiiiiiii e, 493
6.14.5 The ndbinfo cluster_transactions Tablecccoooiiiiiiiiiii e 494
6.14.6 The ndbinfo config_params Tableccooiiiiiiiiii e 495
6.14.7 The ndbinfo COUNErs TabIEccoouiiiiii e 496
6.14.8 The ndbinfo dict_obj types Tableoviiiiiiii e 497
6.14.9 The ndbinfo disk_write_speed _base Tablecccccooiiiiiiiiii i, 498
6.14.10 The ndbinfo disk_write_speed _aggregate Tablecccccoiveiiiiiiiiciii e, 498
6.14.11 The ndbinfo disk_write_speed_aggregate node Tablecccooeviieiiiiiiiiiieiinnnn, 499
6.14.12 The ndbinfo diskpagebuffer Tableccooiiiiiii e, 500
6.14.13 The ndbinfo logbuffers Tablecoiiiii e 502
6.14.14 The ndbinfo 10gSPaces TabIeoiiiiiiiiii i 502
6.14.15 The ndbinfo membership Table ... 503
6.14.16 The ndbinfo memoryusage Tablecccoiiiiiiiiii e 505
6.14.17 The ndbinfo memory_per_fragment Tableccoooiiiiiiiiii e, 506
6.14.18 The ndbinfo NOAES TabDIEoiiiiii e 508
6.14.19 The ndbinfo operations_per_fragment Tablecociiiiiiiiiii i, 510
6.14.20 The ndbinfo resources Tablecooeviiiiiiiiii e 513
6.14.21 The ndbinfo restart_ iNfo Table ..o 515
6.14.22 The ndbinfo server_operations Tableccccoiiiiiiiiiii e, 518
6.14.23 The ndbinfo server_transactions Tableccoooiiiiiii i, 519
6.14.24 The ndbinfo tc_time_track stats Tablec.ccoiiiiiiiiii e, 521
6.14.25 The ndbinfo threadblocks Tablecooiiiiiiiii e, 523
6.14.26 The ndbinfo threadstat Tablecooviiiiiiii e 523
6.14.27 The ndbinfo transporters Tableccuviiiiiiii e 525
6.15 Quick Reference: NDB Cluster SQL Statementsc.ccuuveiiiieiiiiieii e cee e 527

MySQL NDB Cluster 7.3, MySQL NDB Cluster 7.4

6.16 NDB ClIUSIEI SECUILY ISSUES ...uuuiiiiiiiiieiii ettt et e e e e e e e e e et e e e e e e eaanas 532

6.16.1 NDB Cluster Security and Networking ISSUESccveviiiiiiiiiiiii e 533

6.16.2 NDB Cluster and MySQL PriVIIEOEScouuiiiiiiiii et 537

6.16.3 NDB Cluster and MySQL Security Procedurescooeuuiveiiiieiiiieeiiiecieeeeeeeieeeann 539

7 NDB CIUSEEr REPHCALIONiiiiiiii e et e e e e e e e et e e et e e et e et e e aaeeaenns 541

7.1 NDB Cluster Replication: Abbreviations and Symbolsccoooviiiiiiiii e, 543

7.2 General Requirements for NDB Cluster Replicationc.coevviiiiiiiieiii i 543

7.3 Known Issues in NDB Cluster RepliCAtioNccceuiiiiiiiiiiieeiii e a e 544

7.4 NDB Cluster Replication Schema and Tables ..o 551

7.5 Preparing the NDB Cluster for Replicationcooiiiiiiiiiiiii e 556

7.6 Starting NDB Cluster Replication (Single Replication Channel)ccooooviiiiiiiiiiieens 558

7.7 Using Two Replication Channels for NDB Cluster Replicationcccoeeviiiiiiiiieiiinecinee, 560

7.8 Implementing Failover with NDB Cluster Replicationc.ccoovviieiiiiiii e, 561

7.9 NDB Cluster Backups With NDB Cluster Replicationccoovevviiiiiiiiiiii e 562
7.9.1 NDB Cluster Replication: Automating Synchronization of the Replica to the Source

211 =1V o T SN 565

7.9.2 Point-In-Time Recovery Using NDB Cluster Replicationc.ccccoveviiiiiiinieiieeennnn, 568

7.10 NDB Cluster Replication: Bidrectional and Circular Replicationccooeeviveiiiieeinnennnn. 568

7.11 NDB Cluster Replication Conflict RESOIULIONccooviiiiiiiiiiic e, 573

F N | @ T) (=T g AN S 587

Vi

Preface and Legal Notices

Licensing information—MySQL NDB Cluster 7.3. This product may include third-party software, used
under license. If you are using a Commercial release of NDB Cluster 7.3, see the MySQL NDB Cluster

7.3 Commercial Release License Information User Manual for licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release of NDB
Cluster 7.3, see the MySQL NDB Cluster 7.3 Community Release License Information User Manual for
licensing information relating to third-party software that may be included in this Community release.

Licensing information—MySQL NDB Cluster 7.4. This product may include third-party software, used
under license. If you are using a Commercial release of NDB Cluster 7.4, see the MySQL NDB Cluster

7.4 Commercial Release License Information User Manual for licensing information relating to third-party
software that may be included in this Commercial release. If you are using a Community release of NDB
Cluster 7.4, see the MySQL NDB Cluster 7.4 Community Release License Information User Manual for
licensing information relating to third-party software that may be included in this Community release.

Legal Notices

Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Vii

https://downloads.mysql.com/docs/licenses/cluster-7.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.3-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.3-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.4-com-en.pdf
https://downloads.mysql.com/docs/licenses/cluster-7.4-gpl-en.pdf

Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

viii

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 General Information

MySQL NDB Cluster uses the MySQL server with the NDB storage engine. Support for the NDB storage
engine is not included in standard MySQL Server 5.6 binaries built by Oracle. Instead, users of NDB
Cluster binaries from Oracle should upgrade to the most recent binary release of NDB Cluster for
supported platforms—these include RPMs that should work with most Linux distributions. NDB Cluster
users who build from source should use the sources provided for NDB Cluster. (Locations where the
sources can be obtained are listed later in this section.)

Supported Platforms. NDB Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to https://www.mysql.com/support/
supportedplatforms/cluster.html.

Availability. NDB Cluster binary and source packages are available for supported platforms from
https://dev.mysqgl.com/downloads/cluster/.

NDB Cluster release numbers. NDB Cluster follows a somewhat different release pattern from the
mainline MySQL Server 5.6 series of releases. In this Manual and other MySQL documentation, we identify
these and later NDB Cluster releases employing a version humber that begins with “NDB”". This version
number is that of the NDBCLUSTER storage engine used in the release, and not of the MySQL server
version on which the NDB Cluster release is based.

Version strings used in NDB Cluster software. The version string displayed by NDB Cluster
programs uses this format:

nmysql - nysql _server _ver si on- ndb- ndb_engi ne_ver si on

nysqgl server _ver si on represents the version of the MySQL Server on which the NDB Cluster
release is based. For all NDB Cluster 7.3 and current NDB Cluster 7.4 releases, this is “5.6".

ndb_engi ne_ver si on is the version of the NDB storage engine used by this release of the NDB Cluster
software. You can see this format used in the nysql client, as shown here:

$> nysql

Wel come to the MySQL nonitor. Conmmands end with ; or \g.
Your MySQL connection id is 2

Server version: 5.6.51-ndb-7.4.35 Source distribution

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

nysql > SELECT VERSI ON()\ G

kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*x l r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkk*%x
VERSION(): 5.6.51-ndb-7.4.35

1 rowin set (0.00 sec)

This version string is also displayed in the output of the SHONcommand in the ndb_ngmclient:

ndb_ngnm> SHOW

Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)

id=1 @0.0.10.6 (5.6.51-ndb-7.4.35, Nodegroup: 0, *)
i d=2 @0.0.10.8 (5.6.51-ndb-7.4.35, Nodegroup: 0)

[ndb_mymd(M3M] 1 node(s)
i d=3 @o0.0.10.2 (5.6.51-ndb-7.4.35)

[mysql d(API')] 2 node(s)
i d=4 @.o0.0.10.10 (5.6.51-ndb-7.4.35)

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

i d=5 (not connected, accepting connect from any host)

The version string identifies the mainline MySQL version from which the NDB Cluster release was
branched and the version of the NDB storage engine used. For example, the full version string for NDB
7.4.4 (the first NDB Cluster 7.4 GA release) is nysql - 5. 6. 23- ndb- 7. 4. 4. From this we can determine
the following:

* Since the portion of the version string preceding - ndb- is the base MySQL Server version, this means
that NDB 7.4.4 derives from MySQL 5.6.23, and contains all feature enhancements and bug fixes from
MySQL 5.6 up to and including MySQL 5.6.23.

 Since the portion of the version string following - ndb- represents the version number of the NDB (or
NDBCLUSTER) storage engine, NDB 7.4.4 uses version 7.4.4 of the NDBCLUSTER storage engine.

New NDB Cluster releases are numbered according to updates in the NDB storage engine, and do not
necessarily correspond in a one-to-one fashion with mainline MySQL Server releases. For example, NDB
7.4.4 (as previously noted) is based on MySQL 5.6.23, while NDB 7.4.3 was based on MySQL 5.6.22
(version string: nysql - 5. 6. 22- ndb- 7. 4. 3).

Compatibility with standard MySQL 5.6 releases. While many standard MySQL schemas and
applications can work using NDB Cluster, it is also true that unmodified applications and database
schemas may be slightly incompatible or have suboptimal performance when run using NDB Cluster (see
Section 2.7, “Known Limitations of NDB Cluster”). Most of these issues can be overcome, but this also
means that you are very unlikely to be able to switch an existing application datastore—that currently

uses, for example, Myl SAMor | nnoDB—to use the NDB storage engine without allowing for the possibility
of changes in schemas, queries, and applications. In addition, the MySQL Server and NDB Cluster
codebases diverge considerably, so that the standard mysql d cannot function as a drop-in replacement for
the version of mysql d supplied with NDB Cluster.

NDB Cluster development source trees. NDB Cluster development trees can also be accessed from
https://github.com/mysqgl/mysql-server.

The NDB Cluster development sources maintained at https://github.com/mysqgl/mysql-server are licensed
under the GPL. For information about obtaining MySQL sources using Git and building them yourself, see
Installing MySQL Using a Development Source Tree.

Note

As with MySQL Server 5.6, NDB Cluster 7.3 and NDB Cluster 7.4 releases are built
using Cvake.

NDB Cluster 8.0 is available beginning with NDB 8.0.19 as a General Availability release, and is
recommended for new deployments; see What is New in NDB Cluster, for more information. NDB Cluster
7.6 and 7.5 are previous GA releases still supported in production; for information about NDB Cluster 7.6,
see What is New in NDB Cluster 7.6. For similar information about NDB Cluster 7.5, see What is New in
NDB Cluster 7.5. NDB Cluster 7.4 and 7.3 are previous GA releases still supported in production, although
we recommend that new deployments for production use NDB Cluster 8.0.

This chapter represents a work in progress, and its contents are subject to revision as NDB Cluster
continues to evolve. Additional information regarding NDB Cluster can be found on the MySQL website at
http://www.mysqgl.com/products/cluster/.

Additional Resources. More information about NDB Cluster can be found in the following places:

» For answers to some commonly asked questions about NDB Cluster, see Appendix A, NDB Cluster
FAQ.

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://github.com/mysql/mysql-server
https://github.com/mysql/mysql-server
https://dev.mysql.com/doc/refman/5.6/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-6.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster-what-is-new-7-5.html
http://www.mysql.com/products/cluster/

e The NDB Cluster Forum: https://forums.mysql.com/list.php?25.

» Many NDB Cluster users and developers blog about their experiences with NDB Cluster, and make
feeds of these available through PlanetMySQL.

https://forums.mysql.com/list.php?25
http://www.planetmysql.org/

Chapter 2 NDB Cluster Overview

Table of Contents

2.1 NDB ClIUSLEr COre COMNCEPLS ...eetiueiiiti ettt ettt ettt e et e et et e b e e et et e et e eb e et e ab e e e enbaeeeenanns 7
2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitionsccccoovvviviiieiiiiinneecinnnnn. 9
2.3 NDB Cluster Hardware, Software, and Networking Requirementscccoevveeiiiiiiiiiiii e 12
2.4 What is New in MySQL NDB CIUSEEIccuuuiiiiiiiiieiiiii ettt e e e e e eeaens 14
2.4.1 What is New in NDB CIUSTEI 7.3 ..ottt et e e eenes 15
2.4.2 What is New in NDB CIUSTEI 7.4uuiiiiii ettt 16
2.5 NDB: Added, Deprecated, and Removed Options, Variables, and Parametersccccceeeevennnnnn. 19
2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.3 19
2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4 21
2.6 MySQL Server Using InnoDB Compared with NDB CIUSTENuiiiiiiiiiiiiiiiiieceii e 23
2.6.1 Differences Between the NDB and InnoDB Storage ENginesccoovvveiiiiiiiiiiiniciiiinneeennn 24
2.6.2 NDB and INNODB WOTKIOAASccoouuiiiiiiiiieeiiie e 25
2.6.3 NDB and InnoDB Feature USage SUMIMANYoveiiiriieiiiiiieeiiie et eete e e e 26
2.7 Known Limitations Of NDB CIUSTETciiiiiiiiiiiie ittt e e e e e eneas 26
2.7.1 Noncompliance with SQL Syntax in NDB CIUSEENuuiiiiiiiiiiiiiiiieeiii e 27
2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limitscccccoovviiiiiierennnnn. 29
2.7.3 Limits Relating to Transaction Handling in NDB CIUSEETccouuiiiiiiiiiiieiiiiieeeeii e 30
2.7.4 NDB Cluster Error HaNAINGcooouuniiiiiiieeiii ettt e e et e e e e e ees 33
2.7.5 Limits Associated with Database Objects in NDB CIUSEroveiiiiiiiiiiiiiiieciiiieceeie e 33
2.7.6 Unsupported or Missing Features in NDB CIUSEENcoiiiiiiiiiiiiiiieii e 34
2.7.7 Limitations Relating to Performance in NDB CIUSTENoviiiiiiiiiiiiii e 35
2.7.8 1ssues EXCIUSIVE 10 NDB CIUSTETiiiiiiieiiiiii ettt e e e e e e e e 35
2.7.9 Limitations Relating to NDB Cluster Disk Data StOragecooeeevviiieiiiinneiiiineeceiineeeenenn 36
2.7.10 Limitations Relating to Multiple NDB CIUSter NOUESuiiiiiiiiiiiiiiiieeeie e 37
2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 7.3ccooiiiiiiiiiiieiiiieeceiieeees 37

NDB Cluster is a technology that enables clustering of in-memory databases in a shared-nothing system.
The shared-nothing architecture enables the system to work with very inexpensive hardware, and with a
minimum of specific requirements for hardware or software.

NDB Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms such
as network shares, network file systems, and SANs is not recommended or supported.

NDB Cluster integrates the standard MySQL server with an in-memory clustered storage engine called NDB
(which stands for “Network DataBase”). In our documentation, the term NDB refers to the part of the setup
that is specific to the storage engine, whereas “MySQL NDB Cluster” refers to the combination of one or
more MySQL servers with the NDB storage engine.

An NDB Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in an NDB Cluster is shown here:

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Figure 2.1 NDB Cluster Components

Clients/APIs
NDB
mysq| MySOL PHP Connector Connector %‘fgﬁ": Management
Client C API /3 /NET (NDBAPI) et
ndb_mgm
T 1'_1' AA 4
SQL Nodes i J
= = =
= = =
|MysaL | | MysaL | IM\}SQLI
mysqld mysqld mysqld
A A A
1 1 T
1 | bem——— q
[T e Rt 1l
——————————————————————— Al
H
Data Nodes - 11
— N
b T — R
|
— i y
ndbd ndbd S > »
I I S— F |»
< > r
NDB
" > — Management
> Server
—— — ndb_mgm
ndbd ndbd

All these programs work together to form an NDB Cluster (see Chapter 5, NDB Cluster Programs. When
data is stored by the NDB storage engine, the tables (and table data) are stored in the data nodes. Such
tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster. Thus, in a payroll
application storing data in a cluster, if one application updates the salary of an employee, all other MySQL
servers that query this data can see this change immediately.

Although an NDB Cluster SQL node uses the nysql d server daemon, it differs in a number of critical
respects from the mysql d binary supplied with the MySQL 5.6 distributions, and the two versions of
nysqgl d are not interchangeable.

In addition, a MySQL server that is not connected to an NDB Cluster cannot use the NDB storage engine
and cannot access any NDB Cluster data.

The data stored in the data nodes for NDB Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,
this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling restarts
(in which all nodes are restarted in turn) are used in making configuration changes and software upgrades
(see Section 6.5, “Performing a Rolling Restart of an NDB Cluster”). Rolling restarts are also used as

part of the process of adding new data nodes online (see Section 6.7, “Adding NDB Cluster Data Nodes
Online”). For more information about data nodes, how they are organized in an NDB Cluster, and how
they handle and store NDB Cluster data, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”.

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB Cluster Core Concepts

Backing up and restoring NDB Cluster databases can be done using the NDB-native functionality found
in the NDB Cluster management client and the ndb_r est or e program included in the NDB Cluster
distribution. For more information, see Section 6.8, “Online Backup of NDB Cluster”, and Section 5.22,
“ndb_restore — Restore an NDB Cluster Backup”. You can also use the standard MySQL functionality
provided for this purpose in nysql dunp and the MySQL server. See mysgldump — A Database Backup
Program, for more information.

NDB Cluster nodes can employ different transport mechanisms for inter-node communications; TCP/IP
over standard 100 Mbps or faster Ethernet hardware is used in most real-world deployments.

2.1 NDB Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing options,
but it is easiest to start with the storage engine at the cluster level. NDB Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of NDB Cluster is configured independently of the MySQL servers. In an NDB
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing NDB Cluster it means a process. It is possible to run multiple nodes on a
single computer; for a computer on which one or more cluster nodes are being run
we use the term cluster host.

There are three types of cluster nodes, and in a minimal NDB Cluster configuration, there must be at least
three nodes, one of each of these types:

» Management node: The role of this type of node is to manage the other nodes within the NDB Cluster,
performing such functions as providing configuration data, starting and stopping nodes, and running
backups. Because this node type manages the configuration of the other nodes, a node of this type
should be started first, before any other node. A management node is started with the command
ndb_ngnd.

» Data node: This type of node stores cluster data. There are as many data nodes as there are fragment
replicas, times the number of fragments (see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment
Replicas, and Partitions”). For example, with two fragment replicas, each having two fragments, you
need four data nodes. One fragment replica is sufficient for data storage, but provides no redundancy;
therefore, it is recommended to have two (or more) fragment replicas to provide redundancy, and thus
high availability. A data node is started with the command ndbd (see Section 5.1, “ndbd — The NDB
Cluster Data Node Daemon”) or ndbnt d (see Section 5.3, “ndbmtd — The NDB Cluster Data Node
Daemon (Multi-Threaded)”).

NDB Cluster tables are normally stored completely in memory rather than on disk (this is why we refer to
NDB Cluster as an in-memory database). However, some NDB Cluster data can be stored on disk; see
Section 6.10, “NDB Cluster Disk Data Tables”, for more information.

* SQL node: This is a node that accesses the cluster data. In the case of NDB Cluster, an SQL node is a
traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a nysql d process
started with the - - ndbcl ust er and - - ndb- connect st ri ng options, which are explained elsewhere
in this chapter, possibly with additional MySQL server options as well.

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB Cluster Core Concepts

An SQL node is actually just a specialized type of APl node, which designates any application which
accesses NDB Cluster data. Another example of an API node is the ndb_r est or e utility that is used
to restore a cluster backup. It is possible to write such applications using the NDB API. For basic
information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from NDB
Cluster's high-availability features, you must use multiple data and SQL nodes. The
use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, fragment replicas, and partitions
in NDB Cluster, see Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual
communication links between nodes. NDB Cluster is currently designed with the intention that data nodes
are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to provide a
single point of configuration, all configuration data for the cluster as a whole is located in one configuration
file.

The management server manages the cluster configuration file and the cluster log. Each node in the
cluster retrieves the configuration data from the management server, and so requires a way to determine
where the management server resides. When interesting events occur in the data nodes, the nodes
transfer information about these events to the management server, which then writes the information to the
cluster log.

In addition, there can be any number of cluster client processes or applications. These include standard
MySQL clients, NDB-specific API programs, and management clients. These are described in the next few
paragraphs.

Standard MySQL clients. NDB Cluster can be used with existing MySQL applications written in PHP,
Perl, C, C++, Java, Python, Ruby, and so on. Such client applications send SQL statements to and receive
responses from MySQL servers acting as NDB Cluster SQL nodes in much the same way that they interact
with standalone MySQL servers.

MySQL clients using an NDB Cluster as a data source can be modified to take advantage of the ability

to connect with multiple MySQL servers to achieve load balancing and failover. For example, Java
clients using Connector/J 5.0.6 and later can use j dbc: mysql : | oadbal ance: // URLs (improved in
Connector/J 5.1.7) to achieve load balancing transparently; for more information about using Connector/J
with NDB Cluster, see Using Connector/J with NDB Cluster.

NDB client programs. Client programs can be written that access NDB Cluster data directly from the
NDBCLUSTER storage engine, bypassing any MySQL Servers that may be connected to the cluster, using
the NDB API, a high-level C++ API. Such applications may be useful for specialized purposes where an
SQL interface to the data is not needed. For more information, see The NDB API.

NDB-specific Java applications can also be written for NDB Cluster using the NDB Cluster Connector for
Java. This NDB Cluster Connector includes ClusterJ, a high-level database API similar to object-relational
mapping persistence frameworks such as Hibernate and JPA that connect directly to NDBCLUSTER, and so
does not require access to a MySQL Server. See Java and NDB Cluster, and The Clusterd API and Data
Object Model, for more information.

Management clients. These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),

https://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html
https://dev.mysql.com/doc/ndbapi/en/mccj-using-connectorj.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-java.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html
https://dev.mysql.com/doc/ndbapi/en/mccj-overview-clusterj-object-models.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

showing node versions and status, starting and stopping backups, and so on. An example of this type
of program is the ndb_ngmmanagement client supplied with NDB Cluster (see Section 5.5, “ndb_mgm
— The NDB Cluster Management Client”). Such applications can be written using the MGM API, a C-
language API that communicates directly with one or more NDB Cluster management servers. For more
information, see The MGM API.

Oracle also makes available MySQL Cluster Manager, which provides an advanced command-line
interface simplifying many complex NDB Cluster management tasks, such restarting an NDB Cluster with
a large number of nodes. The MySQL Cluster Manager client also supports commands for getting and
setting the values of most node configuration parameters as well as nysql d server options and variables
relating to NDB Cluster. See MySQL Cluster Manager 1.4.8 User Manual, for more information.

Event logs. NDB Cluster logs events by category (startup, shutdown, errors, checkpoints, and so
on), priority, and severity. A complete listing of all reportable events may be found in Section 6.3, “Event
Reports Generated in NDB Cluster”. Event logs are of the two types listed here:

 Cluster log: Keeps a record of all desired reportable events for the cluster as a whole.
* Node log: A separate log which is also kept for each individual node.
Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to NDB Cluster, a checkpoint is a point in time where all committed transactions
are stored on disk. With regard to the NDB storage engine, there are two types of checkpoints which work
together to ensure that a consistent view of the cluster's data is maintained. These are shown in the
following list:

» Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take place
for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's data to disk,
and so usually occurs every few minutes. The precise interval varies, and depends upon the amount of
data stored by the node, the level of cluster activity, and other factors.

* Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global checkpoints,
see NDB Cluster Data Node File System Directory.

2.2 NDB Cluster Nodes, Node Groups, Fragment Replicas, and
Partitions

This section discusses the manner in which NDB Cluster divides and duplicates data for storage.
A number of concepts central to an understanding of this topic are discussed in the next few paragraphs.

Data node. An ndbd or ndbnt d process, which stores one or more fragment replicas—that is, copies of
the partitions (discussed later in this section) assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple data
node processes on a single computer, such a configuration is not usually recommended.

https://dev.mysql.com/doc/ndbapi/en/mgm-api.html
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-ndbd-filesystemdir-files.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

It is common for the terms “node” and “data node” to be used interchangeably when referring to an ndbd or
ndbnt d process; where mentioned, management nodes (ndb_ngnd processes) and SQL nodes (nysql d
processes) are specified as such in this discussion.

Node group. A node group consists of one or more nodes, and stores partitions, or sets of fragment
replicas (see next item).

The number of node groups in an NDB Cluster is not directly configurable; it is a function of the number of
data nodes and of the number of fragment replicas (NoOf Repl i cas configuration parameter), as shown
here:

[# of node groups] = [# of data nodes] / NoO Replicas

Thus, an NDB Cluster with 4 data nodes has 4 node groups if NoOf Repl i cas is setto 1 in the

confi g.ini file, 2 node groups if NoOf Repl i cas is set to 2, and 1 node group if NoOf Repl i cas is set
to 4. Fragment replicas are discussed later in this section; for more information about NoOf Repl i cas, see
Section 4.3.6, “Defining NDB Cluster Data Nodes”.

Note
All node groups in an NDB Cluster must have the same number of data nodes.

You can add new node groups (and thus new data nodes) online, to a running NDB Cluster; see
Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Partition. This is a portion of the data stored by the cluster. Each node is responsible for keeping at
least one copy of any partitions assigned to it (that is, at least one fragment replica) available to the cluster.

The number of partitions used by default by NDB Cluster depends on the number of data nodes and the
number of LDM threads in use by the data nodes, as shown here:

[# of partitions] = [# of data nodes] * [# of LDMthreads]

When using data nodes running ndbnt d, the number of LDM threads is controlled by the setting for
MaxNoOf Execut i onThr eads. When using ndbd there is a single LDM thread, which means that there
are as many cluster partitions as nodes participating in the cluster. This is also the case when using
ndbnt d with MaxNoOf Execut i onThr eads set to 3 or less. (You should be aware that the number of
LDM threads increases with the value of this parameter, but not in a strictly linear fashion, and that there
are additional constraints on setting it; see the description of MaxNoCOf Execut i onThr eads for more
information.)

NDB and user-defined partitioning. = NDB Cluster normally partitions NDBCLUSTER tables
automatically. However, it is also possible to employ user-defined partitioning with NDBCLUSTER tables.
This is subject to the following limitations:

1. Only the KEY and LI NEAR KEY partitioning schemes are supported in production with NDB tables.

2. The maximum number of partitions that may be defined explicitly for any NDB table is 8 * [nunber
of LDM threads] * [nunber of node groups],the number of node groups in an NDB Cluster
being determined as discussed previously in this section. When running ndbd for data node processes,
setting the number of LDM threads has no effect (since Thr eadConf i g applies only to ndbnt d);
in such cases, this value can be treated as though it were equal to 1 for purposes of performing this
calculation.

See Section 5.3, “ndbmtd — The NDB Cluster Data Node Daemon (Multi-Threaded)”, for more
information.

10

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions

For more information relating to NDB Cluster and user-defined partitioning, see Section 2.7, “Known
Limitations of NDB Cluster”, and Partitioning Limitations Relating to Storage Engines.

Fragment Replica. This is a copy of a cluster partition. Each node in a node group stores a replica.
Also sometimes known as a partition replica. The number of fragment replicas is equal to the number of
nodes per node group.

A fragment replica belongs entirely to a single node; a node can (and usually does) store several fragment
replicas.

The following diagram illustrates an NDB Cluster with four data nodes running ndbd, arranged in two node
groups of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node
group 1.

Note

Only data nodes are shown here; although a working NDB Cluster requires an
ndb_nygnd process for cluster management and at least one SQL node to access
the data stored by the cluster, these have been omitted from the figure for clarity.

Figure 2.2 NDB Cluster with Two Node Groups

Node Group 0

Partition O Partition O
(Primary fragment replica) (Backup fragment replica)

] —]

Node 1 Node 2
Partition 2 Partition 2
(Backup fragment replica) (Primary fragment replica)
Node Group 1
Partition 1 Partition 1
(Primary fragment replica) (Backup fragment replica)

]]

Node 3 Node 4
Partition 3 Partition 3
(Backup fragment replica) (Primary fragment replica)

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups as
follows:

« Partition O is stored on node group 0; a primary fragment replica (primary copy) is stored on node 1, and
a backup fragment replica (backup copy of the partition) is stored on node 2.

11

https://dev.mysql.com/doc/refman/5.6/en/partitioning-limitations-storage-engines.html

NDB Cluster Hardware, Software, and Networking Requirements

 Partition 1 is stored on the other node group (node group 1); this partition's primary fragment replica is
on node 3, and its backup fragment replica is on node 4.

« Partition 2 is stored on node group 0. However, the placing of its two fragment replicas is reversed from
that of Partition O; for Partition 2, the primary fragment replica is stored on node 2, and the backup on
node 1.

 Partition 3 is stored on node group 1, and the placement of its two fragment replicas are reversed from
those of partition 1. That is, its primary fragment replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of an NDB Cluster is this: so long as each node group

participating in the cluster has at least one node operating, the cluster has a complete copy of all data and
remains viable. This is illustrated in the next diagram.

Figure 2.3 Nodes Required for a 2x2 NDB Cluster

Node Group O
«——-(}i-——>»

L -P —h- L
Node 1 Node 2
A A
Y Y

—_—
L - |
< ——-(X}-——>»
Node 3 Node 4
Node Group 1

In this example, the cluster consists of two node groups each consisting of two data nodes. Each data
node is running an instance of ndbd. Any combination of at least one node from node group 0 and at least
one node from node group 1 is sufficient to keep the cluster “alive”. However, if both nodes from a single
node group fail, the combination consisting of the remaining two nodes in the other node group is not
sufficient. In this situation, the cluster has lost an entire partition and so can no longer provide access to a
complete set of all NDB Cluster data.

2.3 NDB Cluster Hardware, Software, and Networking Requirements

One of the strengths of NDB Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data storage
is done in memory. (It is possible to reduce this requirement using Disk Data tables—see Section 6.10,

12

NDB Cluster Hardware, Software, and Networking Requirements

“NDB Cluster Disk Data Tables”, for more information about these.) Naturally, multiple and faster CPUs
can enhance performance. Memory requirements for other NDB Cluster processes are relatively small.

The software requirements for NDB Cluster are also modest. Host operating systems do not require any
unusual modules, services, applications, or configuration to support NDB Cluster. For supported operating
systems, a standard installation should be sufficient. The MySQL software requirements are simple: all that
is needed is a production release of NDB Cluster. It is not strictly necessary to compile MySQL yourself
merely to be able to use NDB Cluster. We assume that you are using the binaries appropriate to your
platform, available from the NDB Cluster software downloads page at https://dev.mysgl.com/downloads/
cluster/.

For communication between nodes, NDB Cluster supports TCP/IP networking in any standard topology,
and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or
router to provide network connectivity for the cluster as a whole. We strongly recommend that an NDB
Cluster be run on its own subnet which is not shared with machines not forming part of the cluster for the
following reasons:

» Security. Communications between NDB Cluster nodes are not encrypted or shielded in any way.
The only means of protecting transmissions within an NDB Cluster is to run your NDB Cluster on a
protected network. If you intend to use NDB Cluster for Web applications, the cluster should definitely
reside behind your firewall and not in your network's De-Militarized Zone (DMZ) or elsewhere.

See Section 6.16.1, “NDB Cluster Security and Networking Issues”, for more information.

» Efficiency. Setting up an NDB Cluster on a private or protected network enables the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your NDB Cluster not only
helps protect against unauthorized access to NDB Cluster data, it also ensures that NDB Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single point
of failure; many device drivers support failover for such communication links.

Network communication and latency. = NDB Cluster requires communication between data nodes

and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to execute
gueries and updates. Communication latency between these processes can directly affect the observed
performance and latency of user queries. In addition, to maintain consistency and service despite the

silent failure of nodes, NDB Cluster uses heartbeating and timeout mechanisms which treat an extended
loss of communication from a node as node failure. This can lead to reduced redundancy. Recall that, to
maintain data consistency, an NDB Cluster shuts down when the last node in a node group fails. Thus, to
avoid increasing the risk of a forced shutdown, breaks in communication between nodes should be avoided
wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the failed
node. Data node recovery requires synchronization of the failed node's data from a surviving data node,
and re-establishment of disk-based redo and checkpoint logs, before the data node returns to service. This
recovery can take some time, during which the Cluster operates with reduced redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible if the
node is overloaded, has insufficient machine CPU due to sharing with other programs, or is experiencing
delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat the node that is
slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desirable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as Hear t beat | nt er val DbDb and Hear t beat | nt er val DbApi for NDB Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

13

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in MySQL NDB Cluster

Where communication latencies between data nodes are expected to be higher than would be expected
in a LAN environment (on the order of 100 us), timeout parameters must be increased to ensure that any
allowed periods of latency periods are well within configured timeouts. Increasing timeouts in this way has
a corresponding effect on the worst-case time to detect failure and therefore time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where NDB Cluster normally operates). WAN environments may offer a
range of latencies, as well as redundancy with slower failover times. Individual link failures may require
route changes to propagate before end-to-end connectivity is restored. At the TCP level this can appear as
large latencies on individual channels. The worst-case observed TCP latency in these scenarios is related
to the worst-case time for the IP layer to reroute around the failures.

2.4 What is New in MySQL NDB Cluster

This section lists changes in the implementation of NDB Cluster in MySQL NDB Cluster 7.3 and NDB
Cluster 7.4, as compared to earlier releases. Changes and features most likely to be of interest in NDB 7.3
are shown in the following list:

» NDB Cluster 7.3 is based on MySQL 5.6. For more information about new features in MySQL Server 5.6,
see What Is New in MySQL 5.6.

» NDB Cluster 7.3 supports foreign key constraints on tables. See FOREIGN KEY Constraints, and
FOREIGN KEY Constraints, for more information.

» NDB Cluster 7.3 provides support for Node.js using the MySQL NoSQL Connector for JavaScript. See
MySQL NoSQL Connector for JavaScript, for more information.

Changes and features in NDB Cluster 7.4 that are most likely to be of interest are shown in the following
list:

» NDB Cluster 7.4 is based on MySQL 5.6 (For more information about new features in MySQL Server
5.6, see What Is New in MySQL 5.6)

» NDB Cluster Replication conflict detection and resolution enhancements, including extensions to conflict
exceptions tables (see Section 7.11, “NDB Cluster Replication Conflict Resolution”)

» Improvements in the management of circular (“active-active”) replication; primary/secondary assignment
with ndb_sl ave conflict role

» Per-fragment memory usage reporting in the menory_per _fragnent table
» A number of performance improvements, including the following enhancements:
« Faster initial allocation of memory
 Increased parallelization of local checkpoints (LCPs now support 32 fragments rather than 2)

A group of configuration parameters (MaxDi skW i t eSpeed,
MaxDi skW it eSpeedC her Noder est art, MaxDi skW i t eSpeedOmRest ar t) introduced in this
version provides improved control over disk writes during LCPs

Information about recent disk writes is available in the di sk_write speed base,
di sk_wite_speed_aggregate,anddi sk_wite_speed_aggregat e_node tables added to
the ndbi nf o database in the this version

» Faster times for restoring an NDB Cluster from backup

14

https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html

What is New in NDB Cluster 7.3

e Optimization of the NDB receive thread

Improved error and other reporting during node restarts

This section contains information about NDB Cluster 7.3 releases through 5.6.51-ndb-7.3.34 as well as
NDB Cluster 7.4 releases through 5.6.51-ndb-7.4.35 as compared to earlier release series. NDB Cluster
8.0 is available as a General Availability (GA) release, beginning with NDB 8.0.19; see What is New in
NDB Cluster, for more information about new features and other changes in NDB 8.0. NDB Cluster 7.6
and 7.5 are previous GA releases still supported in production; for more information, see MySQL NDB
Cluster 7.5 and NDB Cluster 7.6. NDB Cluster 7.4 and 7.3 are previous GA releases still supported in
production, although we recommend that new deployments for production use NDB Cluster 8.0; see
Section 2.4.2, “What is New in NDB Cluster 7.4”, and Section 2.4.1, “What is New in NDB Cluster 7.3", for
more information.

2.4.1 What is New in NDB Cluster 7.3

The following improvements to NDB Cluster have been made in NDB Cluster 7.3:

Based on MySQL Server 5.6. NDB Cluster 7.3 is based on MySQL Server 5.6, so that NDB Cluster
users can benefit from MySQL 5.6's improvements in scalability and performance monitoring. As with
MySQL 5.6, NDB Cluster 7.3 uses CVake for configuring and building from source. For more information
about changes and improvements in MySQL 5.6, see What Is New in MySQL 5.6.

Foreign keys. Tables created using the NDB storage engine version 7.3.0 and later provide support
for foreign key constraints. (This includes all NDB Cluster 7.3 releases.) For general information about
how MySQL 5.6 and NDB Cluster 7.3 handle foreign keys, see FOREIGN KEY Constraints. For syntax
and related information, see CREATE TABLE Statement, and FOREIGN KEY Constraints.

Node.js support. NDB Cluster 7.3 also supports applications written in JavaScript using Node.js.
The MySQL Connector for JavaScript includes adapters for direct access to the NDB storage engine and
as well as for the MySQL Server. Applications using this Connector are typically event-driven and use

a domain object model similar in many ways to that employed by ClusterJ. For more information, see
MySQL NoSQL Connector for JavaScript.

End of ClusterJPA support. ClusterJPA is no longer supported beginning with NDB 7.3.18; its
source code and binary have been removed from the NDB Cluster distribution.

ndb_restore—NDBT dependency removal. The dependency of ndb_r est or e on the NDBT library
has been removed as of NDB 7.3.25. This library is used internally for development, and is not required
for normal use; its inclusion in this program could lead to unwanted issues when testing.

The principal effect of this change for users is that ndb_r est or e no longer prints NDBT_Pr ogr antxi t
- st at us following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading.

Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_set up. py) is deprecated in NDB 7.3.31, and is removed in NDB 7.3.32 and later.
It is no longer supported.

ndbmemcache deprecation and removal. ndbnentache is no longer supported. ndbnentache
was deprecated in NDB 7.3.31, and removed in NDB 7.3.32.

Node.js support removed. Beginning with the NDB Cluster 7.3.31 release, support for Node.js by
NDB 7.3 has been removed.

Support for Node.js by NDB Cluster is maintained in NDB 8.0 only.

15

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.7/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/ndbapi/en/ndb-nodejs.html

What is New in NDB Cluster 7.4

NDB Cluster 7.3 is also supported by MySQL Cluster Manager, which provides an advanced command-
line interface that can simplify many complex NDB Cluster management tasks. See MySQL Cluster
Manager 1.4.8 User Manual, for more information.

2.4.2 \What is New in NDB Cluster 7.4

The following improvements to NDB Cluster have been made in NDB Cluster 7.4:

» Conflict detection and resolution enhancements. A reserved column name namespace NDB$ is

now employed for exceptions table metacolumns, allowing an arbitrary subset of main table columns to
be recorded, even if they are not part of the original table's primary key.

Recording the complete original primary key is no longer required, due to the fact that matching against
exceptions table columns is now done by hame and type only. It is now also possible for you to record
values of columns which not are part of the main table's primary key in the exceptions table.

Read conflict detection is now possible. All rows read by the conflicting transaction are flagged, and
logged in the exceptions table. Rows inserted in the same transaction are not included among the rows
read or logged. This read tracking depends on the fragment replica having an exclusive read lock which
requires setting ndb_| og_excl usi ve_r eads in advance. See Read conflict detection and resolution,
for more information and examples.

Existing exceptions tables remain supported. For more information, see Section 7.11, “NDB Cluster
Replication Conflict Resolution”.

» Circular (“active-active”) replication improvements. When using a circular or “active-active” NDB

Cluster Replication topology, you can assign one of the roles of primary of secondary to a given NDB
Cluster using the ndb_sl ave_conflict _r ol e server system variable, which can be employed when
failing over from an NDB Cluster acting as primary, or when using conflict detection and resolution with
NDB$EPCOCH2() and NDBSEPOCH2 TRANS() (NDB 7.4.2 and later), which support delete-delete conflict
handling.

See the description of the ndb_sl ave_confl i ct_rol e variable, as well as NDBSEPOCH2(), for more
information. See also Section 7.11, “NDB Cluster Replication Conflict Resolution”.

» Per-fragment memory usage reporting. You can now obtain data about memory usage by

individual NDB Cluster fragments from the nenory_per _fragnent view, added in NDB 7.4.1
to the ndbi nf o information database. For more information, see Section 6.14.17, “The ndbinfo
memory_per_fragment Table”.

* Node restart improvements. NDB Cluster 7.4 includes a number of improvements which decrease

the time needed for data nodes to be restarted. These are described in the following list:

* Memory allocated that is allocated on node startup cannot be used until it has been touched,
which causes the operating system to set aside the actual physical memory required. In previous
versions of NDB Cluster, the process of touching each page of memory that was allocated was
singlethreaded, which made it relatively time-consuming. This process has now been reimplimented
with multithreading. In tests with 16 threads, touch times on the order of 3 times shorter than with a
single thread were observed.

 Increased parallelization of local checkpoints; in NDB Cluster 7.4, LCPs now support 32 fragments
rather than 2 as before. This greatly increases utilization of CPU power that would otherwise go
unused, and can make LCPs faster by up to a factor of 10; this speedup in turn can greatly improve
node restart times.

16

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

What is New in NDB Cluster 7.4

The degree of parallelization used for the node copy phase during node and system restarts can
be controlled in NDB 7.4.3 and later by setting the MaxPar al | el Copyl nst ances data node
configuration parameter to a nonzero value.

* Reporting on disk writes is provided by new ndbi nf o tables di sk_write_speed_base,
disk_ wite speed aggregate,anddi sk write speed aggregat e node, which provide
information about the speed of disk writes for each LDM thread that is in use.

This release also adds the data node configuration parameters M nDi skW i t eSpeed,

MaxDi skW it eSpeed, MaxDi skW it eSpeedQ her NodeRest art, and

MaxDi skW it eSpeedOwnRest art to control write speeds for LCPs and backups when the present
node, another node, or no node is currently restarting.

These changes are intended to supersede configuration of disk writes using the
Di skCheckpoi nt Speed and Di skCheckpoi nt Speedl nRest art configuration parameters. These
2 parameters have now been deprecated, and are subject to removal in a future NDB Cluster release.

» Faster times for restoring an NDB Cluster from backup have been obtained by replacing delayed
signals found at a point which was found to be critical to performance with normal (undelayed) signals.
The elimination or replacement of these unnecessary delayed signals should noticeably reduce the
amount of time required to back up an NDB Cluster, or to restore an NDB Cluster from backup.

« Several internal methods relating to the NDB receive thread have been optimized, to increase the
efficiency of SQL processing by NDB. The receiver thread at time may have to process several million
received records per second, so it is critical that it not perform unnecessary work or waste resources
when retrieving records from NDB Cluster data nodes.

Improved reporting of NDB Cluster restarts and start phases. Therestart _i nf o table
(included in the ndbi nf o information database beginning with NDB 7.4.2) provides current status and
timing information about node and system restarts.

Reporting and logging of NDB Cluster start phases also provides more frequent and specific printouts
during startup than previously. See Section 6.4, “Summary of NDB Cluster Start Phases”, for more
information.

NDB API: new Event APl. NDB 7.4.3 introduces an epoch-driven Event API that supercedes the
earlier GCl-based model. The new version of the API also simplifies error detection and handling.

These changes are realized in the NDB API by implementing a number of new methods for Ndb and
NdbEvent Oper at i on, deprecating several other methods of both classes, and adding new type values
to Event : : Tabl eEvent.

The event handling methods added to Ndb in NDB 7.4.3 are pol | Event s2(), next Event 2(),
get H ghest QueuedEpoch(), and get Next Event Opl nEpoch2() . The Ndb methods

17

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-gethighestqueuedepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getnexteventopinepoch2

What is New in NDB Cluster 7.4

pol | Event s(), next Event (), get Lat est GCI (), get GCl Event Oper ati ons(),
i sConsi stent (), andi sConsi st ent GCl () are deprecated beginning with the same release.

NDB 7.4.3 adds the NdbEvent Oper at i on event handling methods get Event Type2(),
get Epoch(), i sEnpt yEpoch(), and i sError Epoch; it obsoletes get Event Type(), get GCl (),
get Latest GClI (),isOverrun(),hasError(),andclearError().

While some (but not all) of the new methods are direct replacements for deprecated methods, not all
of the deprecated methods map to new ones. The Event Class, provides information as to which old
methods correspond to new ones.

Error handling using the new API is no longer handled using dedicated hasError () and

cl ear Error () methods, which are now deprecated (and thus subject to removal in a future release of
NDB Cluster). To support this change, the list of Tabl eEvent types now includes the values TE_EMPTY
(empty epoch), TE | NCONSI STENT (inconsistent epoch), and TE_OUT_OF NMEMORY (inconsistent data).

Improvements in event buffer management have also been made by implementing new

get _eventbuffer free percent(),set_eventbuffer free percent(), and

get _event buffer nenory usage() methods. Memory buffer usage can now be represented in
application code using Ndb: : Event Buf f er Menor yUsage. The ndb_event buf fer _free_percent
system variable, also implemented in NDB Cluster 7.4, makes it possible for event buffer memory usage
to be checked from MySQL client applications.

For more information, see the detailed descriptions for the Ndb and NdbEvent Oper at i on methods
listed. See also Event::TableEvent, as well as Ndb::EventBufferMemoryUsage.

Per-fragment operations information. In NDB 7.4.3 and later, counts of various types of operations
on a given fragment or fragment replica can obtained easily using the oper ati ons_per fragnment
table in the ndbi nf o information database. This includes read, write, update, and delete

operations, as well as scan and index operations performed by these. Information about operations
refused, and about rows scanned and returned from a given fragment replica, is also shown in
operations_per_fragnent. This table also provides information about interpreted programs used as
attribute values, and values returned by them.

--ndb-log-fail-terminate option. Beginning with NDB 7.4.28, you can cause the SQL node to
terminate whenever it is unable to log all row events fully. This can be done by starting mysql d with the
--ndb-1o0g-fail-term nat e option.

NDB programs—NDBT dependency removal. The dependency of a number of NDB utility programs
on the NDBT library has been removed. This library is used internally for development, and is not
required for normal use; its inclusion in these programs could lead to unwanted issues when testing.

Affected programs are listed here, along with the NDB versions in which the dependency was removed:
e ndb_restore,in NDB 7.4.24
 ndb_show t abl es, in NDB 7.4.28

e ndb_wai ter,in NDB 7.4.28

The principal effect of this change for users is that these programs no longer print NDBT _Pr ogr anExi t
- st at us following completion of a run. Applications that depend upon such behavior should be
updated to reflect the change when upgrading to the indicated versions.

End of ClusterJPA support. ClusterJPA is no longer supported beginning with NDB 7.4.16; its
source code and binary have been removed from the NDB Cluster distribution.

18

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getgcieventoperations
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistentgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-iserrorepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isoverrun
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-event-buffer-memory-usage
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-eventbuffermemoryusage
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-eventbuffermemoryusage

NDB: Added, Deprecated, and Removed Options, Variables, and Parameters

e Auto-Installer deprecation and removal. The MySQL NDB Cluster Auto-Installer web-based
installation tool (ndb_set up. py) is deprecated in NDB 7.4.30, and is removed in NDB 7.4.31 and later.
It is no longer supported.

» ndbmemcache deprecation and removal. ndbnentache is no longer supported. ndbnentache
has been deprecated beginning with NDB 7.4.3, and is scheduled for removal in NDB 7.4.31.

* Node.js support removed. Beginning with the NDB Cluster 7.4.30 release, support for Node.js by
NDB 7.4 has been removed.

Support for Node.js by NDB Cluster is maintained in NDB 8.0 only.

NDB Cluster 7.4 is also supported by MySQL Cluster Manager, which provides an advanced command-
line interface that can simplify many complex NDB Cluster management tasks. See MySQL Cluster
Manager 1.4.8 User Manual, for more information.

2.5 NDB: Added, Deprecated, and Removed Options, Variables, and
Parameters

2.5.1 Options, Variables, and Parameters Added, Deprecated or Removed in
NDB 7.3

» Parameters Introduced in NDB 7.3

» Parameters Deprecated in NDB 7.3

» Parameters Removed in NDB 7.3

* Options and Variables Introduced in NDB 7.3
» Options and Variables Deprecated in NDB 7.3
» Options and Variables Removed in NDB 7.3

The next few sections contain information about NDB node configuration parameters and NDB-specific
nmysql d options and variables that have been added to, deprecated in, or removed from NDB 7.3.

Parameters Introduced in NDB 7.3

The following node configuration parameters have been added in NDB 7.3.

» Connect Backof f MaxTi nme: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this APl node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.
Added in NDB 7.3.7.

» Di skPageBuf f er Ent ri es: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value. Added in NDB 7.3.8.

* Heart beat | nt er val MynrdMynd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats. Added in NDB
7.3.3.

* LcpScanPr ogr essTi meout : Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable. Added in NDB 7.3.3.

19

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/
https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.3

e Restart Subscri ber Connect Ti neout : Amount of time for data node to wait for subscribing API
nodes to connect. Set to 0 to disable timeout, which is always resolved to nearest full second. Added in
NDB 7.3.6.

» Start Connect Backof f MaxTi nme: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this APl node. Added in NDB 7.3.7.

e Ti neBet weend obal Checkpoi nt sTi neout : Minimum timeout for group commit of transactions to
disk. Added in NDB 7.3.9.

Parameters Deprecated in NDB 7.3
The following node configuration parameters have been deprecated in NDB 7.3.

* ReservedSendBuf f er Menor y: This parameter is present in NDB code but is not enabled. Deprecated
in NDB 7.3.1.

Parameters Removed in NDB 7.3
No node configuration parameters have been removed in NDB 7.3.
Options and Variables Introduced in NDB 7.3
The following system variables, status variables, and server options have been added in NDB 7.3.
e Ndb_| ast _commit_epoch_server: Epoch most recently committed by NDB. Added in NDB 7.3.8.

* Ndb_l ast _conmi t _epoch_sessi on: Epoch most recently committed by this NDB client. Added in
NDB 7.3.8.

 Ndb_sl ave_nmax_repli cat ed_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.
Added in NDB 7.3.8.

» create_ol d_tenporal s: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4. Added in
NDB 7.3.10.

e« ndb_event buffer_nmax_al | oc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit). Added in NDB 7.3.3.

* ndb_recv_thread_activation_threshol d: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads). Added in NDB 7.3.1.

e ndb_recv_t hread_cpu_mask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details. Added in NDB 7.3.1.

* ndb_show forei gn_key_ nock_t abl es: Show mock tables used to support foreign_key checks=0.
Added in NDB 7.3.2.

Options and Variables Deprecated in NDB 7.3

The following system variables, status variables, and options have been deprecated in NDB 7.3.

e create_ol d_tenporal s: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.
Deprecated in NDB 7.3.10.

20

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4

Options and Variables Removed in NDB 7.3

The following system variables, status variables, and options have been removed in NDB 7.3.

ndb_index_stat cache_entri es: Granularity of statistics by determining number of starting and
ending keys. Removed in NDB 7.3.5.

ndb_i ndex_stat update_freq: How often to query data nodes rather than statistics cache.
Removed in NDB 7.3.5.

2.5.2 Options, Variables, and Parameters Added, Deprecated or Removed in

NDB 7.4

Parameters Introduced in NDB 7.4
Parameters Deprecated in NDB 7.4
Parameters Removed in NDB 7.4

Options and Variables Introduced in NDB 7.4
Options and Variables Deprecated in NDB 7.4

Options and Variables Removed in NDB 7.4

The next few sections contain information about NDB node configuration parameters and NDB-specific
nysqgl d options and variables that have been added to, deprecated in, or removed from NDB 7.4.

Parameters Introduced in NDB 7.4

The following node configuration parameters have been added in NDB 7.4.

Api Ver bose: Enable NDB API debugging; for NDB development. Added in NDB 7.4.12.

BackupDi skW it eSpeedPct : Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup. Added in NDB 7.4.8.

Connect Backof f MaxTi nme: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to 0.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.
Added in NDB 7.4.2.

Di skPageBuf f er Ent ri es: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value. Added in NDB 7.4.3.

MaxDi skW i t eSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing. Added in NDB 7.4.1.

MaxDi skW it eSpeedQ her NodeRest ar t : Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting. Added in NDB 7.4.1.

MaxDi skW it eSpeedOwnRest ar t : Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting. Added in NDB 7.4.1.

MaxPar al | el Copyl nst ances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16. Added in NDB 7.4.3.

21

Options, Variables, and Parameters Added, Deprecated or Removed in NDB 7.4

M nDi skW i t eSpeed: Minimum number of bytes per second that can be written by LCP and backup.
Added in NDB 7.4.1.

» Schedul er Responsi veness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput. Added in NDB 7.4.9.

» Start Connect Backof f MaxTi me: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this APl node. Added in NDB 7.4.2.

e Ti neBet weend obal Checkpoi nt sTi neout : Minimum timeout for group commit of transactions to
disk. Added in NDB 7.4.5.

Parameters Deprecated in NDB 7.4

The following node configuration parameters have been deprecated in NDB 7.4.
e BackupMenory: Total memory allocated for backups per node (in bytes). Deprecated in NDB 7.4.8.

» Di skCheckpoi nt Speed: Bytes allowed to be written by checkpoint, per second. Deprecated in NDB
7.4.1.

» Di skCheckpoi nt Speedl nRest art : Bytes allowed to be written by checkpoint during restart, per
second. Deprecated in NDB 7.4.1.

Parameters Removed in NDB 7.4

No node configuration parameters have been removed in NDB 7.4.

Options and Variables Introduced in NDB 7.4

The following system variables, status variables, and server options have been added in NDB 7.4.

 Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDBSEPOCH2()
conflict detection function. Added in NDB 7.4.2.

* Ndb_conflict_fn_epoch2_trans: Number of rows that have been found in conflict by NDB
$EPOCH2_TRANS() conflict detection function. Added in NDB 7.4.2.

e Ndb_conflict_fn_max_del w n: Number of times that conflict resolution based on outcome of NDB
$MAX_DELETE_WIN() has been applied. Added in NDB 7.4.1.

* Ndb_conflict last _conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected. Added in NDB 7.4.2.

* Ndb_conflict_I| ast_stabl e_epoch: Number of rows found to be in conflict by transactional conflict
function. Added in NDB 7.4.2.

e Ndb_conflict _reflected op_discard_count: Number of reflected operations that were not
applied due error during execution. Added in NDB 7.4.2.

* Ndb_conflict _reflected op_prepare_count: Number of reflected operations received that have
been prepared for execution. Added in NDB 7.4.2.

* Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared. Added
in NDB 7.4.2.

« Ndb_conflict _trans_row conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions. Added in NDB
7.4.2.

22

MySQL Server Using InnoDB Compared with NDB Cluster

 Ndb_epoch_del et e_del et e_count : Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist). Added in NDB 7.4.2.

« Ndb_| ast _conmmi t _epoch_ser ver: Epoch most recently committed by NDB. Added in NDB 7.4.1.

* Ndb_| ast _commi t _epoch_sessi on: Epoch most recently committed by this NDB client. Added in
NDB 7.4.1.

* Ndb_sl ave_nax_repli cat ed_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.
Added in NDB 7.4.1.

» create_ol d_tenporal s: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4. Added in
NDB 7.4.7.

* ndb-1 og- excl usi ve-reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts. Added in NDB 7.4.1.

* ndb-1og-fail-term nate: Terminate mysqld process if complete logging of all found row events is
not possible. Added in NDB 7.4.28.

* ndb-1 og- updat e- m ni mal : Log updates in minimal format. Added in NDB 7.4.16.

e ndb_cl ear _appl y_st at us: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default. Added in NDB 7.4.9.

« ndb_event buffer_free_percent: Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc. Added in
NDB 7.4.3.

* ndb_I og_excl usi ve_reads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts. Added in NDB 7.4.1.

* ndb_sl ave_conflict_rol e: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information. Added in NDB 7.4.1.

Options and Variables Deprecated in NDB 7.4
The following system variables, status variables, and options have been deprecated in NDB 7.4.

» create_ol d_tenporal s: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.
Deprecated in NDB 7.4.7.

Options and Variables Removed in NDB 7.4

No system variables, status variables, or options have been removed in NDB 7.4.

2.6 MySQL Server Using InnoDB Compared with NDB Cluster

MySQL Server offers a number of choices in storage engines. Since both NDB and | nnoDB can serve

as transactional MySQL storage engines, users of MySQL Server sometimes become interested in NDB
Cluster. They see NDB as a possible alternative or upgrade to the default | nnoDB storage engine in
MySQL 5.6. While NDB and | nnoDB share common characteristics, there are differences in architecture
and implementation, so that some existing MySQL Server applications and usage scenarios can be a good
fit for NDB Cluster, but not all of them.

23

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html

Differences Between the NDB and InnoDB Storage Engines

In this section, we discuss and compare some characteristics of the NDB storage engine used by

NDB Cluster 7.3 and 7.4 with | nnoDB used in MySQL 5.6. The next few sections provide a technical
comparison. In many instances, decisions about when and where to use NDB Cluster must be made on a
case-by-case basis, taking all factors into consideration. While it is beyond the scope of this documentation
to provide specifics for every conceivable usage scenario, we also attempt to offer some very general
guidance on the relative suitability of some common types of applications for NDB as opposed to | nnoDB

back ends.

NDB Cluster 7.3 and 7.4 use a nysql d based on MySQL 5.6, including support for | nnoDB 1.1. While it
is possible to use | nnoDB tables with NDB Cluster, such tables are not clustered. It is also not possible
to use programs or libraries from an NDB Cluster 7.3 or 7.4 distribution with MySQL Server 5.6, or the

reverse.

While it is also true that some types of common business applications can be run either on NDB Cluster or
on MySQL Server (most likely using the | nnoDB storage engine), there are some important architectural
and implementation differences. Section 2.6.1, “Differences Between the NDB and InnoDB Storage
Engines”, provides a summary of the these differences. Due to the differences, some usage scenarios

are clearly more suitable for one engine or the other; see Section 2.6.2, “NDB and InnoDB Workloads”.
This in turn has an impact on the types of applications that better suited for use with NDB or | nnoDB. See
Section 2.6.3, “NDB and InnoDB Feature Usage Summary”, for a comparison of the relative suitability of
each for use in common types of database applications.

For information about the relative characteristics of the NDB and MEMORY storage engines, see When to

Use MEMORY or NDB Cluster.

See Alternative Storage Engines, for additional information about MySQL storage engines.

2.6.1 Differences Between the NDB and InnoDB Storage Engines

The NDB storage engine is implemented using a distributed, shared-nothing architecture, which causes
it to behave differently from | nnoDB in a number of ways. For those unaccustomed to working with NDB,
unexpected behaviors can arise due to its distributed nature with regard to transactions, foreign keys, table

limits, and other characteristics. These are shown in the following table:

Table 2.1 Feature differences between InnoDB and NDB storage engines.

Feature I nnoDB 1.1 NDB 7.3, NDB 7.4

MySQL Server Version 5.6 5.6

| nnoDB Version | nnoDB 5.6.51 | nnoDB 5.6.51

NDB Cluster Version N/A NDB 7.3.34, 7.4.35

Storage Limits 64TB 3TB (Practical upper limit based
on 48 data nodes with 64GB RAM
each; can be increased with disk-
based data and BLOBS)

Foreign Keys Yes Yes

Transactions All standard types READ COW TTED

MVCC Yes No

Data Compression Yes No (NDB checkpoint and backup

files can be compressed)

Large Row Support (> 14K)

Supported for VARBI NARY,
VARCHAR, BLOB, and TEXT
columns

Supported for BLOB and TEXT
columns only (Using these types
to store very large amounts of
data can lower NDB performance)

24

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/memory-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/5.6/en/memory-storage-engine.html#memory-storage-engine-compared-cluster
https://dev.mysql.com/doc/refman/5.6/en/storage-engines.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

NDB and InnoDB Workloads

Feature

| nnoDB 1.1

NDB 7.3, NDB 7.4

Replication Support

Asynchronous and
semisynchronous replication using
MySQL Replication

Automatic synchronous
replication within an NDB Cluster;
asynchronous replication between
NDB Clusters, using MySQL
Replication (Semisynchronous
replication is not supported)

Scaleout for Read Operations

Yes (MySQL Replication)

Yes (Automatic partitioning
in NDB Cluster; NDB Cluster
Replication)

Scaleout for Write Operations

Requires application-level
partitioning (sharding)

Yes (Automatic partitioning in
NDB Cluster is transparent to
applications)

High Availability (HA)

Requires additional software

Yes (Designed for 99.999%
uptime)

Node Failure Recovery and
Failover

Requires additional software

Automatic (Key element in NDB
architecture)

Time for Node Failure Recovery

30 seconds or longer

Typically < 1 second

Real-Time Performance No Yes

In-Memory Tables No Yes (Some data can optionally be
stored on disk; both in-memory
and disk data storage are durable)

NoSQL Access to Storage Engine |Yes Yes (Multiple APIs, including
Memcached, Node.js/JavaScript,
Java, JPA, C++, and HTTP/REST)

Concurrent and Parallel Writes Not supported Up to 48 writers, optimized for
concurrent writes

Conflict Detection and Resolution |No Yes

(Multiple Replication sources)

Hash Indexes No Yes

Online Addition of Nodes

Read-only replicas using MySQL
Replication

Yes (all node types)

Online Upgrades

No

Yes

Online Schema Modifications

Yes, as part of MySQL 5.6

Yes

2.6.2 NDB and InnoDB Workloads

NDB Cluster has a range of unique attributes that make it ideal to serve applications requiring high
availability, fast failover, high throughput, and low latency. Due to its distributed architecture and multi-node
implementation, NDB Cluster also has specific constraints that may keep some workloads from performing
well. A number of major differences in behavior between the NDB and | nnoDB storage engines with regard
to some common types of database-driven application workloads are shown in the following table::

Table 2.2 Differences between the InnoDB and NDB storage engines, common types of database-

driven application workloads

Workload

| nnoDB

NDB Cluster (NDB)

High-Volume OLTP Applications

Yes

Yes

25

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB and InnoDB Feature Usage Summary

Workload | nnoDB NDB Cluster (NDB)

DSS Applications (data marts, Yes Limited (Join operations across

analytics) OLTP datasets not exceeding 3TB
in size)

Custom Applications Yes Yes

Packaged Applications Yes Limited (should be mostly primary

key access); NDB 7.3 and 7.4
support foreign keys

In-Network Telecoms Applications |No Yes
(HLR, HSS, SDP)

Session Management and Yes Yes
Caching

E-Commerce Applications Yes Yes
User Profile Management, AAA Yes Yes
Protocol

2.6.3 NDB and InnoDB Feature Usage Summary

When comparing application feature requirements to the capabilities of | nnoDB with NDB, some are clearly
more compatible with one storage engine than the other.

The following table lists supported application features according to the storage engine to which each
feature is typically better suited.

Table 2.3 Supported application features according to the storage engine to which each feature is
typically better suited

Preferred application requirements for | nnoDB |Preferred application requirements for NDB

* Foreign keys ¢ Write scaling
Note ¢ 99.999% uptime
NDB Cluster 7.4 and 7.4 * Online addition of nodes and online schema
support foreign keys operations

* Full table scans e Multiple SQL and NoSQL APIs (see NDB Cluster

APIs: Overview and Concepts)
« Very large databases, rows, or transactions

¢ Real-time performance
» Transactions other than READ COVM TTED

¢ Limited use of BLOB columns

« Foreign keys are supported, although their use
may have an impact on performance at high
throughput

2.7 Known Limitations of NDB Cluster

In the sections that follow, we discuss known limitations in current releases of NDB Cluster as compared
with the features available when using the Myl SAMand | nnoDB storage engines. If you check the “Cluster”
category in the MySQL bugs database at http://bugs.mysqgl.com, you can find known bugs in the following

26

https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/ndbapi/en/mysql-cluster-api-overview.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
http://bugs.mysql.com

Noncompliance with SQL Syntax in NDB Cluster

categories under “MySQL Server:” in the MySQL bugs database at http://bugs.mysqgl.com, which we intend
to correct in upcoming releases of NDB Cluster:

* NDB Cluster

 Cluster Direct APl (NDBAPI)

Cluster Disk Data

Cluster Replication

» ClusterJ

This information is intended to be complete with respect to the conditions just set forth. You can report
any discrepancies that you encounter to the MySQL bugs database using the instructions given in How to
Report Bugs or Problems. If we do not plan to fix the problem in NDB Cluster 7.3 or 7.4, we add it to the

list.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 7.3” for a list of issues in
earlier versions of NDB Cluster that have been resolved in NDB 7.3 or 7.4.

Note

Limitations and other issues specific to NDB Cluster Replication are described in
Section 7.3, “Known Issues in NDB Cluster Replication”.

2.7.1 Noncompliance with SQL Syntax in NDB Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as
described in the following list:

» Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that
uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the error Tabl e
storage engi ne 'ndbcluster' does not support the create option ' TEMPORARY' .

» Indexes and keys in NDB tables. Keys and indexes on NDB Cluster tables are subject to the
following limitations:

Column width. Attempting to create an index on an NDB table column whose width is greater than
3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such cases, a
warning Speci fi ed key was too |ong; nmax key length is 3072 bytes isissued, and a
SHOW CREATE TABLE statement shows the length of the index as 3072.

TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the
TEXT or BLOB data types.

FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for Myl SAMand (MySQL 5.6.4 and later) | nnoDB tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

USING HASH keys and NULL. Using nullable columns in unique keys and primary keys means
that queries using these columns are handled as full table scans. To work around this issue, make the
column NOT NULL, or re-create the index without the USI NG HASH option.

Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072 bytes,

27

http://bugs.mysql.com
https://dev.mysql.com/doc/refman/5.6/en/bug-reports.html
https://dev.mysql.com/doc/refman/5.6/en/bug-reports.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Noncompliance with SQL Syntax in NDB Cluster

as described earlier in this section. Also see Section 2.7.6, “Unsupported or Missing Features in NDB
Cluster”, for additional information.)

BIT columns. A BI T column cannot be a primary key, unique key, or index, nor can it be part of a
composite primary key, unique key, or index.

AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can
handle a maximum of one AUTO | NCREMENT column per table, and this column must be indexed.
However, in the case of an NDB table with no explicit primary key, an AUTO_| NCREMENT column is
automatically defined and used as a “hidden” primary key. For this reason, you cannot create an NDB
table having an AUTO_| NCREMENT column and no explicit primary key.

e Restrictions on foreign keys. Support for foreign key constraints in NDB Cluster 7.3 and 7.4 is
comparable to that provided by | nnoDB, subject to the following restrictions:

Every column referenced as a foreign key requires an explicit unique key, if it is not the table's primary
key.

ON UPDATE CASCADE is not supported when the reference is to the parent table's primary key.

This is because an update of a primary key is implemented as a delete of the old row (containing

the old primary key) plus an insert of the new row (with a new primary key). This is not visible to the
NDB kernel, which views these two rows as being the same, and thus has no way of knowing that this
update should be cascaded.

As of NDB 7.3.25 and NDB 7.4.24: ON DELETE CASCADE is not supported where the child table
contains one or more columns of any of the TEXT or BLOB types. (Bug #89511, Bug #27484882)

SET DEFAULT is not supported. (Also not supported by | nnoDB.)
The NO ACTI ON keywords are accepted but treated as RESTRI CT. (Also the same as with | nnoDB.)

Prior to NDB 7.3.5, when creating a table with foreign key referencing an index in another table, it
sometimes appeared possible to create the foreign key even if the order of the columns in the indexes
did not match, due to the fact that an appropriate error was not always returned internally. A partial

fix for this issue in NDB 7.3.5 improves the error used internally to work in most cases; however, it

is still possible for this situation to occur in the event that the parent index is a unique index. (Bug
#18094360)

In NDB 7.3, when adding or dropping a foreign key using ALTER TABLE, the parent table's metadata
is not updated, which makes it possible subsequently to execute ALTER TABLE statements on the
parent that should be invalid. This issue also affects NDB 7.4 releases prior to 7.4.15. To work around
this issue, execute SHOWN CREATE TABLE on the parent table immediately after adding or dropping
the foreign key; this forces the parent's metadata to be reloaded.

This issue is fixed in NDB 7.4.15 and later. (Bug #82989, Bug #24666177)

For more information, see FOREIGN KEY Constraints, and FOREIGN KEY Constraints.

* NDB Cluster and geometry data types.
Geometry data types (WKT and V\KB) are supported for NDB tables. However, spatial indexes are not
supported.

e Character sets and binary log files. Currently, the ndb_appl y_st at us and ndb_bi nl og_i ndex
tables are created using the | at i n1 (ASCII) character set. Because names of binary logs are recorded
in this table, binary log files named using non-Latin characters are not referenced correctly in these
tables. This is a known issue, which we are working to fix. (Bug #50226)

28

https://dev.mysql.com/doc/refman/5.6/en/bit-type.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html
https://dev.mysql.com/doc/refman/5.6/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Limits and Differences of NDB Cluster from Standard MySQL Limits

To work around this problem, use only Latin-1 characters when naming binary log files or setting any the
--basedir,--10g-bin,or--Io0g-bin-index options.

» Creating NDB tables with user-defined partitioning. Support for user-defined partitioning in NDB
Cluster is restricted to [LI NEAR] KEY partitioning. Using any other partitioning type with ENG NE=NDB or
ENG NE=NDBCLUSTER in a CREATE TABLE statement results in an error.

It is possible to override this restriction, but doing so is not supported for use in production settings. For
details, see User-defined partitioning and the NDB storage engine (NDB Cluster).

Default partitioning scheme. All NDB Cluster tables are by default partitioned by KEY using the
table's primary key as the partitioning key. If no primary key is explicitly set for the table, the “hidden”
primary key automatically created by the NDB storage engine is used instead. For additional discussion
of these and related issues, see KEY Partitioning.

CREATE TABLE and ALTER TABLE statements that would cause a user-partitioned NDBCLUSTER table
not to meet either or both of the following two requirements are not permitted, and fail with an error:

1. The table must have an explicit primary key.

2. All columns listed in the table's partitioning expression must be part of the primary key.

Exception. If a user-partitioned NDBCLUSTER table is created using an empty column-list (that is,
using PARTI TI ON BY [LI NEAR] KEY()), then no explicit primary key is required.

Maximum number of partitions for NDBCLUSTER tables. = The maximum number of partitions that
can defined for a NDBCLUSTER table when employing user-defined partitioning is 8 per node group.
(See Section 2.2, “NDB Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”, for more
information about NDB Cluster node groups.

DROP PARTITION not supported. Itis not possible to drop partitions from NDB tables using

ALTER TABLE ... DROP PARTI Tl ON. The other partitioning extensions to ALTER TABLE—ADD
PARTI Tl ON, REORGANI ZE PARTI Tl ON, and COALESCE PARTI TI ON—are supported for NDB tables,
but use copying and so are not optimized. See Management of RANGE and LIST Partitions and ALTER
TABLE Statement.

2.7.2 Limits and Differences of NDB Cluster from Standard MySQL Limits

In this section, we list limits found in NDB Cluster that either differ from limits found in, or that are not found
in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules hold
true:

» A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for
re-use by inserts on the same table only. However, this memory can be made available for general re-
use by performing OPTI M ZE TABLE.

A rolling restart of the cluster also frees any memory used by deleted rows. See Section 6.5, “Performing
a Rolling Restart of an NDB Cluster”.

 ADROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by this
table for re-use by any NDB table, either by the same table or by another NDB table.

29

https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_log-bin
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#option_mysqld_log-bin-index
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/partitioning-limitations-storage-engines.html#partitioning-limitations-ndb
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/partitioning-key.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/partitioning-management-range-list.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/delete.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/optimize-table.html
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Limits Relating to Transaction Handling in NDB Cluster

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See TRUNCATE
TABLE Statement.

» Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets limits.
See the complete list of configuration parameters in Section 4.3, “NDB Cluster Configuration Files”. Most
configuration parameters can be upgraded online. These hard limits include:

« Database memory size and index memory size (Dat aMenor y and | ndexMenor y, respectively).

Dat aMenory is allocated as 32KB pages. As each Dat aMenor y page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 4.3.6, “Defining NDB Cluster Data Nodes”, for more information.

« The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOf Concur r ent Qper at i ons and MaxNoOf Local Oper at i ons.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special
cases by running multiple transactions, and so are not subject to this limitation.

« Different limits related to tables and indexes. For example, the maximum number of ordered indexes
in the cluster is determined by MaxNoOf Or der edl ndexes, and the maximum number of ordered
indexes per table is 16.

* Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

* The maximum number of data nodes is 48.

A data node must have a node ID in the range of 1 to 48, inclusive. (Management and API nodes may
use node IDs in the range 1 to 255, inclusive.)

¢ The total maximum number of nodes in an NDB Cluster is 255. This number includes all SQL nodes
(MySQL Servers), APl nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

< The maximum number of metadata objects in current versions of NDB Cluster is 20320. This limit is
hard-coded.

See Section 2.7.11, “Previous NDB Cluster Issues Resolved in NDB Cluster 7.3”, for more information.

2.7.3 Limits Relating to Transaction Handling in NDB Cluster

A number of limitations exist in NDB Cluster with regard to the handling of transactions. These include the
following:

e Transaction isolation level. The NDBCLUSTER storage engine supports only the READ
COWM TTED transaction isolation level. (I nnoDB, for example, supports READ COVM TTED, READ
UNCOWM TTED, REPEATABLE READ, and SERI ALI ZABLE.) You should keep in mind that NDB
implements READ COVM TTED on a per-row basis; when a read request arrives at the data node storing
the row, what is returned is the last committed version of the row at that time.

30

https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-uncommitted
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_repeatable-read
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_serializable

Limits Relating to Transaction Handling in NDB Cluster

Uncommitted data is never returned, but when a transaction modifying a number of rows commits
concurrently with a transaction reading the same rows, the transaction performing the read can observe
“before” values, “after” values, or both, for different rows among these, due to the fact that a given row
read request can be processed either before or after the commit of the other transaction.

To ensure that a given transaction reads only before or after values, you can impose row locks using
SELECT ... LOCK I N SHARE MODE. In such cases, the lock is held until the owning transaction is
committed. Using row locks can also cause the following issues:

* Increased frequency of lock wait timeout errors, and reduced concurrency
 Increased transaction processing overhead due to reads requiring a commit phase

« Possibility of exhausting the available number of concurrent locks, which is limited by
MaxNoCOF Concur r ent Oper ati ons

NDB uses READ COVM TTED for all reads unless a modifier such as LOCK | N SHARE MODE or FOR
UPDATE is used. LOCK | N SHARE MODE causes shared row locks to be used; FOR UPDATE causes
exclusive row locks to be used. Unique key reads have their locks upgraded automatically by NDB to
ensure a self-consistent read; BLOB reads also employ extra locking for consistency.

See Section 6.8.4, “NDB Cluster Backup Troubleshooting”, for information on how NDB Cluster's
implementation of transaction isolation level can affect backup and restoration of NDB databases.

Unique key lookups and transaction isolation. Unigue indexes are implemented in NDB using a
hidden index table which is maintained internally. When a user-created NDB table is accessed using

a unique index, the hidden index table is first read to find the primary key that is then used to read the
user-created table. To avoid modification of the index during this double-read operation, the row found
in the hidden index table is locked. When a row referenced by a unique index in the user-created NDB
table is updated, the hidden index table is subject to an exclusive lock by the transaction in which the
update is performed. This means that any read operation on the same (user-created) NDB table must
wait for the update to complete. This is true even when the transaction level of the read operation is
READ COWM TTED.

One workaround which can be used to bypass potentially blocking reads is to force the SQL node to
ignore the unique index when performing the read. This can be done by using the | GNORE | NDEX
index hint as part of the SELECT statement reading the table (see Index Hints). Because the MySQL
server creates a shadowing ordered index for every unique index created in NDB, this lets the ordered
index be read instead, and avoids unique index access locking. The resulting read is as consistent as a
committed read by primary key, returning the last committed value at the time the row is read.

Reading via an ordered index makes less efficient use of resources in the cluster, and may have higher
latency.

It is also possible to avoid using the unique index for access by querying for ranges rather than for
unique values.

Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value that
uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of the BLOB
or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives rise to two

31

https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/index-hints.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

Limits Relating to Transaction Handling in NDB Cluster

related issues of which you should be aware whenever executing SELECT statements on tables that
contain columns of these types:

1. For any SELECT from an NDB Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COWM TTED transaction isolation level is converted to a read with read lock. This is done to
guarantee consistency.

2. For any SELECT which uses a unique key lookup to retrieve any columns that use any of the BLOB or
TEXT data types and that is executed within a transaction, a shared read lock is held on the table for
the duration of the transaction—that is, until the transaction is either committed or aborted.

This issue does not occur for queries that use index or table scans, even against NDB tables having
BLOB or TEXT columns.

For example, consider the table t defined by the following CREATE TABLE statement:

CREATE TABLE t (
a INT NOT NULL AUTO | NCREMENT PRI MARY KEY,
b I NT NOT NULL,
c INT NOT NULL,
d TEXT,
I NDEX i (b),
UNI QUE KEY u(c)
) ENG NE = NDB,

The following query ont causes a shared read lock, because it uses a unique key lookup:

SELECT * FROMt WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROMt WHERE b = 1;

SELECT * FROMt WHERE d

I
=

SELECT * FROM t;

SELECT b, c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use table
scans, and the fourth, while using a primary key lookup, does not retrieve the value of any BLOB or
TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use unique key
lookups that retrieve BLOB or TEXT columns, or, in cases where such queries are not avoidable, by
committing transactions as soon as possible afterward.

* Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate key
or similar error causes the entire transaction to be rolled back.

This behavior differs from that of other transactional storage engines such as | nnoDB that may roll back
individual statements.

» Transactions and memory usage.
As noted elsewhere in this chapter, NDB Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions require

32

https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-isolation-levels.html#isolevel_read-committed
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html

NDB Cluster Error Handling

very large amounts of memory. Because of this, the transactional behavior of a number of MySQL
statements is affected as described in the following list:

« TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to empty
the table, then it must be re-run until it is successful.

« DELETE FROM(even with no VVHERE clause) is transactional. For tables containing a great many
rows, you may find that performance is improved by using several DELETE FROM ... LIMT ...
statements to “chunk” the delete operation. If your objective is to empty the table, then you may wish
to use TRUNCATE TABLE instead.

« LOAD DATA statements. LOAD DATA is not transactional when used on NDB tables.
Important

When executing a LOAD DATA statement, the NDB engine performs commits at
irregular intervals that enable better utilization of the communication network. It
is not possible to know ahead of time when such commits take place.

« ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the
creation of the copy is nontransactional. (In any case, this operation is rolled back when the copy is
deleted.)

» Transactions and the COUNT() function. When using NDB Cluster Replication, it is not possible to
guarantee the transactional consistency of the COUNT() function on the replica. In other words, when
performing on the source a series of statements (I NSERT, DELETE, or both) that changes the number of
rows in a table within a single transaction, executing SELECT COUNT(*) FROM t abl e queries on the
replica may yield intermediate results. This is due to the fact that SELECT COUNT(...) may perform
dirty reads, and is not a bug in the NDB storage engine. (See Bug #31321 for more information.)

2.7.4 NDB Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail.
These include the following cases:

» Temporary errors. When first starting a node, it is possible that you may see Error 1204 Tenpor ary
failure, distribution changed and similar temporary errors.

» Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should
be done by retrying the transaction.

See also Section 2.7.2, “Limits and Differences of NDB Cluster from Standard MySQL Limits”.

2.7.5 Limits Associated with Database Objects in NDB Cluster

Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER
storage engine:

» Database and table names. When using the NDB storage engine, the maximum allowed length both
for database names and for table names is 63 characters.

In NDB 7.3.8 and later, a statement using a database name or table name longer than this limit fails with
an appropriate error. (Bug #19550973)

33

https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/load-data.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/load-data.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/aggregate-functions.html#function_count
https://dev.mysql.com/doc/refman/5.6/en/insert.html
https://dev.mysql.com/doc/refman/5.6/en/delete.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Unsupported or Missing Features in NDB Cluster

Number of database objects. = The maximum number of all NDB database objects in a single NDB
Cluster—including databases, tables, and indexes—is limited to 20320.

Attributes per table. The maximum number of attributes (that is, columns and indexes) that can
belong to a given table is 512.

Attributes per key. The maximum number of attributes per key is 32.

Row size. The maximum permitted size of any one row is 14000 bytes.

Each BLOB or TEXT column contributes 256 + 8 = 264 bytes to this total; see String Type Storage
Requirements, for more information relating to these types.

In addition, the maximum offset for a fixed-width column of an NDB table is 8188 bytes; attempting to
create a table that violates this limitation fails with NDB error 851 Maxi num of f set for fi xed-

si ze col unmms exceeded. For memory-based columns, you can work around this limitation by using
a variable-width column type such as VARCHAR or defining the column as COLUVN_FORMAT=DYNAM C,
this does not work with columns stored on disk. For disk-based columns, you may be able to do so

by reordering one or more of the table's disk-based columns such that the combined width of all but
the disk-based column defined last in the CREATE TABLE statement used to create the table does

not exceed 8188 bytes, less any possible rounding performed for some data types such as CHAR or
VARCHAR; otherwise it is necessary to use memory-based storage for one or more of the offending
column or columns instead.

BIT column storage per table. The maximum combined width for all Bl T columns used in a given
NDB table is 4096.

FIXED column storage. NDB Cluster supports a maximum of 16 GB per fragment of data in FI XED
columns.

2.7.6 Unsupported or Missing Features in NDB Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to use

any of these features in NDB Cluster does not cause errors in or of itself; however, errors may occur in
applications that expects the features to be supported or enforced. Statements referencing such features,
even if effectively ignored by NDB, must be syntactically and otherwise valid.

Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE | NDEX, the
prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be syntactically
valid. For example, the following statement always fails with Error 1089 | ncorrect prefix key;

the used key part isn't a string, the used length is |onger than the key
part, or the storage engi ne doesn't support unique prefix keys, regardless of
storage engine:

CREATE TABLE t1 (
cl I NT NOT NULL,
c2 VARCHAR(100),
INDEX i 1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in Myl SAM

34

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.6/en/storage-requirements.html#data-types-storage-reqs-strings
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/bit-type.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/create-index.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/myisam-storage-engine.html

Limitations Relating to Performance in NDB Cluster

e Durability of commits. There are no durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

» Replication. Statement-based replication is not supported. Use - - bi nl og- f or mat =ROWN/(or - -
bi nl og- f or mat =M XED) when setting up cluster replication. See Chapter 7, NDB Cluster Replication,
for more information.

Replication using global transaction identifiers (GTIDs) is not compatible with NDB Cluster, and is not
supported in NDB Cluster 7.3 or NDB Cluster 7.4. Do not enable GTIDs when using the NDB storage
engine, as this is very likely to cause problems up to and including failure of NDB Cluster Replication.

Semisynchronous replication is not supported in NDB Cluster.

When replicating between clusters, it is possible to use IPv6 addresses between SQL nodes in different
clusters, but all connections within a given cluster must use IPv4 addressing. For more information, see
NDB Cluster Replication and IPv6.

Note

See Section 2.7.3, “Limits Relating to Transaction Handling in NDB Cluster”, for
more information relating to limitations on transaction handling in NDB.

2.7.7 Limitations Relating to Performance in NDB Cluster
The following performance issues are specific to or especially pronounced in NDB Cluster:

» Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either Myl SAMor
| nnoDB.

» Reliability of Records in range. The Records i n range statistic is available but is not completely
tested or officially supported. This may result in nonoptimal query plans in some cases. If necessary,
you can employ USE | NDEX or FORCE | NDEX to alter the execution plan. See Index Hints, for more
information on how to do this.

* Unique hash indexes. Unique hash indexes created with USI NG HASH cannot be used for
accessing a table if NULL is given as part of the key.

2.7.8 Issues Exclusive to NDB Cluster
The following are limitations specific to the NDB storage engine:

* Machine architecture. All machines used in the cluster must have the same architecture. That is, all
machines hosting nodes must be either big-endian or little-endian, and you cannot use a mixture of both.
For example, you cannot have a management node running on a PowerPC which directs a data node
that is running on an x86 machine. This restriction does not apply to machines simply running nysql or
other clients that may be accessing the cluster's SQL nodes.

* Binary logging.
NDB Cluster has the following limitations or restrictions with regard to binary logging:

« sqgl | og_bi n has no effect on data operations; however, it is supported for schema operations.
« NDB Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

< Only the following schema operations are logged in a cluster binary log which is not on the nysql d
executing the statement:

35

https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_binlog_format
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/index-hints.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/refman/5.6/en/blob.html

Limitations Relating to NDB Cluster Disk Data Storage

» CREATE TABLE

* ALTER TABLE

 DROP TABLE

* CREATE DATABASE / CREATE SCHENA
» DROP DATABASE / DROP SCHENA
* CREATE TABLESPACE

« ALTER TABLESPACE

* DROP TABLESPACE

* CREATE LOGFI LE GROUP

* ALTER LOGFI LE GROUP
 DROP LOGFI LE GROUP

e Schema operations. Schema operations (DDL statements) are rejected while any data node
restarts. Schema operations are also not supported while performing an online upgrade or downgrade.

 Number of fragment replicas. The number of fragment replicas, as determined by the
NoOF Repl i cas data node configuration parameter, is the number of copies of all data stored by NDB
Cluster. Setting this parameter to 1 means there is only a single copy; in this case, no redundancy
is provided, and the loss of a data node entails loss of data. To guarantee redundancy, and thus
preservation of data even if a data node fails, set this parameter to 2, which is the default and
recommended value in production.

Setting NoOf Repl i cas to a value greater than 2 is possible (to a maximum of 4) but unnecessary to
guard against loss of data. In addition, values greater than 2 for this parameter are not supported in
production.

See also Section 2.7.10, “Limitations Relating to Multiple NDB Cluster Nodes”.

2.7.9 Limitations Relating to NDB Cluster Disk Data Storage

Disk Data object maximums and minimums. Disk data objects are subject to the following maximums
and minimums:

» Maximum number of tablespaces: 232 (4294967296)
» Maximum number of data files per tablespace: 216 (65536)

» The minimum and maximum possible sizes of extents for tablespace data files are 32K and 2G,
respectively. See CREATE TABLESPACE Statement, for more information.

In addition, when working with NDB Disk Data tables, you should be aware of the following issues
regarding data files and extents:

» Data files use Dat aMenor y. Usage is the same as for in-memory data.

» Data files use file descriptors. It is important to keep in mind that data files are always open, which
means the file descriptors are always in use and cannot be re-used for other system tasks.

36

https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/create-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/drop-tablespace.html
https://dev.mysql.com/doc/refman/5.6/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/5.6/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/5.6/en/drop-logfile-group.html
https://dev.mysql.com/doc/refman/5.6/en/create-tablespace.html

Limitations Relating to Multiple NDB Cluster Nodes

» Extents require sufficient Di skPageBuf f er Menor y; you must reserve enough for this parameter to
account for all memory used by all extents (number of extents times size of extents).

Disk Data tables and diskless mode. Use of Disk Data tables is not supported when running the
cluster in diskless mode.

2.7.10 Limitations Relating to Multiple NDB Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as NDB Cluster SQL nodes, and are
specific to the NDBCLUSTER storage engine:

» Stored programs not distributed. Stored procedures, stored functions, triggers, and scheduled
events are all supported by tables using the NDB storage engine, but these do not propagate
automatically between MySQL Servers acting as Cluster SQL nodes, and must be re-created separately
on each SQL node. See Stored Programs in NDB Cluster.

* No distributed table locks. A LOCK TABLES statement or GET_LOCK() call works only for the SQL
node on which the lock is issued; no other SQL node in the cluster “sees” this lock. This is true for a lock
issued by any statement that locks tables as part of its operations. (See next item for an example.)

Implementing table locks in NDBCLUSTER can be done in an API application, and ensuring that all
applications start by setting LockMode to LM Read or LM _Excl usi ve. For more information about how
to do this, see the description of NdbOper at i on: : get LockHandl e() in the NDB Cluster API Guide.

« ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers
(SQL nodes). (As discussed in the previous item, NDB Cluster does not support distributed table locks.)

Multiple management nodes.
When using multiple management servers:

« If any of the management servers are running on the same host, you must give nodes explicit IDs in
connection strings because automatic allocation of node IDs does not work across multiple management
servers on the same host. This is not required if every management server resides on a different host.

» When a management server starts, it first checks for any other management server in the same NDB
Cluster, and upon successful connection to the other management server uses its configuration data.
This means that the management server - -r el oad and - -i ni ti al startup options are ignored unless
the management server is the only one running. It also means that, when performing a rolling restart of
an NDB Cluster with multiple management nodes, the management server reads its own configuration
file if (and only if) it is the only management server running in this NDB Cluster. See Section 6.5,
“Performing a Rolling Restart of an NDB Cluster”, for more information.

Multiple network addresses. Multiple network addresses per data node are not supported. Use of
these is liable to cause problems: In the event of a data node failure, an SQL node waits for confirmation
that the data node went down but never receives it because another route to that data node remains open.
This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards)
for a single data node, but these must be bound to the same address. This also
means that it not possible to use more than one [t cp] section per connection in
the confi g. i ni file. See Section 4.3.9, “NDB Cluster TCP/IP Connections”, for
more information.

2.7.11 Previous NDB Cluster Issues Resolved in NDB Cluster 7.3

37

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/stored-program-restrictions.html#stored-routines-ndbcluster
https://dev.mysql.com/doc/refman/5.6/en/lock-tables.html
https://dev.mysql.com/doc/refman/5.6/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-lockmode
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-getlockhandle
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

Previous NDB Cluster Issues Resolved in NDB Cluster 7.3

A number of limitations and related issues that existed in earlier versions of NDB Cluster have been
resolved in NDB Cluster 7.3. These are described briefly in the following list:

» Support for foreign keys. Foreign key constraints are now supported for NDB tables, similar to how
these are supported by the | nnoDB storage engine.

Note

Unlike the case with user-partitioned | nnoDB tables, foreign keys are supported
for NDB tables that are partitioned by KEY or LI NEAR KEY.

FOREIGN KEY Constraints, provides more information about foreign key support in MySQL. For more
information about the syntax supported by MySQL for foreign keys, see FOREIGN KEY Constraints.

38

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/constraint-foreign-key.html
https://dev.mysql.com/doc/refman/5.6/en/create-table-foreign-keys.html

Chapter 3 NDB Cluster Installation

Table of Contents

3.1 Installation of NDB CIUSLEr ON LINUX ...uueiiiuineieiiiieeeeiiseeeeiiseeeeti e eeeti e eeeti e aeasi e eessenaeeessnnaeeesnen 41
3.1.1 Installing an NDB Cluster Binary Release 0N LINUXooevuiieiiiiiiiiieciiiiecie e e e 42
3.1.2 Installing NDB CIUSter from RPMiiiiiiiiiiiiciie e e e e e e e e e e s eee 44
3.1.3 Installing NDB Cluster Using .deb FilESoiiiiiiiiii e 46
3.1.4 Building NDB Cluster from Source 0N LINUXc.ceiiuiiiiiieein e seeai e e e e e eeanes 46

3.2 Installing NDB ClUSter 0N WINAOWSoiiiiiiiiii i e e e e e e e s e e e et e e et e e eeen s 48
3.2.1 Installing NDB Cluster on Windows from a Binary Releaseccoooeviiiiiiiiiniciieeiins 48
3.2.2 Compiling and Installing NDB Cluster from Source on WiNdOWSccocevveiiiiieiiinecineeennnn. 51
3.2.3 Initial Startup of NDB Cluster on WINAOWSooiuiiiiiiiieiiie e e e e e e e 52
3.2.4 Installing NDB Cluster Processes as WIiNdOWS SEIVICEScc.vviiiiieiiiieiiiieeiiieciineesieeaines 54

3.3 Initial Configuration Of NDB CIUSLETciiiiiiiiie e e e e e e e et e e e eaaes 56

3.4 Initial Startup Of NDB CIUSTELciuuiiiiii et e e e e e e e e e e e st e et e e et e eeanaaes 58

3.5 NDB Cluster Example with Tables and Datalccccuiiiiiiiiiiiieiie e e e e e e 59

3.6 Safe Shutdown and Restart 0f NDB CIUSTETiiiiiiiiiiiiiiie e eeeens 63

3.7 Upgrading and Downgrading NDB CIUSLENccuuiiiiiieiiii e e e e e e e e e e ean s 64

3.8 The NDB Cluster Auto-Installer (N0 longer SUPPOIEd)c.uuiiiiniiiiiieiii e e e 67
3.8.1 NDB Cluster Auto-Installer REQUIFEMENLSccuuiiiiiiiiiieiie e e e e e e e e e e 67
3.8.2 Using the NDB Cluster AULO-INStAllErcoiiiiiii e 68

This section describes the basics for planning, installing, configuring, and running an NDB Cluster.
Whereas the examples in Chapter 4, Configuration of NDB Cluster provide more in-depth information

on a variety of clustering options and configuration, the result of following the guidelines and procedures
outlined here should be a usable NDB Cluster which meets the minimum requirements for availability and
safeguarding of data.

For information about upgrading or downgrading an NDB Cluster between release versions, see
Section 3.7, “Upgrading and Downgrading NDB Cluster”.

This section covers hardware and software requirements; networking issues; installation of NDB Cluster;
basic configuration issues; starting, stopping, and restarting the cluster; loading of a sample database; and
performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's physical
and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Table 3.1 Network addresses of nodes in example cluster

Node IP Address

Management node (ngnd) 198.51.100.10
SQL node (nmysql d) 198.51.100.20
Data node "A" (ndbd) 198.51.100.30
Data node "B" (ndbd) 198.51.100.40

39

This setup is also shown in the following diagram:
Figure 3.1 NDB Cluster Multi-Computer Setup
ndb_mgmd mysqgld --ndbcluster

ndb_mgm

]

E — 182.168.0.10 192.168.0.20—
Management MySQL Server
Server (SQL Node)
(MGM Node)
—
h
—
«—

LD

Network
Switch
ndbd ndbd
|:| —192.168.0 30 ——————————192.168.0.40 — |:|
Data Mode “A" Data Node “B”
(NDBD Node) (NDBD Node)
Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric

IP addresses. However, if DNS resolution is available on your network, it is possible to use host names

in lieu of IP addresses in configuring Cluster. Alternatively, you can use the host s file (typically / et c/
host s for Linux and other Unix-like operating systems, C: \ W NDOAS\ syst enB2\ dri ver s\ et c\ host s
on Windows, or your operating system's equivalent) for providing a means to do host lookup if such is
available.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set up
the system's own host name in the / et ¢/ host s during installation. Consider two machines with the host
names ndb1l and ndb2, both in the cl ust er network domain. Red Hat Linux (including some derivatives
such as CentOS and Fedora) places the following entries in these machines'/ et ¢/ host s files:

ndbl /etc/hosts:
127.0.0.1 ndbl. cl uster ndbl | ocal host. | ocal domai n | ocal host

ndb2 /etc/hosts:
127.0.0.1 ndb2. cl uster ndb2 | ocal host. | ocal dormai n | ocal host

SUSE Linux (including OpenSUSE) places these entries in the machines' / et c/ host s files:
ndbl /etc/hosts:

127.0.0.1 | ocal host

127.0.0.2 ndbl. cl uster ndbl

ndb2 /etc/hosts:

40

Installation of NDB Cluster on Linux

127.0.0.1 | ocal host
127.0.0. 2 ndb2. cl ust er ndb2

In both instances, ndb1 routes ndb1. cl ust er to a loopback IP address, but gets a public IP address
from DNS for ndb2. cl ust er, while ndb2 routes ndb2. cl ust er to a loopback address and obtains a
public address for ndb1. cl ust er. The result is that each data node connects to the management server,
but cannot tell when any other data nodes have connected, and so the data nodes appear to hang while
starting.

Caution

You cannot mix | ocal host and other host names or IP addresses in

confi g. i ni . Forthese reasons, the solution in such cases (other than to use IP
addresses for all conf i g. i ni Host Nane entries) is to remove the fully qualified
host names from / et ¢/ host s and use these in confi g. i ni for all cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop

PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-issue
Ethernet networking appliance such as a switch. (All machines should use network cards with the same
throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four machines
should have 1 Gbps cards.) NDB Cluster works in a 100 Mbps network; however, gigabit Ethernet provides
better performance.

Important

NDB Cluster is not intended for use in a network for which throughput is less than
100 Mbps or which experiences a high degree of latency. For this reason (among
others), attempting to run an NDB Cluster over a wide area network such as the
Internet is not likely to be successful, and is not supported in production.

Sample data. We use the wor | d database which is available for download from the MySQL website
(see https://dev.mysgl.com/doc/index-other.html). We assume that each machine has sufficient memory
for running the operating system, required NDB Cluster processes, and (on the data nodes) storing the
database.

For general information about installing MySQL, see Installing and Upgrading MySQL. For information
about installation of NDB Cluster on Linux and other Unix-like operating systems, see Section 3.1,
“Installation of NDB Cluster on Linux”. For information about installation of NDB Cluster on Windows
operating systems, see Section 3.2, “Installing NDB Cluster on Windows”.

For general information about NDB Cluster hardware, software, and networking requirements, see
Section 2.3, “NDB Cluster Hardware, Software, and Networking Requirements”.

3.1 Installation of NDB Cluster on Linux

This section covers installation methods for NDB Cluster on Linux and other Unix-like operating systems.
While the next few sections refer to a Linux operating system, the instructions and procedures given
there should be easily adaptable to other supported Unix-like platforms. For manual installation and setup
instructions specific to Windows systems, see Section 3.2, “Installing NDB Cluster on Windows”.

41

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/5.6/en/installing.html

Installing an NDB Cluster Binary Release on Linux

Each NDB Cluster host computer must have the correct executable programs installed. A host running

an SQL node must have installed on it a MySQL Server binary (nysqgl d). Management nodes require the
management server daemon (ndb_ngnd); data nodes require the data node daemon (ndbd or ndbnt d). It
is not necessary to install the MySQL Server binary on management node hosts and data node hosts. It is
recommended that you also install the management client (ndb_ngn) on the management server host.

Installation of NDB Cluster on Linux can be done using precompiled binaries from Oracle (downloaded as
a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of these
installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the NDB Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 3.3, “Initial
Configuration of NDB Cluster”.

3.1.1 Installing an NDB Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each cluster
host is to download the binary archive from the NDB Cluster downloads page. (For the most recent 64-bit
NDB 7.4 release, thisis mysql - cl ust er-gpl -7. 4. 34-1i nux-glibc2. 12-x86_64.tar.gz.) We
assume that you have placed this file in each machine's / var / t np directory.

If you require a custom binary, see Installing MySQL Using a Development Source Tree.
Note

After completing the installation, do not yet start any of the binaries. We show
you how to do so following the configuration of the nodes (see Section 3.3, “Initial
Configuration of NDB Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps as
the system r oot user:

1. Checkyour/etc/ passwd and/ et c/ group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysqgl user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new nysql user group, and then add a
nysql user to this group:

$> groupadd nysq|
$> useradd -g nysql -s /bin/fal se nysql

The syntax for user add and gr oupadd may differ slightly on different versions of Unix, or they may
have different names such as adduser and addgr oup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named nysql to the mysql directory.

Note

The actual file and directory names vary according to the NDB Cluster version
number.

$> cd /var/tnp
$> tar -C /usr/local -xzvf nysql-cluster-gpl-7.4.34-1inux-glibc2.12-x86_64.tar.gz

42

https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/installing-development-tree.html

Installing an NDB Cluster Binary Release on Linux

$>In -s /usr/local /nysql-cluster-gpl-7.4.34-1inux-glibc2.12-x86_64 /usr/local/nysq

Change location to the nmysql directory and run the supplied script for creating the system databases:

$> cd nysq
$> scripts/nysqgl _install _db --user=nysq

Set the necessary permissions for the MySQL server and data directories:

$> chown -R root
$> chown -R nysqgl data
$> chgrp -R nysq

Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when
the operating system is booted up:

$> cp support-files/mysql.server /etc/rc.d/init.d/
$> chnod +x /etc/rc.d/init.d/ mysql.server
$> chkconfig --add nmysql . server

(The startup scripts directory may vary depending on your operating system and version—for example,
in some Linux distributions, itis/etc/init.d.)

Here we use Red Hat's chkconf i g for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as updat e- r c. d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to reside.

Data nodes. Installation of the data nodes does not require the nmysql d binary. Only the NDB Cluster
data node executable ndbd (single-threaded) or ndbnt d (multithreaded) is required. These binaries can
also be found in the . t ar . gz archive. Again, we assume that you have placed this archive in / var / t np.

As system r oot (that is, after using sudo, su r oot , or your system's equivalent for temporarily assuming
the system administrator account's privileges), perform the following steps to install the data node binaries
on the data node hosts:

1.

Change location to the / var / t np directory, and extract the ndbd and ndbnt d binaries from the
archive into a suitable directory such as / usr/ | ocal / bi n:

$> cd /var/tnp

$> tar -zxvf nysql-cluster-gpl-7.4.34-1inux-glibc2.12-x86_64.tar.gz
$> cd nysql -cluster-gpl-7.4.34-1inux-glibc2. 12-x86_64

$> cp bin/ndbd /usr/l ocal/bin/ndbd

$> cp bin/ndbntd /usr/|ocal/bin/ndbntd

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from / var /t np once ndb_ngmand ndb_ngnd have been copied to the executables
directory.)

Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chnod +x ndb*

The preceding steps should be repeated on each data node host.

Although only one of the data node executables is required to run an NDB Cluster data node, we have
shown you how to install both ndbd and ndbnt d in the preceding instructions. We recommend that you do
this when installing or upgrading NDB Cluster, even if you plan to use only one of them, since this saves
time and trouble in the event that you later decide to change from one to the other.

43

Installing NDB Cluster from RPM

Note

The data directory on each machine hosting a data node is / usr /| ocal / nysql /
dat a. This piece of information is essential when configuring the management
node. (See Section 3.3, “Initial Configuration of NDB Cluster”.)

Management nodes. Installation of the management node does not require the mysql d binary.
Only the NDB Cluster management server (ndb_ngnd) is required; you most likely want to install the
management client (ndb_ngn) as well. Both of these binaries also be found in the . t ar . gz archive.
Again, we assume that you have placed this archive in / var/ t np.

As system r oot , perform the following steps to install ndb_ngnd and ndb_ngmon the management node
host:

1. Change location to the / var / t np directory, and extract the ndb_ngmand ndb_ngnd from the archive
into a suitable directory such as/ usr /| ocal / bi n:

$> cd /var/tnp

$> tar -zxvf nysql-cluster-gpl-7.4.34-1inux-glibc2. 12-x86_64.tar.gz
$> cd nysql -cluster-gpl-7.4.34-1inux-glibc2. 12-x86_64

$> cp bi n/ndb_mgnt /usr/| ocal /bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from / var /t np once ndb_ngmand ndb_ngnd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

$> cd /usr/local/bin
$> chnod +x ndb_ngmn

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in our
example NDB Cluster.

3.1.2 Installing NDB Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of NDB Cluster
node using RPM packages supplied by Oracle.

RPMs are available for both 32-bit and 64-bit Linux platforms. The filenames for these RPMs use the
following pattern:

MySQL- Cl ust er - conponent - pr oduct t ype- ndbver si on. di stri bution. architecture.rpm
conmponent: = {server | client [| other]}

producttype: = {gpl | advanced}

ndbver si on: = nmaj or. m nor. rel ease

distribution:= {slesl0 | rhel5 | el 6}

architecture: = {i386 | x86_64}

The conponent can be server orclient. (Other values are possible, but since only the ser ver and
cl i ent components are required for a working NDB Cluster installation, we do not discuss them here.)
The product t ype for Community RPMs downloaded from https://dev.mysql.com/downloads/cluster/ is
always gpl ; advanced is used to indicate commercial releases. ndbver si on represents the three-part
NDB storage engine version number in 7.3.x or 7.4.x format. The di st ri buti on can be one of sl es11

44

https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster from RPM

(SUSE Enterprise Linux 11), r hel 5 (Oracle Linux 5, Red Hat Enterprise Linux 4 and 5), or el 6 (Oracle
Linux 6, Red Hat Enterprise Linux 6) The ar chi t ect ur e is i 386 for 32-bit RPMs and x86_64 for 64-bit
versions.

For an NDB Cluster, one and possibly two RPMs are required:

» The server RPM (for example, MySQL- Cl ust er-server-gpl-7.3.34-1.slesl1l.i 386.rpmor
MySQL- Cl uster-server-gpl-7.4.34-1.sles1l.i 386.rpm), which supplies the core files needed
to run a MySQL Server with NDBCLUSTER storage engine support (that is, as an NDB Cluster SQL node)
as well as all NDB Cluster executables, including the management node, data node, and ndb_ngmclient
binaries. This RPM is always required for installing NDB Cluster.

« If you do not have your own client application capable of administering a MySQL server,
you should also obtain and install the cl i ent RPM (for example, MySQL- Cl ust er -
client-gpl-7.3.34-1.slesl11.i386.rpmor MySQL-Cl uster-client-
gpl-7.4.34-1.slesll.i 386.rpm), which supplies the mysql client

The NDB Cluster version number in the RPM file names (shown here as 7. 3. 34 or 7. 4. 34, depending
on whether you are installing NDB Cluster 7.3 or NDB Cluster 7.4) can vary according to the version
which you are actually using. It is very important that all of the Cluster RPMs to be installed have the same
version number. The ar chi t ect ur e designation should also be appropriate to the machine on which the
RPM is to be installed; in particular, you should keep in mind that 64-bit RPMs cannot be used with 32-bit
operating systems.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the ser ver
RPM. To do so, copy this RPM to the data node host, and run the following command as the system root
user, replacing the name shown for the RPM as necessary to match that of the RPM downloaded from the
MySQL website:

$> rpm-Uhv MySQ.-Cl uster-server-gpl-7.3.34-1.sles1l.i386.rpm

or

$> rpm -Unv MySQL-Cl uster-server-gpl-7.4.34-1.sl es11.i386.rpm

Although this installs all NDB Cluster binaries, only the program ndbd or ndbnt d (both in / usr/ sbi n) is
actually needed to run an NDB Cluster data node.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the ser ver RPM
by executing the following command as the system root user, replacing the name shown for the RPM as
necessary to match the name of the RPM downloaded from the MySQL website:

$> rpm-Uhv MySQ.-Cl uster-server-gpl-7.3.34-1.sles1l.i386.rpm

or

$> rpm -Unv MySQL-Cl uster-server-gpl-7.4.34-1.sl es11.i386.rpm

This installs the MySQL server binary (mysql d) with NDB storage engine support in the / usr/ sbi n
directory, as well as all needed MySQL Server support files. It also installs the mysql . server and
nmysql d_saf e startup scripts (in / usr/ shar e/ nysql and/ usr/ bi n, respectively). The RPM installer
should take care of general configuration issues (such as creating the mysql user and group, if needed)
automatically.

To administer the SQL node (MySQL server), you should also install the cl i ent RPM, as shown here:

$> rpm-Uhv MySQL-Cluster-client-gpl-7.3.34-1.sles1l.i386.rpm

or

$> rpm-Unv MySQL-Cl uster-client-gpl-7.4.34-1.sles11.i386.rpm

45

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Installing NDB Cluster Using .deb Files

This installs the nysql client program.

Management nodes. To install the NDB Cluster management server, it is necessary only to use the
server RPM. Copy this RPM to the computer intended to host the management node, and then install
it by running the following command as the system root user (replace the name shown for the RPM as
necessary to match that of the ser ver RPM downloaded from the MySQL website):

$> rpm -Unhv MySQL- Ol ust er-server-gpl -7.3.34-1. sl es11.i386.rpm
or

$> rpm -Uhv MySQL-C uster-server-gpl-7.4.34-1.sles11.i386.rpm

Although this RPM installs many other files, only the management server binary ndb_ngnd (in the /
usr/ sbi n directory) is actually required for running a management node. The ser ver RPM also installs
ndb_ngm the NDB management client.

See Installing MySQL on Linux Using RPM Packages from Oracle, for general information about installing
MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster as discussed in Section 3.3, “Initial
Configuration of NDB Cluster”.

3.1.3 Installing NDB Cluster Using .deb Files

The section provides information about installing NDB Cluster on Debian and related Linux distributions
such Ubuntu using the . deb files supplied by Oracle for this purpose.

Oracle provides . deb installer files for NDB Cluster 7.3 and NDB Cluster 7.4 for 32-bit and 64-bit
platforms. For a Debian-based system, only a single installer file is necessary. This file is named using the
pattern shown here, according to the applicable NDB Cluster version, Debian version, and architecture:

nmysql - cl ust er - gpl - ndbver - debi andebi anver - ar ch. deb

Here, ndbver is the 3-part NDB engine version number, debi anver is the major version of Debian (6. 0
or 7), and ar ch is one of i 686 or x86_64. In the examples that follow, we assume you wish to install NDB
7.4.9 on a 64-bit Debian 7 system; in this case, the installer file is named nysql - cl uster-gpl -7. 4. 9-
debi an7- x86_64. deb.

Once you have downloaded the appropriate . deb file, you can install it from the command line using dpkg,
like this:

$> dpkg -i nysql-cluster-gpl-7.4.9-debi an7-i 686. deb
You can also remove it using dpkg as shown here:
$> dpkg -r nysq

The installer file should also be compatible with most graphical package managers that work with . deb
files, such as GDebi for the Gnome desktop.

The . deb file installs NDB Cluster under / opt / nysql / server -ver si on/ , where ver si on is the 2-
part release series version for the included MySQL server. For both NDB Cluster 7.3 and NDB Cluster 7.4,
this is always 5. 6. The directory layout is the same as that for the generic Linux binary distribution (see
MySQL Installation Layout for Generic Unix/Linux Binary Package), with the exception that startup scripts
and configuration files are found in support -fil es instead of shar e. All NDB Cluster executables, such
as ndb_ngm ndbd, and ndb_ngnd, are placed in the bi n directory.

3.1.4 Building NDB Cluster from Source on Linux

46

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/linux-installation-rpm.html
https://dev.mysql.com/doc/refman/5.6/en/binary-installation.html#binary-installation-layout

Building NDB Cluster from Source on Linux

This section provides information about compiling NDB Cluster on Linux and other Unix-like platforms.
Building NDB Cluster from source is similar to building the standard MySQL Server, although it differs

in a few key respects discussed here. For general information about building MySQL from source, see
Installing MySQL from Source. For information about compiling NDB Cluster on Windows platforms, see
Section 3.2.2, “Compiling and Installing NDB Cluster from Source on Windows”.

Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB Cluster
downloads page at https://dev.mysqgl.com/downloads/cluster/. The archived source file should have

a name similar to mysql - cl uster-gpl -7. 3. 34. tar. gz (NDB Cluster 7.3) or nysql - cl ust er -

gpl -7.4.34.tar.gz (NDB Cluster 7.4). You can also obtain NDB Cluster sources from GitHub at https://
github.com/mysql/mysql-server/tree/cluster-7.3 (NDB 7.3) and https://github.com/mysqgl/mysql-server/tree/
cluster-7.4 (NDB 7.4). Building NDB Cluster 7.3 or 7.4 from standard MySQL Server 5.6 sources is not
supported.

The W TH_NDBCLUSTER _STORAGE _ENG NE option for CVake causes the binaries for the management
nodes, data nodes, and other NDB Cluster programs to be built; it also causes nysql d to be compiled with
NDB storage engine support. This option (or its alias W TH_NDBCLUSTER) is required when building NDB
Cluster.

Important

In NDB Cluster 7.3 and later, the W TH_NDB_JAVA option is enabled by default.
This means that, by default, if CMake cannot find the location of Java on your
system, the configuration process fails; if you do not wish to enable Java and
ClusterJ support, you must indicate this explicitly by configuring the build using -
DW TH_NDB_JAVA=OFF. Use W TH_CLASSPATH to provide the Java classpath if
needed.

For more information about C\Vake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

After you have run make && nmake install (or your system's equivalent), the result is similar to what is
obtained by unpacking a precompiled binary to the same location.

Management nodes. When building from source and running the default rake i nstal |, the
management server and management client binaries (ndb_ngnd and ndb_ngn) can be found in / usr/
[ocal / mysql / bi n. Only ndb_ngnd is required to be present on a management node host; however,
it is also a good idea to have ndb_ngmpresent on the same host machine. Neither of these executables
requires a specific location on the host machine's file system.

Data nodes. The only executable required on a data node host is the data node binary ndbd or

ndbnt d. (nysql d, for example, does not have to be present on the host machine.) By default, when
building from source, this file is placed in the directory / usr/ | ocal / mysql / bi n. For installing on multiple
data node hosts, only ndbd or ndbnt d need be copied to the other host machine or machines. (This
assumes that all data node hosts use the same architecture and operating system; otherwise you may
need to compile separately for each different platform.) The data node binary need not be in any particular
location on the host's file system, as long as the location is known.

When compiling NDB Cluster from source, no special options are required for building multithreaded
data node binaries. Configuring the build with NDB storage engine support causes ndbnt d to be built
automatically; make i nstal | places the ndbnt d binary in the installation bi n directory along with

nysqgl d, ndbd, and ndb_ngm

SQL nodes. If you compile MySQL with clustering support, and perform the default installation (using
make install asthe systemr oot user), nysql dis placedin/usr/ | ocal / mysql / bi n. Follow the
steps given in Installing MySQL from Source to make nmysql d ready for use. If you want to run multiple

SQL nodes, you can use a copy of the same nmysql d executable and its associated support files on

47

https://dev.mysql.com/doc/refman/5.6/en/source-installation.html
https://dev.mysql.com/downloads/cluster/
https://github.com/mysql/mysql-server/tree/cluster-7.3
https://github.com/mysql/mysql-server/tree/cluster-7.3
https://github.com/mysql/mysql-server/tree/cluster-7.4
https://github.com/mysql/mysql-server/tree/cluster-7.4
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/source-installation.html

Installing NDB Cluster on Windows

several machines. The easiest way to do this is to copy the entire / usr/ | ocal / nysql directory and all
directories and files contained within it to the other SQL node host or hosts, then repeat the steps from
Installing MySQL from Source on each machine. If you configure the build with a nondefault PREFI X
option, you must adjust the directory accordingly.

In Section 3.3, “Initial Configuration of NDB Cluster”, we create configuration files for all of the nodes in our
example NDB Cluster.

3.2 Installing NDB Cluster on Windows

This section describes installation procedures for NDB Cluster on Windows hosts. NDB Cluster 7.3 and
NDB Cluster 7.4 binaries for Windows can be obtained from https://dev.mysql.com/downloads/cluster/.
For information about installing NDB Cluster on Windows from a binary release provided by Oracle, see
Section 3.2.1, “Installing NDB Cluster on Windows from a Binary Release”.

It is also possible to compile and install NDB Cluster from source on Windows using Microsoft Visual
Studio. For more information, see Section 3.2.2, “Compiling and Installing NDB Cluster from Source on
Windows”.

3.2.1 Installing NDB Cluster on Windows from a Binary Release

This section describes a basic installation of NDB Cluster on Windows using a binary “no-install” NDB
Cluster release provided by Oracle, using the same 4-node setup outlined in the beginning of this section
(see Chapter 3, NDB Cluster Installation), as shown in the following table:

Table 3.2 Network addresses of nodes in example cluster

Node IP Address

Management node (ngnd) 198.51.100.10
SQL node (nysql d) 198.51.100.20
Data node "A" (ndbd) 198.51.100.30
Data node "B" (ndbd) 198.51.100.40

As on other platforms, the NDB Cluster host computer running an SQL node must have installed on it a
MySQL Server binary (mysql d. exe). You should also have the MySQL client (nysql . exe) on this host.
For management nodes and data nodes, it is not necessary to install the MySQL Server binary; however,
each management node requires the management server daemon (ndb_ngnd. exe); each data node
requires the data node daemon (ndbd. exe or ndbnt d. exe). For this example, we refer to ndbd. exe
as the data node executable, but you can install ndbnt d. exe, the multithreaded version of this program,
instead, in exactly the same way. You should also install the management client (ndb_ngm exe) on the
management server host. This section covers the steps necessary to install the correct Windows binaries
for each type of NDB Cluster node.

Note

As with other Windows programs, NDB Cluster executables are named with the

. exe file extension. However, it is not necessary to include the . exe extension
when invoking these programs from the command line. Therefore, we often simply
refer to these programs in this documentation as nmysql d, nysql , ndb_ngnd, and
so on. You should understand that, whether we refer (for example) to mysql d or
nysql d. exe, either name means the same thing (the MySQL Server program).

For setting up an NDB Cluster using Oracles's no-i nst al | binaries, the first step in the installation
process is to download the latest NDB Cluster Windows ZIP binary archive from https://dev.mysqgl.com/
downloads/cluster/. This archive has a filename of the mysql - cl ust er - gpl - ver - wi nar ch. zi p,

48

https://dev.mysql.com/doc/refman/5.6/en/source-installation.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/downloads/cluster/

Installing NDB Cluster on Windows from a Binary Release

where ver is the NDB storage engine version (such as 7. 4. 34), and ar ch is the architecture (32 for 32-
bit binaries, and 64 for 64-bit binaries). For example, the NDB Cluster 7.4.34 archive for 64-bit Windows
systems is named nysql - cl uster-gpl -7. 4. 34-wi n64. zi p.

You can run 32-bit NDB Cluster binaries on both 32-bit and 64-bit versions of Windows; however, 64-bit
NDB Cluster binaries can be used only on 64-bit versions of Windows. If you are using a 32-bit version of
Windows on a computer that has a 64-bit CPU, then you must use the 32-bit NDB Cluster binaries.

To minimize the number of files that need to be downloaded from the Internet or copied between
machines, we start with the computer where you intend to run the SQL node.

SQL node. We assume that you have placed a copy of the archive in the directory C. \ Docunent s

and Settings\usernanme\ My Docunent s\ Downl oads on the computer having the IP address
198.51.100.20, where user nane is the name of the current user. (You can obtain this name using ECHO
%JSERNANVEY0N the command line.) To install and run NDB Cluster executables as Windows services, this
user should be a member of the Adni ni st r at or s group.

Extract all the files from the archive. The Extraction Wizard integrated with Windows Explorer is adequate
for this task. (If you use a different archive program, be sure that it extracts all files and directories from
the archive, and that it preserves the archive's directory structure.) When you are asked for a destination
directory, enter C: \ , which causes the Extraction Wizard to extract the archive to the directory C. \ nmysql -
cl uster-gpl -ver-w nar ch. Rename this directory to C: \ nysql .

It is possible to install the NDB Cluster binaries to directories other than C: \ nysql \ bi n; however, if you
do so, you must modify the paths shown in this procedure accordingly. In particular, if the MySQL Server
(SQL node) binary is installed to a location other than C. \ nysql or C.\ Program Fi | es\ MySQL\ My SQL
Server 5. 6, or if the SQL node's data directory is in a location other than C: \ nysql \ dat a or C.

\ Program Fi | es\ MySQL\ MySQL Server 5. 6\ dat a, extra configuration options must be used on the
command line or added to the ny. i ni or ny. cnf file when starting the SQL node. For more information
about configuring a MySQL Server to run in a nonstandard location, see Installing MySQL on Microsoft
Windows Using a noi nst al | ZIP Archive.

For a MySQL Server with NDB Cluster support to run as part of an NDB Cluster, it must be started with

the options - - ndbcl ust er and - - ndb- connect st ri ng. While you can specify these options on the
command line, it is usually more convenient to place them in an option file. To do this, create a new text file
in Notepad or another text editor. Enter the following configuration information into this file:

[nysgl d]

Options for nysqgld process:

ndbcl ust er # run NDB storage engine

ndb- connect string=198. 51. 100. 10 # | ocati on of managenent server

You can add other options used by this MySQL Server if desired (see Creating an Option File), but the file
must contain the options shown, at a minimum. Save this file as C. \ nysql \ ny. i ni . This completes the
installation and setup for the SQL node.

Data nodes. An NDB Cluster data node on a Windows host requires only a single executable, one of
either ndbd. exe or ndbnt d. exe. For this example, we assume that you are using ndbd. exe, but the
same instructions apply when using ndbnt d. exe. On each computer where you wish to run a data node
(the computers having the IP addresses 198.51.100.30 and 198.51.100.40), create the directories C:
\nmysqgl , C.\nysqgl \ bi n,and C: \ nysql \ cl ust er - dat a; then, on the computer where you downloaded
and extracted the no-i nst al | archive, locate ndbd. exe inthe C: \ nysqgl \ bi n directory. Copy this file
to the C:. \ mysql \ bi n directory on each of the two data node hosts.

To function as part of an NDB Cluster, each data node must be given the address or hostname of
the management server. You can supply this information on the command line using the - - ndb-
connect stri ng or - ¢ option when starting each data node process. However, it is usually preferable to

49

https://dev.mysql.com/doc/refman/5.6/en/windows-install-archive.html
https://dev.mysql.com/doc/refman/5.6/en/windows-install-archive.html
https://dev.mysql.com/doc/refman/5.6/en/windows-create-option-file.html

Installing NDB Cluster on Windows from a Binary Release

put this information in an option file. To do this, create a new text file in Notepad or another text editor and
enter the following text:

[mysql _cluster]
Options for data node process:
ndb- connect stri ng=198. 51. 100. 10 # | ocati on of nmanagenent server

Save this file as C. \ nysqgl \ nmy. i ni on the data node host. Create another text file containing the same
information and save it on as C. nysql \ ny. i ni on the other data node host, or copy the my.ini file from
the first data node host to the second one, making sure to place the copy in the second data node's C:
\'nmysqgl directory. Both data node hosts are now ready to be used in the NDB Cluster, which leaves only
the management node to be installed and configured.

Management node. The only executable program required on a computer used for hosting an NDB
Cluster management node is the management server program ndb_ngnd. exe. However, in order to
administer the NDB Cluster once it has been started, you should also install the NDB Cluster management
client program ndb_ngm exe on the same machine as the management server. Locate these two
programs on the machine where you downloaded and extracted the no-i nst al | archive; this should be
the directory C: \ mysqgl \ bi n on the SQL node host. Create the directory C: \ nysql \ bi n on the computer
having the IP address 198.51.100.10, then copy both programs to this directory.

You should now create two configuration files for use by ndb_ngnd. exe:

1. Alocal configuration file to supply configuration data specific to the management node itself. Typically,
this file needs only to supply the location of the NDB Cluster global configuration file (see item 2).

To create this file, start a new text file in Notepad or another text editor, and enter the following
information:

[mysql _cluster]
Options for nmanagenent node process
config-file=C /nysqgl/bin/config.ini

Save this file as the text file C: \ nysqgl \ bi n\ ny. i ni .

2. A global configuration file from which the management node can obtain configuration information
governing the NDB Cluster as a whole. At a minimum, this file must contain a section for each node
in the NDB Cluster, and the IP addresses or hostnames for the management node and all data nodes
(Host Nane configuration parameter). It is also advisable to include the following additional information:

¢ The IP address or hostname of any SQL nodes

¢ The data memory and index memory allocated to each data node (Dat aMenory and | ndexMenory
configuration parameters)

« The number of replicas, using the NoOf Repl i cas configuration parameter (see Section 2.2, “NDB
Cluster Nodes, Node Groups, Fragment Replicas, and Partitions”)

e The directory where each data node stores it data and log file, and the directory where the
management node keeps its log files (in both cases, the Dat aDi r configuration parameter)

Create a new text file using a text editor such as Notepad, and input the following information:

[ndbd defaul t]

Options affecting ndbd processes on all data nodes:

NoCf Repl i cas=2 # Nunmber of fragnment replicas

Dat aDi r =C: / nysql / cl ust er - dat a # Directory for each data node's data files
Forward sl ashes used in directory path,

rather than backsl ashes. This is correct;

50

Compiling and Installing NDB Cluster from Source on Windows

see Inportant note in text

Dat aMenor y=80M # Menory allocated to data storage
| ndexMenory=18M # Menory al located to index storage
For DataMenory and | ndexMenory, we have used the
default values. Since the "world" database takes up
only about 500KB, this should be nore than enough for
this exanple Cluster setup.
[ndb_ngmd]
Managenent process options:
Host Name=198. 51. 100. 10 # Hostnane or |P address of nmanagenent node

Dat abDi r =C: / nysql / bi n/ cl ust er - | ogs # Directory for management node |log files

[ndbd]
Options for data node "A":

(one [ndbd] section per data node)
Host Nane=198. 51. 100. 30 # Hostname or | P address

[ndbd]
Options for data node "B":
Host Name=198. 51. 100. 40 # Hostnanme or | P address

[nysal d]
SQ. node options:
Host Name=198. 51. 100. 20 # Hostnanme or | P address

Save this file as the text file C: \ mysqgl \ bi n\ config.ini.
Important

A single backslash character (\) cannot be used when specifying directory paths in
program options or configuration files used by NDB Cluster on Windows. Instead,
you must either escape each backslash character with a second backslash (\\), or
replace the backslash with a forward slash character (/). For example, the following
line from the [ndb_ngnd] section of an NDB Cluster confi g. i ni file does not
work:

Dat aDi r =C: \ nysql \ bi n\ cl uster-1ogs

Instead, you may use either of the following:
Dat aDi r=C: \\ nysql \\ bi n\\cluster-1ogs # Escaped backsl ashes

Dat aDi r =C: / nysql / bi n/ cl ust er - | ogs # Forward sl ashes

For reasons of brevity and legibility, we recommend that you use forward slashes
in directory paths used in NDB Cluster program options and configuration files on
Windows.

3.2.2 Compiling and Installing NDB Cluster from Source on Windows

Oracle provides precompiled NDB Cluster binaries for Windows which should be adequate for most users.
However, if you wish, it is also possible to compile NDB Cluster for Windows from source code. The
procedure for doing this is almost identical to the procedure used to compile the standard MySQL Server
binaries for Windows, and uses the same tools. However, there are two major differences:

 Building NDB Cluster requires using the NDB Cluster sources. These are available from the NDB Cluster
downloads page at https://dev.mysqgl.com/downloads/cluster/. The archived source file should have
a name similar to nysql - cl uster-gpl -7. 3. 34. tar. gz (NDB Cluster 7.3) or mysql - cl ust er -
gpl-7.4.34.tar. gz (NDB Cluster 7.4). You can also obtain NDB Cluster sources from GitHub at
https://github.com/mysqgl/mysql-server/tree/cluster-7.3 (NDB 7.3) and https://github.com/mysql/mysql-

51

https://dev.mysql.com/downloads/cluster/
https://github.com/mysql/mysql-server/tree/cluster-7.3
https://github.com/mysql/mysql-server/tree/cluster-7.4

Initial Startup of NDB Cluster on Windows

server/tree/cluster-7.4 (NDB 7.4). Building NDB Cluster 7.3 or 7.4 from standard MySQL Server 5.6
sources is not supported.

* You must configure the build using the W TH_NDBCLUSTER_STORAGE_ENG NE or W TH_NDBCLUSTER
option in addition to any other build options you wish to use with Cvake. (W TH_NDBCLUSTERis
supported as an alias for W TH_NDBCLUSTER_STORAGE_ENG NE, and works in exactly the same way.)

Important

In NDB Cluster 7.3 and later, the W TH_NDB_JAVA option is enabled by default.
This means that, by default, if CMake cannot find the location of Java on your
system, the configuration process fails; if you do not wish to enable Java and
ClusterJ support, you must indicate this explicitly by configuring the build using -
DW TH_NDB_JAVA=CFF. (Bug #12379735) Use W TH_CLASSPATH to provide the
Java classpath if needed.

For more information about C\ake options specific to building NDB Cluster, see Options for Compiling
NDB Cluster.

Once the build process is complete, you can create a Zip archive containing the compiled binaries;
Installing MySQL Using a Standard Source Distribution provides the commands needed to perform this
task on Windows systems. The NDB Cluster binaries can be found in the bi n directory of the resulting
archive, which is equivalent to the no- i nst al | archive, and which can be installed and configured in the
same manner. For more information, see Section 3.2.1, “Installing NDB Cluster on Windows from a Binary
Release”.

3.2.3 Initial Startup of NDB Cluster on Windows

Once the NDB Cluster executables and needed configuration files are in place, performing an initial

start of the cluster is simply a matter of starting the NDB Cluster executables for all nodes in the cluster.
Each cluster node process must be started separately, and on the host computer where it resides. The
management node should be started first, followed by the data nodes, and then finally by any SQL nodes.

1. On the management node host, issue the following command from the command line to start the
management node process. The output should appear similar to what is shown here:

C:\ nysql \ bi n> ndb_ngnd
2010- 06-23 07:53:34 [Mgnt Srvr] | NFO -- NDB Cl uster Managenment Server. mnysql-5.6.51-ndb-7.4.35
2010- 06-23 07:53:34 [Mgnt Srvr] I NFO -- Reading cluster configuration from'config.ini'

The management node process continues to print logging output to the console. This is normal,
because the management node is not running as a Windows service. (If you have used NDB Cluster on
a Unix-like platform such as Linux, you may notice that the management node's default behavior in this
regard on Windows is effectively the opposite of its behavior on Unix systems, where it runs by default
as a Unix daemon process. This behavior is also true of NDB Cluster data node processes running on
Windows.) For this reason, do not close the window in which ndb_ngnd. exe is running; doing so kills
the management node process. (See Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”, where we show how to install and run NDB Cluster processes as Windows services.)

The required - f option tells the management node where to find the global configuration file
(confi g.ini). The long form of this option is - - confi g-fi |l e.

Important

An NDB Cluster management node caches the configuration data that it reads
from confi g. i ni ; once it has created a configuration cache, it ignores the
config.ini file on subsequent starts unless forced to do otherwise. This

52

https://github.com/mysql/mysql-server/tree/cluster-7.4
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndbcluster_storage_engine
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndbcluster
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_ndb_java
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#option_cmake_with_classpath
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/5.6/en/source-configuration-options.html#cmake-mysql-cluster-options
https://dev.mysql.com/doc/refman/5.6/en/installing-source-distribution.html

Initial Startup of NDB Cluster on Windows

means that, if the management node fails to start due to an error in this file,
you must make the management node re-read confi g. i ni after you have
corrected any errors in it. You can do this by starting ndb_ngnd. exe with the
--reloador--initial optiononthe command line. Either of these options
works to refresh the configuration cache.

It is not necessary or advisable to use either of these options in the
management node's ny. i ni file.

2. On each of the data node hosts, run the command shown here to start the data node processes:

C:\ nysql \ bi n> ndbhd
2010- 06- 23 07:53:46 [ndbd] INFO -- Configuration fetched from'| ocal host: 1186', generation: 1

In each case, the first line of output from the data node process should resemble what is shown in the
preceding example, and is followed by additional lines of logging output. As with the management node
process, this is normal, because the data node is not running as a Windows service. For this reason, do
not close the console window in which the data node process is running; doing so kills ndbd. exe. (For
more information, see Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”.)

3. Do not start the SQL node yet; it cannot connect to the cluster until the data nodes have finished
starting, which may take some time. Instead, in a new console window on the management node host,
start the NDB Cluster management client ndb_ngm exe, which should be in C: \ mysqgl \ bi n on the
management node host. (Do not try to re-use the console window where ndb_ngnd. exe is running by
typing CTRL+C, as this kills the management node.) The resulting output should look like this:

C:\nysql \ bi n> ndb_ngm
- NDB Cluster -- Managenent Client --
ndb_ngne

When the prompt ndb_ngne appears, this indicates that the management client is ready to receive
NDB Cluster management commands. You can observe the status of the data nodes as they start by
entering ALL STATUS at the management client prompt. This command causes a running report of the
data nodes's startup sequence, which should look something like this:

ndb_mgn> ALL STATUS

Connected to Managenment Server at: |ocal host: 1186

Node 2: starting (Last conpleted phase 3) (nysql-5.6.51-ndb-7. 4. 35)
Node 3: starting (Last conpleted phase 3) (nysql-5.6.51-ndb-7. 4. 35)

Node 2: starting (Last conpleted phase 4) (nysql-5.6.51-ndb-7. 4. 35)
Node 3: starting (Last conpleted phase 4) (nysql-5.6.51-ndb-7. 4. 35)

Node 2: Started (version 7.4.35)
Node 3: Started (version 7.4.35)

ndb_ngn®
Note

Commands issued in the management client are not case-sensitive; we

use uppercase as the canonical form of these commands, but you are not
required to observe this convention when inputting them into the ndb_ngm
client. For more information, see Section 6.1, “Commands in the NDB Cluster
Management Client”.

The output produced by ALL STATUS is likely to vary from what is shown here, according to the speed
at which the data nodes are able to start, the release version number of the NDB Cluster software

53

Installing NDB Cluster Processes as Windows Services

you are using, and other factors. What is significant is that, when you see that both data nodes have
started, you are ready to start the SQL node.

You can leave ndb_ngm exe running; it has no negative impact on the performance of the NDB
Cluster, and we use it in the next step to verify that the SQL node is connected to the cluster after you
have started it.

On the computer designated as the SQL node host, open a console window and navigate to the
directory where you unpacked the NDB Cluster binaries (if you are following our example, this is C:

\ mysqgl \ bi n).
Start the SQL node by invoking mysql d. exe from the command line, as shown here:

C:\nysqgl\bi n> nysqgl d --consol e

The - - consol e option causes logging information to be written to the console, which can be helpful in
the event of problems. (Once you are satisfied that the SQL node is running in a satisfactory manner,
you can stop it and restart it out without the - - consol e option, so that logging is performed normally.)

In the console window where the management client (ndb_ngm exe) is running on the management

node host, enter the SHONcommand, which should produce output similar to what is shown here:

ndb_ngn»> SHOW
Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
i d=2 @198. 51. 100. 30 (Version: 5.6.51-ndb-7.4.35, Nodegroup: 0, *)
i d=3 @198. 51. 100. 40 (Version: 5.6.51-ndb-7.4.35, Nodegroup: 0)

[ndb_nmgnd(M3M)] 1 node(s)
id=1 @198. 51. 100. 10 (Version: 5.6.51-ndb-7. 4. 35)

[mysql d(API')] 1 node(s)
i d=4 @198. 51. 100. 20 (Version: 5.6.51-ndb-7. 4. 35)

You can also verify that the SQL node is connected to the NDB Cluster in the nysqgl client
(nysql . exe) using the SHOW ENG NE NDB STATUS statement.

You should now be ready to work with database objects and data using NDB Cluster's NDBCLUSTER
storage engine. See Section 3.5, “NDB Cluster Example with Tables and Data”, for more information and
examples.

You can also install ndb_ngnd. exe, ndbd. exe, and ndbnt d. exe as Windows services. For information

on how to do this, see Section 3.2.4, “Installing NDB Cluster Processes as Windows Services”).

3.2.4 Installing NDB Cluster Processes as Windows Services

Once you are satisfied that NDB Cluster is running as desired, you can install the management nodes and

data nodes as Windows services, so that these processes are started and stopped automatically whenever

Windows is started or stopped. This also makes it possible to control these processes from the command
line with the appropriate SC START and SC STOP commands, or using the Windows graphical Ser vi ces
utility. NET START and NET STOP commands can also be used.

Installing programs as Windows services usually must be done using an account that has Administrator
rights on the system.

To install the management node as a service on Windows, invoke ndb_ngnd. exe from the command line

on the machine hosting the management node, using the - - i nst al | option, as shown here:

54

https://dev.mysql.com/doc/refman/5.6/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/5.6/en/server-options.html#option_mysqld_console
https://dev.mysql.com/doc/refman/5.6/en/show-engine.html#show-engine-ndb-status
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Installing NDB Cluster Processes as Windows Services

C.\> C \nysql\bin\ndb_ngnd. exe --install

Installing service ' NDB Cl uster Managenent Server'
as '"C \nysql\bin\ndbd. exe" "--service=ndb_ngmd"’

Servi ce successfully installed.

Important

When installing an NDB Cluster program as a Windows service, you should always
specify the complete path; otherwise the service installation may fail with the error
The system cannot find the file specified.

The - -i nst al | option must be used first, ahead of any other options that might be specified for
ndb_ngnd. exe. However, it is preferable to specify such options in an options file instead. If your options
file is not in one of the default locations as shown in the output of ndb_ngnd. exe - - hel p, you can
specify the location using the - - confi g-fi | e option.

Now you should be able to start and stop the management server like this:
C.\> SC START ndb_ngnd

C.\> SC STOP ndb_ngnd
Note

If using NET commands, you can also start or stop the management server as a
Windows service using the descriptive name, as shown here:

C.\> NET START 'NDB C uster Managenent Server'

The NDB Cl uster Managenent Server service is starting.

The NDB O uster Managenent Server service was started successfully.
C.\> NET STOP 'NDB O uster Minagenent Server'

The NDB O uster Managenent Server service is stopping..
The NDB O uster Managenent Server service was stopped successfully.

It is usually simpler to specify a short service name or to permit the default service name to be used when
installing the service, and then reference that name when starting or stopping the service. To specify a
service name other than ndb_ngnd, append it to the - - i nst al | option, as shown in this example:

C.\> C \nysqgl\bin\ndb_ngnd. exe --install=ngndl

Installing service 'NDB O uster Managenent Server'

as '"C \nysql\bin\ndb_ngnd. exe" "--servi ce=ngnd1"’
Servi ce successfully install ed.

Now you should be able to start or stop the service using the name you have specified, like this:
C.\> SC START ngndl

C\> SC STOP ngndl

To remove the management node service, use SC DELETE servi ce_nane:

C:\> SC DELETE ngndl

Alternatively, invoke ndb_ngnd. exe with the - - r enove option, as shown here:

C:\> C \nysqgl\bin\ndb_ngnd. exe --renpve
Renovi ng service 'NDB O uster Managenent Server'
Servi ce successful ly renpved.

If you installed the service using a service name other than the default, pass the service name as the value
of the ndb_ngnd. exe - - r enove option, like this:

55

Initial Configuration of NDB Cluster

C.\> C \nysql\bin\ndb_ngnd. exe --renmove=ngndl
Renovi ng service ' ngndl’
Servi ce successfully renpved.

Installation of an NDB Cluster data node process as a Windows service can be done in a similar fashion,
using the - -i nst al | option for ndbd. exe (or ndbnt d. exe), as shown here:

C.\> C\nysqgl\bi n\ndbd. exe --install

Installing service 'NDB C uster Data Node Daenpbn' as '"C:\nysql\bin\ndbd. exe" "--service=ndbd"’
Servi ce successfully installed.

Now you can start or stop the data node as shown in the following example:
C:\> SC START ndhd

C.\> SC STCP ndbd

To remove the data node service, use SC DELETE servi ce_nane:

C.\> SC DELETE ndbd

Alternatively, invoke ndbd. exe with the - - r enove option, as shown here:

C.\> C\nysqgl\bi n\ndbd. exe --renobve
Renovi ng service 'NDB Cluster Data Node Daenon'
Servi ce successfully renpved.

As with ndb_ngnd. exe (and nysqgl d. exe), when installing ndbd. exe as a Windows service, you can
also specify a name for the service as the value of - - i nst al | , and then use it when starting or stopping
the service, like this:

C:\> C \nysqgl\bin\ndbd. exe --instal |l =dnodel
Installing service 'dnodel' as '"C:\nysql\bin\ndbd. exe" "--service=dnodel"'
Servi ce successfully install ed.

C.\> SC START dnodel

C.\> SC STOP dnodel

If you specified a service name when installing the data node service, you can use this name when
removing it as well, as shown here:

C.\> SC DELETE dnodel

Alternatively, you can pass the service name as the value of the ndbd. exe - - r enpve option, as shown
here:

C.\> C \nysqgl\bi n\ndbd. exe --renpve=dnodel
Renovi ng service ' dnodel’
Servi ce successfully renpved.

Installation of the SQL node as a Windows service, starting the service, stopping the service, and removing
the service are done in a similar fashion, using nysql d --i nstal | , SC START, SC STOP, and SC
DELETE (or nysqgl d - - r enove). NET commands can also be used to start or stop a service. For additional
information, see Starting MySQL as a Windows Service.

3.3 Initial Configuration of NDB Cluster

In this section, we discuss manual configuration of an installed NDB Cluster by creating and editing
configuration files.

56

https://dev.mysql.com/doc/refman/5.6/en/server-options.html#option_mysqld_remove
https://dev.mysql.com/doc/refman/5.6/en/windows-start-service.html

Initial Configuration of NDB Cluster

NDB Cluster (NDB versions 7.3 and later) also provides a GUI installer which can be used to perform
the configuration without the need to edit text files in a separate application. For more information, see
Section 3.8, “The NDB Cluster Auto-Installer (No longer supported)”.

For our four-node, four-host NDB Cluster (see Cluster nodes and host computers), it is necessary to write
four configuration files, one per node host.

» Each data node or SQL node requires a ny. cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the MySQL
server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage engine.

For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.

» The management node needs a conf i g. i ni file telling it how many fragment replicas to maintain, how
much memory to allocate for data and indexes on each data node, where to find the data nodes, where
to save data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The ny. cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the / et ¢ directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

$> vi /etc/ny.cnf
Note

We show vi being used here to create the file, but any text editor should work just
as well.

For each data node and SQL node in our example setup, nmy. cnf should look like this:

[nysql d]
Options for nysqld process:
ndbcl ust er # run NDB storage engine

[mysql _cl uster]
Options for NDB O uster processes:
ndb- connect stri ng=198. 51. 100. 10 # | ocati on of nanagenent server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysql d process with the ndbcl ust er and ndb-
connect stri ng parameters in the [nysql d] and [nysqgl _cl ust er] sections
of the ny. cnf file as shown previously, you cannot execute any CREATE TABLE
or ALTER TABLE statements without having actually started the cluster. Otherwise,
these statements fails with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to create
the directory in which the configuration file can be found and then to create the file itself. For example
(running as r oot):

$> nkdir /var/lib/nysql-cluster

$> cd /var/lib/nysqgl-cluster
$> vi config.ini

For our representative setup, the confi g. i ni file should read as follows:

[ndbd defaul t]

57

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

Initial Startup of NDB Cluster

Options affecting ndbd processes on all data nodes:
NoOf Repl i cas=2 # Nunmber of fragment replicas
Dat aMenor y=80M # How nuch menory to allocate for data storage
I ndexMenory=18M # How nmuch nmenory to allocate for index storage
For DataMenory and | ndexMenory, we have used the
default values. Since the "world" database takes up
only about 500KB, this should be nore than enough for
this exanple NDB C uster setup.
Ser ver Por t =2202 # This the default val ue; however, you can use any
port that is free for all the hosts in the cluster
Notel: It is recommended that you do not specify the port
nunber at all and sinply allow the default value to be used
i nst ead
Note2: The port was fornmerly specified using the PortNurmber
TCP paraneter; this paraneter is no | onger available in NDB
Cluster 7.5.

[ndb_ngnd]

Managenent process options:

Host Nane=198. 51. 100. 10 # Hostnanme or | P address of managenent node
Dat aDir=/var/li b/ mysqgl -cluster # Directory for managenent node log files

[ndbd]

Options for data node "A":

(one [ndbd] section per data node)

Host nane or | P address

Node ID for this data node

Directory for this data node's data files

Host Nane=198. 51. 100. 30
Nodel d=2
Dat abDi r =/ usr/ | ocal / nysql / dat a

*H H R H

[ndbd]

Options for data node "B":
Host Nane=198. 51. 100. 40

Nodel d=3

Dat abDi r =/ usr/ | ocal / nysql / dat a

Host nane or | P address
Node ID for this data node
Directory for this data node's data files

H* H H*

[nysql d]

SQL node options:
Host Nane=198. 51. 100. 20 Host nane or | P address

(additional nysqgld connections can be
specified for this node for various

pur poses such as runni ng ndb_restore)

*H H R H

Note

The wor | d database can be downloaded from https://dev.mysqgl.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you are
ready to proceed with starting the cluster and verifying that all processes are running. We discuss how this
is done in Section 3.4, “Initial Startup of NDB Cluster”.

For more detailed information about the available NDB Cluster configuration parameters and their uses,
see Section 4.3, “NDB Cluster Configuration Files”, and Chapter 4, Configuration of NDB Cluster. For
configuration of NDB Cluster as relates to making backups, see Section 6.8.3, “Configuration for NDB
Cluster Backups”.

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. However, the cluster can automatically allocate ports for data nodes
from those that are already free.

3.4 Initial Startup of NDB Cluster

58

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html

NDB Cluster Example with Tables and Data

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management
node process:

$> ndb_ngnd --initial -f /var/lib/nysql-cluster/config.ini

The first time that it is started, ndb_ngnd must be told where to find its configuration file, using the - f
or--config-fil e option. This option requires that - -i ni ti al or--rel oad also be specified; see
Section 5.4, “ndb_mgmd — The NDB Cluster Management Server Daemon”, for details.

2. On each of the data node hosts, run this command to start the ndbd process:

$> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_ngmmanagement node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

$> ndb_nmgm

-- NDB Cluster -- Managenent Cient --

ndb_ngm> SHOW

Connected to Managenent Server at: |ocal host: 1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @98.51.100.30 (Version: 5.6.51-ndb-7.4.35, Nodegroup: 0, *)
i d=3 @98.51.100.40 (Version: 5.6.51-ndb-7.4.35, Nodegroup: 0)

[ndb_mymd(M3M] 1 node(s)
id=1 @98.51.100. 10 (Version: 5.6.51-ndb-7. 4. 35)

[mysql d(API')] 1 node(s)
i d=4 @98.51.100.20 (Version: 5.6.51-ndb-7.4.35)

The SQL node is referenced here as [nysql d(API')], which reflects the fact that the mysql d process is
acting as an NDB Cluster API node.

Note

The IP address shown for a given NDB Cluster SQL or other API node in the output
of SHOWis the address used by the SQL or API node to connect to the cluster data
nodes, and not to any management node.

You should now be ready to work with databases, tables, and data in NDB Cluster. See Section 3.5, “NDB
Cluster Example with Tables and Data”, for a brief discussion.

3.5 NDB Cluster Example with Tables and Data

Note

The information in this section applies to NDB Cluster running on both Unix and
Windows platforms.

59

NDB Cluster Example with Tables and Data

Working with database tables and data in NDB Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

» For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify this,
use the ENG NE=NDBCLUSTER or ENG NE=NDB option when creating the table:

CREATE TABLE tbl _nanme (col _nanme col unm_defini ti ons) ENG NE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the
table to use NDBCLUSTER:

ALTER TABLE t bl _name ENG NE=NDBCLUSTER;

» Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes up
space just as does any other table index. (It is not uncommon to encounter problems due to insufficient
memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysql dunp, you can open the
SQL script in a text editor and add the ENG NE option to any table creation statements, or replace any
existing ENG NE options. Suppose that you have the wor | d sample database on another MySQL server
that does not support NDB Cluster, and you want to export the Ci t y table:

$> nysqgl dunp --add-drop-table world Gty > city_table.sql

The resulting ci ty_t abl e. sql file contains this table creation statement (and the | NSERT statements
necessary to import the table data):

DROP TABLE IF EXISTS "Gty ;

CREATE TABLE Gty (
“ID int(11) NOT NULL auto_increnent,
“Nane® char(35) NOT NULL default "'
“CountryCode’ char(3) NOT NULL default "'
"District™ char(20) NOT NULL default "'
“Popul ation® int(11) NOT NULL default 'O0',
PR MARY KEY ('ID)

) ENG NE=My| SAM DEFAULT CHARSET=I ati ni;

INSERT INTO "GCity VALUES (1,'Kabul','AFG,'Kabol', 1780000);
INSERT INTO "GCity VALUES (2,'Qandahar','AFG ,' Qandahar', 237500);
INSERT INTO "City" VALUES (3,'Herat','AFG ,'Herat', 186800);
(remai ning | NSERT statenents omtted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are two
ways that this can be accomplished. One of these is to modify the table definition before importing it into
the Cluster database. Using the Ci t y table as an example, modify the ENG NE option of the definition as
follows:

DROP TABLE IF EXISTS "City ;

CREATE TABLE "Gty (
“ID int(11) NOT NULL auto_increnent,
“Nane® char(35) NOT NULL default "'
" CountryCode” char(3) NOT NULL default "'
"District® char(20) NOT NULL default "'
“Popul ation® int(11) NOT NULL default 'O0',
PRI MARY KEY ('ID)

) ENG NE=NDBCLUSTER DEFAULT CHARSET=l ati n1;

INSERT INTO "City VALUES (1,'Kabul','AFG,'Kabol', 1780000);
INSERT INTO "Gty VALUES (2,' Qandahar','AFG ,' Qandahar', 237500);
INSERT INTO "City VALUES (3,'Herat','AFG ,'Herat', 186800);
(remaining | NSERT statenents onitted)

60

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/insert.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB Cluster Example with Tables and Data

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace all
instances of TYPE=engi ne_nane or ENG NE=engi ne_nane with ENG NE=NDBCLUSTER. If you do not
want to modify the file, you can use the unmaodified file to create the tables, and then use ALTER TABLE to
change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named wor | d on the SQL node of the cluster, you
can then use the nysql command-line clienttoread city tabl e. sql, and create and populate the
corresponding table in the usual manner:

$> nysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the
SQL node is running (in this case, on the machine with the IP address 198. 51. 100. 20).

To create a copy of the entire wor | d database on the SQL node, use nysqgl dunp on the noncluster server
to export the database to a file named wor | d. sql (for example, in the / t np directory). Then modify the
table definitions as just described and import the file into the SQL node of the cluster like this:

$> nysqgl world < /tnp/world. sql
If you save the file to a different location, adjust the preceding instructions accordingly.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in the
usual way (specify the r oot password at the Ent er passwor d: prompt):

$> nysql -u root -p

Ent er password:

Wel cone to the MySQL nonitor. Conmmands end with ; or \g.

Your MySQL connection id is 1 to server version: 5.6.51-ndb-7.4.35

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
nysql >

We simply use the MySQL server's r oot account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong r oot password. For more
information, see Securing the Initial MySQL Accounts.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when
accessing one another. Setting or changing MySQL user accounts (including the r oot account) effects
only applications that access the SQL node, not interaction between nodes. See Section 6.16.2, “NDB
Cluster and MySQL Privileges”, for more information.

If you did not modify the ENG NE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

nysql > USE wor | d;

nysqgl > ALTER TABLE City ENG NE=NDBCLUSTER,

nysqgl > ALTER TABLE Country ENG NE=NDBCLUSTER,

nysqgl > ALTER TABLE CountrylLanguage ENG NE=NDBCLUSTER,

Selecting a database and running a SELECT query against a table in that database is also accomplished in
the usual manner, as is exiting the MySQL Monitor:

nmysql > USE wor | d;
mysql > SELECT Nane, Popul ati on FROM City ORDER BY Popul ati on DESC LIMT 5;
S S T S +

| Name | Popul ation |

61

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/default-privileges.html

NDB Cluster Example with Tables and Data

Fommmmmeeaaa Fommmmmeeaaaa +
Bonbay	10500000
Seoul	9981619
S&o Paul o	9968485
Shanghai	9696300
Jakarta	9604900
Fommmmmeeaaa Fommmmmeeaaaa +

5 rows in set (0.34 sec)

mysql > \q
Bye

$>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to remember
that your application must access the SQL node, and not the management or data nodes. This brief
example shows how we might execute the SELECT statement just shown by using the PHP 5.X nysql i
extension running on a Web server elsewhere on the network:

<! DOCTYPE HTML PUBLI C "-//WBC// DTD HTM. 4.01 Transitional //EN'
"http://ww. w3. org/ TR ht m 4/ oose. dtd" >
<htm >
<head>
<meta http-equi v="=Cont ent - Type"
content="text/htm ; charset=i so-8859-1">
<title>SI MPLE nysqli SELECT</title>
</ head>
<body>
<?php
connect to SQ. node
$link = new nysqgli('198.51.100.20', 'root', 'root_password', 'world');
paraneters for nmysqgli constructor are
host, user, password, database

if(nysqgli_connect_errno())
di e("Connect failed: " . nmysqli_connect_error());

$query = "SELECT Nanme, Popul ation
FROM City
ORDER BY Popul ati on DESC
LIMT 5";

if no errors..
if($result = $link->query($query))

{
2>
<t abl e border="1" w dt h="40% cel | paddi ng="4" cellspacing ="1">
<t body>
<tr>
<th w dt h="10% >G ty</th>
<t h>Popul ati on</t h>
</tr>
<?
then display the results..
whi | e($row = $resul t->fetch_object())
printf("<tr>\n <td align=\"center\">%</td><td>%d</td>\n</tr>\n",
$row >Nane, $row >Popul ati on);
2>
</t body
</t abl e>
<?
...and verify the nunber of rows that were retrieved
printf("<p>Affected rows: %l</p>\n", $link->affected rows);
}
el se

otherwi se, tell us what went wong

62

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/select.html

Safe Shutdown and Restart of NDB Cluster

echo nysqli_error();
free the result set and the nmysqli connection object
$resul t->cl ose();

$l i nk->cl ose();
?>

</ body>
</htm >

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

3.6 Safe Shutdown and Restart of NDB Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the management
node:

$> ndb_ngm -e shut down

The - e option here is used to pass a command to the ndb_ngmclient from the shell. The command
causes the ndb_ngm ndb_ngnd, and any ndbd or ndbnt d processes to terminate gracefully.

Any SQL nodes can be terminated using nysql adm n shut down and other means. On Windows
platforms, assuming that you have installed the SQL node as a Windows service, you can use SC STOP
servi ce_nanme or NET STOP servi ce_nane.

To restart the cluster on Unix platforms, run these commands:
e On the management host (198. 51. 100. 10 in our example setup):
$> ndb_mgnd -f /var/lib/nysql-cluster/config.ini
* On each of the data node hosts (198. 51. 100. 30 and 198. 51. 100. 40):
$> ndbd
» Use the ndb_ngmclient to verify that both data nodes have started successfully.
» On the SQL host (198. 51. 100. 20):
$> nysql d_safe &

On Windows platforms, assuming that you have installed all NDB Cluster processes as Windows services
using the default service names (see Section 3.2.4, “Installing NDB Cluster Processes as Windows
Services”), you can restart the cluster as follows:

* On the management host (198. 51. 100. 10 in our example setup), execute the following command:

C.\> SC START ndb_ngnd

* On each of the data node hosts (198. 51. 100. 30 and 198. 51. 100. 40), execute the following
command:

C.\> SC START ndbd

» On the management node host, use the ndb_ngmclient to verify that the management node and both
data nodes have started successfully (see Section 3.2.3, “Initial Startup of NDB Cluster on Windows").

* On the SQL node host (198. 51. 100. 20), execute the following command:

63

Upgrading and Downgrading NDB Cluster

C:\> SC START nysql

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even
when making configuration changes, or performing upgrades to the cluster hardware or software (or both),
which require shutting down individual host machines, it is possible to do so without shutting down the
cluster as a whole by performing a rolling restart of the cluster. For more information about doing this, see
Section 6.5, “Performing a Rolling Restart of an NDB Cluster”.

3.7 Upgrading and Downgrading NDB Cluster

This section provides information about NDB Cluster software and table file compatibility between different
NDB Cluster 7.3 releases with regard to performing upgrades and downgrades as well as compatibility
matrices and notes. You should already be familiar with installing and configuring NDB Cluster prior to
attempting an upgrade or downgrade. See Chapter 4, Configuration of NDB Cluster.

Schema operations, including SQL DDL statements, cannot be performed while any data nodes are
restarting, and thus during an online upgrade or downgrade of the cluster. For other information regarding
the rolling restart procedure used to perform an online upgrade, see Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”.

Important

Only compatibility between MySQL versions with regard to NDBCLUSTER is taken
into account in this section, and there are likely other issues to be considered.

As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL
versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the NDB Cluster software. See Upgrading MySQL.

The tables shown here provide information on NDB Cluster upgrade and downgrade compatibility among
different releases of NDB Cluster 7.3 and of NDB Cluster 7.4, respectively. Additional notes about
upgrades and downgrades to, from, or within the NDB Cluster 7.3 and NDB Cluster 7.4 release series can
be found following the tables.

64

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/upgrading.html

Upgrades and Downgrades, NDB Cluster 7.4

Upgrades and Downgrades, NDB Cluster 7.4

Figure 3.2 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 7.4

MySQL NDB Cluster 7.4
A 7434
7.4.33
7.4.32
7.4.31
7.4.30
7.4.29
7.4.28
7.4.27
7.4.26
7.4.25
7.4.24
7.4.23
7.4.22
7.4.21
7.4.20
7.4.19
7.4.18
7417
7.4.16
7.4.15
7.4.14
7413
7.4.12
74.11
7.4.10

748
T.4.7
7.4.6
T7.4.5

Ny 7.4.4

KEY:

Online upgrades and
downgrades possible

* Mot released, or withdrawn
following release.

Version support. NDB Cluster 7.3 GA releases (7.3.2 and later) are supported for upgrades to NDB
Cluster 7.4 (7.4.4 and later):

NDB 7.4.10 Replacement Release. Shortly after the release of NDB 7.4.9, a regression was
discovered that adversely affected node and system restarts (Bug #22582233). This issue was known to
affect NDB 7.4.8 as well. NDB 7.4.10—incorporating a fix for this regression, but otherwise identical to
NDB 7.4.9—was released shortly thereafter as a replacement. Users of the NDB 7.4 series are advised to
bypass the 7.4.8 and 7.4.9 releases and to upgrade directly to NDB 7.4.10 (or later).

65

Upgrades and Downgrades, NDB Cluster 7.3

Upgrades and Downgrades, NDB Cluster 7.3

Figure 3.3 NDB Cluster Upgrade and Downgrade Compatibility, MySQL NDB Cluster 7.3

MySQL NDB Cluster 7.3
A 7.3.33
7.3.32
7.3.31
7.3.30
7.3.29
7.3.28
7.3.27
7.3.26
7.3.25
7.3.24
7.3.23
7.3.22
73.21
7.3.20
7.3.19
7.3.18
7.3.17
7.3.16
7.3.15
7.3.14
7.3.13
7.3.12
7311
7.3.10
7.39
738
737
736
735
7.34
7.3.3
7.3.2

KEY:

Online upgrades and
downgrades possible

Online downgrades not
possible

Known Issues—NDB 7.3

e Prior to NDB 7.3.8, nysql _upgr ade failed to drop and recreate ndbi nf 0. (Bug #74863, Bug
#20031425) In addition, when running mysql _upgr ade on an NDB Cluster SQL node, the expected

66

The NDB Cluster Auto-Installer (No longer supported)

drop of the per f or mance_schenma database on this node was instead performed on all SQL nodes
connected to the cluster. (Bug #200328691)

» NDB API, ClusterJ, and other applications used with recent releases of NDB Cluster 6.3 and later should
continue to work with NDB 7.3.2 and later without rewriting or recompiling.

* Itis not possible to downgrade online to NDB 7.3.2 or earlier from NDB 7.3.3 or later. Online upgrades
from NDB 7.3.2 to later NDB Cluster 7.3 releases are supported.

3.8 The NDB Cluster Auto-Installer (No longer supported)

Note

This feature has been removed from NDB Cluster, and is no longer supported. See
Section 2.4, “What is New in MySQL NDB Cluster”, for more information.

This section describes the web-based graphical configuration installer included as part of the NDB Cluster
7.3 and 7.4 distributions. Topics discussed include an overview of the installer and its parts, software and

other requirements for running the installer, navigating the GUI, and using the installer to set up and start

or stop an NDB Cluster on one or more host computers.

The NDB Cluster Auto-Installer is made up of two components. The front end is a GUI client implemented
as a Web page that loads and runs in a standard Web browser such as Firefox or Microsoft Internet
Explorer. The back end is a server process (ndb_set up. py) that runs on the local machine or on another
host to which you have access.

These two components (client and server) communicate with each other using standard HTTP requests
and responses. The back end can manage NDB Cluster software programs on any host where the back
end user has granted access. If the NDB Cluster software is on a different host, the back end relies on
SSH for access.

3.8.1 NDB Cluster Auto-Installer Requirements

This section provides information on supported operating platforms and software, required software, and
other prerequisites for running the NDB Cluster Auto-Installer.

Supported platforms. The NDB Cluster Auto-Installer is available with most NDB Cluster 7.3 and later
distributions for recent versions of Linux, Windows, Solaris, and macOS. For more detailed information
about platform support for NDB Cluster and the NDB Cluster Auto-Installer, see https://www.mysqgl.com/
support/supportedplatforms/cluster.html.

Supported Web browsers. The Web-based installer is supported with recent versions of Firefox
and Microsoft Internet Explorer. It should also work with recent versions of Opera, Safari, and Chrome,
although we have not thoroughly tested for compability with these browsers.

Required software—server. The following software must be installed on the host where the Auto-
Installer is run:

e Python 2.6 or higher. The Auto-Installer requires the Python interpreter and standard libraries. If
these are not already installed on the system, you may be able to add them using the system's package
manager. Otherwise, they can be downloaded from http://python.org/download!/.

» Paramiko 1.7.7.1 or higher. You can download this from http://www.lag.net/paramiko/ if it is not
available from your system's package manager.

67

https://dev.mysql.com/doc/refman/5.6/en/performance-schema.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi.html
https://dev.mysql.com/doc/ndbapi/en/mccj.html
https://www.mysql.com/support/supportedplatforms/cluster.html
https://www.mysql.com/support/supportedplatforms/cluster.html
http://python.org/download/
http://www.lag.net/paramiko/

Using the NDB Cluster Auto-Installer

e Pycrypto version 2.6 or higher. This cryptography module is required by Paramiko. If it is not
available using your system's package manage, you can download it from https://www.dlitz.net/software/

pycrypto/.

All of the software in the preceding list is included in the Windows version of the configuration tool, and
does not need to be installed separately.

Required software—remote hosts. The only software required for remote hosts where you wish
to deploy NDB Cluster nodes is the SSH server, which is usually installed by default on Linux and
Solaris systems. Several alternatives are available for Windows; for an overview of these, see http://
en.wikipedia.org/wiki/Comparison_of SSH_servers.

An additional requirement when using multiple hosts is that it is possible to authenticate to any of the
remote hosts using SSH and the proper keys or user credentials, as discussed in the next few paragraphs:

Authentication and security. Three basic security or authentication mechanisms for remote access
are available to the Auto-Installer, which we list and describe here:

 SSH. A secure shell connection is used to enable the back end to perform actions on remote hosts.
For this reason, an SSH server must be running on the remote host. In addition, the operating system
user running the installer must have access to the remote server, either with a user name and password,
or by using public and private keys.

Important

You should never use the system r oot account for remote access, as this is
extremely insecure. In addition, mysqgl d cannot normally be started by system
r oot . For these and other reasons, you should provide SSH credentials for a
regular user account on the target system, and not for system r oot . For more
information about this issue, see How to Run MySQL as a Normal User.

« HTTPS. Remote communication between the Web browser front end and the back end is not
encrypted by default, which means that information such as the user's SSH password is transmitted as
cleartext that is readable to anyone. For communication from a remote client to be encrypted, the back
end must have a certificate, and the front end must communicate with the back end using HTTPS rather
than HTTP. Enabling HTTPS is accomplished most easily through issuing a self-signed certificate. Once
the certificate is issued, you must make sure that it is used. You can do this by starting ndb_set up. py
from the command line with the - - use- htt ps and--cert-fil e options.

» Certificate-based authentication. The back end ndb_set up. py process can execute commands
on the local host as well as remote hosts. This means that anyone connecting to the back end can take
charge of how commands are executed. To reject unwanted connections to the back end, a certificate
may be required for authentication of the client. In this case, a certificate must be issued by the user,
installed in the browser, and made available to the back end for authentication purposes. You can enact
this requirement (together with or in place of password or key authentication) by starting ndb_set up. py
with the - - ca- certs-fil e option.

There is no need or requirement for secure authentication when the client browser is running on the same
host as the Auto-Installer back end.

See also Section 6.16, “NDB Cluster Security Issues”, which discusses security considerations to take into
account when deploying NDB Cluster, as well as Security, for more general MySQL security information.

3.8.2 Using the NDB Cluster Auto-Installer

The NDB Cluster Auto-Installer consists of several pages, each corresponding to a step in the process
used to configure and deploy an NDB Cluster, and listed here:

68

https://www.dlitz.net/software/pycrypto/
https://www.dlitz.net/software/pycrypto/
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
http://en.wikipedia.org/wiki/Comparison_of_SSH_servers
https://dev.mysql.com/doc/refman/5.6/en/changing-mysql-user.html
https://dev.mysql.com/doc/refman/5.6/en/security.html

Using the NDB Cluster Auto-Installer

* Welcome: Begin using the Auto-Installer by choosing either to configure a new NDB Cluster, or to
continue configuring an existing one.

» Define Cluster: Set basic information about the cluster as a whole, such as name, hosts, and load type.
Here you can also set the SSH authentication type for accessing remote hosts, if needed.

» Define Hosts: Identify the hosts where you intend to run NDB Cluster processes.
» Define Processes: Assign one or more processes of a given type or types to each cluster host.
» Define Attributes: Set configuration attributes for processes or types of processes.

» Deploy Cluster: Deploy the cluster with the configuration set previously; start and stop the deployed
cluster.

The following sections describe in greater detail the purpose and function of each of these pages, in the
order just listed.

Starting the NDB Cluster Auto-Installer

The Auto-Installer is provided together with the NDB Cluster software. (See Chapter 3, NDB Cluster
Installation.) The present section explains how to start the installer. You can do by invoking the
ndb_set up. py executable.

Important

You should run the ndb_set up. py as a normal user; no special privileges are
needed to do so. You should not run this program as the nmysql user, or using the
system r oot or Administrator account; doing so may cause the installation to fail.

ndb_set up. py is found in the bi n within the NDB Cluster installation directory; a typical location might
be /usr/ | ocal / mysqgl / bi n on a Linux system or C. \ Program Fi | es\ M\ySQL\ MySQL Ser ver

5. 6\ bi n on a Windows system, but this can vary according to where the NDB Cluster software is installed
on your system.

On Windows, you can also start the installer by running set up. bat in the NDB Cluster installation
directory. When invoked from the command line, it accepts the same options as does ndb_set up. py.

ndb_set up. py can be started with any of several options that affect its operation, but it is usually
sufficient to allow the default settings be used, in which case you can start ndb_set up. py by either of the
following two methods:

1. Navigate to the NDB Cluster bi n directory in a terminal and invoke it from the command line, without
any additional arguments or options, like this:

$> ndb_set up
This works regardless of operating platform.

2. Navigate to the NDB Cluster bi n directory in a file browser (such Windows Explorer on Windows, or
Kongueror, Dolphin, or Nautilus on Linux) and activate (usually by double-clicking) the ndb_setup.py
file icon. This works on Windows, and should work with most common Linux desktops as well.

On Windows, you can also navigate to the NDB Cluster installation directory and activate the setup.bat
file icon.

In either case, once ndb_set up. py is invoked, the Auto-Installer's Welcome screen should open in the
system's default Web browser.

69

Using the NDB Cluster Auto-Installer

In some cases, you may wish to use non-default settings for the installer, such as specifying a different
port for the Auto-Installer's included Web server to run on, in which case you must invoke ndb_set up. py
with one or more startup options with values overriding the necessary defaults. The same startup options
can be used on Windows systems with the set up. bat file supplied for such platforms in the NDB Cluster
software distribution. This can be done using the command line, but if you want or need to start the installer
from a desktop or file browser while emplying one or more of these options, it is also possible to create

a script or batch file containing the proper invocation, then to double-click its file icon in the file browser

to start the installer. (On Linux systems, you might also need to make the script file executable first.)

For information about advanced startup options for the NDB Cluster Auto-Installer, see Section 5.25,
“ndb_setup.py — Start browser-based Auto-Installer for NDB Cluster (DEPRECATED)".

NDB Cluster Auto-Installer Welcome Screen

The Welcome screen is loaded in the default browser when ndb_set up. py is invoked, as shown here:

Figure 3.4 The NDB Cluster Auto-Installer Welcome screen (Closeup)

ORACLE MySQL Cluster Installer

Welcome to MySQL Cluster

This foc| will aid cluste rconfigumilen. Plense seectan
option below by clicking the appopriade ion.

Crente Kew MySOL Clusier

Choose this option when you cmate your fimst
ﬁ By SOL Cluster configumtion. or # you want
o start iom scebch.

Continue Previous Cluster Cordiguration

= Continue wobking on the peviows MeSOL
@ Cluster configumiion

This screen provides the following two choices for entering the installer, one of which must be selected to
continue:

1. Create New NDB Cluster: Start the Auto-Installer with a completely new cluster to be set up and
deployed.

2. Continue Previous Cluster Configuration: Start the Auto-Installer at the same point where the
previous session ended, with all previous settings preserved.

The second option requires that the browser be able to access its cookies from the previous session, as
these provide the mechanism by which configuration and other information generated during a session
is stored. In other words, to continue the previous session with the Auto-Installer, you must use the same
web browser running on the same host as you did for the previous session.

NDB Cluster Auto-Installer Define Cluster Screen

70

Using the NDB Cluster Auto-Installer

The Define Cluster screen is the first screen to appear following the choice made in the Welcome screen,
and is used for setting general properties of the cluster. The layout of the Define Cluster screen is shown
here:

Figure 3.5 The NDB Cluster Auto-Installer Define Cluster screen

Arfo> PEysOL cluster I
ORACLE MySGOL Clustar installer

Define cluster Antngs T Help T

Cluster Iype and 5H Credentials
KEAL Cheier i3 ke 10 operane I st oy Canfud on). FRere 3y e wotlings ovlar 20 e T righ ofasizs vpe ok Mo vour e ca2e. Fyou inlenc 10w wobe fec 3k Tor ciephosing
KpEaL Chiir, BEH mri bz ennoked, Unbers bep Erascl S2H by poezibly, wou masd sbinll pour weer rome d paovsord bricw.

Clismar praparey Walis
Checor pare: Rk
Hasl 18t [EIETT]
el el arie e laaling
Wb kil e

SSH properey Walie

Foay lieaat GitiH
Lbsar nive

Pasrewd

oA iz |[Woned | MACRR

The Define Cluster screen allows you to set a number of general properties for the cluster, as described in
this list:

e Cluster name: A name that identifies the cluster. The default is MyCl ust er .

* Host list: A comma-delimited list of one or more hosts where cluster processes should run. By default,
thisis 127. 0. 0. 1. If you add remote hosts to the list, you must be able to connect to them using the
SSH Credentials supplied.

» Application type: Choose one of the following:

1. Simple testing: Minimal resource usage for small-scale testing. This the default. Not intended for
production environments.

2. Web: Maximize performance for the given hardware.

3. Real-time: Maximize performance while maximizing sensitivity to timeouts in order to minimize the
time needed to detect failed cluster processes.

» Write load: Choose a level for the anticipated number of writes for the cluster as a whole. You can
choose any one of the following levels:

1. Low: The expected load includes fewer than 100 write transactions for second.
2. Medium: The expected load includes 100 to 1000 write transactions per second.

3. High: The expected load includes more than 1000 write transactions per second.

71

Using the NDB Cluster Auto-Installer

e SSH Credentials: Choose Key-Based SSH or enter User and Password credentials. The SSH key or
a user name with password is required for connecting to any remote hosts specified in the Host list. By
default, Key-Based SSH is selected, and the User and Password fields are blank.

NDB Cluster Auto-Installer Define Hosts Screen

The Define Hosts screen, shown here, provides a means of viewing and specifying several key properties
of each cluster host:

Figure 3.6 NDB Cluster Define Hosts screen

Firafan> | @ aysoL Cluster L+
ORACLE MyS0L Clstes Installer
Define hasts Sellivgs ~ lelp =
Zelect and Edit Hosts
Host Fesource info Fladerm Memory (MD] CPWcores MySQL Cluster svstall dreciory MySOL Cluster data direcieny
IOl oK Suns 12279 & Nsrdocabchsier-mgichimer- T2 8 desporhoneimp'iysal_chemer!
0 A et | | 3 Rbivdren dkirbind Hets) 31 Bkl bbbt bk)
AP | [P Mt | M Frih

The hosts currently entered are displayed in the grid with various pieces of information. You can add hosts
by clicking the Add hosts button and entering a list of one or more comma-separated host names, IP
addresses, or both (as when editing the host list on the Define Cluster screen).

Similarly, you can remove one or more hosts using the button labelled Remove selected host(s). When
you remove a host in this fashion, any process which was configured for that host is also removed.

If Automatically get resource information for new hosts is checked in the Settings menu, the Auto-
Installer attempts to retrieve the platform name, amount of memory, and number of CPU cores and to fill
these in automatically. The status of this is displayed in the Resource info column. Fetching the information
from remote hosts is not instantaneous and may take some time, particularly from remote hosts running
Windows.

If the SSH user credentials on the Define Cluster screen are changed, the tool tries to refresh the hardware
information from any hosts for which information is missing. However, if a given field has already been
edited, the user-supplied information is not overwritten by any value fetched from that host.

The hardware resource information, platform name, installation directory, and data directory can be edited
by the user by clicking the corresponding cell in the grid, by selecting one or more hosts and clicking the
button labelled Edit selected host(s). This causes a dialog box to appear, in which these fields can be
edited, as shown here:

72

Using the NDB Cluster Auto-Installer

Figure 3.7 NDB Cluster Auto-Installer Edit Hosts dialog

Host Resourceinfo Platformn Memory (MB) CPUcores MySOL Cluster instll directory MySQL Cluster data directory

1010 Edit selectad hosls) X §_chuster

Fleass edit the Tidles you swant 1o crange. The chences wil be apalend to 20l seketed hoats. Feids that zre not edited in the farm
o Wil o left unehanger.

Fltform Kemory (ME) CFUcores My SOL Chuster nstall direcioey MySOL Chuster cata drectary

Coneel Bave

When more than one host is selected, any edited values are applied to all selected hosts.
NDB Cluster Auto-Installer Define Processes Screen

The Define Processes screen, shown here, provides a way to assign NDB Cluster processes (nodes) to
cluster hosts:

Figure 3.8 NDB Cluster Auto-Installer Define Processes dialog

Firafan> | @ aysoL Cluster [E A
ORACLE MyS0L Clstes Installer

Defing processes Selligs * lelp =

Defing Processes and Cluster Tapolagy
[b prd eyl 1 corif el o e iy OL Cheyier Dovamerdadior 1

MyCluster wpology

Ay sl

RE LT
o Marngement nods |
o AFinata |
o arinods 2
o 5Finods 1
o 0L o
o sOLrode 2
o Mo heeaced sk roc 1
o bt Toaeackd diabarone

B Ao process. | 3 Dol process

A Frevos | B et (M Frish

This screen contains a process tree showing cluster hosts and processes set up to run on each one, as
well as a panel which displays information about the item currently selected in the tree.

When this screen is accessed for the first time for a given cluster, a default set of processes is defined for
you, based on the number of hosts. If you later return to the Define Hosts screen, remove all hosts, and
add new hosts, this also causes a new default set of processes to be defined.

NDB Cluster processes are of the following types:

* Management node. Performs administrative tasks such as stopping individual data nodes, querying
node and cluster status, and making backups. Executable: ndb_ngnd.

e Single-threaded data node. Stores data and executes queries. Executable: ndbd.

73

Using the NDB Cluster Auto-Installer

e Multi threaded data node. Stores data and executes queries with multiple worker threads executing
in parallel. Executable: ndbnt d.

 SQL node. MySQL server for executing SQL queries against NDB. Executable: nysql d.

 APInode. A client accessing data in NDB by means of the NDB API or other low-level client API,
rather than by using SQL. See MySQL NDB Cluster API Developer Guide, for more information.

For more information about process (node) types, see Section 2.1, “NDB Cluster Core Concepts”.

Processes shown in the tree are numbered sequentially by type, for each host—for example, SQL node
1, SQL node 2, and so on—to simplify identification.

Each management node, data node, or SQL process must be assigned to a specific host, and is not
allowed to run on any other host. An API hode may be assigned to a single host, but this is not required.
Instead, you can assign it to the special Any host entry which the tree also contains in addition to any
other hosts, and which acts as a placeholder for processes that are allowed to run on any host. Only API
processes may use this Any host entry.

Adding processes. To add a new process to a given host, either right-click that host's entry in the tree,
then select the Add process popup when it appears, or select a host in the process tree, and press the
Add process button below the process tree. Performing either of these actions opens the add process
dialog, as shown here:

Figure 3.9 NDB Cluster Auto-Installer Add Process Dialog

MyCluster topology

e drw host

127001
Add new process
danagement node 1

AP niocde 1

Select process type: AP node
AF| node 2
APl node 3 Enter process name: | AF| node 4
SEL e 1 Cancel Arid
SAL node 2

tulti threacded data node 1
tulti threaded data node 2

Here you can select from among the available process types described earlier this section; you can also
enter an arbitrary process name to take the place of the suggested value, if desired.

Removing processes. To delete a process, right-click on a process in the tree and select delete
process from the pop up menu that appears, or select a process, then use the delete process button
below the process tree.

When a process is selected in the process tree, information about that process is displayed in the
information panel, where you can change the process name and possibly its type. Important: Currently, you
can change a single-threaded data node (ndbd) to a multithreaded data node (ndbnt d), or the reverse,
only; no other process type changes are allowed. If you want to make a change between any other process
types, you must delete the original process first, then add a new process of the desired type.

NDB Cluster Auto-Installer Define Attributes Screen

74

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/

Using the NDB Cluster Auto-Installer

This screen has a layout similar to that of the Define Processes screen, including a process tree. Unlike
that screen's tree, the Define Attributes process tree is organized by process or node type, with single-
threaded and multithreaded data nodes considered to be of the same type for this purpose, in groups
labelled Management Layer, Data Layer, SQL Layer, and API Layer. An information panel displays
information regarding the item currently selected. The Define Attributes screen is shown here:

Figure 3.10 NDB Cluster Auto-Installer Define Attributes screen

Firafox~ | MySOL Cluster L]
ORACLE MyS0L Clstes Installer

Define parameters Selligs ~ lelp =

Define Processes Parameters
d e §A e ek B Clesler Daesvenlalion for 3 descristion of (e dMenenl groce

MyCluster processas
(o W T
o Waragurent nods |
o Crada byer
o rruti drevated vzt |
o ki hevacked ka2
= S0
o 0L ot
o 201 e 2
e AP hyer
o AF et |
o A inode 2
o AFinen s

| B ahEnCE SONTOURION ogrhons

A Freicus | | Bt | M Rnih

The check box labelled Show advanced configuration, when checked, makes advanced options visible
in the information pane. These options are set and used whether or not they are visible.

You can edit attributes for a single process by selecting that process from the tree, or for all processes
of the same type in the cluster by selecting one of the Layer folders. A per-process value set for a given
attribute overrides any per-group setting for that attribute that would otherwise apply to the process in
guestion. An example of such an information panel (for an SQL process) is shown here:

Figure 3.11 Define Attributes Detail With SQL Process Attributes

MyCluster processes Process property Value Override
= ananerment lyer
Huode idewtity and

&P Waragement nods |

- Data lsyer
& taulti threaded data node 1
@ Mt threaded data rode 2

= SOL yer

& 30Lnode 1
@ 50Lnode 2

[AP layer

& AP1node 1
@ APinode 2
& AP1nods 3

L4 Show advanced configuration op Bions

directiories

Modukd

Hied R 2

Dratalir por bt Ny 1er/53 [+]

Commmnication
Fort
Sockst

o0

75

Using the NDB Cluster Auto-Installer

For some of the attributes shown in the information panel, a button bearing a plus sign is displayed, which
means that the value of the attribute can be overridden. This + button activates an input widget for the
attribute, enabling you to change its value. When the value has been overridden, this button changes into a
button showing an X, as shown here:

Figure 3.12 Define Attributes Detail, Overriding Attribute Default Value

MyCluster processes Frocess property Value Owerride
% Management Eyer
e Hode identity and

'@ Managemcr J directories
+ Databyer Nodeld

@ it threacked data node | Hoat hamme

&P it threacedl data node 2 DataDir ferporthometingia_difeent_dresctond b4
> S0L bayer LR,

Commundication
&® S0L node | Port &
& 50Lnode 2 Sotkst o
= AP byer

&P 4P node |

P 4P| nods 2

¥ AFInods 3

i SO achriced CONTGURton options

Clicking the X button next to an attribute undoes any changes made to it; it immediately reverts to the
predefined value.

All configuration attributes have predefined values calculated by the installer, based such factors as host
name, node ID, node type, and so on. In most cases, these values may be left as they are. If you are not
familiar with it already, it is highly recommended that you read the applicable documentation before making
changes to any of the attribute values. To make finding this information easier, each attribute name shown
in the information panel is linked to its description in the online NDB Cluster documentation.

NDB Cluster Auto-Installer Deploy Cluster Screen

This screen allows you to perform the following tasks:
» Review process startup commands and configuration files to be applied

« Distribute configuration files by creating any necessary files and directories on all cluster hosts—that is,
deploy the cluster as presently configured

 Start and stop the cluster

The Deploy Cluster screen is shown here:

76

Using the NDB Cluster Auto-Installer

Figure 3.13 NDB Cluster Auto-Installer Deploy Cluster Configuration screen

Firafan~ | nySOL Cluster |+
DRACLE MySOL Cluster Installer

» Deploey configuration Balliggs ¥ lelp v

Deploy Configuration and start MySOL Cluster

ph, B cxewciedor aietod 3. sty stutteg o, wotlD: ot crmmcin's

NERsAET processes S lups G d
5 Maragemert yer
&P Huagenet oo 1
2. Dt e
&P il theeacied datancde |
P Halli Ureasied data ez 2 Combguration fils
1=~ B0L liir
&P s0lncde |
&P B0 nede 2
It AP bger
@ AP e 1
@J\.PI»:&?
P APl 3

6 Deploy chgste | | P Deploy and st caster | | [l 5500 clealer

o Fowcss | B e M Es

Like the Define Attributes screen, this screen features a process tree which is organized by process

type. Next to each process in the tree is a status icon indicating the current status of the process:
connected (CONNECTED), starting (STARTI NG), running (STARTED), stopping (STOPPI NG), or disconnected
(NO_CONTACT). The icon shows green if the process is connected or running; yellow if it is starting or
stopping; red if the process is stopped or cannot be contacted by the management server.

This screen also contains two information panels, one showing the startup command or commands
needed to start the selected process. (For some processes, more than one command may be required
—for example, if initialization is necessary.) The other panel shows the contents of the configuration file,
if any, for the given process; currently, the management node process is only type of process having a
configuration file. Other process types are configured using command-line parameters when starting the
process, or by obtaining configuration information from the management nodes as needed in real time.

This screen also contains three buttons, labelled as and performing the functions described in the following
list:

» Deploy cluster: Verify that the configuration is valid. Create any directories required on the cluster
hosts, and distribute the configuration files onto the hosts. A progress bar shows how far the deployment
has proceeded.

» Start cluster: The cluster is deployed as with Deploy cluster, after which all cluster processes are
started in the correct order.

Starting these processes may take some time. If the estimated time to completion is too large, the
installer provides an opportunity to cancel or to continue of the startup procedure. A progress bar
indicates the current status of the startup procedure, as shown here:

77

Using the NDB Cluster Auto-Installer

Figure 3.14 Progress Bar With Status of Node Startup Process

Starting cluster

Starting Cluster processes
40%

The process status icons adjoining the process tree mentioned previously also update with the status of
each process.

» Stop cluster: After the cluster has been started, you can stop it using this button. As with starting the
cluster, cluster shutdown is not instantaneous, and may require some time complete. A progress bar,
similar to that displayed during cluster startup, shows the approximate current status of the cluster
shutdown procedure, as do the process status icons adjoining the process tree.

Prior to NDB 7.3.3, SQL nodes were started with all options employed on the command line. Beginning
with NDB 7.3.3, the Auto-Installer generates a ny. cnf file containing the appropriate options for each
nysql d process in the cluster. (Bug #16994782)

78

Chapter 4 Configuration of NDB Cluster

Table of Contents

4.1 Quick Test Setup Of NDB CIUSTEIcoutiiiiiiii ettt e et e et e e eeba e eees 79
4.2 Overview of NDB Cluster Configuration Parameters, Options, and Variablescccooooeeiinnnnn. 82
4.2.1 NDB Cluster Data Node Configuration Parametersccoouviiieiiiiiiieiiiiineeeiin e 82
4.2.2 NDB Cluster Management Node Configuration Parametersccveiieieiiiniciiniineeceiien. 88
4.2.3 NDB Cluster SQL Node and APl Node Configuration Parametersccccoooeeeviiiieieiiineeen. 89
4.2.4 Other NDB Cluster Configuration Parametersocoeuuuiiiiiiiieiiii e e e 91
4.2.5 NDB Cluster mysqgld Option and Variable Referencecccoooceviiieiiiiiiiiiiiieeee 92
4.3 NDB Cluster Configuration FilESiiiiiiiiiiiii e 100
4.3.1 NDB Cluster Configuration: Basic EXamplecooiiiiiiiiiii e 101
4.3.2 Recommended Starting Configuration for NDB CIUSEErcccuviiiiiiiiiiieiiiieccc e 104
4.3.3 NDB Cluster CONNECHION SHINGSccuuuiieiiiiiieiiiii ettt e et e e e e 107
4.3.4 Defining Computers in an NDB CIUSLENiiiiiiiieiiii e 108
4.3.5 Defining an NDB Cluster Management SEIVETc.uuiiiiiiiiiaiiii et 109
4.3.6 Defining NDB Cluster Data NOUESooiiiiiiiiiiiiiie e 116
4.3.7 Defining SQL and Other APl Nodes in an NDB CIUSEErccouviiiiiiiiiiieiiiiececi e 183
4.3.8 MySQL Server Options and Variables for NDB CIUSEroveiiiiiiiiiiiiiiieciiieeeeii e 191
4.3.9 NDB Cluster TCP/IP CONNECHIONSuuiiiiiiiieeiiiiie ettt e e e e et e e e e e naa s 236
4.3.10 NDB Cluster TCP/IP Connections Using Direct CONNECHIONScccuuuieiiiiinieiiiineeeeiinnnn. 241
4.3.11 NDB Cluster Shared-Memory CONNECLIONSuiiiiiiiiieiiiiie e e e 242
4.3.12 Configuring NDB Cluster Send Buffer Parametersccooiiiiiiiiiiieiiiiiec e 246
4.4 Using High-Speed Interconnects with NDB CIUSTETccouuiiiiiiiiiiiiiii e 247

A MySQL server that is part of an NDB Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's nmy. cnf configuration file, or start the server
with the - - ndbcl ust er option.

This MySQL server is a part of the cluster, so it also must know how to access a management node

to obtain the cluster configuration data. The default behavior is to look for the management node on

| ocal host . However, should you need to specify that its location is elsewhere, this can be done in

my. cnf , or with the nysql client. Before the NDB storage engine can be used, at least one management
node must be operational, as well as any desired data nodes.

For more information about - - ndbcl ust er and other nysql d options specific to NDB Cluster, see
Section 4.3.8.1, “MySQL Server Options for NDB Cluster”.

For general information about installing NDB Cluster, see Chapter 3, NDB Cluster Installation.

4.1 Quick Test Setup of NDB Cluster

To familiarize you with the basics, we describe the simplest possible configuration for a functional NDB
Cluster. After this, you should be able to design your desired setup from the information provided in the
other relevant sections of this chapter.

First, you need to create a configuration directory such as / var/ | i b/ nmysql - cl ust er, by executing the
following command as the system r oot user:

79

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Quick Test Setup of NDB Cluster

$> nkdir /var/lib/nysql-cluster

In this directory, create a file named confi g. i ni that contains the following information. Substitute
appropriate values for Host Nane and Dat aDi r as necessary for your system.

file "config.ini" - showi ng mninmal setup consisting of 1 data node,

1 managenent server, and 3 MySQ. servers.

The enpty default sections are not required, and are shown only for

the sake of conpl eteness.

Dat a nodes nust provide a hostnane but MySQL Servers are not required

to do so.

If you don't know the hostnanme for your machi ne, use | ocal host.

The DataDir paraneter also has a default value, but it is reconmended to

set it explicitly.

Note: [db], [api], and [nmgn] are aliases for [ndbd], [nysqld], and [ndb_ngnd],
respectively. [db] is deprecated and shoul d not be used in new installations.

HHHHHHHHHHHR

[ndbd defaul t]
NoOf Repl i cas= 1

[mysqld default]
[ndb_ngnd def aul t]
[tcp defaul t]

[ndb_ngmnd]
Host Nane= mnyhost . exanpl e. com

[ndbd]

Host Nane= mnyhost . exanpl e. com
Dat aDir= /var/lib/ nysql -cl uster

[nysql d]
[nysql d]
[nysql d]

You can now start the ndb_ngnd management server. By default, it attempts to read the confi g. i ni
file in its current working directory, so change location into the directory where the file is located and then
invoke ndb_ngnd:

$> cd /var/lib/nysql-cluster
$> ndb_ngnd

Then start a single data node by running ndbd:

$> ndbd

By default, ndbd looks for the management server at | ocal host on port 1186.
Note

If you have installed MySQL from a binary tarball, you must specify the path of
the ndb_ngnd and ndbd servers explicitly. (Normally, these are found in / usr/
| ocal / mysql / bin.)

Finally, change location to the MySQL data directory (usually / var /| i b/ nysql or/usr/ | ocal / mysql/
dat a), and make sure that the ny. cnf file contains the option necessary to enable the NDB storage
engine:

[nysql d]
ndbcl ust er

You can now start the MySQL server as usual:

$> nysql d_safe --user=nysql &

80

Quick Test Setup of NDB Cluster

Wait a moment to make sure the MySQL server is running properly. If you see the notice nysgl ended,
check the server's . err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

$> nysql
Wel conme to the MySQL nonitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.6.51

Type 'help;' or '"\h' for help. Type '\c' to clear the buffer.

nysql > SHOW ENG NES\ G

kkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkhkkkkkkkk*x*%x 12 r ow khkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkkkkkkkkkkkx*%x

Engi ne: NDBCLUSTER

Support: YES

Comment: Custered, fault-tol erant, nenory-based tables
khkkkkhkkhkkhkkhkkhkkhkhkhkkhkkhkkhkhkkhkkkkkkkk*k*%x 13 I’OW khkkkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhkkkkkkkkk*x*%
Engi ne: NDB

Support: YES

Comment: Alias for NDBCLUSTER

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

$> nysql
nmysql > USE test;
Dat abase changed

mysql > CREATE TABLE ctest (i |NT) ENG NE=NDBCLUSTER,
Query OK, 0 rows affected (0.09 sec)

nysqgl > SHOW CREATE TABLE ctest \G

IR R E R EEEEREEEEEEEEEEEEESEESEES] 1 I’OW IR R E R EEEEEEEEEEEEEEEEESEESEES]
Tabl e: ctest
Create Tabl e: CREATE TABLE “ctest™ (
it int(11) default NULL
) ENG NE=ndbcl ust er DEFAULT CHARSET=l ati nl
1 rowin set (0.00 sec)

To check that your nodes were set up properly, start the management client:

$> ndb_ngm

Use the SHOWcommand from within the management client to obtain a report on the cluster's status:

ndb_ngn» SHOW

Cluster Configuration

[ndbd(NDB)] 1 node(s)

id=2 @27.0.0.1 (Version: 5.6.51-ndb-7.4.35, Nodegroup: 0, *)

[ndb_mymd(M3V)] 1 node(s)
id=1 @27.0.0.1 (Version: 5.6.51-ndb-7.4.35)

[mysqgl d(API)] 3 node(s)

i d=3 @27.0.0.1 (Version: 5.6.51-ndb-7.4.35)

i d=4 (not connected, accepting connect from any host)
i d=5 (not connected, accepting connect from any host)

81

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Overview of NDB Cluster Configuration Parameters, Options, and Variables

At this point, you have successfully set up a working NDB Cluster. You can now store data in the cluster by
using any table created with ENG NE=NDBCLUSTER or its alias ENG NE=NDB.

4.2 Overview of NDB Cluster Configuration Parameters, Options,
and Variables

The next several sections provide summary tables of NDB Cluster node configuration parameters used in
the confi g. i ni file to govern various aspects of node behavior, as well as of options and variables read
by mysql d from a ny. cnf file or from the command line when run as an NDB Cluster process. Each of
the node parameter tables lists the parameters for a given type (ndbd, ndb_ngnd, nysql d, conput er,

t cp, or shm). All tables include the data type for the parameter, option, or variable, as well as its default,
mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what type
of restart is required (node restart or system restart)—and whether the restart must be done with - -

i ni ti al —to change the value of a given configuration parameter. When performing a node restart or
an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a rolling
restart). It is possible to update cluster configuration parameters marked as node online—that is, without
shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd process
withthe --initi al option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without any
problems, although it is advisable to do so progressively, making such adjustments
in relatively small increments. Many of these can be increased online, using a
rolling restart.

However, decreasing the values of such parameters—whether this is done using

a node restart, node initial restart, or even a complete system restart of the
cluster—is not to be undertaken lightly; it is recommended that you do so only

after careful planning and testing. This is especially true with regard to those
parameters that relate to memory usage and disk space, such as MaxNoOf Tabl es,
MaxNoOF Or der edl ndexes, and MaxNoCOF Uni queHashl ndexes. In addition, it

is the generally the case that configuration parameters relating to memory and disk
usage can be raised using a simple node restart, but they require an initial node
restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX | NT_RNI L and is equal to
OXFFFFFEFF, or 232 - 28 - 1,

4.2.1 NDB Cluster Data Node Configuration Parameters

82

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB Cluster Data Node Configuration Parameters

The listings in this section provide information about parameters used in the [ndbd] or [ndbd def aul t]
sections of aconfi g. i ni file for configuring NDB Cluster data nodes. For detailed descriptions and other
additional information about each of these parameters, see Section 4.3.6, “Defining NDB Cluster Data
Nodes”.

These parameters also apply to ndbnt d, the multithreaded version of ndbd. A separate listing of
parameters specific to ndbnt d follows.

e Arbitration: How arbitration should be performed to avoid split-brain issues in event of node failure.
e ArbitrationTi neout: Maximum time (milliseconds) database partition waits for arbitration signal.
» BackupDat aBuf f er Si ze: Default size of databuffer for backup (in bytes).

» BackupDat aDi r : Path to where to store backups. Note that string /BACKUP' is always appended to
this setting, so that *effective* default is FileSystemPath/BACKUP.

» BackupDi skW it eSpeedPct : Sets percentage of data node's allocated maximum write speed
(MaxDiskWriteSpeed) to reserve for LCPs when starting backup.

» BackupLogBuf f er Si ze: Default size of log buffer for backup (in bytes).

» BackupMaxW it eSi ze: Maximum size of file system writes made by backup (in bytes).

» BackupMenory: Total memory allocated for backups per node (in bytes).

» BackupReport Frequency: Frequency of backup status reports during backup in seconds.

» BackupW it eSi ze: Default size of file system writes made by backup (in bytes).

» Bat chSi zePer Local Scan: Used to calculate number of lock records for scan with hold lock.

* Bui | dl ndexThr eads: Number of threads to use for building ordered indexes during system or node
restart. Also applies when running ndb_restore --rebuild-indexes. Setting this parameter to O disables
multithreaded building of ordered indexes.

» Compr essedBackup: Use zlib to compress backups as they are written.
» Conpr essedLCP: Write compressed LCPs using zlib.

» Connect Checkl nt er val Del ay: Time between data node connectivity check stages. Data node is
considered suspect after 1 interval and dead after 2 intervals with no response.

* CrashOnCorrupt edTupl e: When enabled, forces node to shut down whenever it detects corrupted
tuple.

» Dat abi r : Data directory for this node.

» Dat aMenor y: Number of bytes on each data node allocated for storing data; subject to available system
RAM and size of IndexMemory.

» Def aul t HashMapSi ze: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

» Di ct Trace: Enable DBDICT debugging; for NDB development.
» Di skCheckpoi nt Speed: Bytes allowed to be written by checkpoint, per second.

» Di skCheckpoi nt Speedl nRest ar t : Bytes allowed to be written by checkpoint during restart, per
second.

83

NDB Cluster Data Node Configuration Parameters

Di skl OThr eadPool : Number of unbound threads for file access, applies to disk data only.
Di skl ess: Run without using disk.

Di skPageBuf f er Ent ri es: Memory to allocate in DiskPageBufferMemory; very large disk transactions
may require increasing this value.

Di skPageBuf f er Menor y: Number of bytes on each data node allocated for disk page buffer cache.
Di skSyncSi ze: Amount of data written to file before synch is forced.

Event LogBuf f er Si ze: Size of circular buffer for NDB log events within data nodes.

Execut eOnConput er : String referencing earlier defined COMPUTER.

Ext r aSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

Fi | eSyst enPat h: Path to directory where data node stores its data (directory must exist).

Fi | eSyst enPat hDat aFi | es: Path to directory where data node stores its Disk Data files. Default
value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value of
DataDir is used.

Fi | eSyst enPat hDD: Path to directory where data node stores its Disk Data and undo files. Default
value is FileSystemPath, if set; otherwise, value of DataDir is used.

Fi | eSyst enPat hUndoFi | es: Path to directory where data node stores its undo files for Disk Data.
Default value is FilesystemPathDD, if set; otherwise, FilesystemPath is used if it is set; otherwise, value
of DataDir is used.

Fragnent LogFi | eSi ze: Size of each redo log file.

Hear t beat | nt er val DbApi : Time between APl node-data node heartbeats. (API connection closed
after 3 missed heartbeats).

Hear t beat | nt er val DbDb: Time between data node-to-data node heartbeats; data node considered
dead after 3 missed heartbeats.

Hear t beat Or der : Sets order in which data nodes check each others' heartbeats for determining
whether given node is still active and connected to cluster. Must be zero for all data nodes or distinct
nonzero values for all data nodes; see documentation for further guidance.

Host Name: Host name or IP address for this data node.
| d: Number identifying data node. Now deprecated; use Nodeld instead.

I ndexMenor y: Number of bytes on each data node allocated for storing indexes; subject to available
system RAM and size of DataMemory.

| ndex St at Aut oCr eat e: Enable/disable automatic statistics collection when indexes are created.
| ndex St at Aut oUpdat e: Monitor indexes for changes and trigger automatic statistics updates.

I ndex St at SaveScal e: Scaling factor used in determining size of stored index statistics.

| ndexSt at SaveSi ze: Maximum size in bytes for saved statistics per index.

| ndexSt at Tri gger Pct : Threshold percent change in DML operations for index statistics updates.
Value is scaled down by IndexStatTriggerScale.

84

NDB Cluster Data Node Configuration Parameters

| ndexSt at Tri gger Scal e: Scale down IndexStatTriggerPct by this amount, multiplied by base 2
logarithm of index size, for large index. Set to 0 to disable scaling.

| ndex St at Updat eDel ay: Minimum delay between automatic index statistics updates for given index.
0 means no delay.

I ni t Fragnent LogFi | es: Initialize fragment logfiles (sparse/full).

I nitial LogFil eG oup: Describes log file group that is created during initial start. See documentation
for format.

I nitial NoOf OpenFi | es: Initial number of files open per data node. (One thread is created per file).

I nitial Tabl espace: Describes tablespace that is created during initial start. See documentation for
format.

Lat eAl | oc: Allocate memory after connection to management server has been established.

LcpScanPr ogr essTi nmeout : Maximum time that local checkpoint fragment scan can be stalled before
node is shut down to ensure systemwide LCP progress. Use 0 to disable.

LockExecut eThr eadToCPU: Comma-delimited list of CPU IDs.
LockMai nt Thr eadsToCPU: CPU ID indicating which CPU runs maintenance threads.

LockPagesl nMai nMenor y: O=disable locking, 1=lock after memory allocation, 2=lock before memory
allocation.

LogLevel Checkpoi nt : Log level of local and global checkpoint information printed to stdout.
LogLevel Congesti on: Level of congestion information printed to stdout.

LogLevel Connecti on: Level of node connect/disconnect information printed to stdout.
LogLevel Error: Transporter, heartbeat errors printed to stdout.

LogLevel | nf o: Heartbeat and log information printed to stdout.

LogLevel NodeRest art : Level of node restart and node failure information printed to stdout.
LogLevel Shut down: Level of node shutdown information printed to stdout.

LoglLevel St art up: Level of node startup information printed to stdout.

LogLevel Stati sti c: Level of transaction, operation, and transporter information printed to stdout.
LongMessageBuf f er : Number of bytes allocated on each data node for internal long messages.
MaxAl | ocat e: No longer used; has no effect.

MaxBuf f er edEpochs: Allowed numbered of epochs that subscribing node can lag behind
(unprocessed epochs). Exceeding causes lagging subscribers to be disconnected.

MaxBuf f er edEpochByt es: Total number of bytes allocated for buffering epochs.

MaxDi skW i t eSpeed: Maximum number of bytes per second that can be written by LCP and backup
when no restarts are ongoing.

MaxDi skW it eSpeedO her NodeRest ar t : Maximum number of bytes per second that can be written
by LCP and backup when another node is restarting.

85

NDB Cluster Data Node Configuration Parameters

MaxDi skW it eSpeedOwnRest ar t : Maximum number of bytes per second that can be written by LCP
and backup when this node is restarting.

MaxDMLQOper at i onsPer Tr ansact i on: Limit size of transaction; aborts transaction if it requires more
than this many DML operations. Set to O to disable.

MaxLCPSt ar t Del ay: Time in seconds that LCP polls for checkpoint mutex (to allow other data nodes to
complete metadata synchronization), before putting itself in lock queue for parallel recovery of table data.

MaxNoOf At t ri but es: Suggests total number of attributes stored in database (sum over all tables).

MaxNoCOF Concur r ent | ndexQper at i ons: Total number of index operations that can execute
simultaneously on one data node.

MaxNoOF Concur r ent Oper at i ons: Maximum number of operation records in transaction coordinator.
MaxNoCF Concur r ent Scans: Maximum number of scans executing concurrently on data node.
MaxNoOF Concur r ent SubOper at i ons: Maximum number of concurrent subscriber operations.

MaxNoCOF Concur rent Tr ansact i ons: Maximum number of transactions executing concurrently on this
data node, total number of transactions that can be executed concurrently is this value times number of
data nodes in cluster.

MaxNoOX Fi r edTr i gger s: Total number of triggers that can fire simultaneously on one data node.
MaxNoCf Local Oper at i ons: Maximum number of operation records defined on this data node.
MaxNoOF Local Scans: Maximum number of fragment scans in parallel on this data node.

MaxNoCOF OpenFi | es: Maximum number of files open per data node.(One thread is created per file).
MaxNoCOf Or der edl ndexes: Total number of ordered indexes that can be defined in system.

MaxNoOF SavedMessages: Maximum number of error messages to write in error log and maximum
number of trace files to retain.

MaxNoOF Subscri ber s: Maximum number of subscribers.

MaxNoCOF Subscri pti ons: Maximum number of subscriptions (default 0 = MaxNoOfTables).
MaxNoOF Tabl es: Suggests total number of NDB tables stored in database.

MaxNoCOF Tr i gger s: Total number of triggers that can be defined in system.

MaxNoOF Uni queHashl ndexes: Total number of unique hash indexes that can be defined in system.

MaxPar al | el Copyl nst ances: Number of parallel copies during node restarts. Default is 0, which
uses number of LDMs on both nodes, to maximum of 16.

MaxPar al | el ScansPer Fr agnment : Maximum number of parallel scans per fragment. Once this limit is
reached, scans are serialized.

Max St ar t Fai | Ret ri es: Maximum retries when data node fails on startup, requires StopOnError = 0.
Setting to 0 causes start attempts to continue indefinitely.

MenRepor t Fr equency: Frequency of memory reports in seconds; 0 = report only when exceeding
percentage limits.

M nDi skW i t eSpeed: Minimum number of bytes per second that can be written by LCP and backup.

86

NDB Cluster Data Node Configuration Parameters

M nFr eePct : Percentage of memory resources to keep in reserve for restarts.

NodeG oup: Node group to which data node belongs; used only during initial start of cluster.

Nodel d: Number uniquely identifying data node among all nodes in cluster.

NoOF Fr agnent LogFi | es: Number of 16 MB redo log files in each of 4 file sets belonging to data node.
NoOF Repl i cas: Number of copies of all data in database.

Numa: (Linux only; requires libnuma) Controls NUMA support. Setting to O permits system to determine
use of interleaving by data node process; 1 means that it is determined by data node.

QDi r ect : Use O_DIRECT file reads and writes when possible.

Real t i nreSchedul er : When true, data node threads are scheduled as real-time threads. Default is
false.

RedoBuf f er : Number of bytes on each data node allocated for writing redo logs.

RedoOver Conmi t Count er : When RedoOverCommitLimit has been exceeded this
many times, transactions are aborted, and operations are handled as specified by
DefaultOperationRedoProblemAction.

RedoQOver Commi t Li m t : Each time that flushing current redo buffer takes longer than this many
seconds, number of times that this has happened is compared to RedoOverCommitCounter.

Reser vedSendBuf f er Menor y: This parameter is present in NDB code but is not enabled.

Rest art OnErr or | nsert : Control type of restart caused by inserting error (when StopOnError is
enabled).

Schedul er Execut i onTi ner : Number of microseconds to execute in scheduler before sending.

Schedul er Responsi veness: Set NDB scheduler response optimization 0-10; higher values provide
better response time but lower throughput.

Schedul er Spi nTi ner : Number of microseconds to execute in scheduler before sleeping.

Ser ver Port : Port used to set up transporter for incoming connections from API nodes.

Shar edd obal Menory: Total number of bytes on each data node allocated for any use.

St art Fai | Ret r yDel ay: Delay in seconds after start failure prior to retry; requires StopOnError = 0.
St art Fai | ur eTi nmeout : Milliseconds to wait before terminating. (0=Wait forever).

St art NoNodeGr oupTi nmeout : Time to wait for nodes without nodegroup before trying to start
(O=forever).

Start Partial Ti meout : Milliseconds to wait before trying to start without all nodes. (0=Wait forever).
StartPartitionedTi meout : Milliseconds to wait before trying to start partitioned. (0=Wait forever).
St art upSt at usReport Fr equency: Frequency of status reports during startup.

St opOnEr r or : When set to 0, data node automatically restarts and recovers following node failures.

St ri ngMenor y: Default size of string memory (0 to 100 = % of maximum, 101+ = actual bytes).

87

NDB Cluster Management Node Configuration Parameters

TcpBi nd_I NADDR_ANY: Bind IP_ADDR_ANY so that connections can be made from anywhere (for
autogenerated connections).

Ti meBet weenEpochs: Time between epochs (synchronization used for replication).
Ti meBet weenEpochsTi neout : Timeout for time between epochs. Exceeding causes node shutdown.
Ti meBet weend obal Checkpoi nt s: Time between group commits of transactions to disk.

Ti meBet weend obal Checkpoi nt sTi neout : Minimum timeout for group commit of transactions to
disk.

Ti meBet weenl nacti veTr ansacti onAbort Check: Time between checks for inactive transactions.

Ti meBet weenLocal Checkpoi nt s: Time between taking snapshots of database (expressed in base-2
logarithm of bytes).

Ti meBet weenWat chDogCheck: Time between execution checks inside data node.

Ti meBet weenWat chDogCheckl ni ti al : Time between execution checks inside data node (early start
phases when memory is allocated).

Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers..

Transact i onBuf f er Menor y: Dynamic buffer space (in bytes) for key and attribute data allocated for
each data node.

Transact i onDeadl ockDet ecti onTi neout : Time transaction can spend executing within data node.
This is time that transaction coordinator waits for each data node participating in transaction to execute
request. If data node takes more than this amount of time, transaction is aborted.

Transacti onl nacti veTi meout : Milliseconds that application waits before executing another part

of transaction. This is time transaction coordinator waits for application to execute or send another part
(query, statement) of transaction. If application takes too much time, then transaction is aborted. Timeout
= 0 means that application never times out.

TwoPassl ni ti al NodeRest art Copy: Copy data in 2 passes during initial node restart, which enables
multithreaded building of ordered indexes for such restarts.

UndoDat aBuf f er : Unused; has no effect.

Undol ndexBuf f er : Unused; has no effect.

The following parameters are specific to ndbnt d:

MaxNoCOf Execut i onThr eads: For ndbmtd only, specify maximum number of execution threads.
NoOf Fr agnent LogPar t s: Number of redo log file groups belonging to this data node.

Thr eadConf i g: Used for configuration of multithreaded data nodes (ndbmtd). Default is empty string;
see documentation for syntax and other information.

4.2.2 NDB Cluster Management Node Configuration Parameters

The listing in this section provides information about parameters used in the [ndb_ngnd] or [ngm
section of a confi g. i ni file for configuring NDB Cluster management nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 4.3.5, “Defining an NDB
Cluster Management Server”.

88

NDB Cluster SQL Node and API Node Configuration Parameters

e ArbitrationDel ay: When asked to arbitrate, arbitrator waits this long before voting (milliseconds).

» ArbitrationRank: If 0, then management node is not arbitrator. Kernel selects arbitrators in order 1,
2.

» Dat aDi r: Data directory for this node.
» Execut eOnConput er : String referencing earlier defined COMPUTER.

* ExtraSendBuf f er Menor y: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

» Heart beat | nt er val MgndMgnd: Time between management-node-to-management-node heartbeats;
connection between management nodes is considered lost after 3 missed heartbeats.

» Heartbeat ThreadPri ority: Set heartbeat thread policy and priority for management nodes; see
manual for allowed values.

» Host Nane: Host name or IP address for this management node.
* | d: Number identifying management node. Now deprecated; use Nodeld instead.
» LogDesti nati on: Where to send log messages: console, system log, or specified log file.
* MaxNoCOF SavedEvent s: Not used.
« Nodel d: Number uniquely identifying management node among all nodes in cluster.
» Port Number : Port number to send commands to and fetch configuration from management server.
» Port Number St at s: Port number used to get statistical information from management server.
e Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers.
* wan: Use WAN TCP setting as default.
Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect. See
Section 4.3.5, “Defining an NDB Cluster Management Server”, for more information.

To add new management servers to a running NDB Cluster, it is also necessary
perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

4.2.3 NDB Cluster SQL Node and API Node Configuration Parameters

The listing in this section provides information about parameters used in the [nysql d] and [api]
sections of a confi g. i ni file for configuring NDB Cluster SQL nodes and API nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 4.3.7, “Defining
SQL and Other API Nodes in an NDB Cluster”.

» Api Ver bose: Enable NDB API debugging; for NDB development.
» ArbitrationDel ay: When asked to arbitrate, arbitrator waits this many milliseconds before voting.

e ArbitrationRank: If 0, then API node is not arbitrator. Kernel selects arbitrators in order 1, 2.

89

NDB Cluster SQL Node and API Node Configuration Parameters

« Aut oReconnect : Specifies whether an API node should reconnect fully when disconnected from
cluster.

» Bat chByt eSi ze: Default batch size in bytes.
» Bat chSi ze: Default batch size in number of records.

» Connect Backof f MaxTi nme: Specifies longest time in milliseconds (~100ms resolution) to allow
between connection attempts to any given data node by this API node. Excludes time elapsed while
connection attempts are ongoing, which in worst case can take several seconds. Disable by setting to O.
If no data nodes are currently connected to this API node, StartConnectBackoffMaxTime is used instead.

» Connect i onMap: Specifies which data nodes to connect.

» Def aul t HashMapSi ze: Set size (in buckets) to use for table hash maps. Three values are supported:
0, 240, and 3840.

» Def aul t Oper ati onRedoPr obl enAct i on: How operations are handled in event that
RedoOverCommitCounter is exceeded.

» Execut eOnConput er : String referencing earlier defined COMPUTER.

* Ext raSendBuf f er Menory: Memory to use for send buffers in addition to any allocated by
TotalSendBufferMemory or SendBufferMemory. Default (0) allows up to 16MB.

» Heartbeat ThreadPri ority: Set heartbeat thread policy and priority for API nodes; see manual for
allowed values.

» Host Name: Host name or IP address for this SQL or API node.

| d: Number identifying MySQL server or API node (Id). Now deprecated; use Nodeld instead.
+ MaxScanBat chSi ze: Maximum collective batch size for one scan.

* Nodel d: Number uniquely identifying SQL node or API nhode among all nodes in cluster.

» Start Connect Backof f MaxTi nme: Same as ConnectBackoffMaxTime except that this parameter is
used in its place if no data nodes are connected to this APl node.

» Tot al SendBuf f er Menor y: Total memory to use for all transporter send buffers.
e wan: Use WAN TCP setting as default.

For a discussion of MySQL server options for NDB Cluster, see Section 4.3.8.1, “MySQL Server Options
for NDB Cluster”. For information about MySQL server system variables relating to NDB Cluster, see
Section 4.3.8.2, “NDB Cluster System Variables”.

Note

To add new SQL or API nodes to the configuration of a running NDB Cluster,

it is necessary to perform a rolling restart of all cluster nodes after adding new

[mysqgl d] or[api] sections tothe confi g.ini file (orfiles, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

Other NDB Cluster Configuration Parameters

4.2.4 Other NDB Cluster Configuration Parameters

The listings in this section provide information about parameters used in the [conmputer],[tcp],

and [shnj sections of a confi g. i ni file for configuring NDB Cluster. For detailed descriptions and
additional information about individual parameters, see Section 4.3.9, “NDB Cluster TCP/IP Connections”,
or Section 4.3.11, “NDB Cluster Shared-Memory Connections”, as appropriate.

The following parameters apply to the confi g. i ni file's [conput er] section:

Host Name: Host name or IP address of this computer.

| d: Unigue identifier for this computer.

The following parameters apply to the confi g. i ni file's[tcp] section:

Checksum If checksum is enabled, all signals between nodes are checked for errors.

Gr oup: Used for group proximity; smaller value is interpreted as being closer.

Host Namel: Name or IP address of first of two computers joined by TCP connection.

Host Nanme2: Name or IP address of second of two computers joined by TCP connection.
Nodel d1: ID of node (data node, API node, or management node) on one side of connection.
Nodel d2: ID of node (data node, API node, or management node) on one side of connection.
Nodel dSer ver : Set server side of TCP connection.

Over | oadLi nmi t : When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

Por t Nunber : Port used for TCP transporter.

Proxy:

Recei veBuf f er Menor y: Bytes of buffer for signals received by this node.

SendBuf f er Menor y: Bytes of TCP buffer for signals sent from this node.

SendSi gnal | d: Sends ID in each signal. Used in trace files. Defaults to true in debug builds.
TCP_NMAXSEG S| ZE: Value used for TCP_MAXSEG.

TCP_RCV_BUF_SI ZE: Value used for SO_RCVBUF.

TCP_SND BUF_SI ZE: Value used for SO_SNDBUF.

TcpBi nd_I NADDR_ANY: Bind InAddrAny instead of host name for server part of connection.

The following parameters apply to the confi g. i ni file's[shn section:

Checksum If checksum is enabled, all signals between nodes are checked for errors.
Group: Used for group proximity; smaller value is interpreted as being closer.

Host Namel: Name or IP address of first of two computers joined by SHM connection.
Host Name2: Name or IP address of second of two computers joined by SHM connection.

Nodel d1: ID of node (data node, API node, or management node) on one side of connection.

91

NDB Cluster mysgld Option and Variable Reference

* Nodel d2: ID of node (data node, API node, or management node) on one side of connection.
* Nodel dSer ver : Set server side of SHM connection.

* Overl oadLi mi t : When more than this many unsent bytes are in send buffer, connection is considered
overloaded.

» Port Number : Port used for SHM transporter.

e SendSi gnal | d: Sends ID in each signal. Used in trace files.

» ShnKey: Shared memory key; when set to 1, this is calculated by NDB.
» Shnfi ze: Size of shared memory segment.

e Si gnum Signal number to be used for signalling.

4.2.5 NDB Cluster mysqgld Option and Variable Reference

The following table provides a list of the command-line options, server and status variables applicable
within mysql d when it is running as an SQL node in an NDB Cluster. For a table showing all command-line
options, server and status variables available for use with nysql d, see Server Option, System Variable,
and Status Variable Reference.

 Com show ndb_st at us: Count of SHOW NDB STATUS statements.

e create_ol d_tenporal s: Use pre-5.6.4 storage format for temporal types when creating tables.
Intended for use in replication and upgrades/downgrades between NDB 7.2 and NDB 7.3/7.4.

» Handl er _di scover: Number of times that tables have been discovered.
* ndb- bat ch- si ze: Size (in bytes) to use for NDB transaction batches.

* ndb- bl ob-r ead- bat ch- byt es: Specifies size in bytes that large BLOB reads should be batched into.
0 = no limit.

* ndb- bl ob-w it e- bat ch- byt es: Specifies size in bytes that large BLOB writes should be batched
into. 0 = no limit.

* ndb- cl ust er-connecti on- pool : Number of connections to cluster used by MySQL.

* ndb- connect stri ng: Address of NDB management server distributing configuration information for
this cluster.

* ndb- def erred- const r ai nt s: Specifies that constraint checks on unique indexes (where these are
supported) should be deferred until commit time. Not normally needed or used; for testing purposes only.

e ndb-di stri buti on: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

* ndb-1 og- appl y- st at us: Cause MySQL server acting as replica to log mysql.ndb_apply_status
updates received from its immediate source in its own binary log, using its own server ID. Effective only if
server is started with --ndbcluster option.

* ndb-1 og- enpt y- epochs: When enabled, causes epochs in which there were no changes to be written
to ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

e ndb-1 og- enpt y- updat e: When enabled, causes updates that produced no changes to be written to
ndb_apply_status and ndb_binlog_index tables, even when --log-slave-updates is enabled.

92

https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.6/en/server-option-variable-reference.html
https://dev.mysql.com/doc/refman/5.6/en/server-status-variables.html#statvar_Com_xxx

NDB Cluster mysgld Option and Variable Reference

ndb- | og- excl usi ve-r eads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

ndb- | og-fail -term nat e: Terminate mysqld process if complete logging of all found row events is
not possible.

ndb- | og- ori g: Log originating server id and epoch in mysql.ndb_binlog_index table.

ndb- | og-transacti on-i d: Write NDB transaction IDs in binary log. Requires --log-bin-v1-
events=OFF.

ndb- | og- updat e- as- wri t e: Toggles logging of updates on source between updates (OFF) and
writes (ON).

ndb- ngnd- host : Set host (and port, if desired) for connecting to management server.
ndb- nodei d: NDB Cluster node ID for this MySQL server.

ndb- opti m zed- node- sel ecti on: Enable optimizations for selection of nodes for transactions.
Enabled by default; use --skip-ndb-optimized-node-selection to disable.

ndb-transi d- nysql - connect i on- map: Enable or disable ndb_transid_mysql_connection_map
plugin; that is, enable or disable INFORMATION_SCHEMA table having that name.

ndb-wai t - connect ed: Time (in seconds) for MySQL server to wait for connection to cluster
management and data nodes before accepting MySQL client connections.

ndb-wai t - set up: Time (in seconds) for MySQL server to wait for NDB engine setup to complete.

Ndb_api _adapti ve_send_def erred_count : Number of adaptive send calls not actually sent by this
MySQL Server (SQL node).

Ndb_api _adaptive_send_deferred_count _sessi on: Number of adaptive send calls not actually
sent in this client session.

Ndb_api _adaptive_send_deferred_count _sl ave: Number of adaptive send calls not actually
sent by this replica.

Ndb_api _adaptive_send_f orced_count : Number of adaptive sends with forced-send set sent by
this MySQL Server (SQL node).

Ndb_api _adaptive_send_forced_count sessi on: Number of adaptive sends with forced-send
set in this client session.

Ndb_api _adaptive_send _forced_count _sl ave: Number of adaptive sends with forced-send set
sent by this replica.

Ndb_api _adapti ve_send_unf or ced_count : Number of adaptive sends without forced-send sent by
this MySQL Server (SQL node).

Ndb_api _adaptive_send_unforced_count _sessi on: Number of adaptive sends without forced-
send in this client session.

Ndb_api _adaptive_send_unforced_count _sl ave: Number of adaptive sends without forced-
send sent by this replica.

Ndb_api byt es_recei ved_count : Quantity of data (in bytes) received from data nodes by this
MySQL Server (SQL node).

93

NDB Cluster mysgld Option and Variable Reference

Ndb_api _bytes _recei ved_count _sessi on: Quantity of data (in bytes) received from data nodes in
this client session.

Ndb_api _bytes_recei ved_count _sl ave: Quantity of data (in bytes) received from data nodes by
this replica.

Ndb_api byt es_sent count : Quantity of data (in bytes) sent to data nodes by this MySQL Server
(SQL node).

Ndb_api _bytes_sent count _sessi on: Quantity of data (in bytes) sent to data nodes in this client
session.

Ndb_api _bytes_sent count _sl ave: Qunatity of data (in bytes) sent to data nodes by this replica.

Ndb_api _event byt es_count : Number of bytes of events received by this MySQL Server (SQL
node).

Ndb_api _event bytes _count i nj ect or : Number of bytes of event data received by NDB binary
log injector thread.

Ndb_api _event _dat a_count : Number of row change events received by this MySQL Server (SQL
node).

Ndb_api _event dat a_count i nj ect or: Number of row change events received by NDB binary log
injector thread.

Ndb_api _event nondat a_count : Number of events received, other than row change events, by this
MySQL Server (SQL node).

Ndb_api _event nondat a_count _i nj ect or : Number of events received, other than row change
events, by NDB binary log injector thread.

Ndb_api _pk_op_count : Number of operations based on or using primary keys by this MySQL Server
(SQL node).

Ndb_api _pk_op_count _sessi on: Number of operations based on or using primary keys in this client
session.

Ndb_api _pk_op_count _sl ave: Number of operations based on or using primary keys by this replica.

Ndb_api _pruned_scan_count : Number of scans that have been pruned to one partition by this
MySQL Server (SQL node).

Ndb_api _pruned_scan_count _sessi on: Number of scans that have been pruned to one partition in
this client session.

Ndb_api _pruned_scan_count _sl ave: Number of scans that have been pruned to one partition by
this replica.

Ndb_api _range_scan_count : Number of range scans that have been started by this MySQL Server
(SQL node).

Ndb_api _range_scan_count _sessi on: Number of range scans that have been started in this client
session.

Ndb_api _range_scan_count _sl ave: Number of range scans that have been started by this replica.

Ndb_api _read_r ow_count : Total number of rows that have been read by this MySQL Server (SQL
node).

94

NDB Cluster mysgld Option and Variable Reference

Ndb_api _read_row _count _sessi on: Total number of rows that have been read in this client
session.

Ndb_api _read_row _count _sl ave: Total number of rows that have been read by this replica.

Ndb_api _scan_bat ch_count : Number of batches of rows received by this MySQL Server (SQL
node).

Ndb_api _scan_bat ch_count _sessi on: Number of batches of rows received in this client session.
Ndb_api _scan_bat ch_count _sl ave: Number of batches of rows received by this replica.

Ndb_api _t abl e_scan_count : Number of table scans that have been started, including scans of
internal tables, by this MySQL Server (SQL node).

Ndb_api tabl e_scan_count sessi on: Number of table scans that have been started, including
scans of internal tables, in this client session.

Ndb_api _tabl e_scan_count _sl ave: Number of table scans that have been started, including scans
of internal tables, by this replica.

Ndb_api trans_abort count: Number of transactions aborted by this MySQL Server (SQL node).
Ndb_api _trans_abort count _sessi on: Number of transactions aborted in this client session.
Ndb_api _trans_abort count sl ave: Number of transactions aborted by this replica.

Ndb_api _trans_cl ose_count : Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this MySQL Server (SQL node).

Ndb_api _trans_cl ose_count _sessi on: Number of transactions aborted (may be greater than sum
of TransCommitCount and TransAbortCount) in this client session.

Ndb_api _trans_cl ose_count _sl ave: Number of transactions aborted (may be greater than sum of
TransCommitCount and TransAbortCount) by this replica.

Ndb_api _trans_commi t _count : Number of transactions committed by this MySQL Server (SQL
node).

Ndb_api _trans_comrit_count _sessi on: Number of transactions committed in this client session.
Ndb_api _trans_commit _count _sl ave: Number of transactions committed by this replica.

Ndb_api _trans_|l ocal _read_row_count : Total number of rows that have been read by this MySQL
Server (SQL node).

Ndb_api _trans_| ocal _read_row _count _sessi on: Total number of rows that have been read in
this client session.

Ndb_api _trans_| ocal _read_row _count _sl ave: Total number of rows that have been read by this
replica.

Ndb_api _trans_start_count: Number of transactions started by this MySQL Server (SQL node).
Ndb_api _trans_start _count _sessi on: Number of transactions started in this client session.
Ndb_api trans_start _count sl ave: Number of transactions started by this replica.

Ndb_api _uk_op_count : Number of operations based on or using unique keys by this MySQL Server
(SQL node).

95

NDB Cluster mysgld Option and Variable Reference

Ndb_api _uk_op_count _sessi on: Number of operations based on or using unique keys in this client
session.

Ndb_api _uk_op_count _sl ave: Number of operations based on or using unique keys by this replica.

Ndb_api _wait_exec_conpl et e_count : Number of times thread has been blocked while waiting for
operation execution to complete by this MySQL Server (SQL node).

Ndb_api _wait_exec_conpl et e_count _sessi on: Number of times thread has been blocked while
waiting for operation execution to complete in this client session.

Ndb_api _wait_exec_conpl et e_count _sl ave: Number of times thread has been blocked while
waiting for operation execution to complete by this replica.

Ndb_api _wait_neta request count: Number of times thread has been blocked waiting for
metadata-based signal by this MySQL Server (SQL node).

Ndb_api _wait_neta_request_count _sessi on: Number of times thread has been blocked waiting
for metadata-based signal in this client session.

Ndb_api _wait_neta_request count _sl ave: Number of times thread has been blocked waiting for
metadata-based signal by this replica.

Ndb_api _wait_nanos_count : Total time (in nanoseconds) spent waiting for some type of signal from
data nodes by this MySQL Server (SQL node).

Ndb_api _wai t _nanos_count _sessi on: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes in this client session.

Ndb_api _wai t _nanos_count _sl ave: Total time (in nanoseconds) spent waiting for some type of
signal from data nodes by this replica.

Ndb_api _wait_scan_result_count: Number of times thread has been blocked while waiting for
scan-based signal by this MySQL Server (SQL node).

Ndb_api _wait_scan_result_ count _sessi on: Number of times thread has been blocked while
waiting for scan-based signal in this client session.

Ndb_api _wait_scan_resul t _count _sl ave: Number of times thread has been blocked while
waiting for scan-based signal by this replica.

ndb_aut oi ncrenment _pref et ch_sz: NDB auto-increment prefetch size.

ndb_cache_check_t i me: Number of milliseconds between checks of cluster SQL nodes made by
MySQL query cache.

ndb_cl ear _appl y_st at us: Causes RESET SLAVE/RESET REPLICA to clear all rows from
ndb_apply_status table; ON by default.

Ndb_cl ust er _node_i d: Node ID of this server when acting as NDB Cluster SQL node.
Ndb_confi g_from host: NDB Cluster management server host name or IP address.
Ndb_confi g_from port: Port for connecting to NDB Cluster management server.

Ndb_confli ct _fn_epoch: Number of rows that have been found in conflict by NDBSEPOCHY() conflict
detection function.

Ndb_conflict_fn_epoch2: Number of rows that have been found in conflict by NDBSEPOCH2()
conflict detection function.

96

NDB Cluster mysgld Option and Variable Reference

Ndb_conflict _fn_epoch2 trans: Number of rows that have been found in conflict by NDB
$EPOCH2_TRANS() conflict detection function.

Ndb_conflict _fn_epoch_trans: Number of rows that have been found in conflict by NDB
$EPOCH_TRANS() conflict detection function.

Ndb_conflict_fn_max: Number of times that conflict resolution based on "greater timestamp wins"
has been applied when server is part of an NDB Cluster involved in cluster replication.

Ndb _conflict fn_max_del w n: Number of times that conflict resolution based on outcome of NDB
$MAX_DELETE_WIN() has been applied.

Ndb_conflict_fn_ol d: Number of times that "same timestamp wins" conflict resolution has been
applied when this server is part of an NDB Cluster involved in cluster replication.

Ndb_conflict_|ast_conflict_epoch: Most recent NDB epoch on this replica in which some
conflict was detected.

Ndb_conflict | ast_stabl e_epoch: Number of rows found to be in conflict by transactional conflict
function.

Ndb_conflict _reflected op_di scard_count: Number of reflected operations that were not
applied due error during execution.

Ndb_conflict _reflected op_prepare_count: Number of reflected operations received that have
been prepared for execution.

Ndb_conflict_refresh_op_count: Number of refresh operations that have been prepared.

Ndb_conflict_trans_conflict_commt_count: Number of epoch transactions committed after
requiring transactional conflict handling.

Ndb_conflict_trans_detect _iter_count:Number of internal iterations required to commit epoch
transaction. Should be (slightly) greater than or equal to Ndb_conflict_trans_conflict_commit_count.

Ndb_conflict _trans_reject_count: Number of transactions rejected after being found in conflict
by transactional conflict function.

Ndb_conflict _trans_row conflict_count: Number of rows found in conflict by transactional
conflict function. Includes any rows included in or dependent on conflicting transactions.

Ndb_conflict _trans_row reject count: Total number of rows realigned after being found in
conflict by transactional conflict function. Includes Ndb_conflict_trans_row_conflict_count and any rows
included in or dependent on conflicting transactions.

ndb_def erred_constrai nt s: Specifies that constraint checks should be deferred (where these are
supported). Not normally needed or used; for testing purposes only.

ndb_di stri buti on: Default distribution for new tables in NDBCLUSTER (KEYHASH or LINHASH,
default is KEYHASH).

Ndb_epoch_del et e_del et e_count : Number of delete-delete conflicts detected (delete operation is
applied, but row does not exist).

ndb_event buf f er _free_per cent : Percentage of free memory that should be available in event
buffer before resumption of buffering, after reaching limit set by ndb_eventbuffer_max_alloc.

ndb_event buf f er _nmax_al | oc: Maximum memory that can be allocated for buffering events by NDB
API. Defaults to 0 (no limit).

97

NDB Cluster mysgld Option and Variable Reference

Ndb_execut e_count : Number of round trips to NDB kernel made by operations.

ndb_extra_l oggi ng: Controls logging of NDB Cluster schema, connection, and data distribution
events in MySQL error log.

ndb_f or ce_send: Forces sending of buffers to NDB immediately, without waiting for other threads.

ndb_i ndex_stat _cache_entri es: Granularity of statistics by determining number of starting and
ending keys.

ndb_i ndex_st at _enabl e: Use NDB index statistics in query optimization.

ndb_i ndex_st at _opt i on: Comma-separated list of tunable options for NDB index statistics; list
should contain no spaces.

ndb_i ndex_stat updat e_freq: How often to query data nodes rather than statistics cache.
ndb_j oi n_pushdown: Enables pushing down of joins to data nodes.

Ndb_| ast _commit_epoch_server: Epoch most recently committed by NDB.

Ndb_| ast _commit _epoch_sessi on: Epoch most recently committed by this NDB client.

ndb_| og_appl y_st at us: Whether or not MySQL server acting as replica logs
mysql.ndb_apply_status updates received from its immediate source in its own binary log, using its own
server ID.

ndb_| og_bi n: Write updates to NDB tables in binary log. Effective only if binary logging is enabled with
--log-bin.

ndb_I| og_bi nl og_i ndex: Insert mapping between epochs and binary log positions into
ndb_binlog_index table. Defaults to ON. Effective only if binary logging is enabled.

ndb_| og_enpty_epochs: When enabled, epochs in which there were no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

ndb_| og_enpty_ updat e: When enabled, updates which produce no changes are written to
ndb_apply_status and ndb_binlog_index tables, even when log_replica_updates or log_slave_updates is
enabled.

ndb_| og_excl usi ve_r eads: Log primary key reads with exclusive locks; allow conflict resolution
based on read conflicts.

ndb_I| og_ori g: Whether id and epoch of originating server are recorded in mysql.ndb_binlog_index
table. Set using --ndb-log-orig option when starting mysqld.

ndb_| og_transacti on_i d: Whether NDB transaction IDs are written into binary log (Read-only).
ndb- | og- updat e- mi ni mal : Log updates in minimal format.
ndb- | og- updat ed- onl y: Log complete rows (ON) or updates only (OFF).

Ndb_numnber _of dat a_nodes: Number of data nodes in this NDB cluster; set only if server
participates in cluster.

ndb- opti m zati on- del ay: Number of milliseconds to wait between processing sets of rows by
OPTIMIZE TABLE on NDB tables.

98

NDB Cluster mysgld Option and Variable Reference

ndb_opti m zed_node_sel ecti on: Determines how SQL node chooses cluster data node to use as
transaction coordinator.

Ndb_pruned_scan_count : Number of scans executed by NDB since cluster was last started where
partition pruning could be used.

Ndb_pushed_queri es_def i ned: Number of joins that APl nodes have attempted to push down to
data nodes.

Ndb_pushed_queri es_dr opped: Number of joins that APl nodes have tried to push down, but failed.

Ndb_pushed_queri es_execut ed: Number of joins successfully pushed down and executed on data
nodes.

Ndb_pushed_r eads: Number of reads executed on data nodes by pushed-down joins.

ndb_recv_thread_activation_threshol d: Activation threshold when receive thread takes over
polling of cluster connection (measured in concurrently active threads).

ndb_recv_t hread_cpu_nmask: CPU mask for locking receiver threads to specific CPUs; specified as
hexadecimal. See documentation for details.

ndb_report _thresh_binl og epoch_slip: NDB 7.5.4 and later: Threshold for number of epochs
completely buffered, but not yet consumed by binlog injector thread which when exceeded generates
BUFFERED_EPOCHS_ OVER_THRESHOLD event buffer status message; prior to NDB 7.5.4:
Threshold for number of epochs to lag behind before reporting binary log status.

ndb_report _thresh_bi nl og_nmem usage: Threshold for percentage of free memory remaining
before reporting binary log status.

Ndb_scan_count : Total number of scans executed by NDB since cluster was last started.
ndb_show forei gn_key nock_t abl es: Show mock tables used to support foreign_key checks=0.

ndb_sl ave_conflict _rol e: Role for replica to play in conflict detection and resolution. Value is one
of PRIMARY, SECONDARY, PASS, or NONE (default). Can be changed only when replication SQL
thread is stopped. See documentation for further information.

Ndb_sl ave_nmax_repli cat ed_epoch: Most recently committed NDB epoch on this replica. When this
value is greater than or equal to Ndb_conflict_last_conflict_epoch, no conflicts have yet been detected.

ndb_t abl e_no_I| oggi ng: NDB tables created when this setting is enabled are not checkpointed to
disk (although table schema files are created). Setting in effect when table is created with or altered to
use NDBCLUSTER persists for table's lifetime.

ndb_t abl e_t enpor ar y: NDB tables are not persistent on disk: no schema files are created and tables
are not logged.

ndb_use _copyi ng_al ter _tabl e: Use copying ALTER TABLE operations in NDB Cluster.
ndb_use_exact _count : Use exact row count when planning queries.

ndb_use_transacti ons: Forces NDB to use a count of records during SELECT COUNT(*) query
planning to speed up this type of query.

ndb_ver si on: Shows build and NDB engine version as an integer.

ndb_ver si on_st ri ng: Shows build information including NDB engine version in ndb-x.y.z format.

99

NDB Cluster Configuration Files

e ndbcl ust er : Enable NDB Cluster (if this version of MySQL supports it). Disabled by - - ski p-

ndbcl ust er.

» ndbi nf o_dat abase: Name used for NDB information database; read only.

e ndbi nf o_nax_byt es: Used for debugging only.

» ndbi nf o_nax_r ows: Used for debugging only.

e ndbi nf o_of f I i ne: Put ndbinfo database into offline mode, in which no rows are returned from tables
or views.

e ndbi nf o_show_hi dden: Whether to show ndbinfo internal base tables in mysq| client; default is OFF.
« ndbi nfo_tabl e_prefi x: Prefix to use for naming ndbinfo internal base tables; read only.
e ndbi nf o_ver si on: ndbinfo engine version; read only.

e server _id_bits: Number of least significant bits in server_id actually used for identifying server,
permitting NDB API applications to store application data in most significant bits. server_id must be less
than 2 to power of this value.

e ski p- ndbcl ust er : Disable NDB Cluster storage engine.
e slave_al | ow_bat chi ng: Turns update batching on and off for replica.

e transaction_al | ow_bat chi ng: Allows batching of statements within one transaction. Disable
AUTOCOMMIT to use.

4.3 NDB Cluster Configuration Files

Configuring NDB Cluster requires working with two files:

e ny. cnf : Specifies options for all NDB Cluster executables. This file, with which you should be familiar
with from previous work with MySQL, must be accessible by each executable running in the cluster.

e config.ini: This file, sometimes known as the global configuration file, is read only by the NDB
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. conf i g. i ni contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between
all nodes in the cluster. For a quick reference to the sections that can appear in this file, and what sorts
of configuration parameters may be placed in each section, see Sections of the confi g. i ni File.

Caching of configuration data. In NDB Cluster 7.3 and later, NDB uses stateful configuration. Rather
than reading the global configuration file every time the management server is restarted, the management
server caches the configuration the first time it is started, and thereafter, the global configuration file is read
only when one of the following conditions is true:

e The management server is started using the --initial option. When--ini ti al is used, the global
configuration file is re-read, any existing cache files are deleted, and the management server creates a
new configuration cache.

e The management server is started using the --reload option. The - - r el oad option causes
the management server to compare its cache with the global configuration file. If they differ, the
management server creates a new configuration cache; any existing configuration cache is preserved,
but not used. If the management server's cache and the global configuration file contain the same
configuration data, then the existing cache is used, and no new cache is created.

100

NDB Cluster Configuration: Basic Example

e The management server is started using --config-cache=FALSE. This disables - - confi g-
cache (enabled by default), and can be used to force the management server to bypass configuration
caching altogether. In this case, the management server ignores any configuration files that may be
present, always reading its configuration data from the confi g. i ni file instead.

* No configuration cache is found. In this case, the management server reads the global
configuration file and creates a cache containing the same configuration data as found in the file.

Configuration cache files. The management server by default creates configuration cache files in

a directory named nmysql - cl ust er in the MySQL installation directory. (If you build NDB Cluster from
source on a Unix system, the default location is / usr/ | ocal / nysql - cl ust er.) This can be overridden
at runtime by starting the management server with the - - conf i gdi r option. Configuration cache files are
binary files named according to the pattern ndb_node_id _confi g. bi n. seq_i d, where node_i d is the
management server's node ID in the cluster, and seq_i d is a cache idenitifer. Cache files are numbered
sequentially using seq_i d, in the order in which they are created. The management server uses the latest
cache file as determined by the seq_.i d.

Note

It is possible to roll back to a previous configuration by deleting later configuration
cache files, or by renaming an earlier cache file so that it has a higher seq_i d.
However, since configuration cache files are written in a binary format, you should
not attempt to edit their contents by hand.

For more information about the - - confi gdi r, --confi g-cache,--initial,and--rel oad options
for the NDB Cluster management server, see Section 5.4, “ndb_mgmd — The NDB Cluster Management
Server Daemon”.

We are continuously making improvements in Cluster configuration and attempting to simplify this process.
Although we strive to maintain backward compatibility, there may be times when introduce an incompatible
change. In such cases we try to let Cluster users know in advance if a change is not backward compatible.
If you find such a change and we have not documented it, please report it in the MySQL bugs database
using the instructions given in How to Report Bugs or Problems.

4.3.1 NDB Cluster Configuration: Basic Example

To support NDB Cluster, you must update ny. cnf as shown in the following example. You may also
specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used in
confi g.ini global configuration files. Global configuration options are discussed
later in this section.

ny. cnf
exanpl e additions to ny.cnf for NDB O uster
(valid in M/SQL 5. 6)

enabl e ndbcl uster storage engi ne, and provi de connection string for
managenent server host (default port is 1186)

[mysql d]

ndbcl ust er

ndb- connect st ri ng=ndb_ngnd. nysql . com

provide connection string for managenent server host (default port: 1186)
[ndbd]
connect - st ri ng=ndb_ngnd. mysqgl . com

101

https://dev.mysql.com/doc/refman/5.6/en/bug-reports.html

NDB Cluster Configuration: Basic Example

provide connection string for managenent server host (default port: 1186)

[ndb_nmgm
connect - st ri ng=ndb_ngnd. nysqgl . com

provide |ocation of cluster configuration file
| MPORTANT: When starting the management server with this option in the

configuration file, the use of --initial or --reload on the command |ine when
i nvoking ndb_nmgnd is al so required
[ndb_ngnd]

config-file=/etc/config.in

(For more information on connection strings, see Section 4.3.3, “NDB Cluster Connection Strings”.)

ny. cnf
exanpl e additions to ny.cnf for NDB C uster
(works on all versions)

enabl e ndbcl uster storage engine, and provi de connection string for managenent
server host to the default port 1186

[nysal d]
ndbcl ust er
ndb- connect st ri ng=ndb_ngnd. nysqgl . com 1186

Important

Once you have started a mysql d process with the NDBCLUSTER and ndb-
connect st ri ng parameters in the [mysql d] in the ny. cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE statements
without having actually started the cluster. Otherwise, these statements fail with an
error. This is by design.

You may also use a separate [mysql _cl ust er] section in the cluster ny. cnf file for settings to be read
and used by all executables:

cluster-specific settings
[mysql _cluster]
ndb- connect st ri ng=ndb_ngnd. mysql . com 1186

For additional NDB variables that can be set in the ny. cnf file, see Section 4.3.8.2, “NDB Cluster System
Variables”.

The NDB Cluster global configuration file is by convention named confi g. i ni (but this is not required).
If needed, it is read by ndb_ngnd at startup and can be placed in any location that can be read by it. The
location and name of the configuration are specified using - - confi g-fi | e=pat h_nane with ndb_ngnd
on the command line. This option has no default value, and is ignored if ndb_ngnd uses the configuration
cache.

The global configuration file for NDB Cluster uses INI format, which consists of sections preceded by
section headings (surrounded by square brackets), followed by the appropriate parameter names and
values. One deviation from the standard INI format is that the parameter name and value can be separated
by a colon (:) as well as the equal sign (=); however, the equal sign is preferred. Another deviation is that
sections are not uniquely identified by section name. Instead, unique sections (such as two different nodes
of the same type) are identified by a unique ID specified as a parameter within the section.

Default values are defined for most parameters, and can also be specified in confi g. i ni . To create a
default value section, simply add the word def aul t to the section name. For example, an [ndbd] section
contains parameters that apply to a particular data node, whereas an [ndbd def aul t] section contains
parameters that apply to all data nodes. Suppose that all data nodes should use the same data memory
size. To configure them all, create an [ndbd def aul t] section that contains a Dat aMenor y line to
specify the data memory size.

102

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

NDB Cluster Configuration: Basic Example

If used, the [ndbd def aul t] section must precede any [ndbd] sections in the configuration file. This is

also true for def aul t sections of any other type.

Note

In some older releases of NDB Cluster, there was no default value for

NoOf Repl i cas, which always had to be specified explicitly in the [ndbd

def aul t] section. Although this parameter now has a default value of 2, which is
the recommended setting in most common usage scenarios, it is still recommended

practice to set this parameter explicitly.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes

This file is placed in the startup directory of ndb_ngnd (the

managenent server)
The first MySQL Server can be started from any host.
can be started only on the host nysqld_5. mysqgl.com

[ndbd defaul t]
NoOf Repl i cas= 2
DataDir= /var/lib/nysql -cl uster

[ndb_ngnd]
Host nane= ndb_ngnd. nysql . com
DataDir= /var/lib/ nysql -cl uster

[ndbd]
Host Nane= ndbd_2. nysql . com

[ndbd]
Host Nane= ndbd_3. nysql . com

The second

[nysql d]
[nysql d]

Host Nane= nysql d_5. nysql . com

Note

The preceding example is intended as a minimal starting configuration for purposes
of familiarization with NDB Cluster, and is almost certain not to be sufficient for
production settings. See Section 4.3.2, “Recommended Starting Configuration for
NDB Cluster”, which provides a more complete example starting configuration.

Each node has its own section in the confi g. i ni file. For example, this cluster has two data nodes, so
the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the confi g. i ni
file; this causes the management server not to start because it cannot parse the
configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the confi g. i ni configuration file, as described in the

following list:

103

Recommended Starting Configuration for NDB Cluster

[comput er] : Defines cluster hosts. This is not required to configure a viable NDB Cluster, but be may
used as a convenience when setting up a large cluster. See Section 4.3.4, “Defining Computers in an
NDB Cluster”, for more information.

[ndbd] : Defines a cluster data node (ndbd process). See Section 4.3.6, “Defining NDB Cluster Data
Nodes”, for details.

[mysqgl d] : Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion
of SQL node configuration, see Section 4.3.7, “Defining SQL and Other API Nodes in an NDB Cluster”.

[mgn or [ndb_ngnd] : Defines a cluster management server (MGM) node. For information concerning
the configuration of management nodes, see Section 4.3.5, “Defining an NDB Cluster Management
Server”.

[t cp] : Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default transport
protocol. Normally, [t cp] or[tcp defaul t] sections are not required to set up an NDB Cluster,

as the cluster handles this automatically; however, it may be necessary in some situations to override
the defaults provided by the cluster. See Section 4.3.9, “NDB Cluster TCP/IP Connections”, for
information about available TCP/IP configuration parameters and how to use them. (You may also find
Section 4.3.10, “NDB Cluster TCP/IP Connections Using Direct Connections” to be of interest in some
cases.)

[shn : Defines shared-memory connections between nodes. In MySQL 5.6, it is enabled by default,
but should still be considered experimental. For a discussion of SHM interconnects, see Section 4.3.11,
“NDB Cluster Shared-Memory Connections”.

[sci] : Defines Scalable Coherent Interface connections between cluster data nodes. Not supported in
NDB 7.3 or 7.4.

You can define def aul t values for each section. If used, a def aul t section should come before any
other sections of that type. For example, an [ndbd def aul t] section should appear in the configuration
file before any [ndbd] sections.

NDB Cluster parameter names are case-insensitive, unless specified in MySQL Server imy. cnf or ny. i ni
files.

4.3.2 Recommended Starting Configuration for NDB Cluster

Achieving the best performance from an NDB Cluster depends on a number of factors including the
following:

NDB Cluster software version

Numbers of data nodes and SQL nodes
Hardware

Operating system

Amount of data to be stored

Size and type of load under which the cluster is to operate

Therefore, obtaining an optimum configuration is likely to be an iterative process, the outcome of which can
vary widely with the specifics of each NDB Cluster deployment. Changes in configuration are also likely to
be indicated when changes are made in the platform on which the cluster is run, or in applications that use
the NDB Cluster's data. For these reasons, it is not possible to offer a single configuration that is ideal for
all usage scenarios. However, in this section, we provide a recommended base configuration.

104

Recommended Starting Configuration for NDB Cluster

Starting config.ini file. The following confi g. i ni file is a recommended starting point for configuring
a cluster running NDB Cluster 7.3 or later:

TCP PARAMETERS

[tcp defaul t]
SendBuf f er Menor y=2M
Recei veBuf f er Menor y=2M

Increasing the sizes of these two buffers beyond the default val ues
hel ps prevent bottlenecks due to slow disk I/Q

MANAGEMENT NODE PARAMETERS

[ndb_ngnd def aul t]
Dat aDi r =pat h/ t o/ managenent / server/ dat a/ di rectory

1t is possible to use a different data directory for each managenent
server, but for ease of administration it is preferable to be
consi stent.

[ndb_ngnd]
Host Nane=managenent - ser ver - A- host nanme
Nodel d=managenent - ser ver - A- nodei d

[ndb_ngnd]
Host Nane=managenent - ser ver - B- host nanme
Nodel d=managenent - ser ver - B- nodei d

Usi ng two2 nanagenent servers hel ps guarantee that there is al ways an
arbitrator in the event of network partitioning, and so is reconmended for

hi gh availability. Each managenent server nust be identified by a Host Name.
You may for the sake of conveni ence specify a Nodeld for any nanagenent
server, although one is allocated for it automatically; if you do so, it nust
be in the range 1-255 inclusive and nust be uni que anong all |Ds specified for
cl uster nodes.

HH O H R HH

DATA NODE PARAMETERS

[ndbd defaul t]
NoOf Repl i cas=2

Using two fragnment replicas is recommended to guarantee availability of data;
using only one fragnment replica does not provide any redundancy, which means

that the failure of a single data node causes the entire cluster to shut down.
We do not recomrend using nore than two fragnent replicas, since 2 is

sufficient to provide high availability, and we do not currently test with

greater values for this paraneter.

LockPages| nMai nMenor y=1

On Linux and Sol aris systenms, setting this parameter |ocks data node processes
into nenory. Doing so prevents them from swappi ng to di sk, which can severely
degrade cluster performance.

Dat aMenor y=3072M
| ndexMenor y=384M

The val ues provi ded for DataMenory and | ndexMenory assume 4 GB RAM per data
node. However, for best results, you should first calculate the nenory that

woul d be used based on the data you actually plan to store (you may find the
ndb_size.pl utility helpful in estimating this), then allow an extra 20%

over the calcul ated values. Naturally, you should ensure that each data node
host has at |east as nmuch physical menory as the sum of these two val ues.

ODirect=1

105

Recommended Starting Configuration for NDB Cluster

Enabling this paraneter causes NDBCLUSTER to try using O DI RECT wites for
| ocal checkpoints and redo |ogs; this can reduce |oad on CPUs. W reconmmend
doi ng so when using NDB Cluster on systens running Linux kernel 2.6 or |ater.

NoOf Fr agnent LogFi | es=300
Dat aDi r =pat h/ t o/ dat a/ node/ dat a/ di rectory
MaxNoCOf Concur r ent Oper at i ons=100000

Schedul er Spi nTi mer =400

Schedul er Execut i onTi mer =100

Real Ti neSchedul er =1

Setting these paraneters allows you to take advantage of real-tine scheduling
of NDB threads to achi eve increased throughput when using ndbd. They

are not needed when using ndbntd; in particular, you should not set

Real Ti meSchedul er for ndbntd data nodes.

Ti meBet weend obal Checkpoi nt s=1000

Ti neBet weenEpochs=200

Di skCheckpoi nt Speed=10M

Di skCheckpoi nt Speedl nRest art =100M

The two paraneters just listed are deprecated in NDB 7.4, where setting either
or both of them has no effect; see

Section 4.3.6, “Defining NDB Cl uster Data Nodes”, for nore information

RedoBuf f er =32M

ConpressedLCP=1

Conpr essedBackup=1

Enabl i ng ConpressedLCP and ConpressedBackup causes, respectively, |ocal

checkpoint files and backup files to be conpressed, which can result in a
space savings of up to 50% over nonconpressed LCPs and backups.

MaxNoOf Local Scans=64
MaxNoCOf Tabl es=1024
MaxNoOf Or der edl ndexes=256

[ndbd]
Host Nane=dat a- node- A- host nane
Nodel d=dat a- node- A- nodei d

LockExecut eThr eadToCPU=1

LockMai nt Thr eads ToCPU=0

On systens with multiple CPUs, these paranmeters can be used to | ock NDBCLUSTER
threads to specific CPUs

[ndbd]
Host Nane=dat a- node- B- host nane
Nodel d=dat a- node- B- nodei d

LockExecut eThr eadToCPU=1
LockMai nt Thr eads ToCPU=0

You nust have an [ndbd] section for every data node in the cluster; each of

these sections nust include a Host Nane. Each section may optionally include a
Nodel d for conveni ence, but in nost cases, it is sufficient to allow the

cluster to allocate node IDs dynamcally. If you do specify the node ID for a
data node, it nmust be in the range 1 to 48 inclusive and nust be uni que anopng
all IDs specified for cluster nodes.

SQL NODE / APl NODE PARAMETERS
[nysql d]

Host Nane=sql - node- A- host nane

Nodel d=sql - node- A- nodei d

[nysgl d]

[nysql d]

106

NDB Cluster Connection Strings

Each APl or SQ. node that connects to the cluster requires a [nysqgld] or [api]
section of its own. Each such section defines a connection slot; you shoul d

have at |east as many of these sections in the config.ini file as the total

nunmber of APl nodes and SQ. nodes that you wi sh to have connected to the

cluster at any given tine. There is no performance or other penalty for having
extra slots available in case you find |ater that you want or need nore APl or
SQ. nodes to connect to the cluster at the sane tinme. If no HostNane is

specified for a given [nysqgld] or [api] section, then *any* APl or SQL node

may use that slot to connect to the cluster. You may wish to use an explicit

Host Nane for one connection slot to guarantee that an APl or SQL node from

that host can always connect to the cluster. If you wish to prevent APl or SQL
nodes from connecting fromother than a desired host or hosts, then use a

Host Name for every [nmysqld] or [api] section in the config.ini file. You can

if you wish define a node |ID (Nodeld paraneter) for any APl or SQ. node, but

this is not necessary; if you do so, it nmust be in the range 1 to 255

inclusive and nmust be unique anong all |1Ds specified for cluster nodes

Recommended my.cnf options for SQL nodes. MySQL Servers acting as NDB Cluster SQL nodes
must always be started with the - - ndbcl ust er and - - ndb- connect st ri ng options, either on the
command line or in my. cnf . In addition, set the following options for all nysql d processes in the cluster,
unless your setup requires otherwise:

e --ndb-use-exact -count =0
e --ndb-i ndex- st at - enabl e=0
e --ndb-force-send=1

e --optimzer-sw tch=engi ne_condition_pushdown=on
4.3.3 NDB Cluster Connection Strings

With the exception of the NDB Cluster management server (ndb_ngnd), each node that is part of an NDB
Cluster requires a connection string that points to the management server's location. This connection
string is used in establishing a connection to the management server as well as in performing other tasks
depending on the node's role in the cluster. The syntax for a connection string is as follows:

[nodei d=node_i d,]host-definition[, host-definition[, ...]]

host -definition
host _nane[: port _nunber]

node_i d is an integer greater than or equal to 1 which identifies a node in confi g. i ni . host _nane is
a string representing a valid Internet host name or IP address. por t _nunber is an integer referring to a
TCP/IP port number.

exanmple 1 (long): "nodei d=2, nyhost 1: 1100, nyhost 2: 1100, 198. 51. 100. 3: 1200"
exanpl e 2 (short): "myhost 1"

| ocal host : 1186 is used as the default connection string value if none is provided. If port _numis
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers. An
NDB Cluster data or APl node attempts to contact successive management servers on each host in the
order specified, until a successful connection has been established.

It is also possible to specify in a connection string one or more bind addresses to be used by nodes having
multiple network interfaces for connecting to management servers. A bind address consists of a hostname

107

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Defining Computers in an NDB Cluster

or network address and an optional port number. This enhanced syntax for connection strings is shown
here:

[nodei d=node_i d,]
[bi nd- addr ess=host -definition,]
host-definition[; bind-address=host-definition]
host-definition[; bind-address=host-definition]

[...11

host -definition
host _nane[: port_nunber]

If a single bind address is used in the connection string prior to specifying any management hosts,

then this address is used as the default for connecting to any of them (unless overridden for a given
management server; see later in this section for an example). For example, the following connection string
causes the node to use 198. 51. 100. 242 regardless of the management server to which it connects:

bi nd- addr ess=198. 51. 100. 242, posei don: 1186, perch: 1186

If a bind address is specified following a management host definition, then it is used only for connecting to
that management node. Consider the following connection string:

posei don: 1186; bi nd- addr ess=I ocal host, perch: 1186; bi nd- addr ess=198. 51. 100. 242

In this case, the node uses | ocal host to connect to the management server running on the host named
posei don and 198. 51. 100. 242 to connect to the management server running on the host named
per ch.

You can specify a default bind address and then override this default for one or more specific management
hosts. In the following example, | ocal host is used for connecting to the management server running on
host posei don; since 198. 51. 100. 242 is specified first (before any management server definitions), it
is the default bind address and so is used for connecting to the management servers on hosts per ch and
orca:

bi nd- addr ess=198. 51. 100. 242, posei don: 1186; bi nd- addr ess=I ocal host, perch: 1186, or ca: 2200
There are a number of different ways to specify the connection string:

» Each executable has its own command-line option which enables specifying the management server at
startup. (See the documentation for the respective executable.)

« Itis also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysqgl cl uster] section in the management server's ny. cnf file.

» For backward compatibility, two other options are available, using the same syntax:
1. Setthe NDB_CONNECTSTRI NG environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb. cf g and place this file in
the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my. cnf file for each executable.

4.3.4 Defining Computers in an NDB Cluster

108

Defining an NDB Cluster Management Server

The [conput er] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

e 1d
Version (or later) NDB 7.3.1
Type or units string
Default [...]
Range
Restart Type S

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management, API, or
data node. Unlike the case with node IDs, you cannot use Nodel d in place of | d
inthe [conput er] section of the confi g. i ni file.

* Host Name
Version (or later) NDB 7.3.1
Type or units name or IP address
Default [...]
Range
Restart Type S

This is the computer's hostname or IP address.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.1 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be

shut down completely, then
restarted, to effect a change in this
parameter

| Initial Data nodes must be restarted
using the--initial option

4.3.5 Defining an NDB Cluster Management Server

The [ndb_ngnd] section is used to configure the behavior of the management server. If multiple
management servers are employed, you can specify parameters common to all of them in an [ndb_ngnd

def aul t] section. [mgn] and [ngm def aul t] are older aliases for these, supported for backward
compatibility.

109

Defining an NDB Cluster Management Server

All parameters in the following list are optional and assume their default values if omitted.

Note

If neither the Execut eOnConput er nor the Host Nane parameter is present, the
default value | ocal host is assumed for both.

Id

Version (or later) NDB 7.3.1
Type or units unsigned
Default [...]
Range 1-255
Restart Type S

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255, inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of data
nodes, it is a good idea to limit the node IDs for management nodes (and API
nodes) to values greater than 48.

The use of the | d parameter for identifying management nodes is deprecated in favor of Nodel d.
Although | d continues to be supported for backward compatibility, it now generates a warning and is
subject to removal in a future version of NDB Cluster.

Nodel d

Version (or later) NDB 7.3.1
Type or units unsigned
Default [...]
Range 1-255
Restart Type S

Each node in the cluster has a unique identity. For a management node, this is represented by an
integer value in the range 1 to 255 inclusive. This ID is used by all internal cluster messages for
addressing the node, and so must be unique for each NDB Cluster node, regardless of the type of node.

Note

Data node IDs must be less than 49. If you plan to deploy a large number of data
nodes, it is a good idea to limit the node IDs for management nodes (and API
nodes) to values greater than 48.

Nodel d is the preferred parameter name to use when identifying management nodes. Although the
older | d continues to be supported for backward compatibility, it is now deprecated and generates a
warning when used,; it is also subject to removal in a future NDB Cluster release.

110

s Execut eOnConput er

Defining an NDB Cluster Management Server

Version (or later) NDB 7.3.1

Type or units name

Default [...]

Range

Deprecated Yes (in NDB 7.5)
Restart Type S

This refers to the | d set for one of the computers defined in a [conput er] section of the confi g. i ni

file.

e Port Nunber

Version (or later) NDB 7.3.1
Type or units unsigned
Default 1186
Range 0-64K
Restart Type S

This is the port number on which the management server listens for configuration requests and

management commands.

e Host Nane

Version (or later)

NDB 7.3.1

Type or units

name or IP address

Default

[..]

Range

Restart Type

S

Specifying this parameter defines the hostname of the computer on which the management node is to
reside. To specify a hostname other than | ocal host , either this parameter or Execut eOnConput er is

required.

» LogDestination

Version (or later)

NDB 7.3.1

Type or units

{CONSOLE|SYSLOG|FILE}

Default

FILE: flename=ndb_nodeid_cluster.log,
maxsize=1000000, maxfiles=6

Range

111

Defining an NDB Cluster Management Server

Restart Type S

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSCLE, SYSLOG, and FI LE—with FI LE being the default:

¢ CONSOLE outputs the log to st dout :

CONSQLE

¢ SYSLOGsends the log to a sys| og facility, possible values being one of aut h, aut hpri v, cr on,
daernon, ft p, kern, | pr, mail, news, sysl og, user, uucp, | ocal 0,1 ocal 1,1 ocal 2,1 ocal 3,
| ocal 4,1 ocal 5,1 ocal 6, orl ocal 7.

Note

Not every facility is necessarily supported by every operating system.
SYSLOG facility=sysl og

* FI LE pipes the cluster log output to a regular file on the same machine. The following values can be
specified:

e fil enane: The name of the log file.

In NDB Cluster 7.3 and later, the default log file name used in such cases is
ndb_nodei d_cl ust er. | og (in some older versions, the log file's default name, used if FI LE was
specified without also setting f i | enane, was | ogger . | 0g.).

e maxsi ze: The maximum size (in bytes) to which the file can grow before logging rolls over to a new
file. When this occurs, the old log file is renamed by appending . N to the file name, where Nis the
next number not yet used with this name.

o maxfil es: The maximum number of log files.

FI LE: fi |l enane=cl ust er. | og, maxsi ze=1000000, maxfi | es=6

The default value for the FI LE parameter is
FILE: fil ename=ndb_node_i d_cl uster.| og, maxsi ze=1000000, maxfi | es=6, where
node_i d is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE; SYSLOG f aci |l i ty=l ocal O; FI LE: fi | ename=/ var /| og/ ngnd

e ArbitrationRank

Version (or later) NDB 7.3.1
Type or units 0-2
Default 1

Range 0-2

112

Defining an NDB Cluster Management Server

Restart Type S

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL
nodes can be arbitrators. Ar bi t r at i onRank can take one of the following values:

¢ 0: The node is never used as an arbitrator.
« 1: The node has high priority; that is, it is preferred as an arbitrator over low-priority nodes.

¢ 2: Indicates a low-priority node which is used as an arbitrator only if a node with a higher priority is not
available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its

Arbi trationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

You can disable arbitration completely either by setting Ar bi t r at i onRank to 0 on all management
and SQL nodes, or by setting the Ar bi t r at i on parameter inthe [ndbd def aul t] section

of the confi g. i ni global configuration file. Setting Ar bi t r at i on causes any settings for

Ar bi trati onRank to be disregarded.

e ArbitrationDel ay

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

An integer value which causes the management server's responses to arbitration requests to be delayed

by that number of milliseconds. By default, this value is 0; it is normally not necessary to change it.

e DataDir

Version (or later) NDB 7.3.1
Type or units path
Default

Range

Restart Type S

This specifies the directory where output files from the management server are placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,
this location can be overridden by setting the FI LE parameter for LogDest i nat i on as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_ngnd is located.

e Port Nunber Stats

Version (or later) NDB 7.3.1

Type or units unsigned

113

Defining an NDB Cluster Management Server

Default [--]
Range 0-64K
Restart Type S

This parameter specifies the port number used to obtain statistical information from an NDB Cluster

management server. It has no default value.

* Vn
Version (or later) NDB 7.3.1
Type or units boolean
Default false
Range true, false
Restart Type S
Use WAN TCP setting as default.

* Heartbeat ThreadPriority
Version (or later) NDB 7.3.1
Type or units string
Default [...]
Range
Restart Type S

Set the scheduling policy and priority of heartbeat threads for management and API nodes.

The syntax for setting this parameter is shown here:

Hear t beat ThreadPriority = policy[, priority]

policy:
{FIFO | RR}

When setting this parameter, you must specify a policy. This is one of FI FO(first in, first out) or RR
(round robin). The policy value is followed optionally by the priority (an integer).

» ExtraSendBufferMenory

Version (or later) NDB 7.3.1
Type or units bytes
Default 0

Range 0-32G
Restart Type S

This parameter specifies the amount of transporter send buffer memory to allocate in addition to any that

has been set using Tot al SendBuf f er Menory, SendBuf f er Menory, or both.

114

Defining an NDB Cluster Management Server

e Tot al SendBuf f er Menory

Version (or later) NDB 7.3.1

Type or units bytes

Default 0

Range 256K - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter is used to determine the total amount of memory to allocate on this node for shared send
buffer memory among all configured transporters.

If this parameter is set, its minimum permitted value is 256KB; 0 indicates that the parameter has not
been set. For more detailed information, see Section 4.3.12, “Configuring NDB Cluster Send Buffer
Parameters”.

» Heartbeat | nterval MgndMVgnd

Version (or later) NDB 7.3.3

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (OXFFFFFEFF)
Added NDB 7.3.3

Restart Type S (NDB 7.3.3)

Specify the interval between heartbeat messages used to determine whether another management
node is on contact with this one. The management node waits after 3 of these intervals to declare the
connection dead; thus, the default setting of 1500 milliseconds causes the management node to wait for
approximately 1600 ms before timing out.

This parameter was added in NDB 7.3.3. (Bug #16426805)

e MaxNoOf SavedEvent s

Version (or later) NDB 7.3.1
Type or units unsigned
Default 100
Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S
Not used.
Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running NDB Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing

config.1ni files. For more information about issues arising when using multiple 115

Defining NDB Cluster Data Nodes

management nodes, see Section 2.7.10, “Limitations Relating to Multiple NDB
Cluster Nodes”.

Restart types. Information about the restart types used by the parameter descriptions in this section is
shown in the following table:

Table 4.2 NDB Cluster restart types

Symbol Restart Type Description

N Node The parameter can be updated
using a rolling restart (see
Section 6.5, “Performing a Rolling
Restart of an NDB Cluster”)

S System All cluster nodes must be

shut down completely, then
restarted, to effect a change in this
parameter

| Initial Data nodes must be restarted
using the - -i ni ti al option

4.3.6 Defining NDB Cluster Data Nodes

The [ndbd] and [ndbd def aul t] sections are used to configure the behavior of the cluster's data
nodes.

[ndbd] and [ndbd defaul t] are always used as the section names whether you are using ndbd or
ndbnt d binaries for the data node processes.

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameter is either one of Execut eOnConput er or Host Name; this must be defined in the
local [ndbd] section.

The parameter NoOFf Repl i cas should be defined in the [ndbd def aul t] section, as it is common to
all Cluster data nodes. It is not strictly necessary to set NoOf Repl i cas, but it is good practice to set it
explicitly.

Most data node parameters are set in the [ndbd def aul t] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, Host Nane, Nodel d and Execut eOnConput er must be defined in the local [ndbd] section, and
not in any other section of conf i g. i ni . In other words, settings for these parameters are specific to one
data node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M or Gas a suffix
to indicate units of 1024, 1024x1024, or 1024x1024x1024. (For example, 100K means 100 x 1024 =
102400.)

Parameter names and values are case-insensitive, unless used in a MySQL Server ny. cnf or ny. i ni
file, in which case they are case-sensitive.

Information about configuration parameters specific to NDB Cluster Disk Data tables can be found later in
this section (see Disk Data Configuration Parameters).

All of these parameters also apply to ndbnt d (the multithreaded version of ndbd). Three additional
data node configuration parameters—NVaxNoCOf Execut i onThr eads, Thr eadConfi g, and
NoCOf Fr agnent LogPar t s—apply to ndbnt d only; these have no effect when used with ndbd. For more

116

Defining NDB Cluster Data Nodes

information, see Multi-Threading Configuration Parameters (ndbmtd). See also Section 5.3, “ndbmtd —
The NDB Cluster Data Node Daemon (Multi-Threaded)”.

Identifying data nodes.

The Nodel d or | d value (that is, the data node identifier) can be allocated on

the command line when the node is started or in the configuration file.

e Id
Version (or later) NDB 7.3.1
Type or units unsigned
Default [...]
Range 1-48
Restart Type S

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique identifier.

Nodel d is the preferred parameter name to use when identifying data nodes. Although the older | d is
still supported for backward compatibility, it is now deprecated, and generates a warning when used. | d
is also subject to removal in a future NDB Cluster release.

* Nodel d
Version (or later) NDB 7.3.1
Type or units unsigned
Default [...]
Range 1-48
Restart Type S

A unique node ID is used as the node's address for all cluster internal messages. For data nodes, this is
an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique identifier.

Nodel d is the preferred parameter name to use when identifying data nodes. Although | d continues to
be supported for backward compatibility, it is now deprecated, generates a warning when used, and is
subject to removal in a future version of NDB Cluster.

* Execut eOnConput er

Version (or later) NDB 7.3.1

Type or units name

Default [--]

Range

Deprecated Yes (in NDB 7.5)
Restart Type S

This refers to the | d set for one of the computers defined in a [conput er] section.

e Host Nane

‘Version (or later)

‘NDB?B&

117

Defining NDB Cluster Data Nodes

Type or units name or IP address
Default localhost

Range

Restart Type S

Specifying this parameter defines the hostname of the computer on which the data node is to reside. To
specify a hostname other than | ocal host, either this parameter or Execut eOnConput er is required.

Server Por t

Version (or later) NDB 7.3.1
Type or units unsigned
Default [...]

Range 1-64K
Restart Type S

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the same
port number, so it should normally not be necessary to specify a value for this parameter.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of

the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd
def aul t] section of the confi g. i ni file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_ngnd management port (the management server's Por t Nunber) so
outgoing connections to that port from any data nodes should always be
permitted.

TcpBi nd_| NADDR_ANY

Setting this parameter to TRUE or 1 binds | P_ADDR_ANY so that connections can be made from
anywhere (for autogenerated connections). The default is FALSE (0).

NodeG oup

Version (or later) NDB 7.3.1
Type or units unsigned
Default [...]

Range 0 - 65536
Restart Type S

This parameter can be used to assign a data node to a specific node group. It is read only when the
cluster is started for the first time, and cannot be used to reassign a data node to a different node
group online. It is generally not desirable to use this parameter in the [ndbd def aul t] section of the
config.ini file, and care must be taken not to assign nodes to node groups in such a way that an
invalid numbers of nodes are assigned to any node groups.

118

Defining NDB Cluster Data Nodes

The NodeGr oup parameter is chiefly intended for use in adding a new node group to a running NDB
Cluster without having to perform a rolling restart. For this purpose, you should set it to 65536 (the
maximum value). You are not required to set a NodeG oup value for all cluster data nodes, only for
those nodes which are to be started and added to the cluster as a new node group at a later time. For
more information, see Section 6.7.3, “Adding NDB Cluster Data Nodes Online: Detailed Example”.

* NoOF Repl i cas

Version (or later) NDB 7.3.1
Type or units integer
Default 2

Range 1-2
Restart Type S

This global parameter can be set only in the [ndbd def aul t] section, and defines the number of
fragment replicas for each table stored in the cluster. This parameter also specifies the size of node
groups. A node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way of
example, assume that we have 4 data nodes and that NoOf Repl i cas is set to 2. The four data nodes
have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the second
node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the
same node groups are not placed on the same computer because a single hardware failure would cause
the entire cluster to fail.

If no node IDs are provided, the order of the data nodes is the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client SHOWcommand.

The default and recommended maximum value for NoOf Repl i cas is 2. This is the recommended value
for most production environments.

Important

While it is theoretically possible for the value of this parameter to be 3 or 4, NDB
Cluster 7.3 and NDB Cluster 7.4 do not support setting NoOf Repl i cas to a
value greater than 2 in production.

Warning

Setting NoOf Repl i cas to 1 means that there is only a single copy of all Cluster
data; in this case, the loss of a single data node causes the cluster to fail because
there are no additional copies of the data stored by that node.

The number of data nodes in the cluster must be evenly divisible by the value of this parameter. For
example, if there are two data nodes, then NoOf Repl i cas must be equal to either 1 or 2, since 2/3 and
2/4 both yield fractional values; if there are four data nodes, then NoOf Repl i cas must be equal to 1, 2,
or 4.

e DataDir

!Version (or later) !NDB 7.3.1

|
119

Defining NDB Cluster Data Nodes

Type or units path
Default

Range

Restart Type S

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

* Fil eSystenPat h

Version (or later) NDB 7.3.1
Type or units path
Default DataDir
Range

Restart Type S

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs (for
Disk Data tables), and data files are placed. The default is the directory specified by Dat aDi r .

Note
This directory must exist before the ndbd process is initiated.
The recommended directory hierarchy for NDB Cluster includes / var /| i b/ mysqgl - cl ust er, under

which a directory for the node's file system is created. The name of this subdirectory contains the node
ID. For example, if the node ID is 2, this subdirectory is named ndb_2 fs.

» BackupDat aDi r

Version (or later)

NDB 7.3.1

Type or units

path

Default FileSystemPath
Range
Restart Type S

This parameter specifies the directory in which backups are placed.
Important

The string '/ BACKUP' is always appended to this value. For example, if you set
the value of BackupDat aDi r to/var/|i b/ cl ust er-dat a, then all backups
are stored under / var/ | i b/ cl ust er - dat a/ BACKUP. This also means that
the effective default backup location is the directory named BACKUP under the
location specified by the Fi | eSyst enPat h parameter.

Data Memory, Index Memory, and String Memory

Dat aMenory and | ndexMenory are [ndbd] parameters specifying the size of memory segments used

OEXES 1T O-vartae O

PO11a otnae aitd OW

120

Defining NDB Cluster Data Nodes

Dat aMenory and | ndexMenory are used, as they usually need to be updated to reflect actual usage by
the cluster:

* Dat aMenory
Version (or later) NDB 7.3.1
Type or units bytes
Default 80M
Range IM-1T
Restart Type S

This parameter defines the amount of space (in bytes) available for storing database records. The entire
amount specified by this value is allocated in memory, so it is extremely important that the machine has
sufficient physical memory to accommodate it.

The memory allocated by Dat aMenor y is used to store both the actual records and indexes. There is a
16-byte overhead on each record; an additional amount for each record is incurred because it is stored
in a 32KB page with 128 byte page overhead (see below). There is also a small amount wasted per
page due to the fact that each record is stored in only one page.

For variable-size table attributes, the data is stored on separate data pages, allocated from
Dat aMenor y. Variable-length records use a fixed-size part with an extra overhead of 4 bytes to
reference the variable-size part. The variable-size part has 2 bytes overhead plus 2 bytes per attribute.

The maximum record size is 14000 bytes.

The memory space defined by Dat aMenor y is also used to store ordered indexes, which use about 10
bytes per record. Each table row is represented in the ordered index. A common error among users is to
assume that all indexes are stored in the memory allocated by | ndexMenor y, but this is not the case:
Only primary key and unigue hash indexes use this memory; ordered indexes use the memory allocated
by Dat aMenor y. However, creating a primary key or unique hash index also creates an ordered index
on the same keys, unless you specify US| NG HASH in the index creation statement. This can be verified
by running ndb_desc -d db_nane tabl e_nane in the management client.

NDB Cluster can use a maximum of 512 MB for hash indexes per partition, which means in some cases
it is possible to get Tabl e i s full errorsin MySQL client applications even when ndb_ngm - e

"ALL REPORT MEMORYUSAGE" shows significant free Dat aMenor y. This can also pose a problem with
data node restarts on nodes that are heavily loaded with data.

You can force NDB to create extra partitions for NDB Cluster tables and thus have more memory
available for hash indexes by using the MAX_ROWS option for CREATE TABLE. In general, setting
MAX_ROWS to twice the number of rows that you expect to store in the table should be sufficient.

You can also use the M nFr eePct configuration parameter to help avoid problems with node restarts.

The memory space allocated by Dat aMenor y consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoCOF Repl i cas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except
by deleting the table. (This also means that Dat aMenor y pages, once allocated to a given table, cannot

121

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html

Defining NDB Cluster Data Nodes

be used by other tables.) Performing a data node recovery also compresses the partition because all
records are inserted into empty partitions from other live nodes.

The Dat aMenor y memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the Dat aMenor y. There is also a reference to each copy in the ordered
table indexes. Unigue hash indexes are updated only when the unique index columns are updated, in
which case a new entry in the index table is inserted and the old entry is deleted upon commit. For this
reason, it is also necessary to allocate enough memory to handle the largest transactions performed by
applications using the cluster. In any case, performing a few large transactions holds no advantage over
using many smaller ones, for the following reasons:

 Large transactions are not any faster than smaller ones

« Large transactions increase the number of operations that are lost and must be repeated in event of
transaction failure

+ Large transactions use more memory

The default value for Dat aMenor y is 80MB; the minimum is 1MB. There is no maximum size, but in
reality the maximum size has to be adapted so that the process does not start swapping when the limit
is reached. This limit is determined by the amount of physical RAM available on the machine and by
the amount of memory that the operating system may commit to any one process. 32-bit operating
systems are generally limited to 2-4GB per process; 64-bit operating systems can use more. For large
databases, it may be preferable to use a 64-bit operating system for this reason.

| ndexMenory

Version (or later) NDB 7.3.1

Type or units bytes

Default 18M

Range IM-1T
Deprecated Yes (in NDB 7.6)
Restart Type S

This parameter controls the amount of storage used for hash indexes in NDB Cluster. Hash indexes are
always used for primary key indexes, unique indexes, and unique constraints. When defining a primary

key or a unique index, two indexes are created, one of which is a hash index used for all tuple accesses
as well as lock handling. This index is also used to enforce unique constraints.

You can estimate the size of a hash index using this formula:

size = ((fragments * 32K) + (rows * 18))
* fragnent _replicas

f ragment s is the number of fragments, f r agnent _r epl i cas is the number of fragment replicas
(normally 2), and r ows is the number of rows. If a table has one million rows, eight fragments, and two
fragment replicas, the expected index memory usage is calculated as shown here:

((8 * 32K) + (1000000 * 18)) * 2 = ((8 * 32768) + (1000000 * 18)) * 2
= (262144 + 18000000) * 2

122

Defining NDB Cluster Data Nodes

= 18262144 * 2 = 36524288 bytes = ~35MB

Index statistics (when enabled) for ordered indexes are stored in the
nysql . ndb_i ndex_st at _sanpl e table. Since this table has a hash index, this adds to index memory
usage. An upper bound to the number of rows for a given ordered index can be calculated as follows:

sanpl e_si ze= key_size + ((key_attributes + 1) * 4)
sanpl e_rows = | ndexSt at SaveSi ze

* ((0.01 * IndexStatSaveScale * |ogz(rows * sanple_size)) + 1)
| sanpl e_si ze

In the preceding formula, key_si ze is the size of the ordered index key in bytes, key _attri butes is
the number ot attributes in the ordered index key, and r ows is the number of rows in the base table.

Assume that table t 1 has 1 million rows and an ordered index named i x1 on two four-byte integers.
Assume in addition that | ndex St at SaveSi ze and | ndex St at SaveScal e are set to their default
values (32K and 100, respectively). Using the previous 2 formulas, we can calculate as follows:

sanple_size =8 + ((1 + 2) * 4) = 20 bytes

N
~

sanpl e_rows =
((0.01 * 100 * |0g2(1000000*20)) + 1)
20

32768 * ((1 * ~16.811) +1) / 20
32768 * ~17.811 / 20

~29182 rows

o= *w

The expected index memory usage is thus 2 * 18 * 29182 = ~1050550 hytes.

The default value for | ndexMenory is 18MB. The minimum is 1MB.

e StringMenory

Version (or later) NDB 7.3.1

Type or units % or bytes

Default 25

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [ndbd] or [ndbd def aul t] section of the confi g. i ni file. A value between 0 and
100 inclusive is interpreted as a percent of the maximum default value, which is calculated based on

a number of factors including the number of tables, maximum table name size, maximum size of . FRM
files, MaxNoOf Tr i gger s, maximum column name size, and maximum default column value.

A value greater than 100 is interpreted as a number of bytes.
The default value is 25—that is, 25 percent of the default maximum.

Under most circumstances, the default value should be sufficient, but when you have a great many
Cluster tables (1000 or more), it is possible to get Error 773 Qut of string nmenory, please

nmodi fy StringMenory config paranmeter: Permanent error: Schema error,inwhich
case you should increase this value. 25 (25 percent) is not excessive, and should prevent this error from
recurring in all but the most extreme conditions.

I'ne 1ollowing example lllustrates oW memory IS used 1or a table. Consider this table detinition: 123

Defining NDB Cluster Data Nodes

CREATE TABLE exanpl e (
a | NT NOT NULL,
b I NT NOT NULL,
¢ | NT NOT NULL,
PRI MARY KEY(a),
UNI QUE(b)
) ENG NE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10
bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per
record. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the exanpl e table as well
8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary
key and the unique constraint. We also need 64MB for the records of the base table and the unique index
table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in NDB Cluster to handle uniqueness constraints.

The only partitioning algorithm is hashing and ordered indexes are local to each node. Thus, ordered
indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both | ndexMenor y and Dat aMenor vy is that the total database size is the sum of
all data memory and all index memory for each node group. Each node group is used to store replicated
information, so if there are four nodes with two fragment replicas, there are two node groups. Thus, the
total data memory available is 2 x Dat aMenor y for each data node.

It is highly recommended that Dat aMenory and | ndexMenory be set to the same values for all nodes.
Data distribution is even over all nodes in the cluster, so the maximum amount of space available for any
node can be no greater than that of the smallest node in the cluster.

Dat aMenory and | ndexMenory can be changed, but decreasing either of these can be risky; doing
so can easily lead to a node or even an entire NDB Cluster that is unable to restart due to there being
insufficient memory space. Increasing these values should be acceptable, but it is recommended that
such upgrades are performed in the same manner as a software upgrade, beginning with an update of the
configuration file, and then restarting the management server followed by restarting each data node in turn.

MinFreePct. A proportion (5% by default) of data node resources including Dat aMenor y and

| ndexMenor vy is kept in reserve to insure that the data node does not exhaust its memory when
performing a restart. This can be adjusted using the M nFr eePct data node configuration parameter
(default 5).

Version (or later) NDB 7.3.1
Type or units unsigned
Default 5

Range 0-100
Restart Type S

Updates do not increase the amount of index memory used. Inserts take effect immediately; however, rows
are not actually deleted until the transaction is committed.

Transaction parameters. The next few [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the

124

Defining NDB Cluster Data Nodes

system. MaxNoOFf Concur r ent Tr ansact i ons sets the number of parallel transactions possible in a

node. MaxNoCf Concur r ent Qper at i ons sets the number of records that can be in update phase or

locked simultaneously.

Both of these parameters (especially MaxNoOf Concur r ent Qper at i ons) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small

transactions, to ensure that these do not use excessive memory.

MaxDM_QOper at i onsPer Tr ansact i on sets the maximum number of DML operations that can be

performed in a given transaction.

e MaxNoCOf Concur rent Tr ansacti ons

Version (or later) NDB 7.3.1

Type or units integer

Default 4096

Range 32 - 4294967039 (OxFFFFFEFF)
Deprecated Yes (in NDB 8.0)

Restart Type S

Each cluster data node requires a transaction record for each active transaction in the cluster. The task
of coordinating transactions is distributed among all of the data nodes. The total number of transaction

records in the cluster is the number of transactions in any given node times the number of nodes in the
cluster.

Transaction records are allocated to individual MySQL servers. Each connection to a MySQL server
requires at least one transaction record, plus an additional transaction object per table accessed by that
connection. This means that a reasonable minimum for the total number of transactions in the cluster
can be expressed as

Tot al NoOf Concurrent Transacti ons =
(maxi mum nunber of tables accessed in any single transaction + 1)
* nunber of SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires 11
transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction records
are required for this transaction, per MySQL server, or 110 * 10 = 1100 transaction records total. Each
data node can be expected to handle TotaINoOfConcurrentTransactions / number of data nodes. For
an NDB Cluster having 4 data nodes, this would mean setting MaxNoOf Concur r ent Tr ansact i ons
on each data node to 1100/ 4 = 275. In addition, you should provide for failure recovery by ensuring
that a single node group can accommodate all concurrent transactions; in other words, that each
data node's MaxNoOfConcurrentTransactions is sufficient to cover a number of transactions equal to
TotalNoOfConcurrentTransactions / number of node groups. If this cluster has a single node group,
then MaxNoOf Concur rent Tr ansact i ons should be set to 1100 (the same as the total number of
concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOF Concur rent Tr ansact i ons should always be no more than the value of
MaxNoCOf Concur r ent Oper ati ons.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions that
were ongoing in the failed node.

125

Defining NDB Cluster Data Nodes

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must be
such that no more transactions occur than the lower of the old and new levels while this is taking place.

The default value is 4096.

MaxNoCOf Concur r ent Qper ati ons

Version (or later) NDB 7.3.1

Type or units integer

Default 32K

Range 32 - 4294967039 (OxFFFFFEFF)
Restart Type S

It is a good idea to adjust the value of this parameter according to the size and number of transactions.
When performing transactions which involve only a few operations and records, the default value for this
parameter is usually sufficient. Performing large transactions involving many records usually requires
that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set at a minimum to the number of records to be updated simultaneously in
transactions, divided by the number of cluster data nodes. For example, in a cluster which has four data
nodes and which is expected to handle one million concurrent updates using transactions, you should
set this value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is suggested that
you set this parameter to a value that is high enough to permit an individual data node to handle the load
for its node group. In other words, you should set the value equal to t ot al nunber of concurrent
operations / nunber of node groups. (Inthe case where there is a single node group, this is
the same as the total number of concurrent operations for the entire cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoCOf Concur r ent Oper at i ons should always be greater than or equal to the value of
MaxNoOf Concur r ent Tr ansact i ons.

Read queries which set locks also cause operation records to be created. Some extra space is allocated
within individual nodes to accommodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second handles
the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in the
transaction coordinator as there are reads, updates, and deletes involved in the transaction. However,
the operation records of the are spread over all eight nodes. Thus, if it is necessary to configure
the system for one very large transaction, it is a good idea to configure the two parts separately.

126

Defining NDB Cluster Data Nodes

MaxNoCOF Concur r ent Qper at i ons is always used to calculate the number of operation records in the
transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume
about 1KB per record.

MaxNoCf Local Oper ati ons

Version (or later) NDB 7.3.1

Type or units integer

Default UNDEFINED

Range 32 - 4294967039 (OXxFFFFFEFF)
Deprecated Yes (in NDB 8.0)

Restart Type S

By default, this parameter is calculated as 1.1 x MaxNoOf Concur r ent Qper at i ons. This fits systems
with many simultaneous transactions, none of them being very large. If there is a need to handle one
very large transaction at a time and there are many nodes, it is a good idea to override the default value
by explicitly specifying this parameter.

MaxDMLQper at i onsPer Tr ansact i on

Version (or later) NDB 7.3.1

Type or units operations (DML)
Default 4294967295
Range 32 - 4294967295
Restart Type S

This parameter limits the size of a transaction. The transaction is aborted if it requires more than this
many DML operations. The minimum number of operations per transaction is 32; however, you can set
MaxDMLQper at i onsPer Transact i on to 0 to disable any limitation on the number of DML operations
per transaction. The maximum (and default) is 4294967295.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary
storage when executing a statement that is part of a Cluster transaction. All records are released when the
statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values
to enable better parallelism in the system, whereas users whose applications require relatively small
transactions can decrease the values to save memory.

MaxNoCOf Concur r ent | ndexQOper ati ons

Version (or later) NDB 7.3.1

Type or units integer

Default 8K

Range 0 - 4294967039 (OXFFFFFEFF)
Deprecated Yes (in NDB 8.0)

Restart Type S

127

Defining NDB Cluster Data Nodes

For queries using a unique hash index, another temporary set of operation records is used during

a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoCOf Concur r ent Oper at i ons.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible and
can save memory if the DBA is certain that a high degree of parallelism is not required for the cluster.

e MaxNoCf Fi redTri ggers

Version (or later) NDB 7.3.1

Type or units integer

Default 4000

Range 0 - 4294967039 (OXFFFFFEFF)
Deprecated Yes (in NDB 8.0)

Restart Type S

The default value of MaxNoCOf Fi redTr i gger s is 4000, which is sufficient for most situations. In some
cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is short-
lived but can still require a large number of records in its pool for situations with many parallel write
operations on a base table containing a set of unique hash indexes.

e Transacti onBuf f er Menory

Version (or later) NDB 7.3.1

Type or units bytes

Default 1M

Range 1K - 4294967039 (OXFFFFFEFF)
Restart Type S

The memory affected by this parameter is used for tracking operations fired when updating index tables
and reading unigue indexes. This memory is used to store the key and column information for these
operations. It is only very rarely that the value for this parameter needs to be altered from the default.

The default value for Tr ansact i onBuf f er Menory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF _FI LESI ZE (found in ndb/ sr c/ ker nel / bl ocks/ Dbt ¢/
Dbt c. hpp) set to 4000 x 128 bytes (500KB). A similar buffer for key information, ZDATABUF_FI LESI ZE

(also in Dbt c. hpp) contains 4000 x 16 = 62.5KB of buffer space. Dbt ¢ is the module that handles
transaction coordination.

Scans and buffering. There are additional [ndbd] parameters in the Dbl gh module (in
ndb/ src/ ker nel / bl ocks/ Dbl gh/ Dbl gh. hpp) that affect reads and updates. These include

128

Defining NDB Cluster Data Nodes

ZATTRI NBUF_FI LESI ZE, set by default to 10000 x 128 bytes (1250KB) and ZDATABUF_FI LE_SI ZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any

reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

« MaxNoOf Concurr ent Scans

Version (or later) NDB 7.3.1
Type or units integer
Default 256
Range 2-500
Restart Type S

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter. Each
scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan record
in the node where the partition is located, the number of records being the value of this parameter

times the number of nodes. The cluster should be able to sustain MaxNoCOf Concur r ent Scans scans
concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table scan.
The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on the
local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoCOf Concur r ent Scans is 256. The maximum value is 500.

« MaxNoOf Local Scans

Version (or later) NDB 7.3.1

Type or units integer

Default 4 * MaxNoOfConcurrentScans * [# of data nodes] +
2

Range 32 - 4294967039 (OXxFFFFFEFF)

Deprecated Yes (in NDB 8.0)

Restart Type S

Specifies the number of local scan records if many scans are not fully parallelized. When the number of
local scan records is not provided, it is calculated as shown here:

4 * MaxNoOr Concurrent Scans * [# data nodes] + 2
The minimum value is 32.

e Bat chSi zePer Local Scan

Version (or later) NDB 7.3.1
Type or units integer
Default 256
Range 1-992

129

Defining NDB Cluster Data Nodes

Deprecated Yes (in NDB 8.0)

Restart Type S

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

Bat chSi zePer Local Scan has a strong connection to the Bat chSi ze defined in the SQL nodes.

* LongMessageBuf f er

Version (or later) NDB 7.3.1

Type or units bytes

Default aM

Range 512K - 4294967039 (OXFFFFFEFF)
Version (or later) NDB 7.3.5

Type or units bytes

Default 64M

Range 512K - 4294967039 (OXFFFFFEFF)
Restart Type S

This is an internal buffer used for passing messages within individual nodes and between nodes. The
default is 64MB. (Prior to NDB 7.3.5, this was 4MB.)

This parameter seldom needs to be changed from the default.

e MaxPar al | el Copyl nst ances

Version (or later) NDB 7.4.3
Type or units integer
Default 0

Range 0-64

Added NDB 7.4.3
Restart Type S (NDB 7.4.3)

This parameter sets the parallelization used in the copy phase of a node restart or system restart, when
a node that is currently just starting is synchronised with a node that already has current data by copying
over any changed records from the node that is up to date. Because full parallelism in such cases can
lead to overload situations, MaxPar al | el Copyl nst ances was introduced to provide a means to
decrease it. The value 0 means that the effective parallelism is equal to the number of LDM instances in
the node just starting as well as the node updating it.

« MaxPar al | el ScansPer Fr agnment

Version (or later) NDB 7.3.1

Type or units bytes

Default 256

Range 1 - 4294967039 (OXFFFFFEFF)
Restart Type S

130

Defining NDB Cluster Data Nodes

It is possible to configure the maximum number of parallel scans (TUP scans and TUX scans) allowed
before they begin queuing for serial handling. You can increase this to take advantage of any unused
CPU when performing large number of scans in parallel and improve their performance.

Memory Allocation

MaxAl | ocat e

Version (or later) NDB 7.3.1

Type or units unsigned
Default 32M

Range IM-1G
Deprecated Yes (in NDB 8.0)
Restart Type S

This parameter was used in older versions of NDB Cluster, but has no effect in NDB 7.3 or NDB 7.4.

Hash Map Size

Def aul t HashMapSi ze

Version (or later) NDB 7.3.1
Type or units LDM threads
Default 240

Range 0 - 3840
Restart Type S

The size of the table hash maps used by NDB is configurable using this parameter.
Def aul t HashMapSi ze can take any of three possible values (0, 240, 3840).

This parameter was intended to facilitate upgrades from very old NDB Cluster versions to NDB 7.3 and

later, but should no longer need to be set.

Decreasing this parameter online after any tables have been created or modified with
Def aul t HashMapSi ze equal to 3840 is not currently supported.

Logging and checkpointing.

 NoOX Fragment LogFi | es

The following [ndbd] parameters control log and checkpoint behavior.

Version (or later) NDB 7.3.1

Type or units integer

Default 16

Range 3 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated
to REDO logging. Because the REDO log files are organized in a ring, it is extremely important that the
first and last log files in the set (sometimes referred to as the “head” and “tail” log files, respectively)

do not meet. When these approach one another too closely, the node begins aborting all transactions
encompassing updates due to a lack of room for new log records.

131

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtup.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbtux.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

A REDOlog record is not removed until the required number of local checkpoints has been completed
since that log record was inserted. (In NDB Cluster 7.3 and later, only 2 local checkpoints are
necessary). Checkpointing frequency is determined by its own set of configuration parameters discussed
elsewhere in this chapter.

The default parameter value is 16, which by default means 16 sets of 4 16MB files for a total of 1024MB.
The size of the individual log files is configurable using the Fr agnent LogFi | eSi ze parameter. In
scenarios requiring a great many updates, the value for NoOf Fr agnent LogFi | es may need to be set
as high as 300 or even higher to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and
the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted with
internal error code 410 (Qut of log file space tenporarily). This condition prevails until a
checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using
--initial.Ifyouwish to change this value for all data nodes in a running
cluster, you can do so using a rolling node restart (using - -i ni ti al when
starting each data node).

Fragment LogFi | eSi ze

Version (or later) NDB 7.3.1
Type or units bytes
Default 16M
Range 4M - 1G
Restart Type S

Setting this parameter enables you to control directly the size of redo log files. This can be useful in
situations when NDB Cluster is operating under a high load and it is unable to close fragment log files
quickly enough before attempting to open new ones (only 2 fragment log files can be open at one time);
increasing the size of the fragment log files gives the cluster more time before having to open each new
fragment log file. The default value for this parameter is 16M.

For more information about fragment log files, see the description for NoOf Fr agnent LogFi | es.

I ni t Fragnent LogFi | es

Version (or later) NDB 7.3.1
Type or units [see values]
Default SPARSE
Range SPARSE, FULL
Restart Type S

By default, fragment log files are created sparsely when performing an initial start of a data node—that
is, depending on the operating system and file system in use, not all bytes are necessarily written to
disk. However, it is possible to override this behavior and force all bytes to be written, regardless of the

132

Defining NDB Cluster Data Nodes

platform and file system type being used, by means of this parameter. | ni t Fr agnment LogFi | es takes
either of two values:

« SPARSE. Fragment log files are created sparsely. This is the default value.

« FULL. Force all bytes of the fragment log file to be written to disk.

Depending on your operating system and file system, setting | ni t Fr agnent LogFi | es=FULL may
help eliminate I/O errors on writes to the REDO log.

MaxNoOF OpenFi | es

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 20 - 4294967039 (OXxFFFFFEFF)
Restart Type S

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 0. However, the minimum value to which this parameter can be set is 20.

I nitial NoOf OpenFil es

Version (or later) NDB 7.3.1

Type or units files

Default 27

Range 20 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter sets the initial number of internal threads to allocate for open files.

The default value is 27.

MaxNoOf SavedMessages

Version (or later) NDB 7.3.1

Type or units integer

Default 25

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter sets the maximum number of errors iwritten n the error log as well as the maximum
number of trace files that are kept before overwriting the existing ones. Trace files are generated when,
for whatever reason, the node crashes.

The default is 25, which sets these maximums to 25 error messages and 25 trace files.

133

Defining NDB Cluster Data Nodes

« MaxLCPSt art Del ay

Version (or later) NDB 7.3.1
Type or units seconds
Default 0

Range 0 - 600
Restart Type S

In parallel data node recovery, only table data is actually copied and synchronized in parallel;
synchronization of metadata such as dictionary and checkpoint information is done in a serial fashion.

In addition, recovery of dictionary and checkpoint information cannot be executed in parallel with
performing of local checkpoints. This means that, when starting or restarting many data nodes
concurrently, data nodes may be forced to wait while a local checkpoint is performed, which can result in
longer node recovery times.

It is possible to force a delay in the local checkpoint to permit more (and possibly all) data nodes to
complete metadata synchronization; once each data node's metadata synchronization is complete, all

of the data nodes can recover table data in parallel, even while the local checkpoint is being executed.
To force such a delay, set MaxLCPSt ar t Del ay, which determines the number of seconds the cluster
can wait to begin a local checkpoint while data nodes continue to synchronize metadata. This parameter
should be setinthe [ndbd def aul t] section of the confi g. i ni file, so that it is the same for all data
nodes. The maximum value is 600; the default is O.

* LcpScanPr ogressTi neout

Version (or later) NDB 7.3.3

Type or units second

Default 60

Range 0 - 4294967039 (OXFFFFFEFF)
Added NDB 7.3.3

Restart Type S (NDB 7.3.3)

A local checkpoint fragment scan watchdog checks periodically for no progress in each fragment scan
performed as part of a local checkpoint, and shuts down the node if there is no progress after a given
amount of time has elapsed. Prior to NDB 7.3.3, this interval is always 60 seconds (Bug #16630410).
In NDB 7.3.3 and later, this interval can be set using the LcpScanPr ogr essTi meout data node
configuration parameter, which sets the maximum time for which the local checkpoint can be stalled
before the LCP fragment scan watchdog shuts down the node.

The default value is 60 seconds (providing compatibility with previous releases). Setting this parameter
to O disables the LCP fragment scan watchdog altogether.

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used
to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes, events,
and replication between clusters.

Note

These act merely as “suggestions” to the cluster, and any that are not specified
revert to the default values shown.

e MaxNoOf Attri butes

134

Defining NDB Cluster Data Nodes

Version (or later) NDB 7.3.1

Type or units integer

Default 1000

Range 32 - 4294967039 (OxFFFFFEFF)
Restart Type S

This parameter sets a suggested maximum number of attributes that can be defined in the cluster; like
MaxNoOF Tabl es, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more
tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoOf At t ri but es attributes.)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is fully
replicated on the servers.

When setting MaxNoCOf At t ri but es, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the NDB
Cluster table having the greatest number of attributes (gr eat est _nunber of attri butes)
has 100 attributes, a good starting point for the value of MaxNoOf At t ri but es would be 6 *
greatest nunber _of attributes = 600.

You should also estimate the average number of attributes per table and multiply this by
MaxNoCOf Tabl es. If this value is larger than the value obtained in the previous paragraph, you should
use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that this
number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOf At t ri but es by another multiple of MaxNoOf Tabl es and test it again.

MaxNoCf Tabl es

Version (or later) NDB 7.3.1
Type or units integer
Default 128
Range 8 -20320
Restart Type S

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoCOf At t ri but es, it is not intended to function as a hard upper limit.

(In older NDB Cluster releases, this parameter was sometimes treated as a hard limit for certain
operations. This caused problems with NDB Cluster Replication, when it was possible to create more

135

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

Defining NDB Cluster Data Nodes

tables than could be replicated, and sometimes led to confusion when it was possible [or not possible,
depending on the circumstances] to create more than MaxNoCf Tabl es tables.)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. Each table
object consumes approximately 20KB per node.

Note

The sum of MaxNoCOf Tabl es, MaxNoOf Or der edl ndexes, and
MaxNoCf Uni queHashl ndexes must not exceed 2°? — 2 (4294967294).

MaxNoCOf Or der edl ndexes

Version (or later) NDB 7.3.1

Type or units integer

Default 128

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique index
and primary key has both an ordered index and a hash index. MaxNoCOf Or der edl ndexes sets the total
number of ordered indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each index object consumes approximately 10KB of data per
node.

Note

The sum of MaxNoCOf Tabl es, MaxNoOf Or der edl ndexes, and
MaxNoCf Uni queHashl ndexes must not exceed 2°? — 2 (4294967294).

MaxNoCOf Uni queHashl ndexes

Version (or later) NDB 7.3.1

Type or units integer

Default 64

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

For each unique index that is not a primary key, a special table is allocated that maps the unique key to
the primary key of the indexed table. By default, an ordered index is also defined for each unique index.
To prevent this, you must specify the USI NG HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.
Note

The sum of MaxNoCOf Tabl es, MaxNoOf Or der edl ndexes, and
MaxNoCOf Uni queHashl ndexes must not exceed 2°? — 2 (4294967294).

136

https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

Defining NDB Cluster Data Nodes

e MaxNoCOFf Tri ggers

Version (or later) NDB 7.3.1

Type or units integer

Default 768

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a single
trigger object. Backups also use three trigger objects for each normal table in the cluster.

Replication between clusters also makes use of internal triggers.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

e MaxNoCOf | ndexes

This parameter is deprecated in NDB 7.4 and is no longer available in NDB Cluster 7.5. You should use
MaxNoCOF Or der edl ndexes and MaxNoCOf Uni queHashl ndexes instead.

This parameter is used only by unique hash indexes. There needs to be one record in this pool for each
unigue hash index defined in the cluster.

The default value of this parameter is 128.

* MaxNoCOf Subscri pti ons

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

Each NDB table in an NDB Cluster requires a subscription in the NDB kernel. For some NDB API
applications, it may be necessary or desirable to change this parameter. However, for normal usage with
MySQL servers acting as SQL nodes, there is not any need to do so.

The default value for MaxNoCOf Subscri pti ons is 0, which is treated as equal to MaxNoOf Tabl es.
Each subscription consumes 108 bytes.

e MaxNoCOf Subscri bers

Version (or later) NDB 7.3.1

Type or units unsigned

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)

137

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

‘ Restart Type S

This parameter is of interest only when using NDB Cluster Replication. The default value is 0, which is
treated as 2 * MaxNoCOf Tabl es; that is, there is one subscription per NDB table for each of two MySQL
servers (one acting as the replication source and the other as the replica). Each subscriber uses 16
bytes of memory.

When using circular replication, multi-source replication, and other replication setups involving more than
2 MySQL servers, you should increase this parameter to the number of mysql d processes included in
replication (this is often, but not always, the same as the number of clusters). For example, if you have a
circular replication setup using three NDB Clusters, with one nmysqgl d attached to each cluster, and each
of these nmysql d processes acts as a source and as a replica, you should set MaxNoOf Subscri bers
equalto 3 * MaxNoOf Tabl es.

For more information, see Chapter 7, NDB Cluster Replication.

e MaxNoCOf Concurrent SubOper ati ons

Version (or later) NDB 7.3.1

Type or units unsigned

Default 256

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter sets a ceiling on the number of operations that can be performed by all API nodes in
the cluster at one time. The default value (256) is sufficient for normal operations, and might need to be
adjusted only in scenarios where there are a great many API nodes each performing a high volume of
operations concurrently.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1 or
Y, and as FALSE by setting them equal to O or N.

e LateAll oc

Version (or later) NDB 7.3.1
Type or units numeric
Default 1

Range 0-1
Restart Type S

Allocate memory for this data node after a connection to the management server has been established.
Enabled by default.

» LockPagesl| nMai nMenory

138

Version (or later) NDB 7.3.1
Type or units numeric
Default 0

Range 0-2

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Restart Type S

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-time
characteristics.

This parameter takes one of the integer values 0, 1, or 2, which act as shown in the following list:
¢ 0: Disables locking. This is the default value.
« 1: Performs the lock after allocating memory for the process.

« 2: Performs the lock before memory for the process is allocated.

If the operating system is not configured to permit unprivileged users to lock pages, then the data node
process making use of this parameter may have to be run as system root. (LockPages| nMai n\Venory
uses the nl ockal | function. From Linux kernel 2.6.9, unprivileged users can lock memory as limited by
max | ocked menory. For more information, see ul i mit -1 and http://linux.die.net/man/2/mlock).

Note

In older NDB Cluster releases, this parameter was a Boolean. 0 or f al se
was the default setting, and disabled locking. 1 or t r ue enabled locking of the
process after its memory was allocated. NDB Cluster 7.3 and later treats using
true or f al se for the value of this parameter as an error.

Important

Beginning with gl i bc 2.10, gl i bc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear to
affect performance significantly.)

The gl i bc behavior is intended to be configurable via the MALLOC_ARENA_MAX
environment variable, but a bug in this mechanism prior to gl i bc 2.16 meant
that this variable could not be set to less than 8, so that the wasted memory
could not be reclaimed. (Bug #15907219; see also http://sourceware.org/bugzilla/
show_bug.cgi?id=13137 for more information concerning this issue.)

One possible workaround for this problem is to use the LD _PRELQOAD
environment variable to preload a j ermal | oc memory allocation library to take
the place of that supplied with gl i bc.

e StopOnError

Version (or later) NDB 7.3.1
Type or units boolean
Default 1

Range 0,1

139

http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

Defining NDB Cluster Data Nodes

Restart Type S

This parameter specifies whether a data node process should exit or perform an automatic restart when
an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node process to
halt.

When an error is encountered and St opOnEr r or is 0, the data node process is restarted.

Prior to NDB Cluster 7.4.14, if the data node process exits in an uncontrolled fashion (due, for example,
to performing ki I | - 9 on the data node process while performing a query, or to a segmentation fault),
and St opOnEr r or is set to 0, the angel process attempts to restart it in exactly the same way as it was
started previously—that is, using the same startup options that were employed the last time the node
was started. Thus, if the data node process was originally started using the - - i ni ti al option, itis also
restarted with - - i ni t i al . This means that, in such cases, if the failure occurs on a sufficient number of
data nodes in a very short interval, the effect is the same as if you had performed an initial restart of the
entire cluster, leading to loss of all data. This issue is resolved in NDB Cluster 7.4.14 and later NDB 7.4
releases (Bug #83510, Bug #24945638).

Users of MySQL Cluster Manager should note that, when St opOnEr r or equals 1, this prevents the
MySQL Cluster Manager agent from restarting any data nodes after it has performed its own restart and
recovery. See Starting and Stopping the Agent on Linux, for more information.

CrashOnCorrupt edTupl e

Version (or later) NDB 7.3.1
Type or units boolean
Default true
Range true, false
Restart Type S

When this parameter is enabled, it forces a data node to shut down whenever it encounters a corrupted
tuple. In NDB Cluster 7.3 and later, it is enabled by default.

Di skl ess

Version (or later) NDB 7.3.1
Type or units true|false (1]|0)
Default false

Range true, false
Restart Type S

It is possible to specify NDB Cluster tables as diskless, meaning that tables are not checkpointed to disk
and that no logging occurs. Such tables exist only in main memory. A consequence of using diskless

140

https://dev.mysql.com/doc/mysql-cluster-manager/1.4/en/mcm-using-start-stop-agent-linux.html

Defining NDB Cluster Data Nodes

tables is that neither the tables nor the records in those tables survive a crash. However, when operating
in diskless mode, it is possible to run ndbd on a diskless computer.

Important
This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is
not possible.

Di skl ess is disabled by default.

» ODirect
Version (or later) NDB 7.3.1
Type or units boolean
Default false
Range true, false
Restart Type S

Enabling this parameter causes NDB to attempt using O DI RECT writes for LCP, backups, and redo logs,
often lowering kswapd and CPU usage. When using NDB Cluster on Linux, enable ODi r ect if you are
using a 2.6 or later kernel.

ODi r ect is disabled by default.

e RestartOnErrorl nsert

Version (or later) NDB 7.3.1
Type or units error code
Default 2

Range 0-4
Restart Type S

This feature is accessible only when building the debug version where it is possible to insert errors in the
execution of individual blocks of code as part of testing.

This feature is disabled by default.

e ConpressedLCP

Version (or later) NDB 7.3.1
Type or units boolean
Default false
Range true, false
Restart Type S

Setting this parameter to 1 causes local checkpoint files to be compressed. The compression used is
equivalentto gzi p --fast, and can save 50% or more of the space required on the data node to store
uncompressed checkpoint files. Compressed LCPs can be enabled for individual data nodes, or for all
data nodes (by setting this parameter in the [ndbd def aul t] section of the confi g. i ni file).

141

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Important

You cannot restore a compressed local checkpoint to a cluster running a MySQL
version that does not support this feature.

The default value is O (disabled).
Controlling Timeouts, Intervals, and Disk Paging

There are a number of [ndbd] parameters specifying timeouts and intervals between various actions in
Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this are
mentioned where applicable.

» Ti meBet weenWat chDogCheck

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 6000

Range 70 - 4294967039 (OXxFFFFFEFF)
Restart Type S

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It
can be specified on a per-node basis although there seems to be little reason for doing so.

The default timeout is 6000 milliseconds (6 seconds).

» Ti neBet weenWat chDogCheckl ni ti al

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 6000

Range 70 - 4294967039 (OXFFFFFEFF)
Restart Type S

This is similar to the Ti neBet weenWat chDogCheck parameter, except that

Ti meBet weenWat chDogCheckl ni ti al controls the amount of time that passes between execution
checks inside a storage node in the early start phases during which memory is allocated.

The default timeout is 6000 milliseconds (6 seconds).

e StartPartial Ti neout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 30000

Range 0 - 4294967039 (OXFFFFFEFF)

142

Defining NDB Cluster Data Nodes

Restart Type S

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster
may start only if all nodes are available.

StartPartitionedTi neout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 60000

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

If the cluster is ready to start after waiting for St ar t Par ti al Ti meout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTi meout is setto 0, the cluster waits indefinitely.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default timeout is 60000 milliseconds (60 seconds).

e StartFail ureTi neout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10-15 minutes (that is, 600000 to 1000000
milliseconds) might be required to perform a node restart.

» Start NoNodeG oupTi neout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 15000

Range 0 - 4294967039 (OXFFFFFEFF)

143

Defining NDB Cluster Data Nodes

Restart Type S

When a data node is configured with Nodegr oup = 65536, is regarded as not being assigned to any
node group. When that is done, the cluster waits St ar t NoNodegr oupTi meout milliseconds, then
treats such nodes as though they had been added to the list passed to the - - nowai t - nodes option,
and starts. The default value is 15000 (that is, the management server waits 15 seconds). Setting this
parameter equal to 0 means that the cluster waits indefinitely.

St ar t NoNodegr oupTi mneout must be the same for all data nodes in the cluster; for this reason, you
should always set it in the [ndbd def aul t] section of the confi g. i ni file, rather than for individual
data nodes.

See Section 6.7, “Adding NDB Cluster Data Nodes Online”, for more information.

Hear t beat | nt er val DbDb

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 5000

Range 10 - 4294967039 (OXFFFFFEFF)
Restart Type S

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. Heartbeats cannot
be disabled.

After missing four heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for
discovering a failure through the heartbeat mechanism is five times the heartbeat interval.

In NDB Cluster 7.3 and later, the default heartbeat interval is 5000 milliseconds (5 seconds). This
parameter must not be changed drastically and should not vary widely between nodes. If one node uses
5000 milliseconds and the node watching it uses 1000 milliseconds, obviously the node is declared
dead very quickly. This parameter can be changed during an online software upgrade, but only in small
increments.

See also Network communication and latency, as well as the description of the
Connect Checkl nt er val Del ay configuration parameter.

Heart beat | nt er val DbApi

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 1500

Range 100 - 4294967039 (OXFFFFFEFF)
Restart Type S

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until all

144

Defining NDB Cluster Data Nodes

activities initiated by the previous MySQL instance have been completed. The three-heartbeat criteria for
this determination are the same as described for Hear t beat | nt er val DbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data
nodes because each data node watches the MySQL servers connected to it, independently of all other
data nodes.

For more information, see Network communication and latency.

Hear t beat Or der

Version (or later) NDB 7.3.1
Type or units numeric
Default 0

Range 0 - 65535
Restart Type S

Data nodes send heartbeats to one another in a circular fashion whereby each data node monitors the
previous one. If a heartbeat is not detected by a given data node, this node declares the previous data
node in the circle “dead” (that is, no longer accessible by the cluster). The determination that a data node
is dead is done globally; in other words; once a data node is declared dead, it is regarded as such by all
nodes in the cluster.

It is possible for heartbeats between data nodes residing on different hosts to be too slow compared to
heartbeats between other pairs of nodes (for example, due to a very low heartbeat interval or temporary
connection problem), such that a data node is declared dead, even though the node can still function as
part of the cluster. .

In this type of situation, it may be that the order in which heartbeats are transmitted between data nodes
makes a difference as to whether or not a particular data node is declared dead. If this declaration
occurs unnecessarily, this can in turn lead to the unnecessary loss of a node group and as thus to a
failure of the cluster.

Consider a setup where there are 4 data nodes A, B, C, and D running on 2 host computers host 1 and
host 2, and that these data nodes make up 2 node groups, as shown in the following table:

Table 4.3 Four data nodes A, B, C, D running on two host computers hostl, host2; each data
node belongs to one of two node groups.

Node Group Nodes Running on host 1 Nodes Running on host 2
Node Group 0: Node A Node B
Node Group 1: Node C Node D

Suppose the heartbeats are transmitted in the order A->B->C->D->A. In this case, the loss of the
heartbeat between the hosts causes node B to declare node A dead and node C to declare node B
dead. This results in loss of Node Group 0, and so the cluster fails. On the other hand, if the order of
transmission is A->B->D->C->A (and all other conditions remain as previously stated), the loss of the
heartbeat causes nodes A and D to be declared dead; in this case, each node group has one surviving
node, and the cluster survives.

The Hear t beat Or der configuration parameter makes the order of heartbeat transmission user-
configurable. The default value for Hear t beat Or der is zero; allowing the default value to be used on

all data nodes causes the order of heartbeat transmission to be determined by NDB. If this parameter 145

Defining NDB Cluster Data Nodes

is used, it must be set to a nonzero value (maximum 65535) for every data node in the cluster, and
this value must be unique for each data node; this causes the heartbeat transmission to proceed from
data node to data node in the order of their Hear t beat Or der values from lowest to highest (and
then directly from the data node having the highest Hear t beat Or der to the data node having the
lowest value, to complete the circle). The values need not be consecutive. For example, to force the

heartbeat transmission order A->B->D->C->A in the scenario outlined previously, you could set the
Hear t beat Or der values as shown here:

Table 4.4 HeartbeatOrder values to force a heartbeat transition order of A->B->D->C->A.

Node Hear t beat Or der Value
A 10
B 20
C 30
D 25

To use this parameter to change the heartbeat transmission order in a running NDB Cluster, you must
first set Hear t beat Or der for each data node in the cluster in the global configuration (confi g.ini)
file (or files). To cause the change to take effect, you must perform either of the following:

« A complete shutdown and restart of the entire cluster.

» 2 rolling restarts of the cluster in succession. All nodes must be restarted in the same order in both
rolling restarts.

You can use DUMP 908 to observe the effect of this parameter in the data node logs.

e Connect Checkl nt er val Del ay

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 0

Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter enables connection checking between data nodes after one of them has failed heartbeat
checks for 5 intervals of up to Hear t beat | nt er val DbDb milliseconds.

Such a data node that further fails to respond within an interval of Connect Checkl nt er val Del ay
milliseconds is considered suspect, and is considered dead after two such intervals. This can be useful
in setups with known latency issues.

The default value for this parameter is O (disabled).

e Ti neBet weenLocal Checkpoi nts

Version (or later) NDB 7.3.1

Type or units number of 4-byte words, as base-2 logarithm
Default 20

Range 0-31

Restart Type S

146

https://dev.mysql.com/doc/ndb-internals/en/dump-command-908.html

Defining NDB Cluster Data Nodes

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new local
checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-byte
words, so that the default value 20 means 4MB (4 x 220) of write operations, 21 would mean 8MB, and
S0 on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting Ti neBet weenLocal Checkpoi nts

to 6 or less means that local checkpoints are executed continuously without pause, independent of the
cluster's workload.

« Ti meBet weend obal Checkpoi nts

Version (or later) NDB 7.3.1
Type or units milliseconds
Default 2000
Range 20 - 32000
Restart Type S

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reasoning
behind this behavior is that having the transaction safely committed on at least two autonomous host
machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is handled
properly. To guarantee that this happens, all transactions taking place within a given interval are put into
a global checkpoint, which can be thought of as a set of committed transactions that has been flushed to
disk. In other words, as part of the commit process, a transaction is placed in a global checkpoint group.
Later, this group's log records are flushed to disk, and then the entire group of transactions is safely
committed to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

e Ti neBet weend obal Checkpoi nt sTi neout

Version (or later) NDB 7.4.5

Type or units milliseconds

Default 120000

Range 10 - 4294967039 (OXFFFFFEFF)
Version (or later) NDB 7.3.9

Type or units milliseconds

Default 120000

Range 10 - 4294967039 (OXFFFFFEFF)
Added NDB 7.3.9

Added NDB 7.4.5

Restart Type S (NDB 7.3.9)

147

Defining NDB Cluster Data Nodes

This parameter defines the minimum timeout between global checkpoints. The default is 120000

milliseconds.

This parameter was added in NDB 7.3.9 and NDB 7.4.5. (Bug #20069617)

« Ti meBet weenEpochs

Version (or later) NDB 7.3.1
Type or units milliseconds
Default 100

Range 0 - 32000
Restart Type S

This parameter defines the interval between synchronization epochs for NDB Cluster Replication. The

default value is 100 milliseconds.

Ti meBet weenEpochs is part of the implementation of “micro-GCPs”, which can be used to improve the

performance of NDB Cluster Replication.

e Ti meBet weenEpochsTi neout

Version (or later) NDB 7.3.1
Type or units milliseconds
Default 0

Range 0 - 256000
Restart Type S

This parameter defines a timeout for synchronization epochs for NDB Cluster Replication. If a node fails
to participate in a global checkpoint within the time determined by this parameter, the node is shut down.
In NDB Cluster 7.3 and later, the default value is O; in other words, the timeout is disabled.

Ti meBet weenEpochsTi nmeout is part of the implementation of “micro-GCPs”, which can be used to
improve the performance of NDB Cluster Replication.

The current value of this parameter and a warning are written to the cluster log whenever a GCP save
takes longer than 1 minute or a GCP commit takes longer than 10 seconds.

Setting this parameter to zero has the effect of disabling GCP stops caused by save timeouts, commit
timeouts, or both. The maximum possible value for this parameter is 256000 milliseconds.

» MaxBuf f er edEpochs

Version (or later) NDB 7.3.1
Type or units epochs
Default 100
Range 0 - 100000
Restart Type S

The number of unprocessed epochs by which a subscribing node can lag behind. Exceeding this number

causes a lagging subscriber to be disconnected.

148

Defining NDB Cluster Data Nodes

The default value of 100 is sufficient for most normal operations. If a subscribing node does lag enough
to cause disconnections, it is usually due to network or scheduling issues with regard to processes or

threads. (In rare circumstances, the problem may be due to a bug in the NDB client.) It may be desirable
to set the value lower than the default when epochs are longer.

Disconnection prevents client issues from affecting the data node service, running out of memory to
buffer data, and eventually shutting down. Instead, only the client is affected as a result of the disconnect
(by, for example gap events in the binary log), forcing the client to reconnect or restart the process.

« MaxBuf f er edEpochByt es

Version (or later) NDB 7.3.1

Type or units bytes

Default 26214400

Range 26214400 (0x01900000) - 4294967039
(OXFFFFFEFF)

Restart Type S

The total number of bytes allocated for buffering epochs by this node.

e Ti meBet weenl nacti veTr ansacti onAbort Check

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 1000

Range 1000 - 4294967039 (OxFFFFFEFF)
Restart Type S

Timeout handling is performed by checking a timer on each transaction once for every interval specified
by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction is checked for
timing out once per second.

The default value is 1000 milliseconds (1 second).

e Transactionl nacti veTi neout

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 4294967039 (OXFFFFFEFF)
Range 0 - 4294967039 (OXFFFFFEFF)
Restart Type S

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to ensure
that no transaction keeps locks for too long, this parameter should be set to a relatively small value.
Setting it to 0 means that the application never times out. The unit is milliseconds.

e Transacti onDeadl ockDet ecti onTi neout

149

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

Defining NDB Cluster Data Nodes

Version (or later) NDB 7.3.1

Type or units milliseconds

Default 1200

Range 50 - 4294967039 (OXFFFFFEFF)
Restart Type S

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster
to respond before continuing. This parameter sets the amount of time that the transaction can spend
executing within a data node, that is, the time that the transaction coordinator waits for each data node
participating in the transaction to execute a request.

A failure to respond can occur for any of the following reasons:

e The node is “dead”

« The operation has entered a lock queue

« The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another
node before aborting the transaction, and is important for both node failure handling and deadlock
detection.

The default timeout value is 1200 milliseconds (1.2 seconds).

The minimum for this parameter is 50 milliseconds.

Di skSyncSi ze

Version (or later) NDB 7.3.1

Type or units bytes

Default a4M

Range 32K - 4294967039 (OxFFFFFEFF)
Restart Type S

This is the maximum number of bytes to store before flushing data to a local checkpoint file. This is done

to prevent write buffering, which can impede performance significantly. This parameter is not intended to
take the place of Ti neBet weenLocal Checkpoi nts.

Note

When ODi r ect is enabled, it is not necessary to set Di skSyncSi ze; in fact, in
such cases its value is simply ignored.

The def