facebook

facebook

High performance replication
MySQL @ Facebook experiences

Domas Mituzas
Small data engineer

April 23, 2013

Replication performance problem

Replication has many components
All are problematic, but one is the center of pain

(Master 1 (Slave 1

Client threads InnoDB Binlog threads Slave /O
thread

InnoDB j [Binlog threads

A\
Slave SQL
thread

(Binary logs ’ ‘ Relay logs E Binary logs }

What does SQL thread do?

Read lots, then maybe a bit of something else

15%

-~

buf_read_page_low
“page_zip_decompress
other

79%

Why read so much time?

- Too high slave read workload

- Too expensive working set for slave reads

- Too much cold data accessed by replication
Too many writes done

Too much data written/modified

Solutions?

- More hardware:
Sharding to reduce datasets

Flash storage to make reads cheap

. Better software
Avoid reads in SQL thread
Smarter queries, tables, indexing, etc

Have more SQL threads!

Efficient replication

Replication data prefetching

- Rewrite INSERT/UPDATE to SELECT?
MKk-slave-prefetch

Readahead.py with custom rules

- DML works with multiple indexes - complication!

- DML touches neighboring pages - showstopper!

- Does not provide more than 50% reads coverage -
limited to up to double replication performance

Fake changes & faker

- Don’trewrite INSERT/UPDATE to
SELECT!

innodb_fake_changes=1

Supports InnoDB and Blackhole only
- High coverage, but not 100%

- In Percona Server

- 4x faster replication with our workload

- Lp:mysqlatfacebook/tools/faker

34%

64% \

2%

buf_read_page_low
“page_zip_decompress
other

With fake changes on...

- Same SQL gets executed

- Same optimization paths are hit

. Same index dives are done, data
pulled

- Page modification itself is skipped

- No assertions violated!

Prefetching issues

- Additional benefits
Decompress needed pages

Precache relay logs too (for lagged replicas)

- It has problems
Additional CPU overhead/cost

Incomplete coverage (optimistic paths become
pessimistic in real execution)

Does not help with other replication bottlenecks

Faster replication with faker

with faker without faker

Multi-Threaded-Slave!!

- Still learning, still problematic
No 5.1->5.6 path, faker mandatory for migration
Does what is expected, heavy sharding necessary
Does not help with single-shard avalanches

Assertion factory (in debug builds)

- Shares lots of same bottlenecks as faker

- Faster than faker for many workloads

Other bottlenecks

Query execution performance

- Multiple instances or multi-threaded slave helps

- MTS does not increase logging performance

- Checkpointing causes global stalls
Multiple instances > MTS

Nearly linear scaling with multiple instances in some
cases

Binary log transfer

- Locks binlog mutex [unless patched]

- Does binlog/relaylog reads in 8k blocks [unless patched]

- Large window sizes needed [sysctl: net.* *mem*]

- Compression greatly improves log transfer QoS

Write activity

- Background checkpointing is a must (just “adaptive” doesn’t help)

See Bug#55004, probably fixed in 5.6

- InnoDB log flushing should not be 1 (use crash-safe slave instead)
- Ditto for sync_binlog

- Transaction logs need to stay in memory (Bug#69002)

Live analysis

Logical workload

- Sample ‘system user’ thread in processlist, breakdown queries by
various features

- Slow query log analysis

- User stats for system user
- Write metrics in table statistics

- Buffer pool contents statistics

Server operation

- Sampling just replication LWP is cheap enough
- Gives much deeper picture of what is going on

- Identifies main replication cost better than anything else

- CPU cost breakdown on replication thread

- Can identify expensive query/workload features

facebook

