
Labeling Interactive Maps

Von der Fakultät für Informatik, Elektrotechnik und Informationstechnik der
Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von
Filip Krumpe

aus Berlin-Neukölln

Hauptberichter: Prof. Dr. Stefan Funke

Mitberichter: Prof. Dr. Dirk Burghardt

Tag der mündlichen Prüfung: 22.7.2020

Institut für Formale Methoden der Informatik

2020

Contents

I. Prologue 1

1. Preface 3

2. Related Work 9

3. Preliminaries 11
3.1. Points, Lines and Areas . 12
3.2. Fundamental Concepts . 14
3.3. Fundamental Algorithms . 18

II. Map Labeling 23

4. Labeling Areas 27
4.1. Quality Measures for Curved Area Labels 29
4.2. The Labeling Model . 30
4.3. Linking Labels and Map Scale . 32
4.4. Finding Representative Points for Areas 33

5. Labeling Points 37
5.1. Consistency Requirements . 38
5.2. The Label Disk Model . 39
5.3. Linking Labeling and Map Scale . 42
5.4. Extending the Model . 43

6. Obtaining Geographical Data 47

III. Algorithms 49

7. Area Label Positioning 51
7.1. Problem Description . 52
7.2. Barrault’s Incarnation . 53
7.3. Real-time Area Label Fitting . 55

3

Contents

7.4. Implementation and Experimental Results 60

8. Computing Elimination Sequences 63
8.1. Problem Description . 63
8.2. Solving the Simplified Scenario efficiently 67
8.3. Elimination Sequences with Unrestricted Priorities 86

IV. Epilogue 93

V. Appendix 99

4

Part I.

Prologue

1

1. Preface

Digital, geographic maps play a central role in the modern everyday life. When
starting a day, one checks the maps app for possible traffic incidents on the way
to the workplace (at least if one is going there by car). At lunch time, one is using
digital maps to explore the surrounding to find a place to eat. Having finished
work, one may aim for finding a suitable shop for doing the procurements and at
the same time checking the status of the traffic on the roads. In the evening, one
may be looking for a trendy bar in town to meet one’s friends what requires to
check the map again. For the weekend one has to find a place to travel to and
relax, and something around to see and tell about one’s colleagues on Monday.
For all of this your maps provider is your best friend, making online map services
one of the most important services provided by smartphones and tablets today.

In former times, good maps were the key technology to rule the world. Even
a few decades ago, car navigation systems and updates were sold to customers at
high prices. Today quite good data sets of geographic information are available
for free. Map services like google maps changed the way we use and think about
the value of geographic information. Nowadays it is something which is constantly
available, for free and of very high precision.

Cartography and the creation of paper maps and globes were an art form not
that long ago. The main challenge was to put as much information onto the map
as possible, thereby maintaining clear association of the label to its corresponding
feature and a good readability of the map. In practice, two interrelated problems
occur. One had to choose from the huge set of data and find a proper subset of
maximum size which can be displayed. On the one hand, the selection limits the
space available for the label placement. On the other hand, the space available
for label placement restricts the selection. If no space is available for placing the
label, the corresponding element can not be displayed. Hence creating a paper
map in former times always meant having to restrict the available data.

Today’s digital technologies are allowing an elegant solution to this problem.
By enabling the user to interact with the map view, i.e. panning and zooming
the map view, these problems can partially be bypassed. If a user wants to see
more details of a region, he can zoom in to get more details. Panning can be used
to move the current viewport. For getting an overview of the surrounding of the
current view, zooming out is the operation of choice. The corresponding gestures

3

1. Preface

internalized: Use a finger slide to pan or shift the map view or drag it if using a
mouse. To zoom in use a two finger pinch or the mouse wheel.

In addition to this exploratory use, digital maps are also used to navigate while
driving with the car or cycling or even walking. In this setting, it is common to
align the map with the direction. So directions as seen on the map are corre-
sponding to reality, i.e. turning right on the screen corresponds to turning right
on the road. So this particular setting requires an additional mode of interaction:
rotation. Furthermore it is usual that the map is always properly zoomed. Which
means that while driving through a city, a very zoomed in view is presented. On
the other hand, when driving in the back country a much more zoomed out view is
appropriate. So the presented map always shows the significant part of the route
ahead.

A map always shows a perspective to the world which we are not used to: a
bird’s eye view. To bring together the map view and the reality we need to identify
parts of the map and link them to real entities. Anchors of orientation may be the
visualized shapes of large area entities or the course and intersection of important
roads and others. Examples may be the national borders, forests, lakes, the shape
of rivers or the crossing of highways on a large scale map. This identification is
possible for area and line features. It is difficult for a third kind of geographic
features: point-like features. This may be a historic site or a human settlement on
a small-scaled map. An identification of these can be done by labeling the features
with their names (e.g. in case of cities) or icons (e.g. cafes, ATMs, …). In order
to ensure a clear assignment and good readability, the displayed labels must not
intersect and need to be aligned to the features they are naming.

Considering map interaction and labeling combined induces some additional
problems. Panning a given map view is easy: the labels may slide in or out of
the map view. When it comes to the other interactions things get much more
difficult. What if the map view is zoomed? Obviously, when zooming out, things
get smaller. So distances between the labeled entities shrink. In order to keep the
labels readable, these are usually kept at constant size. But this induces a problem
since labels might start overlapping each other. The two solutions available are:
We either shrink the font size of the labels - but this will make them unreadable
sooner or later. If we are keeping the font sizes constant, we need to remove some
labels in order to restore readability. In the second case, it is intuitive to remove
less important labels first so that more important labels of bigger cities for example
can be kept visible for as long as possible.

Let’s consider a labeling of human settlements for an example. A naive solution
for reducing the amount of labels when zooming out would be to successively
filter out labels of lower importance. The unintended effect would be that labels
in sparsely populated regions would vanish early. Thus, creating unlabeled areas

4

Figure 1.1.: Germany labeled in 3 different levels of detail at a coarse, medium and
high level of detail (© OpenStreetMap contributors).

while densely populated regions are crammend with labels. We want the labels
to be evenly distributed in the space. What brings us to the so called ”relative
importance” of a label. It means that a village in a sparsely populated region
might be of higher relative importance than a town next to a mega-city. You can
find an example of a labeling in figure 1.1. It shows the labeling of Germany in
three different levels of detail from detailed (bottom) to less detailed (top). In
each level you see the labels being evenly distributed in the available space.

As we have seen, when continuously zooming out a map view, labels might
get into conflict when they start overlapping. We could solve this conflict by
eliminating one of the involved labels. Each time a label is eliminated during a
map zoom this might recreate space for an already eliminated label. But allowing
the later label to reappear might lead to flickering effects during a continuous
zooming where labels vanish just to reappear on further zooming. This effect is
not intended and may lead to distraction of the user. In figure 1.2 you see an
example of Bing Maps where the label of Oberaichen is visible on a zoomed out
view (left). When zooming in the label is removed (middle) and reinserted after

5

1. Preface

further zooming in (right).

© 2019 Microsoft

Figure 1.2.: An example of an inconsistent labeling in Bing Maps where the
Oberaichen label is present at a zoomed out view (left), zoomed in
the label is hidden (mid) while further zoomed in, the label pops up
again (right).

Considering map rotation reveals a very similar problem. Think of the scenario
where you are driving a car and your navigation system is guiding your way. You
see the map and the labels on it while approaching a crossing where you have to
turn left. You are now focused on driving and successfully passing the crossing. But
after finishing the maneuver your map has turned and you are facing a completely
different map view. What you see is a rotated map view which is still oriented in
your direction of travel. With current map labeling algorithms the whole scenery
would have changed - especially the displayed labels. This is because after rotating
the map, some of the former labels would have overlapped after the rotation. The
common way to overcome this is to hide one of the labels to resolve the conflicts.
At the same time, labels which were hidden before because of overlappings, could
have shown up on the screen. Again, on a continuous rotation, for example, when
following a long curve, flickering of the displayed labels might occur. This could
be distracting and should therefore be avoided.

The overall goal of the work at hand was to find efficient algorithms and methods
to label digital maps. The labeling scheme shall be applicable to interactive maps
which allow to continuously pan, rotate and zoom the map view. The problems
as described in the paragraphs above should be avoided.

Many of the results presented in the work at hand were previously published at
conferences. In 2016, an efficient algorithm for computing elimination sequences in
2-dimensional space was presented at the 27th International Workshop on Combi-
natorial Algorithms (IWOCA 2016) in Helsinki [FKS16]. This paper was joint work

6

with my supervisor Stefan Funke and Sabine Storandt. A year later a more gener-
alized approach for general d-dimensional instances was presented at the Meeting
on Algorithm Engineering and Experiments (ALENEX17) in Barcelona [Bah+17].
This paper also contains algorithm for elimination sequences on the sphere with a
spatial data structure based on Delaunay Graphs. The paper was joint work with
Daniel Bahrdt, Michael Becher, Stefan Funke, André Nusser, Martin Seybold and
Sabine Storandt. The general idea for labeling points was published at the 10th
International Conference on Geographic Information Science (GIScience 2018) in
Melbourne [Kru18].

The scheme for efficiently computing area label positions is joint work with
Thomas Mendel. The research has been published in [KM20].

Structure

The work at hand is subdivided into several parts, each having several chapters
as their main subdivisions. The current introductory part is about introducing
the topic. The second part introduces our labeling model. It is followed by a part
about solving underlying algorithmic problems induced by our labeling model.

The remaining part of this first introductory part contains two more chapters:
We will review relevant related work concerning the map labeling problem in the
following chapter 2. The following Chapter 3 gives a short overview of fundamental
primitives, concepts and algorithms.

Part II is all about map labeling. A model for labeling areas is introduced in
chapter 4. A second model for labeling points of interest is described in chapter 5.
For both, we define requirements for a good labeling and introduce our model. We
further show how to link the labels and map scale in an interactive map setting
which allows for panning, rotating and zooming the map view. In chapter 6 we
describe how we retrieved label data from the OpenStreetMap data set.

The introduced labeling models involve some challenges which are interesting
from an algorithmic view. In part III we focus on these problems. In chapter 4
we introduce our developed efficient algorithm for the placement of a curved box
of maximum size in a polygonal area which underlies the area labeling problem.
The problem of computing elimination sequences, underlying the point of interest
labeling problem, is targeted in Chapter 8. There we consider the generalized
problem of growing hyperballs in a d-dimensional space. We prove that the prob-
lem in general is hard to solve and introduce a simplified scenario. An algorithm
is introduce to efficiently compute an optimal solution in theory. For the map
labeling problem, we are considering the special case of elimination sequences on a
spherical surface. Some heuristics and an LP are provided to solve the unsimplified
problem.

A final conclusion is given in part IV.

7

1. Preface

Acknowledgement

Working on a project like the one presented here is not possible without the support
of others. First of all, I would like to thank my supervisor Stefan Funke. He gave
me my freedom to pursue the project and to push it in the direction I was most
interested in. Nevertheless, he was always there when I needed advice or feedback.

The best ideas and solutions to problems are found when talking to others.
I want to thank my colleagues Daniel Bahrdt, Florian Barth, Thomas Mendel,
Claudius Proissl, Tobias Rupp, and Martin Seybold. It was a pleasure to discuss
problems together and find solutions to them and find new ones.

My deepest thanks go to Daniel Bahrdt, Florian Barth, Tobias Rupp and my
little sister Linnéa Krumpe. They all did an amazing job providing so much
comments and improvement proposals to the work at hand. Without you, I would
probably still be trying to find and fix mistakes and would probably never finish
that.

Last but not least, I would like to thank my girlfriend Anna and my whole
family for supporting me on the long way through this project.

One of the biggest drawbacks a project like this will always have, is the availabil-
ity of data to deal with. Especially when compared to the big tech competitors,
like Apple, Bing, Google, Here etc. As this is one of the most valuable things the
companies have, one will never be able to get access to these treasures. Fortunately
there is an open source project collecting geographic data from volunteers all over
the world. Our deepest thanks go to all the OpenStreetMap contributors [Con17c]
for doing a fantastic work creating a free and open and versatile collection of geo-
graphic data. Although the OpenStreetMap project is awesome the huge amount
of data can be overwhelming. Special thanks goes to the Geofabrik [Gmb18] for
providing smaller but complete pieces of the whole data set. Thanks also go to
all the developers of the various tools in the OpenStreetMap ecosystem which are
open source and free to use.

8

2. Related Work

Summarizing the research area of map labeling and especially interactive map
labeling of point and area features is a challenging task. A short view into Alexan-
der Wolff’s map labeling bibliography [Wol] shows the overwhelming amount of
research in this field. Nevertheless, we will point out the most important work
related to the topics we are focussing on in the work at hand.

In the early 60s, it was the Swiss professor Eduard Imhof who first defined what
a good map labeling looks like. This work was published in German [Imh62] and
republished in English in the mid seventies [Imh75]. His research is fundamental
to the whole research area and defines the very basic principles and goals of a map
labeling. In the same decade, Pinhas Yoeli, professor in Tel Aviv published a first
attempt of an algorithm to semi-automatically create map labelings [Yoe72]. With
this pioneering research, a large research area and software market was created.

Amongst others in the 80s and early 90s, a group around Herold A. Freeman
pushed the research with several publications [AFL84; Fre85; FA87] (amongst
many others). In his paper [Fre86], Freeman gives a very good overview of the
early works in this field of research. The Freeman group dealt with area-, line-
and point labels and developed an expert system to label maps [FA87; DF92].
First attempts on using polygon skeletons to compute area label positions were
made [AFL84; Fre85; Ved94]. These are early successors of our approach on area
labeling. A summary of the work of the Freeman group was given in [Fre05; Fre07].

In the late 80s, the research field began to differentiate. Concerning area la-
beling, Arunaa A. Vedula, a student of Freeman, in his thesis [Ved94] provided a
work which was solely related to area labeling. This work covered labels fitted into
the area, mimicing the area shape, as well as external labels which are connected
to the area with a leader. The later is a short line, pointing from the label to
the corresponding area if the area is to small to place the label within. Freeman
integrated this work into a more general approach [Fre95]. Pinto, Freeman in 1996
aimed for integrating all the existing solutions for special cases of the area label-
ing problem into one approach [PF96]. The introduced feedback approach used
different techniques to determine initial placements which are then evaluated and
optimized according to human feedback. In 2001, Mathieu Barrault formalized a
measure of an area label quality [Mat01]. Based on this measure he developed
an approach to fully automatically label areas based on circular approximations
of the area skeleton. His work can be considered the direct predecessor of the

9

2. Related Work

area labeling approach at hand. An alternative approach for area labeling quality
assessment was presented by Steven F. van Dijk et al. in [Dij+02].

In the field of point labeling, the first research aimed for automatically placing
the point label to maximize the number of labels which can be displayed. This
was targeted for example by Robert G. Cromley [Cro85] who used linear program-
ming techniques. Michael Formann and Frank Wagner [FW91] implemented a
2-approximation algorithm to approach an optimal solution. They also showed
that the point labeling problem with four possible label positions is NP-complete.
This was also shown by Joe Marks and Stuart Schieber [MS91] in the same year,
1991. Jon Christensen, Shieber and Marks used gradient descent and simulated
annealing techniques for solving the point labeling problem in an eight possible
position setting [CMS95]. A second challenge in this field of research was the fol-
lowing: Assuming there are more points we want to label than space available,
which points should be selected and which ignored? Douglas M. Flewing and
Max J. Egenhofer further pushed this issue and tried to formalize the settlement
selection problem [FE93].

Until then, the presented solutions aimed for supporting the creation of static
maps, e.g. paper maps. In the late 90s, the question of the labeling of maps in a
dynamic setting arose. Marc van Kreveld, Rene van Oostrum and Jack Snoeyink.
in 1997 [KOS97] built on an idea, Langran and Poiker presented in [LP86]. They
developed a ranking of the points which allows to retrieve a map labeling without
extensive computation at runtime. Their work already introduced the concept
of monotonicity of the labeling during zoom. These two ideas make it a early
predecessor of our work presented in the paper at hand. Ken Been, Eli Daiches and
Chee Yap in 2006 and Been, Martin Nöllenburg, Sheung-Hung Poon and Alexander
Wolff in 2010 developed this idea further by linking the computed ranking directly
to the map scale [BDY06; Bee+10]. Their precomputed active ranges allow to
determine a labeling of a map of arbitrary zoom level with one simple filter step.
In [BDY06], they introduced a set of general consistency desiderata to be fulfilled
by a labeling scheme for interactive maps. Yet, they confined their approach to
interactive maps allowing only panning and map zoom - not rotation. Nadine
Schwartges, Dennis Allerkamp, Jan-Henrik Haunert and Wolff in [Sch+13] used
a linear program formulation and some heuristics to compute and approximate
active ranges for disks with unique growth factor.

Andreas Gemsa, Nöllenburg and Ignaz Rutter in [GNR11; GNR16] addressed
the problem of labeling rotating maps. Their approach is to compute one or several
rotation angle ranges for each label where it can be visualized without overlaps.
But they did not consider map zoom in their work.

10

3. Preliminaries

We will now introduce some basic primitives, concepts and algorithms to establish
a common knowledge with the reader.

Stuttgart
Esslingen

7km

Stuttgart

Ludwigsburg

Esslingen

12.5km

Figure 3.1.: Schematic map of the Stuttgart region at two map scales. A larger
map scale left and a more zoomed out view with a smaller map scale
(right).

Since we are mainly talking about map and map visualization, we will first
eliminate the main source of misunderstanding. This is about what it means to
have a small and large map scale and what zooming in and out of a map view
means. Let us consider a map like the one illustrated in Figure 3.1. On the left
there is a map showing the surroundings of Stuttgart at a specific map scale, say
1cm is equals to 7km (may depend on your print of this paper though). The map
scale is 1 : 700, 000 then. If you zoom out a bit, you get the map shown on the
right hand side. There the map scale changed to 1 : 1, 250, 000 - a smaller map
scale (consider the result of the division 1/700, 000 and 1/1, 250, 000). So a map
view showing whole Europe has a small map scale while a zoomed in view showing
a single city is of a much larger map scale.

When zooming out of a map, distances in the map view are shrinking. See
the Stuttgart - Esslingen distance in Figure 3.1 from left to right for example.
When keeping labels at a constant size, they are moving closer together, eventually
leading to labels overlapping each other. This is the main source of trouble when
dealing with labelings of interactive maps allowing continuous map zoom.

In Figure 3.2, you see the same map view in standard orientation (north facing)

11

3. Preliminaries

Stuttgart

Ludwigsburg

Esslingen

12.5km

Stuttgart

Ludwigsburg

Esslingen

12.5km

Figure 3.2.: Schematic map of the Stuttgart region. The map is oriented north on
the left and rotated by −30 degrees on the right hand side.

on the left and rotated by 30 degrees in clockwise direction. Since the lettering
normally remains vertically aligned, its orientation related to the map changes
on rotation. You can easily see that rotating the map view in counterclockwise
direction would have led to the labels of Stuttgart and Esslingen overlapping each
other. This is the main challenge when looking at labelings of maps which allow
for rotation.

For a given map setting, we can check if two label overlap by computing the size
of the label’s bounding boxes. By using the current map scale we can transform
this box size to geographic distance, like meters. This allows us to determine
whether two labels will overlap in a setting or not. Conversely, it allows us to
determine the largest scale at which two labels start overlapping.

3.1. Points, Lines and Areas

The features we are about to label on a map can be classified into three dif-
ferent types: point, lines and areas. A point is defined by 2 coordinates in a
2-dimensional space. This can easily be generalized to d dimensions. The coor-
dinates define the location relative to the origin of the coordinate system in the
two dimensions (x and y in the example depicted in Figure 3.3) In the widely used
WGS84 coordinate system, a unique position on the earth’s sphere is defined by
its latitudinal and longitudinal angle [Wik19d]. The coordinate system is located
at the center of mass of the earth. The latitude value describes the angle to the
equator. The longitude value defines the one to the Greenwich meridian.

A sequence of several consecutive points can be used to define the course of a
line. See the center of Figure 3.3 for example. Since such a line is composed of

12

3.1. Points, Lines and Areas

y

x

outer

touching point

inner

Figure 3.3.: The fundamental primitives: a point (left), a polyline defined by a
sequence of points (mid) and a polygon with a hole defined by an
outer and inner polyline (right).

several line segments we also call this a polyline. A line segment (or just segment)
is defined as a line segment between two given endpoints. Polylines can be used
to describe streets, borders and the like in a geographic setting.

A closed polyline (also called polygon), where the first point is equal to the last
point, can be used to define an area. More complicated areas can be specified by
an outer polygon defining its shape while inner polygons define holes of the area.
See Figure 3.3 right for example.

For the sake of simplicity, we suppose well-formed data in the following. It
means we assume points to be in general position i.e. no two points share the
same coordinates. This can easily be guaranteed by slightly perturbing the data
if necessary. We further assume polylines not to intersect each other and itself. If
so, we may insert the intersection point into one or both polylines. For an area
we suppose that holes are completely contained within the area. Additionally, for
the outer boundary we suppose that it does not have any self intersections nor
touching points where the boundary touches itself. An example is illustrated in
Figure 3.3. Such a situation may be resolved by splitting the area into two (blue
and purple in the drawing) at the touching point.

3.1.1. Computing Distances of Geographic Features

Computing distances between two geographic features is not trivial even between
two single point-features. Since they both are located on the earth surface, the
distance between must be measured along the sphere surface. Therefore we use
the greater circle through the two points with its center being the sphere center.

13

3. Preliminaries

The arc length between the two points is defining the distance between them. See
Figure 3.4 for an illustration. This particular distance can be computed using the
Haversine formula [Wik19c]. Due to some trigonometric computations involved
this is quite expensive to compute. In the work at hand, when we refer to the
distance |p, q| between two points p and q, this greater circle distance is assumed
if not otherwise specified.

p1

p2

Figure 3.4.: The distance between two points p1 and p2 on a sphere is the length
of the circular arc of the greater circle through p1, p2.

We introduced this notion of distance between two simple points only. Comput-
ing distances with line or area-features involved, induces several other problems.
But since we only need the distance between two points, we will not deal with
them here.

3.2. Fundamental Concepts

Having defined points, areas and point distance, we may now proceed to more
sophisticated, derived concepts.

3.2.1. Delaunay Triangulation and the Voronoi Diagram

For a given point set in 2-dimensional space, we can compute a triangulation. This
is a subdivision of the convex hull of the point set into triangles where the points
are the triangle corners.

In Figure 3.5, you see a triangulation depicted for a point set of 5 points
{p, q, r, s, t}. This particular triangulation is a special one. If you look on each
triangle and its circumcircle, this circumcircle does not contain any other point
from the point set. Such a triangulation is called a Delaunay triangulation
[Kre+00]. This Delaunay property prevents triangles with small angles to be

14

3.2. Fundamental Concepts

p

q

r

s

t

Figure 3.5.: A point set in 2d. The Delaunay triangulation (black edges) with the
corresponding circumcircles (dashed). The Voronoi edges, separating
the Voronoi cells are drawn in light green. The Voronoi vertices (green
dots), between which the edges are drawn solid.

contained in the triangulation. So in this particular example, it ensures that the
q − r edge is used instead of the p− s edge to triangulate the p, q, r, s subpart. In
this way it maximizes the minimum angle in the triangulation [Kre+00]. Which
leads to the effect that long and thin triangles are suppressed for the benefit of
triangles of a more uniform shape. You can find an example in the above Figure
3.5. Replacing the q − r edge with the p− s edge induces the p, q, s triangle with
a much thinner, non-uniform shape.

While the delaunay triangulation subdivides the space into triangles, the Voronoi
diagram partitions the space according to nearest neighbor relations. Let us start
with a point set as before and consider Euclidean distances. For each point p
in the point set there is a cell containing the points in space, for which p is the
nearest point in the point set. This is called the Voronoi diagram of the point set
[Kre+00]. The cells are actually intersections of halfspaces. These intersections,
the so called Voronoi vertices, and the bisectors between them, define a graph.
This graph is called Voronoi graph or sometimes also called Voronoi diagram.

The Voronoi diagram turns out to be dual to the Delaunay triangulation. The
Voronoi vertices are equal to the center points of the Delaunay circumcircles. Con-
necting the center points of the circumcircles whenever the corresponding delaunay
triangles share an edge, gives the Voronoi edges [Kre+00]. In Figure 3.5, you see
the Voronoi vertices depicted as light green dots and its edges in green. The dashed
edges are infinite edges, bounding the infinite Voronoi cells at the outside of the

15

3. Preliminaries

Voronoi diagram.

3.2.2. The Medial Axis

The Voronoi diagram as defined above can be used to approximate the solution
to the following question: Considering an area, one might want to find something
characteristic describing the area.

Figure 3.6.: Approximation of the medial axis of a polygon using a subset of the
Voronoi edges.

The medial axis of a planar shape was first defined by Blum in 1967 [Blu67]
and Lee in 1982 [Lee82] amongst others. Given a simple polygon P representing
the shape. Its medial axis is defined as the locus of points p internal to P such
that at least two points on the polygon’s boundary are equidistant and closest to
p. This definition can be applied to polygons containing holes in a straightforward
manner. Each point on the medial axis can be assigned a radius, describing the
distance to the boundary [DZ04].

As Schmitt in [Sch89] and Brandt in [Bra94] point out, the medial axis, also
called skeleton, of a polygon can be approximated using Voronoi diagrams. A
special subset of Voronoi edges, namely those who are completely contained in the
polygon, are an approximation to the medial axis [MS00]. You see an example
depicted in Figure 3.6.

3.2.3. Spatial Relations of Point Features

Considering a set of geographic features - for the sake of simplicity we restrict
to point features here - one might want to know about their spatial relation. In
the following work, we are interested especially in two relations: the nearest
neighbor of, and the set of all neighbors in a specific range around a given
query point. Please see Figure 3.7 for an illustration of the concepts we introduce
in the following.

16

3.2. Fundamental Concepts

d(1 + ε)d

|nn|

(1 + ε)|nn|

nn

ann

q

Figure 3.7.: A query point q (blue) with its nearest neighbor nn (red) and an
approximate nearest neighbor ann (dark red). A range contains all
points contained in the dark yellow area. The approximate range in
yellow contains all points from the range and may contain some of the
light yellow area.

We will first introduce the concept of a nearest neighbor and, slightly weakened,
an approximate nearest neighbor. We define the two as follows:

Definition 1 (NearestNeighbor). For a point set P ⊂ Rd and a query point
q ∈ P , the nearest neighbor of q is a point p ∈ P \ {q} with |p, q| ≤ |p′, q|, for all
p′ ∈ P \ {q}.

Definition 2 (AproxNearestNeighbor). For a point set P ⊂ Rd and a query
point q ∈ P , an ε-approximate nearest neighbor of q is a point p ∈ P \ {q} with
|q, p| ≤ (1 + ε) · |q, p′|, for all p′ ∈ P \ {q}.

So for a set of points in d-dimensional space, a nearest neighbor of a query
point is the point in the point set with minimum distance to the query point.
Obviously this nearest neighbor must not be the query point itself.

Slightly weakening the condition leads us to the definition of an approximate
nearest neighbor. For a query point and a parameter ε, we search for a point
whose distance does not deviate much from the distance of the real nearest neigh-
bor. In fact, we want the distance difference to be less than ε-times the real nearest

17

3. Preliminaries

neighbor distance, i.e. the distance of the approximate nearest neighbor must be
< (1 + ε) times the nearest neighbor distance. Given in simple words, for the
reported point its distance to the query point is at most ε times larger than the
true nearest neighbor distance. In the above Figure 3.7 you find an example of a
query point q - the blue dot. Its exact nearest neighbor is the bright red nn. The
distance between q and the dark red ann is about 1.4 times the nearest neighbor
distance. Hence for an ε > 0.4, ann may be reported as an approximate nearest
neighbor of q.

Let’s introduce the concept of a range, or a neighborhood, and is approximate
counterpart in the following.

Definition 3 (Range). For a point set P ⊂ Rd, a query point q ∈ P , and a
distance r, the range of distance r around q is the set S = {p ∈ P \{q} : |q, p| ≤ r}.

Definition 4 (AproxRange). For a point set p ⊂ Rd, a query point q ∈ P ,
and a distance r, an ε-approximate range reporting query returns a set S with
S ⊇ {p ∈ P : |q, p| ≤ r} and S ⊆ {p ∈ P \ {q} : |q, p| ≤ (1 + ε)r}.

For a set of points in a d-dimensional space, we define the range around a
query point q and a distance r to be the subset of points whose distance to q
is less or equals than r. Similar to the approximate nearest neighbor, we define
the approximate range to contain points whose distance to the query point
does not deviate more than ε · r from r, i.e. their distance to the query point is
≤ (1 + ε) times the query distance r. While we want all points of distance ≤ r to
be contained in any case, points of larger distance may or may not be contained
in the result set.

3.3. Fundamental Algorithms

3.3.1. Computing Delaunay Triangulations

In Section 3.2.1 we defined the Delaunay triangulation. We will now briefly intro-
duce an algorithm to efficiently compute such a triangulation. The algorithm is
randomized and incremental. It iteratively inserts the points of the point set and
maintains the Delaunay property thereby. Please see [Kre+00] for more details.

In the following, let P = {p1, p2, . . . , pn} be a point set in 2d of the size n. For
the sake of simplicity, we assume general position. Which in this case means that
no two points are located at the same position, no three points are colinear and no
four points are cocircular. Starting with the rightmost point p1, we introduce two
auxiliary points p−1, p−2 such that the whole point set P is located in the triangle
p1p−1p−2. This single triangle is a valid Delaunay triangulation of the point set

18

3.3. Fundamental Algorithms

pi

pj

pk

p

pl

pi

pj

pk

p

pl

Figure 3.8.: Inserting a point p into Delaunay triangulations. If p is located within
a triangle (left), add new edges to each corner of the triangle. If p is
located on an edge, split the edge and add new edges to the remaining
vertices of the two adjacent triangles. If the Delaunay property is
violated for one of the created triangles (left: pipkp), we flip the edge
pipk to plp. Which might invalidate the edges pkpl or pipl which we
have to fix recursively etc. .

{p−2, p−1, p1}. We compute a random permutation of P \ {p1} and insert them
into the given permutation iteratively.

When inserting a point p two things can happen: If p is located within a triangle
pipjpk, we add new edges pip, pjp and pkp to the triangulation (see Figure 3.8 left).
Then for every edge of the original triangle we consider the triangle p, q, r with p
being our inserted point and q 6= r ∈ {pi, pj, pk}. Let s be the point defining the
other adjacent triangle of the edge qr. We check if the edge is legal by checking
if the two circumcircles are containing the corresponding other point. If not, we
are done. Otherwise, we flip the qr edge, i.e. replace it by ps. Since this could
have made the edge qs and/or rs illegal, we continue checking these two edges and
flipping them if required.

In the second case p, is located on an edge connecting two points pi, pj (see
Figure 3.8 right). Let pk, pl be the two points defining the two triangles adjacent
to the edge pipj. Then add p by introducing edges to all four points pi, pj, pk, pl
and legalizing the remaining adjacent edges.

This algorithm proves to be correct [Kre+00]. It further turns out to com-
pute the Delaunay triangulation in expected time O(n log n) using O(n) expected
storage.

19

3. Preliminaries

3.3.2. Answering Spatial Queries using Delaunay Triangulations

The previously introduced Delaunay triangulation can be used to answer queries
for the NearestNeighbor or the Range in a point set. In the following let P be
the point set in a 2-dimensional, euclidean space. Let’s suppose that a Delaunay
triangulation is given for P .

Since the nearest neighbor graph is a subgraph of a Delaunay triangulation, for
a query point q ∈ P , its NearestNeighbor in P is a direct neighbor. Hence in
order to find the nearest neighbor we just have to inspect the edges incident to q.

Given a query point q ∈ P and a query distance r the Range, i.e. finding all
points in P with a distance < r to q, can be done by a simple graph traversal.
Starting at q we visit every adjacent vertex and check if its distance to q is less
than the query distance. If so, we report the point and recursively continue at
that point. If not, we skip the point and continue.

q

s rp

Figure 3.9.: Supposing p is not connected to q via an path contained in the Range
of q. Then p, s, r form a triangle whose circumcircle contains q con-
tradicting the Delaunay property.

This procedure is correct, since the following holds: If p is contained in the
Range of q, then p is directly connected to a point v in Range. Since a trian-
gulation has only one connected component, this suffices to prove that there is a
path p, . . . , q and every point is contained in the Range.

For the sake of contradiction, suppose that p is not connected to a point in
Range. We know that either pq are connected via an edge or there is at least one

20

3.3. Fundamental Algorithms

edge intersecting the direct link between p and q (dotted red in Figure 3.9). Let
s, r be the one of these edges which is closest to p on that link. Since the point
set is triangulated, psr must form a triangle and s, r /∈ R. Hence the circumcircle
defined by p, s, r needs to have a larger radius than the query distance r. Thus it
contains the query point q. The latter contradicts the Delaunay property. Hence
proving our assumption to be wrong.

3.3.3. Linear Programs

Even though it is more a concept for problem modelling, linear programs allow to
compute solutions to so modeled problems. Since many problems, even complex
ones, can be modeled by linear programs, we will introduce the concept. It will
later be used to compute optimal solutions to problems where we only give approx-
imation algorithms. Being able to determine optimal solutions to at least smaller
instances of such problems will allow us to bound the quality of our approximation.

A linear program is built from essentially three components: A set of variables,
an objective function which should be maximized or minimized. The third
component is a constraints set. These constraints determine the feasible variable
values from which we try to find the ones optimizing our objective.

A small example is the following example which determines two values x and y
such that x is twice as large as y + 5. Both values are larger than or equals to 0.
The sum of the two is minimal:

min x + y
s.t. x − 2y = 5

x ≥ 0
y ≥ 0

What makes such a program a linear program is the fact that each constraint
and the objective function are linear in the variables. Which means that no two
variables are multiplied with each other and no variable has an exponent unequal
to 1.

Having a valid program for a given problem allows us to find an optimal solution
(if it exists) using standard techniques and solvers. More detailed information is
provided in [Kre+00] and [WS]. A well known solver is the one provided by Gurobi
[Gur19].

Linear programs can be categorized based on the possible values. So we dis-
tinguish between LPs where the values may have arbitrary real values. They can
be solved deterministically in polynomial time using the ellipsoid method [WS].
In general more difficult to solve are ILPs (Integer Linear Programs). They are
similar to general LPs with the difference that the possible variable values are re-

21

3. Preliminaries

stricted to integral values. Solving these is NP-complete [Pap81]. For more details
see [Kre+00].

22

Part II.

Map Labeling

23

In this part, we will address the labeling of interactive maps. For us, ”inter-
active” means that the map view can be panned, rotated and zoomed. These
interactions may be because of an user interactively exploring the map. Alterna-
tively, in a navigation system, the view may be adjusted automatically to match
the users direction or to provide a more or less detailed view depending on the
current situation.

Figure 3.10.: Labeling of a political map of europe with area labels computed by
the introduced method.

In the work at hand, we propose a labeling scheme for areas and point of inter-
ests. The following Chapter 4 introduces the labeling model for areas. We show
how the area labels and the map scale can be combined to form a consistent view.
An example for this area labeling approach is illustrated in Figure 3.10. The sub-
sequent Chapter 5 describes our point labeling scheme. We define criteria for good
labelings, define our model and discuss some extensions to the model. The later
can help to increase the number of labeled objects. In the last chapter of this part,
we will quickly have a look at the question where to get data sets from (Chapter
6).

Imhof in 1962 (see [Imh62] and [Imh75]) outlined a set of general principles and
requirements for good label placement:

1. Legibility, which means that labels should ”be easily read, easily discrimi-
nated and easily and quickly located.” [Imh75]

2. Clear graphic association strives for unambiguous identification of the object
the label belongs to.

3. Map labels should avoid covering, overlapping and concealing other map
content.

25

4. Map labels should ”assist directly in revealing spatial situation, territorial
extent, connections, importance and differentiation of objects.” [Imh75]

5. Variation of label style and size should be used to visualize the classification
and hierarchy of the labeled map objects.

6. ”Names should not be evenly dispersed over the map, nor should names be
densely clustered” [Imh75]

These principles are the basis of nearly every work which deals with labeling
maps. They will lead what we are doing in the following pages. The interpretation
of the principles strongly depends on the context, i.e. which kind of labels we are
considering. Therefore we will discuss them in detail at the beginning of the
corresponding chapters.

26

4. Labeling Areas

Area label may be applied to every type of areal feature, may it be adminis-
trative areas, lakes, islands, woods and the like. The only precondition is that
the map scale is large enough to place the label within the area. If this is not
the case, alternative labeling techniques can be applied like boundary labeling or
other leader-based techniques, key numbering, point labeling and others (see the
former Chapter 2).

Heilbronn

Figure 4.1.: An area label for the Heilbronn city area.

The problem we are faced with is the following. We are given an area which is
defined by an outer boundary and might contain a set of holes. We aim for placing
its name within the area such that it represent the corresponding region as good
as possible. To reach this, the label may be bend as well as stretched to fit the
area shape. See Figure 4.1 for an example.

M. Barrault in 2001 ([Mat01]) and S. van Dijk et al. in 2002 ([Dij+02]) both
formalized the principles of good area labels. We will discuss the formalization
defined by Barrault in detail in Section 4.1. Barrault also introduced an algorithm
to compute such labels. Our algorithm is based on his work but improves several
parts to reach better performance.

Parts of this Chapter 4 are joint work with Thomas Mendel. They may also be contained
in his dissertation thesis [Men20]. A preliminary version of this work was published in [KM20].

27

4. Labeling Areas

Barrault is considering a slightly different problem. In his work, the label font
size is fixed while the inter-letter (sl) and inter-word spacing (sw) are variable.
See Figure 4.2 for an illustration of sl and sw.

A r e a L a b e lH

L

sl sw

Figure 4.2.: A label with the variable spacings sl (inter-letter) and sw (inter-word)
and the deduced measures L (label length) and H (label height).

We are considering the problem as follows. Let the label be an arbitrary name
string with a given font type and style, e.g. bold, italic, etc. For fixed spacings sl
and sw, we seek for finding a placement which allows to maximize the font size.
Details are provided in Section 4.2. Finding this placement later on allows us to
determine the map scale at which the label may be legible. We will discuss this in
detail in Section 4.3. At small map scales, where the label within the area might
be unreadable, we need to use alternative labeling techniques. These may be point
labeling or leader based techniques. Both have in common that one needs a single
point representing the area shape. We will discuss the problem in the last Section
4.4 of this chapter.

In the following, let us consider the placement of an area label abstractly. The
reader can find an illustration of the terms and parameters in Figure 4.3. The
center point and radius of a circular arc are defining the support line of the label
- the circular arc along which the label is bent. The possible label position is
bounded by the points where the arc is intersecting the polygon. A label position
is determined by two points on this arc in between of these two intersections. All
these four points can be described by angles determining the points on the support
line. This concrete position is called the baseline of a label, green in Figure 4.3. A
valid baseline length is obliviously determined by the label length and the chosen
spacings. In [Mat01], the latter are variable and can freely be chosen from given
ranges.

The question is, how to formalize this best fit criterion to evaluate and find an
optional position?

28

4.1. Quality Measures for Curved Area Labels

(x, y)

R
α

dα
β

dβ

Figure 4.3.: Baseline of a label (green) determined by the support line (purple) and
the angles β and β+dβ. The perceived coverage of the corresponding
labels can be computed by integrating the minimum distance to the
boundary polygon for each point at the baseline. For two thirds (gray)
of the support line the distances contribute positively, while the first
and last sixth (light red) are negatively correlated.

4.1. Quality Measures for Curved Area Labels

M. Barrault is identifying 6 criteria which are likely to influence the quality of a
label. In the following, longitudinal is used to describe the left-right dimension
and respectively latitudinal the top-bottom dimension.

Longitudinal extent: The extent along a circular arc should be maximized.

Longitudinal centre: The label should be centered in the polygon in the longitu-
dinal dimension …

Latitudinal centre: …as well as in the latitudinal dimension.

Conformity: The base arc of the label should be conform to the shape of the
labeled area.

Orientation: The more horizontally the label, the better.

Curvature: A label based on an arc with larger radius is preferred.

From these criteria, Barrault is deriving what he calls the perceived coverage of
the polygon by the label. The circle center point and an arbitrary point of the

29

4. Labeling Areas

(x, y)

R
α

dα

s

ld(s)

lu(s)

Figure 4.4.: For each point s of the support line (depicted in purple) the upper
space lu(s) and lower space ld(s) determines the coverage in the poly-
gon.

support line are determining a ray which cuts the polygon at least twice. We define
the distance to the first intersection above and below to be the upper and lower
space of the point (see Figure 4.4). Integrating along the baseline, summing the
minimum of these two spaces, gives us the coverage of the label. However, since
there should be space left before and after the label and the polygon, an additional
cost is induced if the endpoints of the label are too close to the border of the area
(see Figure 4.3). This is to prevent labelings from looking crammed. With this
at hand, one can evaluate and compare different placements and choices of the
spacings to find an optimal position along an arc.

4.2. The Labeling Model

M. Barrault is considering the problem of placing a label of fixed font size within
the area. To fit the label to the area shape, he uses variable inter-letter and -word
spacings. The underlying scenario is to label the area on a map with a fix map
scale.

When considering dynamic maps, this focus point shifts slightly: one aims for
finding a label position which allows to maximize the label extent and hence its
font size. Having computed such a label position allows to determine the map
scales at which the label can be visualized appropriately. Our goal is to answer
the following question:

30

4.2. The Labeling Model

Considering a polygonal area, what is the largest label which we
can place in the area such that the label fulfilles the criteria of a good
labeling as defined above.

To find this placement, we suppose the inter-word and inter-letter spacing are
fixed. With this at hand, we can compute the bounding box of the label for a given
font size. To meet the requirement of Imhof: to ”leave a space at least one-and-
one-half the size of the letters on either end of the word” [Imh75, p. 136], we adapt
the label accordingly. This gives us the length L and height H (see Figure 4.2) of
the bounding box of the label. From these, we can compute the ratio A = H

L
, i.e.

the ratio of the height to the length of a label. This ratio is independent of the
actual font size.

The underlying theoretical problem of our area labeling problem now is as fol-
lows:

What is the largest box of the given length to height aspect ratio
which we can place within the area?

We have the following contraint set given:

• The box is allowed to bend along a circular arc (preferably with a large
radius).

• The box should be centered in longitudinal as well as latitudinal dimension.

• It should be conform to the shape of the area

• A horizontal aligned label is preferred.

In Chapter 7, we introduce an algorithm to efficiently compute such an optimal
box position and size. The algorithm is based on the idea provided by Barrault
but avoids some of the drawbacks of his approach and hence achieves much better
performance. So we are able to compute area labels very efficiently in near-real
time (see Chapter 7 for details and timings).

With this algorithm at hand, we can think of more advanced methods to the
labeling of areas in an interactive settings. Consider the scenario where an area
is only partially visible, i.e. a larger part of the area is not contained within the
current map view. Using fixed area labels causes problems if the label is mainly
placed in the invisible part of the area (see Figure 4.5 for an example). By being
able to quickly compute area labels, we can label the visible part of the area only.
Alternatively, we might label a subpart of the area reaching into the invisible area.
This might indicate that the area is extending in this direction, while the main
part of the label is readable. The whole area and label can then be interactively

31

4. Labeling Areas

Figure 4.5.: Political map of the European countries with Russia labelled statically
(left) and with a dynamic labeling (right).

explored by panning the map accordingly. An example can be found in Figure 4.5.
A large part of the Kazakhstan label is visible on the left hand side. This gives a
hint to the reader that the area is continuing in the non-visible part. In contrast
on the right hand side, the cropped area label does not give any indication about
the area extent in this invisible part.

4.3. Linking Labels and Map Scale

Having determined an optimal label position, we can derive the map scales at
which the label can be displayed. Suppose we have a specified range of target font
sizes, we want labels to be rendered with. Scaling the area such that the label
matches the smallest and largest font size, gives us two map scales - let’s call them
the lower and upper map scale bounds. For this particular area, these are the map
scales at which it can be labeled by the area label.

With this information at hand, we can raise the following two question:

1. Consider a continuous zooming into the map. The label of the area gets
larger during the zooming. What happens if the map scale exceeds the
upper map scale bound?

2. Considering a continuous zooming out of the map (the area label size shrinks
in this case). What happens if the map scale goes below the lower map scale
bound?

In the first case, the labeled area spans a large part of the map view. We propose
to use this map scale bound to further refine the area and label its subareas - if
available.

In the second case the area is to small for the inscribed label to be readable.
We propose to add a point label which labels the object on smaller map scales.

32

4.4. Finding Representative Points for Areas

S
t
u
t
t
g
a
r
t
-
O
s
t

Stu
t
t
g
a
r
t-West

St
utt

gart-Süd

St
ut
t
g
a
r
t-

Mi
tte

St
ut

tg
art-Nord

Bad Cannstat
t

B
i
r
kach

Botn
a
n
g

D
e
gerloch

Feu
er

ba
c
h

Hedelf
i
n
gen

Mö
hr
in
ge
n

Mü
hl
h
a
u
s
en

Münster

O
b
er

tü
rkheim

P
lieningen

Sillenbuch

S
tammheim

Un

te
rt
ürkheim

Vaihing
e
n

Weilimdor
f

Zuffenh
au
se

n

St
ut

tg
a
r
t

Figure 4.6.: Stuttgart with its suburbs labeled for two different map scales. On a
large scale the suburbs are labeled separately (left) while on a small
scale the city area is labeled as a whole (right):

Additionally, this lower map scale bound indicates that the area might be replaced
by a larger, enclosing entity. As an example consider the city districts of Stuttgart
which might all be labeled separately in a given map scale range. On smaller map
scales the city district labels are replaced by a label of the city itself. The reader
may find an illustration in Figure 4.6.

Refining and labeling the subareas separately works well if the subareas can all
be labelled with similar sizes. Unfortunately, in real world data some of the refined
areas might be to small to be labelled with an area label themselves. In these cases,
a point label can be used to represent the area. In the following section we will
discuss how to find an anchor point for the label which represents the polygon and
integrates well to the zooming process.

4.4. Finding Representative Points for Areas

To find an anchor point of an associated label for an area is not a trivial question.
The problem we are faced with is the following. For a given area we want to find
an appropriate anchor point for a point label. This anchor point shall allow a clear
attribution of a point label to the corresponding area. While this requirement is not
very specific, it is clear that the point must be within the area. We have addressed

33

4. Labeling Areas

Figure 4.7.: Finding representative points for an area with 4 different methods.(©
L. Baur [Bau19])

this issue in the bachelor thesis of Lukas Baur [Bau19]. Figure 4.7 illustrates an
example with the computed center points of four different computation methods.

Different standard techniques can be applied, like the geometric center, morpho-
logic erosion and the point of inaccessibility (see [Bau19] for details). Computing
the geometric center gives optimal results for convex polygons. But this case is
very rare in real world data sets. The point of inaccessibility as well as the mor-
phologic erosion perform good in many cases, but may perform badly in case of
long but relatively thin or ramified areas. In these cases, the analysis of a polygon
skeleton turns out to perform well. This is a fourth class of proaches, where Baur
evaluates several different analysis methods.

Summed up, Baur supposed to use an input sensitive approach. Depending on
the input polygon, different algorithms are applied to find candidate positions.
Finally the best of these candidates is returned as the best representative point.
For details please refer to the original work.

The approach, described above, performs good finding a representative point
for an area. But it does not integrate very well into the area labeling scheme.
When zooming out a labeled area, the representative point may be very far from
the actual placement of the area label. So the user can hardly see any connection
between the vanishing area label and the corresponding point label.

A possible solution is to take the lower center of the label box as the representa-

34

4.4. Finding Representative Points for Areas

Heilbronn

Heilbronn

Figure 4.8.: Heilbronn labeled by an area label (right). The representative point
is placed at the center of the lower box boundary (purple dot). On
the left hand side the area is labeled with a point label on a smaller
map scale.

tive point. In this case the point label and the area label integrate well (see Figure
4.8).

35

5. Labeling Points

While area labels, as introduced in the former chapter, are used to label large
entities on a map, there may be objects of very small extent which are of interest
for a user as well. On small scaled maps, these may be for example cities. On
maps of larger scale, showing e.g. a city area, objects like schools, restaurants,
cafés etc. might be of interest for the user. On even larger map scales, ATMs,
trashbins, benches and the like could be labeled separately.

Some of these entities may be represented by their name (e.g. cities), while
others may have an icon assigned (e.g. trashbins, benches). What they all have in
common is that we can assign some sort of importance or priority to the entities.
A city is probably more important to be labeled than a village. Also a city with
a population of a million might be preferred over one of a hundred thousand.

Label

Figure 5.1.: A very basic point label model where the label is aligned to the point
at its lower left corner.

Consider a very basic labeling where for each point label the label string is
horizontally aligned and anchored at the point it labels. An example is illustrated
in Figure 5.1. The main goal of a good labeling is to prevent these point labels
from overlapping each other.

The labeling of points in interactive maps rises two more challenges. The first
challenge is related to map zooming. When zooming into the map continuously,
the displayed labels grow relative to the map and might start to overlap. In this
case, one of the two overlapping labels needs to be removed from the view to
regain good readability. An associated problem may arise on further zooming. If
the other label gets removed too, the earlier removed one might have enough free
space to be displayed again. But displaying this label again would be inconsistent
for the user. Hence it must be prevented.

The second challenge is related to map rotation. Consider a map at a fix map
scale. When rotating the map, horizontally aligned labels might start overlapping
each other. Hiding one of the corresponding labels to resolve this conflict might
lead to flickering effects during continuous rotation. These flickering effects might
distract the user and hence also need to be prevented.

A preliminary version of this Chapter 5 was published in [Kru18].

37

5. Labeling Points

Been et al., in their works about labeling points of interest, [BDY06; Bee+10],
defined some consistency criteria for interactive map labelings. While they were
just considering non-rotating interactive maps, we will use these criteria (he calls
them desiderata) as the basis of our proposed labeling scheme. We will shortly
introduce them in the following Section 5.1. After that we will introduce our
labeling model in Section 5.2. The link between the labeling and map zoom is
described in Section 5.3. Section 5.4 finally describes some extensions which can
be used to overcome some drawbacks of the labeling model.

5.1. Consistency Requirements

Based on the consistency desiderata defined by Been at al. in [BDY06], we define
the following requirements for the labeling of interactive maps which allow panning,
rotating and zooming of the map view:

(D1) During monotonous zooming labels should not appear and disappear more
than once. This requirement meets the user expectation that on continuous
zooming, an object is visible until it is no longer important enough (when
zooming out). When zooming in, it ensures that a label can vanish, e.g. if
the labeled object covers the whole view or the labeled point got replaced
by an area or line feature label at larger scales.

(D2) Labels should not change position or size abruptly on map interaction.
Abrupt label changes during map interaction may distract the user and make
it difficult to track the position of the labeled objects.

(D3) During panning and rotation, labels are not allowed to appear or disappear
except for moving in and out of the view area. This implies that labels might
be partly visible if the label is not fully contained in the view area. Especially
in navigation systems, the map rotation changes automatically, e.g. when
it is linked to a driving direction. This requirement ensures that a constant
labeling is visible even if the map rotation changed since the last time the
user looked at the map. Hence it allows the user to keep orientation with a
low cognitive load.

(D4) The label placement and selection is a function of scale and the view area.
It does not depend on the interaction history. With requirement, the map
at a specific map setting looks like a static map labeling. So users might
directly recognize the places if they look at the map, when having recovered
their map setting.

38

5.2. The Label Disk Model

Based on the work of Kreveld et al. [KOS97], we add another constraint. This
targeting the fact that there is some inherent order of precedence for geographic
features to be labeled.

(D5) During zooming a label disappears only if it is in conflict with an equally or
more important label. For example a megacity label is preferred to a label of
a small rural settlement. So if those two labels are in conflict, the megacity
label should be kept instead of the settlement label. On larger map scales a
street name is less important than the label of the city in which the street
is located. During the label selection process, these precedences need to be
taken into account. Our label selection process additionally respects what
Kreveld et al. called the relative importance of an object. For example a
town might have a high relative importance if it is in the middle of nowhere
compared to a city that is located directly beside a megacity with millions
of inhabitants. The relative importance manifests itself in the fact that the
label of the town is shown longer than the city label while zooming out of
the map.

5.2. The Label Disk Model

We are considering a set of points of interests. For each point, we are considering
its label that may be a label string, an icon or the like. We also assume to have
a priority function. For two points it is defining if the one is prioritized over the
other or vice versa or if they are equally important. The problem we are faced
with is the following: given a specific view area, scale and rotation angle, select
a subset of points such that a visualization of the corresponding labels fulfills the
requirements as defined in Section 5.1.

In the following, we will describe the labeling model at first and a label selection
process which allows to efficiently retrieve such a point set. This selection process
can be subdivided into two phases: first the label set is preprocessed such that in
a second interaction phase the actual label selection reduces to a simple filtering
step. This allows to efficiently query the data set for a consistent labeling during
the interactive visualization phase.

In order to fulfill the consistency criteria, we define a label disk for each of the
points. The label disk is centered at the corresponding point location and has a
specific radius depending on its label size, i.e. the label length, the font and font
size or the icon and icon size. We require the label to be completely contained
within the corresponding label disk. This should hold for each rotation angle.

In order to fulfill requirement (D2) and (D4), the label placement must be
a function of scale and rotation angle. It must ensure that the label does not

39

5. Labeling Points

change its position and size abruptly during map interaction. Except for these
restrictions, the concrete label placement within the label disk is unconstrained.
A fairly simple example for such a placement function, which fits the idea of
the model well, is depicted in Figure 5.2. There you see a point label which is
horizontally aligned and centered above the labeled feature. During rotation the
label remains horizontally aligned and keeps its absolute size on zooming. Icons
can be placed centered at their location or centered above the location. Of course
many other placements are also possible.

Label string
Label

(multiline)

Figure 5.2.: Example of point of interest labels with label strings (left) centered
above the labeled feature and icons centered at the labeled feature and
centered above the labeled feature (right - [Con17b]). The associated
label disks are depicted by the surrounding dashed circle.

Using the label disks, we define a consistent labeling to be a subset of the labels
such that the corresponding label disks are non-overlapping. Because each label is
completely contained within its corresponding label disk by definition, this ensures
that none of the labels are overlapping in any rotation of the map view. Hence we
ensured that during rotation none of the labels need to disappear to avoid label
overlap. In Figure 5.3 you can see a visualization of Germany labeled with our
scheme in two different rotation angles.

To ensure consistency during panning, we come back to a concept Been et al.
called an “inverted sequence” in their approach in [BDY06]. The intuitive label
selection and placement method is to first select the subset of labels in the view area
and placing the corresponding labels afterwards. As Been et al. argued in their
paper it is hard to achieve interactive speed and consistency with this approach.
We suggest to first pick a consistent labeling globally. From this restricted label
set, we finally display the labels intersecting our view area. This selection process
ensures that the only way labels appear or disappear on panning is by moving in
and out of the view area.

In summary until now our requirement (D3) is fulfilled, i.e. labels only appear
and disappear by moving in and out of the view area. The requirements (D2) and

40

5.2. The Label Disk Model

Figure 5.3.: A labeling of Germany in two different orientations (© OpenStreetMap
contributors). The basic label set contains all human settlements ex-
tracted from the OpenStreetMap dataset [Con17c].

(partially) (D4) are fulfilled by an appropriate label placement function. For the
latter we did not yet define the dependency to the map scale but we are going to
make up for it right now.

The map interaction we haven’t considered yet is zooming. Zooming out of the
map by decreasing the map scale naturally leads to decreasing the level of detail of
the map, i.e. less details are visible and labeled on the map. To support this, we
define the label disk radii to be dependent on the map scale. Instead of the label
radius being a fix radius r, we define the actual disk radius of a point to be r · 1

s
,

where s is the current map scale. You see that decreasing the map scale s enlarges
the label disks. Since we require them to be non-overlapping, a consistent labeling
contains less labels – the level of detail decreases. By using these scale-dependent
label disks, the selection of a consistent labeling gets a function of scale as required
in (D4).

The defined label model now allows to have a labeling at arbitrary map scales.
But we have not yet taken the actual selection into account. What we also have not
yet taken into account are the consistency criteria concerning the zooming process
itself. As defined in the consistency requirements (D1) and (D5), for the zooming
we have some requirements. A label should not appear and disappear more than
once during monotonous zooming. Additionally we required a label to be removed
from the view only if it is in conflict with a higher or equally prioritized label. We

41

5. Labeling Points

will target this in the selection procedure described in the following section.

5.3. Linking Labeling and Map Scale

We already defined a labeling model that ensured some of our requirements to be
fulfilled. These concerned panning and rotating on an arbitrary map scale. We
now want to focus on the process of selecting consistent labelings such that the
remaining requirements are fulfilled. These are concerning the process of zooming
in and out of the map, respectively increasing or decreasing the map scale. The
following two requirements still need to be fulfilled: (D1): ’During monotonous
zooming a label should not appear and disappear more than once’ and (D5):
’During zooming a label disappears only if it is occluded by an equally or more
important point label’

For the sake of simplicity, we only consider the process of zooming out of the
map, respectively decreasing the map scale. It is straightforward to think of the
following observations in the reversed process of zooming in. Furthermore, we will
look at the label disks only and not rely on the actual label placement. We assume
that this is done in a suitable way as described in the previous section.

In order to find a proper consistent labeling for a target map scale S, we are
considering the following process: starting with a sufficient large map scale s, all
the corresponding label disks are free of intersections because all the radii tend to
0. We continuously decrease s, until two of the label disks touch. Now the priority
function comes into play. If one of the corresponding points is prioritized over the
other, we remove the less prioritized one. Otherwise we remove one of the two.
We continue with the process until s = S, i.e. our target scale is reached.

The process immediately ensures requirement (D5) to be fulfilled, as a label is
removed only if its label disk is in conflict with a label disk of an equally or more
important label. Requirement (D1) is also fulfilled by design of the label selection
as a label never reenters the process after being removed once.

The proposed label selection process always leads to the same label “elimination
sequence”. At least if we assume the label set to be immutable and breaking ties
happens deterministically. Each label can be assigned a specific map scale where
it is removed from the label set during the process. This opens space for our
promised precomputation phase. Because the label elimination sequence and the
elimination scales for the labels do not change, we can compute them in advance.
Having computed them for a set of labels we can derive a consistent labeling as
follows: for a given map scale S, we choose the subset of labels having an associated
elimination scale smaller than S and restrict the subset to those labels intersecting
the view area. This allows to retrieve a consistent labeling at an interactive speed.

Looking at the process from a more abstract point of view, we are presented with

42

5.4. Extending the Model

Figure 5.4.: Label cones and two planes (brown, light green) that correspond to
label selections at different map scales.

the following so called space-scale cube. The labels are located in a 2-dimensional
plane. Using 1

s
as a third dimension, we see that each label is induces a cone

when decreasing s (see Figure 5.4). The elimination scale of a label determines
the height of the cone. The cones themselves do not intersect each other. In this
view, a labeling of a map on a specific scale S corresponds to the intersection of the
label cones with the plane at the height of 1

S
. In the referenced drawing, you see

two planes corresponding to two different map scales in brown and bright green.
The intersecting cones with the plane are corresponding to the label disks of the
labels at the specific map scale.

Since we always keep the whole disk space free of overlappings, the map space
is not densly covered. This is not so much a problem in interactive maps because
the reduced level of details can be compensated by zooming the map view. In our
running example, the navigation context, this may even be an advantage. By not
distributing the labels so densely, the map is much easier to read. Nevertheless
there are some extensions to the presented labeling scheme, which allow to address
this drawback. In the following we will discuss some of them.

5.4. Extending the Model

What we did not take into account yet is the point where a label occurs while
zooming out of the map. In the basic labeling model, we described before, all the
labels are visible at the largest map scale. A straightforward approach, to extend
the labeling model, is to introduce a “popup scale” for a label. It means that the
label is not visible from the beginning of the process, but becomes visible at this

43

5. Labeling Points

specific map scale. At larger map scales, the label does not exist, hence does not
occlude any of the existing labels. This concept for example allows to add a label
of a city on smaller map scale only such that the label does not occlude details of
the city while being in a zoomed in map view. This extension does not violate the
requirement (D1) as the label only appears once during a monotonous zoom. An
example of a labeling of the center of Berlin is depicted in Figure 5.5, where the
Berlin label is introduced at the smaller map scale on the right.

Figure 5.5.: Labeling of a map using a map labeling with popup scales at a larger
(left) and smaller map scale (right) where the “Berlin” label popped
up (© OpenStreetMap contributors).

As described above, the labeling scheme is not focused on maximizing the num-
ber of labels visible, but on visibility and readability of the map with low cognitive
load. For example for simple horizontally aligned labels a lot of the available disk
space remains unused. To increase the number of labeled objects one can think of
a multilayer approach as follows. Each label, which is removed while zooming out,
is moved to a second label layer. Labels in this second layer may be overlayed by
the main labeling layer. In this second layer labels might use another font type,
color or opacity to make clear it is a background layer. Technically the second
layer uses the same labeling model, i.e. the disks of labels in the second layer do
not overlap. For each label the elimination scale in the first layer is the popup
scale in the second layer. So for each of the layers, the consistency requirements
are fulfilled but the labels of the different layers might overlap in the visualization.
The two layers are visually clearly distinguishable. Hence the concept should not
distract the user much. At the same time, it increases the number of displayed
labels. In Figure 5.6 you see an example of a labeling with two layers.

Having in mind the concept of popup scales as described above, we introduce
a third extension. As Imhof pointed out in [Imh75], line or area feature labels
turn into point labels on smaller map scales. For example, a church might be
displayed as an area on larger map scales but on a zoomed out map view its area
degenerates to a single point. Analogously, the label needs to turn from an area

44

5.4. Extending the Model

Figure 5.6.: Labeling of Stuttgart that uses a second label layer (filled gray font)
to increase the number of labeled points (© OpenStreetMap contrib-
utors).

label to a simple point feature label. In Figure 5.7, you find a map in two different
map scales. The area of Berlin is labeled with an area label on the left hand side
while it is labeled as a point object on a smaller map scale (right). The same can
be applied to line segment labels. By using the concept of popup times, we can
represent this effect with our point labeling scheme. Simply setting the popup
time for the point label to the map scale where the area label becomes to small to
be read, allows us to support this visualization feature.

Figure 5.7.: Labeling of an area using an area label (left) and a point label at
smaller map scale (right)(© OpenStreetMap contributors).

45

6. Obtaining Geographical Data

When we first started working on the labeling scheme, one of the early questions
was how to obtain data records of geographical data. Several sources disqualified
because they were limited in scope, e.g. did only contain names of human settle-
ments or shops etc. Some were locally limited, i.e. available only for one national
state or similar. Others were excluded because they were not freely accessible. We
finally came to the OpenStreetMap project [Con17c]. This project maintains a
huge set of geographical data which is collected voluntarily and provided as open
data. The data is very detailed at least for large parts of the world, see Figure 6.1
for an example of our hometown stuttgart.

A huge advantage is the amount of tools available in the OpenStreetMap ecosys-
tem. Just to mention the most important ones in our case: The Geofabrik [Gmb18]
provides local extracts of the complete data set which allows to use subsets of nearly
arbitrary size. The osmpbf project [inp19] provides a parser for the binary format
used to distribute the data. Last but not least the openlayers project [Con17a],
beyond others, provides a framework to visualize geographical data and is free to
use.

The data set contains three kinds of objects. Points are used to represent objects
which are located at a particular geographic position. Examples are trees or other
small scale objects like ATMs, trash bins etc. Besides such objects many large
scale objects are also modeled as a single points, e.g. cities and other settlements.
Additional information, like name (in several languages), point type, population
and many more, is attached to the object. Based on these informations its easy
to define a corresponding label, the font rendering parameters or an icon and its
size.

Ways are representing objects like streets, i.e. a list of geographic positions
defining the geometry of the object. The labeling of line-like objects is a separate
field in map labeling which we do not consider in the work at hand. Even though
it is possible, we did not use point labels to represent such objects on small-scale
maps. This is mainly because the scope of application is limited to very specialized
scenarios. Additional to representing line-like objects, segments are also used to
determine the shape of the third kind of objects: areas.

Areas are representing objects with a 2-dimensional extent. These may be build-
ings or larger scale objects like city districts, cities, states, nations and many more.
Areas are obviously used as input for area labels, if wanted. But areas can also
be used to generate point labels for small-scale maps. For example an important

47

6. Obtaining Geographical Data

Figure 6.1.: OpenStreetMap view on the inner city of Stuttgart showing the high
degree of detail of the data set.

historic site may be labeled with a point label on maps of smaller scale.
In the work at hand, points of interests were created from tagged OpenStreetMap

points. The available name tag was used as the label. If the names were long,
they were splitted into two lines for minimizing the required disk radius. For
settlement points, a priority was derived from the point type. Further information
like population size was used to distinguish different priorities for larger and smaller
towns and cities. Besides these settlement points of interest, we also exported
general point of interests. For example restaurants, shops, bars, ATMs and much
more. Since they did not have names assigned, we used icons for representation.

For each of the points, a font size was specified so that the label style correlates
to its importance. The specific disk radii where computed by measuring the exact
sizes of the label in its corresponding font style. In case of the icons, the disk radii
were set according to the icon size.

Areas were considered mainly in case of administrative areas. They were tagged
from administrative level 2 (national border) to 11 (neighborhood). Besides these
administrative areas, many important sites were modeled as areas as well. We
were using the simple geometric center to derive a representative point which we
used for a point label. A better solution to do so was presented in Section 4.4.

48

Part III.

Algorithms

49

7. Area Label Positioning

As described in the above section 4, the problem of labeling polygonal areas with
a curved label can be reduced to finding a box of maximum extent within the
polygon. The length to height ratio of the box is hereby determined by the label.
The problem is to find a suitable base arc and the best position of the label box
along this arc. A label position can be described by a circle center, an inner and
outer radius and two angles determining the position of the box along the circle.
See Figure 7.2 for an illustation. The label box is drawn in yellow.

Figure 7.1.: The area of Berlin with an area label and the corresponding box.

In the following section, we will define the problem formally. A quick review
of an algorithm proposed by Barrault in [Mat01] is given. His approach is the
direct predecessor to the work at hand. We describe some shortcomings of his
approach and introduce modifications which we made in order to boost the algo-
rithm efficiency and minimize the computation time. Implementation details and
experiments are given at the end of the chapter.

The research described in this Chapter 7 was joint work with Thomas Mendel. A preliminary
version of this chapter was published in [KM20].

51

7. Area Label Positioning

7.1. Problem Description

We are given a polygon which potentially contains holes. The latter are also given
as polygons. We suppose that the polygons do not intersect itself nor any of the
other (hole-) polygons.

The following is the input of our problem:

• A closed polygon:
(p1, . . . , pn, p1), pi ∈ R2

• A set of holes (potentially empty) of the same form:

{H1, . . . , Hm} with Hi = (h1, . . . , hl, h1), hj ∈ R2

• A ratio of the area label bounding box:

A =
H

L

where H is the height and L the length of the bounding box of the label.

(x, y)

ru

r l

α

β

Label

Figure 7.2.: Meaning of the 6-tuple describing a curved area label position (in
yellow): (x, y, rl, ru, α, β)

Our goal is to find a placement of a box within the area polygon such that the
box does not intersect the boundary polygon nor any of the holes. The box is
allowed to be bend along a circular arc but needs to have the given length-to-
height aspect ratio. We want to maximize the box size. More formally: we need
to find the box position and extent i.e. a 6-tuple:

(x, y, rl, ru, α, β)

52

7.2. Barrault’s Incarnation

where (x, y) is the center of the circular arc. The two radii rl, ru are the lower and
upper radius and α, β is the start and end angle of the box. See Figure 7.2 for an
illustration.

The computation of the optimal label placement comprises two major challenges.
First, there are infinitely many circular arcs intersecting the polygon. We need to
find the most promising ones. Second, a placement of the box along the circular
arc needs to be determined which allows to grow the box to a maximum extent. So
the main idea of the algorithm is as follows: We first have to find some arcs, which
are a reasonable fit to the polygon. To find such an arc, we use an approximation
of the medial-axis - a polygon skeleton. A long path through this graph should be
an appropriate representative of the area’s shape. Because we want our labels to
be placed along circular arcs, we fit a circle through the vertices of the path. A
set of candidate arcs are evaluated i.e. the optimal label-placement along the arc
is computed. The label placement which is largest in size is reported.

The algorithm, Barrault introduced in 2001 in[Mat01], is exactly as stated above.
In the following we will review his algorithm in Section 7.2. We further discuss
the main drawbacks of his approach which we are going to optimize later on. In
Section 7.3, we present our improved algorithm in detail. After that, in Section
7.4, we give some details of the implementation and some experimental results.

7.2. Barrault’s Incarnation

Barrault’s algorithm follows the main steps described above. To decrease the
complexity of the input polygon an additional morphologic erosion is applied.
For the eroded polygon, a delaunay triangulation is computed. For each of the
delaunay triangles, a convex-combination of its corners defines a “center point” of
the triangle. Those “center-points” of adjacent triangles are connected and thus
form the edges of the skeleton.

After approximating the medial-axis in this manner, the 50 longest shortest
paths are selected. A circle is fitted through each of them and further investigated
as a possible label support line. To further reducing the candidate set, the per-
ceived coverage of the 50 candidates is computed (see Section 4.1 for details). The
10 highest ranked candidates are investigated in detail.

For each of the candidate support lines, an optimal label placement and is
computed. The placement with the highest score is returned as the optimal label.

To find an optimal placement along a support line, every possible combination
of start angle and spacings is considered. Since these are potentially infinitely
many, they are investigated in a discretized manner. A potential label baseline
is defined by a starting and ending angle defining the start and end of the label
on the support line. The two angles are constrained by the start and end of

53

7. Area Label Positioning

(x, y)

R
α

dα
β

dβ

Figure 7.3.: Baseline of a label (green) determined by the support line (purple)
and the angles β and β + dβ.

the support line (see Figure 7.3). To evaluate an actual label placement (i.e. a
concrete baseline), the perceived coverage of the label is computed. This is done
by integrating the minimum of the upper and lower distance to the polygon along
the label base line in a discretized manner. The contribution is negative for the
parts of the baseline ranging into the first and last sixth of the support line. For
details please also check Section 4.1.

Figure 7.4.: Polygon skeleton (left) computed according to Barrault’s approach.
The 50 longest shortest paths induce very similar candidate arcs
(right). The illustration were used with permission from [Men18].

A major drawback of Barrault’s approach is his choice of the 50 paths he is
evaluating. These paths are mostly very similar and so are the fitted circular arcs
(see Figure 7.4). N. Mendel reproduced this in her bachelor thesis [Men18]. As

54

7.3. Real-time Area Label Fitting

a result many promising alternatives are not considered at all. Additionally, the
evaluation of the possible label placements contain several integral computations.
Each requiring much computation power. Overall the computation takes a long
time and in many cases does not even lead to optimal results.

7.3. Real-time Area Label Fitting

We go beyond Barrault’s algorithm in several points. Firstly, we use a skeleton
based on the Voronoi graph. The reader may want to see 3.2.1 for an explanation.
This allows for each edge in the skeleton to compute the minimum distance to the
boundary polygon. We call this distance the clearance of an edge.

This clearance value is then used to find paths in the skeleton which are promis-
ing to fit a large label through. This discards paths which are too close to the
boundary of the area, what would restrict the label size. We also improve path
selection by computing a more diverse set of paths.

A third improvement is related to the finding of an optimal position of the label
along a candidate arc. Here we are proposing a new scheme to compute an optimal
placement along the arc.

7.3.1. Medial Axis Approximation

To get an approximation of the medial-axis where we are able to bound the dis-
tance to the boundary polygon we proceed as follows: We compute the delaunay
triangulation of the boundary polygon. For each delaunay triangle, the Voronoi
center is defined as the center of the circumcircle of the delaunay triangle. We
connect the Voronoi centers of adjacent delaunay triangles if this so called Voronoi
edge is completely contained within the polygon. For these edges, we can approx-
imate the clearance, i.e. the minimum distance to the boundary polygon. We
need to distinguish two cases: If the Voronoi centers are on different sides of the
delaunay edge, the minimum clearance is half the length of the radical line of the
two circumcircles (i.e. the delaunay-edge itself). In the second case, both Voronoi
centers are located on the same side of the delaunay edge. Then the clearance is
the minimum of the radii of the two corresponding circumcircles. See figure 7.5
for an example.

The rational behind this is as follows: All points closer to the segment than the
computed distance are also contained in at least one of the Voronoi-balls. Those
balls are empty of other points by definition of a valid delaunay triangulation.
Therefore there are no points within the cleared segment. The clearance of the
segment might still intersect the boundary of the polygon. But this can be reme-
died if the boundary is sampled sufficiently dense. Furthermore we only use these

55

7. Area Label Positioning

Figure 7.5.: The clearance of a Voronoi edge if the centers are on the same side
(left) or on different sides (right) of the delaunay edge.

clearance-values as guidance but do not rely on them for correctness (i.e. keeping
the labeling within the polygon).

Having constructed the skeleton graph and the clearance values one is after
finding promising paths in the skeleton. This paths should allow to place a label
of maximum size.

7.3.2. Finding Candidate Paths

We aim for finding a set of k diverse candidate paths which we further investigate
to place a good label. Our strategy is based on the following observation: If we
place a label along a given path, the minimum clearance of the path-edges hints at
the maximum possible height of the label along this path. We therefore are looking
for paths with a high minimal clearance, whose length allows to fully utilize the
vertical space promised by this clearance. That is the length of the path should
be no less than lmin = 2∗clearance

aspect
.

The idea is to start with a large clearance value (e.g. the maximum clearance
value) and remove all edges of the skeleton which have smaller clearance value. In
this subgraph, we search for shortest paths such that their length is larger than
the appropriate minimum length. If we can’t find enough paths, we reduce the
clearance and search for the remaining paths in the subgraph filtered with the new
clearance. In our case, we start with the maximum clearance in the graph and
reduce it by

√
2, i.e. we half the area of the label box we search for.

In detail we proceed as follows: In each component of the pruned skeleton, we
start with an arbitrary node and search for the node which is furthest away. This
is done with one dijkstra call by tracking the root node of every shortest-path-tree.
The so found nodes form our set of start nodes. We now search for the node which
is furthest from our set of start nodes - also requiring only one dijkstra call with
all the nodes as sources. The so found pair of nodes approximates the longest

56

7.3. Real-time Area Label Fitting

shortest path in the pruned skeleton (this method is exact for trees but not for
arbitrary graphs). If the path length is larger than lmin, we report the path and
add its vertices to the set of start-nodes. If we did not yet find k paths, we repeat
the search with the new set of start-nodes. If the found path is of shorter length,
we decrease our clearance by

√
2, refilter the graph and proceed as described. We

repeat this until we found the k paths.
Through each of the so found candidate paths a circle is fitted. Let p1, . . . pn

be the points of the path. We compute a center c and a radius r such that the
term

∑n
i=1 (|pi − c| − r)2 is minimized. We now compute the position and size of

the maximum box contained in the boundary polygon and bent along the circle
(see the next Section 7.3.3 for details). The maximum-size box is returned as the
optimal label placement.

7.3.3. Label Placement

Figure 7.6.: The segments of the polygon restrict the label size. If the label is
placed below or above a segment, the segment constrains the possible
size (green label). We have to move the label considerably to the side
so it can grow (right label).

Figure 7.7.: Polygon segments with their circular bounding boxes (left) and the
corresponding bounds in the circular diagram for a very tall label
(middle) and a very long label (right). The tall label is constrained
by the cyan segment. We can actually move it a little to left or to the
right. The long label is constrained by the pink and the gray segments.

57

7. Area Label Positioning

Given a circle, a polygon and a text label we aim to find the position along the
arc such that the size of the label can be maximized. We can compute this optimal
placement in time O(n log n), where n denotes the size of the polygon.

Let us first consider how a single polygon-segment constraints the label place-
ment. We employ the following simplification: A circular bounding-box is con-
structed around each polygon-segment.

There are two cases: First if the label size is restricted by the segment in its
height, then we can move it along the arc without getting any benefit. In the
second case, the size of the label is restricted by the segment in its length. In this
case, the size of the label increases if we move the center of the label away from
the segment. The more we shift it away from the center, the more we can increase
the size of the label. If we consider the possible size of the label as a function of
the angle where the label is placed on the circle, we get a piecewise function with
3 parts: When the label gets closer to the segment the possible width decreases
until it can fit below/above the segment. It then stays constant, while passing
above/below the segment and finally increases. Let’s call those functions “wedge”.
For a given angle, they tell us how large a label can be if it is placed at this angle
on the circle. This is illustrated in figure 7.6.

We now construct all those “wedges” from the segments and find the highest
point, which is below each of the wedges. This point describes the point where
the label width is maximal. Because the label-aspect is fixed, this means that the
label size is maximized. So this yields the optimal label placement.

To find this point, we first consider the complete circle from 0 up to 2·π. We then
consider each wedge, from lowest to highest, and restrict the possible placements.
When there are no more valid placements left, we return the highest point seen.
A simple example instance is depicted in figure 7.7.

The active wedges can be organized in a segment tree. For any height, the set of
wedges looks like a set of segments. When going up, these segments grow. When
two wedges intersect, we can merge the associated segments.

We can enumerate the wedges with a heap. Because we can stop the compu-
tation, when there are no more valid placements left, we only consider a small
amount of segments. Considering the example in figure 7.7 with the long label,
we would only inspect the pink and gray wedges before returning the optimal
placement.

Wedge Computation

In this section, we will go through the math needed to actually compute the
wedges. For any mathematical symbols, please consider Figure 7.8 as a reference.
Furthermore A denotes the aspect of the label.

58

7.3. Real-time Area Label Fitting

α

r

ds

Figure 7.8.: The label can start to grow, when its corner touches the corner of the
segment’s bounding box.

First let’s derive the relationship between the height of the label (H), its width
(L) and the spanned angle (α) for a given circle with radius r.

By definition the following holds:

H = L · A (7.1)

Furthermore we can easily derive:

L = (r −H/2) · α (7.2)

For a given segment s, let ds denote the minimal distance of the segment to the
circle. If the height H of our label is less than ds, the segment does not interfere
with the label placement. If the height H of the label is greater than ds, we can
compute the spanned angular range α by plugging (7.2) into (7.1) and solving for
α. The center of the label needs to be at least α/2 from the segment.

With the special case of H = ds, we can compute exactly the placement of the
label for which the wedge transitions from one linear function to the next. Coming
from the left the label shrinks, until it can fit below the segment. It then slides
along without changing size. Finally, its size can increase once again if its far
enough to the right.

The following statements are equivalent:

• The height of the label is maximized.

• The length of the label is maximized.

• The area of the label is maximized.

• The angular extent of the label is maximized.

59

7. Area Label Positioning

It’s easiest to describe the wedges in terms of maximum angular extent.
Let αds be the alpha value, such that H equals ds. Also let β1 and β2 be the

angles between the circle center and the segment’s endpoints. Finally let αl denote
the angle on which the label center is placed.

If αl > β2 + αds/2, the maximum possible label extent is:

αds + 2 · (αl − (β2 + αds/2))

If αl < β1 − αds/2, the maximum possible label extent is:

αds + 2 · ((β1 − αds/2)− αl)

If αl falls within those bound, the value is exactly αds .
This yields 3 piecewise linear functions for the wedges.

7.4. Implementation and Experimental Results

We implemented our proposed algorithm in C++. For the geometric operations, we
relied on the CGAL Library [Pro15]. Graph searches were done with the help of
the Boost Graph Library [Boo19]. Running times were measured on a single core
of an AMD Ryzen 7 2700 and 32GB of RAM.

Brandenburg

Brandenbu
rg

Brandenburg Brandenburg

Brandenburg Brandenburg

Brandenburg

Br
andenb

u
rg

Brandenburg

Brandenbu
rg

Brandenburg Brandenburg

Brandenburg Brandenburg

Brandenburg

Brandenburg

Figure 7.9.: Example labeling of Brandenburg with a label of unrestricted angle
(left) and an angle restricted to ≤ 180.

60

7.4. Implementation and Experimental Results

7.4.1. Benchmarks

We compared our algorithm in two variants. In a first run a candidate set of 30
paths was investigated (S30). We also ran our algorithm with only 10 candidate
paths (S10). We also used a Barrault-like search based on the 50 longest paths in
the skeleton (BAR). We skipped candidate positions whose arc-length was larger
than 180 to prevent labels from being curved to much. In the Barrault-like version,
we disabled the skipping since otherwise in many cases no feasible candidate could
be found. This can be explained by the low diversity in the candidate set, which
Barrault himself noticed in his paper [Mat01] and Mendel reproduced in [Men18].

We evaluated our code on a data set of Germany and its 16 federal states.
The data set was created extracted from the OpenStreetMap data. Except for
an precomputed data cleaning , no further subsampling or similar was applied.
The cleaning was required, since our labeling algorithm requires proper input data
without self-intersections and so on.

The number of points at the boundary, and the running time for the area label
computation with our algorithm is given in columns # points and S30 runtime
in Table 7.1. For our procedure with a restricted candidate set (S10) and the
Barrault-like candidate search, the runtime is given. We also state the size of the
found box compared to the one computed by S30.

When looking at the table, two things attract attention. First, the radio be-
tween the results computed from a candidate set of 30 and 10 do not differ. This
emphasizes the effectiveness of our proposed candidate selection process. The can-
didates with high clearing values are contained in both candidate sets. Extending
the candidate sets with path candidates of smaller clearing value does not influence
the quality of the results. Hence, we can conclude that the optimal position in
these cases is indeed induced by one of the paths of high clearing.

Second, the ratio of some results computed using the Barrault-like search is
much higher than 100%. But this effect is always caused by the disregarding of
the angle restriction. The results for the Brandenburg label which is 188% in case
of the Barrault-like search is depicted in Figure 7.9. On the left hand side you see
the label of unrestricted angle compared to the restricted label computed by S30.

The runtimes of the S30 and S10 variant are as expected, since only a third of
candidates need to be constructed and evaluated, the runtimes of S10 are lower.
On the other hand the runtime for the Barrault-like variant are significantly higher
although the number of candidates is less than twice the ones in S30. This can be
explained by the time required for constructing the candidate paths. Since initially
all leaf-to-leaf paths in the skeleton need to be considered for finding the longest
ones, a lot more time is required here.

61

7. Area Label Positioning

S30 S10 BAR
data set # points runtime runtime ratio runtime ratio
Germany 141,338 2.03 100% 35%
Baden-
Württemberg

34,679 0.40s 0.26s 100% 3.27s 76%

Bavaria 117,003 1.71s 1.01s 100% 90.38s 38%
Berlin 5,890 0.10s 0.04s 100% 0.18s 60%
Brandenburg 19,730 0.41s 0.18s 100% 1.04s 188%
Bremen 2,459 0.06s 0.04s 100% 0.08s 58%
Hamburg 2,987 0.07s 0.05s 100% 0.08s 106%
Hesse 21,797 0.26s 0.17s 100% 1.36s 73%
Mecklenburg-
Vorpommern

10,154 0.14s 0.09s 100% 0.35s 60%

Lower Saxony 28,789 0.33s 0.23s 100% 2.22s 89%
North Rhine-
Westphalia

39,475 0.44s 0.30s 100% 4.58s 60%

Rhineland-
Palatinate

24,393 0.28s 0.19s 100% 1.37s 185%

Saarland 6,246 0.10s 0.07s 100% 0.19s 55%
Saxony 37,967 0.46s 0.27s 100% 4.20s 31%
Saxony-Anhalt 13,749 0.20s 0.12s 100% 0.51s 97%
Schleswig-
Holstein

5,632 0.10s 0.03s 100% 0.16s 110%

Thuringia 29,332 0.38s 0.22s 100% 2.45s 137%

Table 7.1.: Running times averaged over the number of nodes.

62

8. Computing Elimination Sequences

As described in the above Section 5, our labeling can be reduced to computing
elimination sequences of induced disks in a 2-dimensional space. These disks are
centered at the point of interest and their radius is determined by the label size
and font parameters.

In the following, we will consider the abstract problem in a more general form
where the disks turn into d-dimensional hyper-spheres. Solving this general prob-
lem induces a solution for the application by choosing d = 2.

In Section 8.1, we will define the problem, analyse its complexity and introduce
a simplified scenario. We provide an efficient algorithm for solving this simplified
scenario in Section 8.2. We further prove optimality and analyse the algorithm
complexity. The provided algorithm depends on abstract spatial queries. We show
how to replace these in specific lower dimensional settings and provide experimen-
tal results. Section 8.3 switches back to the unrestricted scenario. Heuristics are
provided to compute approximations of the optimal result. Their quality is eval-
uated and compared to several heuristics and to optimal solutions for very small
instances (≤ 1k items).

8.1. Problem Description

Our problem is as follows.

Given

• a set of points
P = {p1, . . . , pn}, pi ∈ Rd

• a priority per point (higher value means the point is more important):

prio : P → N

• a radius function:
rad : P → R+

• a distance measure, which we will refer to with |p, q|:

dist : P × P → R+

63

8. Computing Elimination Sequences

• a popup time where the corresponding sphere appears for the first time.
Before this popup time the sphere is not considered in the process. At
popup the sphere has a radius of rad(p) · t = rad(p) · popup(p).

popup : P → R+

• an maximum elimination time, indicating the time where the sphere is elim-
inated latest:

etMAX : P → R+

Some information can be derived from the data:

• The collision time for two points p 6= q ∈ P :

tcoll(p, q) =
|p, q|

rad(p) + rad(q)

• The maximum collision time tmax

Each point p ∈ P induces a d-dimensional sphere B(p, rad(p) · t) centered at
p. The sphere has a variable radius depending on a parameter t ∈ R+ and the
specific radius of the point rad(p).

We are considering the following process: Let t = 0 be the initial t-value. None
of the induced spheres overlap (assuming general position) because the spheres all
have a radius of 0. We continuously increase t.

During this process three things can happen: The induced spheres of two already
popped up points touch at the current t - we say they collide. Let p1, p2 be the
two related points, w.l.o.g. let prio(p1) ≤ prio(p2) (otherwise swap the points). If
prio(p1) < prio(p2), we are eliminating the less important point p1 and continue.
If prio(p1) = prio(p2) then either one or the other is eliminated.

Second, the popup time of a sphere might be reached. In this case the cor-
responding sphere is added to the arrangement. Since the sphere has not been
considered before, it might directly intersect many of the other spheres available.
Which means the sphere immediately eliminates all spheres with lower priority it
overlaps. If it is intersecting with a sphere of higher priority, it is eliminated before
affecting any other point.

Last, a sphere could reach its maximum elimination time. In this case the sphere
is eliminated and removed from the arrangement.

This process determines an elimination time for each point. We call this function

et : P → R+

The induced sequence of eliminations is called elimination sequence.

64

8.1. Problem Description

This sequence is not necessarily unique. Whenever two spheres collide and the
two corresponding points are of the same priority, the point to be eliminated can
freely be chosen. Depending on this decision, others might be eliminated sooner or
later. Our goal is to maximize the number of spheres that are alive summed over
all possible times t. This implies to maximize the integral over t of the number of
points alive at time t. But instead of integrating over t, we can sum up for each
point the size of the range, where the point is alive, i.e.

∑
p∈P (et(p)− popup(p)).

Since the popup times are constant, this function is maximized if the sum of
elimination times is maximized. So our optimization goal is to:

max
∑
p∈P

et(p)

8.1.1. Computational Complexity

We will now prove NP-hardness of our problem at hand. Thus showing that we
can not expect to find an efficient algorithm to compute an optimum solution.
Efficient in our case means polynomial time for a deterministic algorithm. We use
a well known NP-complete problem, the maximum independent set problem in
unit-disk graphs, and reduce it to a Elimination sequence computation.

Theorem 1. Computing elimination sequences is NP-hard.

Proof. To prove NP-hardness, we choose the Maximum Independent Set (MIS)
problem in unit disk graphs. The MIS problem in unit disk graphs is NP-complete
[CCJ90]. It is defined as follows: For a given set of unit disks (i.e. disks of radius
1) in the plane, we consider the intersection graph which is the graph where each
disk is represented by a vertex. If two circles intersect, the corresponding vertices
are connected via an edge. See Figure 8.1 for an example. The MIS is to determine
a subset of vertices such that no two vertices are connected via an edge and the
result set is of maximum size.

For a given unit disk graph instance, we construct an Elimination Sequence
instance as follows: For each disk, we create a point in P . Each point gets a
priority, a radius and maximum elimination time etMAX of 1. By checking every
pair of points p 6= q ∈ P with |pq| < 2, we can determine the largest distance d
between two of these points in O(n2). We choose an ε such that d

2
< ε < 1. To

each point we assign a popup time to ε.
Let us consider the elimination sequence of the constructed instance. Most of

the points will immediately be eliminated when popping up at time ε. So et(p)−
popup(p) is 0 for these points. Only some will reach their maximum elimination
time 1. For these points p it holds that et(p)−popup(p) = 1−ε > 0. The sum of all
elimination times is maximized if and only if the points of a maximum independent

65

8. Computing Elimination Sequences

u

v

Figure 8.1.: Example of an intersection graph (red edges) of a unit disk set. For
each pair of vertices u, v an edge is added, if the corresponding unit
disks intersect.

set are not eliminated at popup time ε. Hence an optimum elimination sequence
induces a maximum independent set in the unit disk graph instance. The optimum
solution to the MIS problem contains the points with an elimination time of 1.

We can conclude that the computation of elimination sequences in 2 dimen-
sions is NP-hard. Since the 2-dimensional case is a special case of the general
d-dimensional problem, the theorem follows.

8.1.2. A Simplified Scenario

The complexity of the problem is due to the necessity to choose which point to
eliminate, whenever two points are of equal priority collide. To favor one over
the other or vice versa might change the whole sequence for larger t values. The
same holds for collisions happening at the same point in time. This might be
induced by spheres colliding at the same time or points popping up. The latter
may immediately lead to multiple collisions happening at the same time.

By restricting the problem, we can reduce the complexity and find a very efficient
algorithm to compute this sequence. In the simplified scenario we assume the
following:

No two collisions happen at the same time. We can ensure this by slightly per-
turbing the input if necessary.

66

8.2. Solving the Simplified Scenario efficiently

The popup time for each point is t=0 , i.e. no point is popping up during the
process.

We define the priority function to be a total order by introducing the follow-
ing additional constraint:

∀p 6= q ∈ P : prio(p) 6= prio(q)

A very naive algorithm can be used to solve this simplified scenario inO(n2 log n)
time. The algorithm performs as follows: compute the collision time for each pair
of points. Sort the list of elimination events according to the collision time. Start
with the event of smallest collision time and handle it, i.e. output the elimination
time for the less important point and the point itself. Continue with the next
event in the queue: Check if none of both points has been eliminated so far. If
so, output the less important one and continue. The dominating operation is the
sorting of O(n2) elements taking O(n2 log n) time.

After having introduced the problem and the simplified variant, we will now
introduce an efficient algorithm in the next section. We prove correctness and
analyse the algorithm complexity. The algorithm is using some abstract data
structures for spatial queries. After introducing and analysing the general algo-
rithm, we make things concrete for two realistic scenarios: The first is the labeling
of maps in a 2-dimensional euclidean setting, e.g. the labeling of a map using the
well known Mercator projection. The second scenario covers d-dimensional eu-
clidean spaces. Experimental results are provided for a slightly modified scenario,
where the points are located on a virtual globe.

8.2. Solving the Simplified Scenario efficiently

Given the simplified scenario defined above, we aim for computing the correct
elimination sequence efficiently. We have already seen a naive algorithm, running
in O(n2 log n). But we aim for finding a better algorithm. In the following, we
will first gain some knowledge about the elimination process. We will use this
in the design of our algorithm. For the sake of simplicity, we will illustrate our
examples in the 2-dimensional scenario. These examples easily generalize to higher
dimensions.

Our algorithm will mimic the process of the spheres growing from t = 0 where
the spheres all have a radius of 0 and are therefore non-overlapping (assuming
general position). The high level idea is to ”predict” the upcoming event for

A preliminary version of the work presented in this Section 8.2 was published in [Bah+17;
FKS16].

67

8. Computing Elimination Sequences

each point. Processing the smallest of these predicted collisions and update the
predictions afterwards, will be sufficient for computing the sequence.

p

1

q

Figure 8.2.: A worst case instance. At an early time (black spheres) it seems like
p might collide with a very nearby sphere first. But when the collision
finally happens, it is with the most distant point q, which has a very
large radius compared to the others.

Unfortunately, the next collision for a point p might be with its most distant
point q in the point set. This might be the case if this point has a very large radius
rad(q) compared to all the other points in the point set. See Figure 8.2 for an
illustration. At the same time, we notice that it is not necessary to predict the
next collision for both points correctly. As long as one of the two points correctly
predicts its next collision, we are fine. This leads us to the first observation, which
will guide our algorithm:

Observation 1. During the process, only for one of two points of a collision the
collision needs to be predicted correctly.

We will use this to guarantee correct prediction only for the point with larger
or equal radius. There is no harm though, if both predict the respective collision.

In the following, let us consider only collisions where p is the point with larger or
equal radius. We see that the sphere around p hits the one of its nearest neighbor
at half the nearest neighbor distance, assuming equal radii (see Figure 8.3). No
other sphere induced by a point with smaller radius can hit the sphere of p earlier.
Hence we can conclude:

68

8.2. Solving the Simplified Scenario efficiently

p n

|p,n|
2

2 · |p, n|

Figure 8.3.: Assuming p to be the point with larger or equal radius, then no other
point can collide with p before its sphere covers half the distance to
its nearest neighbor n.

Observation 2. For a point p, the next collision with a point q with rad(q) ≤
rad(p) is at time tcoll ≥ |p,nn|

2·rad(p) , where nn is the nearest neighbor of p.

We can also consider the other edge case: Suppose rad(nn) = 0 for the nearest
neighbor nn of p. Then the sphere induced by p collides with the one of its nearest
neighbor when it coveres the whole nearest neighbor distance. Every other point
inducing an earlier collision, but having a smaller or equal radius than p, must
have a distance ≤ 2 · |p, nn| to p (see Figure 8.3). Hence we observe:

Observation 3. For a given point p and its next collision partner q with rad(p) ≥
rad(q), it holds that |p, q| ≤ 2 · |p, nn|, where nn is the nearest neighbor of p.

These observations at hand we can now head towards describing the idea of our
algorithm.

The high level idea for computing the elimination sequence is as follows: a queue
manages the upcoming collision events. For each point, the next event in time is
predicted and added to the queue. We process the events with ascending collision
time. When processing an event, we check if the two involved points are still alive.
If so, we output the less prioritized point and remove it from the point set. We
then predict and add the next collision for the remaining point.

When predicting the next collision for a point, we can use the two observations
2 and 3. According to Observation 3, we only need to check the range of twice the
nearest neighbor distance to find the next collision. This allows us to minimize
the number of points, we actually need to check. From Observation 2, we know
that we can postpone the prediction until the sphere induced by p covers half the
nearest neighbor distance. This might save us some effort as p might have been
eliminated in the meantime. Otherwise the number of points we need to check for
conflicts might have been decreased - hence decreasing the efford to predict the
next collision.

Let us now continue and specify the algorithm.

69

8. Computing Elimination Sequences

8.2.1. The Algorithm

For sake of simplicity, we suppose to have given an abstract data structure to
answer the following spatial queries. See Section 3.2.3 and 3.3.2 for an detailed
introduction.

Definition 5 (NearestNeighbor(q)). For a point set P ⊂ Rd and a query
point q, the nearest neighbor of q is a point p ∈ P \ {q} with |p, q| ≤ |p′, q|, for all
p′ ∈ P \ {q}.

Definition 6 (Range(q, r)). For a point set P ⊂ Rd, a query point q, and a
distance r, the range of distance r around q is the set S = {p ∈ P \{q} : |q, p| ≤ r}.

Definition 7 (Delete(q)). Removes point q from the point set P .

In the following, we will state the algorithm, prove its correctness and bound its
complexity depending on the complexity of these operations. After that, we will
show how to replace this black box data structure in real problem instances.

Our algorithm maintains a min-queue Q which maintains (according to time t)
the following types of events in an ascending order:

UpdateEvent = (p, p, t), i.e. check for possible collisions of point p at time t

CollisionEvent = (p, q, t), i.e. a collision between the induced spheres of p
and q will happen at time t

Within Q, we resolve ambiguities, i.e. events with identical times t, by considering
an UpdateEvent less than an CollisionEvent. Remember: no two collisions
will happen at the same point in time. We also maintain an array, called alive, to
indicate if a point is still alive or has already been eliminated.

In Algorithm 1, we have depicted the main loop of our algorithm. In a first
step, the event queue is initialized by calls to PredictCollision(p, 0) for each p
in the point set. This effectively determines the nearest neighbor nn for every p
and inserts an UpdateEvent at time |p, nn|/(2 · rad(p)). The time at which we
want to check for the next collision of p.

In the main loop, the algorithm always processes the next event from the priority
queue. If the event is a CollisionEvent and if both points p and q are alive,
then q is eliminated. Which means, its elimination time is set to t, the point is
removed from the set of points and alive[p] is set to false.

The subsequent if-else constructions perform as follows: If the event was an
UpdateEvent(p, p, t), the if clause is processed, i.e. PredictCollision(p, t) is
called. Each CollisionEvent(p, q, t) behaves like an UpdateEvent for the not-
eliminated point. In case that an elimination took place, PredictCollision(q, t)

70

8.2. Solving the Simplified Scenario efficiently

Algorithm 1: Main algorithm
Input : P = {p1, . . . , pn},

rad : P→ R+,
prio : P→ N with prio(p) 6= prio(q) if p 6= q

Output: Sequence of tuples (pi, ti) ∈ P × R
foreach p ∈ P do

Q.push(PredictCollision (p, 0));
alive[p] ← true;

while !Q.empty() do
(p, q, t) ← Q.popMin();
if p 6= q and alive[p] and alive[q] then

r ← if prio(p) > prio(q) then q else p;
output(r, t);
alive[r] ← false;
P.Delete (r);

if alive[p] then
// an UpdateEvent will be handeled here if alive[p]
Q.push(PredictCollision (p, t));

else if alive[q] then
Q.push(PredictCollision (q, t));

71

8. Computing Elimination Sequences

is called for the surviving point q. If either p or q were eliminated before, Predict-
Collision is called for the respective other one. If none of the two are alive
anymore the event is just popped from the queue.

Thus, during the course of the main loop, for every point p there is either an
UpdateEvent or a CollisionEvent in the priority queue Q.

Algorithm 2: PredictCollision
Data: P = {p1, . . . , pn},
rad : P→ R+,
prio : P→ N with prio(p) 6= prio(q) if p 6= q
Input : Point p, Time t
Output: CollisionEvent (p, q, t) or UpdateEvent (p, p, t)

nn ← P.NearestNeighbor (p);
t’ ← |p,nn|

2·rad(p) ;
if t < t′ then

return (p, p, t′) ; // UpdateEvent
else

nh ← P.Range (p, 2|p, nn|);
q ← argmin

p∈nh
(tcoll(p, q)) ; // neighbor with minimum tcoll

return (p, q, tcoll(p, q)) ; // CollisionEvent

Predicting the next collision of a point p and at time t is done with the Predict-
Collision routine, stated in 2. First the nearest neighbor nn of p is determined.
We compute t′, the time at which the sphere around p covers half the nearest neigh-
bor distance. If the current t is less than this t′, we return an UpdateEvent to
trigger another PredictCollision call if t′ is reached. Otherwise, we search the
range of twice the nearest neighbor distance to find the next collision in time. We
return the corresponding CollisionEvent.

8.2.2. Correctness

We will now prove that the algorithm is correct.

Theorem 2. Algorithm 1 returns the correct elimination sequence.

Proof. We show that the following loop invariant holds after each iteration of the
main loop: For every future collision p, q, t in the correct elimination sequence,
w.l.o.g with rad(p) > rad(q), there is either an UpdateEvent (p, p, t′) or a
CollisionEvent (p, ., t′) in Q with t′ ≤ t, and both p and q are alive.

72

8.2. Solving the Simplified Scenario efficiently

This suffices for correctness, as at time t the only possible collision is between p
and q. Otherwise, the instance would be degenerated. If this CollisionEvent is
not in Q, there has to be the UpdateEvent (p, p, t) in Q which leads to the inser-
tion of the respective CollisionEvent upon a call to PredictCollision(p, t).
Also, wrong collisions are impossible, as then at least one point needed in a later
collision would not be alive anymore.

After the initial loop, the invariant is true as all points are alive and for each cor-
rect future collision p, q, t with rad(p) ≥ rad(q), there is an UpdateEvent (p, t′)
in Q with t′ ≤ t. Now assume an UpdateEvent is popped from Q, and rad(p) ≥
rad(q) for some future collision of p, q at time tcoll. If PredictCollision(p, t)
inserts a new UpdateEvent (p, p, t′) in Q, obviously t′ < tcoll holds. Otherwise,
a CollisionEvent (p, ., t′) is inserted. If it does not predict a collision with q,
there has to be some earlier possible collision at the moment, hence also t′ ≤ tcoll
holds.

If the first CollisionEvent is popped from Q, it has to be a correct collision as
popping UpdateEvents before did not hurt the loop invariant as shown above.
Hence the point discarded will not appear in any correct future collisions. For
the surviving point PredictCollision is called, which can not hurt the loop
invariant as shown above. For any subsequent CollisionEvent, if one of the
points is not alive, the collision event reduces to an UpdateEvent for the other
point. Hence again the loop invariant is never violated.

8.2.3. Algorithm Complexity

In the following, we will analyse the complexity of the provided algorithm. We
will hereby rely on the abstract proximity queries. We denote TNN , TRQ(k) and
TDEL to be the time required for answering a NearestNeighbor, Range and
Delete query in a data set of size n, where k is the size of the requested range.
We will later show how these black boxes can be replaced in practice in a two and
a multi dimensional scenario (see Section 8.2.4). In the following Section, let the
ratio ∆ = rmax

rmin
where rmax is the maximum and rmin the minimum sphere radius

in a given instance.
Proving the running time of the algorithm consists of essentially two steps:

1. Bound the size of the result of the Range query in the PredictCollision
subroutine.

2. Bound the overall number of times PredictCollision is invoked.

Let’s first bound the number of points having a given point in the point set as
their nearest neighbor. We will use this result afterwards.

73

8. Computing Elimination Sequences

Lemma 1. For a set of points P in Rd and a fixed q ∈ P , the number of points
in P which have q as nearest neighbor amongst the points in P is O(22.5d).

Proof. For the points p, having q as their nearest neighbor, we know that the
circle of radius |pq| around p does not contain any other point. We can map
the points p to p′ which are on the surface of a sphere with the smallest nearest
neighbor distance (see Figure 8.4 for an example in 2-d). For these mapped points
the nearest neighbor relation did not change. The spheres around these mapped
points of half the nearest neighbor distance are non-intersecting and touch the
sphere centered at q with the same radius. The maximum number of spheres in
this setting can be upper bounded as follows:

The kissing number τd is the maximum number of non-overlapping unit spheres
in Rd that can be arranged so that they all touch a central unit sphere. It is known
due to Kabatiansky/Levenshtein [KL78] and Wyner [Wyn65] that 20.2075·d(1+o(1)) ≤
τd ≤ 22.041·d(1+o(1)). The latter inequality yields the statement of our lemma.

Figure 8.4.: The points, having q as their nearest neighbor, can all be projected
on a circle of the smallest nearest neighbor distance (dashed, blue).
Their circumcirles of the nearest neighbor distance, do not contain
any of the other points. Hence the circles of half the distance (dotted,
orange) are non-intersecting and touch the circle of point q.

The following lemma, for arbitrary factors α ≥ 2, upper bounds the number of
points in a range query of α times the current sphere size.

74

8.2. Solving the Simplified Scenario efficiently

Figure 8.5.: The spheres of radius rmin · t around points in Range(p, α · rad(p)t)
are completely contained within a sphere of radius (α · rmax + rmin)t -
a 2D example.

Lemma 2. In the PredictCollision routine for any point p and an arbitrary
time t ≥ |p,nn|

2·rad(p) and a constant α ≥ 2, we have that |Range(p, α · rad(p)t)| =
O(∆d).

Proof. First consider the volume of a d-dimensional sphere with radius rad(p)t in
Rd. In the following let

F =
πd/2

Γ
(
n
2
+ 1

)
where Γ is Eulers gamma function. Then the volume of a d-dimensional sphere of
radius R is F · Rd in an euclidean space.[Aut, Eq. 5.19.4] For each point in the
α · rad(p)t-range around p, we know that their spheres do not intersect. It follows
that the spheres with radius rmint around the points in Range(p, α ·rad(p)t) have
to be disjoint and completely contained in a sphere of radius (α · rad(p) + rmin)t.
The additional rmin is necessary so that the spheres centered at the boundary of
the range are still completely contained in the volume. In Figure 8.5, the reader

75

8. Computing Elimination Sequences

finds depicted an example in 2d.
Hence the number of points in the range can be upper bound as follows:

|Range(p, α · rad(p)t)| · F(rmint)
d ≤ F((α · rad(p) + rmin)t)

d

⇔ |Range(p, α · rad(p)t)| ≤ ((α · rad(p) + rmin)t)
d

(rmint)d

≤ ((α ·∆rmin + rmin)t)
d

(rmint)d

= (α∆+ 1)d

The last inequality holds because rad(p) ≤ rmax = ∆rmin. For α being a constant,
the result is in O(∆d)

With this at hand, we can bound the running time of a single Predict-
Collision call.

Lemma 3. The running time of a single call to PredictCollision(p, t) is
O(TNN + TRQ(n,∆

d) + ∆d).

Proof. In case t < t′, the running time is just O(TNN) for the nearest neighbor
query.

Otherwise, we additionall inspect the 2 · |p, nn|-range. In the worst case, this
is 4 times the current size of the sphere around p. According to Lemma 2 with
α = 4, we have to report and inspect O(∆d) points. This can be done in expected
O(TRQ(n,∆

d)) time. The bound follows.

It remains to bound the number of calls to the PredictCollision routine.

Lemma 4. The number of calls to PredictCollision is O((∆d + 22.5d) · n).

Proof. To prove the lemma we distinguish three cases, summing up to the total
number of calls:

1. Calls after an elimination took place.

2. Calls from a CollisionEvent where the partner is no longer alive.

3. Calls from an UpdateEvent.

To bound the number of calls in the first case is simple: In total n−1 eliminations
take place, hence O(n) calls are done from this context.

Let’s bound the second case, i.e. number of calls to PredictCollision by a
collision event where one of the points has already been eliminated. Consider the

76

8.2. Solving the Simplified Scenario efficiently

point in time when a point gets eliminated. Every CollisionEvent affected by
this elimination is with a point of a distance less than 2rad(p) · t. We can bound
these number of point by O(∆d), according lemma 2 with α = 2. Because this can
happen at most n− 1 times, we get O(∆d · n) many of these calls.

Finally consider the number of calls to PredictCollision from an Upda-
teEvent. At the beginning, there are n many such events. If the call to
PredictCollision leads to a new UpdateEvent, then the nearest neighbor
must have changed since the last call. This can only happen when the former
nearest neighbor was eliminated. But a point is a nearest neighbor to a small
number of other points as shown in lemma 1. Therefore each elimination induces
at maximum O(22.5d) many UpdateEvents. So overall O(22.5dn) such calls to
PredictCollision might occur.

The lemma follows.

So we are able to finally bound the running time of the algorithm.

Theorem 3. Algorithm 1 has running time O(ξn(TNN+TRQ(n,∆
d)+∆d+log n+

TDEL)) with ξ = (∆d + 22.5d).

Proof. First note that Q never contains more than one event per point, hence all
insertion and removal operations on Q have running time O(log n).

The initialization requires n nearest neighbor queries and n insertions into Q,
hence O(n(log n+ TNN) in total.

The running time of the main loop is determined by:

• the number of collisions multiplied by the time to handle a collision

• the number of calls to PredictCollision times the effort for such a call
(lemma 3 and 4) and the time to insert the resulting event.

The number of collisions is n − 1 and each collision requires the deletion of a
point, hence O(n · TDEL) in total.

PredictCollision is called O(ξ ·n) times and requires O(TNN +TRQ(n,∆
d)+

∆d) time. Another O(log n) time is required to insert the resulting event into the
queue. Hence O(ξn(TNN + TRQ(n,Deltad) + ∆d + log n)) time in total.

Summing up we have

O(n · TDEL + ξn(TNN + TRQ(∆
d) + ∆d + log n))

∈ O(ξn(TNN + TRQ(n,∆
d) + ∆d + log n+ TDEL)) (8.1)

77

8. Computing Elimination Sequences

8.2.4. Making Things concrete

Elimination Sequences in 2-d

Let us consider a 2-dimensional scenario first. Here we are considerung disks
growing in a 2-dimensional plane. This scenario is very closely related to our
labeling described in Chapter 5. Given the algorithm from above, the only thing
to do is to specify how to answer the spatial queries.

Chan in 2010 [Cha10] gave a theoretical good upper bound on the complexity
of the required operations:

Theorem 4 (Chan [Cha10]). For n points in R2 one can construct a data struc-
ture in expected O(n log2 n) time which supports deletions in expected amortized
O(log6 n) time, nearest neighbor queries in O(log2 n), and range reporting queries
in time O(log2 n + k log n), where k = |S| is the size of the output of the range
reporting query.

Using this, we get a theoretical bound on the expected amortized running time
of our algorithm. In this scenario ξ = ∆2 + 25 ∈ O(∆2).

O(∆2n(log2 n+∆2 log n+∆2 + log6))

In practice a Delaunay triangulation performs quite well in providing the re-
quired operations. The triangulation can be computed in expected O(n log n)
[Kre+00]. NearestNeighbor and Range queries can be answered by simply
checking the adjacent nodes in the triangulation. See Section 3.3.2 for more details.
Delete is possible by removing the point and restoring the delaunay property.
Only the very close environment of the point needs to be altered. In the worst
case there could be nodes with very high degree making the operations expensive.
In practice the maximum node degrees are very low and so the operations can be
performed very efficiently [Kre+00].

Elimination Sequences in higher dimensions

Unfortunately, in higher dimensions there is no data structure which supports
efficient nearest neighbor and range queries while being dynamic, i.e. allowing to
remove points from the data structure efficiently. An approach to bypass this is to
use the approximate counterparts (see Section 3.2.3 for a detailed explanation):

Definition 8 (AproxNearestNeighbor(q)). For a point set P ⊂ Rd and a
query point q, an ε-approximate nearest neighbor of q is a point p ∈ P \ {q} with
|q, p| ≤ (1 + ε) · |q, p′|, for all p′ ∈ P \ {q}.

A preliminary version of Section Elimination Sequences in 2-d was published in [FKS16].
A preliminary version of Section Elimination Sequences in higher dimensions was published

in [Bah+17].

78

8.2. Solving the Simplified Scenario efficiently

Definition 9 (AproxRange(q, r)). For a point set P ⊂ Rd, a query point q,
and a distance r, an ε-approximate range reporting query returns the set S with
S ⊇ {p ∈ P \ {q} : |q, p| ≤ r} and S ⊆ {p ∈ P \ {q} : |q, p| ≤ (1 + ε)r}.

For arbitrary (fixed) dimension, Mount et al. in [MP10] presented a so-called
quadtreap which allows to answer such queries efficiently. The data structure guar-
antees the following:

Theorem 5 ([MP10]). Given a set of n points in Rd, a quadtreap storing these
points has space O(n). The tree structure is randomized and, with high probability,
it has height O(log n). Letting h denote the height of the tree:

1. It supports point insertion in time O(h).

2. It supports point deletion in worst-case time O(h2) and in expected-case time
O(h) (averaged over all points in the tree).

3. Approximate range-reporting queries can be answered in time O(h+
(
1
ε

)d−1
+

k) where k is the output size.

4. Approximate nearest-neighbor queries can be answered in time O(h+
(
1
ε

)d−1
).

For our purpose, we do not require very small values for ε in the data structure
of [MP10], ε = 1 suffices for our purposes.

To adapt Algorithm 1 to the new approximate spatial queries, we have to change
the PredictCollision function, see the modified pseudocode in Algorithm 3.

We first try to find the true nearest neighbor of the current point. If this point is
further away than twice the current disk size, we insert an UpdateEvent- hence
we need to find the correct one only if it is closer than 2rad(p)t. Since we only
have the approximate range query with ε = 1, we need to query the approximate
4 · rad(p) · t-range to be sure to have the correct nearest neighbor within the result
set. We get the exact 2 · rad(p) · t-range by removing all those points of larger
distance from the approximate result set. If the range was not empty, we determine
the point which is closest to p. This is the true nearest neighbor and we proceed
just like before.

If this range is empty we search for the approximate nearest neighbor. The colli-
sion time with the true nearest neighbor nn is earliest at |p, nn|/(2rad(p)) (assum-
ing p is the larger of the collision partners). The found approximate nearest neigh-
bor might be of twice the true nearest neighbor distance, i.e. |p, ann| ≤ 2|p, n|.
Hence we never overestimate the next collision time if we create an UpdateEvent
at time |p,ann|

4·rad(p) .
In both cases, the loop invariant as described in Theorem 2 still holds, proving

correctness of the modified algorithm.

79

8. Computing Elimination Sequences

Algorithm 3: PredictCollisionANN
Data: P = {p1, . . . , pn},
rad : P→ R+,
prio : P→ N with prio(p) 6= prio(q) if p 6= q
Input : Point p, Time t
Output: CollisionEvent (p, q, t) or UpdateEvent (p, p, t)

anh ← P.AproxRange (p, 4 · rad(p) · t) ; // approx neighborhood
nh ← {q ∈ anh : |p, q| ≤ 4 · rad(p) · t} if nh 6= ∅ then

nn ← argmin
p∈nh

(|p, q|) ; // neighbor with minimum distance

t’ ← |p,nn|
2·rad(p) if t < t′ then

return (p, p, t′) ; // UpdateEvent
else

q ← argmin
p∈nh

(tcoll(p, q)) ; // neighbor with minimum t _coll

return (p, q, tcoll(p, q)) ; // CollisionEvent

else
ann ← P.AproxNearestNeighbor (p);
t’ ← |p,ann|

4·rad(p) return (p, p, t′) ; // UpdateEvent

To bound the runtime, we make the following observations. The number of
calls to PredictCollision triggered by a CollisionEvent is still in O(n), with
the same argumentation as above. It remains to bound the number of Upda-
teEvents.

Consider some point p. We show that for each UpdateEvent created for p with
the original algorithm, we create at most a constant number of UpdateEvents
in the variant using approximate proximity queries. Consider an UpdateEvent
popped from Q which leads to a new UpdateEvent. If t was determined by the
distance to an approximate nearest neighbor, the correct nearest neighbor had to
be within 4 · rad(p) · t from p at the moment of creation. Assuming the near-
est neighbor did not change, we now find the true nearest neighbor of p in the
range query. So we have the same information about p as the original algorithm,
and hence will insert the same subsequent events. In case the range is empty,
we know that the former nearest neighbor of p has been eliminated meanwhile.
But in this case, also the original algorithm would have created a new Upda-
teEvent for p. Hence, the modified algorithm triggers at most twice the number
of UpdateEvents for p as the original algorithm did. Accordingly, the number
of UpdateEvents is still in O(n).

80

8.2. Solving the Simplified Scenario efficiently

So in fixed dimension d, the number of calls to PredictCollision is in O(n)
just like for the original algorithm. The cost of PredictCollision is O(TANN(n) +
TARQ(n)+∆d) where TANN(n) and TARQ(n) denote the times for the approximate
equivalents of nearest neighbor and range reporting queries. Another O(log n) is
required for inserting the events into the queue.

With high probability the data structure of Mount et al. ([MP10]) has height
h = O(log n). Hence, we can handle Delete in expected O(log n), Aprox-
NearestNeighbor in O(log n) and AproxRange in O(log n + k) where k is
the size of the result set

Let us now plug together the algorithm and the running times of the approximate
proximity data structure:

Theorem 6. In fixed dimension d, we can compute the elimination sequence with
high probability in expected time O(∆dn(log n+∆d)).

8.2.5. Experimental Results

The previous sections showed how elimination sequences can be computed in two
as well as in higher dimensions.

In a practical implementation instead of using planar data (e.g. via Mercator
Projection), we used the points located on a virtual ”globe”. Disks are then aligned
and growing along the surface of this ”globe”. Intuitively, we would use a 3 dimen-
sional problem with spheres centered at our points and compute the corresponding
3d elimination sequence. Unfortunately this is not correct as the spheres will not
touch at the surface of the globe but below. Figure 8.6 shows a cut through the
globe with two spheres touching.

Instead, the correct solution is to use a 2d scenario and replace the euclidean
distance function by the great-circle distance. The later can be computed using
the Haversine Formula [Wik19c].

For implementing the proximity queries in this -scenario, we used a Delaunay
Triangulation of the unit sphere surface S2. This seems not too hard since its
structure resembles exactly the (3d-)convex hull of the set of points. As shown in
Section 8.2.4, the required queries can be answered by simple graph traversal in the
Delaunay graph. While we were not aware of a ready-to-use spherical Delaunay
triangulation package, we could adapt the CGAL 2d-Delaunay triangulation data
structure ([Pro15]).

We interpret the 2-dimensional coordinates of the planar Delaunay triangulation
as spherical coordinates. All required predicates of the Delaunay triangulation are
adapted, to match the spherical scenario. One main obstacles of this approach
is the localization in the triangulation. We had to synthesize a suitable initial

A preliminary version of Section 8.2.5 was published in [Bah+17].

81

8. Computing Elimination Sequences

p

q

I

i

Figure 8.6.: Cut through a sphere with two points p, q. The intersection i of the
spheres induced by p and q (solid line) is below the sphere surface.
The intersection along the surface I is at a larger radius for p and q.

triangulation: one very small triangle around the north pole and a node at the
south pole connected to all three nodes of the first triangle. The main predicate for
maintaining the Delaunay triangulation is the following: for a given query point s
and a triple of points p, q, r check if s is within the circle defined by p, q, r or not.
In the given scenario this predicate can be implemented as a 3d orientation tests.
The three points are defining a plane in 3d. Now s is closer to the sphere center if
and only if s is not contained in the circle defined by the points p, q, r. See 8.7 for
an illustration.

The given implementation of the in_circle-test depends strongly on the fact that
the mapping from the 2d-spherical coordinates to the 3d coordinates is correct. If
the point in 3d is not exactly located on the unit sphere, the predicate delivers false
results. This may lead to an incorrect Delaunay triangulation. Daniel Bahrdt and
Martin Seybold in [Bah+17] presented how to solve this issue by finding rational
points exactly on the sphere.

We implemented this Delaunay-based spatial datastructure using the CGAL
library [Pro15]. Technically, the adaptation is performed by creating a triangu-
lation class and a CGAL traits class which is derived from a CGAL kernel. The
triangulation class inserts the initial triangulation, while the traits class provides
the necessary predicates for the in-circle test, the orientation test, and distance

82

8.2. Solving the Simplified Scenario efficiently

Figure 8.7.: The in_circle-test can be done via 3d orientation test relative to the
pqr-plane. Point s, which is within the circle, is on the opposite site
than the sphere center. The point s′, which is outside of the circle is
at the same side than the sphere center.

comparison which have to be performed with the setting on S2 in mind. Running
times were measured on a single core of an AMD Ryzen 7 2700 and 32GB of RAM.
The output of our algorithm is the elimination sequence in which the items disap-
pear over time together with the collision partner responsible for their elimination.
We implemented an OpenGL Viewer to visualize the result. It allows for smooth
zooming and rotation of the globe, as well as continuous variation of time. For
two screenshots of this visualization see 8.8 and 8.9.

Synthetic Benchmarks

time (s) time (s) space
size storage events (MB)
103 0.035 0.029 7.116
104 0.344 0.199 17.924
105 3.415 2.267 119.176
106 34.382 27.991 1,037.704
107 347.292 334.951 11,412.196

Table 8.1.: Running times and peak space (RAM) consumption for synthetic data.

83

8. Computing Elimination Sequences

Figure 8.8.: Visualization of the globe at a specific t. The dots are corresponding
to the growing disks on the surface each representing a displayed label.

First, we generated the amount of random points on the sphere. To have them
evenly distributed of the sphere surface, we used the tool contained in the Rational
Points on Sphere library [BS17]. We assigned a random radius and a unique
priority to each point. In table 8.1, we report running times for the initial Delaunay
Triangulation construction and the actual algorithm. We also report the peak
memory consumption. The running time of both, the Delaunay triangulation
construction as well as the event processing is nearly linear. With more main
memory (e.g. 256GB of RAM), we could easily compute an elimination order for
half a billion points in the order of a few hours.

84

8.2. Solving the Simplified Scenario efficiently

Real World Benchmarks

For real-world instances, we use data from the OpenStreetMap project [Con17c].
We extracted all nodes with a name-tag. Additionally, we extracted nodes repre-
senting ATMs, cafés, restaurants and many more. These were represented by an
icon if they did not have a specified name. We prioritize settlements over other
POIs. Within the settlements, cities are prioritized to towns etc. In the POI
group, we defined an ordering on the POI types. Settlements where further sub-
classified using population sizes (if available) to further refine the priorities. To
get the required total order, we sorted elements in the same group according to
their osm id. For each item, the radius of the corresponding sphere was computed
as r = |label|

2
. Here |label| is the size of the label in a fixed font with a font size

depending on the importance level of the POI.
The figures 8.8 and 8.9 both are based on the planet data set.

Figure 8.9.: Visualization of the growing disks of Greece. The dots are correspond-
ing to the growing disks on the surface each representing a displayed
label.

Having derived location, radius and priority for all the POIs, we ran our al-
gorithm to determine an elimination order. In Table 8.2, we have performed the
same measurements we did for the synthetic data. In about 15:24 minutes, we can

85

8. Computing Elimination Sequences

process the majority of the items of the Planet data set using our algorithm.

time (mm:ss) time (mm:ss) space
data set size storage events (MB)
Stuttgart 82k 0:03 0:02 105
Ba-Wü. 248k 0:08 0:07 269
Germany 1.4m 0:47 0:42 1,584
Europe 7.7m 4:12 4:27 7,780
Planet 13.3m 7:41 7:44 13,992

Table 8.2.: Running times of the storage initialization and the event handling.
Data has been extracted from the OpenStreetMap project. The data
set sizes are given in thousands (k) and millions (m).

8.3. Elimination Sequences with Unrestricted Priorities

Lets go back to the original scenario, where the priority function does not have
any restrictions. In Section 8.3.1, we introduce a Mixed-Integer linear program
(MLP) to solve this scenario. The reader can find a very short introduction to
linear programs in Section 3.3.3. The so computed solution is optimal but requires
a large computation power and RAM. Solving an instance of 1, 000 points requires
about 200 gigabytes of RAM and several days to compute.

However, we might use our introduced algorithm to compute an approximated
solution. In Section 8.3.2, we describe several heuristics allowing to break ties - i.e.
define strategies to resolve collisions of points of equal priority. Thus computing
an approximation of the optimal result with a much lower computation power and
time consumption. In Section 8.3.3, we compare the quality of the approximated
result with the optimal result obtained by the MLP.

8.3.1. A Mixed-Integer Linear Program Formulation

We introduce some LP Variables as follows:
∀p ∈ P : etp ∈ R indicates the elimination time of point p
For each tuple of points (p, q) ∈ P × P, p 6= q, we introduce a binary variable:

respq =

{
1 if p resolves the conflict. This implies: etp ≤ tcoll(p, q)

0 otherwise

In the following let p 6= q ∈ P be an arbitrary tuple of distinct points with
tcoll(p, q) ≥ popup(p) and tcoll(p, q) ≥ popup(q). The following set of constraints
need to be fulfilled.

86

8.3. Elimination Sequences with Unrestricted Priorities

1. Exactly one of the two needs to resolve the conflict:

respq + resqp = 1

2. If p resolves the conflict, its elimination time is less (or equal) than the
collision between the two points:

etp ≤ tcoll(p, q) + resqp · tmax

and vice versa.

3. If p resolves a conflict with q and prio(p) ≤ prio(q), q must not have resolved
a conflict earlier, i.e. must still be alive at that point in time.

4. If prio(p) < prio(q), p must resolve the conflict with q. If there is an r with
tcoll(r, q) ≤ tcoll(p, q) and popup(r), popup(q) ≤ tcoll(p, r) and q resolves this
conflict with r, q can resolve the conflict with p:

respq +
∑
r∈C

resqr ≥ 1

with C = {r ∈ P |r 6= p ∧ r 6= q ∧ tcoll(r, q) ≤ tcoll(p, q)}:

5. And obviously, for each point p ∈ P the elimination time must be less or
equal to its maximum elimination time:

etp ≤ etMAX(p)

Our Objective is to maximize the sum of all elimination times:∑
p∈P

etp

The number of variables in the MLP is:

#V arsBIN =

(
|P |
2

)
∗ 2

#V arsREAL = |P |
#V ars = #V arsBIN +#V arsREAL ∈ O(|P |2)

where the first summand (V arsBIN) is the number of binary decision variables
and the second one (V arsREAL) is the number of etp variables.

87

8. Computing Elimination Sequences

The number of constraints is:

#Constr ≤
(
|P |
2

)
+ 2 ∗

(
|P |
2

)
+ 2 ∗ |P |

2

2
+ |P | ∈ O(|P |2)

Here the first summand is the number of pairwise constraints in 1). The second
is the number of ordered tuples used in 2). The third summand is an upper bound
to the sum of the number of points with a larger priority for each point. This
upper bounds the number of constraints described in 3) and 4). The worst case
is that the priority function is chosen like in the simple scenario, i.e. it is a total
order. Then the number of constraints is:

∑|P |−1
i=0 i = |P |(|P |−1)

2
. The last summand

counts the constraints ensuring that the elimination time of each point is less or
equals to the specific etMAX value.

8.3.2. Heuristics for Solving the Unrestricted Model

We can solve the unrestricted model using the algorithm presented in Sections 8.2
and 8.2.4. The only difference in the unrestricted model is that we might get to
the point where the circles of two points of the same priority are colliding. In this
case we are free to choose which to eliminate. This decision affects the upcoming
eliminations, hence the value of the solution. If aiming for an optimal solution, we
would need to evaluate each of the two possible decisions. Which might require
to compute the full sequence for both cases - hence increasing the computational
complexity.

A possible solution is to use heuristics for the decision. This would probably
not give an optimal result but hopefully a good approximation. In the following
we will introduce three heuristics. Their only goal is to decide: Given two points
of the same priority, which of the two is eliminated in a collision.

Pseudo-Random (PSR) In this heuristic, we just randomly pick one of the two
points. We call this pseudo-random, because in the experiments, we always
choose the one of smaller osm id to be eliminated. Using these ids as random
source allow us to make the random decisions reproducible.

Radius (RAD) The radius heuristic chooses the point with larger radius for elim-
ination. The remaining point is of lower radius and is growing slower there-
fore. The underlying idea is that by minimizing the radii of surviving points,
leads to good results in our objective.

Next Elimination (NXEx) The idea of the next elimination heuristic is to find
the nearest point of larger priority for each of the two points. Since this
point will probably eliminate the considered point, we decide based on their
collision time. We eliminate the point with a smaller of the two collision

88

8.3. Elimination Sequences with Unrestricted Priorities

times. Depending on how far we look we may or may not find such a point.
In the work at hand we used three parametrizations: NXE2, NXE4 and
NXE8 are inspecting a range of 2×, 4× and 8× the size of the current disk
radius.

For the introduced heuristics, there might be ties occuring, e.g. if the two radii
are equal. In these cases, we fall back to our Pseudo-Random heuristic to break
the ties according to the osm id.

8.3.3. Evaluation

For the evaluation, we used three data sets and compute their optimal solutions
with our LP formulation. The Bremen data set contained the names of 142 resi-
dential subareas of the city of Bremen. The labels were classified into 6 priority
levels. The BW_1k data set contained the names of the 1, 000 most important res-
idential areas in Baden-Württemberg. The S_1k data set contained the names of
the 1, 000 most important residential areas in the government district of Stuttgart.
The data sets were retrieved from the OpenStreetMap data set. The level sizes of
the priority levels can be found in table 8.3. The benchmarking of the LPs was
done on a server with two Intel(R) Xeon(R) CPU E5-2650v4 with 24 cores in total
and 768 GB of RAM. While the LP construction was done single threaded, the LP
solution was computed using Gurobi with 24 threads. In table 8.3, you see time
and space consumption for solving the LP. You can easily see the enormous time
and space consumption even for the small data set of 1, 000 elements. Especially
for the Stuttgart data set, the required 4 days, just for approximating the optimum
solution to about 25% are noticeable.

Constr Solving RAM Quality
data set #items Prio level sizes (mm:ss) (mm:ss) RAM Quality
Bremen 142 (1, 1, 33, 5, 90, 12) 0 : 13 0 : 02 561MB 100%
BW_1k 1, 000 (1, 8, 61, 268, 662) 78 : 15 39 : 54 185GB 100%
S_1k 1, 000 (1, 1, 25, 84, 889) 81 : 47 > 4days 250GB 25%

Table 8.3.: Three benchmark data sets with the number of items and items in
each priority level (left is most important). Time consumption for
construction (single threaded) and solving the LP (24 threads) and
overall required RAM. The Quality column indicates how close the
result is to the optimum (100% is exact).

In table 8.4, you see the optimal results of the Bremen data set in column OPT.
The next columns show the values of the heuristics, we defined in 8.3.2, ordered
by their solution value. The solution values are given in total and relative to the

89

8. Computing Elimination Sequences

optimum in percent. In the last two rows the results of the inverted heuristics are
given. What means that we always eliminate the one point which should not be
eliminated according to the corresponding heuristic.

OPT NXE4 NXE8 RAD NXE2 PSR
Bremen 410k 395k 395k 383k 370k 363k

100% 96.3% 96.3% 93.4% 90.2% 88.5%
inverted 367k 367k 344k 351k 363k
heuristic 89.5% 89.5% 83.9% 85.6% 88.5%

Table 8.4.: Values of the optimal solution of the Bremen data set and the heuristics
as defined in Section 8.3.2. The heuristics are sorted in an descending
order from left to right. The second row (inv heur) contains the solution
if always the inverse decision of the heuristic is taken.

Table 8.5 shows the same results, but for the BW_1k data set.

OPT RAD NXE4 NXE8 NXE2 PSR
BW (part) 6, 586k 6, 203k 6, 147k 6, 140k 5, 934k 5, 750k

100% 94.2% 93.3% 93.2% 90.1% 87.3%
inverted 5, 290k 5, 442k 5, 401k 5, 605k 5, 681k
heuristic 80.3% 82.6% 82.0% 85.1% 86.3%

Table 8.5.: Values of the optimal solution of the BW_1k data set and the heuristics
as defined in Section 8.3.2. The heuristics are sorted in an descending
order from left to right. The second row (inv heur) contains the solution
if always the inverse decision of the heuristic is taken.

The first thing you see is the huge difference in the time and space consump-
tion of the optimal LP solutions compared to our algorithm. While the LP of a
thousand points requires nearly 2 hours and 200GBs of RAM, we can compute
elimination sequences of 13 millions of points in around 15 minutes on a standard
desktop computer with our algorithm. Using the simplest of the heuristics, the
RAD heuristic gives us a good approximation ratio of only 5% below the optimum.

90

8.3. Elimination Sequences with Unrestricted Priorities

Stuttgart Germany Planet
items 81994 1413594 13302969

max(|lvl|) 22112 391250 1331742
PSR value (%) 82007k(97%) 1602200k(96%) 35764987k(91%)

time (mm:ss) 0 : 05 1 : 36 15 : 54
RAD value (%) 84310k(100%) 1669029k(100%) 39281151k(100%)

time (mm:ss) 0 : 05 1 : 38 15 : 56
NXE2 value (%) 81622k(97%) 1599468k(96%) 35780431k(91%)

time (mm:ss) 0 : 05 1 : 39 16 : 09
NXE4 value (%) 81594k(97%) 1607921k(96%) 36359776k(93%)

time (mm:ss) 0 : 05 1 : 40 16 : 37
NXE8 value (%) 83118k(99%) 1623164k(97%) 37200808k(95%)

time (mm:ss) 0 : 06 1 : 44 18 : 00

Table 8.6.: Comparison of runtime and qualities of the different heuristics for three
data sets. The total number of items and the size of the largest pri-
ority class are given. The value percentages are compared to the best
performing heuristic.

91

Part IV.

Epilogue

93

Conclusion

Dynamic maps, allowing to pan, rotate and zoom the map view continuously, are
widespread. In contrast to maps with discrete zoomlevels or even paper maps
with a fix map scale, these maps have special requirements to the map labeling.
Map labeling is subdivided into three domains: The labeling of area-, line- and
point-like features. In the work at hand, we have considered two of these three
domains.

Area labels are supposed to be fit into the area and represent the overall area
shape. Therefore, they are allowed to be bend along a circular arc. In our area
labeling scheme, we approximate the area label by a box of the same length-to-
height aspect ratio. We search for an optimal placement of the box within the
area, hereby allowing the box to be bend along a circular arc. We introduced an
algorithm to find such a placement efficiently. The algorithm approximates the
area skeleton. For each edge of the skeleton, the smallest distance to the area
boundary is determined. Based on this information we search for promising paths
in the skeleton and approximate these paths with a circular arc. A set of candidate
arcs is evaluated, i.e. an optimal placement of the box along that arc is determined.
The optimum of these placements is returned as the area label position.

The efficient computation of the label position, allows for computing area labels
in near-real time. Hence making it possible to label areas, not fully contained
in a map view, dynamically. Thus, the viewer can always be presented with
a label - even if only a very small part of an area is reaching into the visible
area. Considering map zoom, an optimal label box can be used to determine the
map scale at which the area should be refined or replaced by a containing entity.
Refining could be done by labeling subareas, f.e. the city districts in case of the
area being a city. On the contrary, the area label of a city could be replaced by
the label of the surrounding administrative area.

Point labels are horizontally aligned and are visually ”touching” the correspond-
ing point in order to allow a clear attribution. Since the labels are kept at constant
sizes, the number of labeled entities need to decrease when zooming out of the map.
When rotating the map, the label set must not change in order to present a con-
stant view to the user. We therefore propose to reserve a so called label disk.
A disk which fully contains the label in any possible rotation. By choosing this

95

set of disks to be non-overlapping, a constant labeling on rotation can be guar-
anteed. The disk size is variable and inversely correlated with the map scale. So
the label disks are growing - relative to the map - when zooming out. Accordingly
the label sizes grow. Whenever during a continuous zooming out operation, two
disks touch, the one corresponding to a less important point needs to be removed.
The corresponding label is removed to keep the labeling free of label-intersections.
Considering the process, starting at a very large map scale. Initially, all the label
disks are non overlap�ing since their radius tends to 0. Decreasing the map scale
leads to the disks growing and eliminating each other. They so define a elimination
sequence of the points and their corresponding elimination-map-scale.

We are considering the generalized, d-dimensional elimination sequence problem
separately. For this problem we show NP−completeness and provide an simplified
scenario where the sequence is unique. An algorithm is presented which compute
the elimination sequence efficiently. In the general d-dimensional case with high
probability in expected O(∆dn(log n+∆2)). In the 2-dimensional case in expected
amortized O(∆2)n(log6 n+ log2 n+∆2 log n+∆2). Where ∆ is the ratio between
the maximum and minimum radius in the instance i.e. ∆ = rmax

rmin
. These theoret-

ical bounds are depending on sophisticated data structures for answering spatial
queries. In practice the algorithm was implemented using a Delaunay-based data
structure. With this implementation we could compute elimination sequences of
13 million points in about 15 minutes.

While these results are optimal for the simplified scenario, we used a linear pro-
gram to compute optimal solutions to the original problem. We could compute an
optimum for one instance of 142 points and another for an instance of 1.000 points.
Approximations of solutions to the original problem could be computed with the
presented algorithm using heuristics to break ties. For the instances, where opti-
mum solutions could be computed, the best heuristic got an approximation rate of
about 96%. Using these heuristics, we could compute approximate solutions even
for data sets of millions of items.

Further Research

The intensive research over many years has yielded many results as shown in the
work at hand. Nevertheless, it also revealed many issues which could not be
completed to satisfaction. For some of the issues described in the following there
are drafts for solutions. Others require to put large effort into implementation or
performing user studies.

The later is the case when it comes to evaluating the research results. Currently,
the approach presented in the work at hand is based on one main assumption: In
interactive maps, a decreased level of detail of a map view can be compensated by

96

the available map zooming operation. Based on this assumption, we conclude that
reducing the level of detail in favour of consistency during zoom and rotation is
acceptable. At least in scenarios like navigation this consistency is supposed to be
preferred over a more dense labeling. Now that the alternative approach described
in the work at hand is available, these assumptions should be evaluated in user
studies. In order to do so, a lot of effort has to be put into a visual implementation.
Until now there have been two student projects working on an adaptation of the
well known OpenLayers web-framework. Unfortunately the results do have per-
formance issues since a lot of unnecessary client-server communication is induced.

A very promissing issue is the combination of area and point labels. The pre-
sented area labeling approach allows for determining a map scale at which an area
label can no longer be presented properly. During continuous map zooming this
area label might seamlessly be replaced by a point label. But this requires to inter-
twine area and point label data sets - which are currently separated. Nevertheless
with the area labeling approach and the concept of popup times for point labels,
the required concepts are available.

The experimental results of the area label computation revealed a good perfor-
mance of the labeling scheme - even without simplified polygons. By simplifying
the polygon, e.g. with the Douglas-Peucker algorithm [DP73], the performance
could be further improved by decreasing the input size. It should be possible to
decrease the input polygons by a factor of 10 without any loss of quality. However,
one has to outbalance the subsampling and the polygon segment length. Longer
polygon segments increase the inaccuracy of the wedge-based placement search
procedure. For the label quality a meaningful choice of candidate paths is crucial.
Our proposed scheme for finding a candidate set performs much better than a
naive selection of the 50 longest paths. Still we think that this selection can be
further improved. A thesis focusing this topic is currently work in process. Despite
the candidate path selection, the proposed method for computing the optimal box
placement along the baseline is a major result of the work at hand. It might be
further improved by taking into account the perceived coverage presented by Bar-
rault. Especially when the label box is restricted by the boundary polygon in his
height, stretching or shifting the label along the baseline might further increase its
perceived coverage. This could lead to a better overall labeling quality.

The presented point labeling scheme is the most elaborated concept and hence
the main result of the work at hand. As stated above, it remains to evaluate the
concept in user studies. The main weakness of the approach is the reduced level
of detail in a map labeled with presented approach. But the presented extensions
like popup times and multilayer labelings provide solutions to this issue. The
concept of elimination sequences inherently provide a property which allows to

97

reduce the amount of requests for labelings during zoom. A labeling for a specific
map scale is always a subset of the labeling for a larger map scale. Which means
that a zooming out of a map view can be implemented without requesting a new
labeling. The only thing required is to filter the available labels with the new map
scale. Panning the map view also does not affect the current labeling - except for
labels sliding in and out of the map view. The former can be implemented by just
querying the newly visible area, the later by just dropping invisible labels. These
properties can be used to implement efficient caching to minimize the requests and
required communication in an client-server based visualization.

The work at hand omits the labeling of line features. Including these into the
labeling scheme is a natural next step. Several links come into mind. First area
features may turn into line features when zooming out - think of rivers. Accordingly
the area labels should turn into line labels on smaller map scales. Further zooming
out might reduce the line feature to a single point and a corresponding point label.
Elimination times should be a good way to model this process.

98

Part V.

Appendix

99

Code Projects

During the work on the research described above, various software projects were
developed. The projects range from creating labeling data sets from the Open-
StreetMap data over cleaning up the data sets to actually (pre-) computing the
labeling. We designed the project for OpenStreetMap

The projects are all OpenSource and publicly available at the VGIScience code
repository here https://gitlab.vgiscience.de/map_labeling. An overview of
these projects is given in the following sections.

Section Area Labeling contains projects related to the labeling of areas. The
following Section Point Labeling covers the projects dealing with the labeling of
points.

Area Labeling

Data Generation

In the context of map labeling, a very intuitive input for map labeling is the
administrative areas. OpenStreetMap provides this information in their data set.
The areas are classified into several levels, where the national border is the highest.
In Germany the next level is the federal states (i.e. Bundesländer) followed by the
state-district (i.e. Regierungsbezirke) and county level (i.e. Landkreise). Five
additional levels define lower ranked urban, suburban and rural areas (for more
details see [Wik19b; Wik19a]).

The osm_area_extractor_rs is a project writen in Rust to extract ad-
ministrative areas from a given OpenStreetMap pbf file. By providing a min-
imum level, the result can be restricted to administrative levels of higher lev-
els only. The project is published here: https://gitlab.vgiscience.de/map_
labeling/area_labeling/osm_area_extractor_rs. A preliminary version, im-
plemented in C++, is hosted here: https://theogit.fmi.uni-stuttgart.de/
geodata-visualization-project/area_extractor. This project additionally
allows to extract points with a matching administrative level as well as incomplete
areas. The later are areas for which information, like boundary coordinates, are
not provided by the pbf file.

101

https://gitlab.vgiscience.de/map_labeling
https://gitlab.vgiscience.de/map_labeling/area_labeling/osm_area_extractor_rs
https://gitlab.vgiscience.de/map_labeling/area_labeling/osm_area_extractor_rs
https://theogit.fmi.uni-stuttgart.de/geodata-visualization-project/area_extractor
https://theogit.fmi.uni-stuttgart.de/geodata-visualization-project/area_extractor

Data Cleaning

The data contained in the OpenStreetMap data set might be dirty, e.g. by con-
taining areas with self-intersections or holes of an area intersecting the area bound-
ary. To clean-up the data and provide proper input for projects building uppon,
the poylgonize project. For an input collection of segments and points in 2d,
a representation with polylines and polygons is created. The resulting polygons
do not contain self intersections and inclusion-relations are guaranteed to be cor-
rect. The project is joint work with Thomas Mendel and is hosted at the VGI-
Science code repository: https://gitlab.vgiscience.de/map_labeling/area_
labeling/polygonize.

Label Computation

The area label computation, as described in Chapter 7, is implemented in the
area_labeling project. The project was joint work with Thomas Mendel. The
sourcecode is published here: https://gitlab.vgiscience.de/map_labeling/
area_labeling/area_labeling. Amongst others, a library is provided to com-
pute the label position for a given polygon. A mockup jupyter-notebook is con-
tained for creating a quick illustration.

Point Labeling

Data Generation

Generating labeling data for point labelings with the labeling scheme presented in
Chapter 5 consists of essentially two steps. First, one is after finding the set of
points to label. Second, these points one need to be classified to determine their
priority, labeling parameters like font size or an icon (and its size) which should
be used as label. In the OpenStreetMap data set, nodes are candidates for a point
label. Whether a node actually qualifies for being labeled, can be determined by
considering their tag set. Depending on these tags, the nodes can be classified and
their priority and labeling parameters determined. The osm_input_rs project
is a Rust implementation of an input generator. The project is hosted at https:
//gitlab.vgiscience.de/map_labeling/poi_labeling/osm-input-rs. A pre-
liminary version, implemented in C++, is available at https://theogit.fmi.
uni-stuttgart.de/maplabeling/osm_input. Both are using an json configura-
tion file to define the available poi classes, priorities and presentation parameters.

102

https://gitlab.vgiscience.de/map_labeling/area_labeling/polygonize
https://gitlab.vgiscience.de/map_labeling/area_labeling/polygonize
https://gitlab.vgiscience.de/map_labeling/area_labeling/area_labeling
https://gitlab.vgiscience.de/map_labeling/area_labeling/area_labeling
https://gitlab.vgiscience.de/map_labeling/poi_labeling/osm-input-rs
https://gitlab.vgiscience.de/map_labeling/poi_labeling/osm-input-rs
https://theogit.fmi.uni-stuttgart.de/maplabeling/osm_input
https://theogit.fmi.uni-stuttgart.de/maplabeling/osm_input

Label Computation

Precomputing a label elimination sequence is implemented in the growing_balls
project. The project is published at the VGIScience repository: https://gitlab.
vgiscience.de/map_labeling/poi_labeling/growing_balls. A meta project,
the label_pipeline, combines osm_input and elimination sequence computation.
It allows to compute an elimination sequence directly from a pbf file and uses the
above described projects as submodules. The label_pipeline is hosted at the VGI-
Science repository here: https://gitlab.vgiscience.de/map_labeling/poi_
labeling/label_pipeline.

Label Querying

As described in Chapter 5, a concrete labeling for a given map scale can be obtained
by filtering the precomputed elimination sequence. In a realistic scenario a second
filter needs to be applied: to spatially restrict the result set to the current map
view. The PS2dT project, available at https://gitlab.vgiscience.de/map_
labeling/poi_labeling/ps2dt, implements a 2-dimensional priority search tree
in Rust. This essentially is a priority search tree combined with a 2-dimensional
kd-tree. The data structure allows to efficiently query a consistent labeling for a
given bounding box and map scale.

103

https://gitlab.vgiscience.de/map_labeling/poi_labeling/growing_balls
https://gitlab.vgiscience.de/map_labeling/poi_labeling/growing_balls
https://gitlab.vgiscience.de/map_labeling/poi_labeling/label_pipeline
https://gitlab.vgiscience.de/map_labeling/poi_labeling/label_pipeline
https://gitlab.vgiscience.de/map_labeling/poi_labeling/ps2dt
https://gitlab.vgiscience.de/map_labeling/poi_labeling/ps2dt

Zusammenfassung

105

Navigationssysteme, beziehungsweise digitale Kartenapps, haben sich zu alltäg-
lichen Begleitern entwickelt. Waren digitale Karten vor einem Jahrzehnt ein
wertvolles Gut - Updates für Navigationssysteme wurden für viel Geld verkauft
- sind sie heute durch die Verbreitung von Google Maps und Co. eine Selbstver-
ständlichkeit. Neben der Verfügbarkeit und der Möglichkeit einfacher Updates,
ermöglichen digitale Karten eine einfache, intuitive Interaktion. Das Zoomen,
Verschieben und Drehen des Kartenausschnitts zum Erkunden von Details und
der Ausrichtung in Blickrichtung des Nutzers, sind wohlbekannte Funktionen. Let-
zteres ist vor allem bei Navigationssystemen zentral. Dort wird die Kartenausrich-
tung generell in Fortbewegungsrichtung gewählt. Insbesondere für die Darstellung
von Kartenbeschriftung, stellen diese Möglichkeiten eine Herausforderung dar.

In der vorliegende Arbeit wird ein Konzept zur Gestaltung von Beschriftun-
gen in interaktiven Karten, die stufenloses Zoomen, Verschieben und Rotieren des
Kartenausschnitts ermöglichen, vorgestellt. Dabei wird insbesondere die Beschrif-
tung von sogenannten ”Points of Interest” - also zu beschriftenden Punkten - the-
matisiert. Derartige Beschriftungen sind gewöhnlich horizontal ausgerichtet und
überlappen sich somit tendenziell bei der Kartenrotation. Vor allem beim Zoomen
der Karte sind verschiedene Konsistenzkriterien zu beachten - so soll beispielsweise
eine Beschriftung während eines kontinuierlichen Zoomens nicht mehrfach hinzuge-
fügt und wieder entfernt werden. Außerdem sollen Beschriftungen von wichtigeren
Punkten länger sichtbar sein, als solche von weniger wichtigen Punkten.

Bei der Beschriftung von Gebieten gilt, dass sich die Beschriftung im Gebiet
befinden und die grobe Form des Gebiets adaptieren soll. Um letzteres zu erre-
ichen, darf die Beschriftung entlang eines Kreisbogens gebogen sein. Rotation ist
in diesem Szenario einfach - die Beschriftung muss lediglich in ihrer Ausrightung
umgekehrt werden, sodass sie nicht auf dem Kopf steht. Beim Zoomen des Karte-
nausschnitts sollten Gebiete als Ganzes oder ihre Untergebiete beschriftet werden,
abhängig von der Kartenskala der Gebietsbeschriftung.

Für der Beschriftung von Punkten werden sogenannte ”Disk-Label” eingeführt.
Bei diesen wird für jede Beschriftung ein kreisförmiger Bereich um den zu beschrif-
tenden Punkt reserviert. Die Beschriftung des Punkts bleibt in beliebigen Ausrich-
tungen der Karte vollständig in diesem Bereich enthalten. Indem als Beschriftung
in einer beliebigen Kartenskala eine überschneidungsfreie Untermenge der ”Disk-
Label” gewählt wird, ist die lesbare Darstellung bei Rotation gewährleistet. Beim
Herauszoomen aus dem Kartenausschnitt, werden die Beschriftungen bei konstan-
ter Größe beibehalten. Entsprechend wachsen die zugehörigen Disks relativ zur
Karte - entsprechend schrumpfen die Distanzen zwischen den Disks. Bei fortschre-
itendem Zoomen, kommt es zu Berührungen der Disks. Dabei muss eine der
beteiligten Beschriftungen muss entfernt, um bei weiterem Zoomen die überschnei-
dungsfreiheit zu erhalten. Wird der entsprechende Zoomprozess von ”unendlich

107

weit hineingezoomt” zu ”unendlich weit herausgezoomt” betrachtet, ergibt sich
eine sogenannte Eliminationssequenz der Beschriftungen. Diese kann für einen
Datensatz im Voraus berechnet werden und ermöglicht dann eine einfache, ef-
fiziente Ableitung einer Kartenbeschriftung für ein gegebenes Darstellungszenario.

Das Problem der Berechnung der Eliminationssequenzen kann verallgemeinert
in einem d-dimensionalen Hyperraum betrachtet werden. Entsprechend der Disks
in 2D, wachsen d-dimensionalen Hyperbälle. Eine Eiminationssequenz ist dabei
nicht eindeutig - kollidieren Bälle der selben Wichtigkeit, ist die Entscheidung
welcher der beiden Bälle eliminiert wird, essentiell für den weiteren Verlauf der
Sequenz. Das Ziel ist die Berechnung einer optimalen Sequenz, in der die Summe
aller Eliminationszeitpunkte maximiert wird. Es wird gezeit, dass die Berechnung
einer solchen optimalen Sequenz NP − hart ist. Für ein vereinfachtes Szenario -
in welchem die Sequenz eindeutig ist - wird ein effizientes Berechnungsverfahren
vorgestellt und analysiert. Dieses Verfahren hängt stark von einer effizienten Meth-
ode zur Berechnung des nächsten Nachbarn sowie der Suche nach Punkten mit
einer maximalen Distanz zu einem gegebenen Punkt ab. Je nach Szenario können
diese Operationen effizienter oder weniger effizient gelöst werden. Für 2D und für
höhere Dimmensionen werden zwei verschiedene theoretische Laufzeitschranken
bewiesen. Für die praktische Beschriftung von digitalen Karten, werden Punkte
auf einem virtuellen Globus betrachtet. Eine Berechnung der Sequenz für 13 Mil-
lionen Punkte ist auf einem herkömmlichen Computer in etwa 15 Minuten möglich.

Das ursprüngliche, unvereinfachte Problem kann mittels eines Mixed-Integer
Linearen Programms für wenige Punkte exakt gelöst werden. Allerdings nur mit
erheblichem Rechen- und Speicheraufwand. Eine gute Approximation der op-
timalen Sequenz bieten Heuristiken. Mittels dieser kann der vorgestellte Algo-
rithmus für das vereinfachte Szenario Lösungen für das unvereinfachte Problem
berechnen. In der Güte liegen die Heuristiken bei 5%− 10% unter dem Optimum.
Bei Berechnungszeiten von 15− 20 Minuten auf einem herkömmlichen Computer.

Eine Gebietsbeschriftung liegt vollständig innerhalb des Gebiets und ahmt die
Form des Gebiets nach, indem sie entlang eines Kreisbogens plaziert ist. Für eine
gute Beschriftung ist eine entsprechende Platzierung gesucht, welche die Größe
der Beschriftung maximiert. Abhängig davon kann eine maximale und minimale
Kartenskala berechnet werden, bei welcher die Beschriftung lesbar dargestellt wer-
den kann. Entsprechend kann das Gebiet bei größeren Skalen in einer weiteren
Verfeinerung dargestellt, oder bei kleineren Skalen durch eine Punkt-Beschriftung
oder die Darstellung eines umfassenden Gebiets ersetzt werden.

Für die Berechnung einer solchen guten Beschriftung wird in der vorliegenden
Arbeit ein effizienter Algorithmus vorgestellt. Dieser basiert auf einem Algorith-
mus von 2001, von M. Barrault in [Mat01] publiziert. Durch verschiedene Opti-
mierungen kann diese Berechnung auf Quasi-Echtzeit verbessert werden.

108

Bibliography

[AFL84] J. Ahn, H. Freeman, and Image Processing Laboratory.
“A program for automatic name placement”. In: 1984. url:
https://core.ac.uk/display/21214718 (visited on 01/15/2020).

[Aut] DLMF Authors. NIST Digital Library of Mathematical Functions.
http://dlmf.nist.gov/, Release 1.0.24 of 2019-09-15.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider,
R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S.
Cohl, and M. A. McClain, eds. url: http://dlmf.nist.gov/.

[Bah+17] D. Bahrdt et al. “Growing Balls in Rd”.
In: 2017 Proceedings of the Ninteenth Workshop on Algorithm
Engineering and Experiments (ALENEX). 0 vols. Proceedings.
Society for Industrial and Applied Mathematics, Jan. 1, 2017,
pp. 247–258. doi: 10.1137/1.9781611974768.20. url:
http://epubs.siam.org/doi/abs/10.1137/1.9781611974768.20
(visited on 01/04/2018).

[Bau19] Lukas Baur.
“Points of Interest - A search for adequate map labellings”.
Bachelorthesis. Stuttgart: University of Stuttgart, May 19, 2019.

[BDY06] K. Been, E. Daiches, and C. Yap. “Dynamic Map Labeling”.
In: IEEE Transactions on Visualization and Computer Graphics 12.5
(Sept. 2006), pp. 773–780. issn: 1077-2626.
doi: 10.1109/TVCG.2006.136.

[Bee+10] Ken Been et al.
“Optimizing active ranges for consistent dynamic map labeling”.
In: Computational Geometry. Special Issue on 24th Annual
Symposium on Computational Geometry (SoCG’08) 43.3 (Apr. 1,
2010), pp. 312–328. issn: 0925-7721.
doi: 10.1016/j.comgeo.2009.03.006.
url: http://www.sciencedirect.com/science/article/pii/
S0925772109000649 (visited on 01/18/2018).

109

https://core.ac.uk/display/21214718
http://dlmf.nist.gov/
https://doi.org/10.1137/1.9781611974768.20
http://epubs.siam.org/doi/abs/10.1137/1.9781611974768.20
https://doi.org/10.1109/TVCG.2006.136
https://doi.org/10.1016/j.comgeo.2009.03.006
http://www.sciencedirect.com/science/article/pii/S0925772109000649
http://www.sciencedirect.com/science/article/pii/S0925772109000649

Bibliography

[Blu67] Harry Blum.
“A transformation for extracting new descriptions of shape”.
In: Models for the perception of speech and visual form (1967),
pp. 362–380. url: https://ci.nii.ac.jp/naid/10009398958/en/.

[Boo19] Boost. Boost C++ Libraries. [Online; accessed 20-Dec-2019]. 2019.
[Bra94] J. W. Brandt. “Convergence and Continuity Criteria for Discrete

Approximations of the Continuous Planar Skeleton”.
In: CVGIP: Image Understanding 59.1 (Jan. 1, 1994), pp. 116–124.
issn: 1049-9660. doi: 10.1006/ciun.1994.1007.
url: http://www.sciencedirect.com/science/article/pii/
S1049966084710072 (visited on 04/24/2019).

[BS17] Daniel Bahrdt and Martin P. Seybold. “Rational Points on the Unit
Sphere: Approximation Complexity and Practical Constructions”.
In: Proceedings of the 2017 ACM on International Symposium on
Symbolic and Algebraic Computation. ISSAC ’17.
event-place: Kaiserslautern, Germany.
New York, NY, USA: ACM, 2017, pp. 29–36.
isbn: 978-1-4503-5064-8. doi: 10.1145/3087604.3087639.
url: http://doi.acm.org/10.1145/3087604.3087639 (visited on
08/06/2019).

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson.
“Unit disk graphs”.
In: Discrete Mathematics 86.1 (Dec. 14, 1990), pp. 165–177.
issn: 0012-365X. doi: 10.1016/0012-365X(90)90358-O.
url: http://www.sciencedirect.com/science/article/pii/
0012365X9090358O (visited on 06/26/2019).

[Cha10] Timothy M. Chan. “A Dynamic Data Structure for 3-D Convex Hulls
and 2-D Nearest Neighbor Queries”.
In: J. ACM 57.3 (Mar. 2010), 16:1–16:15. issn: 0004-5411.
doi: 10.1145/1706591.1706596.
url: http://doi.acm.org/10.1145/1706591.1706596.

[CMS95] Jon Christensen, Joe Marks, and Stuart Shieber. “An Empirical
Study of Algorithms for Point-feature Label Placement”.
In: ACM Trans. Graph. 14.3 (July 1995), pp. 203–232.
issn: 0730-0301. doi: 10.1145/212332.212334.
url: http://doi.acm.org/10.1145/212332.212334 (visited on
05/07/2019).

110

https://ci.nii.ac.jp/naid/10009398958/en/
https://doi.org/10.1006/ciun.1994.1007
http://www.sciencedirect.com/science/article/pii/S1049966084710072
http://www.sciencedirect.com/science/article/pii/S1049966084710072
https://doi.org/10.1145/3087604.3087639
http://doi.acm.org/10.1145/3087604.3087639
https://doi.org/10.1016/0012-365X(90)90358-O
http://www.sciencedirect.com/science/article/pii/0012365X9090358O
http://www.sciencedirect.com/science/article/pii/0012365X9090358O
https://doi.org/10.1145/1706591.1706596
http://doi.acm.org/10.1145/1706591.1706596
https://doi.org/10.1145/212332.212334
http://doi.acm.org/10.1145/212332.212334

Bibliography

[Con17a] OpenLayers Contributors. OpenLayers Project Page.
[Online; accessed 10-February-2018]. 2017.
url: http://openlayers.org/.

[Con17b] OpenStreetMap Contributors.
Map Icons/Proposed Icons — OpenStreetMap Wiki.
[Online; accessed 4-February-2018]. 2017.
url: http://wiki.openstreetmap.org/w/index.php?title=Map_
Icons/Proposed_Icons&oldid=1463667.

[Con17c] OpenStreetMap Contributors. OpenStreetMap Project.
[Online; accessed 26-June-2019]. 2017.
url: https://www.openstreetmap.org.

[Cro85] Robert G. Cromley. “An LP relaxation procedure for annotating
point features using interactive graphics”. In: In AUTO-CARTO 7,
Proceedings, Digital Representations of Spatial Knowledge. 1985,
pp. 127–132.

[DF92] Jeffrey S. Doerschler and Herbert Freeman.
“A Rule-based System for Dense-map Name Placement”.
In: Commun. ACM 35.1 (Jan. 1992), pp. 68–79. issn: 0001-0782.
doi: 10.1145/129617.129620.
url: http://doi.acm.org/10.1145/129617.129620 (visited on
10/25/2019).

[Dij+02] Steven Van Dijk et al.
“Towards an evaluation of quality for names placement methods”.
In: International Journal of Geographical Information Science 16.7
(Nov. 1, 2002), pp. 641–661. issn: 1365-8816.
doi: 10.1080/13658810210138742.
url: https://doi.org/10.1080/13658810210138742 (visited on
01/14/2019).

[DP73] David H Douglas and Thomas K Peucker.
“Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature”.
In: Cartographica: the international journal for geographic
information and geovisualization 10.2 (1973), pp. 112–122.

[DZ04] Tamal K. Dey and Wulue Zhao. “Approximating the Medial Axis
from the Voronoi Diagram with a ConvergenceGuarantee”.
In: Algorithmica 38.1 (Jan. 1, 2004), pp. 179–200. issn: 1432-0541.
doi: 10.1007/s00453-003-1049-y.
url: https://doi.org/10.1007/s00453-003-1049-y (visited on
04/10/2019).

111

http://openlayers.org/
http://wiki.openstreetmap.org/w/index.php?title=Map_Icons/Proposed_Icons&oldid=1463667
http://wiki.openstreetmap.org/w/index.php?title=Map_Icons/Proposed_Icons&oldid=1463667
https://www.openstreetmap.org
https://doi.org/10.1145/129617.129620
http://doi.acm.org/10.1145/129617.129620
https://doi.org/10.1080/13658810210138742
https://doi.org/10.1080/13658810210138742
https://doi.org/10.1007/s00453-003-1049-y
https://doi.org/10.1007/s00453-003-1049-y

Bibliography

[FA87] Herbert Freeman and John Ahn.
“On the problem of placing names in a geographic map”.
In: Int. J. Pattern Recogn. Artif. Intell. 1.1 (Apr. 1987), pp. 121–140.
issn: 0218-0014. doi: 10.1142/S0218001487000096.
url: http://dx.doi.org/10.1142/S0218001487000096 (visited on
05/07/2019).

[FE93] Douglas M. Flewelling and Max J. Egenhofer.
“Formalizing importance: parameters for settlement selection in a
geographic database”. In: In Proc. Auto-Carto. 1993, pp. 167–175.

[FKS16] Stefan Funke, Filip Krumpe, and Sabine Storandt.
“Crushing Disks Efficiently”. In: Combinatorial Algorithms.
International Workshop on Combinatorial Algorithms.
Lecture Notes in Computer Science. Springer, Cham, Aug. 17, 2016,
pp. 43–54. doi: 10.1007/978-3-319-44543-4_4.
url: https://link.springer.com/chapter/10.1007/978-3-319-
44543-4_4 (visited on 01/04/2018).

[Fre05] Herbert Freeman. “Automated cartographic text placement”.
In: Pattern Recognition Letters. In Memoriam: Azriel Rosenfeld 26.3
(Feb. 1, 2005), pp. 287–297. issn: 0167-8655.
doi: 10.1016/j.patrec.2004.10.023.
url: http://www.sciencedirect.com/science/article/pii/
S0167865504003381 (visited on 07/06/2017).

[Fre07] Herbert Freeman. “On the problem of placing names on a map”.
In: Journal of Visual Languages & Computing. In honour of Stefano
Levialdi 18.5 (Oct. 1, 2007), pp. 458–469. issn: 1045-926X.
doi: 10.1016/j.jvlc.2007.08.006.
url: http://www.sciencedirect.com/science/article/pii/
S1045926X07000535 (visited on 07/26/2017).

[Fre85] Herbert Freeman. “The automatic labeling of geografic maps - a
problem in computer aestetics”.
In: Proceedings Graphics Interface 84 (May 1985), p. 9.

[Fre86] Herbert Freeman.
A state-of-the-art assessment of automatic name placement.
BATTELLE MEMORIAL INST COLUMBUS OH COLUMBUS
LABS, Aug. 1986.
url: https://apps.dtic.mil/docs/citations/ADA192785 (visited
on 05/07/2019).

112

https://doi.org/10.1142/S0218001487000096
http://dx.doi.org/10.1142/S0218001487000096
https://doi.org/10.1007/978-3-319-44543-4_4
https://link.springer.com/chapter/10.1007/978-3-319-44543-4_4
https://link.springer.com/chapter/10.1007/978-3-319-44543-4_4
https://doi.org/10.1016/j.patrec.2004.10.023
http://www.sciencedirect.com/science/article/pii/S0167865504003381
http://www.sciencedirect.com/science/article/pii/S0167865504003381
https://doi.org/10.1016/j.jvlc.2007.08.006
http://www.sciencedirect.com/science/article/pii/S1045926X07000535
http://www.sciencedirect.com/science/article/pii/S1045926X07000535
https://apps.dtic.mil/docs/citations/ADA192785

Bibliography

[Fre95] H Freeman. “On the automated labeling of maps”.
In: Shape, Structure and Pattern Recognition.
World Scientific, Singapore, 1995, pp. 432–42.

[FW91] Michael Formann and Frank Wagner.
“A Packing Problem with Applications to Lettering of Maps”.
In: Proceedings of the Seventh Annual Symposium on Computational
Geometry. SCG ’91.
event-place: North Conway, New Hampshire, USA.
New York, NY, USA: ACM, 1991, pp. 281–288.
isbn: 978-0-89791-426-0. doi: 10.1145/109648.109680.
url: http://doi.acm.org/10.1145/109648.109680 (visited on
07/15/2019).

[Gmb18] Geofabrik GmbH. Geofabrik GmbH. [Online; accessed 26-June-2019].
2018. url: https://www.geofabrik.de.

[GNR11] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter.
“Consistent Labeling of Rotating Maps”.
In: arXiv:1104.5634 [cs] (Apr. 29, 2011). arXiv: 1104.5634.
url: http://arxiv.org/abs/1104.5634 (visited on 01/04/2018).

[GNR16] Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter.
“Evaluation of Labeling Strategies for Rotating Maps”.
In: J. Exp. Algorithmics 21 (Apr. 2016), 1.4:1–1.4:21.
issn: 1084-6654. doi: 10.1145/2851493. url:
http://doi.acm.org/10.1145/2851493 (visited on 01/04/2018).

[Gur19] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual.
2019. url: http://www.gurobi.com.

[Imh62] Eduard Imhof. “Die Anordnung der Namen in der Karte”.
In: International Yearbook of Cartography 2 (1962), pp. 93–129.

[Imh75] Eduard Imhof. “Positioning names on maps”.
In: The American Cartographer 2.2 (Jan. 1, 1975), pp. 128–144.
issn: 0094-1689. doi: 10.1559/152304075784313304. url: http:
//www.tandfonline.com/doi/abs/10.1559/152304075784313304
(visited on 07/06/2017).

[inp19] inphos42. inphos42/osmpbf. [Online; accessed 26-June-2019].
June 10, 2019. url: https://github.com/inphos42/osmpbf (visited
on 10/11/2019).

[KL78] G.A. Kabatiansky and V.I. Levenshtein.
“Bounds for packings on a sphere and in space,”
in: Problemy Peredachi Informatsii 17.1 (1978), pp. 3–25.

113

https://doi.org/10.1145/109648.109680
http://doi.acm.org/10.1145/109648.109680
https://www.geofabrik.de
https://arxiv.org/abs/1104.5634
http://arxiv.org/abs/1104.5634
https://doi.org/10.1145/2851493
http://doi.acm.org/10.1145/2851493
http://www.gurobi.com
https://doi.org/10.1559/152304075784313304
http://www.tandfonline.com/doi/abs/10.1559/152304075784313304
http://www.tandfonline.com/doi/abs/10.1559/152304075784313304
https://github.com/inphos42/osmpbf

Bibliography

[KM20] Filip Krumpe and Thomas Mendel.
Computing Curved Area Labels in Near-Real Time. 2020.
arXiv: 2001.02938 [cs.HC].

[KOS97] Marc Van Kreveld, Rene Van Oostrum, and Jack Snoeyink.
“Efficient settlement selection for interactive display”. In: In Proc.
Auto-Carto 13: ACSM/ASPRS Annual Convention Technical Papers.
1997, pp. 287–296.

[Kre+00] Marc van Kreveld et al.
Computational geometry algorithms and applications. Springer, 2000.
isbn: 978-3-540-65620-3. url: http://125.234.102.146:
8080/dspace/handle/DNULIB_52011/1394 (visited on 11/13/2019).

[Kru18] Filip Krumpe.
“Labeling Points of Interest in Dynamic Maps using Disk Labels”.
In: 10th International Conference on Geographic Information Science
(GIScience 2018).
Ed. by Stephan Winter, Amy Griffin, and Monika Sester. Vol. 114.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018,
8:1–8:14. isbn: 978-3-95977-083-5.
doi: 10.4230/LIPIcs.GISCIENCE.2018.8.
url: http://drops.dagstuhl.de/opus/volltexte/2018/9336
(visited on 11/30/2018).

[Lee82] D. T. Lee. “Medial Axis Transformation of a Planar Shape”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-4.4 (July 1982), pp. 363–369. issn: 0162-8828.
doi: 10.1109/TPAMI.1982.4767267.

[LP86] G.E. Langran and T. K. Poiker.
“Integration of Name Selection and Name Placement”.
In: Proceedings, Second International Symposium on Spatial Data
Handling, 1986 (1986), pp. 50–64.

[Mat01] Barrault Mathieu.
“A methodology for placement and evaluation of area map labels”.
In: Computers, Environment and Urban Systems. GISRUK 2000 25.1
(Jan. 1, 2001), pp. 33–52. issn: 0198-9715.
doi: 10.1016/S0198-9715(00)00039-9.
url: http://www.sciencedirect.com/science/article/pii/
S0198971500000399 (visited on 07/07/2017).

114

https://arxiv.org/abs/2001.02938
http://125.234.102.146:8080/dspace/handle/DNULIB_52011/1394
http://125.234.102.146:8080/dspace/handle/DNULIB_52011/1394
https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.8
http://drops.dagstuhl.de/opus/volltexte/2018/9336
https://doi.org/10.1109/TPAMI.1982.4767267
https://doi.org/10.1016/S0198-9715(00)00039-9
http://www.sciencedirect.com/science/article/pii/S0198971500000399
http://www.sciencedirect.com/science/article/pii/S0198971500000399

Bibliography

[Men18] Natalia Mendel. “Dynamische Beschriftung von Gebietshierarchien -
Entwicklung und Implementierung der Beschriftung von
hierarchischen Gebietsunterteilungen”.
Bachelorthesis. Stuttgart: University of Stuttgart, Oct. 1, 2018.
32 pp.

[Men20] Thomas Mendel.
“Improved Algorithms for Map Rendering and Route Planning”.
PhD thesis. University of Stuttgart, 2020. unpublished thesis.

[MP10] David M. Mount and Eunhui Park.
“A Dynamic Data Structure for Approximate Range Searching”.
In: Proceedings of the Twenty-sixth Annual Symposium on
Computational Geometry. SoCG ’10.
Snowbird, Utah, USA: ACM, 2010, pp. 247–256.
isbn: 978-1-4503-0016-2. doi: 10.1145/1810959.1811002.
url: http://doi.acm.org/10.1145/1810959.1811002.

[MS00] Michael McAllister and Jack Snoeyink.
“Medial Axis Generalization of River Networks”. In: Cartography and
Geographic Information Science 27.2 (Jan. 1, 2000), pp. 129–138.
issn: 1523-0406. doi: 10.1559/152304000783547966.
url: http://dx.doi.org/10.1559/152304000783547966 (visited on
07/06/2017).

[MS91] Joe Marks and Stuart Shieber.
The Computational Complexity of Cartographic Label Placement.
1991.

[Pap81] Christos H. Papadimitriou.
“On the Complexity of Integer Programming”.
In: J. ACM 28.4 (Oct. 1981), pp. 765–768. issn: 0004-5411.
doi: 10.1145/322276.322287.
url: http://doi.acm.org/10.1145/322276.322287 (visited on
11/13/2019).

[PF96] I. Pinto and H. Freeman.
“The feedback approach to cartographic areal text placement”.
In: Advances in Structural and Syntactical Pattern Recognition.
Ed. by Petra Perner, Patrick Wang, and Azriel Rosenfeld.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 341–350.
isbn: 978-3-540-70631-1.

[Pro15] The CGAL Project. CGAL User and Reference Manual. 4.7.
CGAL Editorial Board, 2015.
url: http://doc.cgal.org/4.7/Manual/packages.html.

115

https://doi.org/10.1145/1810959.1811002
http://doi.acm.org/10.1145/1810959.1811002
https://doi.org/10.1559/152304000783547966
http://dx.doi.org/10.1559/152304000783547966
https://doi.org/10.1145/322276.322287
http://doi.acm.org/10.1145/322276.322287
http://doc.cgal.org/4.7/Manual/packages.html

Bibliography

[Sch+13] Nadine Schwartges et al.
“Optimizing Active Ranges for Point Selection in Dynamic Maps”.
In: Proceedings of the 16th ICA Generalisation Workshop (ICA’13).
2013.

[Sch89] Michel Schmitt.
“Some examples of algorithms analysis in computational geometry by
means of mathematical morphological techniques”.
In: Geometry and Robotics.
Ed. by J. -D. Boissonnat and J. -P. Laumond.
Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1989, pp. 225–246.
isbn: 978-3-540-46748-9.

[Ved94] Aruna Ashtakala Vedula.
Automatic positioning of area feature names on special purpose maps.
1994.

[Wik19a] OpenStreetMap Wiki. DE:Grenze — OpenStreetMap Wiki.
[Online; accessed 16-December-2019]. 2019. url: %5Curl%7Bhttps:
//wiki.openstreetmap.org/w/index.php?title=DE:
Grenze&oldid=1934872%7D.

[Wik19b] OpenStreetMap Wiki.
Tag:boundary=administrative — OpenStreetMap Wiki.
[Online; accessed 16-December-2019]. 2019. url: %5Curl%7Bhttps:
//wiki.openstreetmap.org/w/index.php?title=Tag:
boundary%3Dadministrative&oldid=1922057%7D.

[Wik19c] Wikipedia Contributors.
Haversine formula — Wikipedia, The Free Encyclopedia.
[Online; accessed 25-June-2019]. 2019.

[Wik19d] Wikipedia Contributors. World Geodetic System. In: Wikipedia.
Page Version ID: 919452578. Oct. 3, 2019.
url: https://en.wikipedia.org/w/index.php?title=World_
Geodetic_System&oldid=919452578 (visited on 10/30/2019).

[Wol] Alexander Wolff. The Map-Labeling Bibliography.
url: https://i11www.iti.kit.edu/~awolff/map-
labeling/bibliography/ (visited on 05/20/2019).

[WS] David P. Williamson and David B. Shmoys.
The Design of Approximation Algorithms. 500 pp.
url: http://www.designofapproxalgs.com/download.php (visited
on 11/21/2017).

116

%5Curl%7Bhttps://wiki.openstreetmap.org/w/index.php?title=DE:Grenze&oldid=1934872%7D
%5Curl%7Bhttps://wiki.openstreetmap.org/w/index.php?title=DE:Grenze&oldid=1934872%7D
%5Curl%7Bhttps://wiki.openstreetmap.org/w/index.php?title=DE:Grenze&oldid=1934872%7D
%5Curl%7Bhttps://wiki.openstreetmap.org/w/index.php?title=Tag:boundary%3Dadministrative&oldid=1922057%7D
%5Curl%7Bhttps://wiki.openstreetmap.org/w/index.php?title=Tag:boundary%3Dadministrative&oldid=1922057%7D
%5Curl%7Bhttps://wiki.openstreetmap.org/w/index.php?title=Tag:boundary%3Dadministrative&oldid=1922057%7D
https://en.wikipedia.org/w/index.php?title=World_Geodetic_System&oldid=919452578
https://en.wikipedia.org/w/index.php?title=World_Geodetic_System&oldid=919452578
https://i11www.iti.kit.edu/~awolff/map-labeling/bibliography/
https://i11www.iti.kit.edu/~awolff/map-labeling/bibliography/
http://www.designofapproxalgs.com/download.php

Bibliography

[Wyn65] A. D. Wyner. “Capabilities of bounded discrepancy decoding”. In:
The Bell System Technical Journal 44.6 (July 1965), pp. 1061–1122.
issn: 0005-8580. doi: 10.1002/j.1538-7305.1965.tb04170.x.

[Yoe72] P. Yoeli. “The logic of automated map lettering”.
In: Cartographic J. 9.2 (1972), pp. 99–108.
url: https://ci.nii.ac.jp/naid/10026454235/#cit (visited on
05/07/2019).

117

https://doi.org/10.1002/j.1538-7305.1965.tb04170.x
https://ci.nii.ac.jp/naid/10026454235/#cit

	Prologue
	Preface
	Related Work
	Preliminaries
	Points, Lines and Areas
	Fundamental Concepts
	Fundamental Algorithms

	Map Labeling
	Labeling Areas
	Quality Measures for Curved Area Labels
	The Labeling Model
	Linking Labels and Map Scale
	Finding Representative Points for Areas

	Labeling Points
	Consistency Requirements
	The Label Disk Model
	Linking Labeling and Map Scale
	Extending the Model

	Obtaining Geographical Data

	Algorithms
	Area Label Positioning
	Problem Description
	Barrault's Incarnation
	Real-time Area Label Fitting
	Implementation and Experimental Results

	Computing Elimination Sequences
	Problem Description
	Solving the Simplified Scenario efficiently
	Elimination Sequences with Unrestricted Priorities

	Epilogue
	Appendix

