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Abstract

Between streamwise distances 4d and at least 10d in the planar turbulent wake of a square

prism of side length d, the turbulent fluctuating velocities are highly non-Gaussian, the turbulent

energy spectrum has a close to -5/3 power law range and the turbulence dissipation rate obeys

the non-equilibrium dissipation scaling if the energy of the coherent structures is not included in

the scaling. In this same range of streamwise distances, the coherent structure dissipation rate

decays proportionally to the stochastic turbulence dissipation rate and there is a strong tendency

of alignment/anti-alignment between fluctuating velocities and fluctuating vorticities which appears

to coincide with the presence of coherent structures.
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I. INTRODUCTION

The past decade has seen the emergence of a new turbulence dissipation scaling which is

common to many turbulent flows [see 1, 2]. This scaling is

Cε ∝
√
ReI
Reλ

, (1)

where

Cε ≡ ε
L
U3

. (2)

In eq. (1), ReI is an inlet/global Reynolds number and Reλ is the Taylor length-based local

Reynolds number. In eq. (2), ε is the mean turbulent dissipation rate while L and U are

respectively length and velocity scales associated with the largest turbulent eddies.

The scaling eq. (1) has been found in important regions of various turbulent flows which

extend over a number of turnover times and where well-defined −5/3 energy spectra ex-

ist: grid-generated turbulence (both fractal/multiscale and regular grids) [3–7], turbulent

boundary layers [8], axisymmetric wakes [9–11], round and planar jets [12, 13] and periodic

turbulence, both forced and decaying [14]. In some of these flows, specifically grid-generated

turbulence and decaying periodic turbulence, Cε has been seen to become constant quite

abruptly far enough downstream, but the Direct Numerical Simulation (DNS) of [15] have

shown that this constant Cε is not a reflection of Kolmogorov equilibrium (in relation to

which a constant Cε is typically established) but of a balanced non-equilibrium.

The purpose of the present paper is not to study what happens very far downstream

where one might expect a transition to a Kolmogorov equilibrium constant Cε in some cases

(for example in the case of planar jets where the local Reynolds number grows rather than

decays with downstream distance) but to study how upstream the region where eq. (1)

holds can be. The present study differs substantially from the studies listed above because

the focus is on a flow region where the fluctuating velocities are highly non-Gaussian and

because some special attention is given to coherent structures. In fact, as seen below, the

intense presence of coherent structures warrants careful definition of the velocity scale used

to define Cε.

A number of studies over the past five years have reported very well-defined −5/3 energy

spectra in the very near-fields of grid-generated turbulence [6, 16–21] and planar turbulent

wakes [22]. In all these cases the −5/3 energy spectra are present in near-field regions where
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the turbulent fluctuating velocities are non-Gaussian and characterised by intense large-scale

intermittency between potential and vortical flow. Given that the non-equilibrium turbu-

lence dissipation scaling eq. (1) exists in flow regions with well-defined -5/3 energy spectra,

could it be that this scaling already exists at distances which are so close to the generat-

ing source of the turbulence (e.g. grid, bluff body, jet nozzle) that turbulent fluctuating

velocities are non-Gaussian? This is the primary question of this paper. It is addressed by

analysing DNS data of a turbulent planar wake generated by a square prism [22]. Our anal-

ysis focuses on the centreline near-field region between the square prism and a streamwise

distance 10d from the prism where d is the length of each side of the prism.

The second objective of this paper concerns the dissipative role of coherent structures.

Goto and Vassilicos [15] argued that the non-equilibrium dissipation scaling eq. (1) may

be the result of some sort of locking between the dissipation rate of the large-scale coher-

ent structures and the dissipation rate of the random turbulence fluctuations. Specifically,

they proposed that eq. (1) holds in flow regions where the influence of large-scale coherent

structures is felt and where the dissipation associated with those structures (ε̃) evolves as a

constant fraction of the stochastic turbulence dissipation (ε′), i.e. ε̃/ε′ = const. Our second

objective is to check whether this sort of balance is present in the region where we may de-

tect eq. (1), and perhaps also find some other complementary or related effects of coherent

structures on the turbulence in this region.

In this paper we study data obtained by Alves Portela et al. [22] in their DNS of the

turbulent planar wake of a square prism with inlet free-stream velocity U∞ such that ReI ≡
U∞d/ν = 3900 (ν is the fluid’s kinematic viscosity). We refer to Alves Portela et al. [22]

for details of this DNS. Our study focuses on the turbulence dissipation and distinguishes

between the coherent and stochastic parts of the fluctuating flow. In section II we briefly

explain how this distinction is made and document the non-Gaussianity of the flow. In

section III we address our primary objective and study the turbulence dissipation in terms

of Cε and of the triple decomposition introduced in section II and in section IV we address

our secondary objective and explore the influence of the coherent motions on the turbulence

dissipation. We conclude in section V.
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II. TRIPLE DECOMPOSITION AND NON-GAUSSIANITY OF THE FLOW

Coherent structures created by bluff bodies are easily identifiable through their periodic

(or quasi-periodic) temporal signature, similar to the Kármán-street for laminar flows [23,

24]. The task of extracting these structures is therefore rather simple, in contrast to other

types of coherent structures with no such temporal signature. As proposed by Reynolds and

Hussain [25], Hussain and Reynolds [26], under such circumstances one can decompose the

velocity and pressure signals into their mean (U, P ), phase (ũ, p̃) and stochastic (u′, p′)

components. The turbulent fluctuating velocity is u = ũ + u
′. The operation 〈〉 is used to

indicate time averaging (e.g. 〈u〉 = 0) and {} is used to indicate phase phase averaging (e.g.

{u} = ũ). The properties of the time and phase averaged signals can be found in Reynolds

and Hussain [25].

The phase averaging is carried out by conditionally sampling the data based on a reference

phase [27]. In the present work, a Hilbert transform was applied to the time signal of the lift

coefficient. This yields a reference phase φ(t) associated with the vortex shedding because

oscillations in the force coefficients are related to the formation and departure of large scale

structures from the vortex formation region. In order to obtain phase averaged quantities

from our (discrete) data, it was necessary to bin φ(t) and then carry out a conditional

averaging; the phase angle was discretised into 32 segments such that each time instant is

associated with a phase φ = −π + n2π
32

, where 0 < n < 31. Both the time and the phase

averaging procedures involve averaging in the spanwise direction (normal to the plane of the

average wake flow) in order to improve statistical convergence.

The resulting phase-averaged lift and drag coefficients C̃L and C̃D, respectively, are shown

in fig. 1. Notice that C̃L follows a sine curve respecting the symmetry C̃L(φ) = −C̃L(φ+ π)

and that C̃D, albeit also periodic, displays the symmetry C̃D(φ) = C̃D(φ + π) without

following a cosine or sine wave.

Iso-vorticity contours and streamlines of the phase-averaged fluctuating velocity field ũ

in the plane of the mean flow are shown in fig. 2. The phase-averaged flow field displays

a structure similar to that of the Kármán vortex street [as highlighted in 23] where the

alternating vortices display opposite circulation. In fig. 2 lines of constant vorticity are

overlaid onto streamlines and indicate the presence of vortical coherent structures [28, 29] in

the fluctuating velocity field u. This coherent structures make the phase-averaged fluctuating
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Figure 1: Evolution of C̃L and C̃D along the phase φ normalised by π.

Figure 2: Iso-vorticity (black lines) and streamlines of the phase-averaged fluctuating

velocity field (colour coded, blue for negative spanwise vorticity and red for positive

spanwise vorticity) in the streamwise-transverse plane of the flow for an arbitrary phase.

The arrow indicates the direction of the free-stream velocity.

velocity field ũ. The difference between the two velocity fields is the stochastic velocity field

u
′.

Taking x1 to be the coordinate along the streamwise direction, i.e. the direction of the

arrow in fig. 2, the data available to us from the DNS of Alves Portela et al. [22] extend

up to x1/d = 10, the origin x1 = 0 being at the centre of the square prism. The centreline

is in the streamwise direction and crosses the square prism exactly through the middle. In

fig. 3 one can see the probability density functions (pdf) of fluctuating velocity components

5



u1 (in the streamwise direction), u2 (in the cross-stream direction) and u3 (in the spanwise

direction normal to the plane of fig. 2) and the pdfs of the stochastic fluctuating velocity

components u′
1
≡ u1 −{u1} and u′

2
≡ u2 −{u2} (u′

3
= u3 because {u3} = 0) at five different

positions along the centreline. Clearly, u1 and u′
1

are near-Gaussian at x1/d ≥ 4 but not

at x1/d = 2 and u2, u′
2

and u3 are very non-Gaussian for all x1 ≤ 10 on the centreline.

The non-Gaussianity of u2 may be traced back to the coherent structures as the double

peaked pdf of u2 arises from the strong cross-stream perturbations in the velocity of the

fluid in-between vortices. Notice, however, that u3 is far from Gaussian even though it has

no component associated with the coherent structures.

Alves Portela et al. [22] reported a well-defined −5/3 dependency on frequency of energy

spectra at x1/d = 2 over nearly one decade in this flow. They also reported power law

dependencies on frequency of energy spectra at x1/d > 2 (their analysis did not extend

beyond x1/d = 10) but with power law exponent very slightly steeper than −5/3, yet very

close to −5/3 (see their figures 9 and 10). In the following section we study the dependence

of Cǫ on Reλ in the near-field region x1/d ≤ 10 where the turbulence is demonstrably non-

Gaussian and has energy spectra with close to −5/3 frequency scalings at x1/d ≥ 2. The

turbulence dissipation scaling eq. (1) has been reported in axisymmetric wakes in the range

10 ≤ x1/d ≤ O(100) [10, 11] and planar jets in the range 20 ≤ x1/d ≤ O(100) [13] where

d is the size of the wake generator in the case of the wake and the size of the nozzle exit

in the case of the jet. This is the first time that the turbulence dissipation scaling is being

investigated in the very near-field x1/d ≤ 10 where the turbulence fluctuations are clearly

documented to be very non-Gaussian.
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Figure 3: Pdfs of ui = ũi + u′
i (in (a), (c) and (d), with i = 1, 2, 3, respectively) and u′

i (in

(b) and (e), with i = 1, 2, respectively) at x1/d = 2, 4, 6, 8 on the geometric centreline. The

pdfs are offset by a decade between consecutive locations. The full lines show a Gaussian

fit to the data.
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III. COHERENT MOTIONS AND NONEQUILIBRIUM DISSIPATION

A. Energy and dissipation decompositions

One of the properties of the decomposition discussed above [see 25, for further details]

is that the mean turbulent kinetic energy k = 1

2
〈uiui〉 is given by the sum of the coherent

and stochastic components k̃ = 1

2
〈ũiũi〉 and k′ = 1

2
〈u′

iu
′
i〉, respectively. Likewise, the mean

turbulent dissipation ε = ν〈 ∂ui

∂xj

∂ui

∂xj
〉 is given by the sum of the coherent and stochastic

components ε̃ = ν〈 ∂ũi

∂xj

∂ũi

∂xj
〉 and ε′ = ν〈 ∂u

′

i

∂xj

∂u′

i

∂xj
〉, respectively. These are shown in fig. 4 along

the geometrical centreline of the wake.

From fig. 4, it is clear that the coherent motions contribute the largest portion of k.

However, both k̃ and k′ are of comparable magnitude throughout the region investigated

here, even though k̃ has a steeper decay in the direction of the mean flow in comparison to

k′. Hussain [28], Hussain et al. [30] have made similar observations, albeit at much larger

distances from the wake generator.

Notice that while the energy contents of the coherent and stochastic motions are of

comparable magnitudes, the dissipations associated with each of those motions, ε̃ and ε′

respectively, are drastically different, and in fact ε̃ ≪ ε′ in agreement with Hussain [28],

Hussain et al. [30].
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Figure 4: Stochastic and coherent contributions to the turbulent kinetic energy

(normalised by U2

∞) and turbulent dissipation (normalised by U3

∞/d).
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B. Turbulence Dissipation Scaling

The definition of Cε given in eq. (2) involves a large scale characteristic velocity U and a

large scale characteristic length L, see table I. We define a Taylor length-scale λ in terms of

U as follows

λ =

√

15ν
U2

ε
(3)

and the corresponding Taylor length-based Reynolds number is

Reλ =
Uλ
ν

. (4)

This definition of λ is identical to the formula given by Taylor [31] for isotropic turbulence

if U ≡
√

〈u2

1
〉. We return to our choice of definition of λ at the end of this section.

From eq. (2) and eq. (3) it immediately follows that L/λ ∼ CǫReλ. Given that all the

quantities in this relation are local in space, it implies, in particular, that L/λ and CǫReλ

vary in the same way along the centreline of the flow. To check what these variations are

we need to define L and U .

Following Taylor [31], L should be an integral length scale such as

Lij =
1

〈u′
i(x, t)

2〉

∞̂

−∞

〈u′
i(x, t)u

′
i(x+ ξej, t)〉dξ, (5)

where there is no summation over repeated indices and ej is a unit-vector in the direction

measured by xj . Practical usage of eq. (5) is impaired by the fact that the autocorrelations of

the different velocity components reach zero only at very large ξ especially when ej is aligned

with the cross-stream and span-wise directions, as is indeed the case in our simulations. If

ej is aligned with the free-stream direction, i.e. j = 1, the extent of the domain over

which Li1 can be computed is limited between x1/d = 3 and x1/d = 8. In this part of the

computational domain it was possible to compute these length scales by taking the limits of

the integral in eq. (5) to be the first zero crossings of the integrand. We calculated U1Θu′

1

divided by Li1 for i = 1, 2, 3 on the part of the centreline where the integral scales Li1 were

computable; U1Θu′

1
is the product of the mean streamwise velocity and the integral time

scale associated with u′
1
, i.e.

Θu′

1
(x) =

1

〈u′
1
(x, t)2〉

∞̂

0

〈u′
1
(x, t)u′

1
(x, t+ τ)〉dτ. (6)
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The ratios U1Θu′

1
/Li1 were found to be roughly constant for any i in the range 4 < x1/d <

8: they do not follow any clear trend with x1/d and depart, on average, from their constant

mean values by no more than 6.4% (see Table I). Hence, making the choice L = U1Θu′

1

affects the computation of Cε only in terms of its values but not in terms of its dependence

on x1/d because the evolution of U1Θu′

1
with x1/d closely coincides with that of Li1 (for all

i). Furthermore, U1Θu′

1
can be calculated throughout our domain whereas Li1 cannot. In

the remainder of this paper we have therefore set L = U1Θu′

1
.

The first natural candidate for our choice of U is U = k
1

2 . This choice was found to lead

to Cε and Reλ being both approximately constant on the centreline region x1/d & 4, i.e. just

downstream of the vortex formation region. The product CεReλ is therefore also constant

in this region, as reported in table I, and it is impossible to distinguish between Cε = Const

and Cε ∼ Re−1

λ . The constancy of Cε, Reλ and CεReλ in the range 4 < x1/d < 10 was found

to be within 3% to 5% of their respective mean values over this range. This, of course,

neither confirms nor invalidates anything since one needs Reλ to vary along x1/d in order

to conclude on the behaviour of Cε.

Recall from fig. 4 that k̃ decays at a faster rate than k′ along the centreline of the wake.

This suggests that Reλ ≈ const may be a result of our choice of U . Indeed, the difference

between the decays of k̃ and k′ with x1/d was found to be mostly caused by 〈ũ2

2
〉 which is

much larger and decays faster than 〈u′2
2
〉. Thus, the observation that both Cε and Reλ are

approximately constant may be a result of choosing a velocity scale which is heavily affected

by the vortex shedding.

The natural candidate for our choice of U if we want to disregard vortex shedding effects

is U = k′1/2. In fact, any large-scale velocity scale U which does not include
√

〈ũ2

2
〉 is

equally well suited to the task given that 〈u2

1
〉/k′1/2, 〈u2

3
〉/k′1/2 and 〈u′2

i 〉/k′1/2, for all i, are

approximately constant for x1/d & 4 (see fig. 5). Each one of these ratios varies by less than

2% of their respective mean in that range.

The values of Cε and Reλ resulting from U = k′1/2 are plotted in fig. 6 as functions of

streamwise distance from the prism along the centreline. The local Reynolds number Reλ

and the dissipation coefficient Cε now vary significantly with x1/d, the former increasing

and the latter decreasing with growing x1/d from about x1/d & 2. In fact, as shown in

fig. 7, the product CεReλ is approximately constant in the range 4 . x1/d . 10, i.e. from

just downstream of the vortex formation region to the end of our database. The average
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Quantity Mean value Standard deviation Average departure from mean

U1Θu′

1
/L11 0.17 0.01 5.8%

U1Θu′

1
/L21 0.32 0.02 5.1%

U1Θu′

1
/L31 0.77 0.06 6.4%

Cε with U =
√
k 0.016 0.001 4.7%

Reλ with U =
√
k 717.7 24 2.9%

CεReλ with U =
√
k 11.2 0.5 3.6%

λ11/λ 1.4 0.03 1.9%

λ12/λ 0.97 0.02 1.4%

λ13/λ 0.98 0.04 3.5%

λ21/λ 2.1 0.06 2.4%

λ22/λ 2.8 0.12 3.3%

λ23/λ 2 0.13 5.7%

λ31/λ 0.62 0.02 2.1%

λ32/λ 0.57 0.02 3.3%

λ33/λ 0.78 0.02 2.9%

L/λ11 0.86 0.07 5.9%

L/λ22 0.44 0.02 3.9%

L/λ23 0.61 0.03 4.1%

L/λ 1.23 0.07 4.4%

Table I: Mean values of quantities found to be approximately constant in the range

4 < x1/d < 10 (with the exception of the first three entries for which the mean values are

calculated in the range 4 < x1/d < 8). The reported standard deviations and average

departure from the mean relate to the spatial evolution (along x1) of the respective time

averaged quantities. λ, given by eq. (3), was computed with U =
√

〈u2

1
〉.

deviation of CεReλ from its mean value in the range 4 ≤ x1/d ≤ 10 is about 4% (in fact, the

difference between CεReλ at x1/d = 4 and x1/d = 10 is about 1% of the mean value in that

range), whereas in fig. 6, the deviations of Cε and Reλ from their mean values in the same

range is about 9% and 13%, respectively, with Cε decreasing with x1 whereas Reλ increases.
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Figure 5: Ratio between different definitions of the velocity scale U and the mean

turbulent kinetic energy associated with the stochastic motions.
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Figure 6: Evolution of Cε and Reλ along the centreline using U = k′1/2.

We can therefore safely conclude that Cε ∼ Re−1

λ holds in the near-field 4 . x1/d . 10 if U
is defined in a way which does not significantly involve the large-scale coherent structures.

Even though the streamwise extent of our database may appear to be relatively small, it

does cover a significant number of eddy turnover times

#e.t. =

xb
ˆ

xa

U−1

1

U
Ldx (7)

where xa and xb are two different streamwise locations along the centreline of the flow and
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Figure 7: Evolution of CεReλ along the centreline using U = k′1/2.

U = k′1/2. For xa/d = 2 and xb/d = 4 one has #e.t. ≈ 2.7 while for xa/d = 4 and xb/d = 10

(the furthest location available in our database) one has #e.t. ≈ 7.3. This inspires confidence

in the relevance of Cε ∝ Re−1

λ , which is seen in our simulation (fig. 7) in a region of space

which may appear small but nevertheless represents a considerable number of eddy turnover

times.

At the beginning of this section the Taylor length λ was defined by eq. (3). This definition

was used to calculate Cε and Reλ with U = k1/2 in table I and with U = k′1/2 in fig. 6 and

fig. 7. One can ask how our conclusion that Cε ∼ Re−1

λ might change if we were to chose a

different definition for the Taylor length, for example any of the following λij defined as

λij =

√

√

√

√

2〈u2

i 〉

〈
(

∂ui

∂xj

)2

〉
(8)

without summing over repeated indices.

The different estimates λij of the Taylor length were computed and compared to the

isotropic estimate λ given by eq. (3). The ratios λij/λ were found to be approximately

constant in the range 4 . x1/d < 10, as reported in table I. Even though the different

scales given by eq. (8) do not satisfy isotropy (i.e. λ11 6= λ22 6= λ33 and λ12 ≈ λ13 6= λ21 ≈
λ23 6= λ31 ≈ λ32 and also λ11 6= 2λ12, λ11 6= 2λ13), all combinations of i and j used in eq. (8)

consistently appear to be approximately proportional to λ in the range 4 . x1/d < 10. We in

fact confirmed that use of λij instead of λ in the calculation of Reλ leads to plots qualitatively

similar to fig. 6 and fig. 7 and that CεReλ remains constant in the range 4 . x1/d < 10
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within the same degree of confidence as when λ is used. This is confirmed by the constancy

of the ratios L/λij which, as shown in table I, are only different in magnitude, remaining

practically constant with growing x1/d for x1/d & 4.

This section’s conclusion is that, for the inlet Reynolds number ReI = 3900 considered

here, eq. (1) holds in the near-field range x1/d ≈ 4 to x1/d = 10 where the turbulence is

highly non-Gaussian provided that the velocity scale U characterising the turbulence fluctu-

ations does not include any significant contribution from the large-scale coherent structures.

Other than this, there seems to be no restriction on the choice of L and the Taylor length-

scale. The different choices of these length-scales that we were able to test only changed the

constant of proportionality in eq. (1) but not significantly the functional dependence.

IV. LINK BETWEEN COHERENT AND STOCHASTIC MOTIONS

Goto and Vassilicos [15] argued that the non-equilibrium dissipation scaling Cε ∼ Re−1

λ

may result from a locking between the dissipation rates of the coherent and the stochastic

turbulent motions. Even though ε̃ is much smaller than ε′, in the present case about 40 times

smaller, Goto and Vassilicos [15] hypothesised that the ratio between these two quantities

may remain about constant during some of the evolution of the turbulence, i.e. along some

of the streamwise direction in the present case, and argued that this constancy is the cause

behind the scaling Cε ∼ Re−1

λ . In fig. 8 we plot ε′/ε̃ along the centreline and find that

this ratio is indeed approximately constant from x1/d ≈ 4 to x1/d = 10, i.e. nearly exactly

where we also demonstrate the validity of Cε ∼ Re−1

λ for the present data. Whilst we cannot

establish a causal relation between the constancy of ε′/ε̃ and Cε ∼ Re−1

λ at this stage, it

does certainly appear that both hold over the same range of streamwise distances in our

flow. A related observation has already been made in a DNS of decaying turbulence in a

periodic box by Goto and Vassilicos [15].

The dissipation of the stochastic turbulent fluctuations results from a nonlinear cascade

of turbulent kinetic energy. If it is somehow locked to the dissipation of the coherent fluc-

tuations then one should be able to see an effect of these fluctuations on the stochastic

motions. Such an effect and the proportionality between ε′ and ε̃ require a full study of

their own which is beyond this paper’s scope. However, we close this work by providing

in the following two figures a few suggestive results along these lines which we hope will
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Figure 8: Ratio between the dissipation ε′ associated with the stochastic component and

the dissipation ε̃ associated with the phase component as function of x1/d on the centreline.

stimulate further study.

The non-linearity in the Navier-Stokes equations is essentially the Lamb vector ω × u

(where ω ≡ ∇×u) because u ·∇u can be decomposed into this vector and the gradient of

|u|2/2. The Reynolds stress term appears in the Reynolds Averaged Navier-Stokes (RANS)

equation as the average of the Lamb vector plus the gradient of the average of |u|2/2 which

can therefore be subsumed into the pressure. The Lamb vector is therefore responsible for

the turbulence effects on the mean flow and for the non-linear cascade which causes these

fluctuations to dissipate.

It is simpler to look at the helicity h = u · ω and in particular the relative helicity

ĥ =
h

||u|| · ||ω|| = cos(∠ (u,ω)) (9)

which are both scalars, rather than the Lamb vector. This is what we do to end this paper

because values close to ±1 of the relative helicity translate into zero Lamb vectors, i.e. to

depletion of non-linearity, turbulence cascade and turbulence dissipation and also depletion

of the turbulence damping term in the RANS equation. The relative helicity contains the

part of h which depends solely on the alignment between the fluctuating velocity u and the

fluctuating vorticity ω. Under the decomposition introduced in section II one can see that

h is the sum of four contributions, h = hss + hcc + hcs + hsc where

hss = u
′ · ω′ (10a)
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hcc = ũ · ω̃ (10b)

hcs = ũ · ω′ (10c)

hsc = u
′ · ω̃. (10d)

Each one of these four quantities has an associated relative helicity defined in a similar

way as eq. (9). Zhou et al. [20] reported interesting results on the helicity and relative

helicity along the centreline of a single square grid flow which is mostly potential in the very

near-field and therefore very different from the present near-field and did not consider the

decomposition h = hss + hcc + hcs + hsc.

As in the previous section, our focus is only on the geometric centreline of the wake.

The mean values of eqs. (10a) to (10d) were found to be uniformly zero at all the points on

the centreline where we calculated these mean values. The standard deviation of hcc is zero

because hcc = 0 by construction and the standard deviation of hsc was found to be negligible

compared to the standard deviations of hss and hcs. Hence, 〈h2〉 ≈ 〈h2

cs〉+ 〈h2

ss〉.
Figure 9 shows the pdf of ĥ at different locations on the centreline. Very close to the

prism, the pdf of ĥ is approximately uniform. At x1/d ≈ 2 peaks start to develop at ĥ = ±1.

Further away from the prism these peaks become more pronounced and the pdfs become

clearly bimodal at x1/d & 4. Even though the dissipation decreases continuously with

distance to the prism (recall fig. 4) the ratio ε′/ε̃ acquires at x1/d & 4 the approximately

constant value that it keeps till x1/d & 10. The tendency of alignment and anti-alignment

between the vectors u and ω coincides with the constancy of ε′/ε̃.

The results shown in fig. 9 are similar to those of Rogers and Moin [32] when moving

from the buffer layer towards the symmetry plane of a turbulent channel flow. Even though

Rogers and Moin [32] argue that any link between coherent structures and h may be tenuous,

Hussain et al. [30] link the coherent structures observed near the symmetry plane of turbulent

channel flows to those observed in mixing layer. These structures are essentially spanwise

rollers similar to those found in the present flow.

The main contributions to 〈h2〉 are 〈h2

ss〉 and 〈h2

cs〉 and it is natural to ask whether the

alignment and anti-alignment between u and ω originates from an alignment and anti-

alignment between ũ and ω
′ or/and from an alignment and anti-alignment between u

′ and

ω
′. We checked that no particular alignment and anti-alignment exists between u

′ and ω̃.

To answer this question we plot in fig. 10 joint pdfs of ĥ and ĥss on the left and joint pdfs
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Figure 9: Pdfs of the relative helicity ĥ at different locations on the centreline.

of ĥ and ĥcs on the right at three centreline positions, x1/d = 2, 4, 10. These pdfs exhibit

clear peaks at (−1,−1) and (1, 1) (yellow colour) and appear concentrated along the bisector

of the first and fourth quadrants, indicating a significant degree of correlation between ĥ

and ĥcs on the one hand and between ĥ and ĥss on the other. However, contrasting figs. 10a,

10c and 10e to figs. 10b, 10d and 10f reveals that the latter are sharper. What is more, at

the peaks (i.e. at the pairs (−1, 1) and (1, 1)) the values of the joint pdf of ĥ and ĥcs are

at least twice as large as the values of the joint pdf of ĥ and ĥss. This suggests that the

coherent structures do indeed have an effect on the stochastic turbulence fluctuations, in fact

by organising them around themselves in a way which increases the likelihood of maximum

magnitudes of the relative helicities ĥcs, ĥ and even, to some extent, ĥss. We can therefore

conclude that the coherent structures do seem to cause a depletion of non-linearity which

can be expected to interfere with the turbulence cascade and, thereby, with the turbulence

dissipation, in a way which may be causing or contributing to the constancy of ε′/ε̃ observed

in the streamwise centreline region where we also observe the dissipation scaling Cε ∼ Re−1

λ .

Note that the near −5/3 energy spectra at these very positions of this exact same flow [22]

are present irrespective of this partial depletion of non-linearity.

17



�✶

�✵✿✺

✵

✵✿✺

✶

❫ ❤

✵ ✵✿✷ ✵✿✹ ✵✿✻ ✵✿✽(a) ✵ ✵✿✺ ✶ ✶✿✺ ✷ ✷✿✺(b)

�✶

�✵✿✺

✵

✵✿✺

✶

❫ ❤

✵ ✵✿✷ ✵✿✹ ✵✿✻ ✵✿✽ ✶(c) ✵ ✶ ✷ ✸(d)

�✶ �✵✿✺ ✵ ✵✿✺ ✶
�✶

�✵✿✺

✵

✵✿✺

✶

❫❤ss

✁ ✂

✵ ✵✿✺ ✶ ✶✿✺
(e)

�✶ �✵✿✺ ✵ ✵✿✺ ✶

❫❤❝s

✵ ✶ ✷ ✸
(f)

Figure 10: Joint pdfs of ĥ with both ĥss (left column) and ĥcs (right column). On the top

row x1/d = 2, on the middle row x1/d = 4 and on the bottom row x1/d = 10.
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V. CONCLUSION

We studied a near-field turbulent flow which is not only inhomogeneous, given its prox-

imity to the wake generator, but also anisotropic, including at the smallest scales. In fact we

have shown that the turbulence in the near-field we studied here is also highly non-Gaussian,

even the stochastic component of the turbulence on its own. Yet, Alves Portela et al. [22]

reported well-defined close to −5/3 energy spectra in this near-field region. Here we found

that the non-equilibrium dissipation scaling eq. (1) holds in this near-field range (x1/d ≈ 4 to

x1/d = 10) if the velocity scale U characterising the turbulence fluctuations does not include

any significant contribution from the large-scale coherent structures. Previous works have

revealed the presence of the non-equilibrium dissipation scaling eq. (1) without the need to

remove the coherent structure signature from the scaling quantities, in regions of evolving

turbulent flows where the turbulence was either documented to have large-scale Gaussianity

and small-scale isotropy or can reasonably be expected to have these two characteristics

(see references given in the introduction). This non-equilibrium dissipation scaling was even

previously found in time-evolving periodic turbulence which can be considered to be anal-

ogous to homogeneous turbulence. The only significant commonality between the present

near-field region and the regions where the non-equilibrium dissipation scaling eq. (1) was

found in previous studies is the presence of approximately −5/3 turbulent energy spectra.

Our near-field data support the hypothesis introduced by Goto and Vassilicos [15] that

the dissipation rates of the coherent and the incoherent fluctuations decay together as if

they were somehow locked to each other, i.e. that ε′/ε̃ remains about constant, in the region

where the dissipation scaling Cε ∼ Re−1

λ holds. This constant ratio suggests a link between

the large-scale coherent motions and the stochastic turbulence cascade. We attempted to

substantiate this notion by demonstrating a clear tendency for the fluctuating velocity field

to align/anti-align with the fluctuating vorticity field in this near-field region and that this

tendency is highly correlated with another tendency which is also present, alignment/anti-

alignment of coherent fluctuating velocity with stochastic fluctuating vorticity. However, this

is only an indicative beginning and a lot of work remains to be done to uncover the nature

of the interactions between large-scale coherence and turbulence cascade. The indications

are that these interactions may be responsible for the non-equilibrium dissipation scaling.
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