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Abstract 

Does lead pollution increase crime? We perform the first meta-analysis of the effect of lead 

on crime by pooling 529 estimates from 24 studies. We find evidence of publication bias 

across a range of tests. This publication bias means that the effect of lead is overstated in the 

literature. We perform over 1 million meta-regression specifications, controlling for this bias, 

and conditioning on observable between-study heterogeneity. When we restrict our analysis 

to only high-quality studies that address endogeneity the estimated mean effect size is close 

to zero. When we use the full sample, the mean effect size is a partial correlation coefficient 

of 0.11, over ten times larger than the high-quality sample. We calculate a plausible elasticity 

range of 0.22-0.02 for the full sample and 0.03-0.00 for the high-quality sample. Back-of-

envelope calculations suggest that the fall in lead over recent decades is responsible for 

between 36%-0% of the fall in homicide in the US. Our results suggest lead does not explain 

the majority of the large fall in crime observed in some countries, and additional explanations 

are needed.  
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1. Introduction 

Homicide rates spiked and then fell in a consistent pattern across many western countries in 

the 20th century (figure I). In the US alone the homicide rate has halved since the 1980s, when 

it was as high as the road fatality rate is today. In other countries the falls are not so great in 

magnitude, but still amount to many lives saved. If the causes of this fall were known, many 

more deaths and trauma could potentially be prevented.  

Is lead pollution responsible? Lead is a toxic metal linked to harmful health and behavioural 

outcomes (see section 2). Studies have pointed to falling lead levels in the environment as a 

cause of the falls in homicide, and as a factor in crime rates in general. The reduction in lead 

pollution is largely due to falling emissions from leaded gasoline (figure II), but also due to 

less lead pollution from water pipes, paint, food, and soil. However, the rise and fall pattern 

in figure I is by no means uniform. Further, Buonanno et al. (2011) show that while total crime 

has behaved similarly to homicide in the US, it has not in Europe (figure III). Alternative 

hypotheses for the observed fall in crime in some countries range from falling poverty levels 

(Rosenfeld and Fornango, 2007, and Messner, Raffalovich, and Mcmillan, 2001), to 

demographic transition, where an ageing population is less likely to be victimised by or engage 

in crime (Fox, 2005, chap. 9; Baumer, Rosenfeld, and Wolff, 2012), increased/better policing 

or incarceration (Levitt, 1996, 1997, 2004; Marvell and Moody, 1996; and Corman and Mocan, 

2000), to more controversial hypothesis such as legalized abortion reducing the number of 

children born into “adverse home environments” (Donohue and Levitt, 2001, 2019; Buonanno 

et al., 2011). Tcherni-Buzzeo (2019) provides a recent summary of potential causes. 

Against this background, our paper conducts the first meta-analysis of the effect of lead on 

crime. We systematically review the literature and, using the procedural guidance from 

Havránek et al. (2020), construct a dataset of estimates converted to comparable effect sizes. 

We perform tests for publication bias and find that the effect of lead on crime is overstated 

in the literature due to this bias. Furthermore, we find substantial between-study 

heterogeneity in our sample. We therefore use meta-regression to estimate an average effect 

size accounting for both publication bias and the observable between-study heterogeneity.  

We take into account model uncertainty in our meta-regression analysis by estimating over 1 

million specifications, using every combination of our covariates on both the full sample and 
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several subsamples. We then plot the distributions of the estimated average effect size of 

lead on crime. Our main finding is that there are substantial differences between the average 

effect size when we use the full sample, and when we use only the high-quality study designs 

that address endogeneity. The mean partial correlation coefficient in the full sample, 

evaluated at sample averages, is 0.11, while the equivalent for the high-quality sample is 0.01, 

almost zero. Similarly, the sample of studies that have crime in an area as the focus of analysis 

have a larger mean effect size compared to that of studies which focus on individual 

behaviour. Conversely, we do not find evidence of differences for the effect of lead on 

different types of crime when we use homicide, violent, and non-violent crime samples.  

Finally, we convert the estimated mean partial correlation coefficients to elasticities. Our 

calculations give a plausible elasticity range of 0.22-0.02 for the full sample mean effect and 

0.03-0.00 for the high-quality sample that addresses endogeneity. We conduct back-of-

envelope calculations which imply the reduction in lead pollution may be responsible for 

between 36%-3% of the fall in homicide in the US when the full sample elasticity is used, but 

only between 5%-0% when the high-quality sample elasticity is used. Our findings suggest 

that, while there is a possibility that the effect of lead may be substantial, it is not responsible 

for the majority of the fall in crime. Therefore, other explanations require further 

investigation.  

 

2. Lead and Crime 

Lead has been part of the human environment for a long time. It was used in cosmetics, 

paint, and as coinage in ancient China (Schafer, 1956). Similar uses were recorded in ancient 

Egypt, India, and across the Bronze Age world (Needleman, 1992). The sweet taste of lead 

acetate meant that the Roman Empire and later medieval Europe used lead to sweeten 

wine, cider, and food (Lessler, 1988). The Romans had many other uses for lead, using it for 

cooking utensils, pottery, and water pipes (Hernberg, 2000). Indeed, Roman use of lead was 

prodigious, with estimates from Greenland artic ice putting the increase in atmospheric lead 

pollution at around 4000 metric tons a year at its peak around 2000 years ago (Hong et al. 

1994). This is equivalent to the UK’s lead pollution emissions in the mid-1980s, when leaded 

gasoline had not yet been phased out.  
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Lead is a useful but toxic metal. At high levels of exposure even adults will experience lead 

poisoning. Acute lead poisoning is rare but can kill quickly. Chronic poisoning can still kill and 

is associated with abdominal pain, organ failure, tumours, and exhaustion, amongst other 

symptoms (WHO, 2010a). Although chronic lead poisoning in adults still happens, and 

appears to affect behaviour, it is primarily the long-term lead exposure of children that is 

thought to influence crime rates. 

Children are especially vulnerable to lead pollution. Children not only absorb more lead per 

unit body weight than adults, but, as the brain and nervous system are still developing, lead 

has more harmful long-term effects even at low levels (WHO, 2010b). Lead is chemically 

similar to calcium3. Calcium is important for cell growth, and synaptic functioning, as well as 

a myriad of other body processes (Sanders et al., 2010). Therefore, lead is particularly 

harmful to the developing brain and nervous system, and thus in the womb and early 

infancy are the worst time to be exposed to lead (WHO, 2010b).  

The causal chain of lead to crime starts with the biological changes it induces at this young 

age. The mechanism for these changes is laid out in Sanders et al. (2010), and there is an array 

of evidence for lead’s negative effects. These include impaired nerve conduction (Sindhu and 

Sutherling, 2015), damaged myelination in the nerve system (Brubaker et al., 2009), impeded 

brain development (Lanphear, 2015), and reduced brain matter (Cecil et al., 2008).  

The next link in the chain is from biological change to behavioural change in later life. Meta-

analyses have found that lead exposure is associated with aggressiveness and other conduct 

problems (Marcus, Fulton, & Clarke, 2010), lower IQ (Schwartz, 1994), and impaired cognitive 

functioning (Vlasak et al., 2019, and Seeber et al, 2002).  

The final link is from behavioural changes to an increased propensity to commit crime. There 

are several possible mechanisms. Needleman pioneered research on lead exposure and 

aggressiveness (1996), suggesting it is linked to violent crime in particular. In contrast, Denno 

(1990) and Fergusson, Boden and Horwood (2008) argue that the link is through lower 

education outcomes, leading to worse life outcomes, which causes increased criminality. This 

mechanism is consistent with Becker’s (1968) economic theory of crime, where lower 

opportunity cost makes crime relatively more attractive, and suggests lead would show a 

 
3 They both convert easily to ions with 2+ charge. 



4 
 

stronger link to property crime than violent crime. A third mechanism was proposed by 

Gottfredson and Hirschi (1990), where lack of self-control, combined with opportunity, causes 

higher crime rates. Lead has been associated with increases in impulsivity (Winter and 

Sampson, 2017), and so may cause an increase in crime through this process. If this 

mechanism were true we might expect increases in violent crime, non-violent crime, or both. 

Separating the different types of crime may help identify which, if any, mechanism lead acts 

through. However, whilst a range of mechanisms have been laid out linking lead in the 

environment to the propensity to commit crime, the strength of this link is a matter of 

empirical enquiry. The main objective of this paper is to quantify the strength of this link from 

the range of empirical work reported to date. To do this, we use meta-analysis. 

 

3. Data 

Meta-analysis data collection begins by specifying the criteria which studies must fulfil to be 

accepted into the analysis.  

The criteria we chose were: 

1. The explanatory variable must be some quantitative measure of lead exposure. 

2. Outcome variable must measure crime in some way (i.e. not other types of behaviour 

such as aggressiveness or depression). 

3. Must have original estimates, i.e. no review papers. 

4. Must have estimates that can be combined into a meta-analysis.4 

5. Be published before December 2019. 

6. Study must be available in English. 

We then undertook a systematic literature review for papers on Web of Science, PubMed, 

and Google Scholar in 2019. We also searched on NBER and REPEC for working papers to 

include as much “grey” literature as possible. The keyword combinations used were: 

(“lead”, or “lead” AND “pollution”, or “lead” AND “poisoning”, or “lead” AND “exposure”, or 

“lead” AND “blood”, or “lead” AND “air”, or “lead” AND “paint”, or “lead” AND “water”) 

 
4 By which we mean they must be convertible to a common estimate such as a partial correlation coefficient. 
See discussion below.  
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Combined with: 

(“crime” or “conviction” or “arrest” or “jail” or “prison”) 

After searching, papers were screened to see if they fulfilled the criteria, as laid out in the 

PRISMA5 flow diagram (figure IV). A review and description of the studies included is given in 

the appendix. 

The vast majority of the studies identified in the literature review did not fulfil criteria one or 

two and therefore did not estimate the lead-crime relationship. These were then filtered out 

at the screening stage. 31 papers did estimate the lead-crime relationship, but 7 of these 

could not be converted into comparable effect sizes, failing criterion four. Criterion four is 

needed because estimates must be combined in a meta-analysis. Estimates are made 

comparable by converting into a common metric, such as the partial correlation coefficient 

(PCC). Most regression coefficients and simple correlations can be converted into PCCs easily. 

Odds ratios and standardised mean differences can also be converted into PCCs. However, 

five papers used risk ratios (Boutwell et al., 2016; Boutwell et al., 2016; Haynes et al., 2011; 

Stretesky and Lynch, 2001; and Write et al., 2008). Risk ratios can be converted into odds 

ratios, which can then be converted to PCCs, but need a base rate risk to do so. It was not 

possible to infer a base rate risk from the data available in the papers. Therefore, these papers 

did not fulfil criteria four and were excluded at the eligibility stage. One other paper (Masters 

and Coplan, 1999) contained charts but not enough information to make PCCs and was 

excluded. Similarly, Denno (1990) did not have enough information to use the estimates. No 

papers were excluded based on criteria six, but search terms were only in English. This left 24 

papers in the final meta-analysis dataset. 

We organised accepted papers into a dataset following the guidelines for meta-analysis in 

economics in Havránek et al. (2020). Every paper gave multiple estimates for the effect of 

lead on crime. Meta-analyses tend to either select one estimate from each study as a 

“representative” estimate; or take all estimates and account for the potential clustering of 

estimates from the same study. Both are defensible. Taking all estimates means more 

information available for the meta-analysis. Representative estimates, on the other hand, 

 
5 PRISMA is Preferred Reporting Items for Systematic Reviews and Meta-Analyses. It is a standard across 
sciences for how to report any process where a systematic literature search with filtering is performed.  
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may be less biased. For example, a researcher may show a simple OLS estimate before giving 

reasons for why it will be biased. They then go on to use their preferred method of estimation, 

which attenuates this bias. In most of our results we use all estimates, but as a robustness 

check we also test our results by using one representative estimate from each study. There 

was not always a clear representative estimate from each study. Therefore, choosing the 

estimates involves some subjective judgement. We tried to choose results mentioned in the 

abstract or as the main result. In general, we chose representative estimates which were less 

specific (i.e., totals preferred to subsample male/female, white/black results etc.), and results 

which had more covariates. 

In the full sample, there are 529 estimates from the 24 studies. The dataset forms an 

unbalanced panel, with each estimate being an observation and observations grouped by 

study. The studies included span across a variety of disciplines including economics, sociology, 

medicine, epidemiology, and criminology.  

Study effect sizes were then converted to the common effect size using PCCs. See the 

appendix for more details of how PCCs and their standard errors are calculated. Conversion 

is necessary because both lead and crime are measured in different ways in each paper, and 

therefore must be converted to be comparable. PCCs tend to be the common metric used in 

economic meta-analyses (see for example Doucouliagos (1995), Efendic and Pugh (2009), and 

Valickova, Havranek, and Horvath (2015)).  

PCCs measure the correlation between two variables holding other variables in the model 

constant. Their sizes are not intuitive. They have no unit and cannot be interpreted 

quantitively in a meta-analysis with varied measurements of outcome (Doucouliagos, 2011). 

However, as they are bounded from -1 to 1, they do offer a sense of the magnitude and 

direction of an effect. In a survey of economic effect sizes Doucouliagos (2011) offers the 

following rough guidelines: 0.07-0.17 is a small effect size, 0.18-0.33 is a moderate one, and 

above 0.33 a large one. For most of the paper, we follow this taxonomy, but a small effect 

combined with a large absolute change in a variable can still mean it is significant for welfare. 

Therefore, in section 4.5 we convert our main PCC estimates to elasticities using some 

additional data and assumptions to give a measure of the welfare impacts of our estimates.  
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Table I presents the mean, median and weighted average PCC for each study (with weights 

being equal to the precision, 1/standard error). It also includes some information on the 

characteristics of each study.  

 

4. Methods 

4.1 General Approach6 

Let 𝜃𝑗  be an effect size of interest in study j. Study j uses some method to estimate 𝜃𝑗  and 

these we denote as 𝜃𝑖𝑗, for estimate i of study j. Researchers are often interested in both 

how close 𝜃𝑖𝑗 is to 𝜃𝑗 , and in how useful 𝜃𝑗  would be in predicting results from a similar 

event or study. This can be interpreted as the degree of external validity of a study.  

If 𝜃𝑗  is a draw from some distribution with a likelihood function 𝜓(⋅ |Θ) such 

that 𝜃𝑗 ~ 𝜓(⋅ |Θ) ∀ 𝑗 , then there exists some parameter(s) Θ which can give information 

about a new draw 𝜃𝑗 +1 from that distribution. It is the parameters contained in Θ that are 

estimated in a meta-analysis. There may be several parameters of interest, but in practice 

meta-analyses usually estimate two: 𝜃 , the mean of the distribution, and the variance 𝜏2. 

This is because meta-analyses tend to impose the assumption 𝜃𝑗 ~ 𝑁(𝜃, 𝜏2) ∀ 𝑗 in the 

interests of efficient estimation. Even if this is not the true shape of the distribution 

McCulloch and Neuhaus (2011) show, both in theory and simulation, that maximum 

likelihood estimates are robust to different distributions of 𝜃𝑗  around 𝜃. If we also assume, 

as the individual studies themselves usually do, that 𝜃𝑖𝑗 follows a normal distribution with 

mean 𝜃𝑗  and variance 𝜎𝑗
2 , then this leads to the normal-normal hierarchical model of Rubin 

(1981): 

 

(1)     𝜃𝑗  ~ 𝑁(𝜃, 𝜏2) ∀ 𝑗 

(2)     𝜃𝑖𝑗~ 𝑁(𝜃𝑗 , 𝜎𝑗
2 ) ∀ 𝑖 and ∀ 𝑗 

 
6 This sections owes much to the excellent expositions in Meager (2019), Rubin (1981), and Röver (2018). 
Much of their explanation deals with Bayesian methods but works equally well for non-Bayesian methods up 
to the point we arrive at.  
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(3)    𝜃𝑖𝑗  | 𝜃, 𝜎𝑗
2, 𝜏2 ~ 𝑁(𝜃, 𝜎𝑗

2  + 𝜏2) ∀ 𝑖 and ∀ 𝑗 

 

where the last expression follows from the previous two but is expressed in marginal form, 

as in Röver (2018). This marginal form can be further extended to be conditional on 

observable variables, common across the 𝜃𝑖𝑗’s, as we do in our meta-regression analysis.  

The variance of the effect size distribution 𝜏2is a crucial measure of how useful aggregation 

of estimates will be. If 𝜏2 is zero, then all studies are estimating the exact same effect and it 

is only the study variances that affect how well they can predict 𝜃𝑗 +1. This we call the 

common effect model following the Rice, Higgins, and Lumley (2018) terminology. As 𝜏2 

grows larger, aggregation becomes less useful. 𝜏2 → ∞ represents an “apples and oranges” 

comparison where meta-analysis should never be undertaken.  

4.2. Between-Study Heterogeneity 

We begin investigating between-study heterogeneity in effect sizes by plotting each study’s 

weighted average PCC along with their 95% confidence intervals in figure V. Recall that the 

PCC is a statistical measure of the common variance between lead and crime after 

accounting for other factors and is bounded between -1 and 1. Only two of the studies have 

negative average PCCs. There are 13 studies with an average PCC of 0-0.1 with some degree 

of overlap in confidence intervals (one measure of how much heterogeneity there is 

between studies). 9 studies have PCCs of 0.18-0.94, with less overlap in intervals. The two 

Nevin studies have particularly strong effect sizes and no overlap with other studies.  

If in (3) 𝜏2 is zero and the common effects model is true, then a consistent estimator of 𝜃 is 

a weighted average with the weights equal to 1/𝜎𝑗
2. The estimate variances 𝜎𝑗

2 are not 

observed. Instead, we use 𝜎̂𝑖𝑗
2 , the estimated variance from each study estimate. If 𝜏2 ≠ 0 

then some estimated 𝜏̂2 is needed for the weighted average (see appendix for details on 

common and random effects estimation). We show the common and random effects 

estimates at the bottom of figure V. The common effects point estimate is 0.01 and the 

random effects 0.18. The difference between them illustrates that between-study 

heterogeneity is important, as the lower the estimated heterogeneity between studies, the 

closer the random effects estimate will be to the common effects. A Cochran’s Q test 
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(Cochran, 1954) strongly rejects the null of no between-study heterogeneity, with a p-value 

of 0.0001. 

It is unlikely that the only source of this heterogeneity is the random, unobservable 

variances 𝜎𝑗
2 and 𝜏2. (3) can be extended to be conditional on a 1 × 𝐾 vector of variables 

𝒙𝑖𝑗. In this case the study specific estimates 𝜃𝑗  are a function of this variation in 𝒙 and we 

have the conditional distribution: 

(4)    𝜃𝑖𝑗  | 𝜎𝑗
2, 𝜏2, 𝒙𝒊𝒋 , 𝜷 ~ 𝑁(𝒙𝒊𝑗

′ 𝜷, 𝜎𝑗
2  +  𝜏2) ∀ 𝑖 and ∀ 𝑗 

If these variables are observable, we can include them in our estimation. To investigate 

sources of observable between-study heterogeneity, table II splits the data into sub-

samples, based on common characteristics. These characteristics are also used as covariates 

in the meta-regression analysis and described fully in section 4.4. We then compare three 

measures of between-study heterogeneity for each sample, 𝜏̂2, 𝐼2 , and 𝐻̂2. For each of 

these measures, the higher they are, the higher the estimated between-study 

heterogeneity. 𝐻̂2 and 𝐼2 are sensitive to the number of estimates and the variation in the 

standard error of those estimates. 𝐼2 tends to 100 as the number of studies included 

increases. 𝜏̂2 is an estimate of the variance of the effect size distribution in (3) using the 

DerSimonian-Laird (1986) method and is less sensitive to the number of studies but does 

not give a sense of how important between-study heterogeneity is compared to within-

study sampling variation.  

Looking at table II we can see which variables seem important for heterogeneity and the 

different estimated average effect sizes. The subsample of studies which control for 

endogeneity has a lower estimated heterogeneity and a smaller effect size compared to the 

correlational sample. Endogeneity can arise from unobserved variables correlated with both 

crime and lead. These could bias upwards the estimate of the effect of lead on crime. We 

cannot rule out that these variables may cause individuals both to commit more crime and 

be more exposed to lead, rather than lead being the cause. Therefore, the difference 

between the “addressing endogeneity” sample and the full sample could be related to these 

factors.  
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Studies that look at individual propensity to commit crime have lower estimated 

heterogeneity and estimated effect size compared to studies that look at crime committed 

within a geographic area. Studies which use homicide as the dependent variable appear to 

have less heterogeneity and find a stronger effect size. This reduction in heterogeneity may 

be due to lower measurement error in homicide data compared to other types of crime, 

combined with more similar classification of this crime across countries, and therefore less 

noise in the data. Whether a study reports odds-ratios is important for heterogeneity. 

Finally, when race, gender, education and income covariates are included in an estimation, 

these tend to lower the effect size and these subsamples also show less between-study 

heterogeneity than those which do not include these covariates. The estimated differences 

in effect size and heterogeneity between subsamples indicates observable variation is 

important and must be taken into account when we estimate an “average effect”. We 

incorporate the observable variation indicated in table II into our meta-regression analysis in 

section 4.4.  

A further, and common source of heterogeneity in effect sizes in meta regression analysis 

comes from publication bias. We investigate this in the next section. 

4.3. Publication bias 

Publication bias is a well-known problem across disciplines (see DeLong and Lang, 1992; 

Ioannidis, 2005; Ioannidis, Stanley and Doucouliagos, 2014; Ioannidis, 2016; Szucs and 

Ioannidis, 2017; and Ferraro and Shukla, 2020). Papers which contain statistically significant 

effect sizes are more likely to be published than those which show no effects, or those 

which contain counter-intuitive results (also known as the bottom-drawer problem). It is 

standard practice to test for the presence of publication bias in meta-analysis.  

The first and most common step is to simply chart the data and visually inspect for bias, 

using a funnel plot. Figure VI plots PCCs against their precision. A funnel with no bias should 

be symmetrical around one or more central tendencies. The estimates will tend to spread 

out as the precision decreases, but they should do so symmetrically if this is only due to 

sampling noise. Figure VI shows a pronounced asymmetry in the estimates, suggesting there 
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may be a positive bias. It is also possible this is due to heterogeneity within the sample. We 

explore this possibility in section 4.4. 

More formal testing of publication bias is also possible. A linear relationship between the 

estimate and its precision, as there seems to be in figure VI, would indicate the presence of 

publication bias (see Stanley and Doucouliagos, 2014). This naturally leads to the estimating 

equation (5). 

(5)  𝜃𝑖𝑗 = 𝜃 + 𝛽𝐹𝜎̂𝑖𝑗 + 𝑢𝑗 + 𝜖𝑖𝑗; where 𝜖𝑖𝑗  ~ 𝑁(0, 𝜎𝑗
2 ) and 𝑢𝑗  ~ 𝑁(0, 𝜏2 )  

This is the combined Funnel Asymmetry Test (FAT) and Precision Effect Test (PET). Here the 

FAT is 𝛽𝐹, and is an estimate of the size and sign of publication bias. It is a function of the 

inverse Mills’ ratio (Stanley and Doucouliagos, 2014). If positive then estimates that are 

positive are more likely to be published than negative ones. This test also gives an estimate 

of 𝜃 that takes into account this bias, called the PET. (5) nests the common effects model 

where 𝜏2 is zero. 

The test in (5) would be subject to heteroskedasticity, as can be observed from figure VI. We 

have estimates of the heteroskedasticity in 𝜎̂𝑖𝑗. These can therefore be used to weight the 

regression and we estimate the test with weighted least squares following Stanley (2008). 

(6)  𝑡̂𝑖𝑗 = 𝜃
1

𝜎̂𝑖𝑗
+  𝛽𝐹 + 𝑣𝑗 + 𝑒𝑖𝑗 

Here the dependent variable 𝑡̂𝑖𝑗 is now the t-ratio, rather than the estimate alone. The 

intercept of the regression is the FAT and the coefficient on 
1

𝜎̂𝑖𝑗
 is the PET.  

We estimate three variations on the FAT-PET. First with OLS and clustered standard errors 

by study, but no study fixed effects; second, a variation of this where we regress on the 
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variance rather than the standard error7; and a full hierarchical FAT-PET with study fixed 

effects. We estimate this with restricted maximum likelihood (REML), as Monte Carlo 

simulations suggest REML performs well for unbalanced panels (Baltagi, Song and Jung, 

2000). As a robustness check, we also estimate the FAT-PET and FAT-PEESE with only the 

representative estimates, rather than the full sample, and the results are similar (see 

appendix for details). The results in table III show positive bias is present across all tests, 

albeit with wide confidence intervals. They also show the estimate of average effect after 

adjusting for bias is close to zero for all tests.  

The final test for publication bias used here is the Andrews and Kasy (2019) method. Monte 

Carlo simulations show it is among the best performing bias estimators and it performs 

particularly well when between-study heterogeneity is high (Hong & Reed, 2020), as we 

have in our sample. Andrews and Kasy observe that given different probabilities of 

publication, due to commonly used significance bounds, we will observe a truncated sample 

of effect sizes. If we set one probability of observing a value as a reference, they show we 

can identify the other probabilities relative to this. These probabilities can now be estimated 

up to scale with maximum likelihood. We then use these estimated, relative probabilities to 

reweight the observed sample. This allows us to reconstruct the true, untruncated 

distribution and estimate the mean of the effect size distribution. 

Using this method, we estimate three publication probabilities relative to that of a positive 

t-ratio greater than 1.96. That is, relative to a positive effect size, significant at the 95% 

level. The three probabilities are: negative and significant at a 95% level; negative and not 

significant; and positive and not significant. We also estimate the bias-adjusted mean effect 

size, assuming that the publication probability bias is not symmetric around zero.  

 

7 The Funnel Asymmetry test and Precision Effect Estimate with Standard Error (FAT-PEESE). Stanley and 

Doucouligas (2014) find the FAT-PEESE can sometimes perform better in simulations. They find the FAT-PEESE 

seems to especially perform better when the true effect is not equal to zero.  
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The results of the test are in table IV. We can see that negative and significant estimates are 

200 times less likely to be published than positive, significant ones. In fact, negative 

estimates in general are less likely to be published than positive estimates, given what we 

would expect from an untruncated distribution of t-ratios. Although the standard errors are 

large and there is some overlap of 95% confidence intervals for the three estimated 

publication probabilities, the 95% intervals for negative estimates do not cover 1, suggesting 

negative estimates are far less likely to be published than positive and significant estimates. 

The estimate of the mean effect size, after adjusting for publication bias, is -0.642, but the 

95% confidence interval again is relatively large and covers zero. 

All tests suggest publication bias is present in the sample. The tests also suggest the true 

mean effect size of lead on crime may be close to zero, but this could be due to the 

relatively small sample, or to characteristics of the studies. These characteristics can be 

investigated more thoroughly with a meta-regression analysis.  

4.4. Meta-Regression Analysis 

Meta-regression analysis (MRA) follows from (4) where we include common observable 

variation in our estimation. Given all tests suggest the presence of publication bias we include 

the FAT in all regressions. We also weight all regression covariates by the standard errors as 

in (6). Therefore, the specification is the same as in (6) except we now also regress on further 

weighted observable covariates, and the coefficient on the precision is only an estimate of 

the average effect size when all other covariates are set to zero.  

The covariates included are based on common characteristics of the studies that are 

suggested by the literature. Their descriptive statistics are included in table V. The majority 

are dummy variables indicating whether that characteristic is present for that estimate. All 

variables are coded at estimate level, not at study level. That is, different estimates from the 

same study may have different characteristics, and therefore have different values for the 

covariates. There is a dummy variable that equals one when an estimate comes from a high-

quality study design that attempts to deal with endogeneity concerns. There is a dummy 

variable which is one when an estimate is of crime in an area, and zero when it is at the 

individual level. There are four dummy variables which indicate whether specific controls 
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were included in the estimation. Lead exposure is correlated with poverty (Baghurst e al. 

1999) and race (Sampson and Winter, 2016), may have different effects on men and women 

(Denno, 1990), and may have a relationship with educational outcomes (Fergusson, Boden 

and Horwood, 2008). Therefore, when an estimation includes these variables we might expect 

it to influence the estimate. The interpretation of the effect of these variables depends on 

where they are in the causal chain8. If these variables are confounders, causing changes in 

lead and changes in crime, then omitting them will tend to overstate the effect of lead on 

crime (given they change both in same direction). If they are mediators, changed by lead and 

then changing crime, then conditioning on them can lead to understating the effect of lead 

on crime. This is especially important when study designs do not use some method to deal 

with endogeneity issues. Of course, there are other variables that may be important controls, 

but these were not found to be common enough across studies to include. 

Next there are three dummy variable that describe what type of crime was used as the 

dependent variable (homicide, violent, and non-violent), with a reference group of total 

crime. This allows us to test whether the different mechanisms proposed in section 2 matter. 

The violent crime category nests homicide within it. They are separate categories because 

homicide data is thought to be the best quality crime data, and thus less likely suffer from 

bias (Fox and Zatz, 2000). We next have two dummy variables representing possible 

estimation effects. One for if simple OLS was used, another for if maximum likelihood was 

used. The reference group is any other estimation such as GMM or mean differences. We 

have two dummy variables for further estimation effects. One for if panel data were used, 

and another for if the results are reported as odds ratios. A further three dummy variables 

are geographic dummies that equal one when an estimate come from a continent, with a 

reference group of Africa. These are added as it allows us to see how much estimates differ 

depending on where the data come from. The final dummy variable equals one when a direct 

measure of lead, from either blood, bone, or dentine samples, is used in the estimation and 

zero when a proxy measure or estimate, such as leaded gasoline use in an area, is used. This 

allows us to test whether there is a systematic difference in effect sizes found when lead levels 

are taken directly from subjects, which we might expect to give a more accurate measure of 

the true effect, rather than proxied. The final two covariates are the sample size and the 

 
8 Grateful to Paul Ferraro for his comments on this. 
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number of covariates included in the estimation. These two variables have been standardised 

to aid the restricted maximum likelihood convergence.  

We estimate many specifications due to model uncertainty. Our sample is relatively small and 

coefficient estimation varies significantly in alternative specifications. The number of 

different covariate combinations is 2𝐾  where 𝐾 is the total number of covariates. It is 

common in the meta-analysis literature to employ some method of model averaging or 

shrinkage to deal with model uncertainty9. However, with this many covariates and modern 

computational power it is possible to estimate all 2𝐾  specifications10. In addition, table II 

showed that some subsamples have substantially less heterogeneity than the full sample. It 

may be that these sub-samples suit aggregation better than the full sample. For example, we 

might expect studies with individuals as the unit of analysis to share much more common 

information that those that have a geographic area as the unit of interest. We therefore also 

estimate all covariate specifications for these subsamples. It is not possible to estimate every 

combination as some dummy variables no longer have any variation in the subsamples, 

leading to collinearity. This can also lead to other variables being excluded as they become 

the new base case (for example if there are no African studies in a subsample, then another 

continent becomes the base case). A full list of the covariates included for each subsample is 

in table VI. We estimate every possible combination of covariates for the full sample and the 

subsample. We include the FAT, the estimate of publication bias. We estimate with REML and 

include study fixed effects. In total, we estimate over 1 million meta-regression specifications.  

The distribution of coefficient sizes for the full sample estimation is in plotted in figure VII. 

The means, medians and standard deviations are given in table VII. We can see that the FAT 

mean and median is much smaller than the FAT coefficient in our tests in table III. This 

suggests some of the bias may be explained by observable heterogeneity between studies. 

However, there remains some residuals bias nonetheless, and this has a very large effect on 

the PCC estimate of lead on crime. The mean and median of the coefficient on the addressing 

endogeneity dummy is negative, suggesting studies that control for endogeneity tend to have 

smaller effect sizes. Studies which have an area as a unit of interest tend to find larger effects 

 
9 For an example, see Gechert, Havranek, Irsova, and Kolcunova (2020) 
10 As a robustness check we perform Bayesian Model Averaging in the appendix. The posterior mean PCC using 
the full sample and evaluated at the sample averages is 0.06. Lower than the method we use here.  



16 
 

than those which use individuals. The coefficient on the area dummy has a mean of 0.2 and a 

median of 0.16. Almost all the density of this coefficient is positive in figure VII. The coefficient 

on whether a study directly measures lead levels has a negative mean and median, suggesting 

direct measures of lead levels lower the estimated effect of lead on crime compared to 

studies that use a proxy measure such as lead air pollution. When we turn to different kinds 

of crime, we can see that the distributions of both violent and non-violent crime peak around 

zero and have small means, and medians. This suggests having violent or non-violent crime 

as the dependent variable does not lead to systematically different estimates compared to 

the base case, total crime. It is different when the dependent variable is homicide. Here the 

mean and median size is -0.05 and every estimate is negative, suggesting that a dependent 

variable of homicide tends to lower the estimated effect size.  

Looking at the four important controls, education and race tend to lower the PCC, while 

controlling for gender or income tend to raise it, but only the mean and median of the race 

control are further than 0.01 from zero. In estimation effects, OLS has a large negative mean 

and median, tending to lower the PCC, while maximum likelihood has a positive mean and 

median but not as large in absolute values. Using panel data and reporting odds ratios both 

tend to have a large negative effect on the size of the lead/crime estimate. For continent 

dummies, an estimate using North American data has a strong negative effect on the PCC, 

with a mean of -0.28 and median of -0.29. Europe and Australia on the other hand tend to 

raise the PCC relative to the base case, Africa. However, by far the majority of estimates, 70%, 

use North America data, compared with 16% using European data, and around 7% each for 

Australasia and African data. More covariates tend to lower the PCC, with a mean of -0.1 and 

median of -0.11. Finally, the sample size does not seem to affect the estimate of lead on crime, 

beyond the publication bias effects in the FAT. This is reassuring, as it means small sample 

studies are not estimating systematically different effect sizes, it is just that they tend to only 

be published when they are positive and significant.  

Overall, for the full sample the results show that observable variation accounts for some of 

the large differences in effect sizes we observe in the sample. By the far the largest coefficient 

is our estimate of publication bias. Beyond that, a group of other variables have large effects: 

whether a study uses data from North America; estimation effects, such as using panel data 
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or reporting odds ratios; whether a study examines individuals or areas, and how many 

covariates an estimate includes.  

We next use the information from each specification to construct a distribution of estimates 

of the average effect of lead on crime. We are now estimating an average effect conditional 

on the observable heterogeneity in our specifications. In practice, meta-analysis tends to do 

this in two ways, either using the sample averages or taking some “ideal” specification. We 

do both. That is, for each specification we generate a predicted PCC estimate of the effect of 

lead on crime, using both the sample averages, or by using an ideal specification, and not 

including the FAT in the predicated value (i.e. removing the publication bias). The ideal 

specification we use is one that includes controls for race, education, income and gender, that 

uses individual data, directly measured lead levels, controls for endogeneity, uses panel data, 

is estimated with GMM (i.e base case compared to OLS and ML), uses total crime as the 

dependent variable, uses North American data (as most of our sample is from there), and uses 

the sample averages for sample size and number of covariates. This ideal specification is 

chosen to represent a robust and high-quality estimation, and as such we would expect it be 

generally lower than the sample averages estimates.  

We plot the kernel density distributions for the full sample for using both sample averages 

and the ideal specification in figure VIII. In each there is a distribution of 524,288 predicted 

values. The mean and median PCC for the sample averages distribution are 0.11 and 0.12 

respectively, which is “moderately positive” according to the Doucouliagos (2011) taxonomy 

(in section 4.5 we look at what these imply for elasticities). The distribution appears to be 

bimodal with one peak close to zero and the other around 0.2. The distribution of the ideal 

specification is not bimodal and the density peaks close to zero and is roughly symmetrical. 

The mean and median are -0.05 and -0.02 respectively. As expected the ideal specification is 

lower than the sample averages, but this is in part due to the North America variable. An 

alternative specification where with the “Europe” dummy set to one instead gives a mean 

and median of 0.11 and 0.04. The median though is still much lower than in the sample 

averages distribution.  

We next restrict the sample to only high-quality studies that estimate a causal effect rather 

than an association: our “addressing endogeneity” sub-sample. This consists of seven studies 

and 211 estimates. It is common in meta-analysis to exclude correlational studies altogether 
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(e.g., Kraft, Blazer and Hogan, 2018). Although we have not excluded those studies in this 

meta-analysis, we now examine what a meta-analysis estimate with only causal studies would 

be. We saw in table II that the addressing endogeneity subsample has lower between-study 

heterogeneity than the full sample, so aggregation may yield comparatively more 

information.  

We plot the sub-sample average specification and ideal specification in figure IX (excluding 

those variables that cannot be included in the estimation, see table VI). The distribution of 

the sample average predicated values is tight around zero with a mean and median of 0.01, 

and a sample standard deviation of 0.01. The ideal specification may be expected to perform 

less well as we have fewer variables in the addressing endogeneity sample. The mean is -97 

due to a few negative estimates with large absolute values, and around 13% of the 

distribution is outside the feasible interval of a PCC [-1,1]. However, most of the density is 

once again close to zero and the median is 0.02. The results suggest there is a systematic 

difference between the high-quality causal estimating studies and the rest of the sample.  

We next plot several other subsample distributions of interest in figure X. The means medians 

and standard deviations for the full sample and all subsamples are given in table VIII. We also 

show the percentage of estimates which fall outside the feasible [-1,1] interval, which 

suggests misspecification. The difference between the area and individual sample is striking. 

The area sample means and medians are much larger than the individual sample for both the 

sample average specification and the ideal specification. The individual sample mean and 

median PCCs are close to zero, although larger in all cases, and the distributions are tight 

around the means compared to the area sample. This suggests that covariates matter less for 

the individual sample effect sizes compared to the area sample. Similar to the area-individual 

comparison, the correlational sample has much higher means and medians than the 

addressing endogeneity sample.  

Comparing homicide, violent, and non-violent crime samples we can see again in table VIII 

that a large part of the distributions are outside the feasible interval of a PCC, suggesting 

misspecification and that the results may not be reliable. In the sample average specifications, 

the non-violent and homicide samples are the only ones with some percent of the distribution 

outside [-1,1], suggesting it may be an issue with those samples. The standard deviations for 

all the crime samples are large even when we only look at the sample average specifications 
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in table VIII. Overall, the results suggest these samples may be less informative than the 

others, but what we can say is that they show positive, moderate to large, mean and medians 

PCCs. The non-violent and homicide samples generally show larger PCCs than the violent 

crime sample but, given the large variance of the distributions and the number of unfeasible 

PCC values returned, this may be just due to model or sample issues. We can say that violent 

crime does not have a stronger relationship with lead compared to non-violent crime. We 

cautiously suggest that if lead does have an effect on crime it is across all categories of crime. 

4.5. Estimating an Elasticity 

We use PCCs to estimate the effect of lead on crime in this meta-analysis because studies use 

varying measures of lead and crime, with varying units of interest, and so cannot be directly 

compared. We find that the median PCC, evaluated at the sample averages, for the full sample 

is 0.11. This is a “small effect”, according to the Doucouliagos (2011) taxonomy. The 

equivalent PCC when only the high-quality, addressing endogeneity sample is considered is 

0.01, below the threshold for a small effect according to Doucouliagos, and close to zero. 

However, a small effect size does not necessarily imply an economically insignificant one. 

When there are very large changes in a variable even small effects can sum to a huge change 

in welfare. Lead levels have dropped significantly since the 80s in many countries as shown in 

figure II. We therefore examine plausible estimates of a lead-crime elasticity, using our PCC 

estimates. The PCC and the elasticity are related, but not in a straightforward manner. This 

forces us to make some strong assumptions in the interests of welfare analysis.  

Given a PCC and the change in a given measure of crime for a given measure of lead, 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
, 

then the relationship between the two is given in (7). 

(7) 𝑃𝐶𝐶 =  
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎𝑑̃− 𝒛̃′𝛾1)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −𝒛̃′𝛾2)
 

Where 𝑠𝑑(. ) means the standard deviation. 𝐿𝑒𝑎𝑑̃ −  𝒛̃𝛾1 are the residuals from a regression 

of Lead on 𝒛, a vector of variables related to lead and crime, where both lead and 𝒛 have been 

standardised. Similarly, 𝐶𝑟𝑖𝑚𝑒̃ − 𝒛̃𝛾2 are the residuals from a regression of Crime on 𝒛, where 

both have been standardised. If we wish to attach a causal interpretation to the elasticity, we 

can think of 𝒛, following Peters , Bühlmann, and Meinshausen (2016), as the minimum set of 
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variables under which the distribution of Crime is invariant when conditioned on both 𝒛 and 

Lead.  

It can be seen that a PCC will always share the same sign as 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑
 but will be inflated or 

deflated according to the relative size of the standard deviations in (7). 
𝛿𝐶𝑟𝑖𝑚𝑒

𝛿𝐿𝑒𝑎𝑑

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)
 is 

equivalent to a standardised coefficient. The intuition for the last ratio is as follows: the 

greater the variation in Lead that is not explained by 𝒛, the larger the PCC, because the 

overlapping variation between the independent effect of Lead and Crime is relatively greater. 

The PCC is also greater the larger the amount of variation in Crime explained by 𝒛. This is 

because the share of unexplained variation in Crime becomes smaller, so the share of 

variation jointly explained by Lead and 𝒛 increases. As more of the variation in Crime is 

explained by both Lead and 𝒛, their PCCs will tend to 1 or -1. 

To evaluate an elasticity at the sample means we multiply both sides by 
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅
, where the bar 

indicates the mean. We can then rearrange (7) to put it in terms of the elasticity η. 

(8) η =  
𝐿𝑒𝑎𝑑

𝐶𝑟𝑖𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅

̅̅ ̅̅ ̅̅ ̅ 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒)

𝑠𝑑(𝐿𝑒𝑎𝑑)

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ −𝒛̃′𝛾2)

𝑠𝑑(𝐿𝑒𝑎𝑑̃− 𝒛̃′𝛾1)
𝑃𝐶𝐶 

We can see that the size of the PCC relative to the elasticity depends on three ratios. The first 

two, the relative means and standard deviations, depend on the measures of crime and lead. 

We use homicide and blood lead data from the US as an illustrative example to examine 

plausible elasticities, given the fall in both violent and non-violent crime was particularly 

pronounced there. The means, standard deviations, and sources are given in table IX. Given 

these, the relative size of the PCC to the elasticity depends upon the third ratio of residual 

standard deviations. This ratio could theoretically take any value between zero and infinity, 

and therefore so could the elasticity (assuming the PCC is positive). We therefore look at what 

are plausible values for this ratio and what is the range of the elasticity given these values. 

The maximum value the numerator 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − 𝒛̃′𝛾2) can take is one, representing no 

common variation between 𝒛 and Crime. We hold it at one, to inflate the PCC as much as 

possible. The final element of the equation is 𝑠𝑑(𝐿𝑒𝑎𝑑̃ −  𝒛̃′𝛾1). This is the residual variation 

in Lead not explained by 𝒛. The lower this is, the more the PCC will be inflated, and therefore 
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the greater the elasticity. The elasticity is convex in 𝑠𝑑(𝐿𝑒𝑎𝑑̃ −  𝒛̃′𝛾1), deceasing at a 

decreasing rate.  

Figure XI plots the relationship between the elasticity and 𝑠𝑑(𝐿𝑒𝑎𝑑̃ − 𝒛̃′𝛾1), given the 

estimated mean PCCs, the values in table IX, and holding 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − 𝒛̃′𝛾2) constant at the 

maximum value of one. The elasticities drop sharply with an increase in the denominator 

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − 𝒛̃′𝛾2), with the elasticity for the addressing endogeneity sample approaching 

close to zero almost immediately. The elasticity for the full sample slopes down more gently 

but even so does not suggest a large elasticity except at extremely small values of 

𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − 𝒛̃′𝛾2).  

We can now propose a range of plausible values for the elasticity. Given the uncertainties 

around the ratio of unexplained variations in (8), this is somewhat arbitrary, but we hope, 

given the discussion above, not unreasonably so. There is no compelling reason to suppose 𝒛 

would explain more of the variation in Lead than in Crime. Nevertheless, if we take as a lower 

bound that 𝑠𝑑(𝐿𝑒𝑎𝑑̃ − 𝒛̃′𝛾1) is ten times as large as 𝑠𝑑(𝐶𝑟𝑖𝑚𝑒̃ − 𝒛̃′𝛾2) , and as a 

conservative upper bound that they are equal, then we can give a range of values based on 

our estimated PCCs. For the full sample PCC, this gives an elasticity of 0.22-0.02. For the 

addressing endogeneity sample PCC, the range is 0.03-0.00, to two decimal places. The 

median blood lead level in children fell 88% from 1976-2009. The full sample elasticity 

estimates therefore would suggest the fall in lead has decreased homicide in the US by 

between 19.4% and 1.8%. The equivalent decrease for the addressing endogeneity sample is 

between 2.6% and 0%. The US homicide rate fell 54% from its peak in 1989 to 2014. This 

would mean that lead accounts for between 36% and 3% of the decrease in homicide using 

the full sample elasticity, and 5%-0% using the addressing endogeneity elasticity. Our 

generous assumptions of the lower bound on the ratio of residual variation in (8) imply that 

lead may be an important factor in the fall in homicide, but it does not account for the 

majority of the fall. Our upper bound on that same ratio implies lead accounts for very little 

of the fall in crime.  
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5. Discussion and Conclusion 

Changes to the amount of lead in the environment have been put forward as one of the main 

causes of the decrease in crime, especially homicide, in many western countries. We 

performed the first meta-analysis of the effect of lead on crime. We find there is publication 

bias in the lead-crime literature, and that meta-analysis estimates that do not control for this 

will overstate the effects of lead on crime. We find that the average meta-analysis estimate 

for high-quality studies that take into account endogeneity is much smaller than for the full 

sample, or for the correlational sample. Similarly, the average effect size estimate for studies 

that have individuals as the unit of interest is much smaller than for the sample of studies that 

have a geographic area as the unit of interest. The full sample and area sample distributions 

have most of their density in the positive side of zero. Their average effects suggest a small 

to moderate effect, while both the addressing endogeneity and individual effect distributions 

are tight around zero and suggest there may be no effect. When we examined the differences 

between lead’s effect on homicide, violent and non-violent crime, we could not confidently 

state there was any difference between them. Finally, we performed back-of-envelope 

calculations to convert our partial correlation coefficient estimates into elasticities. This gave 

a range of 0.22-0.02 for the full sample and 0.03-0.00 for the high-quality, addressing 

endogeneity sample. This suggests the fall in blood lead levels may have led to a fall in 

homicide in the US of between 36-3% with the full sample elasticity, and between 5%-0% for 

the addressing endogeneity sample elasticity. 

Overall, the results suggest that declines in lead pollution are not the cause of the majority of 

the fall in crime observed in many western countries. Our results however leave open the 

possibility that it may have a socially significant effect. The upper end of our range of 

elasticities would imply the lower lead pollution today saves around 6,000 lives a year in the 

US. The lower end, however, would mean lead has no effect and we must look to other causes 

entirely. We are unable to provide estimates on the size of other causes here but hope our 

results can provide a rough benchmark for relative importance in future meta-analysis. It is 

possible that the large differences in our samples can be reconciled. For example, the large 

difference between the individual and area samples may be because crime has fallen at the 

extensive margin rather than the intensive margin. Tcherni-Buzzeo (2019) observe that 

around 5% of the population are responsible for 50% of crime, and that the fall in crime in the 
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US is likely due to falls in this high-crime population, rather than less crimes per individual in 

that population. If less lead pollution only meant less probability of committing crime for this 

small slice in the population, it might nevertheless lead to a large fall in crime at the area level.  

There are a number of limitations to our analysis. Most importantly, the sample size is not 

large. We have 24 studies and 529 estimates, this is not unusual for a meta-analysis but, 

particularly for our subsample estimates, this could play a part in the differences. It may 

explain why so much of the distribution for the different types of crime in table VIII were 

outside the feasible PCC interval of [-1,1]. We attempt to mitigate this by using various tests 

for publication bias, and estimating many different specifications, but we cannot rule out that 

the results are due to small sample effects. Secondly, the between-study heterogeneity is 

large in our sample. This calls into question how comparable the studies are. This is to be 

expected as studies use different concepts and measures of crime and lead, different units of 

interest, and different estimations, from simple correlations to LATEs. We try to mitigate this 

by converting to PCCs, using different sub-samples that have lower between-study 

heterogeneity, and using meta-regression with covariates. However, even with these 

mitigations, it may be that the literature is not comparable and therefore meta-analysis 

estimates will be noise. In this case it calls into question the external validity of the studies 

examining the lead-crime hypothesis. The solution in this case would be far more studies that 

estimate elasticities using comparable measures of lead and crime.  

For policymakers, our results are a warning against assuming the large crime levels in past 

decades cannot return now that lead pollution is much lower. The results are not a signal that 

lead abatement is fruitless. As outlined in section 2, the evidence of harmful biological and 

health changes due to lead is overwhelming. There is no known safe level of lead. Even if 

outcomes higher up the causal chain, such as crime, are not as affected by lead, the evidence 

still shows lead abatement will increase health outcomes, especially for the very young.  

For future research, we have two main suggestions. The first is that there are enough low 

sample size, correlational studies in the lead-crime literature. What is needed now is high 

power, high-quality causal estimates of the effect of lead on crime. The value added of such 

studies would be increased by testing the effect on different types of crime, and the possible 

interaction of lead with other potential causes. The second is that more high-quality causal 

estimates of the elasticity of other causes of crime are needed. Our results suggest lead is not 
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responsible for the majority of the fall in crime since the 80s and therefore leaves open room 

for other explanations. These explanations must account for the fact homicide has fallen 

across many (but not all!) western countries at roughly the same time. They must also account 

for the fact that total crime has risen in Europe and fallen in the US, while the homicide rate 

has fallen in both. Further comparison of the relative shares of responsibility for the fall in 

crime, as well as the interaction between causes, may also be fruitful and we suggest further 

meta-analyses, using the up-to-date methods, would be helpful in this area.  
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Figure I  

Homicide rate per 100,000 by country 

Sources: New Zealand Police (2018); Buonanno et al. (2011), UK Home Office (2019); Uniform Crime Reports 

for the United States (2019); Falck, Von Hofer & Storgaard (2003); Statistics Canada (2019); Birkel and Dern 

(2012). 
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Figure II 

Lead Emissions by Country (1000 kg Y−1 ) 

Source: Dore et al. (2006), Schwikowski et al. (2004), Kristensen (2015), Statistical Abstract of the United 

States (2009). 
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Figure III 

Total recorded crime rate per 100,000 in USA and seven European 

Countries 

Source: Buonanno et al. (2011). The countries are: Austria, France, Germany, Italy, The Netherlands, Spain, and 

the UK. 
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Figure IV 

PRISMA Flow Diagram of selection process 
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Figure V 

Forest plot 

Notes. Chart shows weighted average partial correlation coefficients (PCCs) of each study’s effect size along with 

corresponding 95% confidence intervals. The weighted averages are calculated by first normalizing the PCCs so 

that confidence intervals can be constructed, then the fixed effects average is calculated, finally the estimates 

are converted back to PCCs (see appendix for details).  

Bottom of table shows fixed effects and random effects estimates for all studies combined (see appendix for 

details).  

Numbers on right are the point estimates and the 95% confidence intervals.  
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Figure VI 

Funnel chart 

Notes. PCC = Partial Correlation Coefficient 

Precision is one divided by the standard error of the PCC.  

“Significant” means statistically significant at the 95% confidence level using two-sided critical values of a normal 

distribution.  
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Figure VII 

Densities of covariates in full sample meta-regressions 

Notes. Chart shows kernel densities for the meta-regression estimated coefficients on each covariate. Note 

different axes scales. 
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Sample averages    “Ideal” specification 

 

Figure VIII 

Density of meta-analysis average effect size estimates from full 

sample 

Notes. Chart shows kernel densities for the distribution of meta-regression estimated average effect sizes. 

Chart on left shows estimated average effect for each specification evaluated at the sample averages. Chart 

on right shows estimated average effect for each specification evaluated at an “ideal” specification. X axis 

truncated at feasible interval of a PCC, [-1,1]. 

 

 

 

 

 

 

 

 



44 
 

Sample averages    “Ideal” specification 

 

Figure IX 

Density of meta-analysis average effect estimates for “Addressing 

Endogeneity” subsample 

Notes. Chart shows kernel densities for the distribution of meta-regression estimated average effect sizes 

for the addressing endogeneity sub-sample.. Chart on left shows estimated average effect for each 

specification evaluated at the sample averages. Chart on right shows estimated average effect for each 

specification evaluated at an “ideal” specification. X axis truncated at feasible interval of a PCC, [-1,1]. 
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Sample averages    

 

 “Ideal” specification 

 

Figure X 

Densities of Meta-analysis average effect estimates from subsamples 

 

Notes. Chart shows kernel densities for the meta-regression estimated average effect sizes for a number of 

subsamples. Top chart shows estimated average effect for each specification evaluated at the sample 

average for each subsample. Chart on right shows estimated average effect for each specification evaluated 

at an “ideal” specification. X axes truncated at feasible interval of a PCC, [-1,1]. 
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Figure XI 

Estimated Elasticity of on lead on crime 

Notes. Chart shows how η, the calculated elasticity of lead on crime, varies with changes in 𝑠𝑑(𝐿𝑒𝑎𝑑̃ − 𝒛̃′𝛾1), the standard 

deviation of the residual in a regression of a set of standardised variables 𝒛̃, and the standardised measure of lead 𝐿𝑒𝑎𝑑̃.  
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Table I – Studies Used in Meta-analysis 

Study & Year Median Mean 

Weighted 

Average Type of Crime 

Individual 

or Area 

Addresses  

Endogeneity 

Aizer & Currie (2019) 0.027 0.019 0.019 Violent and non-violent  Individual Yes 

Barrett (2017) 0.556 0.556 0.589 Violent  Area No 

Beckley et al. (2018) 0.065 0.061 0.063 Violent and non-violent  Individual No 

Billings & Schnepel (2018) 0.122 0.113 0.103 Violent and non-violent  Individual Yes 

Curci & Masera (2018) 0.025 0.043 0.029 Violent  Area Yes 

Dills, Miron & Summers (2008) 0.022 0.021 0.021 Violent and non-violent Area No 

Feigenbaum & Muller (2016) 0.189 0.192 0.180 Only Homicide Area Yes 

Fergusson et al. (2008) 0.080 0.079 0.080 Violent and non-violent  Individual No 

Grönqvist, Nilsson and Robling (2019) 0.002 0.003 0.003 Violent and non-violent  Individual Yes 

Lauritsen et al. (2016) 0.740 0.495 0.742 Violent and non-violent  Area No 

Lersch & Hart (2014) 0.043 0.043 0.043 Violent and non-violent  Area No 

Manduca & Sampson (2019) 0.087 0.087 0.087 Violent and non-violent  Individual No 

Masters et al. (1998) 0.051 0.061 0.061 Violent and non-violent  Area No 

McCall & Land (2004) -0.017 -0.017 -0.017 Only Homicide Individual No 

Mielke & Zahran (2012) 0.526 0.497 0.515 Violent  Area No 

Needleman et al. (2002) 0.336 0.307 0.324 Non-violent  Individual No 

Nevin (2000) 0.914 0.912 0.937 Violent  Area No 

Nevin (2007) 0.808 0.710 0.874 Violent and non-violent  Area No 

Nkomo et al. (2017) 0.004 0.052 0.088 Violent  Individual No 

Reyes (2007) 0.059 0.053 0.053 Violent and non-violent  Area Yes 

Reyes (2015) 0.026 0.036 0.029 Violent and non-violent  Individual Yes 

Sampson and Winter (2018) -0.065 -0.046 -0.046 Violent and non-violent  Individual No 

Stretesky & Lynch(2004) 0.396 0.352 0.331 Violent and non-violent  Area No 

Taylor et al. (2018) 0.371 0.377 0.429 Violent  Area No 

       

 

Notes. Table shows median and mean partial correlation coefficient (PCC) estimates from each study of the 

effect of lead on crime. It also shows an average where estimates are combined in a weighted average with the 

weights equal to one divided by the standard error. Table also shows what type of crime was used as dependent 

variable in each study, whether the study unit of interest was an individual or a geographic area, and whether 

any estimates in the study used a design that attempted to account for endogeneity. All coding is done at an 

estimate level, so a study may include both “addresses endogeneity” and “correlational” estimates, violent and 

non-violent estimates etc. 
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Table II – Meta-Averages and Heterogeneity Estimates by Subsample  

Sample RE Estimate SE 𝝉̂𝟐 𝑰̂𝟐 𝑯̂𝟐 Studies Estimates 

Full Sample 0.182 0.002 0.002 99 111 24 529 

Addressing Endogeneity 0.013 0.001 0.000 90 10 7 211 

Correlational 0.519 0.015 0.067 99 160 20 318 

Individual 0.008 0.001 0.000 95 20 11 125 

Area 0.414 0.010 0.037 99 128 13 404 

Homicide 0.298 0.025 0.048 95 19 8 93 

Violent Crime 0.290 0.008 0.018 99 75 18 328 

Non-Violent Crime 0.503 0.043 0.140 99 142 15 80 

Total Crime 0.077 0.003 0.001 99 152 11 119 

North America 0.243 0.007 0.012 98 61 19 373 

Europe 0.069 0.003 0.001 100 201 2 85 

Australasia 0.507 0.094 0.357 99 149 4 41 

Direct Lead Measure = TRUE 0.092 0.026 0.031 95 19 9 54 

Direct Lead Measure = FALSE 0.190 0.003 0.002 99 121 15 475 

Representative Estimate = TRUE 0.195 0.021 0.007 98 54 24 24 

Representative Estimate = FALSE 0.184 0.003 0.002 99 114 24 505 

Control Gender = TRUE 0.007 0.001 0.000 95 20 8 103 

Control Gender = FALSE 0.382 0.007 0.018 99 127 18 426 

Control Race = TRUE 0.134 0.010 0.008 97 34 13 104 

Control Race = FALSE 0.192 0.003 0.002 99 129 14 425 

Control Income = TRUE 0.028 0.002 0.000 97 31 13 174 

Control Income = FALSE 0.433 0.008 0.017 99 145 16 355 

Control Education = TRUE 0.006 0.001 0.000 95 19 11 106 

Control Education = FALSE 0.372 0.007 0.016 99 128 17 423 

        

 

Notes. RE Estimate is a random effects, meta-analysis estimate computed using DerSimonian-Laird (1986) 

method. SE is the standard error. τ2, 𝐼2, and 𝐻̂2 are estimates of between-study heterogeneity. See section 4.2 

for more details.  
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Table III – Bias and average effect estimates 

 

Variable FAT-PET FAT-PEESE Multi-level FAT-PET 

𝛽̂𝐹 5.087 

(1.291) 

32.479 

(8.474) 

3.562 

(0.880) 

 

𝜃 -0.003 

(0.002) 

0.005 

(0.002) 

0.005 

(0.004) 

 

Notes. Estimates presented with their standard errors in brackets. FAT-PET is Funnel Asymmetry test and 

Precision Effect Test. FAT-PEESE is Funnel Asymmetry Test and Precision Effect Estimate with Standard Error. 

The multi-level FAT-PET is a mixed effects-multi-level model with a different slope coefficient for each study. 

𝛽̂𝐹  is the estimate of bias in a meta-analysis sample. 𝜃 is the estimate of the “true” average effect size 

accounting for the estimated bias 𝛽̂𝐹.  
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Table IV – Estimated Meta-average and relative publication 

probabilities using Andrews-Kasy method 

 

Meta-average Relative publication probabilities, where  

reference p(𝟏. 𝟗𝟔 ≤ 𝒁) is 1 

𝜽 𝒁 <  −𝟏. 𝟗𝟔  −𝟏. 𝟗𝟔 ≤ 𝒁 < 𝟎  𝟎 ≤ 𝒁 <  𝟏. 𝟗𝟔  

-0.642 0.005 0.321 1.505 

(0.428) (0.007) (0.148) (0.799) 

 

Notes. Table shows results from Andrews-Kasy (2019) method with standard errors in brackets. 𝜃 is the estimate 

of the “true” average effect size accounting for the estimated publication bias. The right three columns give the 

estimated publication probability relative to a positive estimate that is significant at the 95% confidence level. Z 

is the Z score (estimate divided by standard error). The publication probabilities are estimated for t ratios 

between the shown cut-offs.  
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Table V – Descriptive statistics of MRA covariates 

Name Mean Standard Deviation 

Control_gender 0.19 0.40 

Control_race 0.20 0.40 

Control_income 0.33 0.47 

Control_education 0.20 0.40 

Homicide 0.18 0.38 

Violent 0.62 0.49 

Non_Violent 0.15 0.36 

Both 0.22 0.42 

Area 0.76 0.43 

OLS 0.40 0.49 

ML 0.14 0.35 

Odds_Ratio 0.03 0.17 

Panel 0.67 0.47 

Addressing 

Endogeneity 

0.40 0.49 

North America 0.71 0.46 

Europe 0.16 0.37 

Australasia 0.08 0.27 

Direct Lead Measure 0.10 0.30 

Number of 

Covariates* 
0.00 1.00 

Sample Size* 0.00 1.00 

 

Notes. See section 4.3 for description of variables.  

* indicates variables have been standardised. 
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Table VI – Variables used in combinations for each sample 

estimation 

Variables used Estimation 
Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-
Violent, Area dummy, OLS, ML, Odds Ratio, 
Panel dummy, Addressing Endogeneity, North 
America, Europe, Australasia, Direct Lead 
Measure, Covariates, Sample Size 

Full Sample 

Control gender, Control race, Control income, 
Homicide, Violent, Non-Violent, Area dummy, 
OLS, ML, Panel dummy, North America, Direct 
Lead Measure, Covariates, Sample Size 

Addressing Endogeneity Sample 

Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-
Violent, Area dummy, OLS, ML, Odds Ratio, 
Panel dummy, North America, Europe, 
Australasia, Direct Lead Measure, Covariates, 
Sample Size 

Correlational Sample 

Control race, Control income, Control 
education, Homicide, Violent, Non-Violent, OLS, 
ML, Panel dummy, Addressing Endogeneity, 
North America, Europe, Australasia, Direct Lead 
Measure, Covariates, Sample Size 

Area Sample 

Control gender, Control race, Control income, 
Control education, Homicide, Violent, Non-
Violent, OLS, ML, Odds Ratio, Panel dummy, 
Addressing Endogeneity, North America, 
Europe, Australasia, Direct Lead Measure, 
Covariates, Sample Size 

Individual Sample 

Control race, Control income, Control 
education, Area dummy, OLS, ML, Panel 
dummy, Addressing Endogeneity, North 
America, Europe, Australasia, Covariates, 
Sample Size 

Homicide Sample 

Control gender, Control race, Control income, 
Control education, Area dummy, OLS, ML, Odds 
Ratio, Panel dummy, Addressing Endogeneity, 
North America, Europe, Australasia, Direct Lead 
Measure, Covariates, Sample Size 

Violent Crime Sample 

 

Notes. Table shows which covariates were included for each sub-sample estimation. Inclusion depended on 

whether there was variation in the covariate for that subsample.  
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Table VII – Estimates of the coefficients on covariates included in 

meta-regression analysis  

 

Variable Mean Median Standard Deviation 

FAT 1.22 1.16 1.41 

Precision 0.20 0.17 0.15 

Control_gender 0.01 0.01 0.03 

Control_race -0.05 -0.05 0.03 

Control_income 0.01 0.00 0.03 

Control_education -0.01 -0.01 0.01 

Homicide -0.05 -0.05 0.01 

Violent 0.01 0.01 0.03 

Non_Violent -0.01 -0.01 0.03 

Area_dummy 0.20 0.17 0.12 

OLS -0.09 -0.08 0.08 

ML 0.00 0.02 0.08 

Odds_Ratio -0.22 -0.22 0.11 

Panel_dummy -0.12 -0.09 0.16 
Addressing 
Endogeneity -0.02 -0.02 0.02 

North_America -0.28 -0.29 0.11 

Europe 0.04 0.02 0.18 

Australasia 0.09 0.10 0.09 

Direct_Lead_Measure -0.03 -0.02 0.12 

*Covariates -0.10 -0.11 0.04 

*Sample Size 0.00 0.00 0.00 
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Table VIII – Meta-analysis average estimates for the full sample and 

each subsample 

Sample averages     

Sample Mean Median SD N % < −𝟏 𝒐𝒓 > 𝟏 

Full Sample 0.11 0.12 0.06 524288 0% 

Addressing Endogeneity Sample 0.01 0.01 0.01 16384 0% 

Correlational Sample 0.28 0.27 0.10 262144 0% 

Area Sample 0.26 0.27 0.07 65536 0% 

Individual Sample 0.02 0.02 0.03 262144 0% 

Homicide Sample 0.72 0.74 0.21 8192 5% 

Violent Crime Sample 0.29 0.23 0.19 65536 0% 

Non-violent Crime Sample 0.76 0.74 0.24 65536 15% 

      

 

“Ideal” specification 

Sample Mean Median SD N % < −𝟏  𝒐𝒓  > 𝟏 

Full Sample -0.05 -0.02 0.16 524288 0% 

Addressing Endogeneity Sample -96.52 0.02 299.66 16384 13% 

Correlational Sample 0.19 0.19 0.33 262144 1% 

Area Sample 0.39 0.33 0.37 65536 6% 

Individual Sample 0.04 0.02 0.15 262144 0% 

Homicide Sample 7.70 2.15 11.41 8192 66% 

Violent Crime Sample 0.13 0.01 0.72 65536 19% 

Non-violent Crime Sample 0.63 0.43 2.37 65536 57% 

      

 

Notes. Table shows results from combining multiple meta-regression estimates, each using different 

specifications. All regressions carried out by restricted maximum likelihood. This is done for the full sample and 

subsamples. N is the number of regressions carried out, each a different specification. The mean and median 

are the summary statistics of the average effect size from these regressions, given in Partial Correlation 

Coefficients (PCCs). PCCs are bounded between -1 and 1. The last column gives the percent of PETs which fall 

outside this range. 
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Table IX – Descriptive statistics of data used for elasticity estimation 

 

Variable Mean Standard Deviation 

   

Median blood lead level for children ages 1-5 

in US 

3.39 4.42 

US Homicide rate 6.98 1.81 

 

Sources. NHANES data for blood lead and FBI uniform crime reports for the homicide data. 

 

 


