
Wikipedia
A very cheap story

Me

• Edited Wikipedia in ~2003

• Started development work in 2004

• Database administration, performance
engineering, capacity management since 2005

• Support Engineer at MySQL AB (now Sun)
since 2005

• Filling board member seat at Wikimedia

The wiki experience

• Open

• Entertaining

• Educating

• Free

• Relaxing

The project

• It is community project

• Technology is just a side issue

• Though important one too

• MMORPG. Not a web site.

Growth

Scale

MediaWiki

• Standard (Linux/Apache)/MySQL/PHP
software

• Used by thousands of 3rd party sites

• Used by us

• Fits both

Though we...

• Built high-performance caching
infrastructure in front

• Built high-performance data storage
environment at the back end

• Went beyond Apache, PHP and MySQL

Big picture is big

Content acceleration
& distribution network

People & Browsers

Application

Thumbs service

Media storage

Core databaseAuxiliary databases

Search

Object cache

Management

Operation guidelines

• General availability (instead of high)

• Maximum efficiency (donations based)

• Be ready (drastically increasing loads)

• Understand the process and costs

• Community “owns” us

Availability

• Hardware does crash, but not very often
(multiple year server uptime likely)

• As long as crash doesn’t become a disaster, it
is tolerable (nobody loses jobs)

• Losing few seconds of changes doesn’t
destroy business

• Downtime is (used to be) most profitable
product

Efficiency

• All resources get used

• Solutions are simple

• Spending is limited

• Community would bash us otherwise

• Peer to peer Wikipedia would NOT be
efficient. Really.

DON’T OVERLOAD
• Don’t overload servers

• They have limited capacity

• We used to overload

• That was stressful

• Tuning for 1% doesn’t work

• Go for 50%, 100%, 1000%

• millisecond at a time

Profile• gprof

• oprofile

• xdebug

• KCacheGrind

• Profiler.php

• udpstats

• Google
perftools

Optimization operator

//

For Perl/Python/Ruby

#

Heavy tasks get

• Eliminated (see previous slide)

• Rewritten

• Delayed

• Simplified

• Reduced

Our data gets

• Split

• Reduced

• Compressed

• Aggregated

• Replicated

• Duplicated

•Used

Database splits

• Master got slaves

• Slaves got specialized by language

• Slaves forgot other languages

• Text storage offloaded to other instances

• Masters were split by language

• Special tasks got special slaves

MySQL!!!
• InnoDB stores, ~200-300GB instances

• 16GB boxes, upgrading to 32GB

• 6-8 disk RAID0, upgrading to 16 disk
RAID10

• Replication (3-7 slaves per master)

• App-level load balancing & concurrency
control

• Forked. Google patches and our minor
improvements help

Lucene

• Handles full text search

• Is designed for that

• Flexible

• Java

Caching

• Features must allow caching

• Database is a cache too

• Evaluate the need for cache

• Invalidate when needed

Object cache

• Memcached - the networked cache

• Difficult to compute data

• Parsed texts

• Page differences

• Compiled localization

• Temporary data - users, sessions,
environment states

HTTP Cache

• Squid 2.6

• COSS

• Ruled by application, purge instead of evict

• Distributed: US, Europe, Asia

• Geo-backend for PowerDNS

• Multiple-layer (URL-hash routing)

Hardware

• Anyone needs old P4s?

• Quadcore chips are nice.

• Shutting down old hardware increases
response times and saves hosting expenses

• RAID0 causes too much of maintenance
work, high disk (2.5” SAS) density boxes to
the rescue

Numbers

• >50000 HTTP requests per second

• >80000 SQL queries per second

• Somewhere in Alexa 10

• ~200 application servers, ~20 database
servers, ~70 squid servers

• 80 2GB memcached instances, ~60 “stores”

• Up to ~5Gbps traffic

Data sizes
• For English Wikipedia:

• 18m page objects

• 250m pagelinks

• 7m registered users

• 220m revisions of text

• 1.5TB of compressed revision storage

• Over a terabyte of media

Other...

• Image storage - two boxes with bunch of
SATA disks and lighttpd

• LVS - efficient load balancing

• Lots of small components, most of them
tweaked

People

• Difficult to scale volunteers

• System becomes more
scary

• Some volunteers are now
on foundation’s payroll

• ~7 site engineers, from US,
Australia, Netherlands, UK,
Germany and Lithuania

Future

• All of you are the most important part of it

Questions and contacts

• Ask now, please!

• domas at sun dot com

• domas at #wikimedia-tech at freenode

• http://dammit.lt/

• http://dammit.lt/uc/ - detailed description

http://dammit.lt
http://dammit.lt
http://dammit.lt/uc/
http://dammit.lt/uc/

