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1 Introduction
Transformative artificial intelligence (TAI) may be a key factor in the long-run trajec-
tory of civilization. A growing interdisciplinary community has begun to study how
the development of TAI can be made safe and beneficial to sentient life (Bostrom,
2014; Russell et al., 2015; OpenAI, 2018; Ortega and Maini, 2018; Dafoe, 2018). We
present a research agenda for advancing a critical component of this effort: preventing
catastrophic failures of cooperation among TAI systems. By cooperation failures we
refer to a broad class of potentially-catastrophic inefficiencies in interactions among
TAI-enabled actors. These include destructive conflict; coercion; and social dilemmas
(Kollock, 1998; Macy and Flache, 2002) which destroy value over extended periods of
time. We introduce cooperation failures at greater length in Section 1.1.

Karnofsky (2016) defines TAI as “AI that precipitates a transition comparable to
(or more significant than) the agricultural or industrial revolution”. Such systems range
from the unified, agent-like systems which are the focus of, e.g., Yudkowsky (2013) and
Bostrom (2014), to the “comprehensive AI services” envisioned by Drexler (2019), in
which humans are assisted by an array of powerful domain-specific AI tools. In our
view, the potential consequences of such technology are enough to motivate research
into mitigating risks today, despite considerable uncertainty about the timeline to TAI
(Grace et al., 2018) and nature of TAI development. Given these uncertainties, we will
often discuss “cooperation failures” in fairly abstract terms and focus on questions rel-
evant to a wide range of potential modes of interaction between AI systems. Much
of our discussion will pertain to powerful agent-like systems, with general capabili-
ties and expansive goals. But whereas the scenarios that concern much of the existing
long-term-focused AI safety research involve agent-like systems, an important feature
of catastrophic cooperation failures is that they may also occur among human actors
assisted by narrow-but-powerful AI tools.

Cooperation has long been studied in many fields: political theory, economics,
game theory, psychology, evolutionary biology, multi-agent systems, and so on. But
TAI is likely to present unprecedented challenges and opportunities arising from in-
teractions between powerful actors. The size of losses from bargaining inefficiencies
may massively increase with the capabilities of the actors involved. Moreover, features
of machine intelligence may lead to qualitative changes in the nature of multi-agent
systems. These include changes in:

1. the ability to make credible commitments;

2. the ability to self-modify (Omohundro, 2007; Everitt et al., 2016) or otherwise
create successor agents;

3. the ability to model other agents.

These changes call for the development of new conceptual tools, building on and
modifying the many relevant literatures which have studied cooperation among humans
and human societies.
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Player 2
Action 1 Action 2

Player 1 Action 1 R,R S, T

Action 2 T, S P, P

Generic symmetric game

C D

C −1,−1 −3, 0
D 0,−3 −2,−2

Prisoner’s Dilemma

C D

C 0, 0 −1, 1
D 1,−1 −10, −10

Chicken

C D

C 3, 3 0, 2

D 2, 0 1, 1

Stag Hunt

Table 1: A symmetric normal-form game (top) and three classic social dilemmas (bot-
tom).

1.1 Cooperation failure: models and examples
Many of the cooperation failures in which we are interested can be understood as mu-
tual defection in a social dilemma. Informally, a social dilemma is a game in which
everyone is better off if everyone cooperates, yet individual rationality may lead to
defection. Formally, following Macy and Flache (2002), we will say that a two-player
normal-form game with payoffs denoted as in Table 1 is a social dilemma if the payoffs
satisfy these criteria:

• R > P (Mutual cooperation is better than mutual defection);

• R > S (Mutual cooperation is better than cooperating while your counterpart
defects);

• 2R > T + S (Mutual cooperation is better than randomizing between coopera-
tion and defection);

• For quantities greed = T −R and fear = P − S, the payoffs satisfy greed > 0
or fear > 0.

Nash equilibrium (i.e., a choice of strategy by each player such that no player can
benefit from unilaterally deviating) has been used to analyze failures of cooperation in
social dilemmas. In the Prisoner’s Dilemma (PD), the unique Nash equilibrium is mu-
tual defection. In Stag Hunt, there is a cooperative equilibrium which requires agents
to coordinate, and a defecting equilibrium which does not. In Chicken, there are two
pure-strategy Nash equilibria (Player 1 playsD while Player 2 plays C, and vice versa)
as well as an equilibrium in which players independently randomize between C andD.
The mixed strategy equilibrium or uncoordinated equilibrium selection may therefore
result in a crash (i.e., mutual defection).

Social dilemmas have been used to model cooperation failures in international pol-
itics; Snyder (1971) reviews applications of PD and Chicken, and Jervis (1978) dis-
cusses each of the classic social dilemmas in his influential treatment of the security

3



dilemma1 Among the most prominent examples is the model of arms races as a PD:
both players build up arms (defect) despite the fact that disarmament (cooperation) is
mutually beneficial, as neither wants to be the party who disarms while their counter-
part builds up. Social dilemmas have likewise been applied to a number of collective
action problems, such as use of a common resource (cf. the famous “tragedy of the
commons” (Hardin, 1968; Perolat et al., 2017)) and pollution. See Dawes (1980) for a
review focusing on such cases.

Many interactions are not adequately modeled by simple games like those in Table
1. For instance, states facing the prospect of military conflict have incomplete informa-
tion. That is, each party has private information about the costs and benefits of conflict,
their military strength, and so on. They also have the opportunity to negotiate over
extended periods; to monitor one another’s activities to some extent; and so on. The
literature on bargaining models of war (or “crisis bargaining”) is a source of more com-
plex analyses (e.g., Powell 2002; Kydd 2003; Powell 2006; Smith and Stam 2004; Fey
and Ramsay 2007, 2011; Kydd 2010). In a classic article from this literature, Fearon
(1995) defends three now-standard hypotheses as the most plausible explanations for
why rational agents would go to war:

• Credibility: The agents cannot credibly commit to the terms of a peaceful set-
tlement. In particular, consider cases where the agents anticipate a swing in the
balance of power. In some such cases, the agents who will lose power cannot
credibly commit not to take preemptive action, because both parties foresee that
they prefer fighting to the default course where they lose power;

• Incomplete information: The agents have differing private information related to
their chances of winning a conflict, and incentives to misrepresent that informa-
tion (see Sanchez-Pages (2012) for a review of the literature on bargaining and
conflict under incomplete information);

• Indivisible stakes: Conflict cannot be resolved by dividing the stakes, side pay-
ments, etc.

Another example of potentially disastrous cooperation failure is extortion (and
other compellent threats), and the execution of such threats by powerful agents. In addi-
tion to threats being harmful to their target, the execution of threats seems to constitute
an inefficiency: much like going to war, threateners face the direct costs of causing
harm, and in some cases, risks from retaliation or legal action.

The literature on crisis bargaining between rational agents may also help us to un-
derstand the circumstances under which compellent threats are made and carried out,
and point to mechanisms for avoiding these scenarios.

Countering the hypothesis that war between rational agents A and B can occur as
a result of indivisible stakes (for example a territory), Powell (2006, p. 178) presents
a case similar to that in Example 1.0.1, which shows that allocating the full stakes to
each agent according to their probabilities of winning a war Pareto-dominates fighting.

1The security dilemma refers to a situation in which actions taken by one state to improve their security
(e.g., increasing their military capabilities) leads other states to act similarly. This leads to an increase in
tensions which all parties would prefer to avoid.
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Surrender Fight
Surrender 0, 0 0, d

Fight d, 0 pd− c, (1− p)d− c
Conflict

Surrender Simulated fight
Surrender 0, 0 0, d

Simulated fight d, 0 pd, (1− p)d
Simulated conflict

Table 2: Allocating indivisible stakes with conflict (top) and simulated conflict (bot-
tom).

Example 1.0.1 (Simulated conflict). Consider two countries disputing a territory which
has value d for each of them. Suppose that the row country has probability p of winning
a conflict, and conflict costs c > 0 for each country, so that their payoffs for Surren-
dering and Fighting are as in the top matrix in Table 2. However, suppose the countries
agree on the probability p that the row players win; perhaps they have access to a mu-
tually trusted war-simulator which has row player winning in 100p% of simulations.
Then, instead of engaging in real conflict, they could allocate the territory based on a
draw from the simulator. Playing this game is preferable, as it saves each country the
cost c of actual conflict.

If players could commit to the terms of peaceful settlements and truthfully disclose
private information necessary for the construction of a settlement (for instance, infor-
mation pertaining to the outcome probability p in Example 1.0.1), the allocation of
indivisible stakes could often be accomplished. Thus, the most plausible of Fearon’s
rationalist explanations for war seem to be (1) the difficulty of credible commitment
and (2) incomplete information (and incentives to misrepresent that information). Sec-
tion 3 concerns discussion of credibility in TAI systems. In Section 4 we discuss several
issues related to the resolution of conflict under incomplete information.

Lastly, while game theory provides a powerful framework for modeling cooperation
failure, TAI systems or their operators will not necessarily be well-modeled as rational
agents. For example, systems involving humans in the loop, or black-box TAI agents
trained by evolutionary methods, may be governed by a complex network of decision-
making heuristics not easily captured in a utility function. We discuss research direc-
tions that are particularly relevant to cooperation failures among these kinds of agents
in Sections 5.2 (Multi-agent training) and 6 (Humans in the loop).

1.2 Outline of the agenda
We list the sections of the agenda below. Different sections may appeal to readers from
different backgrounds. For instance, Section 5 (Contemporary AI architectures) may
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be most interesting to those with some interest in machine learning, whereas Section
7 (Foundations of rational agency) will be more relevant to readers with an interest in
formal epistemology or the philosophical foundations of decision theory. Tags after the
description of each section indicate the fields most relevant to that section.

Some sections contain Examples illustrating technical points, or explaining in greater
detail a possible research direction.

• Section 2: AI strategy and governance. The nature of losses from cooperation
failures will depend on the strategic landscape at the time TAI is deployed. This
includes, for instance, the extent to which the landscape is uni- or multipolar
(Bostrom, 2014) and the balance between offensive and defensive capabilities
(Garfinkel and Dafoe, 2019). Like others with an interest in shaping TAI for the
better, we want to understand this landscape, especially insofar as it can help
us to identify levers for preventing catastrophic cooperation failures. Given that
much of our agenda consists of theoretical research, an important question for
us to answer is whether and how such research translates into the governance of
TAI.
Public policy; International relations; Game theory; Artificial intelligence

• Section 3: Credibility. Credibility — for instance, the credibility of commit-
ments to honor the terms of settlements, or to carry out threats — is a crucial
feature of strategic interaction. Changes in agents’ ability to self-modify (or cre-
ate successor agents) and to verify aspects of one another’s internal workings are
likely to change the nature of credible commitments. These anticipated develop-
ments call for the application of existing decision and game theory to new kinds
of agents, and the development of new theory (such as that of program equilib-
rium (Tennenholtz, 2004)) that better accounts for relevant features of machine
intelligence.
Game theory; Behavioral economics; Artificial intelligence

• Section 4: Peaceful bargaining mechanisms. Call a peaceful bargaining mech-
anism a a set of strategies for each player that does not lead to destructive conflict,
and which each agent prefers to playing a strategy which does lead to destructive
conflict. In this section, we discuss several possible such strategies and problems
which need to be addressed in order to ensure that they are implemented. These
strategies include bargaining strategies taken from or inspired by the existing lit-
erature on rational crisis bargaining (see Section 1.1), as well as a little-discussed
proposal for deflecting compellent threats which we call surrogate goals (Bau-
mann, 2017, 2018).
Game theory; International relations; Artificial intelligence

• Section 5: Contemporary AI architectures. Multi-agent artificial intelligence
is not a new field of study, and cooperation is of increasing interest to ma-
chine learning researchers (Leibo et al., 2017; Foerster et al., 2018; Lerer and
Peysakhovich, 2017; Hughes et al., 2018; Wang et al., 2018). But there remain
unexplored avenues for understanding cooperation failures using existing tools
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for artificial intelligence and machine learning. These include the implementa-
tion of approaches to improving cooperation which make better use of agents’
potential transparency to one another; the implications of various multi-agent
training regimes for the behavior of AI systems in multi-agent settings; and anal-
ysis of the decision-making procedures implicitly implemented by various rein-
forcement learning algorithms;.
Machine learning; Game theory

• Section 6: Humans in the loop. Several TAI scenarios and proposals involve a
human in the loop, either in the form of a human-controlled AI tool, or an AI
agent which seeks to adhere to the preferences of human overseers. These in-
clude Christiano (2018c)’s iterated distillation and amplification (IDA; see Cotra
2018 for an accessible introduction), Drexler (2019)’s comprehensive AI ser-
vices, and the reward modeling approach of Leike et al. (2018). We would like a
better understanding of behavioral game theory, targeted at improving coopera-
tion in TAI landscapes involving human-in-the-loop systems. We are particularly
interested in advancing the study of the behavioral game theory of interactions
between humans and AIs.
Machine learning; Behavioral economics

• Section 7: Foundations of rational agency. The prospect of TAI foregrounds
several unresolved issues in the foundations of rational agency. While the list
of open problems in decision theory, game theory, formal epistemology, and the
foundations of artificial intelligence is long, our focus includes decision theory
for computationally bounded agents; and prospects for the rationality and fea-
sibility of various kinds of decision-making in which agents take into account
non-causal dependences between their actions and their outcomes.
Formal epistemology; Philosophical decision theory; Artificial intelligence
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2 AI strategy and governance2

We would like to better understand the ways the strategic landscape among key ac-
tors (states, AI labs, and other non-state actors) might look at the time TAI systems
are deployed, and to identify levers for shifting this landscape towards widely benefi-
cial outcomes. Our interests here overlap with Dafoe (2018)’s AI governance research
agenda (see especially the “Technical Landscape” section), though we are most con-
cerned with questions relevant to risks associated with cooperation failures.

2.1 Polarity and transition scenarios
From the perspective of reducing risks from cooperation failures, it is prima facie
preferable if the transition to TAI results in a unipolar rather than a distributed out-
come: The greater the chances of a single dominant actor, the lower the chances of
conflict (at least after that actor has achieved dominance). But the analysis is likely
not so simple, if the international relations literature on the relative safety of differ-
ent power distributions (e.g., Deutsch and Singer 1964; Waltz 1964; Christensen and
Snyder 1990) is any indication. We are therefore especially interested in a more fine-
grained analysis of possible developments in the balance of power. In particular, we
would like to understand the likelihood of the various scenarios, their relative safety
with respect to catastropic risk, and the tractability of policy interventions to steer to-
wards safer distributions of TAI-related power. Relevant questions include:

• One might expect rapid jumps in AI capabilities, rather than gradual progress, to
make unipolar outcomes more likely. Should we expect rapid jumps in capabili-
ties or are the capability gains likely to remain gradual (AI Impacts, 2018)?

• Which distributions of power are, all things considered, least at risk of catas-
trophic failures of cooperation?

• Suppose we had good reason to believe we ought to promote more uni- (or multi-
) polar outcomes. What are the best policy levers for increasing the concentration
(or spread) of AI capabilities, without severe downsides (such as contributing to
arms-race dynamics)?

2.2 Commitment and transparency3

2Notes by Lukas Gloor contributed substantially to the content of this section.
3We refer the reader to Garfinkel (2018)’s review of recent developments in cryptography and their pos-

sible long-term consequences. The sections of Garfinkel (2018) particularly relevant to issues concerning
the transparency of TAI systems and implications for cooperation are sections 3.3 (non-intrusive agreement
verification), 3.5 (collective action problems), 4 (limitations and skeptical views on implications of crypto-
graphic technology), and the appendix (relevance of progress in artificial intelligence). See also Kroll et al.
(2016)’s review of potential applications of computer science tools, including software verification, crypto-
praphic commitments, and zero-knowledge proofs, to the accountability of algorithmic decisions. Regarding
the problem of ensuring that automated decision systems are “accountable and governable”, they write: “We
challenge the dominant position in the legal literature that transparency will solve these problems. Disclo-
sure of source code is often neither necessary (because of alternative techniques from computer science) nor
sufficient (because of the issues of analyzing code) to demonstrate the fairness of a process.
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Agents’ ability to make credible commitments is a critical aspect of multi-agent sys-
tems. Section 3 is dedicated to technical questions around credibility, but it is also
important to consider the strategic implications of credibility and commitment.

One concerning dynamic which may arise between TAI systems is commitment
races (Kokotajlo, 2019a). In the game of Chicken (Table 1), both players have reason
to commit to driving ahead as soon as possible, by conspicuously throwing out their
steering wheels. Likewise, AI agents (or their human overseers) may want to make
certain commitments (for instance, commitments to carry through with a threat if their
demands aren’t met) as soon as possible, in order to improve their bargaining posi-
tions. As with Chicken, this is a dangerous situation. Thus we would like to explore
possibilities for curtailing such dynamics.

• At least in some cases, greater transparency seems to limit possibilities for agents
to make dangerous simultaneous commitments. For instance, if one country is
carefully monitoring another, they are likely to detect efforts to build doomsday
devices with which they can make credible commitments. On the other hand,
transparency seems to promote the ability to make dangerous commitments: I
have less reason to throw out my steering wheel if you can’t see me do it. Under
what circumstances does mutual transparency or exacerbate commitment race
dynamics, and how can this be used to design safer AI governance regimes?

• What policies can make the success of greater transparency between TAI systems
more likely (to the extent that this is desirable)? Are there path dependencies
which must be addressed early on in the engineering of TAI systems so that
open-source interactions are feasible?

Finally, in human societies, improvements in the ability to make credible commit-
ments (e.g., to sign contracts enforceable by law) seem to have facilitated large gains
from trade through more effective coordination, longer-term cooperation, and various
other mechanisms (e.g., Knack and Keefer 1995; North 1991; Greif et al. 1994; Dixit
2003).

• Which features of increased credibility promote good outcomes? For instance,
laws typically don’t allow a threatener to publicly request they be locked up if
they don’t carry out their threat. How much would societal outcomes change
given indiscriminate ability to make credible commitments? Have there been
situations where laws and norms around what one can commit to were different
from what we see now, and what were the consequences?

• How have past technological advancements changed bargaining between human
actors? (Nuclear weapons are one obvious example of a technological advance-
ment which considerably changed the bargaining dynamics between powerful
actors.)

• Open-source game theory, described in Section 3.2, is concerned with an ideal-
ized form of mutual auditing. What do historical cases tell us about the factors
for the success of mutual auditing schemes? For instance, the Treaty on Open
Skies, in which members states agreed to allow unmanned overflights in order to
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monitor their military activities (Britting and Spitzer, 2002), is a notable exam-
ple of such a scheme. See also the literature on “confidence-building” measures
in international security, e.g., Landau and Landau (1997) and references therein.

• What are the main costs from increased commitment ability?

2.3 AI misalignment scenarios
Christiano (2018a) defines “the alignment problem” as “the problem of building pow-
erful AI systems that are aligned with their operators”. Related problems, as discussed
by Bostrom (2014), include the “value loading” (or “value alignment”) problem (the
problem of ensuring that AI systems have goals compatible with the goals of humans),
and the “control problem” (the general problem of controlling a powerful AI agent).
Despite the recent surge in attention on AI risk, there are few detailed descriptions of
what a future with misaligned AI systems might look like (but see Sotala 2018; Chris-
tiano 2019; Dai 2019 for examples). Better models of the ways in which misaligned AI
systems could arise and how they might behave are important for our understanding of
critical interactions among powerful actors in the future.

• Is AI misalignment more likely to constitute a “near-miss” with respect to human
values, or extreme departures from human goals (cf. Bostrom (2003)’s “paperclip
maximizer”)?

• Should we expect human-aligned AI systems be able to cooperate with mis-
aligned systems (cf. Shulman (2010))?

• What is the likelihood that outright-misaligned AI agents will be deployed along-
side aligned systems, versus the likelihood that aligned systems eventually be-
come misaligned by failing to preserve their original goals? (cf. discussion of
“goal preservation” (Omohundro, 2008).)

• What does the landscape of possible cooperation failures look like in each of the
above scenarios?

2.4 Other directions
According to the offense-defense theory, the likelihood and nature of conflict depend on
the relative efficacy of offensive and defensive security strategies (Jervis, 2017, 1978;
Glaser, 1997). Technological progress seems to have been a critical driver of shifts in
the offense-defense balance (Garfinkel and Dafoe, 2019), and the advent of powerful
AI systems in strategic domains like computer security or military technology could
lead to shifts in that balance.

• To better understand the strategy landscape at the time of AI deployment, we
would like to be able to predict technology-induced changes in the offense-
defense balance and how they might affect the nature of conflict. One area of
interest, for instance, is cybersecurity (e.g., whether leading developers of TAI
systems would be able to protect against cyberattacks; cf. Zabel and Muehlhauser
2019).
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Besides forecasting future dynamics, we are curious as to what lessons can be
drawn from case studies of cooperation failures, and policies which have mitigated
or exacerbated such risks. For example: Cooperation failures among powerful agents
representing human values may be particularly costly when threats are involved. Ex-
amples of possible case studies include nuclear deterrence, ransomware (Gazet, 2010)
and its implications for computer security, the economics of hostage-taking (Atkin-
son et al., 1987; Shortland and Roberts, 2019), and extortion rackets (Superti, 2009).
Such case studies might investigate costs to the threateners, gains for the threateners,
damages to third parties, factors that make agents more or less vulnerable to threats,
existing efforts to combat extortionists, etc. While it is unclear how informative such
case studies will be about interactions between TAI systems, they may be particularly
relevant in humans-in-the-loop scenarios (Section 6).

Lastly, in addition to case studies of cooperation failures themselves, it would be
helpful for the prioritization of the research directions presented in this agenda to study
how other instances of formal research have influenced (or failed to influence) critical
real-world decisions. Particularly relevant examples include the application of game
theory to geopolitics (see Weintraub (2017) for a review of game theory and decision-
making in the Cold War); cryptography to computer security, and formal verification
in the verification of software programs.

2.5 Potential downsides of research on cooperation failures
The remainder of this agenda largely concerns technical questions related to interac-
tions involving TAI-enabled systems. A key strategic question running throughout is:
What are the potential downsides to increased technical understanding in these areas?
It is possible, for instance, that technical and strategic insights related to credible com-
mitment increase rather than decrease the efficacy and likelihood of compellent threats.
Moreover, the naive application of idealized models of rationality may do more harm
than good; it has been argued that this was the case in some applications of formal
methods to Cold War strategy, for instance Kaplan (1991). Thus the exploration of the
dangers and limitations of technical and strategic progress is itself a critical research
direction.
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Figure 1: At time 1, Threatener decides to make a threat or not. If a threat is made,
Target at time 2 decides to give in or not. If they don’t give in, Threatener decides to
carry out the threat or not, determining the players’ payoffs. Target may reason that
Threatener will not carry out the threat if Target doesn’t give in, because it is costly for
Threatener to do so and cannot affect Target’s choice. Therefore, Target won’t give in.
This is the informal reasoning behind SPE.

3 Credibility
Credibility is a central issue in strategic interaction. By credibility, we refer to the issue
of whether one agent has reason to believe that another will do what they say they
will do. Credibility (or lack thereof) plays a crucial role in the efficacy of contracts
(Fehr et al., 1997; Bohnet et al., 2001), negotiated settlements for avoiding destructive
conflict (Powell, 2006), and commitments to carry out (or refuse to give in to) threats
(e.g., Kilgour and Zagare 1991; Konrad and Skaperdas 1997).

In game theory, the fact that Nash equilibria (Section 1.1) sometimes involve non-
credible threats motivates a refined solution concept called subgame perfect equilib-
rium (SPE). An SPE is a Nash equilibrium of an extensive-form game in which a Nash
equilibrium is also played at each subgame. In the threat game depicted in Figure 1,
“carry out” is not played in a SPE, because the threatener has no reason to carry out the
threat once the threatened party has refused to give in; that is, “carry out” isn’t a Nash
equilibrium of the subgame played after the threatened party refuses to give in. So in
an SPE-based analysis of one-shot threat situations between rational agents, threats are
never carried out because they are not credible (i.e., they violate subgame perfection).

However, agents may establish credibility in the case of repeated interactions by
repeatedly making good on their claims (Sobel, 1985). Secondly, despite the fact that
carrying out a threat in the one-shot threat game violates subgame perfection, it is
a well-known result from behavioral game theory that humans typically refuse unfair
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splits in the Ultimatum Game 4 (Güth et al., 1982; Henrich et al., 2006), which is equiv-
alent to carrying out the threat in the one-shot threat game. So executing commitments
which are irrational (by the SPE criterion) may still be a feature of human-in-the-loop
systems (Section 6), or perhaps systems which have some humanlike game-theoretic
heuristics in virtue of being trained in multi-agent environments (Section 5.2). Lastly,
threats may become credible if the threatener has credibly committed to carrying out
the threat (in the case of the game in 1, this means convincing the opponent that they
have removed the option (or made it costly) to “Not carry out”). There is a consid-
erable game-theoretic literature on credible commitment, both on how credibility can
be achieved (Schelling, 1960) and on the analysis of games under the assumption that
credible commitment is possible (Von Stackelberg, 2010; Nash, 1953; Muthoo, 1996;
Bagwell, 1995).

3.1 Commitment capabilities
It is possible that TAI systems may be relatively transparent to one another; capable of
self-modifying or constructing sophisticated commitment devices; and making various
other “computer-mediated contracts” (Varian, 2010); see also the lengthy discussions
in Garfinkel (2018) and Kroll et al. (2016), discussed in Footnote 3, of potential impli-
cations of cryptographic technology for credibility. We want to understand how plausi-
ble changes in the ability to make credible commitments affect risks from cooperation
failures.

• In what ways does artificial intelligence make credibility more difficult, rather
than less so? For instance, AIs lack evolutionarily established mechanisms (like
credible signs of anger; Hirshleifer 1987) for signaling their intentions to other
agents.

• The credibility of an agent’s stated commitments likely depends on how inter-
pretable5 that agent is to others. What are the possible ways in which inter-
pretability may develop, and how does this affect the propensity to make commit-
ments? For instance, in trajectories where AI agents are increasingly opaque to
their overseers, will these agents be motivated to make commitments while they
are still interpretable enough to overseers that these commitments are credible?

• In the case of training regimes involving the imitation of human exemplars (see
Section 6), can humans also make credible commitments on behalf of the AI
system which is imitating them?

3.2 Open-source game theory
Tennenholtz (2004) introduced program games, in which players submit programs that

4The Ultimatum Game is the 2-player game in which Player 1 proposes a split (pX, (1 − p)X) of an
amount of money X , and Player 2 accepts or rejects the split. If they accept, both players get the proposed
amount, whereas if they reject, neither player gets anything. The unique SPE of this game is for Player 1 to
propose as little as possible, and for Player 2 to accept the offer.

5See Lipton (2016); Doshi-Velez and Kim (2017) for recent discussions of interpretability in machine
learning.
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have access to the source codes of their counterparts. Program games provide a model
of interaction under mutual transparency. Tennenholtz showed that in the Prisoner’s
Dilemma, both players submitting Algorithm 1 is a program equilibrium (that is, a
Nash equilibrium of the corresponding program game). Thus agents may have incentive
to participate in program games, as these promote more cooperative outcomes than the
corresponding non-program games. For these reasons, program games may be helpful

Algorithm 1: Tennenholtz (2004)’s construction of a program equilibrium of
the one-shot Prisoner’s Dilemma. The program cooperates if its counterpart’s
program’s source code is identical to its own (and thus both players cooper-
ate), and defects otherwise.

Input: Program source codes s1, s2
if s1 = s2 then

return Cooperate
end
else

return Defect
end

to our understanding of interactions among advanced AIs.
Other models of strategic interaction between agents who are transparent to one

another have been studied (more on this in Section 5); following Critch (2019), we
will call this broader area open-source game theory. Game theory with source-code
transparency has been studied by Fortnow 2009; Halpern and Pass 2018; LaVictoire
et al. 2014; Critch 2019; Oesterheld 2019, and models of multi-agent learning under
transparency are given by Brafman and Tennenholtz (2003); Foerster et al. (2018). But
open-source game theory is in its infancy and many challenges remain6.

• The study of program games has, for the most part, focused on the simple set-
ting of two-player, one-shot games. How can (cooperative) program equilibrium
strategies be automatically constructed in general settings?

• Under what circumstances would agents be incentivized to enter into open-source
interactions?

• How can program equilibrium be made to promote more efficient outcomes even
in cases of incomplete access to counterparts’ source codes?

– As a toy example, consider two robots playing a single-shot program pris-
oner’s dilemma, in which their respective moves are indicated by a simul-
taneous button press. In the absence of verification that the output of the
source code actually causes the agent to press the button, it is possible that
the output of the program does not match the actual physical action taken.
What are the prospects for closing such “credibility gaps”? The literature

6See also Section 5.1 for discussion of open-source game theory in the context of contemporary machine
learning, and Section 2 for policy considerations surrounding the implementation of open-source interaction.
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on (physical) zero-knowledge proofs (Fisch et al., 2014; Glaser et al., 2014)
may be helpful here.

– See also the discussion in Section 5.1 on multi-agent learning under varying
degrees of transparency.
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4 Peaceful bargaining mechanisms
In other sections of the agenda, we have proposed research directions for improving our
general understanding of cooperation and conflict among TAI systems. In this section,
on the other hand, we consider several families of strategies designed to actually avoid
catastrophic cooperation failure. The idea of such “peaceful bargaining mechanisms”
is, roughly speaking, to find strategies which are 1) peaceful (i.e., avoid conflict) and
2) preferred by rational agents to non-peaceful strategies7.

We are not confident that peaceful bargaining mechanisms will be used by de-
fault. First, in human-in-the-loop scenarios, the bargaining behavior of TAI systems
may be dictated by human overseers, who we do not expect to systematically use ra-
tional bargaining strategies (Section 6.1). Even in systems whose decision-making is
more independent of humans’, evolution-like training methods could give rise to non-
rational human-like bargaining heuristics (Section 5.2). Even among rational agents,
because there may be many cooperative equilibria, additional mechanisms for ensuring
coordination may be necessary to avoid conflict arising from the selection of different
equilibria (see Example 4.1.1). Finally, the examples in this section suggest that there
may be path-dependencies in the engineering of TAI systems (for instance, in making
certain aspects of TAI systems more transparent to their counterparts) which determine
the extent to which peaceful bargaining mechanisms are available.

In the first subsection, we present some directions for identifying mechanisms
which could implement peaceful settlements, drawing largely on existing ideas in the
literatures on rational bargaining. In the second subsection we sketch a proposal for
how agents might mitigate downsides from threats by effectively modifying their util-
ity function. This proposal is called surrogate goals.

4.1 Rational crisis bargaining
As discussed in Section 1.1, there are two standard explanations for war among ratio-
nal agents: credibility (the agents cannot credibly commit to the terms of a peaceful
settlement) and incomplete information (the agents have differing private information
which makes each of them optimistic about their prospects of winning, and incentives
not to disclose or to misrepresent this information).

Fey and Ramsay (2011) model crisis bargaining under incomplete information.
They show that in 2-player crisis bargaining games with voluntary agreements (players
are able to reject a proposed settlement if they think they will be better off going to
war); mutually known costs of war; unknown types θ1, θ2 measuring the players’ mil-
itary strength; a commonly known function p(θ1, θ2) giving the probability of player
1 winning when the true types are θ1, θ2; and a common prior over types; a peaceful
settlement exists if and only if the costs of war are sufficiently large. Such a settlement
must compensate each player’s strongest possible type by the amount they expect to
gain in war.

Potential problems facing the resolution of conflict in such cases include:

7More precisely, we borrow the term "peaceful bargaining mechanisms” from Fey and Ramsay (2011),
for whom a "peaceful mechanism” is a mapping from each player’s type to a payoff such that the probability
of war is 0 for every set of types
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• Reliance on common prior µ and agreed-upon win probability model p(θ1, θ2).
If players disagree on these quantities it is not clear how bargaining will proceed.
How can players come to an agreement on these quantities, without generating a
regress of bargaining problems? One possibility is to defer to a mutually trusted
party to estimate these quantities from publicly observed data. This raises its own
questions. For example, what conditions must a third party satisfy so that their
judgements are trusted by each player? (Cf. Kydd (2003), Rauchhaus (2006),
and sources therein on mediation.)

• The exact costs of conflict to each player ci are likely to be private information,
as well. The assumption of a common prior, or the ability to agree upon a prior,
may be particularly unrealistic in the case of costs.

Recall that another form of cooperation failure is the simultaneous commitment
to strategies which lead to catastrophic threats being carried out (Section 2.2). Such
“commitment games” may be modeled as a game of Chicken (Table 1), where Defec-
tion corresponds to making commitments to carry out a threat if one’s demands are not
met, while Cooperation corresponds to not making such commitments. Thus we are in-
terested in bargaining strategies which avoid mutual Defection in commitment games.
Such a strategy is sketched in Example 4.0.1.

Example 4.0.1 (Careful commitments). Consider two agents with access to commit-
ment devices. Each may decide to commit to carrying out a threat if their counterpart
does not forfeit some prize (of value 1 to each party). As before, call this decision D.
However, they may instead commit to carrying out their threat only if their counterpart
does not agree to a certain split of the prize (say, a split in which Player 1 gets p). Call
this commitment Cp, for “cooperating with split p”.

When would an agent prefer to make the more sophisticated commitment Cp? In
order to say whether an agent expects to do better by making Cp, we need to be able to
say how well they expect to do in the “original” commitment game where their choice is
betweenD andC. This is not straightforward, as Chicken admits three Nash equilibria.
However, it may be reasonable to regard the players’ expected values under mixed
strategy Nash equilibrium as the values they expect from playing this game. Thus, split
p could be chosen such that p and 1 − p exceed player 1 and 2’s respective expected
payoffs under the mixed strategy Nash equilibrium. Many such splits may exist. This
calls for the selection among p, for which we may turn to a bargaining solution concept
such as Nash (Nash, 1950) or Kalai-Smorokindsky (Kalai et al., 1975). If each player
uses the same bargaining solution, then each will prefer to committing to honoring the
resulting split of the prize to playing the original threat game, and carried-out threats
will be avoided.

Of course, this mechanism is brittle in that it relies on a single take-it-or-leave-
it proposal which will fail if the agents use different bargaining solutions, or have
slightly different estimates of each players’ payoffs. However, this could be gener-
alized to a commitment to a more complex and robust bargaining procedure, such as
an alternating-offers procedure (Rubinstein 1982; Binmore et al. 1986; see Muthoo
(1996) for a thorough review of such models) or the sequential cooperative bargaining
procedure of Van Damme (1986).
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Finally, note that in the case where there is uncertainty over whether each player has
a commitment device, sufficiently high stakes will mean that players with commitment
devices will still have Chicken-like payoffs. So this model can be straightforwardly
extended to cases of where the credibility of a threat comes in degrees. An example of
a simple bargaining procedure to commit to is Bayesian version of the Nash bargaining
solution (Harsanyi and Selten, 1972).

Lastly, see Kydd (2010)’s review of potential applications of the literature rational
crisis bargaining to resolving real-world conflict.

4.2 Surrogate goals8

In this section we introduce surrogate goals, a recent9 proposal for limiting the down-
sides from cooperation failures (Baumann, 2017, 2018)10 . We will focus on the phe-
nomenon of coercive threats (for game-theoretic discussion see Ellsberg (1968); Har-
renstein et al. (2007)), though the technique is more general. The proposal is: In order
to deflect threats against the things it terminally values, an agent adopts a new (surro-
gate) goal11. This goal may still be threatened, but threats carried out against this goal
are benign. Furthermore, the surrogate goal is chosen such that it incentives at most
marginally more threats.

In Example 4.0.2, we give an example of an operationalization of surrogate goals
in a threat game.

Example 4.0.2 (Surrogate goals via representatives). Consider the game between Threat-
ener and Target, where Threatener makes a demand of Target, such as giving up some
resource. Threatener can — at some cost — commit to carrying out a threat against
Target . Target can likewise commit to give in to such threats or not. A simple model of
this game is given in the payoff matrix in Table 3 (a normal-form variant of the threat
game discussed in Section 312).

Unfortunately, players may sometimes play (Threaten, Not give in). For example,
this may be due to uncoordinated selection among the two pure-strategy Nash equilibria
((Give in, Threaten) and (Not give in, Not threaten)).

But suppose that, in the above scenario, Target is capable of certain kinds of credi-
ble commitments, or otherwise is represented by an agent, Target’s Representative, who
is. Then Target or Target’s Representative may modify its goal architecture to adopt a
surrogate goal whose fulfillment is not actually valuable to that player, and which is

8This subsection is based on notes by Caspar Oesterheld.
9Although, the idea of modifying preferences in order to get better outcomes for each player was dis-

cussed by Raub (1990) under the name “preference adaptation”, who applied it to the promotion of cooper-
ation in the one-shot Prisoner’s Dilemma.

10See also the discussion of surrogate goals and related mechanisms in Christiano and Wiblin (2019).
11Modifications of an agent’s utility function have been discussed in other contexts. Omohundro (2008)

argues that “AIs will try to preserve their utility functions” and “AIs will try to prevent counterfeit utility”.
Everitt et al. (2016) present a formal model of a reinforcement learning agent who is able to modify its utility
function, and study conditions under which agents self-modify.

12Note that the normal form representation in Table 3 is over-simplifying; it assumes the credibility of
threats, which we saw in Section 3 to be problematic. For simplicity of exposition, we will nevertheless focus
on this normal-form game in this section.
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Threatener
Threaten true goal Not threaten

Target Give in −5, 5 0, 0

Not give in −10,−2 0, 0

Table 3: Payoff matrix for original threat game in normal form. Target payoffs are in
blue for easy comparison with the surrogate game (Table 4).

Threatener
Threaten true goal Threaten surrogate goal Not threaten

Target Give in −5,−5, 5 −5,−5, 5 0, 0, 0

Not give in −10,−10,−2 0,−10,−1.9 0, 0, 0

Table 4: Payoff matrix for threat game with surrogate goals in normal form. Payoffs for
Target are in blue, while Target representative and Threatener payoffs are in black.

slightly cheaper for Threatener to threaten. (More generally, Target could modify itself
to commit to acting as if it had a surrogate goal in threat situations.) If this modification
is credible, then it is rational for Threatener to threaten the surrogate goal, obviating
the risk of threats against Target’s true goals being carried out.

As a first pass at a formal analysis: Adopting an additional threatenable goal adds a
column to the payoff matrix, as in Table 4. And this column weakly dominates the old
threat column (i.e., the threat against Target’s true goals). So a rational player would
never threaten Target’s true goal. Target does not themselves care about the new type
of threats being carried out, so for her, the utilities are given by the blue numbers in
Table 4.

This application of surrogate goals, in which a threat game is already underway
but players have the opportunity to self-modify or create representatives with surrogate
goals, is only one possibility. Another is to consider the adoption of a surrogate goal as
the choice of an agent (before it encounters any threat) to commit to acting according
to a new utility function, rather than the one which represents their true goals. This
could be modeled, for instance, as an extensive-form game of incomplete information
in which the agent decides which utility function to commit to by reasoning about
(among other things) what sorts of threats having the utility function might provoke.
Such models have a signaling game component, as the player must successfully signal
to distrustful counterparts that it will actually act according to the surrogate utility
function when threatened. The game-theoretic literature on signaling (Kreps and Sobel,
1994) and the literature on inferring preferences in multi-agent settings (Yu et al., 2019;
Lin et al., 2019) may suggest useful models. The implementation of surrogate goals
faces a number of obstacles. Some problems and questions include:

• The surrogate goal must be credible, i.e., threateners must believe that the agent
will act consistently with the stated surrogate goal. TAI systems are unlikely to
have easily-identifiable goals, and so must signal their goals to others through
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their actions. This raises questions both of how to signal so that the surrogate
goal is at all credible, and how to signal in a way that doesn’t interfere too much
with the agent’s true goals. One possibility in the context of Example 4.0.2 is
the use of zero-knowledge proofs (Goldwasser et al., 1989; Goldreich and Oren,
1994) to reveal the Target’s surrogate goal (but not how they will actually respond
to a threat) to the Threatener.

• How does an agent come to adopt an appropriate surrogate goal, practically
speaking? For instance, how can advanced ML agents be trained to reason cor-
rectly about the choice of surrogate goal?

• The reasoning which leads to the adoption of a surrogate goal might in fact lead
to iterated surrogate goals. That is, after having adopted a surrogate goal, Target
may adopt a surrogate goal to protect that surrogate goal, and so on. Given that
Threatener must be incentivized to threaten a newly adopted surrogate goal rather
than the previous goal, this may result in Target giving up much more of its
resources than it would if only the initial surrogate goal were threatened.

• How do surrogate goals interact with open-source game theory (Sections 3.2 and
5.1)? For instance, do open source interactions automatically lead to the use of
surrogate goals in some circumstances?

• In order to deflect threats against the original goal, the adoption of a surrogate
goal must lead to a similar distribution of outcomes as the original threat game
(modulo the need to be slightly cheaper to threaten). Informally, Target should
expect Target’s Representative to have the same propensity to give in as Target;
how this is made precise depends on the details of the formal surrogate goals
model.

A crucial step in the investigation of surrogate goals is the development of appropriate
theoretical models. This will help to gain traction on the problems listed above.
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5 Contemporary AI architectures
Although the architectures of TAI systems will likely be quite different to existing
ones, it may still be possible to gain some understanding of cooperation failures among
such systems using contemporary tools13. First, it is plausible that some aspects of
contemporary deep learning methods will persist in TAI systems, making experiments
done today directly relevant. Second, even if this is not the case, such research may still
help by laying the groundwork for the study of cooperation failures in more advanced
systems.

5.1 Learning to solve social dilemmas
As mentioned above, some attention has recently been devoted to social dilemmas
among deep reinforcement learners (Leibo et al., 2017; Peysakhovich and Lerer, 2017;
Lerer and Peysakhovich, 2017; Foerster et al., 2018; Wang et al., 2018). However, a
fully general, scalable but theoretically principled approach to achieving cooperation
among deep reinforcement learning agents is lacking. In Example 5.0.1 we sketch a
general approach to cooperation in general-sum games which subsumes several recent
methods, and afterwards list some research questions raised by the framework.

Example 5.0.1 (Sketch of a framework for cooperation in general-sum games.). The
setting is a 2-agent decision process. At each timestep t, each agent i receives an ob-
servation oti; takes an action ati = πi(o

t
i) based on their policy πi (assumed to be de-

terministic for simplicity); and receives a reward rti . Player i expects to get a value of
Vi(π1, π2) if the policies π1, π2 are deployed. Examples of such environments which
are amenable to study with contemporary machine learning tools are the “sequential
social dilemmas” introduced by Leibo et al. (2017). These include a game involving
potential conflict over scarce resources, as well as a coordination game similar in spirit
to Stag Hunt (Table 1).

Suppose that the agents (or their overseers) have the opportunity to choose what
policies to deploy by simulating from a model, and to bargain over the choice of poli-
cies. The idea is for the parties to arrive at a welfare function w which they agree
to jointly maximize; deviations from the policies which maximize the welfare func-
tion will be punished if detected. Let V di be a “disagreement point” measuring how
well agent i expects to do if they deviate from the welfare-maximizing policy pro-
file. This could be their security value maxπ1

minπ2
Vi(π1, π2), or an estimate of their

value when the agents use independent learning algorithms. Finally, define player i’s
ideal point V ∗

i = argmaxπ1,π2
Vi(π1, π2). Table 5 displays welfare functions corre-

sponding to several widely-discussed bargaining solutions, adapted to the multi-agent
reinforcement learning setting.

Define the cooperative policies as πC1 , π
C
2 = argmaxπ1,π2

w(π1, π2). We need a
way of detecting defections so that we can switch from the cooperative policy πC1 to a
punishment policy. Call a function that detects defections a “switching rule”. To make

13Cf. Christiano (2016b)’s discussion of “prosaic” artificial general intelligence, defined as that “which
doesn’t reveal any fundamentally new ideas about the nature of intelligence or turn up any ‘unknown un-
knowns’.”
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Name of welfare function w Form of w(π1, π2)

Nash (Nash, 1950)
[
V1(π1, π2)− V d1

]
·
[
V2(π1, π2)− V d2

]
Kalai-Smorodinsky (Kalai et al., 1975)

V1(π1, π2)
2 + V2(π1, π2)

2

−ι
{
V1(π1,π2)−V d

1

V2(π1,π2)−V d
2
=

V ∗
1 −V d

1

V ∗
2 −V d

2

}
Egalitarian (Kalai, 1977) min

{
V1(π1, π2)− V d1 , V2(π1, π2)− V d2

}
Utilitarian V1(π1, π2) + V2(π1, π2)

Table 5: Welfare functions corresponding to several widely-discussed bargaining so-
lutions, adapted to the multi-agent RL setting where two agents with value functions
V1, V2 are bargaining over the pair of policies π1, π2 to deploy. The function ι in the
definition of the Kalai-Smorodinsky welfare is the∞-0 indicator, used to enforce the
constraint in its argument. Note that when the space of feasible payoff profiles is con-
vex, the Nash welfare function uniquely satisfies the properties of (1) Pareto optimal-
ity, (2) symmetry, (3) invariance to affine transformations, and (4) independence of
irrelevant alternatives. The Nash welfare can also be obtained as the subgame perfect
equilibrium of an alternating-offers game as the “patience” of the players goes to in-
finity (Binmore et al., 1986). On the other hand, Kalai-Smorodinsky uniquely satisfies
(1)-(3) plus (5) resource monotonicity, which means that all players are weakly bet-
ter off when there are more resources to go around. The egalitarian solution satisfies
(1), (2), (4), and (5). The utilitarian welfare function is implicitly used in the work of
Peysakhovich and Lerer (2017); Lerer and Peysakhovich (2017); Wang et al. (2018) on
cooperation in sequential social dilemmas.
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the framework general, consider switching rules χ which return 1 for Switch and 0
for Stay. Rules χ depend on the agent’s observation history Ht

i . The contents of Ht
i

will differ based on the degree of observability of the environment, as well as how
transparent agents are to each other (cf. Table 6). Example switching rules include:

• Switch when I see that my counterpart doesn’t follow the cooperative policy (cf.
Lerer and Peysakhovich 2017): χ(Ht

1) = 1
{
at2 6= πC2 (o

t
2)
}

;

• Switch when my rewards indicate my counterpart is not cooperating (Peysakhovich
and Lerer, 2017): χ(Ht

1) = 1

{
1
t

∑t
v=1 r

v
1 < V1(π

C
1 , π

C
2 )− κt

}
, for some κt >

0;

• Switch when the probability that my counterpart is cooperating, according to my
trained defection-detecting model, is low (cf. Wang et al. 2018):
χ(Ht

1) = 1
{
P
(
πC2 | Ht

1

)
< 1− δt

}
, for some δt ∈ (0, 1).

Finally, the agents need punishment policies πDi to switch to in order to disincentivize
defections. An extreme case of a punishment policy is the one in which an agent com-
mits to minimizing their counterpart’s utility once they have defected: πD,minimax

1 =
argminπ1

max2 V2(π1, π2). This is the generalization of the so-called “grim trigger”
strategy underlying the classical theory of iterated games (Friedman, 1971; Axelrod,
2000). It can be seen that each player submitting a grim trigger strategy in the above
framework constitutes a Nash equilibrium in the case that the counterpart’s observa-
tions and actions are visible (and therefore defections can be detected with certainty).
However, grim trigger is intuitively an extremely dangerous strategy for promoting co-
operation, and indeed does poorly in empirical studies of different strategies for the
iterated Prisoner’s Dilemma (Axelrod and Hamilton, 1981). One possibility is to train
more forgiving, tit-for-tat-like punishment policies, and play a mixed strategy when
choosing which to deploy in order to reduce exploitability.

Some questions facing a framework for solving social dilemmas among deep rein-
forcement learners, such as that sketched in Example 5.0.1, include:

• How does the ability of agents to cooperate deteriorate as their ability to observe
one another’s actions is reduced?

• The methods for promoting cooperation among deep reinforcement learners dis-
cussed in Example 5.0.1 assume 1) complete information (agents do not have
private information about, say, their utility functions) and 2) only two players.
How can cooperation be achieved in cases of incomplete information and in
coalitional games?

In addition to the theoretical development of open-source game theory (Section
3.2), interactions between transparent agents can be studied using tools like deep rein-
forcement learning. Learning equilibrium (Brafman and Tennenholtz, 2003) and learn-
ing with opponent-learning awareness (LOLA) (Foerster et al., 2018; Baumann et al.,
2018; Letcher et al., 2018) are examples of analyses of learning under transparency.
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• “Opponent-aware” methods like Foerster et al. (2018)’s LOLA14 assume that
agents can efficiently verify relevant aspects of one another’s internal workings.
How can such verification be achieved in practice? How can agents still reap
some of the benefits of transparency in the case of incomplete verifiability? Table
6 lists several recent multi-agent learning techniques which assume varying de-
grees of agent transparency; given the difficulty of achieving total transparency,
successful real-world auditing schemes will likely require a blend of such tech-
niques.

• How should agents of asymmetric capabilities conduct open-source interactions?
(As a simple example, one might consider interactions between a purely model-
free agent and one which has access to an accurate world model.)

Multi-agent learning technique Elements which are
mutually transparent

Consequentialist conditional cooperation
(CCC) (Peysakhovich and Lerer, 2017)

Reward function,
partially observed state

Wang et al. (2018) Reward function,
fully observed state

Approximate Markov tit-for-tat (amTFT)
Reward function, action,

fully observed state
Learning with opponent-learning awareness

(LOLA) (Foerster et al., 2018)
Observation history,
policy parameters

Table 6: Several recent approaches to achieving cooperation in social dilemmas, which
assume varying degrees of agent transparency. In Peysakhovich and Lerer (2017)’s
consequentialist conditional cooperation (CCC), players learn cooperative policies off-
line by optimizing the total welfare. During the target task, they only partially observe
the game state and see none of their counterpart’s actions; thus, they use only their
observed rewards to detect whether their counterpart is cooperating or defecting, and
switch to their cooperative or defecting policies accordingly. On the other hand, in
Lerer and Peysakhovich (2017), a player sees their counterpart’s action and switches to
the defecting policy if that action is consistent with defection (mimicking the tit-for-tat
strategy in the iterated Prisoner’s Dilemma (Axelrod and Hamilton, 1981)).

5.2 Multi-agent training
Multi-agent training is an emerging paradigm for the training of generally intelligent
agents (Lanctot et al., 2017; Rabinowitz et al., 2018; Suarez et al., 2019; Leibo et al.,
2019). It is as yet unclear what the consequences of such a learning paradigm are for
the prospects for cooperativeness among advanced AI systems.

14Although Foerster et al. (2018) develop a version of LOLA with “opponent modeling” where an agent
only makes inferences about their counterpart’s parameters, rather than actually seeing them. Zhang and
Lesser (2010) present a similar method, though unlike LOLA theirs does not attempt to shape the counter-
part’s update.
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• Will multi-agent training result in human-like bargaining behaviors, involving
for instance the costly punishment of those perceived to be acting unfairly (Hen-
rich et al., 2006)? What are the implications for the relative ability of, say, clas-
sical and behavioral game theory15 to predict the behavior of TAI-enabled sys-
tems? And, critically, what are the implications for these agents’ ability to imple-
ment peaceful bargaining strategies (Section 4)? See especially the literature on
behavioral evidence regarding rational crisis bargaining (Quek, 2017; Renshon
et al., 2017). See also Section 6.1.

• One potentially significant disanalogy of multi-agent training with human bi-
ological and cultural evolution is the possibility that agents will have (partial)
access to one another’s internal workings (see Sections 3.2 and 5.1). What can
experiments in contemporary ML architectures tell us about the prospects for
efficiency gains from open-source multi-agent learning (Section 5.1)?

• How interpretable will agents trained via multi-agent training be? What are the
implications for their ability to make credible commitments (Section 3)?

• Adversarial training has been proposed as an approach to limiting risks from ad-
vanced AI systems (Christiano, 2018d; Uesato et al., 2018). Are risks associated
with cooperation failures (such as the propensity to make destructive threats)
likely to be found by default adversarial training procedures, or is there a need
for the development of specialized techniques?

5.3 Decision theory
Understanding the decision-making procedures implemented by different machine learn-
ing algorithms may be critical for assessing how they will behave in high-stakes inter-
actions with humans or other AI agents. One potentially relevant factor is the deci-
sion theory implicitly implemented by a machine learning agent. We discuss decision
theory at greater length in Section 7.2, but briefly: By an agent’s decision theory, we
roughly mean which dependences the agent accounts for when predicting the outcomes
of its actions. While it is standard to consider only the causal effects of one’s actions
(“causal decision theory” (CDT)), there are reasons to think agents should account for
non-causal evidence that their actions provide about the world16. And, different ways
of computing the expected effects of actions may lead to starkly different behavior in
multi-agent settings.

• Oesterheld (2017a) considers a simple agent designed to maximize the approval
score given to it by an overseer (i.e., “approval-directed” Christiano 2014). He

15Rabin (1993); Fehr and Schmidt (1999); Bolton and Ockenfels (2000) study fairness and trust; Camerer
and Hua Ho (1999) develop a large class of models for explaining human learning in games; and Camerer
(2008, Ch. 4) reviews the behavioral literature on bargaining, concluding that a satisfactory theory of bar-
gaining would “probably weave together perceptions of equity. . . , stable social preferences for equal payoffs
or fair treatment, heuristic computation, and individual differences...”. Also see the discussion of behavioral
game theory and human evolution by Hagen and Hammerstein (2006) and references therein.

16See also Camerer and Hua Ho (1999)’s distinction between “the law of actual effect” and “the law of
simulated effect”.
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shows that the decision theory implicit in the decisions of such an agent is de-
termined by how the agent and overseer compute the expected values of actions.
In this vein: What decision-making procedures are implicit in ML agents trained
according to different protocols? See for instance Krueger et al. (2019)’s dis-
cussion of “hidden incentives for inducing distributional shift” associated with
certain population-based training methods (Jaderberg et al., 2017) for reinforce-
ment learning; cf. Everitt et al. (2019) on understanding agent incentives with
causal influence diagrams.

• A “model-free” agent is one which implicitly learns the expected values of its
actions by observing the streams of rewards that they generate; such agents are
the focus of most deep reinforcement learning research. By contrast, a “model-
based” agent (Sutton and Barto, 2018, Ch. 8) is one which explicitly models the
world and computes the expected values of its actions by simulating their effects
on the world using this model. In certain model-based agents, an agent’s decision
theory can be specified directly by the modeler, rather than arising implicity17.
Do any decision-theoretic settings specified by the modeler robustly lead to co-
operative outcomes across a wide range of multi-agent environments? Or are
outcomes highly sensitive to the details of the situation?

17For example, (Everitt et al., 2015) develop sequential extensions of the most commonly studied decision
theories, causal and evidential decision theory, in a general reinforcement learning framework. One could
develop similar extensions for model-based multi-agent frameworks, like Gmytrasiewicz and Doshi (2005)’s
interactive partially observable Markov decision processes.
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6 Humans in the loop18

TAI agents may acquire their objectives via interaction with or observation of humans.
Relatedly, TAI systems may consist of AI-assisted humans, as in Drexler (2019)’s com-
prehensive AI services scenario. Relevant AI techniques include:

• Approval-directedness, in which an agent attempts to maximize human-assigned
approval scores (Akrour et al., 2011; Christiano, 2014);

• Imitation (Schaal, 1999; Ross et al., 2011; Evans et al., 2018), in which an agent
attempts to imitate the behavior of a demonstrator;

• Preference inference (Ng et al., 2000; Hadfield-Menell et al., 2016; Christiano
et al., 2017; Leike et al., 2018), in which an agent attempts to learn the reward
function implicit in the behavior of a demonstrator and maximize this estimated
reward function.

In human-in-the-loop scenarios, human responses will determine the outcomes of op-
portunities for cooperation and conflict.

6.1 Behavioral game theory
Behavioral game theory has often found deviations from theoretical solution concepts
among human game-players. For instance, people tend to reject unfair splits in the ul-
timatum game despite this move being ruled out by subgame perfection (Section 3). In
the realm of bargaining, human subjects often reach different bargaining solutions than
those standardly argued for in the game theory literature (in particular, the Nash (Nash,
1950) and Kalai-Smorodinsky (Kalai et al., 1975) solutions) (Felsenthal and Diskin,
1982; Schellenberg, 1988). Thus the behavioral game theory of human-AI interaction
in critical scenarios may be a vital complement to theoretical analysis when designing
human-in-the-loop systems.

• Under what circumstances do humans interacting with an artificial agent become
convinced that the agent’s commitments are credible (Section 3)? How do hu-
mans behave when they believe their AI counterpart’s commitments are credible
or not? Are the literatures on trust and artificial agents (e.g., Grodzinsky et al.
2011; Coeckelbergh 2012) and automation bias (Mosier et al., 1998; Skitka et al.,
1999; Parasuraman and Manzey, 2010) helpful here? (See also Crandall et al.
(2018), who develop an algorithm for promoting cooperation between humans
and machines.)

• In sequential games with repeated opportunities to commit via a credible com-
mitment device, how quickly do players make such commitments? How do other
players react? Given the opportunity to commit to bargaining rather than to sim-
ply carry out a threat if their demands aren’t met (see Example 4.0.1), what do

18Notes by Lukas Gloor contributed substantially to the content of this section.
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players do? Cf. experimental evidence regarding commitment and crisis bargain-
ing; e.g., Quek (2017) finds that human subjects go to war much more frequently
in a war game when commitments are not enforceable.

• Sensitivity to stakes varies over behavioral decision- and game-theoretic con-
texts (e.g., Kahneman et al. 1999; Dufwenberg and Gneezy 2000; Schmidt et al.
2001; Andersen et al. 2011). How sensitive to stakes are the behaviors in which
we are most interested? (This is relevant as we’re particularly concerned with
catastrophic failures of cooperation.)

• How do humans model the reasoning of intelligent computers, and what are the
implications for limiting downsides in interactions involving humans? For in-
stance, in experiments on games, humans tend to model their counterparts as
reasoning at a lower depth than they do (Camerer et al., 2004)19. But this may
not be the case when humans instead face computers they believe to be highly
intelligent.

• How might human attitudes towards the credibility of artificial agents change
over time — for instance, as a result of increased familiarity with intelligent ma-
chines in day-to-day interactions? What are the implications of possible changes
in attitudes for behavioral evidence collected now?

• We are also interested in extensions of existing experimental paradigms in behav-
ioral game theory to interactions between humans and AIs, especially research
on costly failures such as threats (Bolle et al., 2011; Andrighetto et al., 2015).

6.2 AI delegates
In one class of TAI trajectories, humans control powerful AI delegates who act on their
behalf (gathering resources, ensuring safety, etc.). One model for powerful AI dele-
gates is Christiano (2016a)’s (recursively titled) “Humans consulting HCH” (HCH).
Saunders (2019) explains HCH as follows:

HCH, introduced in Humans consulting HCH (Christiano, 2016a), is a
computational model in which a human answers questions using questions
answered by another human, which can call other humans, which can call
other humans, and so on. Each step in the process consists of a human
taking in a question, optionally asking one or more sub-questions to other
humans, and returning an answer based on those subquestions. HCH can

19This has been illustrated in the p-Beauty Contest Game (BCG). In the BCG, multiple players simulta-
neously say a number between 0 and 100. The winner is the person whose number is closest to the mean of
all the numbers, times a commonly known number p in (0, 1). If there is a tie, the payoff is divided evenly.
This game has a single Nash equilibrium: everyone says 0. However, human players typically don’t play this
way. Instead, experimental evidence suggests that players model others as reasoning fewer steps ahead than
they (“If the know I choose X then they will choose Y, so then I will choose Z instead. . . ”), and then choose
the best response to these predicted moves (Nagel, 1995).
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be used as a model for what Iterated Amplification20 would be able to do
in the limit of infinite compute.

A particularly concerning class of cooperation failures in such scenarios are threats
by AIs or AI-assisted humans against one another.

• Threats could target 1) the delegate’s objectives (e.g., destroying the system’s re-
sources or its ability to keep its overseer alive and comfortable), or 2) the human
overseer’s terminal values. Threats of the second type might be much worse. It
seems important to investigate the incentives for would-be threateners to use one
type of threat or the other, in the hopes of steering dynamics towards lower-stakes
threats.

• We are also interested in how interactions between humans and AI delegates
could be limited so as to minimize threat risks.

Saunders also discusses a hypothetical manual for overseers in the HCH scheme. In
this manual, overseers could find advice “on how to corrigibly answer questions by de-
composing them into sub-questions.” Exploring practical advice that could be included
in this manual might be a fruitful exercise for identifying concrete interventions for ad-
dressing cooperation failures in HCH and other human-in-the-loop settings. Examples
include:

• Instructions related to rational crisis bargaining (Section 4.1);

• Instructions related to the implementation of surrogate goals (Section 4.2).

20Iterated (Distillation and) Amplification (IDA) is Christiano (2018b)’s proposal for training aligned AI
systems. In brief, it consists of iterating a Distillation step in which the capabilities of a team of AI delegates
are distilled into a single agent; and an Amplification step, in which the capabilities of the distilled agent are
amplified by copying that agent many times and delegating different tasks to different copies. The hope for
IDA as an approach to AI safety is that many slightly less-capable agents will be able to control the more
powerful agent produced by the latest Distill step, at each iteration of the process. See Cotra (2018) for an
accessible overview of IDA.
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7 Foundations of rational agency
We think that the effort to ensure cooperative outcomes among TAI systems will likely
benefit from thorough conceptual clarity about the nature of rational agency. Certain
foundational achievements — probability theory, the theory of computation, algorith-
mic information theory, decision theory, and game theory to name some of the most
profound — have been instrumental in both providing a powerful conceptual apparatus
for thinking about rational agency, and the development of concrete tools in artificial
intelligence, statistics, cognitive science, and so on. Likewise, there are a number of
outstanding foundational questions surrounding the nature of rational agency which
we expect to yield additional clarity about interactions between TAI-enabled systems.
Broadly, we want to answer:

• What are the implications of computational boundededness (Russell and Subra-
manian, 1994; Cherniak, 1984; Gershman et al., 2015) for normative decision
theory, in particular as applied to interactions among TAI systems?

• How should agents handle non-causal dependences with other agents’ decision-
making in their own decisions?

We acknowledge, however, the limitations of the agenda for foundational ques-
tions which we present. First, it is plausible that the formal tools we develop will be
of limited use in understanding TAI systems that are actually developed. This may be
true of black-box machine learning systems, for instance21. Second, there is plenty of
potentially relevant foundational inquiry scattered across epistemology, decision the-
ory, game theory, mathematics, philosophy of probability, philosophy of science, etc.
which we do not prioritize in our agenda22. This does not necessarily reflect a consid-
ered judgement about all relevant areas. However, it is plausible to us that the research
directions listed here are among the most important, tractable, and neglected (Concepts,
n.d.) directions for improving our theoretical picture of TAI.

7.1 Bounded decision theory
Bayesianism (Talbott, 2016) is the standard idealized model of reasoning under em-
pirical uncertainty. Bayesian agents maintain probabilities over hypotheses; update
these probabilities by conditionalization in light of new evidence; and make deci-
sions according to some version of expected utility decision theory (Briggs, 2019). But
Bayesianism faces a number of limitations when applied to computationally bounded
agents. Examples include:

21Cf. discussion of the Machine Intelligence Research Institute foundational research and its applicability
to machine-learning-driven systems Taylor (2016); Dewey (2017).

22For other proposals for foundational research motivated by a concern with improving the long-term
future, see for instance the research agendas of the Global Priorities Research Institute (Greaves et al., 2019)
(especially Sections 2.1 and 2.2 and Appendix B) and the Machine Intelligence Research Institute (Soares
and Fallenstein, 2017; Garrabrant and Demski, 2018).

22This subsection was developed from an early-stage draft by Caspar Oesterheld and Johannes Treutlein.
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• Unlike Bayesian agents, computationally bounded agents are logically uncertain.
That is, they are not aware of all the logical implications of their hypotheses and
evidence (Garber, 1983)23. Logical uncertainty may be particularly relevant in
developing a satisfactory open-source game theory (Section 3.2), as open-source
game theory requires agents to make decisions on the basis of the output of
their counterparts’ source codes (which are logical facts). In complex settings,
agents are unlikely to be certain about the output of all of the relevant programs.
Garrabrant et al. (2016) presents a theory for assigning logical credences, but
it has flaws when applied to decision-making (Garrabrant, 2017). Thus one re-
search direction we are interested in is a theoretically sound and computationally
realistic approach to decision-making under logical uncertainty.

• Unlike Bayesian agents, computationally bounded agents cannot reason over the
space of all possible hypotheses. Using the the terminology of statistical mod-
eling (e.g., Hansen et al. 2016), we will call this situation model misspecifica-
tion24.The development of a decision theory for agents with misspecified world-
models would seem particularly important for our understanding of commitment
in multi-agent settings. Rational agents may sometimes want to bind themselves
to certain policies in order to, for example, reduce their vulnerability to ex-
ploitation by other agents (e.g., Schelling (1960); Meacham (2010); Kokotajlo
(2019a); see also Section 3 and the discussion of commitment races in Section
2). Intuitively, however, a rational agent may be hesitant to bind themselves to a
policy by planning with a model which they suspect is misspecified. The analysis
of games of incomplete information may also be quite sensitive to model mis-
specification25. To develop a better theory of reasoning under model misspeci-
fication, one might start with the literatures on decision theory under ambiguity
(Gilboa and Schmeidler, 1989; Maccheroni et al., 2006; Stoye, 2011; Etner et al.,
2012) and robust control theory (Hansen and Sargent, 2008).

7.2 Acausal reasoning26

23Consider, for instance, that most of us are uncertain about the value of the 1010
th

digit of π, despite
the fact that its value logically follows from what we know about mathematics.

24This problem has been addressed in two ways. The first is simply to posit that the agent reasons over an
extremely rich class of hypotheses, perhaps one rich enough to capture all of the important possibilities. An
example of such a theory is Solomonoff induction (Solomonoff, 1964; Sterkenburg, 2013), in which evidence
takes the form of a data stream received via the agent’s sensors, and the hypotheses correspond to all possible
“lower semi-computable” generators of such data streams. But Solomonoff induction is incomputable and
its computable approximations are still intractable. The other approach is to allow agents to have incomplete
sets of hypotheses, and introduce an additional rule by which hypotheses may be added to the hypothesis
space (Wenmackers and Romeijn, 2016). This sort of strategy seems to be the way forward for an adequate
theory of bounded rationality in the spirit of Bayesianism. However, to our knowledge, there is no decision
theory which accounts for possible amendments to the agent’s hypothesis space.

25See Section 4.1 for discussion of games of incomplete information and possible limitations of Bayesian
games.

26This subsection was developed from an early-stage draft by Daniel Kokotajlo and Johannes Treutlein.
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Newcomb’s problem27 (Nozick, 1969) showed that classical decision theory bifurcates
into two conflicting principles of choice in cases where outcomes depend on agents’
predictions of each other’s behavior. Since then, considerable philosophical work has
gone towards identifying additional problem cases for decision theory and towards de-
veloping new decision theories to address them. As with Newcomb’s problem, many
decision-theoretic puzzles involve dependences between the choices of several agents.
For instance, Lewis (1979) argues that Newcomb’s problem is equivalent to a pris-
oner’s dilemma played by agents with highly correlated decision-making procedures,
and Soares and Fallenstein (2015) give several examples in which artificial agents im-
plementing certain decision theories are vulnerable to blackmail.

In discussing the decision theory implemented by an agent, we will assume that the
agent maximizes some form of expected utility. Following Gibbard and Harper (1978),
we write the expected utility given an action a for a single-stage decision problem in
context x as

EU(a) ,
∑
j

P (a→ oj ;x)u(oj), (1)

where oj are possible outcomes; u is the agent’s utility function; and → stands for a
given notion of dependence of outcomes on actions. The dependence concept an agent
uses for→ in part determines its decision theory.

The philosophical literature has largely been concerned with causal decision the-
ory (CDT) (Gibbard and Harper, 1978) and evidential decision theory (EDT) (Horgan,
1981), which are distinguished by their handling of dependence.

Causal conditional expectations account only for the causal effects of an agent’s ac-
tions; in the formalism of Pearl (2009)’s do-calculus, for instance, the relevant notion
of expected utility conditional on action a is E[U | do(a)]. EDT, on the other hand,
takes into account non-causal dependencies between the agent’s actions and the out-
come. In particular, it takes into account the evidence that taking the action provides for
the actions taken by other agents in the environment with whom the decision-maker’s
actions are dependent. Thus the evidential expected utility is the classical conditional
expectation E[U | A = a].

Finally, researchers in the AI safety community have more recently developed what
we will refer to as logical decision theories, which employ a third class of dependence
for evaluating actions (Dai, 2009; Yudkowsky, 2009; Yudkowsky and Soares, 2017).
One such theory is functional decision theory (FDT)28, which uses what Yudkowsky

27In Newcomb’s problem, a player is faced with two boxes: a clear box which contains $1000, and an
opaque box which contains either $0 or $1 million. They are given a choice between choosing both boxes
(Two-Boxing) or choosing only the opaque box (One-Boxing). They are told that, before they were presented
with this choice, a highly reliable predictor placed $1 million in the opaque box if they predicted that the
player would One-Box, and put $0 in the opaque box if they predicted that the player would Two-Box. There
are two standard lines of argument about what the player should do. The first is a causal dominance argument
which says that, because the player cannot cause money to be placed in the opaque box, they will always get
at least as much money by taking both boxes than by taking one. The second is a conditional expectation
argument which says that (because the predictor is highly reliable) One-Boxing provides strong evidence
that there is $1 million in the opaque box, and therefore the player should One-Box on the grounds that the
conditional expected payoff given One-Boxing is higher than that of Two-Boxing. These are examples of
causal and evidential decision-theoretic reasoning, respectively.

28Note that the little public discussion of FDT by academic philosophers has been largely critical
(Schwarz, 2018; MacAskill, 2019).
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and Soares (2017) refer to as subjunctive dependence. They explain this by stating
that “When two physical systems are computing the same function, we will say that
their behaviors “subjunctively depend” upon that function” (p. 6). Thus, in FDT, the
expected utility given an action a is computed by determining what the outcome of
the decision problem would be if all relevant instances of the agent’s decision-making
algorithm output a.

In this section, we will assume an acausal stance on decision theory, that is, one
other than CDT. There are several motivations for using a decision theory other than
CDT:

• Intuitions about the appropriate decisions in thought experiments such as New-
comb’s problem, as well as defenses of apparent failures of acausal decision the-
ory in others (in particular, the “tickle defense” of evidential decision theory in
the so-called smoking lesion case; see Ahmed (2014) for extensive discussion);

• Conceptual difficulties with causality (Schaffer, 2016);

• Demonstrations that agents using causal decision theory are exploitable in vari-
ous ways (Kokotajlo, 2019b; Oesterheld and Conitzer, 2019);

• The evidentialist wager (MacAskill et al., 2019), which goes roughly as follows:
In a large world (more below), we can have a far greater influence if we account
for the acausal evidence our actions provide for the actions of others. So, un-
der decision-theoretic uncertainty, we should wager in favor of decision theories
which account for such acausal evidence.

We consider these sufficient motivation to study the implications of acausal decision
theory for the reasoning of consequentialist agents. In particular, in this section we
take up various possibilities for acausal trade between TAI systems. If we account
for the evidence that one’s choices provides for the choices that causally disconnected
agents, this opens up both qualitatively new possibilities for interaction and quantita-
tively many more agents to interact with. Crucially, due to the potential scale of value
that could be gained or lost via acausal interaction with vast numbers of distant agents,
ensuring that TAI agents handle decision-theoretic problems correctly may be even
more important than ensuring that they have the correct goals.

Agents using an acausal decision theory may coordinate in the absence of causal in-
teraction. A concrete illustration is provided in Example 7.0.1, reproduced from Oester-
held (2017b)’s example, which is itself based on an example in Hofstadter (1983).

Example 7.0.1 (Hofstadter’s evidential cooperation game). Hofstadter sends 20 par-
ticipants the same letter, asking them to respond with a single letter ‘C’ (for cooperate)
or ‘D’ (for defect) without communicating with each other. Hofstadter explains that
by sending in ‘C’, a participant can increase everyone else’s payoff by $2. By sending
in ‘D’, participants can increase their own payoff by $5. The letter ends by informing
the participants that they were all chosen for their high levels of rationality and cor-
rect decision making in weird scenarios like this. Note that every participant only cares
about the balance of her own bank account and not about Hofstadter’s or the other 19
participants’. Should you, as a participant, respond with ‘C’ or ‘D’?
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An acausal argument in favor of ‘C’ is: If I play ‘C’, this gives me evidence that
the other participants also chose ‘C’. Therefore, even though I cannot cause others
to play ‘C’ — and therefore, on a CDT analysis — should play ‘D’ — the conditional
expectation of my payoff given that I play ‘C’ is higher than my conditional expectation
given that I play ‘D’.

We will call this mode of coordination evidential cooperation.
For a satisfactory theory of evidential cooperation, we will need to make precise

what it means for agents to be evidentially (but not causally) dependent. There are at
least three possibilities.

1. Agents may tend to make the same decisions on some reference class of decision
problems. (That is, for some probability distribution on decision contexts C,
P (Agent 1’s decision in context C = Agent 2’s decision in context C) is high.)

2. An agent’s taking action A in context C may provide evidence about the number
of agents in the world who take actions like A in contexts like C.

3. If agents have similar source code, their decisions provide logical evidence for
their counterpart’s decision. (In turn, we would like a rigorous account of the
notion of “source code similarity”.)

It is plausible that we live in an infinite universe with infinitely many agents (Tegmark,
2003). In principle, evidential cooperation between agents in distant regions of the uni-
verse is possible; we may call this evidential cooperation in large worlds (ECL).29 If
ECL were feasible then it is possible that it would allow agents to reap large amounts
of value via acausal coordination. Treutlein (2019) develops a bargaining model of
ECL and lists a number of open questions facing his formalism. Leskela (2019) ad-
dresses fundamental limitations on simulations as a tool for learning about distant
agents, which may be required to gain from ECL and other forms of “acausal trade”.
Finally, Yudkowsky (n.d.) lists potential downsides to which agents may be exposed
by reasoning about distant agents. The issues discussed by these authors, and perhaps
many more, will need to be addressed in order to establish ECL and acausal trade as se-
rious possibilities. Nevertheless, the stakes strike us as great enough to warrant further
study.

29Oesterheld (2017b), who introduced the idea, calls this “multiverse-wide superrationality”, following
Hofstadter (1983)’s use of “superrational” to describe agents who coordinate acausally.
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