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A group of three multiscale inhomogeneous grids have been tested to generate different
types of turbulent shear flows with different mean shear rate and turbulence intensity
profiles. Cross hot-wire measurements were taken in a wind tunnel with Reynolds
number ReD of 6, 000 to 20, 000, based on the width of the vertical bars of the grid
and the incoming flow velocity. The effect of local drag coefficient CD on the mean
velocity profile is discussed first, and then by modifying the vertical bars to obtain
a uniform aspect ratio the mean velocity profile is shown to be predictable using the
local blockage ratio profile. It is also shown that, at a streamwise location x = xm, the
turbulence profile along the y direction u′(y) scales with the wake interaction length

xpeak
∗,n = 0.21g2n/(αCDwn) (α is a constant characterizing the incoming flow condition,

and gn, wn are the gap and width of the vertical bars, respectively, at layer n) such

that (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 ∼ (xm/xpeak

∗,n )b, where β is a constant determined by
the freestream turbulence level, Un is the local mean velocity, and b is a dimensionless
power law constant. A general framework of grid design method based on these scalings
is proposed and discussed. From the evolution of the shear stress coefficient ρ(x), integral
length scale L(x), and the dissipation coefficient Cǫ(x), a simple turbulent kinetic energy
model is proposed that describes the evolution of our grid generated turbulence field
using one centerline measurement and one vertical profile of u′(y) at the beginning of the
evolution. The results calculated from our model agree well with our measurements in the
streamwise extent up to x/H ≈ 2.5, where H is the height of the grid, suggesting that it
might be possible to design some shear flows with desired mean velocity and turbulence
intensity profiles by designing the geometry of a passive grid.

Key words: To be entered

1. Introduction

The study of grid turbulence has been of interest for decades. Regular grids made of
bars with uniform mesh size have been used by many to study homogeneous/isotropic
turbulence (e.g. Comte-Bellot & Corrsin 1966, 1971; Gad-El-Hak & Corrsin 1974; Mo-
hamed & Larue 1990; Mydlarski & Warhaft 1996a; Cardesa et al. 2012). Other efforts
have also been made to develop different types of devices to produce shear flows in wind
tunnel experiments. Some of the most popular methods are briefly reviewed here, and
reviews of the earlier methods can be found in Lawson (1968) and Laws & Livesey (1978).
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Here and for the rest of the discussion, x, y, z represent the streamwise, vertical, and
transverse direction, respectively.

1.1. Shear generating methods

Several methods have been proposed to generate shear flows in laboratories. One of
the methods is to use wire gauzes to modify the local solidity, and consequently produce
a mean velocity gradient. The effect of flow passing through wire gauzes was described
in detail by Taylor et al. (1949). Then by using resistance and deflection coefficients as
grid properties, a theoretical method of grid design was offered by Owen & Zienkiewicz
(1957) relating the downstream mean velocity profile to the spacing of the wires, and
a uniform shear flow was produced in their study using parallel wires of diameter d =
3.175mm. This theory was further generalized by Elder (1959) to non-uniform gauze
with arbitrary shapes. Elder (1959) tested his theory on linear and parabolic gauzes, and
proposed a gauze shape to generate a linear shear flow. Rose (1966) followed the same
method and showed that the shape of the generated downstream mean velocity profile
was persistent. The later studies of Livesey & Laws (1973a) on flow through curved
gauze screens proposed a modification of the theory to exclude a higher order term,
which seemed to cause discrepancies between theoretical solutions and experimental data
from two-dimensional and axisymmetric cases. Livesey & Laws (1973b) also produced
axisymmetric velocity profiles using these curved screens. Dunn & Tavoularis (2007)
revisited this type of method to combine theoretical and empirical information to produce
shear flows through curved screens. Mean flows with approximately uniform shears and
different shear rates were successfully generated in a water channel. The most obvious
drawback of any method using gauze and wires is, as commented by Lawson (1968), that
the turbulence characteristics cannot be varied once the wire is chosen, and it is therefore
impossible to generate mean velocity and turbulence profiles independently.

The parallel wire method relies mostly on the spacing of the wires, and it is therefore
hard to adjust the elements locally. Another type of shear generator was tested by
Champagne et al. (1970), where the authors used plates of 609.6mm long, and 3.175mm
thick separated by 25.4mm to form parallel channels with adjustable internal screens to
control the local solidity. The same method was then used by many, e.g. Harris et al.

(1977); Tavoularis & Corrsin (1981); Karnik & Tavoularis (1987); Rohr et al. (1988);
Garg & Warhaft (1998); Nedić & Tavoularis (2016), with different configurations such
as the size of internal grid size, and the separation distance of the plates. A honeycomb
with uniform cell diameter but varying lengths in the streamwise direction was also tested
by Rose (1970) to generate shear flows. This author studied the combination of such a
honeycomb and a grid placed downstream with different sizes and geometries, and the
downstream grid was shown to reduce the mean shear rate. Richards & Morton (1976)
produced a quadratic mean velocity profile using such a honeycomb and grid combination.
Mulhearn & Luxton (1975) used a similar setup where a non-uniform parallel rod grid
was placed upstream of the honeycomb with uniform length to produce a uniform sheared
flow. Note that no relation between the shear flow and the geometry of the setup was
concluded from these parallel plate methods since all of them were tuned by trial-and-
error. Even though they offer the possibility of local adjustments of the device, which is
an improvement of the previous method, they lack theoretical support to relate the grid
geometry to the generated shear flow. Experiments involving extremely high shear rates,
e.g. ∂U/∂y > 400 s−1 (see Souza et al. 1995), are excluded from our discussion. We also
mention that there have been studies on the Couette flow generated by moving walls as
a means to produce velocity profiles (Coles 1965; Tillmark & Alfredsson 1992; Bottin
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et al. 1998), yet the fundamental idea is different from this study, and the discussion on
these studies is therefore not elaborated here.

The active grid proposed by Makita (1991) and the subsequent works (see e.g. Myd-
larski & Warhaft 1996b; Shen & Warhaft 2000; Cekli & van de Water 2010; Knebel et al.
2011; Hearst & Ganapathisubramani 2017) provided another option to tailor turbulent
flows. It is typically used to produce a higher turbulence level, and is sometimes combined
with other passive devices to produce shear flows (see e.g. Zhu et al. 2006; Bai et al.

2012; Thormann & Meneveau 2015). Hearst & Ganapathisubramani (2017) proposed the
possibility to obtain independent control of the mean flow and turbulence intensity using
the active grid. They produced shear flows with small shear rates ranging approximately
6.25 s−1 to 12.5 s−1 over a physical domain of 0.32m and generated profiles of varying
turbulence intensity and high Reynolds numbers. Hearst & Ganapathisubramani (2017)
claimed that such shear flows would be directly applicable in wind turbine experiments.
Amongst many advantages, the methodology of active grid generated turbulence, how-
ever, is rather costly to implement, and the establishment of control protocols is largely
empirical. The work of Hearst & Ganapathisubramani (2017) did not provide quantitative
relations between the control parameters and the turbulence characteristics. Therefore
we explore the possibility of a type of passive grid design for producing desired turbulence
fields. This idea is also supported by the conclusion of Roach (1987) that the turbulence
energy scales on the bar dimensions rather than the mesh size, which suggests that it is
possible to manipulate the turbulence intensity through the design of the grid bars.

In this paper we attempt to combine the known methodology for producing mean
shear with fractal/multiscale ways to produce scalable high turbulence intensities at the
same time. For this reason, we refer to the studies of fractal grids proposed by Hurst &
Vassilicos (2007), especially the space filling fractal square grids (e.g. Seoud & Vassilicos
2007; Mazellier & Vassilicos 2010; Valente & Vassilicos 2011; Gomes-Fernandes et al.

2012; Hearst & Lavoie 2014; Isaza et al. 2014) where the development of downstream
turbulence is quantitatively related to the grid geometries. These fractal square grids
are characterized by repeated square patterns of different sizes, and the blockage ratio is
usually small (σ ≈ 25% to 30%). Detailed descriptions can be found in Seoud & Vassilicos
(2007); Hurst & Vassilicos (2007); Mazellier & Vassilicos (2010).

Mazellier & Vassilicos (2010) studied the fractal generated turbulence, and proposed
the wake interaction length scale x∗ = g20/w0, where g0 is the largest length of the
bars, and w0 is the largest width. This scaling relation succeeded in collapsing both the
centerline mean velocity and turbulence intensity profiles. The peak of the turbulence
intensity was found at xpeak ≈ 0.45x∗ with maximum level of approximately 15%U∞.
Later, Gomes-Fernandes et al. (2012) extended the study to include the effects of the
aspect ratio of the bars and the free stream turbulence level, and proposed the improved
scaling relation xpeak

∗ = 0.21g20/(αCDw0), where α = 0.231 is a constant associated
with the wake development for flows with minimal inlet free stream turbulence intensity,
and CD is the drag coefficient of the bar. This xpeak

∗ provided better collapse of the
streamwise turbulence intensity profiles from different grids, and was taken to be an
important parameter for designing the grids. Gomes-Fernandes et al. (2012) also proposed
a scaling relation for the turbulence intensity levels, and the scaled turbulence intensity
(u′/U∞)β(CDw0/x

peak
∗ )−1/2 (where β = 2.88 is a constant for laminar free stream, and

U∞ is the inlet free stream velocity) collapsed six different inlet conditions as a function

of x/xpeak
∗ . These scalings are adapted and discussed further in the design process of our

new multiscale inhomogeneous grids.
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1.2. Shear flow characteristics

The development of turbulence intensity in a grid generated shear flow was perhaps
first discussed by Rose (1966). The author generated a homogeneous turbulent shear
flow with a mean shear gradient S = ∂U/∂y = 13.69 s−1 which retained its value up
to x/H = 9.76, where H is the height of the grid. The turbulence intensities u′ and v′

were found nearly uniform along the mean shear direction y at x/H = 1.33, but the two
edges were affected by the growing boundary layer on the tunnel wall and the turbulent
intensities were significantly larger on the sides. Along the centerline, u′ and v′ decayed
to levels u′/Uc = 1.2% and v′/Uc = 0.8%, where Uc is the centerline mean streamwise
velocity.

Champagne et al. (1970) produced a mean shear rate S = 12.9 s−1 using the parallel
plates with internal screens, and the shear was maintained in the range x/H = 3 to
9.5. The centerline turbulence intensity u′/Uc reached a constant value of 1.8% after
x/H = 6.5. Rose (1970) created shear flows using different combinations of honeycomb
and wire grid, and produced mean shear rates in the range S = 6 s−1 to 12 s−1. The
streamwise turbulence intensity levels u′/Uc in the range x/H = 7 to 9 were shown to
be constant, and their values increased from 0.2% to 2% with increasing grid size.

Harris et al. (1977) improved on the work of Champagne et al. (1970) and produced a
larger mean shear rate S = 44 s−1 which remained almost constant up to a dimensionless
time scale τ∗ = 12, where τ∗ ≡ (x/Uc)(∂U/∂y). Their hot-wire results showed a larger
normalized turbulence intensity compared to that in Champagne et al. (1970), and the
turbulence intensities were found to grow with streamwise distance after τ∗ ≈ 4. The
growth of turbulence intensities along the streamwise direction was then studied by Rohr
et al. (1988) for several cases, where the grid size, centerline velocity, and mean shear
rate were varied. The results clearly showed a region of increasing streamwise turbulence
intensity u′/Uc. The critical point τ∗c , where u′/Uc reached its minimum was studied by
several authors, and interestingly the turbulence intensity beyond τ∗c remained constant
in some cases (e.g. Rose 1966; Champagne et al. 1970; Rose 1970), but grew in some
others (e.g. Harris et al. 1977; Tavoularis & Corrsin 1981; Rohr et al. 1988; Nedić &
Tavoularis 2016). For the cases where u′/Uc stayed constant, the development was fairly
fast, reaching constant values at τ∗c = 1.6 to 3, whereas for those cases exhibiting growing
u′/Uc the critical point was observed at roughly τ∗c = 4 to 5. Tavoularis & Karnik (1989)
studied this more systematically and suggested that when the shear is weak, i.e. ǫ/P ∼ 1,
the turbulence kinetic energy will remain constant after τ∗c , whereas for strong shears,
where ǫ/P < 1, the turbulence kinetic energy will grow exponentially after τ∗c .

Regarding the Taylor microscale λ, Harris et al. (1977) reported a constant value of λ
in the range τ∗ = 6 to 11, with S = 44 s−1. Rohr et al. (1988) also reported a constant
λ from τ∗ = 6 with approximately S = 1 s−1, while Tavoularis & Karnik (1989) showed
in their experiments that λ approached a constant value at τ∗ ≈ 16 for mean shear rates
S = 44 s−1 and 84 s−1. More recently Nedić & Tavoularis (2016) reported a constant λ
downstream of τ∗ ≈ 9.25 in a uniformly sheared flow with S = 62 s−1. By comparing
the results from Harris et al. (1977) and Rohr et al. (1988), it can be concluded that the
location where λ stops growing is not only a function of the mean shear rate, but other
factors as well.

In terms of integral length scales, all of the previous results showed monotonic increases
with streamwise distance. Results by Nedić & Tavoularis (2016) also showed a decrease of
growth rate of the longitudinal integral length scale Luu,x beyond roughly τ∗ = 9. Some
studies reported relations between longitudinal and transverse integral length scales such
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that Luu,x = 2Luu,y, indicating a large scale isotropy (e.g. Rose 1966; Champagne et al.

1970; Harris et al. 1977). Further discussion on length scales is provided in section 3.5.1.

1.3. Objectives

The main objective of the present work is to design and test a new class of turbulence
generating grids to find the possibility to scale the mean velocity and turbulence intensity
profiles to the geometry of the grid, which might provide the ability to produce desired
mean velocity and near-field turbulence intensity profiles simultaneously. For the current
discussion, only weakly sheared turbulence is considered with shear rates ranging from
0 s−1 to 5 s−1, comparable to the cases studied by Hearst & Ganapathisubramani (2017)
using active grids. Such weakly sheared flows can be used to represent a certain part of
a shear layer, and therefore are practical in various wind tunnel testing scenarios. Even
though homogeneous shear flows are important as a subject of fundamental interest, they
are not the subject of the present study. In this paper, we attempt to establish relations
between the geometry and different turbulent flow profiles. Homogeneous turbulent shear
flows could be considered in a future study, which might attempt to apply our method
of flow generation.
In the following context, the details of the grid geometry are given first. It is then shown

that the mean velocity profiles predicted using the mean velocity model derived from
Taylor et al. (1949) and McCarthy (1964) are in good agreement with our experimental
data. By modifying the grid thickness the aspect ratio of the grid bars are changed, and
consequently the drag coefficients. The effect of drag coefficient on the local mean velocity
gradient is discussed. The turbulence intensity profiles at given streamwise location x
are found to scale with the geometry of the grid bars. The scaling relations between the
turbulence field and the geometry of the grid might be used in the future to generate
other types of turbulence flows of interest. A general procedure of the grid design method
is proposed in section 3.3.
Results on the evolution of turbulence intensities and length scales are also presented,

and finally a simplified model is proposed to describe the downstream development of the
turbulence field generated by these grids. This model allows description of the turbulence
field using just one measurement of vertical profile close to the grid and one centerline
profile along the streamwise direction.

2. Experiments

2.1. Facility

All experiments were conducted in the 3′×3′ closed loop wind tunnel in the Aeronautics
Department at Imperial College London. The test section has a cross sectional area
of 0.91m × 0.91m, and a measurable length of 4.2m. The flow goes through a set of
perforated screens and a 9:1 contraction before reaching the test section. The background
turbulence intensity without the grid was measured to be ∼0.1% at U∞ = 10ms−1. A
computer controlled traversing system is mounted on top of the working section, allowing
movements in all three directions. The origin of the coordinate system is set at the bottom
of the grid on the windward side.

2.2. Grid design

In this section we outline the design principles of our new multiscale grids. A schematic
sketch is given in figure 1. Three such grids were made for the current investigation
producing flows with different shear rates and different turbulence profiles, even though
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(a) (b) (c)

Figure 1: Schematic sketch of (a) grid 1, (b) grid 2, and (c) grid 3, respectively, in
z − y (horizontal-vertical) plane with N = 9 layers numbered from bottom to top as
n = 1, 2, ...N .

H,W External height and width of grid
D Thickness of the original grid (in x), and the horizontal supporting bars
N Number of layers
hn Height of layer n
σn Blockage ratio of layer n
cn Number of vertical bars in layer n
wn Width of the vertical bars (in z) in layer n
gn Distance between two adjacent vertical bars in layer n
dn Thickness of the vertical bars (in x) in layer n
an Aspect ratio of the vertical bars, defined as an = dn/wn, in layer n
tb Width of horizontal bars (in y)

Table 1: Design parameters of multiscale shear grids.

the geometries are very similar. The first grid was designed to generate a turbulent flow
without mean shear, and a non-uniform turbulence intensity, while the other two were
designed to generate turbulent flows with gradients in both mean velocity and turbulence
intensity. The grids are numbered in order of increasing shear rates. They were laser cut
in acrylic with a uniform thickness (in the x direction) of D = 10mm.

There are several parameters involved in the design process, and a summary is given in
table 1. The external height H and width W of the grid are determined by the dimensions
of the wind tunnel test section in the y and z directions, respectively. For the current
study we have H = W = 0.91m. The number N of horizontal layers is chosen to be
N = 9 for all three grids in the current study. This number can be increased to obtain
finer control over the local velocity gradient. The height of each layer hn is set here to
be hn = constant = 101.67mm. There are also eight horizontal supporting bars. Their
width (in the y direction) for the present grids is tb = 5mm, and an aspect ratio of
D/tb = 2 was achieved to minimize the wake shed from them.

The most important parameters for the design of the mean flow profile are the blockage
ratios σn of each layer. The normalized blockage ratio profiles for each grid are given in
figure 2. The mean blockage ratio (σ1+σ2+ ...+σn)/N (with N = 9 here) was set to 25%
for all three grids, while the maximum local blockage ratio was set as σ9 = σmax = 35%
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Figure 2: Profiles of (1 − σ)/(1 − σc) for grid 1, 2 and 3, respectively, where σc is the
blockage ratio at layer 5, the center of the grid, i.e. σc = σ5.

to avoid flow recirculation. This is consistent with the observations of Rose (1966), who
limited the maximum local solidity to σmax = 40% for this reason.

While the blockage profile controls the mean velocity of the flow, the lateral widths
and spacing of the vertical bars in each layer of the grid are tailored to vary the wake
interaction mechanisms in order to generate different turbulence characteristics. Three
parameters are introduced here, namely cn the number of vertical bars, wn the lateral
width of each individual bar, and an the aspect ratio of the bars (defined as an = dn/wn).
Note that since the thickness of the original grid is constant, i.e. dn = D = 10mm, an
varies with vertical bar width wn, and the drag coefficient CD of each bar therefore varies
with n, which affects the wake characteristics. The number of bars for each layer is set
to be cn = 2(n +M) + 1 for n = 1, 2, ...N , where M = 2 is a control parameter for the
current grids. The width of the bars are calculated from

wn =



















W

cn

(hnσn − tb
hn − tb

)

, n = 2, 3, ...N − 1

W

cn

(hnσn − 0.5tb
hn − 0.5tb

)

, n = 1, N.

(2.1)

As shown in figure 1, there are no horizontal bars at the top and bottom edges of the
grids, and the area is distributed in the vertical bars at layer 1 and N using the second
equation in 2.1. At each layer, the vertical bars are evenly separated by a distance gn,
and are placed symmetrically about z = 0.

Note that the uniform thickness of the original grid inevitably causes variable aspect
ratios an = dn/wn of the vertical bars as the width wn varies. Figure 3 (a) gives the CD

profiles of the three grids evaluated using the relation between CD and the aspect ratio
an given by Bearman & Trueman (1972). The Reynolds number of the vertical bars with
U∞ = 10ms−1 is within the range 6, 000 to 20, 000, and the Reynolds number dependence
of the drag coefficient CD is therefore negligible. The grids were also modified by attaching
blocks behind the vertical bars to achieve a uniform aspect ratio an by effectively varying
dn, and hence a uniform CD. Due to the dimensions of the vertical bars, the aspect ratio
is set equal to that of the eighth layer a8. For grid 3, however, the modification was only
applied to the bottom layer n = 1, because the additional thicknesses to be attached to
the other layers were all smaller than 1mm, and therefore difficult to manufacture. The
drag coefficient profiles after the modificaction are given in figure 3 (b).
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Figure 3: Vertical drag coefficient profiles of (a) original grids with uniform thickness
D = 10mm, and (b) modified grids with variable thickness but uniform aspect ratio.
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Figure 4: The wake interaction length scale xpeak
∗,n for (a) original grids with uniform

thickness D = 10mm, and (b) modified grids with variable thickness but uniform aspect
ratio.

Now if we refer to the scalings for grid-generated turbulence proposed by Vassilicos and
colleagues as outlined in the introduction, we can calculate the wake interaction length
scale for each layer n as xpeak

∗,n = 0.21g2n/(αCDwn) by substituting L0 = gn and t0 = wn

in their original equation (Gomes-Fernandes et al. 2012). The results for the original and
modified grids are plotted in figure 4 (a) and (b), respectively. It can be observed that

the variation of xpeak
∗,n with n becomes much more smooth due to the modification of CD,

and the maximum xpeak
∗ is about x = 0.38m from the grid. From the results of Gomes-

Fernandes et al. (2012), where the turbulence intensity profiles from several experiments

and different grids collapsed against x/xpeak
∗ , it can be expected (see Gomes-Fernandes

et al. 2012) that the streamwise turbulence intensity at level n scales with (xpeak
∗ )1/2.

Further results and discussions on this scaling relation are presented in section 3.2.

2.3. Experimental set-up and method

The tunnel inlet velocity U∞ was monitored using a Furness Controls FCO510 mi-
cromanometer which measures the static pressure head across the contraction and the
temperature. The inlet velocity U∞ was maintained using a PID controller to be within
±1.5% of 10m/s for all data sets in the current study. Only one inlet velocity is tested
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as previous studies showed that the turbulence statistics produced by grid with square
bars is independent of the Reynolds number (see Roach 1987). Data was then acquired
with MATLAB, using a 16-Bit National Instruments NI-6229(USB) board. Instantaneous
velocity signals were measured using an in-house etched platinum Wollaston cross wire
powered by a Dantec Streamline CTA system. The diameter of the wire was dw = 5µm
with length to diameter ratio approximately 200. Resolution of the wire are estimated
to be l/η = 2.6 to 7.2, where the Kolmogorov length scale η was estimated using
η = (ν3/ǫ)1/4. To calculate ǫ, we compute ǫ∗ = 15ν(∂u/∂x)2 and ǫ∗∗ = 3ν(∂u/∂x)2 +
6ν(∂v/∂x)2, and then use the average ǫ = (ǫ∗ + ǫ∗∗)/2 in this paper.
The hot-wire probe was mounted on a servo motor to allow accurate control of the

pitching angles. It was calibrated at the beginning and end of every data set acquired
using the look-up table method for five velocities from 3m/s to 19m/s and seven angles
ranging from −27◦ to 27◦. The temperature was monitored during acquisitions, and the
data was discarded if temperature variation ∆Ta = Ta,max − Ta,min was larger than
0.1◦C. Two packets of ts = 300 s samples were acquired to ensure convergence in mean
statistics. Longer samples (ts > 300 s) were not possible as the drift of the ambient
temperature during acquisition will add artificial large scale variation. The acquisition
rate was 125 kHz, and a low pass filter of 30 kHz was applied before the data was recorded
to avoid aliasing. The data is also low-pass filtered before the processing to eliminate high
frequency noise.
To calculate the longitudinal integral length scales Luu,x, one either integrates the

correlation function Ruu or uses the streamwise turbulence kinetic energy spectrum
E11(k) as Luu,x = πE11(0)/(2u

′2) (see Tennekes & Lumley 1972). It is noted that the
spectrum and the correlation function is a Fourier pair. Yet the zero frequency asymptote
of the digitally acquired spectrum has large uncertainty and the integral length scale is
usually extrapolated from a number of the low frequency spectral estimates. For the
other method, the integral of the correlation function cannot be taken to infinity, and
thus an upper limit of the integration has to be chosen. Moreover, this upper limit of
the integration is not well defined, and the integration result using different upper limit
varies as large as 20% (O’Neill et al. 2004). We therefore seek a way to correct the lower
frequency range of the spectra before estimating the longitudinal integral length scale
Luu,x.
Several models have been proposed for estimating the power spectra density E(k),

and the most frequently used is the von Kármán model, which can be written in a
one-dimensional form as

E11(k) =
2u′2Luu,x

π

1

{1 + [kLuu,xB(1/2, 1/3)/π]2}5/6 , (2.2)

where u′ is the turbulence intensity, k is the wave number defined as k = 2πf/U∞

(f is the frequency in time), and B is the beta function related to the Γ function by
B(1/2, 1/3) = Γ (1/2)Γ (1/3)/Γ (5/6). In practice, we first take the average of the spectra
of two packets of data, and use equation 2.2 to fit the data in a least square sense. One
example is given in figure 5, where it is shown that the small wave number range of the
original spectrum (black) is slightly tilted upward leading to a larger value of E11(0).
This effect is most obvious at locations close to the grid where x = 0.83m, but much less
further downstream. This method is used in section 3.5.1 to correct the lower frequency
part of the spectrum.
It is acknowledged that most spectrum models have potential flaws in the low frequency

range. There have been other models, e.g. Wilson (1998), where a two parameter spectrum
model is proposed that allows more freedom in fitting the inertial range and inertial
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Figure 5: Example spectrum for grid 2 at centerline x = 0.83m.

sub-range of the spectrum. However, that model works well only in turbulent flows
with sufficiently large Reynolds numbers that has more decades of -5/3 slope, otherwise
the extra parameter causes large uncertainties in the fitted spectrum. For the current
study, the Reynolds number is moderate so that models such as Wilson’s (1998) are not
considered.

3. Results

3.1. Mean velocity

Before showing the measured vertical mean velocity profiles produced by the grids, we
refer to previous works that used wire gauzes to produce non-uniform mean flow profiles.
Following Taylor et al. (1949); McCarthy (1964), the streamwise velocity near the grid
(upstream denoted by “− 0”and downstream denoted by “ + 0”) can be related by

U+0

U−0
=

1 + αn − αnKn

1 + αn +Kn
, (3.1)

where the subscript n denotes the layer number, αn is the refraction coefficient at layer
n, and Kn is the resistance coefficient of the grid, which can be calculated from

Kn =
rσn

(1− σn)2
, (3.2)

where σn is the local blockage ratio of the grid at layer n, and r is an empirical constant
in the range 0.65 < r < 1 (see McCarthy 1964). Cornell (1958) reported a constant
value of r = 0.7 for the range 2, 000 < Re < 40, 000. For the current grids, the Reynolds
number based on U∞ = 10ms−1 and bar width w is calculated to be in the range 6, 000
to 20, 000. The value of r is therefore chosen to be r = 0.7 in this work. Although there
are other ways to calculate the value of Kn (as summarized in Karnik & Tavoularis 1987),
equation 3.2 seems to give the best result at least for the current cases.
Finally, an empirical expression of the refraction coefficient at layer n of the grid is

given in both Taylor et al. (1949) and McCarthy (1964) as

αn = 1.1(1 +Kn)
−1/2, (3.3)

which was also concluded by these authors to be insensitive to Reynolds number.
In figure 6 (left), we present the vertical profiles of streamwise velocity U measured at

x = 0.83m and x = 4.13m for the original grids (i.e. with non-uniform CD as shown in
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Figure 6: Vertical profiles of the normalized streamwise velocity U/Uc (symbols) and
equation 3.1 (dashed lines) for original grids (with uniform thickness D = 10mm) and
modified grids (with variable thickness but uniform aspect ratio). Empty symbols, x =
0.83m; filled symbols, x = 4.13m.

figure 3 a), together with the profiles calculated using equations 3.1 to 3.3 with r = 0.7.
Measurements were taken from the middle of the second layer up to the middle of the
seventh layer. Note that there was no trial-and-error involved in generating the velocity
profiles. The normalized profiles U/Uc are presented because the measured incoming
velocity (at the beginning of the test section) is different from U−0 in equation 3.1 by a
constant factor.
A wave-like deviation of the mean velocity profiles across these original grids is

observed, especially for grid 1 where the variation of CD is the largest. The non-uniform
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drag coefficient CD of the vertical bars in the grid at each layer effectively modifies the
local blockage ratio and consequently the local mean velocity. Other than that, the shapes
of the velocity profiles generally follow the model, and the shape of the mean profiles
is maintained within the measurement range of approximately x/H = 1 to 4.5. This is
consistent with previous conclusions from the parallel wire-generated or plate-generated
shear flows (e.g. Rose 1966; Champagne et al. 1970; Shen & Warhaft 2000).
The measurements behind the modified grids, as described in section 2.2, are given in

figure 6 (right). It is obvious that both grid 1 and 2 collapse better with the predicted
profile when the non-uniformity of CD is eliminated. This shows that the drag coefficient
indeed affects the mean velocity profile quite significantly. As for grid 3, the only modified
layer is the bottom one, which is outside the measurement range, and thus the mean
velocity profiles of the original and modified grids are almost identical. Again, these
results are obtained without trial-and-error, suggesting that equations 3.1 to 3.3 can serve
as a guideline for bespoke design of desired mean velocity profiles using our proposed
inhomogeneous multiscale geometries.
For the modified grids, the shape of the mean profiles is also maintained, in fact better

than that for the original grids. The absolute values of the averaged mean shear rate
|∂U/∂y| are 0.29 s−1, 2.97 s−1, and 4.99 s−1 for grids 1, 2, and 3, respectively. These
shear rates are rather small compared to those of Champagne et al. (1970) and Harris
et al. (1977). Nevertheless, higher shear rates could in theory be achieved by increasing
the gradient of blockage ratio σn of the grid, as long as σmax does not exceed the limit
required to avoid recirculations, e.g. σmax = 35% for the current case.
Figure 7 shows the mean velocity profiles along the streamwise direction downstream

of the modified grids measured at y = 0.25m, y = 0.46m and y = 0.66m with streamwise
step of ∆x = 0.3m. The difference between the profiles at each y position indicates the
shear rate of the flow. The linear fit of the centerline profiles along x gives slopes of
0.0092, −0.043, and −0.067, respectively, and it is concluded that the mean velocity is
roughly constant along the streamwise direction. This also coincides with the velocity
profiles observed in figure 6. In the rest of the paper, only modified grids are discussed to
exclude the unwanted velocity variations caused by the non-uniform CD of the original
grids.

3.2. Turbulence intensities

To begin this section, we present the turbulence intensities measured at different
streamwise locations. The profiles of u′/U∞ and v′/U∞ are plotted along the centerline
at y = 0.46m in figure 8 (a). The decay of both u′ and v′ is obvious, and the value of v′ is
always smaller than u′ for each individual grid at all locations, and approximately follows
u′2 = 2v′2, which is consistent with many previous observations in various turbulent shear
flows (e.g. Champagne et al. 1970; Tavoularis & Corrsin 1981; Garg & Warhaft 1998;
Vanderwel & Tavoularis 2014). The averaged ratio of u′2/v′2 throughout all x locations
along the centerline for grid 1, 2, 3 is 1.93, 1.90, 2.07, respectively. The value of u′/U∞ for
all grids at different y locations drops from approximately 7% to 2% along the streamwise
direction, and it seems for grid 3 that the streamwise turbulence level u′ remains higher
than the others. This might be explained by the higher drag coefficient CD as shown in
figure 3, and the larger mean shear rate of grid 3, which generates turbulence intensity
through production and keeps the turbulence level higher than the other grids.
In figure 8 (b), we plot u′/U∞ and v′/U∞ along the shear direction y at x = 0.83m.

Both components of the turbulence profiles show a gradient along the shear direction, and
the largest value of u′/U∞ reaches above 10% even at x = 0.83m (or x/H = 0.9). This
is quite large compared to conventional grid generated turbulence, where the turbulence
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Figure 7: Streamwise velocity profiles for modified (a) grid 1, (b) grid 2 and (c) grid 3,
at y = 0.25m (white), y = 0.46m (grey) and y = 0.66m (black).
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Figure 8: Profiles of turbulence intensity u′/U∞ (empty symbols), v′/U∞ (filled symbols)
along (a) streamwise direction x at the centerline y = 0.46m, and (b) vertical direction
at x = 0.83m for grid 1 (square), grid 2 (circle), and grid 3 (triangle).

decays rapidly downstream of the grid, and it suggests that it is possible to increase
the turbulence level using the vertical bars. This can be of practical importance for
experiments that require large turbulence intensities at a distance downstream of the
grid. From this point of view, it is desired to have a quantitative scaling relation for
u′(x, y).
To scale the turbulence intensity profiles u′(y) at given x closely downstream of the
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Figure 9: Schematic sketch to show the scaling method of the normalized turbulence
intensities along y. Different line types represent the streamwise turbulence intensity
developments behind different layers of the grid.
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Figure 10: Scaling of the normalized turbulence intensity profiles u′(y) measured at x =
0.83m for (a) grid 1, (b) grid 2, (c) grid 3, respectively.

grid, we refer to the work of Gomes-Fernandes et al. (2012) mentioned in the introduction.
The streamwise turbulence intensity level therefore depends on the streamwise develop-
ment of the turbulence behind each layer of the grid, as shown in figure 9 (a), where the
turbulence level and peak location varies from layer to layer. This peak location xpeak

is different for different layers but scales with the wake interaction length scale xpeak
∗ ,

which is itself different at different layers n. The results of (Gomes-Fernandes et al. 2012)
also suggest that the turbulence intensity at the peak location can be collapsed in the
form (u′/Un)β(CDwn/x

peak
∗,n )−1/2, where β = 2.88 is a constant corresponding to the

wake development with laminar incoming flow condition, and Un is the mean velocity at
layer n. Figure 9 (b) shows how the streamwise turbulence intensities u′(x, y)/Un can be
collapsed.
The current grids are designed such that the xpeak

∗ at all levels n are smaller than the
first measurement location x = 0.83m (see figure 4 b), and all the data are therefore in

the decay region x/xpeak
∗ > 1. We now attempt to use the scalings given in figure 9 (b)

to establish the y-profile of u′ at x = 0.83m.
For a streamwise location x = xm, (u′/Un)β(CDwn/x

peak
∗,n )−1/2 is a function of

xm/xpeak
∗,n , where xpeak

∗,n varies along the y direction, as shown in figure 4. If we assume
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Figure 11: Calculated mean velocity profile to demonstrate the maximum mean shear
rates achievable in a wind tunnel test section for the case of a uniform shear flow (solid
line), and the case where only part of the test section is of interest (dashed line).

this function to be a power law, i.e. (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 ∼ (xm/xpeak

∗,n )b, and fit
our measurements of u′(y)/Un obtained at xm = 0.83m, we have b = 1.47, 1.26, and 1.14
for grids 1, 2, and 3, respectively. It can be observed in figure 10 that the fitted power
law functions (dotted line) matches our measurements quite well, which quantitatively
relates the downstream turbulence intensities with the geometry of the grid bars, i.e.
CD, wn, and gn.

3.3. A general grid design approach

Based on the mean velocity model from section 3.1, and the turbulence intensity scaling
from section 3.2. We now outline a possible procedure to design a grid to produce a flow
with bespoke mean velocity and turbulence profiles.
First, the desired mean velocity profile Utarget,n is used as an input for equation

(3.1), (3.2), and (3.3) to solve for the blockage ratio σn, subject to σn < 0.4 to prevent
recirculation. The average blockage ratio σn can be set to limit the pressure drop, which
is σn = 0.25 in this case. The problem can be solved by minimizing the error E1 between
the calculated value of Un and the desired value Utarget,n, which can be defined as
E1 =

∑

[Un(σn)− Utarget,n]
2. Therefore the problem becomes to find

min E1(σn),

s.t. σn < 0.4, σn = 0.25. (3.4)

For a uniform shear flow across the test section, the maximum mean shear rate one can
achieve using this method depends on the physical size of the wind tunnel because the
maximum blockage ratio is always limited by σ 6 0.4, and the maximum variation of
blockage ratio is (∆σ)max = 0.4, which constrains the maximum variation of the mean
velocity ∆U . The mean shear rate dU/dy will therefore become larger for a smaller
physical domain. For example, for a uniform shear flow, the maximum mean shear rate
could be achieved in the current facility (with test section of height H = 0.91m) is
approximately 9 s−1, but higher mean shear rates could be achieved if only part of the
test section is of interest, as demonstrated in figure 11.
Secondly, as shown in the previous section, at a streamwise location x = xm, such that
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Sn a b
Grid 1 0.29 3.93 1.47
Grid 2 2.97 2.32 1.26
Grid 3 4.99 1.78 1.14

Table 2: Variation of the fitting constants a and b at different mean shear rates, fitted
using measurements at x = 0.83m along the y direction.

xm/xpeak
∗ > 1, we have the scaling relation for the turbulence intensity profile along the

y direction u′(y) that (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 = a(xm/xpeak

∗,n )b, where β = 2.88, and
CD = 2.9 for the current study. The turbulence intensity along the y direction can be
therefore expressed as u′/Un = f1(β,CD, wn, xm, xpeak

∗,n , a, b), where wn is the width of

the vertical bars at layer n, a and b are constants, and xpeak
∗,n is the interaction length

scale at layer n. The width of the grid bar wn is determined by wn = f2(σn, cn, ∗)
(where cn is the number of the grid bars at layer n, and ∗ stands for other geometry
details of the grid such as the overall width W and thickness of the horizontal bars, see
equation 2.1). Since the gap between adjacent vertical bars is defined by gn = W/cn,

the interaction length scale xpeak
∗,n = 0.21g2n/(αCDwn) (α is a constant characterizing

the incoming flow condition) can be written as xpeak
∗,n = f3(cn, CD, ∗). Finally, we have

u′ = f(Un, β, CD, σn, cn, xm, a, b, ∗) with only three unknown variables, i.e. cn, a, and b.
Given a target shape of the turbulence rms velocity profile u′

target,n, the solution of the
problem might be solved by minimizing the error E2 =

∑

[u′ − u′

target,n]
2. Note that the

values of a and b cannot be determined analytically based on the current measurements,
but their values seem to vary as a function of the mean shear rate Sn for a profile u′(y)
measured at a given streamwise location xm, as shown in table 2. This table gives a
possible range of the values of a and b, which might be used as a reference to set up the
optimization problem. The problem becomes the minimization of

min E2(cn, a, b, ∗),
s.t. a ∈ R, b ∈ R, a = fa(Sn), b = fb(Sn),

cn ∈ Z, cn ∈ [lb, ub], (3.5)

where a and b are expressed as functions of the mean shear rate. The solution of the
problem fully determines the geometry of the grid, and the shape of the target turbulence
rms velocity profile u′(y) could be achieved at a streamwise location xm/xpeak

∗ > 1. The
exact value of the turbulence intensity may not be achieved perfectly as yet, because a and
b cannot be prescribed explicitly based on the current results. However, this procedure
does ensure that the shape of the target profile is produced downstream of xpeak

∗,n . The
lower bound lb of cn, is set to 2, which ensures that each layer has at least two vertical
bars. The upper bound ub of cn is determined using equation (2.1) and varies between
setups. For example, assuming a 10mm streamwise thickness of the grid, the minimum
width of the vertical bar is wmin = 0.017 given an aspect ratio AR = 0.6, which then
determines the maximum possible cn for each layer.

Since the number of bars cn is restricted to be integers, the problem is solved by Mixed
Integer Non-Linear Programming (MINLP), which is an active subject of research in
optimization. There are many solvers available, and the results can be compared between
different algorithms to give confidence. In principle, a homogeneous shear seems possible
using this method where a linear profile of Utarget,n and a constant u′

target,n are used as
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y=0.26m y=0.46m y=0.66m
ρv ρs CI ρv ρs CI ρv ρs CI

Grid 1 0.1146 0.113 0.0016 0.1993 0.1989 0.0004 0.2531 0.2534 0.0003
Grid 2 0.102 0.1017 0.0003 0.1633 0.1594 0.0038 0.1378 0.1335 0.0042
Grid 3 0.1163 0.1058 0.0103 0.1102 0.1021 0.0079 0.0989 0.0923 0.0065

Table 3: Comparison of shear correlation coefficients measured from independent
expriments at x = 0.83m and different y locations. The 95% confidence interval CI
is calculated as CI = 1.96cov(ρv, ρs)/

√
2, where ρv, ρs is the shear correlation coefficient

measured from the vertical and streamwise profiles, respectively, and cov(ρv, ρs) is the
covariance of ρv, ρs

.

input to each one of these steps. This approach gives the framework of the grid design
method, and the constraints in the problem can be improved and broadened to a wider
range of turbulent shear flows with further studies.

3.4. Reynolds shear stress

In preparation of the model that we develop in section 3.5 to describe the streamwise
evolution of the profiles u′(y) from x = 0.83m to larger values of x, we study in this
section the streamwise development of the shear correlation coefficient ρ ≡ −uv/u′v′

given in figure 12 (a). It can be observed that, except for grid 1, all values decrease
monotonically with streamwise distance. It is interesting to explore if there is a scaling
relation that collapses these data. We first look at the dimensionless time scale τ∗ ≡
(x/Uc) |Sn| = (x/Uc)

∣

∣

∣
∂Un/∂y

∣

∣

∣
(where Uc is the streamwise mean velocity averaged over

the x along the centerline at y = 0.46m) used in previous studies as this is an important
parameter to describe the evolution of shear flows. The results are shown in figure 12
(b), and Un and Sn ≡ ∂Un/∂y are the averages of values measured at x = 0.83m and
x = 4.13m. It is clear that the data does not collapse, especially for grid 2 and 3. If we
use a modified local dimensionless time scale defined as τ ≡ [(x− xpeak

∗,n )/Un] |Sn|, it can
be seen that ρ is collapsed fairly well for τ > 0.8. This definition of τ replaces Uc with
Un, and includes the wake interaction length scale xpeak

∗,n as the virtual origin, since xpeak
∗

marks the starting location of decay that varies from layer to layer for each grid. This
new definition of τ is equivalent to a translation of τ∗ for regular grids, where xpeak

∗ is
constant at all positions. The results can be compared between figure 12 (b) and (c),
where the profiles of ρ of grids 2 and 3 collapse much better with τ .
In several previous experiments (e.g. Rose 1966; Harris et al. 1977; Tavoularis & Corrsin

1981; Tavoularis & Karnik 1989; Nedić & Tavoularis 2016) it has been shown that the
value of the shear correlation coefficient ρ increases downstream along the centerline and
eventually reaches a magnitude of approximately 0.45 to 0.5. For the current results, it is
interesting that the shear coefficient ρ changes sign for grids 2 and 3, but not for grid 1.
Figures 12 (b), (c) suggest that the flow is greatly disrupted by the initial conditions that
have an effect up to about τ = 0.8, downstream of which the Reynolds shear stress starts
to play a significant role. This makes sense by looking at grid 1 whose shear coefficient
remains positive all the time and close to zero. The range of dimensionless time scale τ
is not large enough to show the asymptote value of ρ (where 0.45 < |ρ| < 0.5), although
it seems that the change rate of ρ is decreasing with τ , which is consistent with previous
literature.
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Figure 12: Streamwise development of −uv/u′v′ for grid 1 (square), grid 2 (circle) and
grid 3 (triangle) along the streamwise direction at y = 0.25m (white), y = 0.46m (grey)
and y = 0.66m (black) versus (a) streamwise location x, (b) local dimensionless time

scale τ∗ ≡ (x/Uc) |Sn|, and (c) local dimensionless time scale τ ≡ [(x − xpeak
∗,n )/Un] |Sn|

with virtual origin xpeak
∗,n .
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Figure 13: Vertical profiles of −uv/u′v′ for grid 1 (square), grid 2 (circle) and grid 3
(triangle) at (a) x = 0.83m (empty symbols) and (b) x = 4.13m (filled symbols).

The shear correlation coefficients −uv/u′v′ along the y direction at x = 0.83m and
x = 4.13m are shown in figure 13. The oscillatory behavior at x = 0.83m around
−uv/u′v′ = 0 is most obvious as the probe moves behind the horizontal bars of the
grid at every other y locations. The large fluctuation of shear correlation coefficients
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with change of signs were also observed in e.g. Rose (1966) in a streamwise location
close to the grid (x/H = 1.33). The positive-valued data points in figure 13 (a) are
from measurements taken at the center of each layer (i.e. behind the vertical bars),
which corresponds to the data at x = 0.83m given in figure 12 (a). This also supports
the assumption that direct effects of the grid dominate in the region of τ < 0.8 as
shown in figure 12. Table 3 gives the error of the shear correlation coefficients from two
independent experiments to give confidence in the measurement, indicated by the 95%
confidence interval CI = 1.96cov(ρx, ρy)/

√
2, where cov(ρsρv) is the covariance of ρs,

ρv measured from the streamwise and vertical profiles, respectively. In figure 13 (b), it
is observed that the magnitude of the shear coefficients increases from grid 1 to grid
3 (with increasing shear rate), and the variation of −uv/u′v′ along the y direction is
much reduced comparing to that measured at x = 0.83m. This is consistent with the
streamwise profiles discussed above, and previous observations made by Rose (1966);
Garg & Warhaft (1998); Nedić & Tavoularis (2016).

3.5. A simplified model for turbulent kinetic energy

To look at the evolution of the y profiles of u′ along the streamwise direction x, we
have to consider the turbulence production by the mean shear rate, and we propose a
simplified model to describe how u′(x, y) evolves in the x direction downstream of our
grids. To begin with, we neglect the pressure, transport, and viscous diffusion terms in
the turbulent kinetic energy equation. Harris et al. (1977) estimated the significance of
the transport term by showing that the ratio |(∂u3/∂x)/(Uc∂u2/∂x)| is smaller than
0.03 in their experiment, and concluded that the transport term can be omitted. In the
current study, this ratio decreases rapidly with streamwise distance away from the grid,
and the maximum values on the centerline (at x = 0.83m) are 0.0105, 0.0102, 0.0113
for grids 1, 2, 3, respectively. We therefore assume that the transport is relatively small
compared to the advection term, and that it can be neglected.
With these assumptions, we keep only the production and dissipation terms in the right

hand side of the kinetic energy equation following Harris et al. (1977) and Tavoularis &
Corrsin (1981), i.e.

U
∂k

∂x
= P − ǫ. (3.6)

Then we write P ∼= −uvSn = ρSnu
′v′ = ρ∗Snu

′2, where Sn ≡ ∂Un/∂y is the local
mean shear rate, and ρ∗(x) = ρ(x)/

√
2 because v′ = u′/

√
2 as discussed in section 3.2.

By assuming that the transverse r.m.s. fluctuating velocity w′ equals v′, i.e. w′ = v′, the
turbulent kinetic energy can then be written as k = 1

2 (u
′2 +2v′2) = u′2. Finally we write

the dissipation ǫ as ǫ = Cǫ
k3/2

L = Cǫ
u′3

L , where L = Luu,x(x) is the longitudinal integral
length scale.
Equation 3.6, for a given n or y (therefore omitted in the equations for simplicity),

now becomes

U
∂u′2

∂x
= ρ∗(x)Su′2 − Cǫ(x)

L(x)
u′3. (3.7)

To continue with a quantitative description of u′(x, y), we write equation 3.7 at given
n as

dk

dx
+ ξ(x)k = ζ(x)km, (3.8)

where ξ(x) = −ρ∗(x) SU , ζ(x) = − Cǫ(x)
UL(x) , and m = 3/2.
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Figure 14: Streamwise profiles of ρ∗ for grid 1 (square), grid 2 (circle) and grid 3 (triangle)
at y = 0.25m (white), y = 0.46m (grey), and y = 0.66m (black) with second order
polynomial fit (dashed lines).

The solution of equation 3.8 is given by

k =





− 1
2

∫ x

xp
e
−1/2

∫ x
xp

−ρ∗S/Udx
(−Cǫ

UL )dx+ C

e
−1/2

∫ x
xp

−ρ∗S/Udx





−2

, (3.9)

where we write xp ≡ xpeak
∗ for simplicity. To close equation 3.9, we need the expressions

of ρ∗(x), L(x), Cǫ(x), and the integration constant C. Since ρ(τ) collapses well in the way
shown in figure 12 (c), we fit ρ∗ = ρ/

√
2 using a second order polynomial (dashed lines)

as shown in figure 14 to calculate ρ∗(x) since xpeak
∗ , Un, and Sn in τ are known at given

y. Here we fit the data with the centerline values of each grid (i.e. grey symbols), and the
result captures the evolution of ρ∗ quite well. This fitted function is then used to prescribe
ρ∗(x) given local constants xpeak

∗ , Un, and Sn. This fitting method inevitably carries larger
error for grid 1 (see figure 14) due to the scatter of ρ∗(x) at τ ≈ 0. But the mean shear
rate produced by grid 1 is approximately 0, and the power (−0.5S/U

∫ x

xp
−ρ∗dx) in the

exponential is effectively 0 too, which makes the error for grid 1 insignificant in equation
3.9.

3.5.1. Integral length scale

Now we look at the development of the longitudinal integral length scale L as a function
of the streamwise location x for all grids, see figure 15. The length scales are calculated
using the corrected spectra as discussed in section 2.3. It is obvious that L increases
with the streamwise location monotonically. The value of L for a given grid at different
y locations seems to grow linearly at a rate which is practically similar at different y
locations. This also implies that L increases approximately linearly against the local
dimensionless time scale τ as well, which is consistent with Champagne et al. (1970) and
Harris et al. (1977).
By looking at the profiles along y in figure 16, it seems that L remains roughly constant

at x = 0.83m. At x = 4.13m, the value of L increases from grid 1 (square) to grid 3
(triangle). This makes sense if L ∝ τ , as τ increases with the mean shear rate S at given
x and U .
From figure 15 and 16, we notice that the values of L at y = 0.66m are smaller for

grid 1 and larger for grid 3, yet the values calculated at this location from the two
independent measurements are the same (as shown in figure 15 and 16), which rules out
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Figure 15: Longitudinal integral length scale L profiles for grid 1 (square), grid 2 (circle)
and grid 3 (triangle) at y = 0.25m (white), y = 0.46m (grey) and y = 0.66m (black)
versus the streamwise location x.
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Figure 16: Longitudinal integral length scale L profiles for grid 1 (square), grid 2 (circle)
and grid 3 (triangle) along the y direction at x = 0.83m (filled symbols) and x = 4.13m
(empty symbols).
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Figure 17: Profiles of longitudinal integral length scale L for grid 1 (square), grid 2 (circle)
and grid 3 (triangle) along the centerline with linear fitted results (dashed lines).
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Figure 18: Profiles of Cǫ = ǫL/u′3 for grid 1 (square), grid 2 (circle) and grid 3 (triangle)
along the centerline with linear fitted results (dashed lines).

the possibility of measurement/calculation error. The reason for this larger value is not
completely clear, but might have to do with the different inlet grid conditions and the
related different mean shear rates.
For the purpose of the current discussion, we ignore this outlier, and assume that the

rate of increase of L for a given grid is independent of y. We therefore estimate the
streamwise evolution of L based on its centerline profile only. The fitted results are given
in figure 17, where all three profiles show a linear increase with streamwise distance x
away from the grid. This is also consistent with previous works such as Champagne et al.
(1970) and Harris et al. (1977). We write L(x) = px+q, where p, q are fitting coefficients.
The fitted constants are p = 0.0034, 0.0056, 0.012, and q = 0.024, 0.019, 0.011 for grid
1, 2, 3, respectively.

3.5.2. Dissipation coefficient Cǫ

The behavior of Cǫ in turbulent shear flow with uniform mean shear rate has been
studied by Nedić & Tavoularis (2016), where they showed different stages of development
with respect to τ . In figure 18, we show the streamwise development of Cǫ = ǫL/u′3 along
the centerline for all three grids. It can be observed that all three profiles increase linearly
as Cǫ = cx + d, where the coefficients c, d are fitted in a least square sense. The fitted
constants are c = 0.088, 0.15, 0.11, and d = 0.51, 0.41, 0.45 for grids 1, 2, 3 respectively.
This linear increase of Cǫ with x is in agreement with Nedić & Tavoularis (2016) in their
initial region.
To check the quality of our linear fits of Cǫ(x) and L(x), we plot the ratio ǫ/(Cǫu

′3/L)
as ǫ/((cx + d)u′3/(px + q)) in figure 19. It is observed that this ratio is within ±5% of
unity for all three grids, with the exception of the first point.

3.5.3. Predicting streamwise evolution

With the fitted functions of ρ∗(x), L(x), and Cǫ(x), we can now solve equation 3.9
for the turbulence intensity profile u′(y) at given streamwise location x = 0.83m. Figure
20 shows the result of both the measured turbulence intensity profiles u′(x, y)/U∞, and
profiles calculated using equation 3.9, where k = u′2, S = Sn and U = Un. The vertical
profile measured at x = 0.83m (where the turbulence intensity is highest, i.e. the first
profile on the right) is used as initial values to calculate the constant C = C(n) so the
collapse of this profile is perfect. The fitted values of C at selected y locations are given
in table 4. The measured streamwise profiles are plotted at their corresponding height
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Figure 19: Ratio of ǫ and modeled term (cx + d)/(px + q)u′3 grid 1 (square), 2 (circle)
and 3 (triangle), respectively, along the centerline.

y (m) Grid 1 Grid 2 Grid 3
0.66 0.82 0.82 0.29
0.46 0.67 0.67 0.31
0.25 0.43 0.50 0.33

Table 4: Fitted constant C in equation 3.9 at selected y locations for all grids.

y, and are used to check the results calculated at different x locations. Each profile is
separated by ∆x = 0.3m. Small discrepancies between the measured and calculated
values are observed, which might come from the neglected terms in equation 3.7 and the
fitting of the centerline profiles. Nevertheless, the results are in appreciable agreement up
to x = 2.33m, which is equivalent to x/H = 2.6, where H is the height of the grid (i.e.
height of the tunnel). For grid 3, it is noticed that the discrepancy between measured
turbulence intensity and modeled result at x = 4.13m (first profile on the left) is the
largest, especially at higher y locations. This can be partially explained by the discussion
in section 3.5.1 about L increasing faster for grid 3 around y = 0.7m. Also, streamwise
turbulence intensity developments of shear flows such that u′/U∞ stops decaying (or
starts increasing) at larger τ have been reported by e.g. Rohr et al. (1988); Tavoularis &
Karnik (1989). In such case, flow characteristics such as Cǫ, ρ, and L all evolve in different
ways compared to their initial development as discussed by Nedić & Tavoularis (2016).
A more comprehensive model of the problem will require measurements at further stages
of the turbulent kinetic energy evolution in terms of τ . Nevertheless, the current method
provides a practical solution for the near-region turbulent kinetic energy development
of our multiscale grid generated shear flow, and can be of practical use in the study of
turbulent shear flows and engineering applications.

3.6. Taylor microscales

In this section we report Taylor microscale values calculated from λ = u′/((∂u/∂x)2)1/2.
Figure 21 (a) gives the streamwise development of λ versus x. It can be observed that
λ increases with x in all cases. This agrees well with several previous experiments such
as Rose (1966); Champagne et al. (1970). Tavoularis & Karnik (1989) also showed a
region τ∗ > 16, where λ remains constant against τ . This is not observed here due to the
small mean shear rates. We also report the local Reynolds number Reλ = u′λ/ν along
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Figure 20: Turbulence intensity profiles u′/U∞ for (a) grid 1 (square), (b) grid 2 (circle),
and (c) grid 3 (triangle). Empty symbols are vertical profiles measured at x = 0.83m and
x = 4.13m. Cross symbols are streamwise profiles measured at given y location. Dashed
red lines are predictions calculated using the vertical profile and centerline profile.

the x direction, where ν is the kinematic viscosity. Their values decrease monotonically
for grid 1 and grid 2. For grid 3, a mild increase after x = 2.5m is observed, which
corresponds to its higher turbulence intensity u′ (see figure 8 a), and the larger value
of λ (see figure 21 a). This is in agreement with the observation of Nedić & Tavoularis
(2016) where they showed an increase of Reλ after τ∗ > 4.5.

Along the shear direction y, Rose (1966) reported decreasing values of λ with increasing
local mean velocity, whereas Champagne et al. (1970) showed roughly constant values of
λ along the shear direction. The shear rates of the two cases are similar, i.e. ∂U/∂y =
13.6 s−1 and 12.9 s−1, respectively, so it seems the shear rate is not the reason for this
difference. Note however, Rose (1966) used wire gauze with different spacings along the
shear direction as a generator, while Champagne et al. (1970) used parallel plates with
equal spacing but different local blockage ratios to generate the shear flow. There are no
more data available for a more comprehensive conclusion, but the current study is similar
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Figure 21: Streamwise profiles of (a) Taylor microscale λ, and (b) local Reynolds number
Reλ for grid 1 (square), grid 2 (circle) and grid 3 (triangle) at y = 0.25m (white),
y = 0.46m (grey) and y = 0.66m (black).
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Figure 22: Taylor microscale λ profiles for grid 1 (square), grid 2 (circle) and grid 3
(triangle) along the y direction at x = 0.83m (filled symbols) and x = 4.13m (empty
symbols).

to that of Champagne et al. (1970), in that the layer height is constant with varying local
blockage ratios, and therefore it might be expected to have a roughly constant y-profile
of λ. The results of the Taylor microscale λ along the y direction at x = 0.83m and
x = 4.13m are given in figure 22, and it indeed seems roughly constant.

3.7. Flow isotropy

Having shown the streamwise development of turbulence intensities and length scales,
we now examine the isotropy of the flow. Some of the results are given in table 5
at different x locations along the centerline at y = 0.46m. The small scale isotropy
indicator (∂v/∂x)2/(∂u/∂x)2 seems to suggest that the flow is anisotropic as the ratio
is much smaller than the isotropic value of 2, even though they are increasing along the
x direction. These results are in agreement with previous observations made by Shen &
Warhaft (2000) and Schumacher (2001).
It is interesting that the results close to the grid suggest large scale isotropy of the

flow such that Luu,x/Lvv,x = 2, but u′/v′ ≈ 1.4 on the other hand. These values are
maintained best by grid 3 if we compare the values at different streamwise locations in
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Grid 1 Grid 2 Grid 3

x(m/s) 0.83 2.33 4.13 0.83 2.33 4.13 0.83 2.33 4.13
x/H 0.91 2.55 4.52 0.91 2.55 4.52 0.91 2.55 4.52
U/U∞ 1.006 1.012 1.011 1.004 1.004 0.996 0.999 0.987 0.979
u′/U∞ 0.07 0.031 0.021 0.068 0.031 0.021 0.070 0.033 0.025
Reλ 153.4 119.3 111.4 143.6 104.1 80.06 142.3 119.3 111.4

−uv/u′v′ 0.199 0.065 0.095 0.159 -0.053 -0.131 0.102 -0.166 -0.296

(∂v/∂x)2/(∂u/∂x)2 0.941 1.071 1.091 0.938 1.074 1.091 0.963 1.099 1.129
u′/v′ 1.41 1.37 1.39 1.40 1.37 1.36 1.44 1.42 1.46

Luu,x/Lvv,x 2.12 1.84 1.58 1.98 1.89 1.67 1.96 1.94 2.12

Table 5: Summary of centerline turbulence characteristics at different streamwise
locations for different grids at ReD = 8500 based on the width of the vertical grid
bar.

table 5. Intuitively, the shearing stress is expected to strain the large scale structure
along the mean shear direction and impose anisotropy to the flow, which seems to
counter our observation that Luu,x/Lvv,x = 2. Similar observations have been reported
before, for example Rose (1966) showed Luu,x/Luu,y = 2 and u′/v′ ≈ 1.5 in a turbulent
shear flow generated by a parallel wire grid, and Tavoularis & Corrsin (1981) reported
Luu,x/Lvv,x = 4.34 with u′/v′ ≈ 1.4 in a parallel plate generated turbulent shear
flow. These observations seem to suggest that the ratio of Luu,x/Lvv,x and u′/v′ reflect
different aspects of anisotropy of the flow, and do not need to take their isotropic values
concordantly.

3.8. Transverse homogeneity

The transverse homogeneity of the shear flow is discussed in this section. The mean
velocity and turbulence intensity profiles are given in figure 23 (a) and (b), respectively,
measured at x = 0.83m (or x/H = 0.91, open symbols) and x = 4.13m (or x/H = 4.52,
filled symbols) across the center of the grid at y = 0.46m or y/H = 0.5. From figure 23
(a), it is observed that the transverse profiles of the streamwise mean velocity are more
homogeneous closer to the grid, whereas the vertical mean velocity is more homogeneous
further downstream (filled symbol with dashed line in the inserted figure). A sinusoidal
variation seems to be present for the streamwise mean velocity profiles measured at
x = 4.13m, and the profiles seem to be symmetric about the center plane z = 0m,
although the variations are all within 8%U∞. For the mean velocity profiles of V/U∞, the
sinusoidal variation is also observed symmetric about the center plane, and the amplitude
is smaller (within 5%U∞). The symmetry is due to the alignment of the vertical bars at
z = 0m, and might be reduced by arranging the vertical bars in a staggering pattern.

This symmetry is also observed in the transverse profiles of streamwise turbulence
intensity u′/U∞ at x = 0.83m, as shown in figure 23 (b) with open symbol and
solid line. Nevertheless, the variation of the turbulence intensity is within 1%U∞. The
transverse profiles of v′/U∞ seems to be more homogeneous in all cases. We therefore
further quantify the homogeneity of the streamwise properties in the transverse direction,



27

-0.3 -0.2 -0.1 0 0.1 0.2

0.8

0.85

0.9

0.95

1

1.05

x=0.83m, Grid 1
x=0.83m, Grid 2
x=0.83m, Grid 3
x=4.13m, Grid 1
x=4.13m, Grid 2
x=4.13m, Grid 3-0.2 0 0.2

-0.06
-0.04
-0.02

0
0.02
0.04

(a)

-0.3 -0.2 -0.1 0 0.1 0.2
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08(b)

Figure 23: Transverse profiles of (a) mean velocity U/U∞ (symbols with solid line)
and V/U∞ (inserted figure, symbols with dashed line); (b) turbulence intensity u′/U∞

(symbols with solid line) and v′/U∞ (symbols with dashed line) across the center of the
grid where y/H = 0.5.

referring to the criteria proposed by Corrsin (1963), namely

∂Lu/∂z ≪ 1, (3.10a)

(Lu/λ)∂λ/∂z ≪ 1, (3.10b)

(Lu/u2)∂u2/∂z ≪ 1. (3.10c)

The results are given in figure 24 for measurements taken at x = 0.83m (open symbols),
and x = 4.13m (filled symbols).
The values of the homogeneity criteria, as shown in figure 24, are all smaller at the

streamwise location closer to the grid. The values calculated at x = 0.83m are all within
±0.05 as seen in figure 24 (a-c). These figures suggest that the transverse homogeneity
of the shear flow is better at x = 0.83m, or x/H = 0.91, which is a nice trait as the
turbulence intensity level is higher in this region.

4. Conclusions

In this paper we proposed a new class of inhomogeneous multiscale grids, and examined
the turbulent shear flows generated by these grids using hot-wire anemometry. There are
three major conclusions from the shear flows generated by these grids:

(i) Generation of a desired mean velocity profile is possible by optimizing the blockage
ratio profile σn, while maintaining a constant CD profile of the vertical bars. The drag
coefficient of the vertical bars was found to affect the mean velocity profiles significantly,
and it is therefore important to maintain a constant CD. The mean velocity model after
Taylor et al. (1949) and McCarthy (1964) based on the local blockage ratio σn was shown
to agree with our measurements, with mean shear rates of 0.29 s−1, 2.97 s−1, and 4.99 s−1

for grids 1, 2, and 3, respectively. The maximum possible mean shear rate generated by
these grids depends on the size of the test facility as the maximum local blockage ratio
is always constrained by σn < 0.4.
(ii) High turbulence intensities can be generated simultaneously with the desired mean

velocity profile. The maximum turbulence intensities generated by the present grids are
of the order 10%U∞, which is much larger than those generated by previously reported
passive shear generators, and it seems possible to prescribe the shape of the turbulence
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Figure 24: Homogeneity of the transverse profiles for grid 1 (square), grid 2 (circle), and
grid 3 (triangle) at x = 0.83m (or x/H = 0.91, open symbols) and x = 4.13m (or
x/H = 4.52, filled symbols) across the center of the grid at y/H = 0.5.

intensity profile. From the scalings proposed by Gomes-Fernandes et al. (2012), and
by considering the non-uniform convection velocity, it was shown that at a streamwise
location x = xm such that xm/xpeak

∗ > 1 (xm/H = 0.9 for the current cases), the y-

profiles of turbulence intensity u′(y) scale as (u′/Un)
2β2(CDwn/x

peak
∗,n )−1 ∼ (xm/xpeak

∗,n )b,
where β = 2.88 is a constant, Un is the local (in y or equivalently n) mean velocity, and b
is a power law constant. Based on this scaling relation, it seems possible to optimize the
grid geometry to produce a desired shape of turbulence intensity profile. From the mean
velocity model and the scaling of turbulence intensity, a general approach to the design
of multiscale inhomogeneous grids is proposed and briefly discussed in section 3.3. The
methodology can be improved by adding more constraints to the optimization problem,
as new results of such experiments emerge.
(iii) For a given grid, the generated turbulence field can be described using one center-

line measurement along the streamwise direction and one vertical profile at x/xpeak
∗ > 1.

For the current study, the proposed model successfully predicts the y-profiles of u′ at
different x locations up to x/H ≈ 2.5 for all cases as shown in figure 20. The evolution
of various flow characteristics included in the model was also studied and compared with
previous literature.
There are some other interesting observations of the shear flows generated by these

multiscale grids such as the spectra, as briefly discussed in the appendix. In terms of
future work, the potential of the grid design method should be explored further to
establish the range of turbulent shear flows that can be produced. The special case of
homogeneous turbulent shear flows could be attempted with our grid design method
because of the long standing fundamental interest in such flows. Due to the small
mean shear rate, the dimensionless time scale ranges from τ = 0 to 2.3. So it is also
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Figure 25: Turbulence spectra E11(k) at four x locations (0.83m, 2.13m, 2.93m and
3.83m) along the centerline at height y = 0.46m for grid 1 (a, b, c), grid 2 (d, e, f), and
grid 3 (g, h, i), compensated for η, λ, and L, respectively.

interesting to extend the range of measurement to larger dimensionless time scale τ ,
where the development of various turbulence characteristics and length scales could be
further examined. This can be achieved by either extending the measurement distance
or increasing the mean shear rate. Measurements with multiple hot-wires will also help
to understand the neglected terms in the turbulent kinetic energy model. Such studies,
if successful, would provide another option to design a shear flow with desired mean
velocity and turbulence intensity profiles, which will benefit both fundamental studies
and a wide range of practical applications.

The authors gratefully acknowledge the support from Marie Curie FP7 through the
MULTISOLVE project, grant number 317269. JCV also acknowledges support from ERC
Advance Grant 320560.

Appendix A. Spectra

The spectra for all three grids are presented here at four streamwise locations for
reference, namely x = 1.13m, 2.03m, 2.93m, 3.83m. The Reynolds number is in the
range of 70 < Reλ < 190. First of all, considering grid turbulence, the one dimensional
spectra are expected to collapse at corresponding range when normalized with Luu,x, λ,
and η, respectively. Figure 25 shows the spectra measured at different x locations along
the centerline at height y = 0.46m. It shows that the spectra collapse well in the small
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Figure 26: Turbulence spectra E11(k) at several y locations compensated for L at (a)
x = 0.83m, and (b) x = 4.13m.

wave number range when normalized with L, and in the large wave number range when
normalized with η. This is consistent with those conclusions for homogeneous isotropic
turbulence.

It is also observed from figure 25 such that for all scaling methods, the quality of
collapse improves from grid 1 to grid 3, and it is interesting that for grid 3, the integral
length scale Luux seems to collapse the spectra at all wave numbers. The reason for this
is not exactly clear.

When the spectra of grid 3 at different y locations are plotted together, as shown
in figure 26, the collapse is not observed even when compensated using the longitudinal
integral length scale Luu,x, and the difference seems to increase with streamwise distance.
These observations suggests the dependency of E(k) on the initial conditions of the grid,
but this dependency cannot be quantified at the moment.
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