
MySQL Security
Domas Mituzas, Sun Microsystems

Me

• MySQL Support Security Coordinator
(role)

• Did lots of security consulting and systems
design work before

• Would prefer not to work on protection.
Productivity is so much more fun!

What it is

• Safety of host system

• Safety of MySQL within host system

• Internal MySQL security capabilities

Host system security

• MySQL #1 in shared hosting environments
(lots of long-term exposure to attackers)

• Has dangerous features allowing external
file access, and possibly - code execution

User-defined functions

• Allows executing external code

• Checks for _init symbol to guard against
malicious UDF specifications

• Some system libraries can be used to run
arbitrary code this way

• Fix: 5.0.70, plugin_dir

Arbitrary paths

• DATA/INDEX DIRECTORY = /dev/shm

• Allows access outside of datadir

• Problem - can lead to DoS

• Fix - --skip-symbolic-links

FILE privilege

• LOAD DATA & INTO OUTFILE

• Allows access to non-DB files, allows
creation of files too

• Especially dangerous with writable ~mysql

• Can be used to craft evil data files/frm/etc

• Fix: --secure-file-priv=/somewhere/outside

YaSSL

• The known major use (as a server) - just
inside MySQL

• Security cautious might want to use
OpenSSL for SSL needs (more audited)

• Does not cause much harm if disabled

LOAD DATA LOCAL
• Malicious servers can read data from client

filesystems

• Every program, every API should have this
disabled by default

• Overlooked by many distributions/
software/etc too many times

• No --enable-local-infile builds and
MYSQL_OPT_LOCAL_INFILE,0 helps

External libraries

• DNS: --skip-name-resolve

• libc, zlib, openssl

Additional host security

• Better constraining of MySQL is helpful

• SELinux (support-files/RHEL4-SElinux)

• AppArmor

• Stack guarding compilers

• -fstack-protector-all - Ubuntu, etc

• x86_64 NX

AppArmor
/usr/sbin/mysqld {
 #include <abstractions/base>
 #include <abstractions/nameservice>
 #include <abstractions/user-tmp>
 #include <abstractions/mysql>

 capability dac_override,
 capability setgid,
 capability setuid,

...

...

 /etc/mysql/** r,
 /usr/sbin/mysqld mr,
 /usr/share/mysql/** r,
 /var/lib/mysql/ r,
 /var/lib/mysql/** rwk,
 /var/log/mysql/ r,
 /var/log/mysql/* rw,
 /var/run/mysqld/mysqld.pid w,
 /var/run/mysqld/mysqld.sock w,
}

(Ubuntu, SuSE)

OOM

• Trivial to send MySQL out-of-memory

• Megabyte query on an empty table can
consume gigabyte of RAM

• max_allowed_packet can help

• If system is supposed to do other work,
ulimit’ing memory is good practice

Inside the system
• MySQL is as secure as a host it runs on

• All data files are portable

• ACLs can be edited with a simple editor
(one can reset root password with ‘vi’)

• Debuggers have lots of power (symbols
available, source open, ptrace(), kmem, ...)

• Plaintext data transfer (except for SSL)

• Hash+network snooping enough to log in

Blackbox
• Encrypted file systems alleviate data risks in

case of hardware theft

• Stripping debugging symbols makes tracing
much more complicated (not impossible
for anyone with disassembler)

• --disable-grant-options stop the most easy
ACL reset method

• OS allows stripping super-user capabilities

Entering the MySQL

• Users are identified by name+host pair

• Access from unauthorized hosts
immediately rejected, before any handshake

• Wildcards can be used for subnets (no
CIDR notation though), and subdomains

• Reverse DNS check does bidirectional
lookup

Authentication
• 4.0 hash can be used to log in

• 4.1 password hashes can be used to login
only in case of intercepted network traffic
(challenge + response + storedhash =
passcode)

• Possible to trap required hash with
debugger/trace

• SSL solves all that, as long as crypto is safe

4.1 PASSWORD()

public_seed=create_random_string()

passphrase=sha1("password")

storedhash=sha1(passphrase)

reply=xor(passphrase, sha1(public_seed,storedhash)

passphrase=xor(reply, sha1(public_seed,storedhash))

sha1(passphrase)==storedhash \o/

Authorization

• ACLs are global, database, table/view,
column and at stored-routine level

• They just add up, no exclusions are possible

• ROLEs are not there, 3rd party patches
include such functionality (Google v3)

• ACLs stay in memory, so better to keep
them lean

Grants

• Some grants are more problematic than
others

• Some grants grew their power with
features

SUPER saga

• It was fairly limited and safe grant once
upon a time

• Allows bypassing max_connections (once)

• KILL, PURGE MASTER LOGS, SET
GLOBAL, CHANGE MASTER, DEFINER,
BINLOG, triggers, SET LOG-BIN, read_only

SUPER saga is long

• Active SUPER connection will block access
to other SUPERs if max_conns run out

• KILLing SUPER-users is fun too! ;-)

• PURGE MASTER LOGS - destroying audit
info (one can cripple the index to disable
this)

• DEFINER specifications escalate privileges

Very long

• BINLOG command allows changing any
data (BUG#31611), mysql.user too

• CHANGE MASTER can point to malicious
binlog servers (firewalls help here)

• Triggers can be used to execute dirty work
as other users

• Disable audit (binlog) for the session

http://bugs.mysql.com/bug.php?id=31611
http://bugs.mysql.com/bug.php?id=31611

SUPER must die

• It was not supposed to be ultimate super-
user, just few SUPER-like rights

• It was much safer in 4.0 (and even 4.1)

• We’re moving away some of actions from
SUPER (monitoring used to ask for it)

• Needs reworking of grants system

FILE

• --secure-file-priv is a must

• Data leaks and code executions possible
otherwise

PROCESS

• Allows seeing data in processlists

• Got InnoDB status moved over to it (from
SUPER...)

• In case of system slowdowns (intentional
or not) sensitive data can appear

RELOAD

• Allows FLUSH commands - resetting host
error counts, reloading privileges, flushing
table data to disk, etc

• Helpful access when attacking a system :)

• = SIGHUP in few cases

REPLICATION SLAVE

• Allows reading binary log information - all
statement data, etc

• “SHOW BINLOG EVENTS” can be used
by unsophisticated attackers

INSERT & UPDATE

• If given at global level (*.*), lead immediately
to privilege escalation via mysql.* tables

TRIGGER

• Since 5.1, it can be used to set actions for
other users

• Used to be part of SUPER in 5.0

EVENT

• Allows background execution of tasks

• Can be used for timing attacks, injecting
bombs, etc

SHUTDOWN

• Can turn server off

• Most isolated/secure privilege out there

GRANT OPTION

• Allows giving same rights as executor’s

• Needs ‘CREATE USER’ privilege to be able
to create new users

• Needs access to mysql.* to reset password

• Grants can be revoked from anyone,
including ‘root’, so there would be no way
to set them back (except mysql.user edits)

Default users

• ‘’@localhost, ‘’@hostname - access to test

• root@localhost, root@hostname -
superuser without password

DROP USER ''@localhost;
DROP USER ''@localhostname;
SET PASSWORD FOR root@localhost = PASSWORD('new password');
DROP USER root@localhostname; -- (or set password)

Resource control

• It is minimal

• Users can change session buffers

• Max can be specified:

• --maximum-sort-buffer-size

• Apparently this isn’t documented :(

Security features

• AES_ENCRYPT, DES_ENCRYPT, etc

• SHA1, MD5, etc

• SSL

• Views, triggers, procedures and functions

SSL

• Can request users to have a verifiable
client certificate

• ... issued by specific CA

• ... with specific Subject Name

• ... and even ask password on top

SSL Example

• GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'

• IDENTIFIED BY 'goodsecret'

• REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/

• O=MySQL demo client certificate/

• CN=Tonu Samuel/Email=tonu@example.com'

• AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/

• O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com'

• AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

mailto:tonu@example.com
mailto:tonu@example.com
mailto:tonu@example.com
mailto:tonu@example.com

SSL will not

• by default check if server’s certificate
subject name matches server hostname

• can be set for regular clients, but
replication setup does not have such option
- would have to use server’s public key as
CA public key

• provide pure SSL port - so SSL will always
have to be done by MySQL library

Views, functions,
procedures

• Can be executed either in definer or
executor security contexts

• Can allow horizontal and vertical table data
security

• Can execute procedures on tables user
does not have access to

Auditing

• Binlog (unsafe)

• General query log (possible to turn off in
5.1)

• SUPER audit (Google patch, v1)

• Triggers

SQL injections
• MySQL by default does not allow multiple

statements (though, can be changed with
connection flag) - good! Really!

• Prepared statements are widely used to
guard against this

• Escaping rules are character set specific
(can of worms)

• INFORMATION_SCHEMA is too revealing

Summary

• It is not that bad (I don’t have much work
at security team)

• Defaults could be better though

• Developers have great attitude to security
issues (thanks Serg!)

Questions?

• domas at sun dot com

• http://dammit.lt/ & http://mysql.com/

• Report security vulnerabilities:

• security at mysql dot com

http://dammit.lt
http://dammit.lt
http://mysql.com
http://mysql.com

