login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: keyword:new
Displaying 1-10 of 293 results found. page 1 2 3 4 5 6 7 8 9 10 ... 30
     Sort: relevance | references | number | modified | created      Format: long | short | data
A348580 Expansion of e.g.f. exp(x) / (1 - sin(x)). +0
0
1, 2, 5, 15, 53, 217, 1015, 5355, 31513, 204857, 1458875, 11299695, 94600373, 851419597, 8198959735, 84124450035, 916270051633, 10559066809937, 128362804540595, 1641730799916375, 22037407161945293, 309782122281453877, 4551072446448773455, 69747642031977698715 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..23.

FORMULA

a(n) = Sum_{k=0..n} binomial(n,k) * A000111(k+1).

a(n) ~ 2^(n + 7/2) * n^(n + 3/2) / (Pi^(n + 3/2) * exp(n - Pi/2)). - Vaclav Kotesovec, Oct 25 2021

MAPLE

b:= proc(u, o) option remember; `if`(u+o=0, 1,

      add(b(o-1+j, u-j), j=1..u))

    end:

a:= n-> add(binomial(n, k)*b(k+1, 0), k=0..n):

seq(a(n), n=0..23);  # Alois P. Heinz, Oct 24 2021

MATHEMATICA

nmax = 23; CoefficientList[Series[Exp[x]/(1 - Sin[x]), {x, 0, nmax}], x] Range[0, nmax]!

PROG

(PARI) my(x='x+O('x^40)); Vec(serlaplace(exp(x)/(1-sin(x)))) \\ Michel Marcus, Oct 24 2021

CROSSREFS

Cf. A000111, A000667, A186364, A330046, A348587.

KEYWORD

nonn,new

AUTHOR

Ilya Gutkovskiy, Oct 24 2021

STATUS

approved

A348482 Triangle read by rows: T(n,k) = (Sum_{i=k..n} i!)/(k!) for 0 <= k <= n. +0
0
1, 2, 1, 4, 3, 1, 10, 9, 4, 1, 34, 33, 16, 5, 1, 154, 153, 76, 25, 6, 1, 874, 873, 436, 145, 36, 7, 1, 5914, 5913, 2956, 985, 246, 49, 8, 1, 46234, 46233, 23116, 7705, 1926, 385, 64, 9, 1, 409114, 409113, 204556, 68185, 17046, 3409, 568, 81, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The matrix inverse M = T^(-1) has terms M(n,n) = 1 for n >= 0, M(n,n-1) = -(n+1) for n > 0, and M(n,n-2) = n for n > 1, otherwise 0.

LINKS

Table of n, a(n) for n=0..54.

FORMULA

T(n,n) = 1 and T(2*n,n) = A109398(n) for n >= 0; T(n,n-1) = n+1 for n > 0; T(n,n-2) = n^2 for n > 1.

T(n,k) - T(n-1,k) = (n!) / (k!) = A094587(n,k) for 0 <= k < n.

T(n,k) = (k+2) * (T(n,k+1) - T(n,k+2)) for 0 <= k < n-1.

T(n,k) = (T(n,k-1) - 1) / k for 0 < k <= n.

T(n,k) * T(n-1,k-1) - T(n-1,k) * T(n,k-1) = (n!) / (k!) for 0 < k < n.

T(n,1) = T(n,0)-1 = Sum_{k=0..n-1} T(n,k)/(k+2) for n > 0 (conjectured).

Sum_{k=0..n} binomial(k+r,k) * (1-k) * T(n+r,k+r) = binomial(n+r+1,n) for n >= 0 and r >= 0.

Sum_{k=0..n} (-1)^k * (k+1) * T(n,k) = (1 + (-1)^n) / 2 for n >= 0.

Sum_{k=0..n} (-1)^k * (k!) * T(n,k) = Sum_{k=0..n} (k!) * (1+(-1)^k) / 2 for n >= 0.

The row polynomials p(n,x) = Sum_{k=0..n} T(n,k) * x^k for n >= 0 satisfy the following equations:

  (a) p(n,x) - p'(n,x) = (x^(n+1)-1) / (x-1) for n >= 0, where p' is the first derivative of p;

  (b) p(n,x) - (n+1) * p(n-1,x) + n * p(n-2,x) = x^n for n > 1.

  (c) p(n,x) = (x+1) * p(n-1,x) + 1 + Sum_{i=1..n-1} (d/dx)^i p(n-1,x) for n > 0 (conjectured).

Row sums p(n,1) equal A002104(n+1) for n >= 0.

Alternating row sums p(n,-1) equal A173184(n) for n >= 0 (conjectured).

EXAMPLE

The triangle T(n,k) for 0 <= k <= n starts:

n\k :       0       1       2      3      4     5    6   7   8  9

=================================================================

  0 :       1

  1 :       2       1

  2 :       4       3       1

  3 :      10       9       4      1

  4 :      34      33      16      5      1

  5 :     154     153      76     25      6     1

  6 :     874     873     436    145     36     7    1

  7 :    5914    5913    2956    985    246    49    8   1

  8 :   46234   46233   23116   7705   1926   385   64   9   1

  9 :  409114  409113  204556  68185  17046  3409  568  81  10  1

  etc.

MATHEMATICA

T[n_, k_] := Sum[i!, {i, k, n}]/k!; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Oct 20 2021 *)

CROSSREFS

Cf. A109398, A094587, A002104 (row sums), A173184 (alt. row sums), A000012 (main diagonal), A000027(1st subdiagonal), A000290 (2nd subdiagonal), A081437 (3rd subdiagonal), A192398 (4th subdiagonal), A003422 (column 0), A007489 (column 1), A345889 (column 2).

KEYWORD

nonn,easy,tabl,new

AUTHOR

Werner Schulte, Oct 20 2021

STATUS

approved

A348479 Number of interval posets of permutations with n minimal elements. +0
0
1, 1, 3, 12, 52, 240, 1160, 5795, 29681, 155025, 822563, 4421458, 24025518, 131759106, 728330062, 4053823980, 22699853940, 127790656040, 722835069984, 4106096464006, 23414579166050, 133984343279790, 769124367124594, 4427878983496972, 25559244203741228 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..25.

M. Bouvel, L. Cioni and B. Izart, The interval posets of permutations seen from the decomposition tree perspective, arXiv:2110.10000 [math.CO], 2021.

B. E. Tenner, Interval posets for permutations, arXiv:2007.06142 [math.CO], 2020-2021.

FORMULA

a(n) = (1/n) * Sum_{i=1..(n-1)} Sum_{k=0..Min(i,(n-i-1)/2)} binomial(n+i-1,i)* binomial(i,k)*binomial(n-2k-2,i-1) if n>1. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 18).

G.f. A(z) = Sum_{n>=0} a(n)*z^n satisfies the equation A(z) = z + (A(z)^2 + A(z)^4)/(1-A(z)). Proved in M. Bouvel, L. Cioni, B. Izart (Equation (1) page 14).

Asymptotic behavior of a(n) is c*n^(-3/2)*r^n with c approximately 0.0622 and r approximately 6.1403. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 19).

MATHEMATICA

Join[{1}, Table[Sum[Sum[Binomial[n+i-1, i]Binomial[i, k]Binomial[n-2k-2, i-1], {k, 0, Min[i, (n-i-1)/2]}], {i, n-1}]/n, {n, 2, 25}]] (* Stefano Spezia, Oct 23 2021 *)

PROG

(PARI) a(n) = if (n==1, 1, (1/n) * sum(i=1, n-1, sum(k=0, min(i, (n-i-1)/2), binomial(n+i-1, i)* binomial(i, k)*binomial(n-2*k-2, i-1)))); \\ Michel Marcus, Oct 21 2021

CROSSREFS

For interval posets which are in addition trees, see A348515.

KEYWORD

nonn,new

AUTHOR

Mathilde Bouvel, Oct 21 2021

STATUS

approved

A348515 Number of tree interval posets of permutations with n minimal elements. +0
0
1, 1, 2, 6, 21, 78, 301, 1198, 4888, 20340, 85986, 368239, 1594183, 6965380, 30675399, 136026759, 606848034, 2721783023, 12265670909, 55511013680, 252193872912, 1149742659556, 5258257323304, 24117924005616, 110915268468358, 511334146237807, 2362650323603539 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..27.

M. Bouvel, L. Cioni and B. Izart, The interval posets of permutations seen from the decomposition tree perspective, arXiv:2110.10000 [math.CO], 2021.

B. E. Tenner, Interval posets for permutations, arXiv:2007.06142 [math.CO], 2020-2021.

FORMULA

a(n) = (1/n) * [binomial(2n-2,n-1) + Sum_{i=1..(n-3)} Sum_{k=1..Min(i,(n-i-1)/2)} binomial(n+i-1,i)*binomial(i,k)*binomial(n-i-k-2,k-1) ] if n>1. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 21).

G.f. A(z) = Sum_{n>=0} a(n)*z^n satisfies the equation A(z) = z + A(z)^2 + A(z)^4/(1-A(z)). Proved in M. Bouvel, L. Cioni, B. Izart (Equation (6) page 17).

Asymptotic behavior of a(n) is c*n^(-3/2)*r^n with c approximately 0.0792 and r approximately 4.8920. Proved in M. Bouvel, L. Cioni, B. Izart (Theorem 22).

MATHEMATICA

Array[(1/#)*(Binomial[2 # - 2, # - 1] + Sum[Sum[Binomial[# + i - 1, i]*Binomial[i, k]*Binomial[# - i - k - 2, k - 1], {k, Min[i, (# - i - 1)/2]}], {i, # - 3}]) &, 27] (* Michael De Vlieger, Oct 21 2021 *)

PROG

(PARI) a(n) = (1/n) * (binomial(2*n-2, n-1) + sum(i=1, n-3, sum(k=1, min(i, (n-i-1)/2), binomial(n+i-1, i)*binomial(i, k)*binomial(n-i-k-2, k-1)))); \\ Michel Marcus, Oct 21 2021

CROSSREFS

For interval posets which are not necessarily trees, see A348479.

KEYWORD

nonn,new

AUTHOR

Mathilde Bouvel, Oct 21 2021

STATUS

approved

A348436 Triangle read by rows. T(n,k) is the number of labeled threshold graphs on n vertices with k components, for 1 <= k <= n. +0
0
1, 1, 1, 4, 3, 1, 23, 16, 6, 1, 166, 115, 40, 10, 1, 1437, 996, 345, 80, 15, 1, 14512, 10059, 3486, 805, 140, 21, 1, 167491, 116096, 40236, 9296, 1610, 224, 28, 1, 2174746, 1507419, 522432, 120708, 20916, 2898, 336, 36, 1, 31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The class of threshold graphs is the smallest class of graphs that includes K1 and is closed under adding isolated vertices and dominating vertices.

LINKS

Table of n, a(n) for n=1..55.

D. Galvin, G. Wesley and B. Zacovic, Enumerating threshold graphs and some related graph classes, arXiv:2110.08953 [math.CO], 2021.

Sam Spiro, Counting Threshold Graphs with Eulerian Numbers, arXiv:1909.06518 [math.CO], 2019.

FORMULA

T(1,1) = 1; for n >= 2, T(n,1) = A005840(n)/2; for n >= 3 and 2 <= k <= n-1, T(n,k) = binomial(n,k-1)*T(n-k+1,1); and for n >= 2, T(n,n)=1.

T(n, k) = binomial(n, k-1)*A053525(n - k + 1) if k != n, otherwise 1. - Peter Luschny, Oct 24 2021

EXAMPLE

Triangle begins:

         1;

         1,        1;

         4,        3,       1;

        23,       16,       6,       1;

       166,      115,      40,      10,      1;

      1437,      996,     345,      80,     15,     1;

     14512,    10059,    3486,     805,    140,    21,    1;

    167491,   116096,   40236,    9296,   1610,   224,   28,   1;

   2174746,  1507419,  522432,  120708,  20916,  2898,  336,  36,  1;

  31374953, 21747460, 7537095, 1741440, 301770, 41832, 4830, 480, 45, 1;

...

MAPLE

T := (n, k) -> `if`(n = k, 1, binomial(n, k-1)*A053525(n-k+1)):

for n from 1 to 10 do seq(T(n, k), k=1..n) od; # Peter Luschny, Oct 24 2021

MATHEMATICA

eulerian[0, 0] := 1; eulerian[n_, m_] := eulerian[n, m] =

Sum[((-1)^k)*Binomial[n + 1, k]*((m + 1 - k)^n), {k, 0, m + 1}];

(* t[n] counts the number of labelled threshold graphs on n vertices *)

t[0] = 1; t[1] = 1;

t[n_] := t[n] = Sum[(n - k)*eulerian[n - 1, k - 1]*(2^k), {k, 1, n - 1}];

T[1, 1] := 1; T[n_, 1] := T[n, 1] = (1/2)*t[n]; T[n_, n_] := T[n, n] = 1;

T[n_, k_] := T[n, k] = Binomial[n, k - 1]*T[n - k + 1, 1];

Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten

CROSSREFS

Cf. A005840 (row sums), A317057 (column k=1), A053525.

KEYWORD

nonn,tabl,new

AUTHOR

David Galvin, Oct 18 2021

STATUS

approved

A348576 Triangle read by rows: T(n,k) is the number of ordered partitions of [n] into k nonempty subsets, in which the first subset has size at least 2, n >= 1 and 1 <= k <= n. +0
0
0, 1, 0, 1, 3, 0, 1, 10, 12, 0, 1, 25, 80, 60, 0, 1, 56, 360, 660, 360, 0, 1, 119, 1372, 4620, 5880, 2520, 0, 1, 246, 4788, 26376, 58800, 57120, 20160, 0, 1, 501, 15864, 134316, 466704, 771120, 604800, 181440, 0, 1, 1012, 50880, 637020, 3238200, 8094240, 10584000, 6955200, 1814400, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Ordered partitions are also referred to as weak orders.

LINKS

Table of n, a(n) for n=1..55.

D. Galvin, G. Wesley and B. Zacovic, Enumerating threshold graphs and some related graph classes, arXiv:2110.08953 [math.CO], 2021.

FORMULA

T(n,k) = Sum_{j=1..n-1} (n-j)*A173018(n-1, j-1)*binomial(j-1, n-k-1).

EXAMPLE

For n=3, the ordered partitions of {1,2,3} in which the first block has size at least 2 are 123, 12/3, 13/2 and 23/1, so T(3,1)=1, T(3,2)=3 and T(3,3)=0.

Triangle begins:

0;

1,     0;

1,     3,     0;

1,    10,    12,       0;

1,    25,    80,      60,       0;

1,    56,   360,     660,     360,       0;

1,   119,  1372.    4620,    5880,    2520,        0;

1,   246,  4788,   26376,   58800,   57120,    20160,        0;

1,   501, 15864,  134316,  466704,  771120,   604800,   181440,       0;

1,  1012, 50880,  637020, 3238200, 8094240, 10584000,  6955200, 1814400, 0;

...

MAPLE

b:= proc(n, t) option remember; expand(`if`(n=0, 1,

      add(x*b(n-j, 1)*binomial(n, j), j=t..n)))

    end:

T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 2)):

seq(T(n), n=1..10);  # Alois P. Heinz, Oct 24 2021

MATHEMATICA

eulerian[n_, m_] := eulerian[n, m] =

  Sum[((-1)^k)*Binomial[n+1, k]*((m+1-k)^n), {k, 0, m+1}] (*eulerian[n, m] is an eulerian number, counting the number of permutations of [n] with m descents*);

op2[n_, k_] := op2[n, k] =

   Sum[(n-j)*eulerian[n-1, j-1]*Binomial[j-1, n-k-1], {j, 1, n-1}] (*op2[n, k] counts number of ordered partition on [n] with k parts, with first part having size at least 2*); Table[op2[n, k], {n, 1, 12}, {k, 1, n}]

PROG

(PARI) TE(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial( n+1, j)); \\ A008292

T(n, k) = sum(j=1, n-1, (n-j)*TE(n-1, j)*binomial(j-1, n-k-1)); \\ Michel Marcus, Oct 24 2021

CROSSREFS

Row sums are A053525.

Cf. A173018, A000247, A001710, A131689.

KEYWORD

nonn,tabl,new

AUTHOR

David Galvin, Oct 23 2021

STATUS

approved

A348400 a(1) = 1; a(n+1) = a(n) + n if the digit sum of a(n) is already in the sequence, otherwise a(n+1) = digitsum(a(n)). +0
0
1, 2, 4, 7, 11, 16, 22, 29, 37, 10, 20, 31, 43, 56, 70, 85, 13, 30, 3, 22, 42, 6, 28, 51, 75, 12, 38, 65, 93, 122, 5, 36, 9, 42, 76, 111, 147, 184, 222, 261, 301, 342, 384, 15, 59, 14, 60, 107, 8, 57, 107, 158, 210, 263, 317, 372, 428, 485, 17, 76, 136, 197, 259 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Do all the positive integers appear in this sequence?

LINKS

Table of n, a(n) for n=1..63.

EXAMPLE

a(8) = 29 and digitsum(29) = 11 is already in the sequence, so a(9) = a(8) + 8 = 29 + 8 = 37.

a(9) = 37 and digitsum(37) = 3 + 7 = 10 is not yet in the sequence, so a(10) = 10.

Written as an irregular triangle, in which each line begins with a term which is the digit sum of its preceding term, the sequence begins:

   1,  2,   4,   7,  11,  16,  22,  29,  37;

  10, 20,  31,  43,  56,  70,  85;

  13, 30;

   3, 22,  42;

   6, 28,  51,  75;

  12, 38,  65,  93, 122;

   5, 36;

   9, 42,  76, 111, 147, 184, 222, 261, 301, 342, 384;

  15, 59;

  14, 60, 107;

  ...

MATHEMATICA

seq[len_] := Module[{s = {1}, k, d, i = 1}, While[Length[s] < len, k = s[[-1]]; If[MemberQ[s, (d = Plus @@ IntegerDigits[k])], AppendTo[s, k + i], AppendTo[s, d]]; i++]; s]; seq[50] (* Amiram Eldar, Oct 21 2021 *)

CROSSREFS

Cf. A007953, A348483, A348433.

KEYWORD

nonn,base,new

AUTHOR

Rodolfo Kurchan, Oct 21 2021

EXTENSIONS

Definition clarified by Amiram Eldar, Oct 23 2021

STATUS

approved

A348582 a(n) is the greatest factor among all the products A307720(k) * A307720(k+1) equal to n. +0
0
1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 4, 13, 7, 5, 8, 17, 6, 19, 5, 7, 11, 23, 8, 5, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 7, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 8, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

We know there are n ways to get n as a product of terms A307720(k)*A307720(k+1) for various k's. Look at these 2*n numbers from A307720. Then a(n) is the largest of them.

LINKS

Table of n, a(n) for n=1..74.

Rémy Sigrist, C program for A348582

FORMULA

a(p) = p for any prime number p.

a(n) * A348581(n) = n.

EXAMPLE

For n = 6:

- we have the following products equal to 6:

    A307720(7)  * A307720(8)  = 3 * 2 = 6

    A307720(12) * A307720(13) = 2 * 3 = 6

    A307720(13) * A307720(14) = 3 * 2 = 6

    A307720(14) * A307720(15) = 2 * 3 = 6

    A307720(15) * A307720(16) = 3 * 2 = 6

    A307720(16) * A307720(17) = 2 * 3 = 6

- the corresponding distinct factors are 2 and 3,

- hence a(6) = 3.

PROG

(C) See Links section.

CROSSREFS

Cf. A307720, A307730, A348581.

KEYWORD

nonn,new

AUTHOR

Rémy Sigrist and N. J. A. Sloane, Oct 24 2021

STATUS

approved

A348581 a(n) is the least factor among all the products A307720(k) * A307720(k+1) equal to n. +0
0
1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 3, 5, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 7, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 8, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 9, 2, 1, 7, 5, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

We know there are n ways to get n as a product of terms A307720(k)*A307720(k+1) for various k's. Look at these 2*n numbers from A307720. Then a(n) is the smallest of them.

LINKS

Table of n, a(n) for n=1..87.

Rémy Sigrist, C program for A348581

FORMULA

a(p) = 1 for any prime number p.

a(n) * A348582(n) = n.

EXAMPLE

For n = 6:

- we have the following products equal to 6:

    A307720(7)  * A307720(8)  = 3 * 2 = 6

    A307720(12) * A307720(13) = 2 * 3 = 6

    A307720(13) * A307720(14) = 3 * 2 = 6

    A307720(14) * A307720(15) = 2 * 3 = 6

    A307720(15) * A307720(16) = 3 * 2 = 6

    A307720(16) * A307720(17) = 2 * 3 = 6

- the corresponding distinct factors are 2 and 3,

- hence a(6) = 2.

PROG

(C) See Links section.

CROSSREFS

Cf. A307720, A307730, A348582.

KEYWORD

nonn,new

AUTHOR

Rémy Sigrist and N. J. A. Sloane, Oct 24 2021

STATUS

approved

A348579 Triangle T(n, k), n > 0, 0 < k <= n, read by rows; the n-th row contains, in ascending order, the numbers m such that A307730(m) = n. +0
0
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 47, 48, 49, 50, 51, 7, 12, 13, 14, 15, 16, 52, 53, 54, 55, 56, 57, 58, 27, 28, 29, 30, 31, 32, 33, 34, 17, 18, 19, 20, 21, 22, 23, 24, 25, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 1374, 1375, 1376, 1377, 1378, 1379, 1380, 1381, 1382, 1383, 1384 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..66.

Rémy Sigrist, PARI program for A348579

Index entries for sequences that are permutations of the natural numbers

FORMULA

T(n, 1) = A348246(n).

T(n, n) = A348409(n).

EXAMPLE

Triangle T(n, k) begins:

  n\k|   1   2   3   4   5   6   7   8   9  10

  ---+----------------------------------------

    1|   1

    2|   2   3

    3|   4   5   6

    4|   8   9  10  11

    5|  47  48  49  50  51

    6|   7  12  13  14  15  16

    7|  52  53  54  55  56  57  58

    8|  27  28  29  30  31  32  33  34

    9|  17  18  19  20  21  22  23  24  25

   10|  60  61  62  63  64  65  66  67  68  69

PROG

(PARI) See Links section.

CROSSREFS

Cf. A307720, A307730, A348246, A348409.

KEYWORD

nonn,tabl,new

AUTHOR

Rémy Sigrist and N. J. A. Sloane, Oct 24 2021

STATUS

approved

page 1 2 3 4 5 6 7 8 9 10 ... 30

Search completed in 0.098 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 25 07:16 EDT 2021. Contains 348239 sequences. (Running on oeis4.)