MySQL Security

Domas Mituzas, Sun Microsystems

Me

® MySQL Support Security Coordinator
(role)

® Did lots of security consulting and systems
design work before

® VWould prefer not to work on protection.
Productivity is so much more fun!

What it is

® Safety of host system
e Safety of MySQL within host system

® |nternal MySQL security capabilities

Host system security

® MySQL #1 in shared hosting environments
(lots of long-term exposure to attackers)

® Has dangerous features allowing external
file access, and possibly - code execution

User-defined functions

Allows executing external code

Checks for _init symbol to guard against
malicious UDF specifications

Some system libraries can be used to run
arbitrary code this way

Fix: 5.0.70, plugin_dir

Arbitrary paths

DATA/INDEX DIRECTORY = /dev/shm
Allows access outside of datadir
Problem - can lead to DoS

Fix - --skip-symbolic-links

FILE privilege

LOAD DATA & INTO OUTFILE

Allows access to non-DB files, allows
creation of files too

Especially dangerous with writable ~mysq|
Can be used to craft evil data files/frm/etc

Fix: --secure-file-priv=/somewhere/outside

YaSSL

® The known major use (as a server) - just
inside MySQL

® Security cautious might want to use
OpenSSL for SSL needs (more audited)

® Does not cause much harm if disabled

LOAD DATA LOCAL

Malicious servers can read data from client
filesystems

Every program, every API should have this
disabled by default

Overlooked by many distributions/
software/etc too many times

No --enable-local-infile builds and
MYSQL OPT_ LOCAL_INFILE,O helps

External libraries

® DNS: --skip-name-resolve

® |ibc, zlib, openssl

Additional host security

® Better constraining of MySQL is helpful
® SELinux (support-files/RHEL4-SElinux)
® AppArmor

® Stack guarding compilers

® -fstack-protector-all - Ubuntu, etc

® x86 64 NX

AppArmor

[usr/sbin/mysqld {
#Hinclude <abstractions/base>
#include <abstractions/nameservice>
#include <abstractions/user-tmp>

ok
#include <abstractions/mysql> fetc/mysql™

/usr/sbin/mysqld mr,
[usr/share/mysql/** r,
/var/lib/mysql/ r,
Ivar/lib/mysql/** rwk,
/var/log/mysql/ r,
Ivar/log/mysql/* rw,
/var/run/mysqgld/mysqld.pid w,
[var/run/mysqld/mysqld.sock w,

}
(Ubuntu, SuSE)

capability dac_override,
capability setgid,
capability setuid,

OOM

Trivial to send MySQL out-of-memory

Megabyte query on an empty table can
consume gigabyte of RAM

max_allowed packet can help

If system is supposed to do other work,
ulimit’ing memory is good practice

Inside the system

® MySQL is as secure as a host it runs on
® All data files are portable

® ACLs can be edited with a simple editor
(one can reset root password with ‘vi’)

® Debuggers have lots of power (symbols
available, source open, ptrace(), kmem,...)

® Plaintext data transfer (except for SSL)

® Hash+network snooping enough to log in

Blackbox

Encrypted file systems alleviate data risks in
case of hardware theft

Stripping debugging symbols makes tracing
much more complicated (not impossible
for anyone with disassembler)

--disable-grant-options stop the most easy
ACL reset method

OS allows stripping super-user capabilities

Entering the MySQL

® Users are identified by name+host pair

® Access from unauthorized hosts
immediately rejected, before any handshake

® Wildcards can be used for subnets (no
CIDR notation though), and subdomains

® Reverse DNS check does bidirectional
lookup

Authentication

® 4.0 hash can be used to log in

® 4.| password hashes can be used to login
only in case of intercepted network traffic
(challenge + response + storedhash =
passcode)

® Possible to trap required hash with
debugger/trace

® SSL solves all that, as long as crypto is safe

4.1 PASSWORD()

public_seed=create_random_ string()
passphrase=shal ("password")

storedhash=shal (passphrase)

reply=xor(passphrase, shal (public_seed,storedhash)
passphrase=xor(reply, shal (public_seed,storedhash))

shal (passphrase)==storedhash \o/

Authorization

ACLs are global, database, table/view,
column and at stored-routine level

They just add up, no exclusions are possible

ROLEs are not there, 3rd party patches
include such functionality (Google v3)

ACLs stay in memory, so better to keep
them lean

Grants

® Some grants are more problematic than
others

® Some grants grew their power with
features

SUPER saga

® |t was fairly limited and safe grant once
upon a time

® Allows bypassing max_connections (once)

e KILL, PURGE MASTER LOGS, SET
GLOBAL, CHANGE MASTER, DEFINER,
BINLOG, triggers, SET LOG-BIN, read_only

SUPER saga is long

Active SUPER connection will block access
to other SUPERSs if max conns run out

KILLing SUPER-users is fun too! ;-)

PURGE MASTER LOGS - destroying audit
info (one can cripple the index to disable
this)

DEFINER specifications escalate privileges

Very long

BINLOG command allows changing any
data (BUG#3161 1), mysql.user too

CHANGE MASTER can point to malicious
binlog servers (firewalls help here)

Triggers can be used to execute dirty work
as other users

Disable audit (binlog) for the session

http://bugs.mysql.com/bug.php?id=31611
http://bugs.mysql.com/bug.php?id=31611

SUPER must die

It was not supposed to be ultimate super-
user, just few SUPER-like rights

It was much safer in 4.0 (and even 4.1)

We're moving away some of actions from
SUPER (monitoring used to ask for it)

Needs reworking of grants system

FILE

® --secure-file-priv is a must

® Data leaks and code executions possible
otherwise

PROCESS

® Allows seeing data in processlists

® Got InnoDB status moved over to it (from
SUPER...)

® |n case of system slowdowns (intentional
or not) sensitive data can appear

RELOAD

® Allows FLUSH commands - resetting host
error counts, reloading privileges, flushing
table data to disk, etc

® Helpful access when attacking a system :)

® = SIGHUP in few cases

REPLICATION SLAVE

® Allows reading binary log information - all
statement data, etc

e “SHOW BINLOG EVENTS” can be used
by unsophisticated attackers

INSERT & UPDATE

® [f given at global level (*.*), lead immediately
to privilege escalation via mysql.* tables

TRIGGER

® Since 5.1, it can be used to set actions for
other users

® Used to be part of SUPER in 5.0

EVENT

® Allows background execution of tasks

® Can be used for timing attacks, injecting
bombs, etc

SHUTDOWN

® (Can turn server off

® Most isolated/secure privilege out there

GRANT OPTION

Allows giving same rights as executor’s

Needs ‘CREATE USER’ privilege to be able
to create new users

Needs access to mysqgl.* to reset password

Grants can be revoked from anyone,
including ‘root’, so there would be no way
to set them back (except mysql.user edits)

Default users

® “@localhost,”@hostname - access to test

® root@localhost, root@hostname -
superuser without password

DROP USER "@)]localhost;

DROP USER "@localhostname;

SET PASSWORD FOR root@localhost = PASSWORD('new password');
DROP USER root@localhostname; -- (or set password)

Resource control

® |t is minimal
® Users can change session buffers
® Max can be specified:

® --maximum-sort-buffer-size

® Apparently this isn’t documented :(

Security features

AES ENCRYPT, DES _ENCRYPT, etc
SHAI, MD5, etc
SSL

Views, triggers, procedures and functions

SSL

® Can request users to have a verifiable
client certificate

... issued by specific CA
... with specific Subject Name

...and even ask password on top

SSL Example

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost’
IDENTIFIED BY 'goodsecret’
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/

CN=Tonu Samuel/Email=tonu@example.com’

AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/

O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com'

AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

mailto:tonu@example.com
mailto:tonu@example.com
mailto:tonu@example.com
mailto:tonu@example.com

SSL will not

® by default check if server’s certificate
subject name matches server hostname

can be set for regular clients, but
replication setup does not have such option

- would have to use server’s public key as
CA public key

provide pure SSL port - so SSL will always
have to be done by MySQL library

Views, functions,
procedures

Can be executed either in definer or
executor security contexts

Can allow horizontal and vertical table data
security

Can execute procedures on tables user
does not have access to

Auditing

Binlog (unsafe)

General query log (possible to turn off in
5.1)

SUPER audit (Google patch, vl)
Triggers

SQL injections

® MySQL by default does not allow multiple
statements (though, can be changed with
connection flag) - good! Really!

® Prepared statements are widely used to
guard against this

® Escaping rules are character set specific
(can of worms)

® INFORMATION_ SCHEMA is too revealing

Summary

® |t is not that bad (I don’t have much work
at security team)

® Defaults could be better though

® Developers have great attitude to security
issues (thanks Serg!)

Questions!

® domas at sun dot com

® http://dammit.lt/ & http://mysqgl.com/

® Report security vulnerabilities:

® security at mysql dot com

http://dammit.lt
http://dammit.lt
http://mysql.com
http://mysql.com

