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Replication performance problem 



Replication has many components 
All are problematic, but one is the center of pain 
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What does SQL thread do? 
Read lots, then maybe a bit of something else 
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Why read so much time? 

▪  Too high slave read workload 

▪  Too expensive working set for slave reads 

▪  Too much cold data accessed by replication  

▪  Too many writes done 

▪  Too much data written/modified 



Solutions? 

▪  More hardware: 

▪  Sharding to reduce datasets 

▪  Flash storage to make reads cheap 

▪  Better software 

▪  Avoid reads in SQL thread 

▪  Smarter queries, tables, indexing, etc 

▪  Have more SQL threads! 



Efficient replication 



Replication data prefetching 

▪  Rewrite INSERT/UPDATE to SELECT? 

▪  Mk-slave-prefetch 

▪  Readahead.py with custom rules 

▪  DML works with multiple indexes – complication! 

▪  DML touches neighboring pages – showstopper! 

▪  Does not provide more than 50% reads coverage – 
limited to up to double replication performance 



Fake changes & faker 

▪  Don’t rewrite INSERT/UPDATE to 
SELECT! 

▪  innodb_fake_changes=1 

▪  Supports InnoDB and Blackhole only 

▪  High coverage, but not 100% 

▪  In Percona Server 

▪  4x faster replication with our workload 

▪  Lp:mysqlatfacebook/tools/faker 
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With fake changes on… 

▪  Same SQL gets executed 

▪  Same optimization paths are hit 

▪  Same index dives are done, data 
pulled 

▪  Page modification itself is skipped 

▪  No assertions violated! 



Prefetching issues 

▪  Additional benefits 

▪  Decompress needed pages 

▪  Precache relay logs too (for lagged replicas) 

▪  It has problems 

▪  Additional CPU overhead/cost 

▪  Incomplete coverage (optimistic paths become 
pessimistic in real execution) 

▪  Does not help with other replication bottlenecks 



Faster replication with faker 

with faker without faker 



Multi-Threaded-Slave!!! 

▪  Still learning, still problematic 

▪  No 5.1->5.6 path, faker mandatory for migration 

▪  Does what is expected, heavy sharding necessary 

▪  Does not help with single-shard avalanches 

▪  Assertion factory (in debug builds) 

▪  Shares lots of same bottlenecks as faker 

▪  Faster than faker for many workloads 



Other bottlenecks 



Query execution performance 

Query execution on CPU 

▪  Multiple instances or multi-threaded slave helps 

Global internals 

▪  MTS does not increase logging performance 

▪  Checkpointing causes global stalls 

▪  Multiple instances > MTS 

▪  Nearly linear scaling with multiple instances in some 
cases 



Binary log transfer 

Reading files 

▪  Locks binlog mutex [unless patched] 

▪  Does binlog/relaylog reads in 8k blocks [unless patched] 

Network transfer 

▪  Large window sizes needed [sysctl: net.*.*mem*] 

▪  Compression greatly improves log transfer QoS 

 



Write activity 

InnoDB checkpointing 

▪  Background checkpointing is a must (just “adaptive” doesn’t help) 

▪  See Bug#55004, probably fixed in 5.6 

Logging is expensive 

▪  InnoDB log flushing should not be 1 (use crash-safe slave instead) 

▪  Ditto for sync_binlog 

▪  Transaction logs need to stay in memory (Bug#69002) 

 



Live analysis 



Logical workload 

Replication profiling 

▪  Sample ‘system user’ thread in processlist, breakdown queries by 
various features 

▪  Slow query log analysis 

Server statistics 

▪  User stats for system user 

▪  Write metrics in table statistics 

▪  Buffer pool contents statistics 



Server operation 

PMP / Quickstack 

▪  Sampling just replication LWP is cheap enough 

▪  Gives much deeper picture of what is going on 

▪  Identifies main replication cost better than anything else 

Perf 

▪  CPU cost breakdown on replication thread 

▪  Can identify expensive query/workload features 
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